
– 1 –

The mkfilter Digital Filter Generation Program

(mkfilter vsn. 4.5 and friends)

1. Introduction

mkfilter is a program which designs an infinite impulse response digital filter from

parameters specified on the command line. Lowpass, highpass, bandpass and

bandstop filters, with Butterworth, Bessel or Chebyshev characteristics, are designed

using the bilinear transform or matched z-transform method. For most applications

the bilinear transform method is recommended. The program can also design

resonators with bandpass, bandstop or allpass characteristics. A companion program,

mkshape, designs raised-cosine finite-impulse-response filters and Hilbert trans-

formers. Other programs generate “C” code (in a variety of formats) from the compiled

filter specification, and generate various graphs in “gif” format.

The source code of the programs (in C++) is at

http://www-users.cs.york.ac.uk/~fisher/software/mkfilter

and there is a World Wide Web form-based front end at

http://www-users.cs.york.ac.uk/~fisher/mkfilter

The WWW front end is recommended. For most applications, it is the most convenient

way to use the mkfilter package.

2. Mkfilter

In normal use, the output of mkfilter is a set of s- and z-plane pole and zero posi-

tions, the filter recurrence relation, and some other information in human-readable

form. By specifying the -l parameter, computer-readable output is produced which

can be piped into other programs. In particular, the program gencode takes the -l
output from mkfilter and generates a piece of C or C++ code which implements the

filter, and the program genplot takes the -l output and generates a “gif” file contain-

ing a frequency-domain or time-domain response graph.

A warning about higher-order Bessel filters: although an analogue Bessel filter has an

excellent approximation to a linear phase characteristic, the pre-warping inherent in

the bilinear transform design method upsets this, and the corresponding digital filter

often deviates significantly from linear phase. This is particularly evident in the

higher-order Bessel filters (say N > 2). You’re advised to study the graphs produced by

genplot before you use any Bessel filter generated by this package, and to consider

using the matched z-transform for Bessel filters.

mkfilter can also design resonators. A resonator is a digital equivalent of a tuned

circuit. There are three varieties:

1. the bandpass resonator, which has a high gain at its centre frequency and

low gain elsewhere;

2. the bandstop resonator (or notch filter), which has zero gain (–∞ dB) at its

centre frequency and about unity (0 dB) elsewhere;

3. the allpass resonator, which has unity gain (0 dB) everywhere, with a phase

shift which varies with frequency.

– 2 –

The phase response of the bandpass resonator approximates to +π/2 at frequencies

below the centre and –π/2 at frequencies above the centre, and is exactly zero at the

centre. The bandstop and allpass resonators both have approximately zero phase shift

except at the centre frequency, at which the phase shift is nominally ±π; however in

the case of the bandstop resonator, since the gain is zero at the centre frequency, the

phase shift at that frequency is not defined.

In both respects (magnitude and phase) the resonator behaves like a “real” analogue

tuned circuit.

If you want a narrow bandpass or bandstop filter, a resonator is often more efficient

and better behaved than a traditional (e.g. Butterworth) filter.

All types of resonator are designed directly in the z-plane. The bilinear transform is

not used here. A bandpass resonator is constructed first; if you asked for one of the

other types, the bandpass resonator is transformed accordingly.

The number of poles is fixed at 2, initially at z = r exp ±jθ, where r is close to 1. Two

zeros are added at z = ±1, to ensure zero response at d.c. and h.f.

The presence of the conjugate poles affects the response slightly: the “correct” pole

positions are not exactly where you would expect them to be. Consequently, the initial

pole positions are next refined iteratively, to place the peak as close as possible to

where you said you wanted it.

If you asked for a bandstop or allpass resonator, the zeros at z = ±1 are then removed.

For a bandstop design, new zeros are added on the unit circle at z = exp ±jθ, where θ
is the unrefined initial value of θ. This gives a zero response at the precise centre

frequency. For an allpass design, zeros are added at (1/r) exp ±jθ, where θ this time is

the refined value, to balance the existing poles.

You may specify a value of Inf as the Q (quality factor) of a bandpass resonator, in

which case you will get an oscillator (with poles exactly on the unit circle in the z-

plane).

2.1. Mkfilter Command Line Parameters

“[]” means “optional”; “|” means “or”. “(Not Res)” means that the parameter is

neither required nor allowed for resonators, i.e. if -Re has been specified.

The following parameters are required:

-Be | -Bu | -Ch r | -Re Q

Filter type: Bessel, Butterworth, Chebyshev or Resonator, respectively.

Exactly one of these options must be specified. The parameter r is the

passband ripple in dB, meaningful for Chebyshev designs only. (NB:

r < 0.) Q is the Q-factor of the resonator: the higher the Q, the narrower

the peak. Values in the range 10 … 1000 are typical. The special value

Inf specifies an oscillator.

-Lp | -Hp | -Bp | -Bs | -Ap
Pass type: Lowpass, Highpass, Bandpass, Bandstop or Allpass, respective-

ly. Exactly one of these options must be specified. For resonators, only

–Bp, –Bs and –Ap are allowed. For non-resonators, all pass types except

–Ap are allowed.

– 3 –

-o N Order of filter. NB: 1 ≤ N ≤ 10. The attenuation in the stopband is

6N dB per octave. The number of s- and z-plane poles and zeros is

related to N as follows.

s-poles s-zeros z-poles z-zeros z-zeros

(blt) (mzt)

Lowpass: N none N N at –1 none

Highpass N N at 0 N N at +1 N at +1

Bandpass: 2N N at 0 2N N at –1; N at +1

N at +1

Bandstop: 2N N at +jω
0
; 2N 2N 2N

N at –jω
0

where ω
0

is the geometric mean of the corner frequencies.

Note that in a bandpass or bandstop filter the number of s- or z-plane

poles is twice the order. (Not Res)

-a α
1

[α
2
] Corner (–3 dB) frequency/ies, as a fraction of the sampling rate; i.e. 0.5 is

the Nyquist frequency. For lowpass and highpass filters and resonators,

only α
1

is required. For non-resonator bandpass and bandstop filters,

both α
1

(the lower corner frequency) and α
2

(the upper corner frequency)

are required. NB: 0 < α
1

< 0.5; 0 < α
2

< 0.5; α
1

< α
2
.

The following parameters are optional:

-l List output in a machine-readable form suitable for piping to another

program. The format is described below.

-p p
1

p
2

… Select only poles p
1
, p

2
, …, where 0 ≤ p

i
< N. Sometimes it is convenient

(e.g. to reduce roundoff error) to partition a filter into sections. This

option allows you to choose a subset of s-plane poles from the complete

set. The subset selected must itself be partitioned into complex conjugate

pairs. Some trial and error is required to achieve this! You will be told if

you have not got it right. (Not Res)

-w Don’t pre-warp the corner frequencies. This is useful when you’re

interested in the s-plane pole positions for an analogue filter. If you

specify -w without -z the generated digital filter will be wrong. (Not Res)

-z Use the matched z-transform design method. The default if -z is not

specified is the bilinear transform method. This option implies -w.

(Not Res)

-Z α Add an additional z-plane zero at α times the sampling rate. This gives

infinite attenuation at the specified frequency. Unless α specifies a

frequency which is well within the stop-band, the filter shape is severely

distorted. Check the graphs produced by genplot to make sure that the

results are what you wanted.

– 4 –

2.2. Format of -l output

If the -l option is specified, mkfilter writes the following to standard output:

1. The command line which invoked mkfilter.

2. The magnitude of the gain in the pass-band, defined as follows. Let H(α) be the

complex filter gain (transfer function) at frequency α f
s
, where f

s
is the sampling

frequency. Define:

For a lowpass filter: g = H(0)

For a highpass filter: g = H(0.5)

For a bandpass filter: g = H((α
1

+ α
2
) / 2)

For a bandstop filter: g = [H(0) H(0.5)]0.5

The program outputs the magnitude of g.

3. This is followed by the number Z of z-plane zeros, followed by Z+1 further

numbers which are the coefficients of x
i
in the recurrence relation.

4. Finally, the number P of z-plane poles, and the P+1 coefficients of y
i
, are listed in

the same format. The last y coefficient is always –1.

A trial run, specifying the same parameters both with and without -l, will make this

clear.

3. Mkshape

This program generates a finite impulse response filter with a raised-cosine magni-

tude response, or a Hilbert transformer. It is run by:

mkshape -{cr} α β n [-{lwx}]

mkshape -i n [-{lwx}]

mkshape -h n [-{lw}]

where α is the “corner” frequency, β is the excess bandwidth (roll-off factor), and n is

the length of the impulse response, in samples.

Although -l is an optional parameter, the program doesn’t do anything useful if -l is

not specified. With -l, the output is in the format described in section 2.2 above.

Exactly one of –c, –r, –i or –h must be specified. –c specifies a raised-cosine

response. –r specifies a square-root response, i.e. the magnitude of the response at

any frequency is proportional to the square root of the response you would have got if

you had specified –c instead of –r. Square-root raised-cosine filters are often used in

digital communication systems. –i specifies the identity response (constant “1” at all

frequencies). –h specifies a Hilbert transformer. For –h and –i, the only parameter

required is n, the length of the impulse response.

The optional parameter –x (not available for Hilbert transformers) specifies that

x / sin x compensation is to be applied in the frequency domain, to compensate for the

sin x / x response of real-world DACs (which output a sequence of square pulses when,

ideally, they should be outputting a sequence of delta functions).

The optional parameter –w applies a Hamming window to the impulse response. This

can significantly improve (reduce the amplitude of) the sidelobes, at the cost of some

distortion in the passband response shape for short filters.

The corner frequency is defined for raised-cosine filters as the frequency at which the

– 5 –

response is –6 dB relative to the response at 0 Hz if –c is specified, or –3 dB if –r is

specified.

For further information on raised-cosine filters, see

http://www-users.cs.york.ac.uk/~fisher/mkfilter/rcdoc/rcdoc.ps.gz

4. Gencode and genplot

The program gencode takes the -l output from mkfilter or mkshape and generates

a piece of C or C++ code which implements the filter. With the exception of code

generated by -f or -xyc (see below), the code is meant primarily to be read, not

executed; however it is syntactically correct and complete except for input and output

code, which you will have to supply.

gencode and genplot do not work with oscillators designed by mkfilter (i.e. band-

pass resonators with infinite Q), because the “gain” of an oscillator is infinite.

The usage is:

gencode [-ansic | -xyc | -f]

The parameters control the format of the output. The default is -ansic, which

specifies Ansi “C”. -xyc causes just a single line to be output, containing the

following data separated by tab characters: the pass-band gain g (see section 2.2); the

Z+1 x coefficients; the P+1 y coefficients.

-f generates code required by Fisher’s experimental “Filter-Filter” program. This

option is intended for internal use only.

The program genplot takes the -l output from mkfilter or mkshape and generates

a “gif” file containing a graph of either the phase and magnitude (frequency-domain)

response, or the impulse (time-domain) response. The usage is

genplot [-i n | -s n | -a α
1

α
2

] [-log min] [-d] fn.gif

fn.gif is the name of the output “gif” file. -i selects an impulse response graph and -s
selects a unit-step response graph; n is the number of samples along the time axis. If

neither -i nor -s is given then a frequency-domain graph is produced, in which case

the optional parameters α
1

and α
2

are lower and upper limits on the range of

frequency values to be plotted, expressed as a fraction of the sampling rate. The

default values are α
1

= 0 and α
2

= 0.5, i.e. the response is plotted from zero frequency

up to the Nyquist frequency. If the -log option is specified, the magnitude scale is

logarithmic and labelled in dB from min to zero. (min must be negative.) If the -log
option is omitted, the magnitude scale is linear from 0.0 to 1.0.

The -d option modifies the phase part of the frequency-response graph. Normally, the

phase decreases monotonically wth frequency, because all causal filters have a strictly

positive overall signal (group) delay. If -d is specified, genplot tries to guess the

group delay and plots the phase relative to this figure. This is useful in the case of a

linear-phase finite-impulse-response filter (e.g. raised-cosine or Hilbert transformer),

in which case the delay is half the number of zeros, and likely to be confusing for

other filter types.

genplot uses the gd “gif” manipulation library from Quest Protein Database Center,

<http://siva.cshl.org/gd/gd.html>.

– 6 –

5. Examples

mkfilter -Bu -Lp -o 4 -a 0.2
Generate a 4-pole Butterworth lowpass filter with corner frequency 0.2 f

s
;

display pole & zero positions and filter recurrence relation

mkfilter -Bu -Lp -o 4 -a 0.2 -l | gencode
Generate C code for the above filter

mkfilter -Bu -Lp -o 4 -a 0.2 -l | genplot graph.gif
Generate phase & magnitude graphs for the above filter

mkfilter -Re 1000 -Bp -a 0.3
Generate a bandpass resonator with Q = 1000 and centre frequency 0.3 f

s
;

display pole & zero positions and filter recurrence relation

6. Contact

Dr Anthony J. Fisher

Dept of Computer Science

The University of York

York YO1 5DD, U.K.

fisher@minster.york.ac.uk
http://www-users.cs.york.ac.uk/~fisher

13 Dec 1999

