Reset IC with battery backup function BA6129AF / BA6162 / BA6162F

The BA6129AF, BA6162, and BA6162F are reset ICs with a battery backup function, designed for equipment using SRAMs and other similar components. These ICs are configured of a reset signal and CS signal output unit and a power supply switching unit. If the BA6129AF detects that the power supply has dropped to 3.5 V or lower, it outputs the CS, CSB, and Reset signals to set the SRAM in backup mode. If the voltage drops to 3.3 V or lower, the power supply switches to the battery. With the BA6162 and BA6162F, in the same way, a power supply of 4.2 V is detected, and if the voltage drops to 3.3 V or lower, the power supply switches to the battery. These ICs allow SRAMs to be write protected and allow the system to be reset, in addition to switching between the power supply and the battery.

Applications
Equipment using SRAMs (cards, cassettes, facsimile machines, copiers, word processors, personal computers, etc.)

- Features

1) Equipped with battery backup function.
2) Equipped with both CS signals (CS and CSB) and Reset signals.
3) Low current dissipation when powered from battery.
4) Low voltage loss when powered from battery.
5) Smooth switching between power supply and battery.

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	7.0	V
Output current 1	lout1	-80 (BA6129AF) -40 (BA6162 / BA6162F)	mA
Output current 2	lout2	-200	$\mu \mathrm{~A}$
Power dissipation	Pd	$900 * 1$ $550 * 2$ (BA6162) (BA6129AF)	mW
Operating temperature	Topr	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$

[^0]
- Block diagram

- Pin descriptions

Pin No.	Pin name	Function
1	GND	Substrate GND
2	Reset	Reset output
3	CS	CS output
4	VBAT	Battery power supply
5	CSB	CSB output
6	Vo	Power supply output
7	N.C.	
8	VCC	Power supply voltage

- Input / output circuit

Pin 2 Reset output		Pin 3 CS output		Pin 5 CSB output Pin 6 Power supply output	
Pin 4 Battery power supply					
Pin 8 Power supply (Vcc)					
Pin 6 Power supply output					

- Electrical characteristics

BA6129AF (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}$, VRres $=\mathrm{Vcc}=5 \mathrm{~V}$, Rres $=10 \mathrm{k} \Omega$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
No-load current dissipation	Icc	-	-	2.0	mA	$\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}$
I/ O voltage differential 1	Vsat1	-	0.03	0.05	V	V cc $=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{lo}=-1 \mathrm{~mA}$
Vo output voltage 1	Vo1	4.95	4.97	-	V	$\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{lo}=-1 \mathrm{~mA}$
Vo output voltage 2	Vo2	4.70	4.90	-	V	$\mathrm{V} c \mathrm{c}=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}, \mathrm{lo}=-15 \mathrm{~mA}$
Vo output voltage 3	Vo3	4.50	4.86	-	V	V cc $=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{lo}=-30 \mathrm{~mA}$
Detection voltage	Vs	3.35	3.50	3.65	V	$\mathrm{Vcc}=\mathrm{H} \rightarrow \mathrm{L}$
Detection hysteresis voltage	VSH	-	100	-	mV	$\mathrm{Vcc}=\mathrm{L} \rightarrow \mathrm{H}$
Reset output low level voltage	Vrest	-	-	0.4	V	$\mathrm{Vcc}=3 \mathrm{~V}$
Reset leakage current	Iresh	-	-	0.1	$\mu \mathrm{A}$	$\mathrm{Vcc}=5 \mathrm{~V}$, $\mathrm{VRR}_{\text {res }}=7 \mathrm{~V}$
Reset operating limit voltage	Vopl	-	0.8	1.2	V	$\mathrm{Vcc}=\mathrm{H} \rightarrow \mathrm{L}, \mathrm{V}_{\text {res }} \leqq 0.4 \mathrm{~V}$
CS output low level voltage	Vcsl	-	-	0.1	V	$\mathrm{V} c \mathrm{cc}=3 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{Ics}=+1 \mu \mathrm{~A}$
CS output high level voltage	Vcsh	4.9	-	-	V	V cc $=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{Ics}=-1 \mu \mathrm{~A}$
CSB output low level voltage	Vcsbl	-	-	0.1	V	$\mathrm{V} \mathrm{CC}=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}, \mathrm{Icsb}=+1 \mu \mathrm{~A}$
CSB output high level voltage	Vcsbh	Vo-0.1	-	-	V	$\mathrm{V} c \mathrm{c}=3 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}, \mathrm{Icsb}=-1 \mu \mathrm{~A}$
Detection voltage temperature characteristic	Vs	-0.05	-	+ 0.05	$\% /{ }^{\circ} \mathrm{C}$	-
Switching voltage	V_{B}	3.15	3.30	3.45	V	$\mathrm{Vcc}=\mathrm{H} \rightarrow \mathrm{L}, \mathrm{V}$ ВAT $=3 \mathrm{~V}, \mathrm{Ro}=200 \mathrm{k} \Omega$
Switching hysteresis voltage	VBH	-	100	-	mV	V cc $=\mathrm{L} \rightarrow \mathrm{H}, \mathrm{V}$ вAT $=3 \mathrm{~V}, \mathrm{Ro}=200 \mathrm{k} \Omega$
Switching voltage temperature characteristic	VB	-0.05	-	+ 0.05	$\% /{ }^{\circ} \mathrm{C}$	-
Backup current dissipation	Iccb	-	-	0.5	$\mu \mathrm{A}$	V cc $=\mathrm{GND}$, $\mathrm{V}_{\text {bat }}=3 \mathrm{~V}$
I/ O voltage differential 2	VsAT2	-	0.20	0.30	V	V cc $=\mathrm{GND}, \mathrm{V}_{\text {BAt }}=3 \mathrm{~V}$, $\mathrm{lo}=-1 \mu \mathrm{~A}$
Vo output voltage 4	Vo4	2.70	2.80	-	V	V cc $=\mathrm{GND}, \mathrm{V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{lo}=-1 \mu \mathrm{~A}$
Vo output voltage 5	Vo5	2.60	2.67	-	V	V cc $=\mathrm{GND}$, $\mathrm{V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{lo}=-100 \mu \mathrm{~A}$
Vo output voltage 6	Vo6	Vcc-0.5	-	-	V	$\mathrm{lo}=-80 \mathrm{~mA}$
Reverse current	Ior	-	-	0.1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=\mathrm{GND}$

(Note) lo, Ics, and Icsв are + when flowing toward the pin and - when flowing away from the pin.
O Not designed for radiation resistance.

BA6162 / F (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VRres}=\mathrm{Vcc}=5 \mathrm{~V}$, Rres $=10 \mathrm{k} \Omega$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
No-load current dissipation	Icc	-	-	2.0	mA	$\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~V}$ bat $=3 \mathrm{~V}$
I / O voltage differential 1	Vsat1	-	0.03	0.05	V	$\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{lo}=-1 \mathrm{~mA}$
Vo output voltage 1	Vo1	4.95	4.97	-	V	V cc $=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{lo}=-1 \mathrm{~mA}$
Vo output voltage 2	Vo2	4.70	4.90	-	V	$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{lo}=-15 \mathrm{~mA}$
Vo output voltage 3	Vo3	4.50	4.86	-	V	$\mathrm{V} \mathrm{CC}=5 \mathrm{~V}, \mathrm{~V}_{\text {bAt }}=3 \mathrm{~V}$, $\mathrm{lo}=-30 \mathrm{~mA}$
Detection voltage	Vs	4.00	4.20	4.40	V	$\mathrm{Vcc}=\mathrm{H} \rightarrow \mathrm{L}$
Detection hysteresis voltage	VSH	-	100	-	mV	$\mathrm{Vcc}=\mathrm{L} \rightarrow \mathrm{H}$
Reset output low level voltage	Vrest	-	-	0.4	V	$\mathrm{Vcc}=3.7 \mathrm{~V}$
Reset leakage current	Iresh	-	-	0.1	$\mu \mathrm{A}$	$\mathrm{Vcc}=5 \mathrm{~V}$, VRres $=7 \mathrm{~V}$
Reset operating limit voltage	Vopl	-	0.8	1.2	V	$\mathrm{Vcc}=\mathrm{H} \rightarrow \mathrm{L}, \mathrm{V}_{\text {res }} \leqq 0.4 \mathrm{~V}$
CS output low level voltage	VcsL	-	-	0.1	V	$\mathrm{VCc}=3.7 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{Ics}=+1 \mu \mathrm{~A}$
CS output high level voltage	Vcsh	4.9	-	-	V	$\mathrm{V} c \mathrm{cc}=5 \mathrm{~V}, \mathrm{~V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{Ics}=-1 \mu \mathrm{~A}$
CSB output low level voltage	Vcsbl	-	-	0.1	V	$\mathrm{V} C \mathrm{CC}=5 \mathrm{~V}, \mathrm{~V}_{\text {BAT }}=3 \mathrm{~V}, \mathrm{ICSB}=+1 \mu \mathrm{~A}$
CSB output high level voltage	Vcsbe	Vo - 0.1	-	-	V	V cc $=3.7 \mathrm{~V}$, $\mathrm{V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{Icsb}=-1 \mu \mathrm{~A}$
Detection voltage temperature characteristic	Kvs	-0.05	-	+ 0.05	$\% /{ }^{\circ} \mathrm{C}$	-
Switching voltage	VB	3.15	3.30	3.45	V	$\mathrm{V} \mathrm{cc}=\mathrm{H} \rightarrow \mathrm{L}, \mathrm{V}_{\text {bat }}=3 \mathrm{~V}, \mathrm{Ro}=200 \mathrm{k} \Omega$
Switching hysteresis voltage	Vвн	-	100	-	mV	$\mathrm{V} \mathrm{cc}=\mathrm{L} \rightarrow \mathrm{H}, \mathrm{V}_{\text {bat }}=3 \mathrm{~V}, \mathrm{Ro}=200 \mathrm{k} \Omega$
Switching voltage temperature characteristic	Kvb	-0.05	-	+0.05	\% / ${ }^{\circ} \mathrm{C}$	-
Backup current dissipation	Іссв	-	-	0.5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{GND}, \mathrm{V}_{\text {bat }}=3 \mathrm{~V}$
I/ O voltage differential 2	Vsat2	-	0.20	0.03	V	$\mathrm{V} \mathrm{Cc}=\mathrm{GND}, \mathrm{V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{lo}=-1 \mu \mathrm{~A}$
Vo output voltage 4	Vo4	2.70	2.80	-	V	V cc $=\mathrm{GND}, \mathrm{V}_{\text {bat }}=3 \mathrm{~V}$, $\mathrm{lo}=-1 \mu \mathrm{~A}$
Vo output voltage 5	Vo5	2.60	2.67	-	V	$\mathrm{V} \mathrm{CC}=\mathrm{GND}, \mathrm{V}_{\text {BAT }}=3 \mathrm{~V}$, $\mathrm{lo}=-100 \mu \mathrm{~A}$
Vo output voltage 6	Vo6	Vcc-0.5	-	-	V	$\mathrm{lo}=-40 \mathrm{~mA}$
Reverse current	Ior	-	-	0.1	$\mu \mathrm{A}$	V cc $=5 \mathrm{~V}$, $\mathrm{V}_{\text {bat }}=\mathrm{GND}$

(Note) lo, Ics, and Icsв are + when flowing toward the pin and - when flowing away from the pin.
O Not designed for radiation resistance.

- Measurement circuit

Fig. 1

- Circuit operation

These ICs have two distinct functions, a logic output function and a power supply switching function.
The logic output circuit consists of the following:
(1) Reset output (NPN Tr open collector)
(2) CS output (PNP Tr open collector + pull-down resistor)
(3) CSB output (NPN Tr open collector + pull-up resistor)

The power supply switching circuit consists of a PNP power transistor and an SBD (Schottky barrier diode). The normal power supply Vcc and the battery backup power supply (Vвat) are both connected to the switching circuit. When the PNP power transistor is turned on and off, the IC power is switched from the normal power supply to the battery backup power supply, and vice versa.
The power supply voltage detection circuit consists of a standard voltage source Vref and a hysteresis comparator. The power supply Vcc is detected using a split resistance. When the power supply voltage drops below the detection voltage (BA6129AF: Vs $=3.5 \mathrm{~V}$ typ. when Vcc drops and Vs +0.1 V typ. when V cc rises;

BA6162 / F: Vs = 4.2Vtyp. when Vcc drops, and $\mathrm{V}_{\mathrm{s}}+$ 0.1 Vtyp . when Vcc rises), the Reset signal (Low) and the CS signal (CS-Low, CSB-High) are output by the logic output function, and the SRAM (or other memory device) is switched to backup mode.
If the power supply Vcc drops further and goes below the switching voltage (BA6129AF and BA6162 / $\mathrm{F}: \mathrm{V}_{\mathrm{B}}=$ 3.3Vtyp. when Vcc drops, $\mathrm{V}_{\mathrm{b}}+0.1 \mathrm{Vtyp}$. when $\mathrm{V}_{\text {cc }}$ rises), the SBD develops a forward bias because the PNP power transistor is off. The power supply output Vo switches from the power supply Vcc to the battery power supply (VBat).
When the normal power supply Vcc rises, the above process is reversed.
(BA6129AF) (BA6162 / F)

Fig. 2 Timing chart

- Application example

Fig. 3

- Operation notes
(1) Power supply Vcc

These ICs are designed to operate with at $\mathrm{Vcc}=5 \mathrm{~V}$, but can also operate at Vcc values of other than 5 V . However, the following conditions must be met: (equation)
$\left\{\begin{array}{l}V_{s}+V_{s h}<V_{c c}<V_{c c} \text { max. } \\ V_{c c}-V_{b a t}<5 \mathrm{~V}\end{array}\right.$
(2) Battery voltage $V_{\text {bat }}$

These ICs are designed to operate with at $\mathrm{V}_{\text {bat }}=3 \mathrm{~V}$, but can also operate at $\mathrm{V}_{\text {bat }}$ values of other than 3V. However, the following conditions must be met: (equation)
$\left\{\begin{array}{l}V_{b a t}<V_{b} \\ V_{c c}-V_{b A T}<5 V\end{array}\right.$
where) Vs: detection voltage
Vsh: detection hysteresis voltage
VB: switching voltage

- Electrical characteristic curves (BA6129AF)

Fig. 4 CS output voltage vs. power supply voltage

Fig. 5 CSB output voltage vs. power supply voltage

Fig. 6 Reset output voltage vs. power supply voltage

Fig. 7 Output voltage vs. power supply voltage

Fig. 8 Output voltage vs. output current (I) (when power supply is detected)

Fig. 9 Output voltage vs. output current (II) (when using battery backup)

- Electrical characteristic curves (BA6162 / F)

Fig. 10 CS output voltage vs. power supply voltage

Fig. 11 CSB output voltage vs. power supply voltage

Fig. 12 Reset output voltage vs. power supply voltage

Fig. 13 Output voltage vs. power supply voltage

Fig. 14 Output voltage vs. output current (I) (when power supply is detected)

Fig. 15 Output voltage vs. output current (II) (when using battery backup)

- External dimensions (Units: mm)

BA6129AF, BA6162F

\square	0.15

SOP8

BA6162

DIP8

This datasheet has been downloaded from: www.DatasheetCatalog.com

Datasheets for electronic components.

[^0]: IOUT1 indicates the output current on the Vcc side, and IOUT2 the output current on the VBAT side.
 *1 Reduced by 9.0 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
 *2 Reduced by 5.5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.

