/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2022 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ // es wird der GPIO PA8 verwendet #define OUTHIGH {GPIOA->ODR |= (1<<8);GPIOA->CRH|=(0b10);} #define OUTLOW {GPIOA->ODR &= ~(1<<8);GPIOA->CRH|=(0b10);} #define RELEASE {GPIOA->CRH &= ~(0b11);} #define INBIT ((GPIOA->IDR>>8)&1) /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ UART_HandleTypeDef huart1; /* USER CODE BEGIN PV */ #define ANZAHLSENSOREN (2) uint32_t sensor[2*ANZAHLSENSOREN]={ 0x633cd5f6,0x48cd4428, 0x3c3cb5f6,0x48063e28 }; int32_t timeout=0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART1_UART_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /*****************************************/ void raus1(char * buf) /*****************************************/ { int k = 0; //volatile int m=0; while(1){ if(buf[k]==0) break; while(((USART1->SR>>7)&1) == 0); //while(m++ < (1<<20)) if(((USART3->ISR>>7)&1) > 0) break; USART1->DR = buf[k++]; } } /********************************************************/ void pause (int32_t us){ /********************************************************/ volatile int32_t k; // Overhead sind ca. 2us us -= 2; k = (86*us)>>4; // skalieren while(k>0) k--; } /********************************************************/ int32_t checkcrc (int anz , uint32_t * d){ /********************************************************/ volatile char h,b0=0,b1=0,b2=0,b3=0,b4=0,b5=0,b6=0,b7=0; // Das geht besser aber so gehts' auch uint32_t k; for(k=0;k>(k%32))&1; h=h^b0;b0=b1; b1=b2; b2=b3^h; b3=b4^h; b4=b5;b5=b6;b6=b7;b7=h; } // 0 ist alles ok return (b0|b1|b2|b3|b4|b5|b6|b7); } /********************************************************/ void ini_sensors (void ){ /********************************************************/ int n; GPIOA->CRH &= ~ (0b1111); // PA8 CRH loeschen GPIOA->CRH |= (0b0100); // PA8 Input OUTLOW;pause((int32_t)(1.5f*480)); // 480us warten RELEASE; pause(20); //warten for(n=1000*1000;n>0;n--) // if(INBIT==0) break; if(n==0) timeout |= (1<<0); for(n=1000*1000;n>0;n--) // warten dass er wieder oben ist if(INBIT==1) break; if(n==0) timeout |= (1<<1); pause(10); } /********************************************************/ void write_byte (char cc){ /********************************************************/ int n; // LSB first for(n=0;n<8;n++) { OUTLOW; pause(3); // warten, mindestens 3us low if(((cc>>n)&1)==1){ pause((int32_t)(3)); // warten, 7us low RELEASE; pause(100); }else{ pause(100-3); // warten, jetzt zusammen 100us low RELEASE; } pause((int32_t)(10)); // warten, mindestens 3us high } } /********************************************************/ void lese_bits (int anz , uint32_t * buf){ /********************************************************/ int n,k,m; for(n=0;n<(anz/32)+1;n++) buf[n]=0; for(n=0;n>1)&(~(1<<31)))|((indathigh&1)<<31); //indathigh = ((indathigh>>1)&(~(1<<31)))|((INBIT)<<31); pause(500); } } /********************************************************/ void lese_seriennummer (void ){ /********************************************************/ int32_t k=0,m,n; int8_t buf[100]; int8_t cc=0; uint32_t indatlow,indathigh,bufbuf[10]; while (1) { ini_sensors(); write_byte(0x33);//READROM; lese_bits (64 , bufbuf); indatlow =bufbuf[0]; indathigh=bufbuf[1]; k++; if(checkcrc(64,bufbuf)==0) sprintf(buf,"%d %x %x CRC ok \r\n", k,indathigh,indatlow); else sprintf(buf,"%d %x %x CRC nicht ok \r\n", k,indathigh,indatlow); raus1(buf); } } /********************************************************/ int16_t lese_irgendeinen_sensor (void ){ /********************************************************/ int n; uint32_t bufbuf[10]; ini_sensors(); write_byte (0xcc); // skip ROM write_byte (0x44); // convertT for(n=0;n<10*1000*1000;n++){ lese_bits(1,bufbuf); if((bufbuf[0]&1)==1) break; } if(n>9*1000*1000) timeout |= (1<<3); ini_sensors(); write_byte (0xcc); // skip ROM write_byte (0xbe); // read scratchpad lese_bits(9*8,bufbuf); // kommt in 1/10 Grad zurück return (int16_t)(10.0f*(((int16_t)(bufbuf[0]&0xffff))/16.0f)); } /********************************************************/ int16_t kickall_sensors (void ){ /********************************************************/ int n; uint32_t bufbuf[30]; ini_sensors(); write_byte (0xcc); // skip ROM write_byte (0x44); // convertT for(n=0;n<10*1000;n++){ lese_bits(1,bufbuf); if((bufbuf[0]&1)==1) break; } if(n==10*1000-1) timeout |= 1<<5; } /********************************************************/ int16_t read_sensor (int sensornummer ){ /********************************************************/ int n; uint32_t bufbuf[30]; ini_sensors(); write_byte (0x55); // match ROM //sensornummer=1; write_byte((char)((sensor[sensornummer*2+1]>>(0*8))&0xff)); write_byte((char)((sensor[sensornummer*2+1]>>(1*8))&0xff)); write_byte((char)((sensor[sensornummer*2+1]>>(2*8))&0xff)); write_byte((char)((sensor[sensornummer*2+1]>>(3*8))&0xff)); write_byte((char)((sensor[sensornummer*2 ]>>(0*8))&0xff)); write_byte((char)((sensor[sensornummer*2 ]>>(1*8))&0xff)); write_byte((char)((sensor[sensornummer*2 ]>>(2*8))&0xff)); write_byte((char)((sensor[sensornummer*2 ]>>(3*8))&0xff)); write_byte (0xbe); // read scratchpad lese_bits(9*8,bufbuf); return (int16_t)(10.0f*(((int16_t)(bufbuf[0]&0xffff))/16.0f)); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ int32_t dacval=0; // PWM an PA8 in Promille int32_t k=0,m,n,i1; int8_t buf[100]; int8_t cc=0; uint32_t indatlow,indathigh,bufbuf[100]; int16_t temp; int sensornummer; /* * * Doku for Onewire Bitbanging auf A8 irgendwas macht er alle 3ms, mal die Interrupttable checken Er läuft auf 64 MHz */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ //lese_seriennummer(); // Darin ist infinite loop // Der bleibt so GPIOA->CRH &= ~ (0b1111); // PA8 CRH loeschen GPIOA->CRH |= (0b0100); // PA8 Input while (1) { k++; if(((USART1->SR>>5)&1) == 1) cc=USART1->DR; //if(checkcrc(72,bufbuf)==0) kickall_sensors (); sprintf(buf,"blg %d %d %d \r\n",k,0,read_sensor (0) ); raus1(buf); sprintf(buf,"blg %d %d %d \r\n",k,1,read_sensor (1) ); raus1(buf); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 9600; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_9, GPIO_PIN_RESET); /*Configure GPIO pin : PC13 */ GPIO_InitStruct.Pin = GPIO_PIN_13; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : PA8 */ GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : PB9 */ GPIO_InitStruct.Pin = GPIO_PIN_9; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/