8. SIN/COS

a. General Discussion

Let |X| = N+pi+f, where |f| £ pi/2. Then

sin(X)

sign(X) *+ sin(f) * (-1) »+ N
and ‘ '
cos(X)

sin(X+pi/2).

The computation of sin or cos thus involves three numerically distinct
steps: the reduction of the given argument X to a related argument f,
the evaluation of sin(f) over a small interval symmetric about the
origin, and the reconstruction of the desired function value from these
results. Sin(f) can be evaluated in a variety of ways. Here we use a
minimax polynomial approximation derived from one in the collection of
Hart et al. [1968].

The accuracy of the function values depends critically upon the
accuracy of the argument reduction. Under the assumption that X is free
of rounding or other errors, there is a possibility of loss of
significance in f unless the difference |X|-N+pi 1is evaluated using
extra precision. Higher precision floating-point arithmetic can be used
on some machines. When this is not practical, the computation

f = [(X1-N+Cl) + X2] - N+C2,

where X1 + X2 = |X| and Cl1 + C2 represents pi to more than working
precision, preserves significance in f even though several leading
significant figures may be lost in the subtraction. The protection
afforded, however, 1is limited to the number of extra digits in this
representation of pi. Should |X| agree with an integer multiple of pi

-125-

126 , SIN/COS CHAP. 8

to more than this number of extra digits, the reduced argument f will
lose a corresponding number of digits of precision. The precision also
degenerates to that of the unaltered computation |X| - N+«pi whenever
N:+C1 cannot be represented exactly in the machine, e.g., when N becomes
too large. Indeed, there will be a quantum drop in the precision of the
function value as N passes this threshold. Note also that there is no
way to compensate for inaccuracies in X.

For |X| sufficiently large, |X| and N+pi agree to full machine
precision. In that extreme case there is no precision in SIN(X) and an
error condition exists. Clearly there is a general erosion of the
precision. of SIN(X) for smaller |X| despite the careful argument
reduction just outlined. The algorithm presented here suggests an error
return before the quantum loss in significance in f associated with the
threshold on N mentioned above. This seems reasonable because the
function is "grainy" for larger |X|; i.e., even the correct function
values for neighboring floating-point arguments beyond this point
probably disagree by more than half of the machine precision.

b. Flow Chart for SIN(X)/COS(X)

1—SGN 23
X4+w/2 — Y

v
r— N
Y < YMAX 2 ¢
Y

INTRND(Y/7) —N °
FLOAT(N) —= XN

(Neven? 7Y ~SGN — SGN

Y : J

COS wanted? 8- XN— .5 — XN °
© Dan
N I

. i
. 10 , '
determine f | . '

Note: Small integers indicate an implementation note.

-127-

128

Note:

SIN/COS

evaluate R(g) |3|

f+fxR "

—= Result

SGNxResult 15

f — Result

—= Result

Small integers indicate an implementation note.

CHAP. 8

C.

1)

2)

3)

4)

5)

Implementation Notes, Non-Decimal
Fixed-Point Machines

These may be alternate entries to one subroutine or entries to two
different subroutines if multiple entries are not supported. See
Note 4.

Using SGN as a flag may be more efficient than assigning a
floating-point value to it. See Note 15.

Use of |X| here guarantees that the identity COS(-X) = COS(X) will
hold. Use the following constant to machine precision:

pi/2 = 1.57079 63267 94896 61923

On machines that do not support multiple entry points, this is a
natural point at which to begin a new subroutine. The parameters to
be passed in that case are X, Y and SGN.

The value of YMAX depends upon the number of bits b in the
representation of the floating-point significand (see Glossary) and
the number of bits in an integer. YMAX must satisfy the following
conditions:

a) XN+C1 and (XN-.5)+C1 (see Notes 9 and 10) must both be exactly
representable for Y < YMAX;

b) a rounding error in the last bit of Y should not lead to a
relative error in sin(Y) much greater in magnitude than 2++(b/2)
for Y < YMAX; and)

c) N (see Notes 6 and 7) should be representable as an integer.

A reasonable choice for YMAX, subject to condition (c¢), is the
integer part of pi«2++(b/2). ‘

If execution is to continue rather than terminate, then a default
function value should be provided in addition to an error message.
Two possibilities exist: A default value of 0.0 can be returned
(especially appropriate for extremely large arguments), or
processing can continue normally, provided ¥ is still representable
as an integer. The latter alternative may produce a few significant
figures in the function value if the argument is not too large in

-129-

130

6)

SIN/COS CHAP. 8

magnitude,‘ but returns essentially random results for very large
arguments. In either case the error message should be returned
first.

This rounds Y/pi to the nearest integer (see Chapter 2 for
definitions of INTRND and FLOAT). On some machines it may be more
efficient to form XN with AINTRND and then use INT to obtain N. To
avoid the expensive floating-point divide, form Y/pi by
multiplication with the stored constant 1/pi. Use the following
value to machine precision:

1/pi = 0.31830 98861 83790 67154.
The computation of N may impose a restriction on YMAX (see Note 4)

when there are fewer than b bits available for the representation of
an integer.

7) N is a positive integer. If machine instructions for testing

8)

9)

10)

specific bits are available, then the parity of N can be determined
from its low-order bit; i.e., N is even if the bit is 0 and odd if
the bit is 1. '

The condition 'COS wanted' is equivalent to the condition |X| # Y.

This is equivalent to adding pi/2 to X for the COS entry but leads
to greater accuracy in f when done at this point. Note that XN is
no longer integer.

We assume that the multiple-step argument reduction scheme is to be
used. On machines with a floating-point guard digit for addition
(see Glossary), the computation becomes

f = (|X|-XN+Cl) - XN+C2.
Special care must be taken on machines that lack the guard digit, or
the argument reduction may lose significance for arguments slightly
less than an integer power of the radix B. Full precision is

retained on such machines with the computation

f = [(XI-XN:C1) + X2] - XN+C2,

CHAP. 8 SIN/COS 131

11)

12)

13)

where, in terms of our operations (see Chapter 2),

X1 = AINT(|X])

and

X2 = |X| - XL.

Recall that b is the number of bits in the significand of a
floating-point number. For b £ 32 the constants

Cl = 201/64

= 3.11 (octal)

= 3.140625 (decimal),
C2 = 96765 35897 93 E-4

provide an extra 8 bits of precision in the argument reduction. For
b 2 33 the constants

Cl = 3217/1024
= 3.1104 (octal)
= 3.14160 15625 (decimal),
C2 = -8.9089 10206 76153 73566 17 E-6

provide an extra 12 bits of precision. Exact representation of C1
is crucial, but €2 need only be represented to the significance of
the machine. At this point |f| < pi/2.

Fixed-point underflow will not hurt here, but we want to be
efficient. Eps should be chosen small enough that ¢ sin(f) = f to
machine precision for |f| < eps, but large enough that the shorter
computational path ordinarily will be followed whenever rl«f3 would
underflow (see Note 13). We suggest eps = 2++(-b/2).

We convert to fixed point here, scaling as we go to avoid overflow.
Let h = FIX(f/2) (see Chapter 2), and form g = h+h in fixed point.
Then

g = (f/2)2 < pi2/16 < .62.

The following fixed-point polynomial approximations, R(g), were
derived from approximations in Hart et al. [1968]:

132 SIN/COS CHAP. 8

for b £ 24

ri = -0.66666 62674
r2 = 0.13332 84022
r3 = -0.01267 67480
r4 = 0.00066 60872

for 25 < b < 32

rl = -0.66666 66643 530
r2 = 0.13333 32915 289
r3 = -0.01269 81330 068
r4 = 0.00070 46136 593
r5 = -0.00002 44411 867

for 33 <b £50

r1 = -0.66666 66666 66638 613
r2 = 0.13333 33333 32414 742
r3 = -0.01269 84126 86862 404
r4 = 0.00070 54673 00385 092
r5 = -0.00002 56531 15784 674
r6 = 0.00000 06573 19716 142
t7 = -0.00000 00120 76093 891

for 51 < b < 60

rl1 = -0.66666 66666.66666 60209
r2 = 0.13333 33333 33330 64050
r3 = -0.01269 84126 98369 17789
r4 = 0.00070 54673 71779 91056
r5 = -0.00002 56533 57361 43317
r6 = 0.00000 06577 74038 64562
r7 = -0.00000 00125 22156 53481
r8 = 0.00000 00001 78289 31802

Evaluate R(g) = g*P(g), vwhere P is a polynomial, in fixed point
using nested multiplication. For example, for b £ 24,

R(g) = (((r4d + g+1r3) » g+1r2)»g+rl)+g.

CHAP. 8 SIN/COS 133

14) We now convert back to floating point. Let R = REFLOAT[R(g)] (see
Chapter 2), and form f+f+R in floating point. The algebraically
equivalent form f+(1+R) may be less accurate and should be avoided.

15) Because floating-point multiplies are expensive, the more efficient
approach may be to use SGN earlier as a flag and to change the sign
of Result here if the flag is set.

d.

1)

2)

3)

4)

5)

Implementation Notes, All Floating-Point
Machines

These may be alternate entries to one subroutine, or entries to two
different subroutines if multiple entries are not supported. See
Note 4.

Assigning a floating-point value to SGN will probably be more
efficient than using it as a flag. See Note 15.

Use of |X| here guarantees that the identity COS(-X) = COS(X) will
hold. Use the following constant to machine precision:

pi/2 = 1.57079 63267 94896 61923.

On machines that do not support multiple entry points, this is a
natural point at which to begin a new routine. The parameters to be
passed in that case are X, Y and SGN.

The value of YMAX depends upon the number ¢ of base B digits in the
representation of the floating-point significand (see Glossary) and
the number of digits in an integer. YMAX must satisfy the following
conditions:

a) XN+C1 and (XNV-.5)+C1 (see Notes 9 and 10) must both be exactly
representable for Y < YMAX; :

b) a rounding error in the last digit of ¥ should not lead to a
relative error in sin(¥) much greater in magnitude than B+«(t/2)
for Y < YMAX;

C) N (see Notes 6 and 7) should be representable as an integer.

A reasonable choice for YMAX, subject to condition (e¢), is the
integer part of pi*B++(t/2).

If execution is to continue rather than terminate, then a default
function value should be provided in addition to an error message.
Two possibilities exist: A default value of 0.0 can be returned
(especially appropriate for extremely large arguments), or
processing can continue normally, provided N is still representable
as an integer. The latter alternative may produce a few significant
figures in the function value if the argument is not too large in

-134-

CHAP. 8 SIN/COS 135

6)

7

8)

9)

10)

magnitude, but retufns essentially random results for very large
arguments. In either case the error message should be returned
first.

This rounds Y/pi to the nearest integer (see Chapter 2 for
definitions of INTRND and FLOAT). On some machines it may be more
efficient to form XV with AINTRND and then use INT to obtain N. To
avoid the floating-point divide, form - Y/pi by multiplication with
the stored constant 1/pi. Use the following value to machine
precision:

1/pi = 0.31830 98861 83790 67154.

The computation of ¥ may impose a restriction on YMAX (see Note 4)
when there are fewer than t digits available for the representation
of an integer.

N is a positive integer. If machine instructions for testing
specific bits are available on non-decimal machines, then the parity
of N can be determined from its low-order bit; i.e., N is even if
the bit is 0 and odd if the bit is 1.

The condition 'COS wanted' is equivalent to the condition |X| # Y.
This is equivalent to adding pi/2 to X for the COS entry but leads
to greater accuracy in f when done at this point. Note that XN is
no longer integer.
If higher precision floating point is available and reasonably
efficient, consider converting X and XN to the higher precision and
using it to form

f = |X] - XN#+pi,
where

pi = 3.14159 26535 89793 23846

is also given in the higher precision. Then convert f back to the
working precision.

136

SIN/COS ‘CHAP. 8

The multiple-step argument reduction scheme is used when the above
scheme is impractical. On machines with a floating-point guard
digit for addition (see Glossary), the computation becomes

f = (|X]-XN+C1) - XN=C2.
Special care must be taken on machines that lack the guard digit, or
the argument reduction may lose significance for arguments slightly
less than an integer power of the radix B. Full precision is
retained on such machines with the computation

f = [(X1-XN+Cl) + X2] - XN+C2,

where, in terms of our operations (see Chapter 2),

X1

"

AINT(|X])
and
X2

LI}

IX| - XI.

Let b be the number of significant bits in the floating-point
significand on a non-decimal machine. For b £ 32 the constants

Cl = 201/64

= 3.11 (octal)

= 3.140625 (decimal),
C2 = 9.6765 35897 93 E-4.

provide an extra 8 bits of precision in the argument reduction. For
b 2 33 the constants '

3217/1024

Cl =
= 3.1104 (octal)
= 3.14160 15625 (decimal),
C2 = -8.9089 10206 76153 73566 17 E-6

provide an extra 12 bits of precision. On decimal machines (1
should be the first 3 or 4 significant decimal figures of pi, and C2
should be determined so that €1 + C2 represents pi to 3 or 4 decimal

- places beyond machine precision. Exact representation of €1 is

crucial, but €2 need only be represented to the significance of the
machine. At this point |f| £ pi/2. '

CHAP. 8 SIN/COS 137

11) Eps should be chosen . so that sin(f) = f to machine precision for
|f| < eps, and so that r1+f3 will not underflow for |f| 2 eps (see
Note 13). We suggest eps = B++(-t/2).

12) There is no possibility of underflow or overflow at this point.

13) The following polynomial approximations, R(g), were derived from
approximations in Hart et al. [1968]. Let b be the number of bits
in the significand of a floating-point number on a non-decimal
machine, and d be the number of digits in the significand on a
decimal machine. Then

for b £ 24, or d £ 8

rl1 = -0.16666 65668 E+0
r2 = 0.83330 25139 E-2
r3d = -0.19807 41872 E-3
r4 = 0.26019 03036 E-5

for 25 £ b £ 32, or
9<d<10

rlI'= -0.16666 66660 883 E+0
r2 = 0.83333 30720 556 E-2
r3 = -0.19840 83282 313 E-3
rd = 0.27523 97106 775 E-5
r5 = -0.23868 34640 601 E-7

for 33 < b £ 50, or
11 <£d<£15

rl = -0.16666 66666 66659 653 E+0
r2 = 0.83333 33333 27592 139 E-2
r3 = -0.19841 26982 32225 068 E-3
r4 = 0.27557 31642 12926 457 E-5
r5 = -0.25051 87088 34705 760 E-7
ré = 0.16047 84463 23816 900 E-9
r7 = -0.73706 62775 07114 174 E-12

138

rl
r2
r3
r4
15
ré

r7 -

r8

for

61
16

IN N

.16666
.83333
.19841
.27557
.25052
.16058
.76429
.27204

<
<

SiN/COS CHAP. 8

60, or
18

66666 66666 65052 E+0
33333 33316 50314 E-2
26984 12018 40457 E-3
31921 01527 56119 E-5
10679 82745 84544 E-T
93649 03715 89114 E-9
17806 89104 67734 E-12
79095 78888 46175 E-14

Evaluate R(g) = g+P(9),
multiplication.

where P is a polynomial, using nested

For example, for b £ 24,

R(g) = (((r4 «+ g+ 13) +g+1r2)+g+rl):+g.

14) The algebraically equivalent form f+(1+R) may be less accurate and
should be avoided.

15) Multiplying by a floating-point value of 8GN is probably more
efficient than using SGN as a flag.

e. Testing

The tests are divided into four major parts. First is a random
argument test to determine the accuracy of the basic computation, i.e.,
the evaluation of sin(x) where no argument reduction is needed. Second
are similar tests of both sin(x) and cos(x) but using arguments which
require that argument reduction be performed. Third is a series of
short tests with special arguments. These include cursory checks of the
three properties

sin(-x) = -sin(x),

cos(-x) = cos(x),
and

sin(x) = x

to machine precision for |x|<<1. In addition, there is a check for
underflow during the evaluation of sin(x) for very small x and a
demonstration of the "granularity" of the function values for large x,
that is, of the large changes induced in the function values by small
changes in large arguments. Finally, there is a test for an error
return when x is so large that there is no significance in the reduced
argument f£.

The random argument tests for sin(x) use the identity
sin(x) = sin(x/3)[3 - 4 sin2(x/3)].
It is important that the subtraction not introduce a 1loss in
significance from cancellation of leading significant digits. This can
be assured by proper selection of arguments. When x is drawn from the
interval [3m+pi,(3m+1/2)+pi}, x/3 is in the interval [m+pi, (m+1/6)+pi],
4 sin?(x/3) £ 1, and there is no cancellation. We henceforth assume

these limitations on the arguments.

The tests measure the relative difference between the two sides of
the identity. Thus we measure :

E = {sin(x) - sin(x/3)[3 - 4 sin2(x/3)]] / sin(x).

-139-

140 SIN/COS CHAP. 8

Assume for the moment that |x| £ pi/2. Because x is a random argument
manufactured in the machine, we can safely assume that it is error free.
However, there may be an error e in evaluating x/3. Now

Sin(x/3 +e) = sin(x/3) cos(e) + cos(x/3) sin(e).

Noting that

1l
D

sin(e)
and

il
—

cos(e)
to machine precision for e small, and that
|cos(x/3)] <1,
we can estimate
sin(x/3+e) = sin(x/3) +'e.

Assume that relative errors of D and d are made in the evaluations of
sin(x) and sin(x/3), respectively. Then

sin(x)(1+D)-sin(x/3+e)(1+d)[3-4 sin2(x/3+e)(1+d)?]

sin(x) (1+D)

Using the identity and estimaté for sin(x/3+e), and keeping only terms
linear in e, d and D, we can write

sin3(x/3) 1 sin2(x/3)
E=D- d[1-§ —] + ¢] - - 8].
sin(x) sin(x/3) sin(x)

Because sin3(x/3)/sin(x) 1is bounded above by 1/8 for the interval under
consideration, the coefficient of d is crudely bounded between 0 and 1.
However, the coefficient of e is unbounded and could dominate the
measured error, especially when x lies outside the primary interval. It
is therefore necessary to "purify" the test arguments to ensure that
e=0, i.e., to perturb the original random argument x to a nearby x'
such that both x' and x'/3 are exactly representable in the machine.

CHAP. 8 ' SIN/COS 141

The following Fortran statements do the job on most computers:

Y =X/ 3.0E0
Y=(Y+X)-X
X=23.0E0 + Y

The exceptions are those machines where the active arithmetic registers
carry more significance than the storage registers. On such machines it
is necessary to force the storage and retrieval of intermediate results
(see Gentleman and Marovich [1974]).

If purified arguments are used, the error measured in our tests is
given by

m
"

D - c+d,

where 0 € ¢ € 1. Crude bounds indicate 0 € |E| € |D|+|d|. In practice
E turns out to be a reasonable estimate of D. The significant statistic
obtained from the tests is MRE = max|E| (see Chapter 3). A large value
of MRE indicates a large value of D and/or d. The converse is not
necessarily true; there may be a cancellation of leading digits in
forming E from D and d. Our experience has been that this first test
reports accuracies only slightly less than machine precision for good
implementations of the basic computation of sin(x) (see Table 8.1).
Typically the MRE reports a loss of about k+1 bits of precision on
machines with a radix of B = 2++k, and a little over one digit on
decimal machines. The tabulated loss of 1.18 digits on the IBM machine,
for example, is a loss of between four and five bits, three of which are
probably due to "wobbling precision" (see Glossary). The RMS typically
reports a loss of a small fraction of a base-B digit. o

Our second test draws x from [6+pi, 6.5+pi]. Assuming that the
first test gave a small MRE, the MRE in the second test measures the
accuracy of the argument reduction scheme. A good implementation should
return MRE and RMS values comparable to those obtained in the first
test. The large errors reported in Table 8.1 for the Varian 72, for
example, probably indicate trouble in argument reduction. ~ On the other
hand, the unexpectedly large MRE reported for our program on the GP
L3055 occurred for an argument which agreed with 6:pi to five decimal
places. The extra precision in our multistep argument reduction was

142 SIN/COS CHAP. 8

TABLE 8.1
Typical Results for SIN/COS Tests
Library Reported Loss of

or Base-B Digits in
Test Machine B Program MRE RMS

1 CDC 6400 2 Ours 2.00 0.73
GP L3055 10 ours 1.07 0.51
IBM/370 16 ours 1.08 0.71

PDP/11 2 DOS 8.02 1.99 0.10
Varian 72 2 Fort E3 1.87 0.00
IBM/370 16 Argonne 1.18 0.69

2 CDC 6400 2 Ours 2.20 0.80
GP L3055 10 ours 2.28 0.77
I1BM/370 16 Ours 1.16 0.72

PDP/11 2 DOS 8.02 1.74 0.09
Varian 72 2 Fort E3 13.54 8.55
IBM/370 16 Argonne 1.16 0.70

3 CDC 6400 2 ours 2.39 0.68
GP L3055 10 ours 1.38 0.58
IBM/370 16 ours 1.11 0.70

PDP/11 2 DOS 8.02 12.63 7.66
Varian 72 2 Fort E3 12.69 7.31
IBM/370 16 Argonne 1.16 0.69

insufficient to protect the precision of the reduced argument in this
case. Note that the corresponding RMS value is reassurance that a
programming error has not occurred and that the large MRE is an isolated
occurrence. | '

The third test checks the accufacy of cos(x) with the identity
coé(x) = cds(x/3)[4 cos?(x/3) - 3].
Anélysis simjlér to that for sin(x) shows that X'shOuld,;be drawn from

the interval [(3m+1)+pi,(3m+3/2)+pi] to preserve significance in the
right-hand side. (Our test uses m=2.) Similarly, when the arguments are

CHAP. 8 SIN/COS 143

purified, the error measured is
E=D - c+d,

where E, D and d are defined analogously to the sin(x) case and where
0<c<2. Agood implementation should again return MRE and RMS values
comparable to those of the first test (see Table 8.1). Errors
significantly larger than those reported for the previous test are
usually due to carelessness in adjusting the argument by pi/2 for the
COS entry. The results reported in Table 8.1 for the program on the
PDP/11, for example, suggest that the argument reduction has been
carefully done for the SIN entry, but not for the COS entry.

The above tests do not detect gross errors in the period of the
function because the identities used are also satisfied by sin(kx) for
arbitrary k. Our test program verifies that k=1 by making a finite
difference approximation to the derivative near x = 6+pi.

144 S1IN/COS CHAP. 8

PROGRAM TO TEST SIN/COS
DATA REQUIRED
NONE
SUBPROGRAMS REQUIRED FROM THIS PACKAGE
MACHAR - AN ENVIRONMENTAL INQUIRY PROGRAM PROVIDING
INFORMATION ON THE FLOATING-POINT ARITHMETIC
SYSTEM. NOTE THAT THE CALL TO MACHAR CAN

BE DELETED PROVIDED THE FOLLOWING FIVE
PARAMETERS ARE ASSIGNED THE VALUES INDICATED

IBETA THE RADIX OF THE FLOATING-POINT SYSTEM
IT . — THE NUMBER OF BASE-IBETA DIGITS IN THE
SIGNIFICAND OF A FLOATING-POINT NUMBER
THE LARGEST IN MAGNITUDE NEGATIVE
INTEGER SUCH THAT FLOAT(IBETA)+*+«MINEXP
IS A POSITIVE FLOATING-POINT NUMBER
EPS - THE SMALLEST POSITIVE FLOATING-POINT
NUMBER SUCH THAT 1.0+EPS .NE. 1.0
EPSNEG - THE SMALLEST POSITIVE FLOATING-POINT
NUMBER SUCH THAT 1.0-EPSNEG .NE. 1.0

MINEXP

RAN(K) - A FUNCTION SUBPROGRAM RETURNING RANDOM REAL
NUMBERS UNIFORMLY DISTRIBUTED OVER (0,1)
STANDARD FORTRAN SUBPROGRAMS REQUIRED

ABS, ALOG, AMAX1, COS, FLOAT, SIN, SQRT

LATEST REVISION - DECEMBER 6, 1979

AUTHOR - W. J. CODY
ARGONNE NATIONAL LABORATORY

OO0 OO0 DODODODOODOODOODIODODODODOOODODOODOOOODODOODOOOOOOOOOOOO

INTEGER 1, IBETA, IEXP, IOUT,IRND, IT,11,J,K1,K2,K3,MACHEP,
1 MAXEXP ,MINEXP,N,NEGEP, NGRD

CHAP. 8 SIN/COS 145

REAL A,AIT,ALBETA,B,BETA,BETAP,C,DEL ,EPS,EPSNEG, EXPON,ONE,RAN,
1 R6,R7,THREE,W, X, XL, XMAX,XMIN,XN,X1,Y,Z,ZERO, ZZ

IOUT = 6

CALL MACHAR(IBETA, IT, IRND,NGRD,MACHEP ,NEGEP, IEXP ,MINEXP,
1 MAXEXP , EPS, EPSNEG, XMIN, XMAX)
BETA = FLOAT(IBETA)

ALBETA = ALOG(BETA)

AIT = FLOAT(IT)

ONE = 1.0E0

ZERO = 0.0E0

THREE = 3.0E0

A = ZERO

B = 1.570796327E0

C=8B

N = 2000

XN = FLOAT(N)

11=0

(]

RANDOM ARGUMENT ACCURACY TESTS

o

DO 300 J =1, 3

K1 =-0

K3 =0

X1 = ZERO

R6 = ZERO

R7 = ZERO

DEL = (B - A) / XN
XL = A

DO 200 | =1, N

X = DEL + RAN(I1) + XL
Y = X / THREE
Y=(X+Y)-X
X = THREE + Y
IF (J .EQ. 3) GO TO 100
Z = SIN(X)
ZZ = SIN(Y)
W = ONE
IF (Z .NE. ZERO) W = (Z - ZZ+(THREE-4.0E0+2Z+2Z)) / Z
GO TO 110 : -
100 Z = COS(X)

ZZ = COS(Y)

146 SIN/COS CHAP. 8

W = ONE
IF (Z .NE. ZERO) W = (Z + ZZ+(THREE~4.0E0+2Z+22)) / Z
110 IF (W .GT. ZERO) K1 = K1 + 1
IF (W .LT. ZERO) K3 = K3 + 1
W = ABS(W)
IF (W .LE. R6) GO TO 120
R6 = W
X1 = X
120 R7=R7 +W+W
XL = XL + DEL
200 CONTINUE

K2 = N - K3 - K1
R7 = SQRT(R7/XN)
IF (J .EQ. 3) GO TO 210
WRITE (10UT,1000)
WRITE (10UT,1010) N,A,B
WRITE (10UT,1011) K1,K2,K3
GO TO 220
210 WRITE (I0UT,1005)
WRITE (10UT,1010) N,A,B
WRITE (I0UT,1012) K1,K2,K3
220 WRITE (I0UT,1020) IT, IBETA
W = -999.0E0 '
IF (R6 .NE. ZERO) W = ALOG(ABS(R6))/ALBETA
WRITE (10UT,1021) R6, IBETA,W,X1
W = AMAX1(AIT+W,ZERO)
WRITE (10UT,1022) IBETA,W
W = -999.0E0
IF (R7 .NE. ZERO) W = ALOG(ABS(R7))/ALBETA
WRITE (10UT,1023) R7, IBETA,W
W = AMAX1(AIT+W,ZERO)
WRITE (I1OUT,1022) IBETA,W
A = 18.84955592E0
IF (J .EQ. 2) A=B +C

B=A+C
300 CONTINUE
C
C SPECIAL TESTS
C

WRITE (I0UT,1025)
C = ONE / BETA *+ (IT/2)
Z = (SIN(A+C) - SIN(A-C)) / (C + C)

CHAP.

320

330

340

8 SIN/COS

WRITE (1OUT,1026) Z:
WRITE (I0UT, 1030)

D0320 1 =1, 5
X = RAN(11) * A
Z = SIN(X) + SIN(-X)
WRITE (10UT,1060) X, Z
CONT INUE

WRITE (10UT,1031)
BETAP = BETA »+ IT
X = RAN(I1) / BETAP

DO 330 | =1, 5
Z =X - SIN(X)
WRITE (10UT,1060) X, Z
X = X / BETA

CONT INUE

WRITE (10UT,1032)

DO 340 | =1, 5
X = RAN(I1) + A
Z = COS(X) - COS(-X)
WRITE (10UT,1060) X, Z
CONT INUE

WRITE (10UT,1035)

EXPON = FLOAT(MINEXP) + 0.75E0
X = BETA ++ EXPON

Y = SIN(X)

WRITE (10UT,1061) X, Y

WRITE (10UT,1040)

Z = SQRT(BETAP)

X = Z + (ONE - EPSNEG)
Y = SIN(X)

WRITE (IOUT,1061) X, Y
Y = SIN(Z)

WRITE (IOUT,1061) Z, Y
X =2+ (ONE + EPS)

Y = SIN(X)

WRITE (10UT,1061) X, Y

147

148 SIN/COS CHAP. 8

o

TEST OF ERROR RETURNS

WRITE (10UT,1050)
X = BETAP
WRITE (10UT,1052) X
Y = SIN(X)
WRITE (10UT,1055) Y
WRITE (10UT,1100)
STOP
1000 FORMAT (43H1TEST OF SIN(X) VS 3+SIN(X/8)-4+SIN(X/3)++3 //)
1005 FORMAT (43H1TEST OF COS(X) VS 4+COS(X/3)++3-3+COS(X/3) //)
1010 FORMAT(17,47H RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL /
1 6X,1H(,E15.4,1H, ,E15.4,1H)//)
1011 FORMAT(18H SIN(X) WAS LARGER,16,7H TIMES, /
1 11X, 7H AGREED, 16,11H TIMES, AND /
1 7X,11HWAS SMALLER,16,7H TIMES.//)
1012 FORMAT(18H COS(X) WAS LARGER,16,7H TIMES, /
1 11X, 7H AGREED, 16,11H TIMES, AND /
1 7X,11HWAS SMALLER,16,7H TIMES.//)
1020 FORMAT(10H THERE ARE,14,5H BASE, |4,
1 46H SIGNIFICANT DIGITS IN A FLOATING-POINT NUMBER //)
1021 FORMAT(30H THE MAXIMUM RELATIVE ERROR OF ,E15.4,3H = ,14,3H ++,
1 F7.2/4X,16HOCCURRED FOR X =,E17.6)
1022 FORMAT(27H THE ESTIMATED LOSS OF BASE, 14,
1 22H SIGNIFICANT DIGITS IS,F7.2//)
1023 FORMAT(40H THE ROOT MEAN SQUARE RELATIVE ERROR WAS,E15.4,
1 8H = ,14,3H *+,F7.2)
1025 FORMAT (14H1SPECIAL TESTS//)
1026 FORMAT(4H IF ,E13.6,21H IS NOT ALMOST 1.0EO,,
1 4X,25HSIN HAS THE WRONG PERIOD. //)
1030 FORMAT(51H THE IDENTITY SIN(-X) = -SIN(X) WILL BE TESTED.//
1 8X, 1HX, 9X, 12HF (X) + F(=X)/)
1031 FORMAT(51H THE IDENTITY SIN(X) = X , X SMALL, WILL BE TESTED.//

1 8X, 1HX,9X,8HX - F(X)/)
1032 FORMAT(50H THE IDENTITY COS(-X) = COS(X) WILL BE TESTED.//
1 8X, 1HX, 9X, 12HF (X) = F(=X)/)

1035 FORMAT(43H TEST OF UNDERFLOW FOR VERY SMALL ARGUMENT.)

1040 FORMAT(49H THE FOLLOWING THREE LINES ILLUSTRATE THE LOSS IN,
1 13H SIGNIFICANCE/36H FOR LARGE ARGUMENTS. THE ARGUMENTS,
2 17H ARE CONSECUTIVE.) :

1050 FORMAT (22H1TEST OF ERROR RETURNS//)

1052 FORMAT(37H SIN WILL BE CALLED WITH THE ARGUMENT,E15.4/

CHAP. 8 SIN/COS 149

1 37H THIS SHOULD TRIGGER AN ERROR MESSAGE//)
1055 FORMAT(23H SIN RETURNED THE VALUE,E15.4///)
1060 FORMAT(2E15.7/) '
1061 FORMAT(/6X,5H SIN(,E13.6,3H) =,E13.6)
1100 FORMAT(25H THIS CONCLUDES THE TESTS)
c ——— —~ LAST CARD OF SIN/COS TEST PROGRAM —--——————

