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r Figure 2.15 A parallel tuned circuit,
doubly terminated.

Eq. 2.3-3. Some manipulation then shows that the Q equals half that of the series
tuned circuit. However, the series tuned circuit studied contained only one resistor
while the parallel one of Fig. 2.15 has two. The circuit Q is thus given by Qz.=
Rp/wL where Rp is now the parallel combination of the source and load resistors.
Note that the same form of transfer function describes both the series and the parallel
tuned circuit.

Assume now that the components in the filter of Fig. 2.15 are not ideal, but
have a loss described by measurable Qu values. The equivalent parallel resistance
associated with the inductor is RpL = QULwL while the loss in the capacitor is
Rpe = Que/We. But L = lIwe. The equivalent loss resistance is the parallel combina-
tion of the two. The final result is the equivalent Qu

(2.6-9)

This equation is quite general. When a number of lossy reactances are connected
in parallel or in series, the equivalent Q is obtained in the same way that the equivalent
resistance of parallel resistors is obtained.

Assume that the Qu value of the capacitor is arbitrarily high. The Qu of the
tuned circuit is then that of the inductor alone, resulting in Rp = QuwL. The effects
of the reactive components disappear at resonance, leaving the equivalent circuit
shown in Fig. 2.16. The transducer gain of this network will be evaluated. We assume
that Rs = RL = R and the voltage generator has an amplitude of 2 V. The output
voltage is written from inspection. Algebraic reduction produces the result

1
1+ R/2Rp

(2.6-10)
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Figure 2.16 Theequivalent of the par-
allel tuned circuit at resonance. Rp is
the resistance representing the losses
in the resonator.
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The unloaded Q is Qu = RplwL while the loaded Q is QL = RelwL where Re is
the equivalent resistance loading the inductor. Re is the parallel combination of the
load, the source, and Rp. Hence

RpRR =---
e 2Rp+ R

for the case of equal load and source resistances.
Consider the ratio of QdQu

(2.6-11)

R
2Rp+R

(2.6-12)

This simplifies to the relationship

R QL-=---
2Rp Qu-l

which is then inserted into Eq. 2.6-10 to produce

(2.6-13)

(2.6-14)

Because the source and load resistances are equal, the insertion loss of the filter of
Fig. 2.15 is the negative of the transducer gain, or

Insertion loss (IL) = -20 log (1 - QdQu) db (2.6-15)

This filter is a doubly terminated single resonator.
The bandwidth of the single resonator, terminated or not, is analytically related

to the Q. Recalling that the bandwidth is defined as the frequency where the output
power is down by half, or 3 dB, bandwidth is related to center frequency and Q by

Q=foIBW (2.6-16)

where Fo and BW are both measured in the same units.
This is well illustrated by an example. Assume a resonator has a center frequency

of 100 MHz and Qu = 400. The unloaded bandwidth is 100/400 = 0.25 MHz (Q
is a dimensionless number). A bandwidth of 1 MHz is measured if the resonator
is then placed between an equal source and load. The loaded Q is then QL =
100/1 = 100. The insertion loss from Eq. 2.6-15 is 2.5 dB.

Examination of the equations reveals a method for measuring the Q of a resona-
tor. Note that as the loaded Q of a filter approaches the unloaded value, the insertion
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loss becomes very large. If a resonator is terminated equally by both the generator
and load and the values are adjusted so that the insertion loss is very large, the
measured 3-dB bandwidth will produce a loaded Qaccording to Eq. 2.6-16. Measuring
the insertion loss will allow calculation of QdQu' The loaded Q is very close to
Qu if the insertion loss is high enough, typically 30 to 40 dB.

Q has been related to a second order network in our discussion. That is, Q is
a parameter of a network containing two reactive elements, described by a transfer
function of second order. Sometimes a parameter Q appears in design equations for
third or even fourth order networks. The meaning for this Q is only loosely related
to the Q parameter we have been discussing. The actual energy storage in the network
and the related bandwidth properties are sometimes completely unrelated to Q.

2.7 THE ALL-POLE LOW PASS FILTER

Previous sections have presented background information and analysis methods. Now,
the problem of filter design is finally approached. The type of filter considered in
this section is shown in Fig. 2.17. It contains only series inductors and shunt capacitors.
The filter is a ladder configuration and may be analyzed using the ladder method
presented earlier.
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Figure 2.17 An nth order low pass filter. The text has equations for evaluating
the component values and the location of the poles.

We find that the transfer function, H(s), of the filter of Fig. 2.17 contains no
finite zeros. The transfer function is the reciprocal of a simple polynomial in the
variable s. As such, the filter is described completely by factoring of the denominator
polynomial to extract the location of the complex poles. This filter, an all-pole type,
represents many of the practical low pass filters used in routine rf design.

Most design work with all filters is done with low pass prototypes like that of
Fig. 2.17 where the source and load resistance are 1 n and the cutoff frequency is
1 rad. This has a number of consequences. First, analysis is simplified. Second, the
normalized filters are in a form that may be easily scaled to other terminations and
cutoff frequencies. The final rationale is somewhat less obvious, though. At a frequency
of 1 rad s-1, a 1-H inductor and a 1-F capacitor have the same immittance, 1n or
1 Siemen (S). This duality allows us to treat them more easily than we could if
another frequency of normalization were chosen. One consequence is that one form
of filter may be transformed into another with no change in numerical values.




