ASSP

BIPOLAR

SWITCHING REGULATOR CONTROLLER

MB3775

LOW VOLTAGE DUAL PWM SWITCHING REGULATOR CONTROLLER

The MB3775 is a dual pulse-width-modulation control circuit. It contains the basic circuits required for two PWM control circuits. Complete synchronization is obtained by using the same oscillator output waveform.
This IC can provide following types of output voltage: step down, step up, and inverter. Power consumption is low, thus the MB3775 is ideal for use in high-efficiency portable equipment.

■ FEATURES

- Wide supply voltage range: 3.6 V to 18 V
- Low current consumption: 1.3 mA typical
- Wide oscillation frequency range: 1 kHz to 500 kHz
- On-chip timer latch short protection circuit
- On-chip under voltage lockout protection
- On-chip reference voltage: 1.28 V
- Variable dead time provides control over total operating range.
- Two types of packages (SOP-16pin : 1 type, SSOP-16pin : 1 type)

APPLICATIONS

- LCD monitor/panel
- Surveillance camera etc.

MB3775

PIN ASSIGNMENT

(FPT-16P-M06)
(FPT-16P-M05)

- PIN DESCRIPTION

No.	Pin	Function
1	C^{+}	Oscillator timing capacitor pin (150 pF to $15,000 \mathrm{pF}$) .
2	RT	Oscillator timing resistor pin ($5.1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$)
3	+IN1	Error amplifier 1 non-inverted input pin.
4	-IN1	Error amplifier 1 inverted input pin.
5	FB1	Error amplifier 1 output pin. A resistor and a capacitor are connected between this pin and the -IN1 pin to adjust gain and frequency.
6	DTC1	OUT1 dead-time control pin. Dead-time control is adjusted by an external resistive divider connected to the Vref pin. A capacitor connected between this pin and GND enables soft-start operation.
7	OUT1	Open collector output pin. Output transistor has common ground independent of signal ground. This output can source or sink up to 50 mA .
8	E/GND	Ground pin.
9	Vcc	Power supply pin (3.6 V to 18 V)
10	OUT2	Open collector output pin. Output transistor has common ground independent of signal ground. This output can source or sink up to 50 mA .
11	DTC2	Sets the dead-time of OUT2. The use of this pin is the same as that of DTC1.
12	FB2	Error amplifier 2 output pin. A resistor and a capacitor are connected between this pin and the -IN2 pin to adjust gain and frequency.
13	-IN2	Error amplifier 2 inverted input pin.
14	+ IN2	Error amplifier 2 non-inverted input pin.
15	SCP	The time constant setting capacitor connection pin of the timer latch short-circuit protection circuit. Connects a capacitor between this pin and GND. For details, see " \square HOW TO SET TIME CONSTANT FOR TIMER LATCH SHORT-CIRCUIT PROTECTION CIRCUIT".
16	Vref	1.28 V reference voltage output pin which can be obtained up to 1 mA . This pin is used to set the reference input and idle period of the error amplifiers.

MB3775

BLOCK DIAGRAM

OPERATION DESCRIPTION

1. Reference voltage

The reference voltage circuit generates a stable, temperature-compensated 2.5 V reference from Vcc pin (pin 9) for use by internal circuits.

A reference voltage of temperature compensated $1 / 2 \mathrm{~V}_{\text {ref }}$ can be obtained to external circuit by $\mathrm{V}_{\text {ref }}$ pin (pin 16).

2. Oscillator

A triangular waveform of any frequency is obtained by connecting an external capacitor and resistor to the C_{\top} pin (pin 1) and RT pin (pin 2).
The amplitude of this waveform is from 1.3 V to 1.9 V . The oscillator is internally connected to the non-inverting inputs of the PWM comparators. The oscillator waveform is available at the C_{T} pin (pin 1).

3. Error amplifiers

The error amplifier detects the output voltage of the switching regulator.
The common-mode input voltage range is -0.2 V to 1.45 V , so the input reference voltage can be set the $\mathrm{V}_{\text {ref }}$ pin (pin 16) and GND pin levels. Error amplifiers can be used as either inverting and non-inverting amplifiers. The voltage gain is fixed. Phase compensation is possible by connecting a capacitor to the FB pins (pins 5 and 12) of the error amplifiers.

The error amplifier output are internally connected to the inverting inputs of the PWM comparators and also to the short protection circuit.

4. Timer latch short protection circuit

The timer latch short protection circuit detects the output levels of the error amplifiers. If one or both error amplifier outputs are 1.1 V or lower, the timer circuit begins charging the externally connected protection enable capacitor. If the output level of the error amplifier does not drop below the normal voltage range before the capacitor voltage reaches the transistor base-emitter voltage $\mathrm{V}_{\mathrm{BE}}(\doteqdot 0.65 \mathrm{~V})$, the latch circuit turns the output drive transistor off and sets the dead time to 100%.

5. Under voltage lockout protection circuit

An ambiguous transition state at power-on or a momentary fluctuation in the supply line may result in loss of control and may adversely affect or even destroy the system. The under voltage lockout protection circuit compares the internal reference voltage level with the supply voltage level. If the supply voltage level falls below the reference level the latch circuit is reset the output drive transistor is turned off and the dead time is set to 100%. The protection enable pin (pin 15) is pulled "Low".

6. PWM comparator

Each PWM comparator has two inverting inputs and one non-inverting input. This voltage-to-pulse-width converter controls the output pulse width according to the input voltage.
The PWM comparator turns the output drive transistor on when the oscillator triangular waveform is higher than the error amplifier output and the dead time control pin voltage.

7. Output drive transistor

The open-collector output-drive transistors provide common-emitter output of 18 V dielectric capability. The output drive transistors can source up to 50 mA of drive current to the switching power transistor.

ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Condition	Rating		Unit
			Min	Max	
Power Supply Voltage	Vcc	-	-	20	V
Error Amp Input Voltage	VI	-	-0.3	+10	V
Collector Output Voltage	Vo	-	-	20	V
Collector Output Current	Io	-	-	75	mA
Power Dissipation	Pd	$\mathrm{Ta} \leq+25^{\circ} \mathrm{C}$ (SOP)	-	*620	mW
		$\mathrm{Ta} \leq+25^{\circ} \mathrm{C}$ (SSOP)	-	*430	mW
Operating Ambient Temperature	Ta	-	-30	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	T stg	-	-55	+125	${ }^{\circ} \mathrm{C}$

*: The packages are mounted on the epoxy board ($4 \mathrm{~cm} \times 4 \mathrm{~cm} \times 1.5 \mathrm{~mm}$).
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

- RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	VcC	3.6	6.0	18	V
Error Amp Input Voltage	VI	-0.2	-	+1.45	V
Collector Output Voltage	Vo	-	-	18	V
Collector Output Current	IO	0.3	-	50	mA
Phase Compensation Capacitor	CP	-	0.1	-	$\mu \mathrm{F}$
Timing Capacitor	CT	150	-	15000	pF
Timing Resistor	RT	5.1	-	100	$\mathrm{k} \Omega$
Oscillator Frequency	fOSC	1	-	500	kHz
Reference Voltage Output Current	IREF	-3	-1	-	mA
Operating Ambient Temperature	Ta	-30	+25	+85	${ }^{\circ} \mathrm{C}$

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VcC}=6 \mathrm{~V}\right)$

	Parameter	Condition	Symbol	Value			Unit
				Min	Typ	Max	
Reference Section	Output Voltage	$\mathrm{IOR}=-1 \mathrm{~mA}$	Vref	1.26	1.28	1.30	V
	Output Temp. Stability	$\mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	VRTC	-2	± 0.2	+2	\%
	Input Stability	$\mathrm{Vcc}=3.6 \mathrm{~V}$ to 18 V	Line	-	2	10	mV
	Load Stability	$\mathrm{IOR}=-0.1 \mathrm{~mA}$ to -1 mA	Load	-	1	7.5	mV
	Short Circuit Output Current	Vref $=0 \mathrm{~V}$	Ios	-	-30	-10	mA
Under Voltage Lockout Protection Section	Threshold Voltage	$\mathrm{IOR}=-0.1 \mathrm{~mA}$	VtH	-	2.72	-	V
		$\mathrm{IOR}=-0.1 \mathrm{~mA}$	VtL	-	2.60	-	V
	Hysteresis Width	$\mathrm{IOR}=-0.1 \mathrm{~mA}$	VHYS	80	120	-	mV
	Reset Voltage (Vcc)	-	VR	1.5	1.9	-	V
Protection Circuit Section	Input Threshold Voltage	-	VtPC	0.60	0.65	0.7	V
	Input Stand by Voltage	No pull up	Vstb	-	50	100	mV
	Input Latch Voltage	No pull up	VI	-	50	100	mV
	Input Source Current	-	lbpc	-1.4	-1.0	-0.6	$\mu \mathrm{A}$
	Comparator Threshold Voltage	Pin 5, Pin 12	Vtc	-	1.1	-	V
Triangular Waveform Oscillator Section	Oscillator Frequency	CT $=330 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=15 \mathrm{k} \Omega$	fosc	-	200	-	kHz
	Frequency Deviation	$\mathrm{CT}=330 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=15 \mathrm{k} \Omega$	fdev	-	10	-	\%
	Frequency Stability (Vcc)	$\mathrm{VcC}=3.6 \mathrm{~V}$ to 18 V	fdv	-	1	-	\%
	Frequency Stability (Ta)	$\mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	fdT	-4	-	+4	\%
Dead-Time Control Section	Input Threshold Voltage$\text { (fosc = } 10 \mathrm{kHz} \text {) }$	Duty Cycle = 0 \%	Vto	-	1.0	$\begin{gathered} \hline \text { VREF } \\ -0.15 \end{gathered}$	V
		Duty Cycle $=100 \%$	Vt100	0.2	0.4	-	V
	Input Bias Current	-	lbdt	-	-0.2	-1	$\mu \mathrm{A}$
	Latch Mode Source Current	$\mathrm{Vdt}=0.7 \mathrm{~V}$	ldt	-	-150	-80	$\mu \mathrm{A}$
	Latch Input Voltage	$\mathrm{ldt}=-40 \mu \mathrm{~A}$	Vdt	$\begin{aligned} & \hline \text { VREF } \\ & -0.1 \end{aligned}$	-	-	V

(Continued)

MB3775

(Continued)
$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VcC}=6 \mathrm{~V}\right)$

	Parameter	Condition	Symbol	Value			Unit
				Min	Typ	Max	
Error Amp Section	Input Offset Voltage	$\mathrm{Vo}=1.6 \mathrm{~V}$	VıO	-10	-	+10	mV
	Input Offset Current	V O $=1.6 \mathrm{~V}$	110	-100	-	+100	nA
	Input Bias Current	$\mathrm{Vo}=1.6 \mathrm{~V}$	IB	-500	-100	-	nA
	Common Mode Input Voltage Range	$\mathrm{Vcc}=3.6 \mathrm{~V}$ to 18 V	VICR	-0.2	-	+1.45	V
	Voltage Gain		Av	84	120	-	V/V
	Frequency Band Width	$A v=-3 \mathrm{~dB}$	BW	-	3	-	MHz
	Common Mode Rejection Ratio		CMRR	60	80	-	dB
	Max Output Voltage		Vom+	2.2	2.4	-	V
	Width		Vom-	-	0.7	0.9	V
	Output Sink Current	V o $=1.6 \mathrm{~V}$	lom+	24	50	-	$\mu \mathrm{A}$
	Output Source Current	$\mathrm{Vo}=1.6 \mathrm{~V}$	Iom-	-	-1.2	-0.7	mA
PWM Comparator Section	Input Threshold Voltage	Duty Cycle $=0 \%$	Vto	-	1.9	2.1	V
	$\text { (fosc }=10 \mathrm{kHz} \text {) }$	Duty Cycle $=100 \%$	$\mathrm{V}_{\text {t100 }}$	1.05	1.3	-	V
	Input Sink Current	Pin 5, Pin $12=1.6 \mathrm{~V}$	lin+	24	50	-	$\mu \mathrm{A}$
	Input Source Current	Pin 5 , Pin $12=1.6 \mathrm{~V}$	IIN-	-	-1.2	-0.7	mA
Output Section	Output Leak Current	$\mathrm{Vo}=18 \mathrm{~V}$	Leak	-	-	10	$\mu \mathrm{A}$
	Output Saturation Voltage	$\mathrm{lO}=50 \mathrm{~mA}$	VSat	-	1.1	1.4	V
Stand by Current		Output "OFF"	Iccs	-	1.3	1.8	mA
Average Supply Current		$\mathrm{RT}=15 \mathrm{k} \Omega$	Icca	-	1.7	2.4	mA

TEST CIRCUIT

TIMING CHART (Internal Waveform)

APPLICATION CIRCUIT

Fig. 2 - Chopper Type Step Up/Inverting

(Continued)
(Continued)

HOW TO SET OUTPUT VOLTAGE

The output voltage is set using the connection shown in Fig. 5 and 6.
The error amplifiers are supplied to the internal reference voltage circuit as are the other internal circuits. The common-mode input voltage range is from -0.2 V to +1.45 V .
When the amplifiers are operated non-inverting, tie the inverting pin to $\mathrm{V}_{\text {REF }}(\div 1.28 \mathrm{~V}$). When the amplifiers are operated inverting, tie the non-inverting pin to ground.

Fig. 5 -Connection of Error Amp Output Voltage V_{0} is plus

Fig. 6 -Connection of Error Amp Output Voltage V_{0} is minus

HOW TO SET TIME CONSTANT FOR TIMER LATCH SHORT PROTECTION CIRCUIT

TIMING CHART shows the configuration of the protection latch circuit.
Error amplifier outputs, are internally connected to the non-inverting inputs of the short-circuit protection comparator and are compared with the reference voltage (1.1 V) connected to the inverting input.
When the load condition of the switching regulator is stable, the error amplifier has no output fluctuation. Thus, short-circuit protection control is also kept in balance, and the protection enable pin (pin 15) voltage is kept at about 50 mV .
If the load condition drastically changes due to a load short-circuit and if low-level signals (1.1 V or lower) are input to the non-inverting inputs of the short-circuit protection comparator from the error amplifiers, the shortcircuit protection comparator outputs a "Low" level to turn transistor Q_{1} off. The protection enable pin voltage is discharged, and then the short-circuit protection comparator charges the externally connected protection enable capacitor $\mathrm{C}_{\text {PE }}$ according to the following formula:

$$
\begin{aligned}
& V_{\text {PE }}=50 \mathrm{mV}+\mathrm{tPE} \times 10^{-6} / \mathrm{C}_{\text {PE }} \\
& 0.65=50 \mathrm{mV}+\mathrm{t} P \mathrm{xE} 10^{-6} / \mathrm{C}_{\text {PE }} \\
& \mathrm{C}_{\text {PE }}=\mathrm{t} / \mathrm{CE} / 6(\mu \mathrm{~F})
\end{aligned}
$$

When the protection enable capacitor charges to about 0.65 V , the protection latch is set to enable the under voltage lockout protection circuit and to turn the output drive transistor off. The dead time is set to 100%.
Once the under voltage lockout protection circuit is enabled, the protection enable is released; however, the protection latch is not reset if the power is not turned off.
The non-inverting inputs of the D.T.C. comparator are connected to the D.T.C. pins (pins 6 and 11) through the power supply (about 0.9 V) and are compared with a reference voltage (about 1.8 V) connected to the inverting input.
To prevent malfunction of the short protection circuit in soft-start mode (using D.T.C. pins), the D.T.C. comparator outputs a "High" level to turn Q2 on until the D.T.C. pins (pins 6 and 11) voltage drops to about 0.9 V .

Fig. 7 - Protection Latch Circuit

MB3775

SETTING THE IDLE PERIOD

When voltage step-up, fly-back step-up or inverted output are set, the voltage at the FB pin may go lower than the triangular wave voltage due to load fluctuation, etc. In this case the output transistor will be in full-on state (ON duty 100%). This can be prevented by setting the maximum duty for the output transistor. This is done by setting the DTC1 pin (pin 6) voltage using resistance division of the Vref voltage as illustrated below.
When the DTC1 pin voltage is lower than the triangular waveform voltage, the output transistor is turned on. If the triangular waveform amplitude $\div 0.6 \mathrm{~V}$, the lower limit voltage of the triangular waveform $\doteqdot 1.3 \mathrm{~V}$ and the offset voltage is 0.9 V , the formula for the maximum duty would be as follows (Other channels are this conditions) :
$\operatorname{Duty}(\mathrm{ON}) \operatorname{Max}(\%) \doteqdot \frac{1.9 \mathrm{~V}-(\mathrm{Vdt}+0.9 \mathrm{~V})}{0.6 \mathrm{~V}} \times 100 \doteqdot \frac{1.0 \mathrm{~V}-\mathrm{Vdt}}{0.6 \mathrm{~V}} \times 100, \mathrm{Vdt}(\mathrm{V})=\frac{\mathrm{Rb}}{(\mathrm{Ra}+\mathrm{Rb})} \times \mathrm{V}_{\mathrm{REF}}$
Also, if no output duty setting is required, the voltage should be set greater than the lower limit voltage of the triangular waveform, which is $1.3 \mathrm{~V}(\mathrm{Vdt}=0.4 \mathrm{~V})$.

- Setting the idle time at DTC1 (DTC2 is similar)
\square
- Vcc and V o
- Step down DUTY[\%] $=\frac{V_{o}}{V_{c c}} \times 100$
- Step up DUTY[\%] $=\frac{\mathrm{V}_{0}-\mathrm{V}_{\mathrm{cc}}}{\mathrm{V}_{\mathrm{c}}} \times 100$
- Inverter DUTY[\%] $=\frac{V_{o}}{V_{0}-V_{c c}} \times 100$

Set the DTC voltage using the following Duty Max vs. Vdt characteristics so that this duty is set to the maximum duty or less.

Duty Max vs. Vdt characteristics (applies to Vdt 1 and Vdt 2)

MB3775

SETTING THE SOFT START TIME

When power is switched on, the current begins charging the capacitor (CdTc1) connected the DTC1 pin (pin 6). The soft start process operates by comparing the soft start setting voltage, which is proportional to the DTC1 pin voltage, with the triangular waveform, and varying the ON-duty of the OUT pin (pin 7).
The soft start time until the ON duty reaches 50% is determined by the following equation:
Soft start time (time until output ON duty $=50 \%$).
ts $(\mathrm{s}) \doteqdot-\mathrm{CdTc} \times \mathrm{Ra} \times \mathrm{Rb} /(\mathrm{Ra}+\mathrm{Rb}) \times \ln (1-0.7(\mathrm{Ra}+\mathrm{Rb}) /(1.28 \mathrm{Ra}))$
For example, if $\mathrm{Ra}=10 \mathrm{k} \Omega$ and $\mathrm{Rb}=4.7 \mathrm{k} \Omega$, the result is:
ts $(\mathrm{s}) \doteqdot 0.005 \times \mathrm{CDTC1}^{(\mu \mathrm{F})}$

- Soft Start on DCT1 pin (DTC2 is similar)

SYNCHRONIZATION OF ICs

To synchronize MB3775 ICs, first, the specified capacitor and resistor are connected to the Cт and Rt pins (pins 1 and 2) of the master IC to start self oscillation. Next, 2 V is applied to the Rt pin (pin 2) of the slave ICs to disable the charge/discharge circuit for triangular wave oscillation. Finally, the $\mathrm{C}_{\mathrm{t}} \mathrm{pin}$ (pin 1) of the master and slave ICs are connected.
Instead of applying $V_{\text {RT }}$ to the RT pin (pin 2), these pins can be pulled up by a resistor (see resistance indicated by the dashed line in Fig. 8). Select the pull-up resistance Rpull from the formula given below.

$$
\begin{array}{ll}
\frac{\text { Vcc }}{0.5 \times \mathrm{N}} \geq \text { Rpull } & \begin{array}{l}
\text { Rpull: Pull up Resistor (k } \Omega) \\
\text { Vcc: Power Supply Voltage (V) } \\
\mathrm{N}: \quad \text { Number of Slave ICs }
\end{array}
\end{array}
$$

Fig. 8 - Connection of Master, Slave

TYPICAL PERFORMANCE CHARACTERISTICS

Fig. 9 - Reference voltage vs. Power supply voltage

Fig. 11 - Stand by current vs. Power supply voltage

Fig. 13-Collector saturation voltage vs. Sink current

Fig. 10 - Average supply current vs. Power supply voltage

Fig. 12 - Reference voltage vs. Operating ambient temperature

Fig. 14 - Error Amp Max output voltage vs. Frequency

Fig. 15 - Oscillation Frequency vs. Timing resistor

Fig. 17 - Triangular waveform Max Amplitude voltage vs. Timing capacitor

Fig. 19 - Gain/Phase vs. Frequency (Actual Data)

Fig. 16 - Triangular waveform cycle vs. Timing capacitor

Fig. 18 - Gain/Phase vs. Frequency

Fig. 20 - Gain/Phase vs. Frequency (Actual Data)

MB3775

(Continued)

Fig. 21 - Gain/Phase vs. Frequency (Actual Data)

HOW TO SET THE ERROR AMPLIFIER FREQUENCY CHARACTERISTIC

Figure 22 shows the equivalent circuit of the error amplifier.
The frequency characteristic of the error amplifier is set by R_{1}, R_{2}, and C_{p}. The high-frequency gain is set by the ratio of resistors R_{1} and R_{2} in the IC (set value $\fallingdotseq 0 \mathrm{~dB}$).
When $\mathrm{Cp}=0.1 \mu \mathrm{~F}$, the gain at $20 \mathrm{kHz} \leq \mathrm{f} \leq 5 \mathrm{MHz}$ is about 0 dB . The roll-off frequency is adjusted by changing external phase compensating capacitor C_{p} (see Fig. 24).
When high frequency gain is needed or the phase must be advanced at a low frequency, connect a resistor Rp between the FB pins (pins 5 and 12) and Cp as shown in Figure 23 (see Fig. 25).

Fig. 23 - Error Amp Equivalent Circuit (Insert Rp)

Note: As shown above, the frequency characteristic of the error amplifier is set by the external phase compensating capacitor CP.
When a ceramic chip capacitor must be used to meet the requirements of a small system, be careful of its temperature characteristic. $\left(-30^{\circ} \mathrm{C} \fallingdotseq 1 / 5\right.$ and $+80^{\circ} \mathrm{C} \fallingdotseq 1 / 3$ for the frequency characteristic, so a sufficient phase margin must be allowed for at room temperature.) Ceramic chip capacitors with a low temperature characteristic (B characteristic) or film capacitors are recommended (see Fig. 26 to 28).

Fig. 24 - Error Amp Frequency characteristics

Fig. 25 - Error Amp Frequency characteristics

Fig. 26 - Ceramic Chip Capacitor ($0.1 \mu \mathrm{~F}$)

Fig. 27 - Tantal Capacitor ($0.33 \mu \mathrm{~F}$)

Fig. 28 - Film Capacitor ($0.1 \mu \mathrm{~F}$)

EFFECT OF EQUIVALENT SERIES RESISTANCE OF SMOOTHING CAPACITOR

The equivalent series resistance (ESR) of the smoothing capacitor in the DC/DC converter greatly affects the loop phase characteristic.
A smoothing capacitor with a low ESR reduces system stability by increasing the phase shift in the high-frequency region (see Fig. 30). Therefore, a smoothing capacitor with a high ESR will improve system stability. Be careful when using low ESR semiconductor electrolytic capacitors (OS-CON ${ }^{\text {TM }}$) and tantalum capacitors.
Note: OS-CON is the trademark of Sanyo Electric Co., Ltd.

Fig. 29 - Step Down DC/DC Converter Basic Circuit

Fig. 30 - Gain vs. Frequency

Fig. 31 - Phase vs. Frequency

Reference data

If an aluminum electrolytic smoothing capacitor ($\operatorname{Rc} \doteqdot 1.0 \Omega$) is replaced with a low ESR semiconductor electrolytic capacitor (OS-CON ${ }^{\text {TM }: ~ R c ~} \doteqdot 0.2 \Omega$), the phase shift is reduced by half (see Fig. 33 and 34).

Fig. 32 - DC/DC Converter Avvs. ϕ characteristic Test Circuit

Fig. 33 - DC/DC Converter +5 V Gain/Phase vs. Frequency

Fig. 34 - DC/DC Converter +5 V Gain/Phase vs. Frequency

MEASURES FOR ENSURING SYSTEM STABILITY WHEN A LOW ESR SMOOTHING CAPACITOR IS USED

When a low ESR smoothing capacitor is used in the DC/DC converter, only the L and C are apparent even in the high-frequency region, and the phase is delayed by almost 180°. Consequently, the system phase margin and stability are reduced. On the other hand, a low ESR capacitor is needed to reduce the amount of output ripple. This is contrary to the system stability explained above.
To solve this problem, phase compensation can be used. This method increases the phase margin by advancing the phase when the phase margin is reduced by a low ESR capacitor.
The three suggestions listed below are recommended for DC/DC converters using the MB3775.
(1) As shown in Fig. 35, a capacitor is connected in parallel with the output feedback resistor to advance the phase. Use the formula below as a guideline for the capacitance.

Unstable Frequency (See Fig. 32)

Fig. 35 - External circuit example1 to advance the phase

Fig. 36 - DC/DC Converter +5 V Gain/Phase vs. Frequency

(2) As shown in Figure 37, a resistor (R_{P}) is connected between the FB pins (pins 5 and 12) and C_{P} of the error amplifier to advance the phase. The more Rp is increased, the more the phase is advanced. However, the gain in the high-frequency range is also increased, which causes instability. Therefore, select the optimum resistance (see Fig. 38).

Fig. 37 - External circuit example 2 to advance the phase

Fig. 38 - DC/DC Converter +5 V Gain/Phase vs. Frequency

MB3775

(3) As shown in Fig. 39, the phase is advanced by using both example 1 and 2 (Fig. 35 and 37).
Fig. 39 - External circuit example 3 to advance the phase

ERROR AMPLIFIER INPUT RIPPLE VOLTAGE

The boost circuit for charging the phase compensating capacitor C_{p} is connected to the error amplifier as shown in Figure 40 to protect against output voltage overload at power-on.
$\mathrm{A} \doteqdot 15 \mathrm{mV}$ offset voltage is provided for the negative input side so that the boost circuit only operates at poweron. When a capacitor is connected in parallel with the output feedback resistor, because the output ripple is too large or for advanced phase compensation, the boost circuit starts operating, which may degrade regulation if the differential input voltage of the error amplifier exceeds $=15 \mathrm{mV}$. Be careful with the differential input voltage of the error amplifier.

NOTES ON USE

- Take account of common impedance when designing the earth line on a printed wiring board.
- Take measures against static electricity.
- For semiconductors, use antistatic or conductive containers.
- When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.
- The work table, tools and measuring instruments must be grounded.
- The worker must put on a grounding device containing $250 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ resistors in series.
- Do not apply a negative voltage
- Applying a negative voltage of -0.3 V or less to an LSI may generate a parasitic transistor, resulting in malfunction.

MB3775

■ ORDERING INFORMATION

Part number	Package	Remarks
MB3775PF	16-pin plastic SOP (FPT-16P-M06)	
MB3775PFV	16-pin plastic SSOP (FPT-16P-M05)	

RoHS COMPLIANCE INFORMATION OF LEAD (PB) FREE VERSION

The LSI products of FUJITSU SEMICONDUCTOR with "E1" are compliant with RoHS Directive, and has observed the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).
The product that conforms to this standard is added "E1" at the end of the part number.

MARKING FORMAT (LEAD FREE VERSION)

LABELING SAMPLE (LEAD FREE VERSION)

■ MB3775PF, MB3775PFV RECOMMENDED CONDITIONS of MOISTURE SENSITIVITY LEVEL
[FUJITSU SEMICONDUCTOR Recommended Mounting Conditions]

Item	Condition	
Mounting Method	IR (infrared reflow), warm air reflow	
Mounting times	2 times	
Storage period	Before opening	Please use it within two years after manufacture.
	From opening to the 2nd reflow	Less than 8 days
	When the storage period after opening was exceeded	Please process within 8 days after baking $\left(125{ }^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 24 \mathrm{hrs}+2 \mathrm{H} /-0 \mathrm{H}\right)$ Baking can be performed up to two times.
Storage conditions	$5^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}, 70 \% \mathrm{RH}$ or less (the lowest possible humidity)	

[Parameters for Each Mounting Method]

IR (infrared reflow)

MB3775

Manual soldering (partial heating method)

Item	Condition	
Storage period	Before opening	Within two years after manufacture.
	Between opening and mounting	Within two years after manufacture. (No need to control moisture during the storage period because of the partial heating method.)
	$5^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}, 70 \%$ RH or less (the lowest possible humidity)	

*: Make sure that the tip of a soldering iron does not come in contact with the package body.

PACKAGE DIMENSION

16-pin plastic SOP	Lead pitch	1.27 mm
	Package width \times package length	$5.3 \times 10.15 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	2.25 mm MAX
	Weight	0.20 g
	Code (Reference)	P-SOP16-5.3×10.15-1.27

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

MB3775

(Continued)

16-pin plastic SSOP	Lead pitch	0.65 mm
Package width \times package length	$4.40 \times 5.00 \mathrm{~mm}$	
Lead shape	Gullwing	
(FPT-16P-M05)		

16-pin plastic SSOP
(FPT-16P-M05)

© 2003-2010 FUJITSU SEMICONDUCTOR LIMITED F16013S-C-4-8

Note 1) *1: Resin protrusion. (Each side : +0.15 (.006) Max).
Note 2) *2 : These dimensions do not include resin protrusion.
Note 3) Pins width and pins thickness include plating thickness. Note 4) Pins width do not include tie bar cutting remainder.

Dimensions in mm (inches).
Note: The values in parentheses are reference values.

MEMO

MB3775

MEMO

MEMO

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan
Tel: +81-45-415-5858
http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH
Pittlerstrasse 47, 63225 Langen, Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD.
206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://kr.fujitsu.com/fmk/

Asia Pacific
FUJITSU SEMICONDUCTOR ASIA PTE. LTD.
151 Lorong Chuan,
\#05-08 New Tech Park 556741 Singapore
Tel : +65-6281-0770 Fax : +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD.
Rm. 3102, Bund Center, No. 222 Yan An Road (E), Shanghai 200002, China
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605
http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD.
10/F., World Commerce Centre, 11 Canton Road,
Tsimshatsui, Kowloon, Hong Kong
Tel : +852-2377-0226 Fax : +852-2376-3269
http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

