
D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 1 of 64

D2XX Driver Architecture

Application Software
Visual C++

Visual Basic
Delphi

C++ Builder etc

FTD2XX.DLL

FTD2XX.SYS

Win '98 / ME / 2000 / XP
USB Driver

Stack

FT232 USB UART/
FT245 USB FIFO

Application S/W
Interface (D2XX)

FTDI WDM
Driver

Windows
USB Interface

USB Physical
Layer

FTDI WDM
Driver Interface

Windows
USB Drivers

FTDI USB
Devices

Customer's
Application

Software

FTDI Supplied
DLL

FTD2XX Programmer’s Guide

Version 2.01
Introduction to FTDI’s D2XX 2.0
Driver Technology

FTDI’s “D2XX Direct Drivers” for Windows offer an alternative
solution to our VCP drivers which allows application software to
interface with FT232 USB UART and FT245 USB FIFO devices
using a DLL instead of a Virtual Com Port. The architecture
of the D2XX drivers consists of a Windows WDM driver that
communicates with the device via the Windows USB Stack
and a DLL which interfaces the Application Software (written in
VC++, C++ Builder, Delphi, VB etc.) to the WDM driver. An INF
installation file, Uninstaller program and D2XX Programmers
Guide complete the package.

The new version of the D2XX drivers contains many enhanced
features and has been divided into four groups for clarity. The
Classic Interface Section documents the original D2XX functions
that are retained in this new release. The Classic Interface
provides a simple, easy to use, set of functions to access these
FTDI USB devices. New sections are “The EEPROM Interface”
which allows application software to read / program the various
fields in the 93C46 EEPROM including a user defined area which
can be used for application specific purposes; “The FT232BM /
FT245BM Enhancements” which allow control of the additional
features in our 2nd generation devices, and the “FT-Win32 API”
which is a more sophisticated alternative to the Classic Interface
– our equivalent to the native Win 32 API calls that are used to
control a legacy serial port. Using the FT-Win32 API, existing
Windows legacy Comms applications can easily be converted to
use the D2XX interface simply by replacing the standard Win32
API calls with the equivalent FT-Win32 API calls.

Please Note – the Classic Interface and the FT-Win32 API
interface are alternatives. Developers should choose one or the
other – the two sets of functions should not be mixed.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 2 of 64

1. “Classic Interface” Functions

D2XX Classic Programming Interface – Introduction
An FTD2XX device is an FT232 USB UART or FT245 USB FIFO interfacing to Windows application software using
FTDI’s WDM driver FTD2XX.SYS. The FTD2XX.SYS driver has a programming interface exposed by the dynamic
link library FTD2XX.DLL, and this document describes that interface.

D2XX Classic Programming Interface – Overview
FT_ListDevices returns information about the FTDI devices currently connected. In a system with multiple devices
this can be used to decide which of the devices the application software wishes to access (using FT_OpenEx below).

Before the device can be accessed, it must first be opened. FT_Open and FT_OpenEx return a handle that is used
by all functions in the Classic Programming Interface to identify the device. When the device has been opened
successfully, I/O can be performed using FT_Read and FT_Write. When operations are complete, the device is
closed using FT_Close.

Once opened, additional functions are available to reset the device (FT_ResetDevice); purge receive and transmit
buffers (FT_Purge); set receive and transmit timeouts (FT_SetTimeouts); get the receive queue status (FT_
GetQueueStatus); get the device status (FT_GetStatus); set and reset the break condition (FT_SetBreakOn, FT_
SetBreakOff); and set conditions for event notification (FT_SetEventNotification).

For FT232 devices, functions are available to set the baud rate (FT_SetBaudRate), and set a non-standard baud rate
(FT_SetDivisor); set the data characteristics such as word length, stop bits and parity (FT_SetDataCharacteristics);
set hardware or software handshaking (FT_SetFlowControl); set modem control signals (FT_SetDTR, FT_ClrDTR,
FT_SetRTS, FT_ClrRTS); get modem status (FT_GetModemStatus); set special characters such as event and error
characters (FT_SetChars). For FT245 devices, these functions are redundant and can effectively be ignored.

D2XX Classic Programming Interface – Reference
The functions that make up the D2XX Classic Programming Interface are defined in this section. Type definitions of
the functional parameters and return codes used in the D2XX Classic Programming Interface are contained in the
Appendix.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 3 of 64

FT_ListDevices
Get information concerning the devices currently connected. This function can return such information as the
number of devices connected, and device strings such as serial number and product description.

FT_STATUS FT_ListDevices (PVOID pvArg1,PVOID pvArg2, DWORD dwFlags)

Parameters
pvArg1

Meaning depends on dwFlags

pvArg2
Meaning depends on dwFlags

dwFlags
Determines format of returned information

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
This function can be used in a number of ways to return different types of information.

In its simplest form, it can be used to return the number of devices currently connected. If FT_LIST_NUMBER_
ONLY bit is set in dwFlags, the parameter pvArg1 is interpreted as a pointer to a DWORD location to store the
number of devices currently connected.

It can be used to return device string information. If FT_OPEN_BY_SERIAL_NUMBER bit is set in dwFlags, the
serial number string will be returned from this function. If FT_OPEN_BY_DESCRIPTION bit is set in dwFlags, the
product description string will be returned from this function. If neither of these bits is set, the serial number string
will be returned by default.

It can be used to return device string information for a single device. If FT_LIST_BY_INDEX bit is set in dwFlags,
the parameter pvArg1 is interpreted as the index of the device, and the parameter pvArg2 is interpreted as a pointer
to a buffer to contain the appropriate string. Indexes are zero-based, and the error code FT_DEVICE_NOT_FOUND
is returned for an invalid index.

It can be used to return device string information for all connected devices. If FT_LIST_ALL bit is set in dwFlags,
the parameter pvArg1 is interpreted as a pointer to an array of pointers to buffers to contain the appropriate strings,
and the parameter pvArg2 is interpreted as a pointer to a DWORD location to store the number of devices currently
connected. Note that, for pvArg1, the last entry in the array of pointers to buffers should be a NULL pointer so the
array will contain one more location than the number of devices connected.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 4 of 64

Examples
Sample code shows how to get the number of devices currently connected.

FT_STATUS ftStatus;
DWORD numDevs;

ftStatus = FT_ListDevices(&numDevs,NULL,FT_LIST_NUMBER_ONLY);
if (ftStatus == FT_OK) {
 // FT_ListDevices OK, number of devices connected is in numDevs
}
else {
 // FT_ListDevices failed
}

This sample shows how to get the serial number of the first device found. Note that indexes are zero-based. If more
than one device is connected, incrementing devIndex will get the serial number of each connected device in turn.

FT_STATUS ftStatus;
DWORD devIndex = 0;
char Buffer[16];

ftStatus = FT_ListDevices((PVOID)devIndex,Buffer,FT_LIST_BY_INDEX|FT_OPEN_BY_SERIAL_NUMBER);
if (FT_SUCCESS(ftStatus)) {
 // FT_ListDevices OK, serial number is in Buffer
}
else {
 // FT_ListDevices failed
}

This sample shows how to get the product descriptions of all the devices currently connected.

FT_STATUS ftStatus;
char *BufPtrs[3]; // pointer to array of 3 pointers
char Buffer1[64]; // buffer for product description of first device found
char Buffer2[64]; // buffer for product description of second device
DWORD numDevs;

// initialize the array of pointers
BufPtrs[0] = Buffer1;
BufPtrs[1] = Buffer2;
BufPtrs[2] = NULL; // last entry should be NULL

ftStatus = FT_ListDevices(BufPtrs,&numDevs,FT_LIST_ALL|FT_OPEN_BY_DESCRIPTION);
if (FT_SUCCESS(ftStatus)) {
 // FT_ListDevices OK, product descriptions are in Buffer1 and Buffer2, and
 // numDevs contains the number of devices connected
}
else {
 // FT_ListDevices failed
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 5 of 64

FT_Open
Open the device and return a handle which will be used for subsequent accesses.

FT_STATUS FT_Open (int iDevice, FT_HANDLE *ftHandle)

Parameters
iDevice

Must be 0 if only one device is attached. For multiple devices 1, 2 etc.

ftHandle
Pointer to a variable of type FT_HANDLE where the handle will be stored. This handle must be used to access the
device.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
Although this function can be used to open multiple devices by setting iDevice to 0, 1, 2 etc. there is no ability to
open a specific device. To open named devices, use the function FT_OpenEx.

Example
This sample shows how to open a device.

FT_HANDLE ftHandle;
FT_STATUS ftStatus;
ftStatus = FT_Open(0,&ftHandle);
if (ftStatus == FT_OK) {
 // FT_Open OK, use ftHandle to access device
}
else {
 // FT_Open failed
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 6 of 64

FT_OpenEx
Open the named device and return a handle which will be used for subsequent accesses. The device name can be
its serial number or device description.

FT_STATUS FT_OpenEx (PVOID pvArg1, DWORD dwFlags, FT_HANDLE *ftHandle)

Parameters
pvArg1

Meaning depends on dwFlags, but it will normally be interpreted as a pointer to a null terminated string.

dwFlags
FT_OPEN_BY_SERIAL_NUMBER or FT_OPEN_BY_DESCRIPTION.

ftHandle
Pointer to a variable of type FT_HANDLE where the handle will be stored. This handle must be used to access the
device.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
This function should be used to open multiple devices. Multiple devices can be opened at the same time if they can
be distinguished by serial number or device description.

Example
These samples show how to open two devices simultaneously.

Suppose one device has serial number “FT000001”, and the other has serial number “FT999999”.

FT_STATUS ftStatus;
FT_HANDLE ftHandle1;
FT_HANDLE ftHandle2;

ftStatus = FT_OpenEx(“FT000001”,FT_OPEN_BY_SERIAL_NUMBER,&ftHandle1);
if (ftStatus == FT_OK) {
 // FT_OpenEx OK, device with serial number “FT000001” is open
}
else {
 // FT_OpenEx failed
}

ftStatus = FT_OpenEx(“FT999999”,FT_OPEN_BY_SERIAL_NUMBER,&ftHandle2);
if (ftStatus == FT_OK) {
 // FT_OpenEx OK, device with serial number “FT999999” is open
}
else {
 // FT_OpenEx failed
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 7 of 64

Suppose one device has description “USB HS SERIAL CONVERTER”, and the other has description “USB PUMP
CONTROLLER”.

FT_STATUS ftStatus;
FT_HANDLE ftHandle1;
FT_HANDLE ftHandle2;

ftStatus = FT_OpenEx(“USB HS SERIAL CONVERTER”,FT_OPEN_BY_DESCRIPTION,&ftHandle1);
if (ftStatus == FT_OK) {
 // FT_OpenEx OK, device with description “USB HS SERIAL CONVERTER” is open
}
else {
 // FT_OpenEx failed
}

ftStatus = FT_OpenEx(“USB PUMP CONTROLLER”,FT_OPEN_BY_DESCRIPTION,&ftHandle2);
if (ftStatus == FT_OK) {
 // FT_OpenEx OK, device with description “USB PUMP CONTROLLER” is open
}
else {
 // FT_OpenEx failed
}

FT_Close
Close an open device.

FT_STATUS FT_Close (FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device to close.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 8 of 64

FT_Read
Read data from the device.

FT_STATUS FT_Read (FT_HANDLE ftHandle, LPVOID lpBuffer, DWORD dwBytesToRead, LPDWORD
lpdwBytesReturned)

Parameters
ftHandle

Handle of the device to read.

lpBuffer
Pointer to the buffer that receives the data from the device.

dwBytesToRead
Number of bytes to be read from the device.

lpdwBytesReturned
Pointer to a variable of type DWORD which receives the number of bytes read from the device.

Return Value
FT_OK if successful, FT_IO_ERROR otherwise.

Remarks
FT_Read always returns the number of bytes read in lpdwBytesReturned.

This function does not return until dwBytesToRead have been read into the buffer. The number of bytes in the
receive queue can be determined by calling FT_GetStatus or FT_GetQueueStatus, and passed to FT_Read as
dwBytesToRead so that the function reads the device and returns immediately.

When a read timeout value has been specified in a previous call to FT_SetTimeouts, FT_Read returns when the
timer expires or dwBytesToRead have been read, whichever occurs first. If the timeout occurred, FT_Read reads
available data into the buffer and returns FT_OK.

An application should use the function return value and lpdwBytesReturned when processing the buffer. If the return
value is FT_OK, and lpdwBytesReturned is equal to dwBytesToRead then FT_Read has completed normally. If the
return value is FT_OK, and lpdwBytesReturned is less then dwBytesToRead then a timeout has occurred, and the
read has been partially completed. Note that if a timeout occurred and no data was read, the return value is still
FT_OK.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 9 of 64

A return value of FT_IO_ERROR suggests an error in the parameters of the function, or a fatal error like USB
disconnect has occurred.

Example
This sample shows how to read all the data currently available.

FT_HANDLE ftHandle; // handle of an open device
FT_STATUS ftStatus;
DWORD EventDWord;
DWORD RxBytes;
DWORD TxBytes;
DWORD BytesReceived;
char RxBuffer[256];

FT_GetStatus(ftHandle,&RxBytes,&TxBytes,&EventDWord);

if (RxBytes > 0) {
 ftStatus = FT_Read(ftHandle,RxBuffer,RxBytes,&BytesReceived);
 if (ftStatus == FT_OK) {
 // FT_Read OK
 }
 else {
 // FT_Read Failed
 }
}

This sample shows how to read with a timeout of 5 seconds.

FT_HANDLE ftHandle; // handle of an open device
FT_STATUS ftStatus;
DWORD BytesReceived;
char RxBuffer[256];

FT_SetTimeouts(ftHandle,5000,0);

ftStatus = FT_Read(ftHandle,RxBuffer,RxBytes,&BytesReceived);
if (ftStatus == FT_OK) {
 if (BytesReceived == RxBytes) {
 // FT_Read OK
 }
 else {
 // FT_Read Timeout
 }
}
else {
 // FT_Read Failed
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 10 of 64

FT_Write
Write data to the device.

FT_STATUS FT_Write (FT_HANDLE ftHandle, LPVOID lpBuffer, DWORD dwBytesToWrite, LPDWORD
lpdwBytesWritten)

Parameters
ftHandle

Handle of the device to write.

lpBuffer
Pointer to the buffer that contains the data to be written to the device.

dwBytesToWrite
Number of bytes to write to the device.

lpdwBytesWritten
Pointer to a variable of type DWORD which receives the number of bytes written to the device.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

FT_ResetDevice
This function sends a reset command to the device.

FT_STATUS FT_ResetDevice (FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device to reset.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 11 of 64

FT_SetBaudRate
This function sets the baud rate for the device.

FT_STATUS FT_SetBaudRate (FT_HANDLE ftHandle, DWORD dwBaudRate)

Parameters
ftHandle

Handle of the device.

dwBaudRate
Baud rate.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

FT_SetDivisor
This function sets the baud rate for the device. It is used to set non-standard baud rates.

FT_STATUS FT_SetDivisor (FT_HANDLE ftHandle, USHORT usDivisor)

Parameters
ftHandle

Handle of the device.

usDivisor
Divisor.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
The application note “Setting Baud rates for the FT8U232AM”, which is available on our web site www.ftdichip.com,
describes how to calculate the divisor for a non standard baud rate.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 12 of 64

Example
Suppose we want to set a baud rate of 5787 baud. A simple calculation suggests that a divisor of 4206 should work.

FT_HANDLE ftHandle; // handle of device obtained from FT_Open or FT_OpenEx
FT_STATUS ftStatus;

ftStatus = FT_SetDivisor(ftHandle,0x4206);
if (ftStatus == FT_OK) {
 // FT_SetDivisor OK, baud rate has been set to 5787 baud
}
else {
 // FT_SetDivisor failed
}

FT_SetDataCharacteristics
This function sets the data characteristics for the device.

FT_STATUS FT_SetDataCharacteristics (FT_HANDLE ftHandle, UCHAR uWordLength, UCHAR
uStopBits,UCHAR uParity)

Parameters
ftHandle

Handle of the device.

uWordLength
Number of bits per word - must be FT_BITS_8 or FT_BITS_7.

uStopBits
Number of stop bits - must be FT_STOP_BITS_1 or FT_STOP_BITS_2.

UParity
FT_PARITY_NONE, FT_PARITY_ODD, FT_PARITY_EVEN, FT_PARITY_MARK, FT_PARITY_SPACE.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 13 of 64

FT_SetFlowControl
This function sets the flow control for the device.

FT_STATUS FT_SetFlowControl (FT_HANDLE ftHandle, USHORT usFlowControl, UCHAR uXon,UCHAR uXoff)

Parameters
ftHandle

Handle of the device.

usFlowControl
Must be one of FT_FLOW_NONE, FT_FLOW_RTS_CTS, FT_FLOW_DTR_DSR, FT_FLOW_XON_XOFF

uXon
Character used to signal XON. Only used if flow control is FT_FLOW_XON_XOFF.

uXoff
Character used to signal XOFF. Only used if flow control is FT_FLOW_XON_XOFF.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

FT_SetDTR
This function sets the Data Terminal Ready (DTR) control signal.

FT_STATUS FT_SetDTR (FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 14 of 64

Example
This sample shows how to set DTR.

FT_HANDLE ftHandle; // handle of an open device
FT_STATUS ftStatus;
ftStatus = FT_SetDTR(ftHandle);
if (ftStatus == FT_OK) {
 // FT_SetDTR OK
}
else {
 // FT_SetDTR failed
}

FT_ClrDTR
This function clears the Data Terminal Ready (DTR) control signal.

FT_STATUS FT_ClrDTR (FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Example
This sample shows how to clear DTR.

FT_HANDLE ftHandle; // handle of an open device
FT_STATUS ftStatus;
ftStatus = FT_ClrDTR(ftHandle);
if (ftStatus == FT_OK) {
 // FT_ClrDTR OK
}
else {
 // FT_ClrDTR failed
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 15 of 64

FT_SetRTS
This function sets the Request To Send (RTS) control signal.

FT_STATUS FT_SetRTS (FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Example
This sample shows how to set RTS.

FT_HANDLE ftHandle; // handle of an open device
FT_STATUS ftStatus;
ftStatus = FT_SetRTS(ftHandle);
if (ftStatus == FT_OK) {
 // FT_SetRTS OK
}
else {
 // FT_SetRTS failed
}

FT_ClrRTS
This function clears the Request To Send (RTS) control signal.

FT_STATUS FT_ClrRTS (FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 16 of 64

Example
This sample shows how to clear RTS.

FT_HANDLE ftHandle; // handle of an open device
FT_STATUS ftStatus;
ftStatus = FT_ClrRTS(ftHandle);
if (ftStatus == FT_OK) {
 // FT_ClrRTS OK
}
else {
 // FT_ClrRTS failed
}

FT_GetModemStatus
Gets the modem status from the device.

FT_STATUS FT_GetModemStatus (FT_HANDLE ftHandle, LPDWORD lpdwModemStatus)

Parameters
ftHandle

Handle of the device to read.

lpdwModemStatus
Pointer to a variable of type DWORD which receives the modem status from the device.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 17 of 64

FT_SetChars
This function sets the special characters for the device.

FT_STATUS FT_SetChars (FT_HANDLE ftHandle, UCHAR uEventCh, UCHAR uEventChEn, UCHAR uErrorCh,
UCHAR uErrorChEn)

Parameters
ftHandle

Handle of the device.

uEventCh
Event character.

uEventChEn
0 if event character is disabled, non-zero otherwise.

uErrorCh
Error character.

uErrorChEn
0 if error character is disabled, non-zero otherwise.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 18 of 64

FT_Purge
This function purges receive and transmit buffers in the device.

FT_STATUS FT_Purge (FT_HANDLE ftHandle, DWORD dwMask)

Parameters
ftHandle

Handle of the device.

dwMask
Any combination of FT_PURGE_RX and FT_PURGE_TX.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

FT_SetTimeouts
This function sets the read and write timeouts for the device.

FT_STATUS FT_SetTimeouts (FT_HANDLE ftHandle, DWORD dwReadTimeout, DWORD dwWriteTimeout)

Parameters
ftHandle

Handle of the device.

dwReadTimeout
Read timeout in milliseconds.

dwWriteTimeout
Write timeout in milliseconds.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 19 of 64

Example
This sample shows how to set a read timeout of 5 seconds and a write timeout of 1 second.

FT_HANDLE ftHandle; // handle of an open device
FT_STATUS ftStatus;
ftStatus = FT_SetTimeouts(ftHandle,5000,1000);
if (ftStatus == FT_OK) {
 // FT_SetTimeouts OK
}
else {
 // FT_SetTimeouts failed
}

FT_GetQueueStatus
Gets the number of characters in the receive queue.

FT_STATUS FT_GetQueueStatus (FT_HANDLE ftHandle, LPDWORD lpdwAmountInRxQueue)

Parameters
ftHandle

Handle of the device to read.

lpdwAmountInRxQueue
Pointer to a variable of type DWORD which receives the number of characters in the receive queue.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

FT_SetBreakOn
Sets the BREAK condition for the device.

FT_STATUS FT_SetBreakOn (FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 20 of 64

Example
This sample shows how to set the BREAK condition for the device.

FT_HANDLE ftHandle; // handle of an open device
FT_STATUS ftStatus;
ftStatus = FT_SetBreakOn(ftHandle);
if (ftStatus == FT_OK) {
 // FT_SetBreakOn OK
}
else {
 // FT_SetBreakOn failed
}

FT_SetBreakOff
Resets the BREAK condition for the device.

FT_STATUS FT_SetBreakOff (FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Example
This sample shows how to reset the BREAK condition for the device.

FT_HANDLE ftHandle; // handle of an open device
FT_STATUS ftStatus;
ftStatus = FT_SetBreakOff(ftHandle);
if (ftStatus == FT_OK) {
 // FT_SetBreakOff OK
}
else {
 // FT_SetBreakOff failed
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 21 of 64

FT_GetStatus
Gets the device status including number of characters in the receive queue, number of characters in the transmit
queue, and the current event status.

FT_STATUS FT_GetStatus (FT_HANDLE ftHandle, LPDWORD lpdwAmountInRxQueue, LPDWORD
lpdwAmountInTxQueue, LPDWORD lpdwEventStatus)

Parameters
ftHandle

Handle of the device to read.

lpdwAmountInRxQueue
Pointer to a variable of type DWORD which receives the number of characters in the receive queue.

lpdwAmountInTxQueue
Pointer to a variable of type DWORD which receives the number of characters in the transmit queue.

lpdwEventStatus
Pointer to a variable of type DWORD which receives the current state of the event status.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
For an example of how to use this function, see the sample code in FT_SetEventNotification.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 22 of 64

FT_SetEventNotification
Sets conditions for event notification.

FT_STATUS FT_SetEventNotification (FT_HANDLE ftHandle, DWORD dwEventMask, PVOID pvArg)

Parameters
ftHandle

Handle of the device.

dwEventMask
Conditions that cause the event to be set.

pvArg
Interpreted as a handle of an event

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
An application can use this function to setup conditions which allow a thread to block until one of the conditions is
met. Typically, an application will create an event, call this function, then block on the event. When the conditions
are met, the event is set, and the application thread unblocked.

dwEventMask is a bit-map that describes the events the application is interested in. pvArg is interpreted as the
handle of an event which has been created by the application. If one of the event conditions is met, the event is set.

If FT_EVENT_RXCHAR is set in dwEventMask, the event will be set when a character has been received by the
device. If FT_EVENT_MODEM_STATUS is set in dwEventMask, the event will be set when a change in the modem
signals has been detected by the device.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 23 of 64

Example
This example shows how to wait for a character to be received or a change in modem status.

First, create the event and call FT_SetEventNotification.

FT_HANDLE ftHandle; // handle of an open device
FT_STATUS ftStatus;

HANDLE hEvent;
DWORD EventMask;

hEvent = CreateEvent(
 NULL,
 false, // auto-reset event
 false, // non-signalled state
 “”
);

EventMask = FT_EVENT_RXCHAR | FT_EVENT_MODEM_STATUS;

ftStatus = FT_SetEventNotification(ftHandle,EventMask,hEvent);

Sometime later, block the application thread by waiting on the event, then when the event has occurred, determine
the condition that caused the event, and process it accordingly.

WaitForSingleObject(hEvent,INFINITE);

DWORD EventDWord;
DWORD RxBytes;
DWORD TxBytes;

FT_GetStatus(ftHandle,&RxBytes,&TxBytes,&EventDWord);

if (EventDWord & FT_EVENT_MODEM_STATUS) {

 // modem status event detected, so get current modem status

 FT_GetModemStatus(ftHandle,&Status);

 if (Status & 0x00000010) {
 // CTS is high
 }
 else {
 // CTS is low
 }

 if (Status & 0x00000020) {
 // DSR is high
 }
 else {
 // DSR is low
 }

}

if (RxBytes > 0) {
 // call FT_Read() to get received data from device
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 24 of 64

2. EEPROM Programming Interface Functions

EEPROM Programming Interface – Introduction
FTDI has included EEPROM programming support in the D2XX library, and this document describes that interface.

EEPROM Programming Interface – Overview
Functions are provided to program the EEPROM (FT_EE_Program), and read the EEPROM (FT_EE_Read).
Unused space in the EEPROM is called the User Area (EEUA), and functions are provided to access the EEUA. FT_
EE_UASize gets its size, FT_EE_UAWrite writes data into it, and FT_EE_UARead is used to read its contents.

EEPROM Programming Interface - Reference
The EEPROM programming interface functions are described in this section. Type definitions of the functional
parameters and return codes used in the D2XX EEPROM programming interface are contained in the Appendix.

FT_EE_Program
Program the EEPROM.

FT_STATUS FT_EE_Program (FT_HANDLE ftHandle, PFT_PROGRAM_DATA lpData)

Parameters
ftHandle

Handle of the device.
lpData

Pointer to structure of type FT_PROGRAM_DATA.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 25 of 64

Remarks
This function interprets the parameter pvArgs as a pointer to a struct of type FT_PROGRAM_DATA that contains the
data to write to the EEPROM. The data is written to EEPROM, then read back and verified.

If the SerialNumber field in FT_PROGRAM_DATA is NULL, or SerialNumber points to a NULL string, a serial number
based on the ManufacturerId and the current date and time will be generated.

If pvArgs is NULL, the device will be programmed with the default data
{ 0x0403, 0x6001, “FTDI”, “FT”, “USB HS Serial Converter”, “”, 44, 1, 0, 1,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 0 }

Example
FT_PROGRAM_DATA ftData = {
 0x0403,
 0x6001,
 “FTDI”,
 “FT”,
 “USB HS Serial Converter”,
 “FT000001”,
 44,
 1,
 0,
 1,
 FALSE,
 FALSE,
 FALSE,
 FALSE,
 FALSE,
 FALSE,
 0
 };

FT_HANDLE ftHandle;
FT_STATUS ftStatus = FT_Open(0,&ftHandle);
if (ftStatus == FT_OK) {
 ftStatus = FT_EE_Program(ftHandle,&ftData);
 if (ftStatus == FT_OK) {
 // FT_EE_Program OK!
 }
 else {
 // FT_EE_Program FAILED!
 }
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 26 of 64

FT_EE_Read
Read the contents of the EEPROM.

FT_STATUS FT_EE_Read (FT_HANDLE ftHandle, PFT_PROGRAM_DATA lpData)

Parameters
ftHandle

Handle of the device.
lpData

Pointer to struct of type FT_PROGRAM_DATA.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
This function interprets the parameter pvArgs as a pointer to a struct of type FT_PROGRAM_DATA that contains
storage for the data to be read from the EEPROM.

The function does not perform any checks on buffer sizes, so the buffers passed in the FT_PROGRAM_DATA
struct must be big enough to accommodate their respective strings (including null terminators). The sizes shown
in the following example are more than adequate and can be rounded down if necessary. The restriction is that the
Manufacturer string length plus the Description string length is less than or equal to 40 characters.

Example
FT_HANDLE ftHandle;
FT_STATUS ftStatus = FT_Open(0,&ftHandle);
if (ftStatus != FT_OK) {
 // FT_Open FAILED!
}

FT_PROGRAM_DATA ftData;
char ManufacturerBuf[32];
char ManufacturerIdBuf[16];
char DescriptionBuf[64];
char SerialNumberBuf[16];

ftData.Manufacturer = ManufacturerBuf;
ftData.ManufacturerId = ManufacturerIdBuf;
ftData.Description = DescriptionBuf;
ftData.SerialNumber = SerialNumberBuf;

ftStatus = FT_EE_Read(ftHandle,&ftData);
if (ftStatus == FT_OK) {
 // FT_EE_Read OK, data is available in ftData
}
else {
 // FT_EE_Read FAILED!
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 27 of 64

FT_EE_UARead
Read the contents of the EEUA.

FT_STATUS FT_EE_UARead (FT_HANDLE ftHandle, PUCHAR pucData, DWORD dwDataLen, LPDWORD
lpdwBytesRead)

Parameters
ftHandle

Handle of the device.

pucData
Pointer to a buffer that contains storage for data to be read.

dwDataLen
Size, in bytes, of buffer that contains storage for data to be read.

lpdwBytesRead
Pointer to a DWORD that receives the number of bytes read.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
This function interprets the parameter pucData as a pointer to an array of bytes of size dwDataLen that contains
storage for the data to be read from the EEUA. The actual number of bytes read is stored in the DWORD
referenced by lpdwBytesRead.
If dwDataLen is less than the size of the EEUA, then dwDataLen bytes are read into the buffer. Otherwise, the
whole of the EEUA is read into the buffer..

An application should check the function return value and lpdwBytesRead when FT_EE_UARead returns.

Example
FT_HANDLE ftHandle;
FT_STATUS ftStatus = FT_Open(0,&ftHandle);
if (ftStatus != FT_OK) {
 // FT_Open FAILED!
}

char Buffer[64];
DWORD BytesRead;

ftStatus = FT_EE_UARead(ftHandle,Buffer,64,&BytesRead);
if (ftStatus == FT_OK) {
 // FT_EE_UARead OK
 // User Area data stored in Buffer
 // Number of bytes read from EEUA stored in BytesRead
}
else {
 // FT_EE_UARead FAILED!
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 28 of 64

FT_EE_UAWrite
Write data into the EEUA.

FT_STATUS FT_EE_UAWrite (FT_HANDLE ftHandle, PUCHAR pucData, DWORD dwDataLen)

Parameters
ftHandle

Handle of the device.

pucData
Pointer to a buffer that contains the data to be written.

dwDataLen
Size, in bytes, of buffer that contains the data to be written.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
This function interprets the parameter lpData as a pointer to an array of bytes of size dwDataLen that contains the
data to be written to the EEUA. It is a programming error for dwDataLen to be greater than the size of the EEUA.

Example
FT_HANDLE ftHandle;
FT_STATUS ftStatus = FT_Open(0,&ftHandle);
if (ftStatus != FT_OK) {
 // FT_Open FAILED!
}

char *Buffer = “hello, world”;
ftStatus = FT_EE_UAWrite(ftHandle,Buffer,12);
if (ftStatus == FT_OK) {
 // FT_EE_UAWrite OK
 // User Area contains “hello, world”
}
else {
 // FT_EE_UAWrite FAILED!
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 29 of 64

FT_EE_UASize
Get size of EEUA.

FT_STATUS FT_EE_UASize (FT_HANDLE ftHandle, LPDWORD lpdwSize)

Parameters
ftHandle

Handle of the device.

lpdwSize
Pointer to a DWORD that receives the size, in bytes, of the EEUA.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Example
FT_HANDLE ftHandle;
FT_STATUS ftStatus = FT_Open(0,&ftHandle);
if (ftStatus != FT_OK) {
 // FT_Open FAILED!
}

DWORD EEUA_Size;

ftStatus = FT_EE_UASize(ftHandle,&EEUA_Size);
if (ftStatus == FT_OK) {
 // FT_EE_UASize OK
 // EEUA_Size contains the size, in bytes, of the EEUA
}
else {
 // FT_EE_UASize FAILED!
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 30 of 64

3. FT232BM & FT245BM Extended API Functions

Extended Programming Interface - Introduction
FT232BM is FTDI’s second generation USB UART IC. FT245BM is FTDI’s second generation USB FIFO IC. They
offer extra functionality, including programmable features, to their predecessors. The programmable features are
supported by extensions to the D2XX driver, and the programming interface is exposed by FTD2XX.DLL.

Extended Programming Interface - Overview
New features include a programmable receive buffer timeout and bit bang mode. The receive buffer timeout is
controlled via the latency timer functions FT_GetLatencyTimer and FT_SetLatencyTimer. Bit bang mode is
controlled via the functions FT_GetBitMode and FT_SetBitMode.

Before these functions can be accessed, the COM port must first be opened. The Win32API function, CreateFile,
returns a handle that is used by all functions in the programming interface to identify the port. After opening the port
successfully, the function FT_GetDeviceInfo can be used to get information about the device underlying the port, and
to confirm that the port is a virtual COM port.

Extended Programming Interface - Reference
The functions that comprise the FTD2XX programming interface are described in this section. See the Appendix for
definitions of data types used in the descriptions of the functions below.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 31 of 64

FT_GetLatencyTimer
Get the current value of the latency timer.

FT_STATUS FT_GetLatencyTimer (FT_HANDLE ftHandle, PUCHAR pucTimer)

Parameters
ftHandle

Handle of the device.

pucTimer
Pointer to unsigned char to store latency timer value.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
In the FT8U232AM and FT8U245AM devices, the receive buffer timeout that is used to flush remaining data from the
receive buffer was fixed at 16 ms. In the FT232BM, this timeout is programmable and can be set at 1 ms intervals
between 1ms and 255 ms. This allows the device to be better optimized for protocols requiring faster response
times from short data packets.

Example
HANDLE ftHandle; // valid handle returned from FT_W32_CreateFile
FT_STATUS ftStatus;
UCHAR LatencyTimer;
ftStatus = FT_GetLatencyTimer(ftHandle,&LatencyTimer);
if (ftStatus == FT_OK) {
 // LatencyTimer contains current value
}
else {
 // FT_GetLatencyTimer FAILED!
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 32 of 64

FT_SetLatencyTimer
Set the latency timer.

FT_STATUS FT_SetLatencyTimer (FT_HANDLE ftHandle, UCHAR ucTimer)

Parameters
ftHandle

Handle of the device.

ucTimer
Required value, in milliseconds, of latency timer. Valid range is 1 - 255.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
In the FT8U232AM and FT8U245AM devices, the receive buffer timeout that is used to flush remaining data from the
receive buffer was fixed at 16 ms. In the FT232BM, this timeout is programmable and can be set at 1 ms intervals
between 1ms and 255 ms. This allows the device to be better optimized for protocols requiring faster response
times from short data packets.

Example

HANDLE ftHandle; // valid handle returned from FT_W32_CreateFile
FT_STATUS ftStatus;
UCHAR LatencyTimer = 10;
ftStatus = FT_SetLatencyTimer(ftHandle,LatencyTimer);
if (ftStatus == FT_OK) {
 // LatencyTimer set to 10 milliseconds
}
else {
 // FT_SetLatencyTimer FAILED!
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 33 of 64

FT_GetBitMode
Get the current value of the bit mode.

FT_STATUS FT_GetBitMode (FT_HANDLE ftHandle, PUCHAR pucMode)

Parameters
ftHandle

Handle of the device.

pucTimer
Pointer to unsigned char to store bit mode value.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
For a description of Bit Bang Mode, see the specification “FT232BM USB UART (USB - Serial) I.C.”, DS232B
Version 1.0, FTDI Ltd. 2002.

Example
HANDLE ftHandle; // valid handle returned from FT_W32_CreateFile
UCHAR BitMode;
FT_STATUS ftStatus;
ftStatus = FT_GetBitMode(ftHandle,&BitMode);
if (ftStatus == FT_OK) {
 // BitMode contains current value
}
else {
 // FT_GetBitMode FAILED!
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 34 of 64

FT_SetBitMode
Set the value of the bit mode.

FT_STATUS FT_SetBitMode (FT_HANDLE ftHandle, UCHAR ucMask, UCHAR ucEnable)

Parameters
ftHandle

Handle of the device.

ucMask
Required value for bit mode mask.

ucEnable
Enable value, 0 = FALSE, 1 = TRUE.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
For a description of Bit Bang Mode, see the specification “FT232BM USB UART (USB - Serial) I.C.”, DS232B
Version 1.0, FTDI Ltd. 2002.

Example
HANDLE ftHandle; // valid handle returned from FT_W32_CreateFile
FT_STATUS ftStatus;
UCHAR Mask = 0xff;
UCHAR Enable = 1;
ftStatus = FT_SetBitMode(ftHandle,Mask,Enable);
if (ftStatus == FT_OK) {
 // 0xff written to device
}
else {
 // FT_SetBitMode FAILED!
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 35 of 64

FT_SetUSBParameters
Set the USB request transfer size.

FT_STATUS FT_SetUSBParameters (FT_HANDLE ftHandle, DWORD dwInTransferSize, DWORD
dwOutTransferSize)

Parameters
ftHandle

Handle of the device.

dwInTransferSize
Transfer size for USB IN request.

dwOutTransferSize
Transfer size for USB OUT request.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.

Remarks
Previously, USB request transfer sizes have been set at 4096 bytes and have not been configurable. This function
can be used to change the transfer sizes to better suit the application’s requirements.

Note that, at present, only dwInTransferSize is supported.

Example
HANDLE ftHandle; // valid handle returned from FT_W32_CreateFile
FT_STATUS ftStatus;
DWORD InTransferSize = 16384;
ftStatus = FT_SetUSBParameters(ftHandle,InTransferSize,0);
if (ftStatus == FT_OK)
; // In transfer size set to 16 Kbytes
else
; // FT_SetUSBParameters FAILED!

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 36 of 64

4. FT-Win32 API Function Calls

FT-Win32 Programming Interface - Introduction
The D2XX interface now incorporates functions based on Win32 API and Win32 COMM API calls. This facilitates the
porting of communications applications from VCP to D2XX.

FT-Win32 Programming Interface - Overview
Before the device can be accessed, it must first be opened. FT_W32_CreateFile returns a handle that is used by all
functions in the programming interface to identify the device. When the device has been opened successfully, I/O can
be performed using FT_W32_ReadFile and FT_W32_WriteFile. When operations are complete, the device is closed
using FT_W32_CloseHandle.

FT-Win32 Programming Interface - Reference
The functions that comprise the FTD2XX programming interface are described in this section. See the Appendix for
definitions of data types used in the descriptions of the functions below.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 37 of 64

FT_W32_CreateFile
Open the named device and return a handle that will be used for subsequent accesses. The device name can be its
serial number or device description.

FT_HANDLE FT_W32_CreateFile(LPCSTR lpszName, DWORD dwAccess, DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes, DWORD dwCreate, DWORD dwAttrsAndFlags, HANDLE
hTemplate)

Parameters
lpszName

Pointer to a null terminated string that contains the name of the device. The name of the device can be its serial
number or description as obtained from the FT_ListDevices function.

dwAccess
Type of access to the device. Access can be GENERIC_READ, GENERIC_WRITE, or both.

dwShareMode
How the device is shared. This value must be set to 0.

lpSecurityAttributes
This parameter has no effect and should be set to NULL.

dwCreate
This parameter must be set to OPEN_EXISTING.

dwAttrsAndFlags
File attributes and flags. This parameter is a combination of FILE_ATTRIBUTE_NORMAL, FILE_FLAG_
OVERLAPPED if overlapped I/O is used, FT_OPEN_BY_SERIAL_NUMBER if lpszName is the device’s serial
number, and FT_OPEN_BY_DESCRIPTION if lpszName is the device’s description.

hTemplate
This parameter must be NULL.

Return Value
If the function is successful, the return value is a handle.
If the function is unsuccessful, the return value is the Win32 error code INVALID_HANDLE_VALUE.

Remarks
This function must be used if overlapped I/O is required.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 38 of 64

Example
This example shows how a device can be opened for overlapped I/O using its serial number.

FT_STATUS ftStatus;
FT_HANDLE ftHandle;
char Buf[64];

ftStatus = FT_ListDevices(0,Buf,FT_LIST_BY_INDEX|FT_OPEN_BY_SERIAL_NUMBER);

ftHandle = FT_W32_CreateFile(Buf,GENERIC_READ|GENERIC_WRITE,0,0,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED |
 FT_OPEN_BY_SERIAL_NUMBER,
 0);

if (ftHandle == INVALID_HANDLE_VALUE)
 ; // FT_W32_CreateDevice failed

This example shows how a device can be opened for non-overlapped I/O using its description.

FT_STATUS ftStatus;
FT_HANDLE ftHandle;
char Buf[64];

ftStatus = FT_ListDevices(0,Buf,FT_LIST_BY_INDEX|FT_OPEN_BY_DESCRIPTION);

ftHandle = FT_W32_CreateFile(Buf,GENERIC_READ|GENERIC_WRITE,0,0,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL | FT_OPEN_BY_DESCRIPTION,
 0);

if (ftHandle == INVALID_HANDLE_VALUE)
 ; // FT_W32_CreateDevice failed

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 39 of 64

FT_W32_CloseHandle
Close the specified device.

BOOL FT_W32_CloseHandle (FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Example
This example shows how to close a device after opening it for non-overlapped I/O using its description.

FT_STATUS ftStatus;
FT_HANDLE ftHandle;
char Buf[64];

ftStatus = FT_ListDevices(0,Buf,FT_LIST_BY_INDEX|FT_OPEN_BY_DESCRIPTION);

ftHandle = FT_W32_CreateFile(Buf,GENERIC_READ|GENERIC_WRITE,0,0,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL | FT_OPEN_BY_DESCRIPTION,
 0);

if (ftHandle == INVALID_HANDLE_VALUE)
; // FT_W32_CreateDevice failed
else {
 // FT_W32_CreateFile OK, so do some work, and eventually ...
 FT_W32_CloseHandle(ftHandle);
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 40 of 64

FT_W32_ReadFile
Read data from the device.

BOOL FT_W32_ReadFile (FT_HANDLE ftHandle, LPVOID lpBuffer, DWORD dwBytesToRead, LPDWORD
lpdwBytesReturned, LPOVERLAPPED lpOverlapped)

Parameters
ftHandle

Handle of the device.

lpBuffer
Pointer to a buffer that receives the data from the device.

dwBytesToRead
Number of bytes to be read from the device.

lpdwBytesReturned
Pointer to a variable that receives the number of bytes read from the device.

LpOverlapped
Pointer to an overlapped structure.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Remarks
This function supports both non-overlapped and overlapped I/O.

Non-overlapped I/O

The parameter, lpOverlapped, must be NULL for non-overlapped I/O.

This function always returns the number of bytes read in lpdwBytesReturned.

This function does not return until dwBytesToRead have been read into the buffer. The number of bytes in
the receive queue can be determined by calling FT_GetStatus or FT_GetQueueStatus, and passed as
dwBytesToRead so that the function reads the device and returns immediately.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 41 of 64

When a read timeout has been setup in a previous call to FT_W32_SetCommTimeouts, this function returns when
the timer expires or dwBytesToRead have been read, whichever occurs first. If a timeout occurred, any available
data is read into lpBuffer and the function returns a non-zero value.

An application should use the function return value and lpdwBytesReturned when processing the buffer. If the return
value is non-zero and lpdwBytesReturned is equal to dwBytesToRead then the function has completed normally. If
the return value is non-zero and lpdwBytesReturned is less then dwBytesToRead then a timeout has occurred, and
the read request has been partially completed. Note that if a timeout occurred and no data was read, the return
value is still non-zero.

A return value of FT_IO_ERROR suggests an error in the parameters of the function, or a fatal error like USB
disconnect has occurred.

Overlapped I/O

When the device has been opened for overlapped I/O, an application can issue a request and perform some
additional work while the request is pending. This contrasts with the case of non-overlapped I/O in which the
application issues a request and receives control again only after the request has been completed.

The parameter, lpOverlapped, must point to an initialized OVERLAPPED structure.

If there is enough data in the receive queue to satisfy the request, the request completes immediately and the return
code is non-zero. The number of bytes read is returned in lpdwBytesReturned.

If there is not enough data in the receive queue to satisfy the request, the request completes immediately, and the
return code is zero, signifying an error. An application should call FT_W32_GetLastError to get the cause of the
error. If the error code is ERROR_IO_PENDING, the overlapped operation is still in progress, and the application
can perform other processing. Eventually, the application checks the result of the overlapped request by calling
FT_W32_GetOverlappedResult.

If successful, the number of bytes read is returned in lpdwBytesReturned.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 42 of 64

Example
This example shows how to read 256 bytes from the device using non-overlapped I/O.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile for non-overlapped i/o
char Buf[256];
DWORD dwToRead = 256;
DWORD dwRead;

if (FT_W32_ReadFile(ftHandle, Buf, dwToRead, &dwRead, &osWrite)) {
 if (dwToRead == dwRead)
 ; // FT_W32_ReadFile OK
 else
 ; // FT_W32_ReadFile timeout
}
else
 ; // FT_W32_ReadFile failed

This example shows how to read 256 bytes from the device using overlapped I/O.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile for overlapped i/o
char Buf[256];
DWORD dwToRead = 256;
DWORD dwRead;
OVERLAPPED osRead = { 0 };

if (!FT_W32_ReadFile(ftHandle, Buf, dwToRead, &dwRead, &osWrite)) {
 if (FT_W32_GetLastError(ftHandle) == ERROR_IO_PENDING) {
 // write is delayed so do some other stuff until ...
 if (!FT_W32_GetOverlappedResult(ftHandle, &osRead, &dwRead, FALSE))
 ; // error
 else {
 if (dwToRead == dwRead)
 ; // FT_W32_ReadFile OK
 else
 ; // FT_W32_ReadFile timeout
 }
 }
}
else {
 // FT_W32_ReadFile OK
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 43 of 64

FT_W32_WriteFile
Write data to the device.

BOOL FT_W32_WriteFile (FT_HANDLE ftHandle, LPVOID lpBuffer, DWORD dwBytesToWrite, LPDWORD
lpdwBytesWritten, LPOVERLAPPED lpOverlapped)

Parameters
ftHandle

Handle of the device.

lpBuffer
Pointer to the buffer that contains the data to write to the device.

dwBytesToWrite
Number of bytes to be written to the device.

lpdwBytesWritten
Pointer to a variable that receives the number of bytes written to the device.

lpOverlapped
Pointer to an overlapped structure.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Remarks
This function supports both non-overlapped and overlapped I/O.

Non-overlapped I/O

The parameter, lpOverlapped, must be NULL for non-overlapped I/O.

This function always returns the number of bytes written in lpdwBytesWritten.

This function does not return until dwBytesToWrite have been written to the device.

When a write timeout has been setup in a previous call to FT_W32_SetCommTimeouts, this function returns
when the timer expires or dwBytesToWrite have been written, whichever occurs first. If a timeout occurred,
lpdwBytesWritten contains the number of bytes actually written, and the function returns a non-zero value.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 44 of 64

An application should always use the function return value and lpdwBytesWritten. If the return value is non-zero and
lpdwBytesWritten is equal to dwBytesToWrite then the function has completed normally. If the return value is non-
zero and lpdwBytesWritten is less then dwBytesToWrite then a timeout has occurred, and the write request has been
partially completed. Note that if a timeout occurred and no data was written, the return value is still non-zero.

Overlapped I/O

When the device has been opened for overlapped I/O, an application can issue a request and perform some
additional work while the request is pending. This contrasts with the case of non-overlapped I/O in which the
application issues a request and receives control again only after the request has been completed.

The parameter, lpOverlapped, must point to an initialized OVERLAPPED structure.

This function completes immediately, and the return code is zero, signifying an error. An application should call
FT_W32_GetLastError to get the cause of the error. If the error code is ERROR_IO_PENDING, the overlapped
operation is still in progress, and the application can perform other processing. Eventually, the application checks
the result of the overlapped request by calling FT_W32_GetOverlappedResult.

If successful, the number of bytes written is returned in lpdwBytesWritten.

Example
This example shows how to write 128 bytes to the device using non-overlapped I/O.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile for overlapped i/o
char Buf[128]; // contains data to write to the device
DWORD dwToWrite = 128;
DWORD dwWritten;

if (FT_W32_WriteFile(ftHandle, Buf, dwToWrite, &dwWritten, &osWrite)) {
 if (dwToWrite == dwWritten)
 ; // FT_W32_WriteFile OK
 else
 ; // FT_W32_WriteFile timeout
}
else
 ; // FT_W32_WriteFile failed

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 45 of 64

This example shows how to write 128 bytes to the device using overlapped I/O.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile for overlapped i/o
char Buf[128]; // contains data to write to the device
DWORD dwToWrite = 128;
DWORD dwWritten;
OVERLAPPED osWrite = { 0 };

if (!FT_W32_WriteFile(ftHandle, Buf, dwToWrite, &dwWritten, &osWrite)) {
 if (FT_W32_GetLastError(ftHandle) == ERROR_IO_PENDING) {
 // write is delayed so do some other stuff until ...
 if (!FT_W32_GetOverlappedResult(ftHandle, &osWrite, &dwWritten, FALSE))
 ; // error
 else {
 if (dwToWrite == dwWritten)
 ; // FT_W32_WriteFile OK
 else
 ; // FT_W32_WriteFile timeout
 }
 }
}
else {
 // FT_W32_WriteFIle OK
}

FT_W32_GetLastError
Gets the last error that occurred on the device.

BOOL FT_W32_GetLastError (FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Remarks
This function is normally used with overlapped I/O. For a description of its use, see FT_W32_ReadFile and FT_
W32_WriteFile..

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 46 of 64

FT_W32_GetOverlappedResult
Gets the result of an overlapped operation.

BOOL FT_W32_GetOverlappedResult (FT_HANDLE ftHandle, LPOVERLAPPED lpOverlapped, LPDWORD
lpdwBytesTransferred, BOOL bWait)

Parameters
ftHandle

Handle of the device.

lpOverlapped
Pointer to an overlapped structure.

lpdwBytesTransferred
Pointer to a variable that receives the number of bytes transferred during the overlapped operation.

bWait
Set to TRUE if the function does not return until the operation has been completed.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Remarks
This function is used with overlapped I/O. For a description of its use, see
FT_W32_ReadFile and FT_W32_WriteFile.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 47 of 64

FT_W32_ClearCommBreak
Puts the communications line in the non-BREAK state.

BOOL FT_W32_ClearCommBreak(FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Example
This example shows how put the line in the non-BREAK state.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile

if (!FT_W32_ClearCommBreak(ftHandle))
 ; // FT_W32_ClearCommBreak failed
else
 ; // FT_W32_ClearCommBreak OK

FT_W32_ClearCommError
Gets information about a communications error and get current status of the device.

BOOL FT_W32_ClearCommError(FT_HANDLE ftHandle,LPDWORD lpdwErrors, LPFTCOMSTAT lpftComstat)

Parameters
ftHandle

Handle of the device.

lpdwErrors
Variable that contains the error mask.

lpftComstat
Pointer to COMSTAT structure.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 48 of 64

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Example
This example shows how to use this function.

static COMSTAT oldCS = {0};
static DWORD dwOldErrors = 0;

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile
COMSTAT newCS;
DWORD dwErrors;
BOOL bChanged = FALSE;

if (!FT_W32_ClearCommError(ftHandle, &dwErrors, (FTCOMSTAT *)&newCS))
 ; // FT_W32_ClearCommError failed

if (dwErrors != dwOldErrors) {
 bChanged = TRUE;
 dwErrorsOld = dwErrors;
}

if (memcmp(&oldCS, &newCS, sizeof(FTCOMSTAT))) {
 bChanged = TRUE;
 oldCS = newCS;
}

if (bChanged) {

 if (dwErrors & CE_BREAK)
 ; // BREAK condition detected
 if (dwErrors & CE_FRAME)
 ; // Framing error detected
 if (dwErrors & CE_RXOVER)
 ; // Receive buffer has overflowed
 if (dwErrors & CE_TXFULL)
 ; // Transmit buffer full
 if (dwErrors & CE_OVERRUN)
 ; // Character buffer overrun
 if (dwErrors & CE_RXPARITY)
 ; // Parity error detected

 if (newCS.fCtsHold)
 ; // Transmitter waiting for CTS
 if (newCS.fDsrHold)
 ; // Transmitter is waiting for DSR
 if (newCS.fRlsdHold)
 ; // Transmitter is waiting for RLSD
 if (newCS.fXoffHold)
 ; // Transmitter is waiting because XOFF was received
 if (newCS.fXoffSent)
 ; //
 if (newCS.fEof)
 ; // End of file character has been received
 if (newCS.fTxim)
 ; // Tx immediate character queued for transmission

 // newCS.cbInQue contains number of bytes in receive queue
 // newCS.cbOutQue contains number of bytes in transmit queue

}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 49 of 64

FT_W32_EscapeCommFunction
Perform an extended function.

BOOL FT_W32_EscapeCommFunction(FT_HANDLE ftHandle,DWORD dwFunc)

Parameters
ftHandle

Handle of the device.

dwFunc
The extended function to perform can be one of the following values.

CLRDTR Clear the DTR signal
CLRRTS Clear the RTS signal
SETDTR Set the DTR signal
SETRTS Set the RTS signal
SETBREAK Set the BREAK condition
CLRBREAK Clear the BREAK condition

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Example
This example shows how to use this function.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile

FT_W32_EscapeCommFunction(ftHandle,CLRDTS);
FT_W32_EscapeCommFunction(ftHandle,SETRTS);

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 50 of 64

FT_W32_GetCommModemStatus
This function gets the current modem control value.

BOOL FT_W32_GetCommModemStatus(FT_HANDLE ftHandle,LPDWORD lpdwStat)

Parameters
ftHandle

Handle of the device.

lpdwStat
Pointer to a variable to contain modem control value. The modem control value can be a combination of the
following.

MS_CTS_ON Clear to Send (CTS) is on
MS_DSR_ON Data Set Ready (DSR) is on
MS_RING_ON Ring Indicator (RI) is on
MS_RLSD_ON Receive Line Signal Detect (RLSD) is on

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Example
This example shows how to use this function.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile
DWORD dwStatus;

if (FT_W32_GetCommModemStatus(ftHandle,&dwStatus)) {
 // FT_W32_GetCommModemStatus ok
 if (dwStatus & MS_CTS_ON)
 ; // CTS is on
 if (dwStatus & MS_DSR_ON)
 ; // DSR is on
 if (dwStatus & MS_RI_ON)
 ; // RI is on
 if (dwStatus & MS_RLSD_ON)
 ; // RLSD is on
}
else
 ; // FT_W32_GetCommModemStatus failed

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 51 of 64

FT_W32_GetCommState
This function gets the current device state.

BOOL FT_W32_GetCommState(FT_HANDLE ftHandle, LPFTDCB lpftDcb)

Parameters
ftHandle

Handle of the device.

lpftDcb
Pointer to a device control block.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Remarks
The current state of the device is returned in a device control block.

Example
This example shows how to use this function.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile
FTDCB ftDCB;

if (FT_W32_GetCommState(ftHandle,&ftDCB))
 ; // FT_W32_GetCommState ok, device state is in ftDCB
else
 ; // FT_W32_GetCommState failed

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 52 of 64

FT_W32_GetCommTimeouts
This function gets the current read and write request timeout parameters for the specified device.

BOOL FT_W32_GetCommTimeouts(FT_HANDLE ftHandle,LPFTTIMEOUTS lpftTimeouts)

Parameters
ftHandle

Handle of the device.

lpftTimeouts
Pointer to a COMMTIMEOUTS structure to store timeout information.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Remarks
For an explanation of how timeouts are used, see FT_W32_SetCommTimeouts.

Example
This example shows how to retrieve the current timeout values.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile
FTTIMEOUTS ftTS;

if (FT_W32_GetCommTimeouts(ftHandle,&ftTS))
 ; // FT_W32_GetCommTimeouts OK
else
 ; // FT_W32_GetCommTimeouts failed

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 53 of 64

FT_W32_PurgeComm
This function purges the device.

BOOL FT_W32_PurgeComm(FT_HANDLE ftHandle,DWORD dwFlags)

Parameters
ftHandle

Handle of the device.

dwFlags
Specifies the action to take. The action can be a combination of the following.

PURGE_TXABORT Terminate outstanding overlapped writes.
PURGE_RXABORT Terminate outstanding overlapped reads.
PURGE_TXCLEAR Clear the transmit buffer.
PURGE_RXCLEAR Clear the receive buffer.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Example
This example shows how to purge the receive and transmit queues.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile

if (FT_W32_PurgeComm(ftHandle,PURGE_TXCLEAR|PURGE_RXCLEAR))
 ; // FT_W32_PurgeComm OK
else
 ; // FT_W32_PurgeComm failed

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 54 of 64

FT_W32_SetCommBreak
Puts the communications line in the BREAK state.

BOOL FT_W32_SetCommBreak(FT_HANDLE ftHandle)

Parameters
ftHandle

Handle of the device.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Example

This example shows how put the line in the BREAK state.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile

if (!FT_W32_SetCommBreak(ftHandle))
 ; // FT_W32_SetCommBreak failed
else
 ; // FT_W32_SetCommBreak OK

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 55 of 64

FT_W32_SetCommMask
This function specifies events that the device has to monitor.

BOOL FT_W32_SetCommMask(FT_HANDLE ftHandle,DWORD dwMask)

Parameters
ftHandle

Handle of the device.

dwMask
Mask containing events that the device has to monitor. This can be a combination of the following.

EV_BREAK BREAK condition detected
EV_CTS Change in Clear to Send (CTS)
EV_DSR Change in Data Set Ready (DSR)
EV_ERR Error in line status
EV_RING Ring Indicator (RI) detected
EV_RLSD Change in Receive Line Signal Detect (RLSD)
EV_RXCHAR Character received
EV_RXFLAG Event character received
EV_TXEMPTY Transmitter empty

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Remarks
This function specifies the events that the device should monitor. An application can call the function FT_W32_
WaitCommEvent to wait for an event to occur.

Example
This example shows how to monitor changes in the modem status lines DSR and CTS.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile
DWORD dwMask = EV_CTS | EV_DSR;

if (!FT_W32_SetCommMAsk(ftHandle,dwMask))
 ; // FT_W32_SetCommMask failed
else
 ; // FT_W32_SetCommMask OK

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 56 of 64

FT_W32_SetCommState
This function sets the state of the device according to the contents of a device control block (DCB).

BOOL FT_W32_SetCommState(FT_HANDLE ftHandle, LPFTDCB lpftDcb)

Parameters
ftHandle

Handle of the device.

lpftDcb
Pointer to a device control block.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Example
This example shows how to use this function to change the baud rate.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile
FTDCB ftDCB;

if (FT_W32_GetCommState(ftHandle,&ftDCB)) {
 // FT_W32_GetCommState ok, device state is in ftDCB
 ftDCB.BaudRate = 921600;
 if (FT_W32_SetCommState(ftHandle,&ftDCB))
 ; // FT_W32_SetCommState ok
 else
 ; // FT_W32_SetCommState failed
}
else
 ; // FT_W32_GetCommState failed

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 57 of 64

FT_W32_SetCommTimeouts
This function sets the timeout parameters for I/O requests.

BOOL FT_W32_SetCommTimeouts(FT_HANDLE ftHandle,LPFTTIMEOUTS lpftTimeouts)

Parameters
ftHandle

Handle of the device.

lpftTimeouts
Pointer to a COMMTIMEOUTS structure that contains timeout information.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Remarks
Timeouts are calculated using the information in the FTTIMEOUTS structure.

For read requests, the number of bytes to be read is multiplied by the total timeout multiplier, and added to the total
timeout constant. So, if TS is an FTTIMEOUTS structure and the number of bytes to read is dwToRead, the read
timeout, rdTO, is calculated as follows.

rdTO = (dwToRead * TS.ReadTotalTimeoutMultiplier) + TS.ReadTotalTimeoutConstant

For write requests, the number of bytes to be written is multiplied by the total timeout multiplier, and added to the
total timeout constant. So, if TS is an FTTIMEOUTS structure and the number of bytes to write is dwToWrite, the
write timeout, wrTO, is calculated as follows.

wrTO = (dwToWrite * TS.WriteTotalTimeoutMultiplier) + TS.WriteTotalTimeoutConstant

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 58 of 64

Example
This example shows how to setup a read timeout of 100 milliseconds and a write timeout of 200 milliseconds.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile
FTTIMEOUTS ftTS;

ftTS.ReadIntervalTimeout = 0;
ftTS.ReadTotalTimeoutMultiplier = 0;
ftTS.ReadTotalTimeoutConstant = 100;
ftTS.WriteTotalTimeoutMultiplier = 0;
ftTS.WriteTotalTimeoutConstant = 200;

if (FT_W32_SetCommTimeouts(ftHandle,&ftTS))
 ; // FT_W32_SetCommTimeouts OK
else
 ; // FT_W32_SetCommTimeouts failed

FT_W32_SetupComm
This function sets the read and write buffers.

BOOL FT_W32_SetupComm(FT_HANDLE ftHandle,DWORD dwReadBufferSize, DWORD dwWriteBufferSize)

Parameters
ftHandle

Handle of the device.

dwReadBufferSize
Length, in bytes, of the read buffer.

dwWriteBufferSize
Length, in bytes, of the write buffer.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Remarks
This function has no effect. It is the responsibility of the driver to allocate sufficient storage for I/O requests.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 59 of 64

FT_W32_WaitCommEvent
This function waits for an event to occur.

BOOL FT_W32_WaitCommEvent(FT_HANDLE ftHandle,LPDWORD lpdwEvent, LPOVERLAPPED lpOverlapped)

Parameters
ftHandle

Handle of the device.

lpdwEvent
Pointer to a location that receives a mask that contains the events that occurred.

lpOverlapped
Pointer to an OVERLAPPED structure.

Return Value
If the function is successful, the return value is nonzero.
If the function is unsuccessful, the return value is zero.

Remarks
This function supports both non-overlapped and overlapped I/O.

Non-overlapped I/O

The parameter, lpOverlapped, must be NULL for non-overlapped I/O.

This function does not return until an event that has been specified in a call to
FT_W32_SetCommMask has occurred. The events that occurred and resulted in this function returning are stored
in lpdwEvent.

Overlapped I/O

When the device has been opened for overlapped I/O, an application can issue a request and perform some
additional work while the request is pending. This contrasts with the case of non-overlapped I/O in which the
application issues a request and receives control again only after the request has been completed.

The parameter, lpOverlapped, must point to an initialized OVERLAPPED structure.

This function does not return until an event that has been specified in a call to
FT_W32_SetCommMask has occurred.

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 60 of 64

If an event has already occurred, the request completes immediately, and the return code is non-zero. The events
that occurred are stored in lpdwEvent.

If an event has not yet occurred, the request completes immediately, and the return code is zero, signifying an
error. An application should call FT_W32_GetLastError to get the cause of the error. If the error code is ERROR_
IO_PENDING, the overlapped operation is still in progress, and the application can perform other processing.
Eventually, the application checks the result of the overlapped request by calling
FT_W32_GetOverlappedResult. The events that occurred and resulted in this function returning are stored in
lpdwEvent.

Example
This example shows how to write 128 bytes to the device using non-overlapped I/O.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile for non-overlapped i/o
DWORD dwEvents;

if (FT_W32_WaitCommEvent(ftHandle, &dwEvents, NULL))
 ; // FT_W32_WaitCommEvents OK
else
 ; // FT_W32_WaitCommEvents failed

This example shows how to write 128 bytes to the device using overlapped I/O.

FT_HANDLE ftHandle; // setup by FT_W32_CreateFile for overlapped i/o
DWORD dwEvents;
DWORD dwRes;
OVERLAPPED osWait = { 0 };

if (!FT_W32_WaitCommEvent(ftHandle, &dwEvents, &osWait)) {
 if (FT_W32_GetLastError(ftHandle == ERROR_IO_PENDING) {
 // wait is delayed so do some other stuff until ...
 if (!FT_W32_GetOverlappedResult(ftHandle, &osWait, &dwRes, FALSE))
 ; // error
 else
 ; // FT_W32_WaitCommEvent OK
 // Events that occurred are stored in dwEvents
 }
}
else {
 // FT_W32_WaitCommEvent OK
 // Events that occurred are stored in dwEvents
}

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 61 of 64

Appendix

Type Definitions
Excerpts from the header file FTD2XX.H are included in this Appendix to explain any references in the descriptions of
the functions in this document.

For Visual C++ applications, these values are pre-declared in the header file, FTD2XX.H, which is included in the
driver release. For other languages, these definitions will have to be converted to use equivalent types, and may have
to be defined in an include file or within the body of the code. For non-VC++ applications check the application code
examples on the FTDI web site as a translation of these may already exist.

UCHAR unsigned char (1 byte)
PUCHAR Pointer to unsigned char (4 bytes)
PCHAR Pointer to char (4 bytes)
DWORD unsigned long (4 bytes)
FT_HANDLE DWORD

FT_STATUS (DWORD)
FT_OK = 0
FT_INVALID_HANDLE = 1
FT_DEVICE_NOT_FOUND = 2
FT_DEVICE_NOT_OPENED = 3
FT_IO_ERROR = 4
FT_INSUFFICIENT_RESOURCES = 5
FT_INVALID_PARAMETER = 6
FT_INVALID_BAUD_RATE = 7
FT_DEVICE_NOT_OPENED_FOR_ERASE = 8
FT_DEVICE_NOT_OPENED_FOR_WRITE = 9
FT_FAILED_TO_WRITE_DEVICE = 10
FT_EEPROM_READ_FAILED = 11
FT_EEPROM_WRITE_FAILED = 12
FT_EEPROM_ERASE_FAILED = 13
FT_EEPROM_NOT_PRESENT = 14
FT_EEPROM_NOT_PROGRAMMED = 15
FT_INVALID_ARGS = 16
FT_OTHER_ERROR = 17

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 62 of 64

Flags (see FT_OpenEx)
FT_OPEN_BY_SERIAL_NUMBER = 1
FT_OPEN_BY_DESCRIPTION = 2

Flags (see FT_ListDevices)
FT_LIST_NUMBER_ONLY = 0x80000000
FT_LIST_BY_INDEX = 0x40000000
FT_LIST_ALL = 0x20000000

FT_DEVICE DWORD
FT_DEVICE_232BM = 0
FT_DEVICE_232AM = 1
FT_DEVICE_100AX = 2
FT_DEVICE_UNKNOWN = 3

Word Length (see FT_SetDataCharacteristics)
FT_BITS_8 = 8
FT_BITS_7 = 7

Stop Bits (see FT_SetDataCharacteristics)
FT_STOP_BITS_1 = 0
FT_STOP_BITS_2 = 2

Parity (see FT_SetDataCharacteristics)
FT_PARITY_NONE = 0
FT_PARITY_ODD = 1
FT_PARITY_EVEN = 2
FT_PARITY_MARK = 3
FT_PARITY_SPACE = 4

Flow Control (see FT_SetFlowControl)
FT_FLOW_NONE = 0x0000
FT_FLOW_RTS_CTS = 0x0100
FT_FLOW_DTR_DSR = 0x0200
FT_FLOW_XON_XOFF = 0x0400

Purge RX and TX buffers (see FT_Purge)
FT_PURGE_RX = 1
FT_PURGE_TX = 2

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 63 of 64

Notification Events (see FT_SetEventNotification)
FT_EVENT_RXCHAR = 1
FT_EVENT_MODEM_STATUS = 2

FT_PROGRAM_DATA (EEPROM Programming Interface)

typedef struct ft_program_data {
 WORD VendorId; // 0x0403
 WORD ProductId; // 0x6001
 char *Manufacturer; // “FTDI”
 char *ManufacturerId; // “FT”
 char *Description; // “USB HS Serial Converter”
 char *SerialNumber; // “FT000001” if fixed, or NULL
 WORD MaxPower; // 0 < MaxPower <= 500
 WORD PnP; // 0 = disabled, 1 = enabled
 WORD SelfPowered; // 0 = bus powered, 1 = self powered
 WORD RemoteWakeup; // 0 = not capable, 1 = capable
 //
 // Rev4 extensions
 //
 bool Rev4; // true if Rev4 chip, false otherwise
 bool IsoIn; // true if in endpoint is isochronous
 bool IsoOut; // true if out endpoint is isochronous
 bool PullDownEnable; // true if pull down enabled
 bool SerNumEnable; // true if serial number to be used
 bool USBVersionEnable; // true if chip uses USBVersion
 WORD USBVersion; // BCD (0x0200 => USB2)
} FT_PROGRAM_DATA, *PFT_PROGRAM_DATA;

FTCOMSTAT (FT-Win32 Programming Interface)
typedef struct _FTCOMSTAT {
 DWORD fCtsHold : 1;
 DWORD fDsrHold : 1;
 DWORD fRlsdHold : 1;
 DWORD fXoffHold : 1;
 DWORD fXoffSent : 1;
 DWORD fEof : 1;
 DWORD fTxim : 1;
 DWORD fReserved : 25;
 DWORD cbInQue;
 DWORD cbOutQue;
} FTCOMSTAT, *LPFTCOMSTAT;

D2XX Programmer’s Guide 2.01

D2XXPG Version 2.01 Copyright © Future Technology Devices Intl. Ltd. 2002 Page 64 of 64

FTDCB (FT-Win32 Programming Interface)
typedef struct _FTDCB {
 DWORD DCBlength; // sizeof(FTDCB)
 DWORD BaudRate; // Baudrate at which running
 DWORD fBinary: 1; // Binary Mode (skip EOF check)
 DWORD fParity: 1; // Enable parity checking
 DWORD fOutxCtsFlow:1; // CTS handshaking on output
 DWORD fOutxDsrFlow:1; // DSR handshaking on output
 DWORD fDtrControl:2; // DTR Flow control
 DWORD fDsrSensitivity:1; // DSR Sensitivity
 DWORD fTXContinueOnXoff: 1; // Continue TX when Xoff sent
 DWORD fOutX: 1; // Enable output X-ON/X-OFF
 DWORD fInX: 1; // Enable input X-ON/X-OFF
 DWORD fErrorChar: 1; // Enable Err Replacement
 DWORD fNull: 1; // Enable Null stripping
 DWORD fRtsControl:2; // Rts Flow control
 DWORD fAbortOnError:1; // Abort all reads and writes on Error
 DWORD fDummy2:17; // Reserved
 WORD wReserved; // Not currently used
 WORD XonLim; // Transmit X-ON threshold
 WORD XoffLim; // Transmit X-OFF threshold
 BYTE ByteSize; // Number of bits/byte, 7-8
 BYTE Parity; // 0-4=None,Odd,Even,Mark,Space
 BYTE StopBits; // 0,2 = 1, 2
 char XonChar; // Tx and Rx X-ON character
 char XoffChar; // Tx and Rx X-OFF character
 char ErrorChar; // Error replacement char
 char EofChar; // End of Input character
 char EvtChar; // Received Event character
 WORD wReserved1; // Fill
} FTDCB, *LPFTDCB;

FTTIMEOUTS (FT-Win32 Programming Interface)
typedef struct _FTTIMEOUTS {
 DWORD ReadIntervalTimeout; // Maximum time between read chars
 DWORD ReadTotalTimeoutMultiplier; // Multiplier of characters
 DWORD ReadTotalTimeoutConstant; // Constant in milliseconds
 DWORD WriteTotalTimeoutMultiplier; // Multiplier of characters
 DWORD WriteTotalTimeoutConstant; // Constant in milliseconds
} FTTIMEOUTS, *LPFTTIMEOUTS;

