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Designing Narrow-Bandwidth Ladder Filters 
Wes Hayward, w7zoi,   April 7, 2019. 

Abstract:   The performance of radio equipment depends upon the filters included in the radio.  Especially 
critical are the narrow width bandpass circuits.   This note summarizes the design methods for filters using 
either LC or quartz crystal resonators.   Series and parallel LC circuits are included, as are the crystal LSB 
and USB ladders.  The filter designs are then illustrated with computer simulations.   

A personal aside:   I’ve spent a lot of time and effort in recent years with LC bandpass filters and 
lower sideband (LSB) ladder crystal filters.   I’ve not really considered the upper sideband ladder.    
My goal was to examine this circuit, beginning with the classic paper by Dishal.   Rather than 
merely presenting this work, it seemed to make sense to generalize and to compare and contrast 
the upper and lower sideband ladders.    Some of the simulations illustrate the way coupling and 
loading might be determined. 

My approach to crystal filter design has used a perturbation approach wherein the crystal is 
approximated by a LC resonator.  The general discussion includes the design of the LC filters as 
well as LSB crystal filters with the perturbation scheme.   Some approximations may be used in 
the filter designs and are always described.    However, the analysis, or simulations use no 
approximations.  They are exact, within the constraints of the simple linear models. 

None of the work presented here is new.   Rather, the note is merely presented as a collected 
illustration of some of the methods I’ve found useful. 

Some basic filter characteristics and terms. 

What is the meaning of narrow in RF filters?    A 1 or 2% bandwidth LC filter might be narrow.  A 200 Hz 
wide crystal filter with .004% bandwidth might also be “narrow.”   Hence, a meaningful definition for 
narrow must include the resonators used to build the filters.   A resonator is characterized by an unloaded 
Q, specified as Qu.   A bandwidth Bmin is related to Qu,    Bmin=f/Qu where f is the resonant frequency.    Bmin  
and f have the same units.   It is impossible to build a single resonator passive filter that is narrower than 
Bmin.  Filters with more than one resonator are further restricted.   An estimated filter minimum will be 
2Bmin for a circuit with 2 resonators.   Hence, LC resonators with Qu of 250 at 5 MHz could be used to 
build a double tuned circuit with a bandwidth of 40 kHz.   Loss will be high for these narrowest filters, 
with loss decreasing as design bandwidth increases.     Qu of 100,000 and beyond is common for crystals, 
so filters with lower bandwidths are possible.    The same Bmin constraints apply.  

This work is based upon so-called modern network theory first appearing in the 1950s.  Earlier, filters were 
designed using image parameter concepts.   Modern network theory has the following characteristics: 

1. Designs are low pass filters.   These prototypes are characterized by their transfer functions and by 
a cutoff frequency. 

2. The low pass prototype filters are usually described by well defined polynomial transfer functions.  
These expressions describe an output voltage for a specified input voltage.   
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3. The low pass prototypes can be transformed to allow arbitrary cutoff frequency and terminations. 
4. The prototypes can also be transformed to design high pass, bandpass, and band stop circuits. 
5. The low pass prototype filters usually consist of a table of normalized component values.   The 

number of components in the filter is commensurate with the order of the filter, which is the order 
of the polynomial that is the low pass transfer function.  Higher order leads to greater stop band 
attenuation. 

6. The low pass prototype filter can be used to examine the way energy is shared with the 
terminations and between elements in the prototype.    This analysis produces an alternative 
description of the filter consisting of the Q of end sections and coupling coefficients describing the 
interface between elements.    This new parameter set are end section normalized Q values and 
normalized coupling coefficients.   This new parameter set can be used to design a very wide 
variety of filter types.    Calculation of the “k and q” parameter set is described in an appendix. 

The purpose of this paper is to summarize the mathematics and perhaps impart some intuition.    Equations 
are presented with example data.    The numeric data will allow the reader to do the calculations as the text 
is read.   Calculations use fundamental units of Hz, Farad, Henry, etc, although we may often use practical 
components in text, such as capacitors in pF.    We assume that the reader will seamlessly make these 
transformations.      

There are no advanced mathematics here.   It’s just algebra, although often with imaginary (complex) 
elements.    

After filters are designed, they are analyzed with computer programs.   Some of the analysis is with 
programs we have written while others use SPICE.   This report does not include measured results.  An 
appendix presents more numeric detail for readers wishing to see such data.    Generally, we obtain 
excellent correspondence between filter simulation and physical measurements. 

Two filter orders (N=2 and N=4) are considered for each of the four resonator types.   The reader should 
then be able to extend the presentation to any order.   The key to this flexibility is found in the central 
design rules in section 2 below. 

Contents. 

The paper is divided into the following sections: 

1. A discussion of resonators and tuning. 
2. The central design rules. 
3. Terminations that load resonators.  Deriving the equations. 
4. A double tuned circuit with parallel LC circuits. 
5. A bandpass with 4 parallel LC tuned circuits. 
6. A double tuned circuit with series LC resonators. 
7. A N=4 bandpass with series LC resonators. 
8. A crystal filter of the LSB Ladder type with two crystals. 
9. A LSB Ladder crystal filter with N=4. 
10. A USB Ladder crystal filter with two crystals. 
11. A USB Ladder crystal filter with N=4.    
12. A Crystal Notch Filter, N=3. 
13. Bibliography. 
14. Appendix A, numeric examples.  
15. Appendix B, converting prototype components to k and q. 

1.  Basic Resonator Circuits. 

This section presents some schematic diagrams and some single stage filters.    There are no mathematics 
here, although the math to be presented later can be adapted to analyze these simple filters. 
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! Fig 1-1. 
A parallel tuned circuit places an inductor in parallel with a capacitor.   Both elements have their own loss, 
each represented here by a parallel resistance.    More often than not, we combine the two to form a single 
resonator parallel resistance, Rp, shown in the second part of Fig 1-1. 

! Fig 1-2. 
A series tuned circuit is show in Fig 1-2.   Again, the series loss resistances that model the individual 
elements are combined in a single resistance, Rs, that models the complete series tuned circuit shown in the 
lower part of Fig 1-2.    

Fig 1-3 models the way a filter might be used in a system.    

! Fig 1-3. 
The upper part of Fig 1-3 shows a source with internal resistance R-s followed by a load R-l.  The source 
has an open circuit voltage of V-s.      A filter circuit is inserted between the source and load, shown in the 
lower part of the figure.     
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! Fig 1-4. 
Two variations are shown in Fig 1-4 for using a parallel tuned circuit as a filter.   In the upper case, the 
reactive L and C must be carefully chosen with respect to the source and load.   L and C must resonate at 
the filter center frequency.   But the L (and hence, also the C) will be chosen to interact with the source and 
load resistances as well as the Rp which models resonator loss to establish a useful bandwidth.     Consider 
an example.   Source and load R are both set at 50 Ohms.   A small inductor of 1 µH resonates at 5 MHz 
with 1013.2 pF.   Assume, for the moment, that loss element Rp is very high and can be ignored.   The 
source and load are both 50 Ohms, so their parallel value is 25 Ohms.   The inductive reactance of L at 5 
MHz is 31.4 Ohms.    The loaded Q of this circuit is then 25/31.4, which is less than 1.    The heavy loading 
comes from the terminations.  This is a very wide filter, but still useful in some situations.    This filter 
bandwidth will be slightly more than the center frequency. 

The second part of Fig 1-4 shows a variation where series end capacitors Ce1 and Ce2 are placed in series 
with the source and load resistances.    A careful capacitor choice produces whatever loading we wish.   
This will then turn the filter into something with a much narrower bandwidth.    But the end capacitors will 
detune the original resonator from the initial value, so resonator C must be altered to maintain the original 
frequency. 

If we allow the resonator loss resistance, Rp, to take on practical values, we will see that this single parallel 
tuned circuit filter will have an insertion loss.   This can be calculated with methods that will follow.   

! Fig 1-5. 

The series tuned circuit form of a N=1 filter is shown in Fig 1-5.  (N is the number of resonators.) The 
upper half shows the source and load resistances in series with the reactive elements and series loss 
modeling resistance R-s.   In this variation, the higher the loading resistances R-s and R-l become, the 
lower the Q and the wider the circuit bandwidth.     The lower half of Fig 1-5 shows the common 
modification where shunt capacitors, Ce3 and Ce4, transform the usual terminations to “look like” lower 
values when considering loads for the resonator.    The equations for this transformation are presented later 
in Section 3.   
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2.  The Central Design Rules for Coupled-Resonator Filters. 

Modern network theory was mentioned earlier.    The low pass circuits that are the basis for our coupled-
resonator filters are all derived from characteristic polynomials.   For example, a Butterworth polynomial 
describes a low pass that is maximally flat at the origin, frequency=0 for a low pass.   (By maximally flat, 
we mean that the frequency derivative of the transfer function is zero at the origin.)  Another popular 
polynomial is that of Chebyshev, a shape that results from an approximation that asks for the lowest 
possible response in the stopband, but allows an equal ripple within the passband.   Filter enthusiasts refer 
to this as a “brick wall” shape.    These details are discussed in the references.    There are many other 
interesting and useful polynomials that are used.      Once a polynomial has been chosen, it will define the 
shape of the filter response.    It will also define a set of normalized low pass component values.      

The low pass prototype component values can be used directly to design low pass, high pass, and even 
some bandpass filters.    But most narrow band filter designs use an alternative set of filter design 
parameters, the so called normalized end section q and coupling coefficients.     For example, a Butterworth 
bandpass filter with four resonators (order N=4) would have the following parameters: 

q1 = 0.7654,   q4=0.7654,    k12=0.841,    k23=0.541,    k34=0.841.     

Every filter shape and order will have a corresponding set of parameters.     We emphasize that these are not 
different filters from the normalized low pass parameters, but are just a new set of values that are derived 
from the low pass elements. 

So, what do these parameters represent? 

First, these parameters are normalized.    This means that the most common low pass filter that is the basis 
for a bandpass is a circuit with a 1 radian per second cutoff and one ohm terminations.   A N=4 Butterworth 
low pass would have the normalized values of C1=0.7654 Farad, L2=1.85 Henry, C3=1.85 Farad, and 
L4=0.7654 Henry.    These normalized component values are converted to the k and q values shown above.  
(See Appendix B.)  Or the normalized L and C low pass values can be denormalized to form low pass or 
high pass filters.  

Denormalizing the k and q occurs with respect to a parameter called filter Q, or Qf.    Assume that we 
wanted to build a filter with a 5 MHz center frequency and a bandwidth of 0.2 MHz.     Qf is then 5/0.2=25.  
The other often used parameter is nodal capacitance, C0.     This is the capacitance value for the LC 
resonator forming the basis of the filter.    The details of the denormalization will emerge in the later 
sections. 

The normalized q is a value related to an input or output resonator.   Once the parameter is denormalized, a 
loaded Q for the resonator is established.    This is the Q of that resonator when loaded by the termination at 
the related end.     Recall Fig 1-3 where an arbitrary filter was terminated at both input and output by source 
and load resistances.    The end section Q for the first resonator is the result of loading by R-s, the source.      

The normalized coupling coefficients have a similar role.   The parameter k12, when denormalized, will 
specify the element that couples energy from the first resonator to the second.     

The central rule for filter design is then:     A filter shape is established when the end section Q values 
and the couplings between resonators are established.    Passband shape does not depend upon how 
we realize the coupling and loading.    Many different circuits may be used, but once the 
denormalized K and Q values are established, the filter shape close to the center frequency is 
determined.    This rule will be illustrated in the sections that follow.     

3. Terminations that Load Resonators, Series to Parallel and Back… 

The central rules stipulate that we must establish a specific end section Q to realize a desired filter shape.    
This section will derive the important equations that are used in later designs to obtain desired loading 
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values.    The equations presented are essentially transformations between parallel and series circuits.   5 
MHz examples are used.   Some capacitor values will be specified, but these are merely used for the 
numerical calculations.   The important outputs of this section are the formulas.   The initial parameters for 
examples are: 

!  

Two capacitor values, C and c, are specified.   We will use C to deal with a series circuit of R and C.   Later, 
a parallel R and c will be analyzed.    We begin with the impedance of the series RC of Fig 3-1. 

!   
Fig 3-1.  Ce=100 pF at 5 MHz and R =50. 

!    Eq. 3-1. 

Lower case i is the square root of minus 1.    This equation expands to yield 

!  Eq. 3-2. 
We have converted the impedance Z to an admittance, Y.   Continuing, Y is resolved into real and 
imaginary parts, G and B, 

! Eq. 3-3. 
G is a conductance while B is a susceptance.     Further expansion yields 

! Eq. 3-4. 
G may be inverted to obtain an equivalent parallel resistance.    If we were to write the susceptance of a 
parallel capacitor, it would be B= ω Cp where Cp is the parallel capacitance and ω is the angular frequency.  
Hence, Cp = B/ ω.     The resulting equations are 

!  Eq. 3-5. 
Recall that R=50 and C was 100 pF, resulting in 5 MHz calculated results 
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!  Eq. 3-6. 
The series capacitor has readily created a resistance much higher than the original 50 Ohms.  The 
equivalent parallel capacitance Cp is close to, but still less than the original 100 pF. 

We rewrite Eq 3-5 by defining the parallel resistance to be Re.    The subscript e emphasizes that this is an 
end resistance.    

!  Eq. 3-7. 
Note that Eq. 3-7 includes a definition for the reactance of the series capacitor.   This becomes useful, 
leading to 

! Eq. 3-8. 
This heads to the simple form. 

! Eq. 3-9. 
Extracting the value of the capacitor produces 

! Eq. 3-10. 
For example, say that we needed a resistance of 3000 Ohms across the resonator to achieve the desired end 
section Q, but we had R=50 at the other end.   The required capacitor from Eq. 3-10 is then 

! Eq. 3-11. 
We also need to know the equivalent parallel capacitance across the newly generated 3000 Ohms.  This is 
given by Eq. 3-5, repeated here 

! Eq. 3-12. 
The shunt 81.5 pF is close to, but not quite equal to the series end capacitance, 82.9 pF.     
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In the analysis above we were able to create a large resistance load with a series capacitor.   Next we 
consider the case of adding a parallel capacitor to a load to generate the equivalent of a lower resistance. 
This is shown in the next figure.   Lower case c represents capacitors merely to distinguish from the earlier 
case. 

!  
Fig 3-2.  R=50 and ce=c=500 pF for the numeric example. 

We begin by writing the admittance for the parallel RC. 

! Eq. 3-13. 
But impedance is just Z=1/Y, 

! Eq. 3-14. 
The real part of z is just the end resistance that will load the end resonator, 

! Eq. 3-15. 
But this is not the form we want.   Rather, we wish to specify a value for r<R and then calculate the value 
of c that will yield that result.   We solve Eq. 3-15 for c with the following sequence, 

! Eq. 3-16. 

! Eq. 3-17. 

! Eq. 3-18. 
Cleaning things a little yields a “standard form,” 

! Eq. 3-19. 
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This value of parallel end capacitor gives us the required end resistance.   We seek the equivalent series 
capacitance that will contribute to resonator tuning.  We focus on the imaginary part of Eq. 3-14, 

! Eq. 3-20. 

! Eq. 3-21. 
Solving for cs while inserting an “e” subscript for later clarity yields 

! Eq. 3-22. 
Finally, consider an example where we wish to generate a 5 ohm load with a capacitor and 50 ohm 
termination. 

! Eq. 3-23. 
These transformations will be applied in the filter designs that follow. 

4.  A Double Tuned Circuit with Parallel Tuned LC Resonators. 

Now that some of the preliminary details are out of the way, it’s time to design a filter.    Our first choice is 
a 200 kHz wide double tuned circuit at 5 MHz using parallel resonators.   The schematic follows. 

! Fig 4-1. 

The parameters for our filter are 

!  
The Butterworth parameters are the k12 and q values shown while the center frequency is 5 MHz.   We pick 
inductors of 3 µH with an unloaded Q of 200.   The bandwidth was specified to be 200 kHz and the filter 
source and load will be 50 Ohms.   The angular frequency is  
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! Eq. 4-1. 
The nodal capacitance C0 is the capacitance that resonates with the inductor that we have picked. 

! Eq. 4-2 
The filter Q is given by 

! Eq. 4-3. 
This filter Q is relatively low compared with the unloaded resonator Q, so this filter will be easily realized.  
A useful parameter is one we term the “normalized Q,” signified by q0 and defined as 

! Eq. 4-4. 
If q0 is more than 2, a double tuned circuit is usually practical.   Later we will see that q0 can be used to 
calculate insertion loss.   

The end Q is 

! Eq 4-5 
Note that the normalized filter q is denormalized by multiplying by filter Q, QF.   If the bandwidth was 
higher,  QF would be lower and Qend would be lower.    Equation 4-5 is a first approximation and it does not 
account for the intrinsic loss in the resonator specified by Qu.    A more complete expression is 

! Eq. 4-6. 
A coupling coefficient for a practical filter element is the normalized value divided by filter Q.   The 
coupling capacitor is then the nodal capacitance multiplied by the coupling coefficient.    Hence, the 
coupling capacitor is calculated with 

! Eq. 4-7. 
We have already calculated the denormalized end section Q = Qe.    This allows us to find the end resistance 
needed to properly load the resonator. 

! Eq. 4-8. 
A series capacitor Ce is placed in series with the 50 ohm loads at each end of the filter to transform the low 
resistance to look like Rpe at the resonator.   This calculation uses Eq. 3-10 derived above, 

! Eq. 4-9. 
The final detail is resonator tuning.   We started with a nodal C0=338 pF, that has been diminished because 
of the ~10 pF capacitor coupling between resonators and by the 71 pF loading capacitors.   We tune the 
resonators with  

! Eq. 4-10. 
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Note that this is still an approximation.   A more refined equation was derived above (Eq. 3-12) if greater 
accuracy is needed.    It would not make much difference in this case.   Moreover, we would probably use 
trimmer capacitors as part of the resonators in a practical circuit, so a small approximation is allowed. 

Finally, we calculate the filter insertion loss.    

! Eq. 4-11.    
The loss depends upon the normalized Q, q0, as well as the q value, here the end Butterworth q.   The 
insertion loss is in dB.    

A computer simulation of this filter is shown below.   This is an analysis using the ladder method, outlined 
in our IRFD text book.    This is an analysis program that is independent of the design above.     

!  
Fig 4-2.   An analysis of the 5 MHz double tuned circuit with parallel resonators.   Note that the insertion 
loss corresponds to the value from Eq. 4-11. 

5.  N=4 Bandpass Filter with Parallel LC Tuned Circuits. 

The next filter is just like the earlier double tuned circuit, but now contains four parallel resonators.   The 
same methods are used for end loading and for coupling as we used with the simpler double tuned circuit of 
section 4.    The approximation used for tuning with the previous double tuned circuit is replaced with a 
better method.   Again, we use Butterworth k and q parameters.   The set-up data and equations are 
presented below.   We picked a 6 µH inductor for this 5 MHz filter, but that is open to the designer. 

!  
Next, we calculate the nodal capacitance and the filter Q: 

! Eq. 5-1.               ! Eq. 5-2. 
The end Q is calculated from the filter Q, 

! Eq. 5-3. 
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This calculation includes both the normalized Butterworth end q and the unloaded resonator Qu.     

The next calculations are for the coupling capacitors. 

! Eq. 5-4.           ! Eq. 5-5.          ! Eq. 5-6. 
Note the symmetry with k12=k34, leading to C12=C34.    This is a common occurrence with Butterworth and 
Chebyshev filters. 

Having calculated Qend, we can now continue with the end loading determinations. 

! Eq. 5-7.                ! Eq. 5-8.    
This give us the capacitance value needed at the filter end to load resonators 1 and 4 with 50 Ohms.   But 
the parallel capacitance that is presented to these resonators must be determined before tuning.    The 
equation for this was derived in section 3.     The parallel capacitance is given by 

! Eq. 5-9. 
This capacitance, 70.8 pF, is close to the end C value of 71.7 pF.    This is the usual situation when Ce 
generates a large impedance transformation.    In this case we go from 50 to almost 4000 Ohms.   The 
capacitors are not as close to each other with a smaller transformation, which we might have with a wider 
bandwidth filter.      We can now tune the filter. 

!   Eq. 5-10              ! Eq. 5-11 

! Eq. 5-12                                        ! Eq. 4-13 
We again take advantage of the symmetry that comes from the equally terminated Butterworth filter.  Even 
without this symmetry, the formulas for T3 and T4 should be obvious.  

Figure 5-1 below contains the transfer function for the filter we just designed.   The schematic is also 
included.    This is an LT-SPICE analysis rather than one using our “homebrew” software.    Filter analysis 
is, after all, divorced from the filter design. 
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!   
Fig 5-1.   The classic Butterworth shape is evident.    A simulation must be used to evaluate the insertion 
loss, for we lack a simple formula like we had with the double tuned circuit.    Series resistors have been 
included with the inductors in the simulation to represent the unloaded Q of 200.   Alternatively, parallel 
resistors could be used. 

!   
Fig 5-2.   This filter is a special case, although this is not evident without careful inspection.   There are two 
special features.    First, the output resonator is terminated in 3K rather than 50 Ohms.   Note that the filter 
performance is essentially unchanged, for the end section Q has been maintained.     The second feature is 
the use of unequal inductors.   Resonators 1 and 2 use 2 µH while #3 and #4 use 6 µH.    The end 
calculations preserve end section Q.   The coupling between resonators 2 and 3 is the unusual case owing to 
unequal inductors.   The calculation is still straight forward.   The nodal C values for each resonator are 
calculated.   The geometric mean of the two C0 values is evaluated and used to calculate the coupling 
capacitor, C7 in the above figure. 
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!  
Fig 5-3.  This circuit and plot shows how the same simulation, with just a modification or two, can be used 
to evaluate the end Q of a loaded resonator.    Note that resonator 2 is short circuited.   Hence, the coupling 
capacitor C6 in the above circuit continues to be part of the overall C to tune resonator 1, but all details 
related to resonators 2, 3, and 4 disappear.   The end loading cap is attached to a termination, but the 
resonator is not excited with Cend.    Two “probes” are attached only to the first resonator through VERY 
small capacitors, 0.1 pF.   One probe comes from the RF source while the other goes to a detector.   The 
sweep serves to measure the Q of the resonator.   If we did not have the 50 ohm load and  Cend, we would 
see a very narrow peak.   This could be used to actually measure unloaded resonator Q.  But the resonator is 
loaded to Qend which is the value we would obtain from the swept response shown. 

This computer simulation used a 50 ohm load and another 50 ohm detector, attached via very small 
capacitors, suggestive of the scheme we might use in a physical measurement.   For a pure computer study, 
a current source could drive the resonator while the voltage is merely noted and plotted.  Neither element 
will load the circuit.    My personal preference is to emulate the physical measurement, but either method 
will provide the needed information. 

The scheme is one that is often used for physical measurements.   The very small capacitors in the 
simulation can be approximated with any manner of small “real world” capacitor.    The scheme used 
depends upon the frequency.  The key is to use identical “caps” at both probes and to guarantee that there is 
an insertion loss of at least 30 dB through the measurement setup.   If these criterion are met, it should be a 
good measurement.   Note that this “rule” can be tested with computer simulation. (This is NOT lore.) 
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!   
Fig 5-4.   This simulation shows how we might measure coupling between resonators.   The setup is just 
like that used above to measure the loaded Q of an end section.   A resonator is excited with a probe and 
another is used to measure the voltage across the same tuned circuit.   In this example, the two probes are 
attached to resonator #2.   We have short circuited resonators #1 and #4, so the tuning of resonators 2 and 3 
is preserved.   Sweeping the system of two probes attached to #2 shows the coupling from 2 to 3, indicated 
by a double hump response.   If coupling capacitor C7 is increased, the separation between peaks will 
increase.     This behavior is specified by 

! Eq. 5-14  

The frequency spacing δf23 is related to the filter bandwidth and the normalized coupling coefficient, k23.     
When we zoomed in to do a careful look at the peaks, we confirmed this calculated result.    Equation 5-14 
can be used to measure a coupling coefficient.    

The methods presented here are very powerful, for they show how computer simulation can be used to 
study circuit behavior and fundamental concepts.    But this is not a measurement.   An actual physical 
measurement will often take less time, but provide more information.   The physical examination includes 
the effects of stray L and C as well as loss.    When dealing with filters, there are three levels to the 
problem:  design or synthesis, analysis or simulation, and physical measurement.    The best filter circuits 
should have good correspondence between all three.    Don’t skip any of the steps.     Especially avoid the 
trap of assuming that a computer simulation can erase the need for physical measurement. 

 6. Double Tuned Circuit using Series Resonators 

The next design example is for a DTC using series tuned circuits.   The schematic is shown below. 
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!  Fig 6-1. 
The set up details are given with 

!     
We continue to design filters with a 200 kHz bandwidth at 5 MHz with unloaded resonator Q of 200.  The 
same Butterworth coefficients are used.    This example uses 7 µH inductors.    The design begins with 
calculation of the nodal capacitance, 

! Eq. 6-1. 
Next, we calculate the coupling capacitor and the end section Q.   The coupling cap is now a large valued 
shunt element. 

! Eq. 6-2.        ! Eq. 6-3.     !   Eq. 6-4. 
This low value series R is realized from a 50 ohm termination with a shunt end capacitor, 

! Eq. 6-5. 
While this value generates the transformation, this is not the series capacitor that results from a parallel to 
series conversion.   The equivalent series value is 

! Eq. 6-6.    These equations were derived in Section 3. 
This Ces value allows tuning of the first resonator with T1. 

! Eq. 6-7. 
The second resonator is identical to the first one. 

The response of the double tuned circuit with a series LC is almost identical to the one using parallel 
circuits.   The one with the series tuned circuits will drop off a little faster on the high frequency side.  The 
two are compared below. 
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!  
Fig 6-2.   Comparison between DTCs using series versus parallel tuned circuits.   Both filters have a 200 
kHz bandwidth centered at 5 MHz with inductors having an unloaded Q of 200.   The insertion loss is the 
same for both cases. 

7.  N=4 Bandpass Filter with Series LC Tuned Circuits. 

Having designed a DTC with series resonators, we now consider a higher order circuit with four resonators.   
The “set-up” details follow.   This example uses 12 µH inductors and retains the Butterworth shape. 

!  

!  
Design begins by calculating the nodal capacitance and then the three coupling values. 

! Eq. 7-1 

!   Eq. 7-2.            !   Eq. 7-3             ! Eq. 7-4 
Next we calculate the end Q and the related series resistance. 

! Eq. 7-5.                           ! Eq. 7-6. 
The end resistance is generated from a 50 ohm termination with a shunt end capacitance, with the related 
series capacitance needed to calculate tuning. 

! Eq. 7-7.               ! Eq. 7-8. 
We can now tune the filter. 
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! Eq. 7-9.                             ! Eq. 7-10. 

! Eq. 7-11.                  ! Eq. 7-12. 

!  
Fig 7-1.   Schematic diagram for the finished design.   This is a partial screen of a schematic editing 
computer program used to generate the file for the plot that follows.       The simulated response for this 
filter is shown below. (Ignore the crystal parameters in Fig 7-1, for this filter uses no crystals.) 

!  Fig 7-2. 

8.  Crystals, Crystal Filters, a N=2 Lower Sideband Ladder 

We continue the quest to design filters, but now move to circuits using the quartz crystal.   Fig 8-1 shows 
the familiar model for a quartz crystal.    The crystal model has a very high motional inductance, Lm, that is 
tuned to a series resonant frequency, fs, with a motional capacitance, Cm.    The loss is modeled with an 
equivalent series resistance, ESR.   The series resonator is bridged by a parallel capacitance, C0. 
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