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Introduction to PIC Programming 

Baseline to Enhanced Mid-Range Architecture 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 0: Recommended Training Environment 

 

About PICs 

“PIC” refers to an extensive family of microcontrollers manufactured by Microchip Technology Inc. – see 

www.microchip.com. 

A microcontroller is a microprocessor which has I/O circuitry and peripherals built-in, allowing it to 

interface more or less directly with real-world devices such as lights, switches, sensors and motors.  They 

simplify the design of logic and control systems, allowing complex (or simple!) behaviours to be designed 

into a piece of electronic or electromechanical equipment.  They represent an approach which draws on 

both electronic design and programming skills; an intersection of what was once two disciplines, and is 

now called “embedded design”. 

Modern microcontrollers make it very easy to get started.  They are very forgiving and often need little 

external circuitry. 

 

Among the most accessible are the PIC microcontrollers. 

The range of PICs available is very broad – from tiny 6-pin 8-bit devices with just 16 bytes (!) of data 

memory which can perform only basic digital I/O, to 100-pin 32-bit devices with 512 kilobytes of memory 

and many integrated peripherals for communications, data acquisition and control. 

 

One of the more confusing aspects of PIC programming for newcomers is that the low-end devices have 

entirely separate address and data buses for data and program instructions.  When a PIC is described as 

being 8- or 16-bit, this refers to the amount of data that can processed at once: the width of the data 

memory (registers in Microchip terminology) and ALU (arithmetic and logic unit). 

The low-end PICs, which operate on data 8-bits at a time, are divided into four architectural families: 

 Baseline (12-bit instructions)  

These PICs are based on the original PIC architecture, going back to the 1970’s and General 

Instrument’s “Peripheral Interface Controller”.  They are quite limited, but, within their 

limitations (such as having no interrupts), they are simple to work with. 

Modern examples include the 6-pin 10F200, the 8-pin 12F509 and the 14-pin 16F506 

 Mid-Range (14-bit instructions) 

This is an extension of the baseline architecture, adding support for interrupts, more memory and 

peripherals, including PWM (pulse width modulation) for motor control, support for serial, I
2
C 

and SPI interfaces and LCD (liquid crystal display) controllers. 

Modern examples include the 8-pin 12F629, the 20-pin 16F690 and the 40-pin 16F887 

http://www.microchip.com/
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 Enhanced Mid-Range (14-bit instructions) 

As the name suggests, this is an enhancement of the mid-range architecture – quite similar, but 

with additional instructions, simplified memory access (optimised for C compilers), and more 

memory, peripherals and speed. 

Examples include the 8-pin 12F1501, the 14-pin 16F1824, and the 64-pin 16F1946. 

 High-end (16-bit instructions) 

Otherwise known as the 18F series, this architecture overcomes some of the limitations of the 

mid-range devices, providing for more memory (up to 128k program memory and almost 4k data 

memory) and advanced peripherals, including USB, Ethernet and CAN (controller area network) 

connectivity. 

Examples include the 18-pin 18F1220, the 28-pin 18F2455 and the 80-pin 18F8520. 

 

This can be a little confusing; the PIC18F series has 16-bit program instructions which operate on data 

eight bits at a time, and is considered to be an 8-bit chip. 

 

The Gooligum Baseline, Mid-Range and Enhanced Mid-Range PIC Tutorials 

The Gooligum tutorials introduce the baseline, mid-range and enhanced mid-range 8-bit PIC architectures, 

explaining the devices’ internal structure, their ports (the pins used to interface with the real world) and 

common peripherals such as timers and analog-to-digital converters, using assembly language and C. 

The tutorials are divided into a number of series (you don’t have to do them all!): 

 Baseline Architecture and Assembly Language 

 Programming Baseline PICs in C 

 Mid-Range Architecture and Assembly Language 

 Programming Mid-Range PICs in C 

 Enhanced Mid-Range Architecture and Assembly Language 

 Programming Enhanced Mid-Range PICs in C 

Some PIC tutorials focus on a single device, usually something fairly high-end, so that, by the end of the 

tutorials, you will have learned that device thoroughly and be well placed to learn other similar (or 

simpler) PICs easily, by studying the data sheets.  And some tutorials note that most professional 

microcontroller development these days is done using C, so you might as well start by learning C. 

While those approaches are perfectly valid, the philosophy behind the Gooligum tutorials has traditionally 

been that it’s easiest to learn by starting with the least complex PICs first, without being distracted by a 

massive set of options (which will mostly be ignored at first), or having to say “do this, and we’ll explain 

why later”.  And, for a thorough understanding of the PIC architecture, it is best to start by learning 

assembly language, because it’s closer to the hardware – you can see exactly what is happening. 

Thus, the baseline assembly language series begins with the simplest PIC devices, allowing the most basic 

concepts to be explained, one at a time, with more advanced devices being introduced as necessary. 

Although the baseline C series recaps those explanations, it does not go into much detail – mostly just 

showing how the concepts from each assembly language lesson can be implemented in C. 

Similarly, the mid-range assembly language lessons start with one of the simplest mid-range PICs and 

begin by recapping material from the baseline tutorials, with a focus on highlighting the differences and 

“what’s new”, before moving on to topics covering facilities not available in the simpler baseline PICs. 

http://www.gooligum.com.au/tut_baseline.html
http://www.gooligum.com.au/tut_baseline_C.html
http://www.gooligum.com.au/tut_midrange.html
http://www.gooligum.com.au/tut_midrange_C.html
http://www.gooligum.com.au/tut_enhanced.html
http://www.gooligum.com.au/tut_enhanced_C.html
http://www.gooligum.com.au/tut_baseline.html
http://www.gooligum.com.au/tut_baseline_C.html
http://www.gooligum.com.au/tut_midrange.html
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So, although it’s possible to start with the mid-range C tutorials, you will gain a better, deeper 

understanding by starting with baseline assembly and working your way up. 

For those who want to follow that path, working your way through the baseline and then mid-range 

tutorials, follow-up series are available on migrating to the enhanced mid-range architecture using 

assembly language or C.  These series are intended for those who have completed the baseline and mid-

range tutorials, highlighting the differences and introducing the new features of the enhanced mid-range 

architecture, without recapping explanations from the earlier lessons.  These migration series act as a 

bridge from the mid-range tutorials to the new topics covers in the later enhanced mid-range lessons. 

 

But, that’s a long road to travel.  The enhanced mid-range PICs are so capable and yet inexpensive that it 

makes little sense (unless you’re chasing every cent to cost-reduce a volume product) to use baseline or 

mid-range PICs in new designs.  Although starting with baseline PICs is an “easy” introduction to 8-bit 

PICs, it means learning a number of techniques which are not needed for enhanced mid-range devices. 

For that reason, the enhanced mid-range assembly language series assumes no prior knowledge and does 

not reference the earlier baseline or mid-range lessons.  It’s a fresh start, designed for new students, who 

want to make a start with enhanced mid-range PICs. 

And because C really is a very appropriate and popular choice for microcontroller development these 

days, the enhanced mid-range C lessons do not assume that you have completed the assembly language 

lessons, repeating most of the explanations
1
. 

 

Training / Development Environment 

For PIC development, you’ll need: 

 A desktop or laptop PC, with a spare USB port. 

Windows 7 (32- or 64-bit is ok) will give you the greatest choice of development environments 

and tools. 

Linux and MacOS X are viable alternatives, with most of Microchip’s development tools 

available for and supported on those platforms. 

 Development software, including assembler and editor, preferably bundled in an integrated 

development environment (IDE) such as MPLAB X. 

 A PIC programmer, to load your program into your PIC 

 A prototyping environment, such as the Gooligum Baseline and Mid-range PIC Training and 

Development Board, or simply a prototyping breadboard and your own supply of components, to 

allow you to build the example circuits in the tutorials. 

And optionally: 

 A C compiler. 

The C tutorials use Microchip’s XC8 compiler (running in “Free mode”)
2
 but you may still find 

the lessons helpful if you are using a different compiler. 

 A hardware debugger (see below) 

 

                                                      

1
 of course, that does make it a little more repetitive for those who have completed the enhanced mid-range assembly 

language lessons – but it’s not difficult to skim the duplicate material 

2
 the baseline C lessons also use the free CCS compiler bundled with MPLAB 8.xx 

http://www.gooligum.com.au/tut_midrange_C.html
http://www.gooligum.com.au/tut_enh-mig.html
http://www.gooligum.com.au/tut_enh-mig.html
http://www.gooligum.com.au/tut_enh-mig_C.html
http://www.gooligum.com.au/tut_enhanced.html
http://www.gooligum.com.au/tut_enhanced_C.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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PIC Programmers and Debuggers 

There are many PIC programmers available, including some that you can build yourself. 

Once upon a time, PICs could only be erased by shining UV light through a window on the chip (except 

for parts without a window, which could only be programmed once), and programmed by placing them 

into a special programmer. 

These days, PICs use electrically erasable flash memory.  They can be programmed without having to be 

taken out of the prototyping (or even production) environment, through a protocol called In-Circuit Serial 

Programming (ICSP).  But instead of worrying about designing your circuit to accommodate the ICSP 

protocol, it can easier (especially for small PICs, where you may not have spare pins available to dedicate 

to the programming function) to remove the PIC from your circuit and place it into a development board 

or programming adapter connected to an ICSP programmer.  A programming adapter is simply a minimal 

circuit which allows a PIC to be programmed by an ICSP programmer. 

It’s a really good idea to buy an ICSP programmer; you can use it with a development board or a 

programming adapter, while keeping the option of later using it with your own circuitry when you’re 

ready for that. 

 

An excellent PIC programmer to start with is Microchip’s 

PICkit 3, shown on the right. 

Although there are cheaper equivalents available
3
, the 

PICkit 3 is not expensive, available for around US$45.  

And being a Microchip product, you can be sure that it 

will work with Microchip’s development tools, and 

(importantly!) PICs. 

The PICkit 3 can also work as a debugger, as long as the 

PIC you are using supports hardware debugging (meaning 

that it has special debug circuitry built in).  Although these 

tutorials don’t cover hardware debugging, it is a very useful facility to have available as you develop your 

own projects – it allows you to see exactly what the PIC is doing by stepping through your code an 

instruction at a time, or stopping at a particular location (a ‘breakpoint’), and being able to see the contents 

of the PIC’s internal registers and your program’s variables.  A hardware debugger is great for figuring out 

“what on Earth is that PIC doing?”  And the great thing about buying a PICkit 3 as a programmer is that 

you get a capable hardware debugger as well, because they do that, too. 

When you become more experienced, and/or work on bigger PICs, you may want to step up to a more 

capable (and of course more expensive) debugger, such as Microchip’s ICD 3 or REAL ICE.  But to start 

with, a PICkit 3 is ideal. 

Development Software 

Every PIC developer should have a copy of Microchip’s MPLAB integrated development environment 

(IDE) – even if you primarily use a third-party tool chain (a set of development tools that work together). 

It includes Microchip’s assembler (MPASM), an editor, and a software simulator, which allows you to 

debug your application before committing it to the chip.  Not long ago, a development environment as 

sophisticated as this would have cost thousands.  But MPLAB is free, including support from Microchip, 

so there is no reason not to have it.  Download it from www.microchip.com. 

                                                      

3
 Such as the PICkit 2, described in the baseline and mid-range lessons.  Although a capable programmer, it does not 

support enhanced mid-range PICs, and therefore the PICkit 2 is no longer recommended for use with these tutorials.  

http://www.microchip.com/
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MPLAB directly supports the PICkit 3 as a programmer for pretty much every modern baseline, mid-

range and enhanced mid-range PIC. 

Microchip provides and supports two different “MPLAB” products. 

For many years, MPLAB had been only available as a Windows application, and the latest versions are 

numbered 8.xx – the most recent at the time of writing (October 2013) is v8.92.  We can refer to this as 

MPLAB 8.  It’s very stable, easy to use, and has all the features we need. 

However, Microchip has found it difficult to add additional features to MPLAB, or to meet requests to 

have it run on platforms other than Windows.  Therefore, Microchip has developed a “next generation” 

replacement, called MPLAB X, which also runs on Linux and Mac OS X.  MPLAB 8 is now effectively 

be retired, with all new development, including support for new tools, compilers and PICs, being for 

MPLAB X. 

Therefore, although the older baseline and mid-range tutorials describe both MPLAB 8 and MPLAB X, 

the enhanced mid-range tutorials focus only on MPLAB X
4
. 

 

MPLAB 8 includes a free copy of CCS’s PCB C compiler for Windows, which supports most baseline 

PICs, including those used in these tutorials.  Although it’s now a little dated (at the time of writing, the 

version bundled with MPLAB was 4.073, while the latest commercially available version was 5.013), it 

remains useful and is used in the baseline C tutorials. 

The Microchip XC8 C compiler can be downloaded from www.microchip.com.  It supports all of the 

baseline, mid-range and enhanced mid-range PICs, and is available for Windows, Linux and OS X.  It can 

be used for free, when running in “Free mode”, but with most optimisations disabled – meaning that it 

generates much larger code than the paid-for commercial versions.  However, code size doesn’t matter 

much for the small example programs in these tutorials, so the free version of XC8 is used in the baseline, 

mid-range and enhanced mid-range C tutorials. 

Prototyping 

If you use an ICSP programmer, then you’ll need a way to connect your PIC to it, for programming.  You 

also need to be able to test your PIC in a real circuit, before building the final design. 

 

One solution, satisfying both these purposes, is Microchip’s “PICkit 3 Low Pin Count (LPC) Demo 

Board”.  It is available for around US$26, including a PIC16F1829 and PIC18F14K22.  Or you can buy a 

“PICkit 3 Starter Kit” bundle, including a PICkit 3 programmer, LPC Demo Board, PIC16F1829 and 

PIC18F14K22, for around US$60.  That’s excellent value; given that the MPLAB software is free, that’s 

everything you need to get started, including a programmer, demo board and PIC chips, for only US$60! 

It includes four LEDs, a pushbutton switch and a trimpot (variable resistor).  Above this, a prototyping 

area is provided.  The IC socket supports all of the modern (flash memory based) 8-, 14- and 20-pin 

baseline, mid-range and enhanced mid-range PICs.  Note that it does not support the 6-pin 10F PICs, even 

when they are in 8-pin DIP package. 

Most of the I/O lines are brought out to the 14-pin header on the side of the board, allowing it to be 

connected to another circuit.  For example, a prototype circuit can be constructed on a breadboard and the 

power and signal lines connected back to the header on the LPC Demo Board.  This arrangement allows 

you to develop a complex circuit with no need to remove the PIC from its socket for programming; the 

PICkit 3 can remain plugged into the LPC Demo Board during development. 

                                                      

4
 MPLAB 8 supports the devices used in the enhanced mid-range PIC tutorials and can be used with those lessons if 

you are already comfortable with MPLAB 8.  However, it is unlikely to support future enhanced mid-range devices. 

http://www.gooligum.com.au/tut_baseline_C.html
http://www.microchip.com/
http://www.gooligum.com.au/tut_baseline_C.html
http://www.gooligum.com.au/tut_midrange_C.html
http://www.gooligum.com.au/tut_enhanced_C.html
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Unfortunately, the LEDs on the LPC Demo Board can only be used with 14- and 20-pin PICs, not the 8-

pin devices.  The board also doesn’t come with jumpers installed; it’s a good idea to add them, so that the 

LEDs and trimpot can be selectively disconnected, to avoid interference with the rest of your circuit. 

Many of the tutorial lessons require the use of parts not included on the LPC Demo Board, such as 

photocells, crystal-driven oscillator circuits, and 7-segment LED displays.  Although it is possible to build 

all of these circuits on a breadboard, connected to the LPC Demo Board, it is a little cumbersome to do so, 

for some of the more complex circuits. 

And of course you need to obtain all the necessary parts. 

To avoid these problems, we have developed a training and development board, specifically for use with 

the baseline, mid-range and introductory enhanced mid-range tutorials, as shown below. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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It works with a PICkit 3 programmer, and supports all 8- and 14-pin baseline, mid-range and enhanced 

mid-range PICs, as well as all 6-pin 10F devices (in an 8-pin DIP package).  It is fully configurable using 

the provided jumpers, and comes with all of the hardware needed for the baseline and introductory mid-

range and enhanced mid-range tutorials, including all the required PICs.  Add-on parts kits, such as a 

motor-control kit, allow the board to be used with more topics covered in more advanced lessons. 

Every PIC pin is brought out to the header at the bottom of the board, allowing the easy prototyping on the 

breadboard of circuits not provided by the onboard components, including circuits which require more 

than the 20 mA that a PICkit 3 can deliver, through the use of an external regulated DC power supply. 

 

A number of other prototyping boards are available from various of sources, including Microchip.  Some 

of these include more advanced peripherals, such as LCD displays, while others are intended to be an 

introduction to “mechatronics” (microcontroller-controlled robotics), and include motors, gears, etc.  And 

some are intended to be general development boards, offering as much flexibility and expansion as 

possible.  Most of these boards can of course be adapted for use with these tutorials. 

 

However, the examples in these tutorials are intended to be used directly, without modification with the 

Gooligum Baseline and Mid-range PIC Training and Development Board. 

Recommendation 

To make a start in PIC development, it’s difficult to do better than the low-cost combination of: 

 PICkit 3 programmer 

 Gooligum Baseline and Mid-Range PIC Training and Development Board 

 MPLAB X integrated development environment 

These tutorials assume that you are using that recommended combination.  However, most of the lesson 

content is of course applicable to other development environments, including the Microchip Low Pin 

Count Demo Board, but you may need to modify the examples to work correctly in those environments. 

 

Other than a PC, the only other thing you need is a PIC! 

If you purchase the Gooligum training board, it will come with all the necessary PICs. 

Otherwise, to follow all the lessons exactly, you will need one each of: 

 PIC10F200 or PIC12F508 

 PIC12F509 

 PIC16F506 

 PIC12F629 

 PIC16F684 

 PIC12F1501 

 

It is possible to adapt the lessons to other baseline and mid-range PICs by reading the data sheets, but of 

course it’s easier to work with those listed here. 

 

Good luck!! 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 1: Light an LED 

 

 

This initial exercise is the “Hello World!” of PIC programming. 

The apparently straightforward task of simply making an LED connected to one of the output pins of a 

PIC light up – never mind flashing or anything else – relies on: 

 Having a functioning circuit in a workable prototyping environment 

 Being able to use a development environment; to go from text to assembled PIC code 

 Being able to correctly use a PIC programmer to load the code into the PIC chip 

 Correctly configuring the PIC 

 Writing code that will set the correct pin to output a high or low (depending on the circuit) 

If you can get an LED to light up, then you know that you have a development, programming and 

prototyping environment that works, and enough understanding of the PIC architecture and instructions to 

get started.  It’s a firm base to build on. 

Getting Started 

For some background on PICs in general and details of the recommended development environment, see 

lesson 0.  Briefly, these tutorials assume that you are using a Microchip PICkit 2or PICkit 3 programmer 

and either the Gooligum Baseline and Mid-range PIC Training and Development Board or Microchip’s 

Low Pin Count (LPC) Demo Board, with Microchip’s MPLAB 8 or MPLAB X integrated development 

environment.  But it is of course possible to adapt these instructions to a different programmers and/or 

development boards. 

We’re going to start with the simplest PIC of all – the PIC10F200, a 6-pin “baseline” device
1
.  It is only 

capable of simple digital I/O and does not include any advanced peripherals or interfaces.  That makes it a 

good chip to start with; we’ll look at the additional features of more advanced PICs later. 

In summary, for this lesson you should ideally have: 

 A PC running Windows (XP, Vista or 7), with a spare USB port 

 Microchip’s MPLAB 8 IDE software 

 A Microchip PICkit 2 or PICkit 3 PIC programmer 

 The Gooligum baseline training board 

 A PIC10F200-I/P microcontroller (supplied with the Gooligum training board) 

                                                      

1
 If you are using Microchip’s LPC Demo Board, you will have to substitute a PIC12F508, because the LPC board 

does not support the 10F PIC family. 

../../PIC_Intro_0.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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You could use Microchip’s new MPLAB X IDE software, which runs under Linux and Mac OS X, as well 

as Windows, instead of MPLAB 8. 

Note however that Microchip’s Low Pin Count Demo Board does not support the 6-pin 10F PICs.  If you 

are using the LPC demo board, you can substitute a 12F508 (the simplest 8-pin baseline PIC) instead of 

the 10F200, with only a minor change in the program code, which we’ll highlight later. 

The four LEDs on the LPC demo board don’t work (directly) with 8-pin PICs, such as the 12F508.  So, to 

complete this lesson, using an LPC demo board, you need to either add an additional LED and resistor to 

the prototyping area on your board, or use some solid core hook-up wire to patch one of the LEDs to the 

appropriate PIC pin, as described later. 

This is one reason the Gooligum training board was developed to accompany these tutorials – if you have 

the Gooligum board, you can simply plug in your 10F or 12F PIC, and go. 

Introducing the PIC10F200 

When working with any microcontroller, you should always have on hand the latest version of the 

manufacturer’s data sheet.  You should download the download the current data sheet for the 10F200 from 

www.microchip.com. 

You’ll find that the data sheet for the 10F200 also covers the 10F202, 10F204 and 10F206.  These are 

essentially variants of the same chip.  The differences are as follows: 

The 10F202 and 10F206 have more memory, and the 10F204 and 10F206 include a comparator (used to 

compare analog signals – see lesson 9), but they are otherwise the same. 

 

The 10F family are all 6-pin PICs, with only four pins available for I/O (input and output).  They are 

typically used to implement simple functions, such as replacing digital logic, in space-constrained 

situations, so are generally used as tiny surface-mount devices. 

However, they are also available in 8-pin DIP packages, as shown here. 

These 8-pin DIP packages make prototyping easy, 

so we will use them in these lessons. 

Note however, that although this is an 8-pin 

package, the PIC10F200 is still a 6-pin device.  

Only six of these pins are usable: the pins marked 

‘N/C’ are not connected, and cannot be used. 

VDD is the positive power supply. 

VSS is the “negative” supply, or ground.  All of the 

input and output levels are measured relative to 

VSS.  In most circuits, there is only a single ground 

reference, considered to be at 0V (zero volts), and 

VSS will be connected to ground. 

Device 
Program Memory 

(words) 

Data Memory 

(bytes) 
I/O pins Comparators Clock rate 

10F200 256 16 4 0 4 MHz 

10F202 512 24 4 0 4 MHz 

10F204 256 16 4 1 4 MHz 

10F206 512 24 4 1 4 MHz 

1 
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4 
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7 
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5 
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http://www.microchip.com/
../9%20-%20Comparators/PIC_Base_A_9.pdf
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The power supply voltage (VDD, relative to VSS) can range from 2.0 V to 5.5 V. 

This wide range means that the PIC’s power supply can be very simple.  Depending on the circuit, you 

may need no more than a pair of 1.5 V batteries (3 V total; less as they discharge). 

Normally you’d place a capacitor, typically 100 nF, between VDD and VSS, close to the chip, to smooth 

transient changes to the power supply voltage caused by changing loads (e.g. motors, or something as 

simple as an LED turning on) or noise in the circuit.  It is a good practice to place these “bypass 

capacitors” in any circuit beyond the simplest prototype stage, although you’ll find that, particularly in a 

small battery-powered circuit, the PIC will often operate correctly without them.  But figuring out why 

your PIC keeps randomly resetting itself is hard, while 100 nF capacitors are cheap, so include them in 

your designs! 

The remaining pins, GP0 to GP3, are the I/O pins.  They are used for digital input and output, except for 

GP3, which can only be an input.  The other pins – GP0, GP1 and GP2 – can be individually set to be 

inputs or outputs. 

 

8-bit PICs use a so-called Harvard architecture, where 

program and data memory is entirely separate. 

In the 10F200, program memory extends from 000h to 0FFh 

(hexadecimal).  Each of these 256 addresses can hold a 

separate 12-bit program instruction.  User code starts by 

executing the instruction at 000h, and then proceeds 

sequentially from there – unless of course your program 

includes loops, branches or subroutines, which any real 

program will! 

 

Microchip refers to the data memory as a “register file”.  If 

you’re used to bigger microprocessors, you’ll be familiar 

with the idea of a set of registers held on chip, used for 

intermediate values, counters or indexes, with data being 

accessed directly from off-chip memory.  If so, you have 

some unlearning to do!  The baseline PICs are quite different 

from mainstream microprocessors.  The only memory 

available is the on-chip “register file”, consisting of a 

number of registers, each 8 bits wide.  Some of these are 

used as general-purpose registers for data storage, while 

others, referred to as special-function registers, are used to 

control or access chip features, such as the I/O pins. 

The register map for the 10F200 is shown at left.  The first 

seven registers are special-function, each with a specific 

address.  They are followed by sixteen general purpose 

resisters, which you can use to store program variables such 

as counters.  Note that there are no registers from 07h to 0Fh 

on the 10F200. 

The next two registers, TRIS and OPTION, are special-function registers which cannot be addressed in 

the usual way; they are accessed through special instructions. 

The final register, W, is the working register.  It’s the equivalent of the ‘accumulator’ in some other 

microprocessors.  It’s central to the PIC’s operation.  For example, to copy data from one general purpose 

register to another, you have to copy it into W first, then copy from W to the destination.  Or, to add two 

numbers, one of them has to be in W.  W is used a lot! 

PIC10F200 Registers 

Address  

00h INDF 

01h TMR0 

02h PCL 

03h STATUS 

04h FSR 

05h OSCCAL 

06h GPIO 

  

10h 
General 

Purpose 

Registers 

 

1Fh 

  

 TRIS 

  

 OPTION 

  

 W 
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It’s traditional at this point to discuss what each register does.  But that would be repeating the data sheet, 

which describes every bit of every register in detail.  The intention of these tutorials is to only explain 

what’s needed to perform a given function, and build on that.  We’ll start with the I/O pins. 

PIC10F200 Input and Output 

As mentioned above, the 10F200 has four I/O pins: GP0, GP1 and GP2, which can be used for digital 

input and output, plus GP3, which is input-only. 

Taken together, the four I/O pins comprise the general-purpose I/O port, or GPIO port. 

If a pin is configured as an output, the output level is set by the corresponding bit in the GPIO register.  

Setting a bit to ‘1’ outputs a high voltage
2
 on the corresponding pin; setting it to ‘0’ outputs a low voltage

3
. 

If a pin is configured as an input, the input level is represented by the corresponding bit in the GPIO 

register.  If the voltage on an input pin is high
4
, the corresponding bit reads as ‘1’; if the input voltage is 

low
5
, the corresponding bit reads as ‘0’: 

The TRIS register controls whether a pin is set as an input or output: 

To configure a pin as an input, set the corresponding bit in the TRIS register to ‘1’.  To make it an output, 

clear the corresponding TRIS bit to ‘0’. 

Why is it called ‘TRIS’?  Each pin (except GP3) can be configured as one of three states: high-impedance 

input, output high, or output low.  In the input state, the PIC’s output drivers are effectively disconnected 

from the pin.  Another name for an output than can be disconnected is ‘tri-state’ – hence, TRIS. 

Note that bit 3 of TRIS is greyed-out.  Clearing this bit will have no effect, as GP3 is always an input. 

The default state for each pin is ‘input’; TRIS is set to all ‘1’s when the PIC is powered on or reset. 

 

When configured as an output, each I/O pin on the 10F200 can source or sink (i.e. current into or out of 

the pin) up to 25 mA – enough to directly drive an LED. 

In total, the I/O port can source or sink up to 75 mA. 

So, if you were driving four LEDs, and it is possible for all to be on at once, you should limit the current 

in each LED to 18 mA, so that the total for the port will never be more than 75 mA, even though each pin 

can supply up to 25 mA on its own. 

PICs are tough devices, and you may get away with exceeding these limits – but if you ignore the absolute 

maximum ratings specified in the data sheet, you’re on your own.  Maybe your circuit will work, maybe 

not.  Or maybe it will work for a short time, before failing.  It’s better to follow the data sheet… 

                                                      

2
 a ‘high’ output will be close to the supply voltage (VDD), for small pin currents 

3
 a ‘low’ output is less than 0.6 V, for small pin currents 

4
 the threshold level depends on the power supply, but a ‘high’ input is any voltage above 2.0 V, given a 5 V supply 

5
 a ‘low’ input is anything below 0.8 V, given a 5 V supply – see the data sheet for details of each of these levels 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

GPIO     GP3 GP2 GP1 GP0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TRIS      GP2 GP1 GP0 
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Introducing the PIC12F508 

If you’re using the Microchip Low Pin Count Demo Board, you can’t use a PIC10F200, because that 

board doesn’t support the 10F family. 

The simplest baseline PIC that you can use with the LPC demo board is the 8-pin 12F508. 

As with the 10F200, the data sheet for the 12F508 also covers some related variants: in this case the 

12F509 and 16F505.  The differences are as follows: 

Device 
Program Memory 

(words) 

Data Memory 

(bytes) 
Package I/O pins 

Clock rate 

(maximum) 

12F508 512 25 8-pin 6 4 MHz 

12F509 1024 41 8-pin 6 4 MHz 

16F505 1024 72 14-pin 12 20 MHz 

 

The 12F509 has more memory than the 12F508, but is otherwise identical.  The 16F505 adds extra I/O 

pins, some more data memory, and can run at a higher speed (if driven by an external clock or crystal). 

 

The 12F508 is essentially a 10F200 with more pins and 

memory. 

It has six I/O pins (instead of four), labelled GP0 to GP5, in an 

8-pin package.  Like the 10F200, each pin can be configured as 

a digital input or output, except GP3, which is input-only. 

 

The 12F508 has twice as much program memory as the 10F200 

(512 words instead of 256), extending from 000h to 1FFh. 

The register map, shown on the right, is nearly identical to that 

of the 10F200.  The only difference is that the 12F508 has 25 

general purpose registers, instead of 16, with no ‘gaps’ in the 

memory map. 

 

Like the 10F200, the 12F508’s six pins are mapped into the GPIO register: 

PIC12F508 Registers 

Address  

00h INDF 

01h TMR0 

02h PCL 

03h STATUS 

04h FSR 

05h OSCCAL 

06h GPIO 

07h 
General 

Purpose 

Registers 

 

1Fh 

  

 TRIS 

  

 OPTION 

  

 W 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

GPIO   GP5 GP4 GP3 GP2 GP1 GP0 

1 

2 

3 

4 

8 

7 

6 

5 

P
IC

1
2

F
5

0
8
 

VDD VSS 

GP5 

GP4 

GP3 

GP0 

GP1 

GP2 
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And the pin directions (input or output) are controlled by corresponding bits in the TRIS register: 

Note that bit 3 is greyed out.  That’s because, as with the 10F200, GP3 is always an input. 

 

Most other differences between the 12F508 and 10F200 concern the processor oscillator (or clock, 

governing how fast the device runs) configurations, which we’ll look at in lesson 7. 

 

Example Circuit 

We now have enough background information to design a circuit to light an LED. 

We’ll need a regulated power supply, let’s assume 5 V, 

connected to VDD and VSS.  And remember that we should add a 

bypass capacitor, preferably a 100 nF (or larger) ceramic, across 

it. 

We’ll also need an LED of course, and a resistor to limit the 

current. 

Although the PIC10F200 or PIC12F508 can supply up to 25 mA 

from a single pin, 10 mA is more than enough to adequately light 

most LEDs.  With a 5 V supply and assuming a red or green 

LED with a forward voltage of around 2 V, the voltage drop 

across the resistor will be around 3 V. 

Applying Ohm’s law, R = V / I = 3 V ÷ 10 mA = 300 Ω.  Since 

precision isn’t needed here (we only need “about” 10 mA), it’s 

ok to choose the next highest “standard” E12 resistor value, 

which is 330 Ω.  It means that the LED will draw less than 10 

mA, but that’s a good thing, because, if we’re going to use a 

PICkit 2 or PICkit 3 to power the circuit, we need to limit overall 

current consumption to 25 mA, because that is the maximum 

current those programmers can supply. 

Finally, we need to connect the LED to one of the PIC’s pins. 

We can’t choose GP3, because it’s input-only. 

If you’re using the Gooligum training board, you could choose 

any of the other pins, but if you use the Microchip LPC Demo 

Board to implement the circuit, it’s not a good idea to use GP0, 

because it’s connected to a trimpot on the LPC demo board, 

which would divert current from the LED.  

So, we’ll use GP1, giving the circuits (10F200 and 12F508 

versions) shown on the right. 

Simple, aren’t they?   Modern microcontrollers really do have 

minimal requirements. 

Of course, some connections are also needed for the ICSP (programmer) signals.  These will be provided 

by your development board, unless you are building the circuit yourself.  But the circuit as shown here is 

all that is needed for the PIC to run, and light the LED. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TRIS   GP5 GP4  GP2 GP1 GP0 

../7%20-%20Special%20features/PIC_Base_A_7.pdf
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Gooligum training and development board instructions 

If you have the Gooligum training board, you should use it to implement the first (10F200) circuit.   

Plug the PIC10F200 into the 8-pin IC socket marked ‘10F’.
6
 

Connect a shunt across the jumper (JP12) on the LED labelled ‘GP1’, and ensure that every other jumper 

is disconnected.  

Plug your PICkit 2 or PICkit 3 programmer into the ICSP connector on the training board, with the arrow 

on the board aligned with the arrow on the PICkit, and plug the PICkit into a USB port on your PC. 

The PICkit 2 or PICkit 3 can supply enough power for this circuit, so there is no need to connect an 

external power supply. 

Microchip Low Pin Count Demo Board instructions 

If you are using Microchip’s LPC Demo Board, you’ll need to 

take some additional steps.  

Although the board provides four LEDs, they cannot be used 

directly with a 12F508 (or any 8-pin PIC), because they are 

connected to DIP socket pins which are only used with 14-pin 

and 20-pin devices. 

However, the circuit can be readily built by adding an LED, a 330 

Ω resistor and a piece of wire to the LPC Demo Board, as 

illustrated on the right. 

In the pictured board, a green LED is wired to GP1 (labelled 

‘RA1’) and a red LED to GP2 (labelled ‘RA2’); we’ll use both 

LEDs in later lessons.  Jumper blocks have been added so that 

these LEDs can be easily disconnected from the PIC, to facilitate 

prototyping other circuits.  These jumpers are wired in series with 

each LED. 

Note that on the LPC 

Demo Board, the pins 

are labelled ‘RA1’, ‘RA2’, etc., because that is the nomenclature 

used on the larger 20-pin PICs, such as the 16F690.  They 

correspond to the ‘GP’ pins on the 12F508 – simply another name 

for the same thing. 

 

If you prefer not to solder components onto your demo board, you 

can use the LEDs on the board, labelled ‘DS1’ to ‘DS4’, by 

making connections on the 14-pin header on the right of the demo 

board, as shown on the left.  This header makes available all the 

12F508’s pins, GP0 – GP5 (labelled ‘RA0’ to ‘RA5’), as well as 

power (+5 V) and ground.  It also brings out the additional pins, 

labelled ‘RC0’ to ‘RC5’, available on the 14-pin devices. 

The LEDs are connected to the pins labelled ‘RC0’ to ‘RC3’ on 

the IC socket, via 470 Ω resistors (and jumpers, if you choose to 

install them).  ‘DS1’ connects to pin ‘RC0’, ‘DS2’ to ‘RC1’, and 

so on. 

                                                      

6
 Ensure that no device is installed in the 12F/16F socket – you can only use one PIC at a time in the training board. 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 1: Light an LED Page 8 

So, to connect LED ‘DS2’ to pin GP1, simply connect the pin labelled ‘RA1’ to the pin labelled ‘RC1’, 

which can be done by plugging a short piece of solid-core hook-up wire into pins 8 and 11 on the 14-pin 

header. 

Similarly, to connect LED ‘DS3’ to pin GP2, simply connect header pins 9 and 12. 

 

That’s certainly much easier than soldering, so why bother adding LEDs to the demo board?  The only 

real advantage is that, when using 14-pin and 20-pin PICs later, you may find it useful to have LEDs 

available on RA1 and RA2, while leaving RC0 – RC3 available to use, independently.  In any case, it is 

useful to leave the 14-pin header free for use as an expansion connector, to allow you to build more 

complex circuits, such as those found in the later tutorial lessons: see, for example, lesson 8. 

 

Time to move on to programming! 

Development Environment 

You’ll need Microchip’s MPLAB Integrated Development Environment (MPLAB IDE), which you can 

download from www.microchip.com. 

As discussed in lesson 0, MPLAB comes in two varieties: the older, established, Windows-only MPLAB 

8, and the new multi-platform MPLAB X.  If you are running Windows, it is better to use MPLAB 8 as 

long as Microchip continues to support it, because it is more stable and in some ways easier to use.  It also 

allows us to use all the free compilers referenced in the C tutorial series.  However, it is clear that 

Microchip’s future development focus will be on MPLAB X, and that it will become the only viable 

option.  So in these tutorials we will look at how to install and use both MPLAB IDEs. 

MPLAB 8.xx 

When installing, if you choose the ‘Custom’ setup type, you should select as a minimum: 

 Microchip Device Support 

 8 bit MCUs   (all 8-bit PICs, including 10F, 12F, 16F and 18F series) 

 Third Party Applications 

 CCS PCB Full Install  (C compiler for baseline PICs) 

 Microchip Applications 

 MPASM Suite   (the assembler) 

 MPLAB IDE   (the development environment) 

 MPLAB SIM  (software simulator – extremely useful!) 

 PICkit 2 

or PICkit 3 Programmer/Debugger 

 

It’s worth selecting the CCS PCB C compiler, since it will then be properly integrated with MPLAB; we’ll 

see how to use it later, in the C tutorial series.   

 

You may need to restart your PC. 

You can then run MPLAB IDE. 

../8%20-%207-segment%20displays/PIC_Base_A_8.pdf
http://www.microchip.com/
../../PIC_Intro_0.pdf
../../Baseline%20C
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Creating a New Project 

To start a new project, you should run the project wizard (Project  Project Wizard…). 

First, you’ll be asked to select a device: in our case, the PIC10F200 or PIC12F508. 

Then select MPASM as the active toolsuite, which tells MPLAB that this is an assembler project.  Don’t 

worry about the toolsuite contents and location; if you’re working from a clean install, they’ll be correct. 

Next, select “Create New Project File” and browse to where to you want to keep your project files, 

creating a new folder if appropriate.  Then enter a descriptive file name and click on “Save”, as shown: 

You should end up back in the Project Wizard window, shown below. 
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Microchip supplies templates you can use as the basis for new code.  It’s a good idea to use these until you 

develop your own.  Step 4 of the project wizard allows you to copy the appropriate template into your 

project. 

 

When programming in PIC assembler, you have to choose whether to create absolute or relocatable code.  

Originally, only absolute mode was supported, so most of the older PIC programming resources will only 

refer to it.  In absolute mode, you specify fixed addresses for your code in program memory, and fixed 

addresses for your variables in data memory.  That’s ok for small programs, and seems simple to start with 

(which is another reason why many guides for beginners only mention absolute mode).  But as you start to 

build larger applications, perhaps making use of reusable modules of previously-written code, and you 

start to move code from one PIC chip to another, you’ll find that absolute mode is very limiting. 

Relocatable code relies on a linker to assign object code (the assembled program instructions) and 

variables to appropriate addresses, under the control of a script specific to the PIC you’re building the 

program for.  Microchip supplies linker scripts for every PIC; unless you’re doing something advanced, 

you don’t need to touch them – so we won’t look at them.  Writing relocatable code isn’t difficult, and it 

will grow with you, so that’s what we’ll use. 

The templates are located under the ‘Template’ directory, within the MPASM installation folder (usually 

‘C:\Program Files\Microchip\MPASM Suite’
7
).  The templates for absolute code are found in the ‘Code’ 

directory, while those for relocatable code are found in the ‘Object’ directory.  Since we’ll be doing 

relocatable code development, we’ll find the templates we need in ‘<MPASM Suite>\Template\Object’. 

 

In the left hand pane, navigate to the ‘<MPASM Suite>\Template\Object’ directory and select the 

template for whichever PIC you are using: ‘10F200TMPO.ASM’ or ‘12F208TMPO.ASM’. 

                                                      

7
 On a 64-bit version of Windows, the MPASM folder will be under ‘Program Files (x86)’ 
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When you click on the “Add>>” button, the file should appear in the right hand pane, with an “A” to the 

left of it.  The “A” stands for “Auto”.  In auto mode, MPLAB will guess whether the file you have added 

should be referenced via a relative or absolute path.  Relative files are those that should move with the 

project (if it is ever moved or copied).  Absolute files should always remain in a fixed location; they don’t 

belong specifically to your project and are more likely to be shared with others.  Clicking the “A” will 

change it to “U”, indicating a “User” file which should be referenced through a relative path, or “S”, 

indicating a “System” file which should have an absolute reference. 

We don’t want either; we need to copy the template file into the project directory, so click on the “A” until 

it changes to “C”, for “Copy”.  When you do so, it will show the destination file name next to the “C”.  Of 

course, you’re not going to want to call your copy ‘10F200TMPO.ASM’, so click the file name and 

rename it to something more meaningful, like ‘BA_L1-Turn_on_LED-10F200.asm’. 

The window should now look similar to that shown below, with your (renamed) copy of the template file 

selected in the right hand pane:  

 

 

After you click “Next” and then “Finish” on the final Project Wizard window, you will be presented with 

an empty MPLAB workspace.  You may need to select View  Project to see the project window, which 

shows your project and the files it comprises as a tree structure. 

For a small, simple project like this, the project window will show only the assembler source file (.asm). 

 

Your MPLAB IDE window should be similar to that illustrated at the top of the next page. 
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To get started writing your program, double-click your .asm source file.  You’ll see a text editor window 

open; finally you can see some code! 
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The MPLAB text editor is aware of PIC assembler (MPASM) syntax and will colour-code text, depending 

on whether it’s a comment, assembler directive, PIC instruction, program label, etc.  If you right-click in 

the editor window, you can set editor properties, such as auto-indent and line numbering, but you’ll find 

that the defaults are quite usable to start with. 

 

We’ll take a look at what’s in the template, and then add the instructions needed to turn on the LED. 

 

But first it’s a good idea to save your new project (Project → Save Project, or click on   , or simply exit 

MPLAB and click ‘Yes’, when asked if you wish to save the workspace). 

 

When you re-open your project in MPLAB, which you can easily do by double-clicking the ‘.mcp’ project 

file in your project directory, you may be asked if you are developing absolute or relocatable code. 

You should choose ‘Relocatable’. 

 

Later, after building your project 

(see below), you won’t be asked 

this question.  But if ever see this 

prompt, just choose ‘Relocatable’. 

 

 

MPLAB X 

You should download the MPLAB X IDE installer for your platform (Windows, Linux or Mac) from the 

MPLAB X download page at www.microchip.com, and then run it. 

Unlike MPLAB 8, there are no installation options (other than being able to choose the installation 

directory).  It’s an “all or nothing” installer, including support for all of Microchip’s PIC MCUs and 

development tools. 

 

You can then run MPLAB X IDE. 

 

Creating a New Project 

When you first run MPLAB X, you will see the “Learn & Discover” tab, on the Start Page. 

To start a new project, you should run the New Project wizard, by clicking on ‘Create New Project’. 

 

In the first step, you need to specify the project category.  Choose ‘Standalone Project’. 

 

Next, select the PIC family and device. 

In our case, we need ‘Baseline 8-bit MCUs’ as the family, and either the PIC10F200 or PIC12F508 as the 

device. 

 

http://www.microchip.com/
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The third step allows you to optionally select a debug header.  This is a device used to facilitate hardware 

debugging (see explanation in lesson 0), especially for PICs (such as the baseline devices we are using) 

which do not include internal hardware to support debugging.  If you are just starting out, you are unlikely 

to have one of these debug headers, and you don’t need one for these tutorials.  So, you should not select a 

header.  Just click ‘Next’. 

 

The next step is to select the tool you will use to program your PIC. 

First, you should plug in the programmer (e.g. PICkit 2 or PICkit 3) you intend to use.  If it is properly 

connected to your PC, with a functioning device driver
8
, it will appear in the list of hardware tools, and 

you should select it, as shown: 

In this case, a PICkit 2 is connected to the PC. 

 

If you have more than one programmer plugged in (including more than one of the same type, such as two 

PICkit 3s), they will all appear in this list, and you should select the specific one you intend to use for this 

project – you may need to check the serial number.  Of course, you probably only have one programmer, 

so your selection will be easy. 

                                                      

8
 There is no need to install a special device driver for the PICkit 2 or PICkit 3; they work “out of the box”. 

../../PIC_Intro_0.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 1: Light an LED Page 15 

After selecting the hardware tool, you select the compiler (or, in our case, assembler) you will be using:  

To specify that we will be programming in assembler, select the ‘mpasm’ option. 

 

Finally, you need to specify your project’s location, and give it a name:  

MPLAB X creates a folder for its files, under the main project folder. 

For example, in the environment used to develop these tutorials, all the files related to this lesson, 

including schematics and documentation, are placed in a folder named ‘1 - Light an LED’, which is the 

“Project Location” given above.  MPLAB X then creates a separate folder for the PIC source code and 

other files related to this project, in a subfolder that, by default, has the same name as the project, with a 
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‘.X’ on the end.  If you wish, you can remove the ‘.X’ extension from the project folder, before you click 

on ‘Finish’. 

Note the warning about project name and folder path length.  To avoid possible problems, it’s best to use 

shorter names and paths, when using Windows, although in this case it’s actually ok. 

Since this is the only project we’re working on, it doesn’t make much difference whether you select ‘Set 

as main project’; this is something that is more useful when you are working with multiple projects. 

 

After you click “Finish”, your project will appear in the project window, and your workspace should look 

something like this: 
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It is usually best to base your new program on an existing template (which could be a similar program that 

you developed earlier). 

As explained in the MPLAB 8 instructions above, a set of templates for either absolute or relocatable code 

development is provided with MPASM.  These are located under the ‘templates’ directory, within the 

MPASM installation directory, which, if you are using a 32-bit version of Windows, will normally be 

‘C:\Program Files\Microchip\MPLABX\mpasmx’
9
.  As before, the templates for absolute code are found 

in the ‘Code’ directory, while those for relocatable code are found in the ‘Object’ directory. 

We will be developing relocatable code, so you need to copy the appropriate template, such as 

‘10F100TMPO.ASM’ or ‘12F508TMPO.ASM’, from the ‘mpasmx\templates\Object’ directory into the 

project folder created above, and give it a more meaningful name, such as ‘BA_L1-Turn_on_LED-

10F200.asm’. 

For example, with the names and paths given in the illustration for step 6 of the New Project wizard 

above, you would copy: 

    C:\Program Files\Microchip\MPLABX\mpasm\templates\Object\10F200TMPO.ASM 

to 

    C:\...\Baseline\1 – Light an LED\BA_L1-Turn_on_LED-10F200\ BA_L1-Turn_on_LED-10F200.asm 

Of course, you’ll put your project somewhere of your own choosing, and your MPASM installation may 

be somewhere else (especially if you are using Linux or a Mac), and if you’re using a PIC12F508 you’d 

substitute ‘12F508’ instead of ‘10F200’, but this should give you an idea of what’s needed. 

Note that, unlike MPLAB 8, this copy step cannot be done from within the MPLAB X IDE.  You need to 

use your operating system (Windows, Linux or Mac) to copy and rename the template file. 

 

Now we need to tell MPASM X that this file is part of the project. 

One way to do this is to right-click ‘Source Files’ in the project tree within the Projects window, and select 

‘Add Existing Item…’: 

                                                      

9
 On a 64-bit version of Windows, the MPASM folder will be under ‘Program Files (x86)’ 
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You can then select the template file that you copied (and renamed) into the project directory: 

As with MPLAB 8, you need to tell MPLAB X whether the files you add are relative (they move with the 

project, if it is ever moved or copied) or absolute (remain in a fixed location).  If you choose ‘Auto’, 

MPLAB X will guess.  But since we know that this file is specific to your project, and should always 

move with it, you should select ‘Relative’ here. 

 

Your .asm source file will now appear under ‘Source Files’ in the project tree. 

If you double-click it, a text editor window will open, and you can finally start working on your code! 
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As in MPLAB 8, the text editor is aware of PIC assembler (MPASM) syntax and will colour-code the text.  

If you select ‘Options’ under the ‘Tools’ menu, you can set editor properties, such as tab size, but you’ll 

find that the defaults are quite usable to start with. 

Template Code 

The first section of the template is a series of blocks of comments. 

MPASM comments begin with a ‘;’.  They can start anywhere on a line.  Anything after a ‘;’ is ignored 

by the assembler. 

The template begins with some general instructions telling us that “this is a template” and “refer to the 

data sheet”.  We already know all that, so the first block of comments can be deleted. 

The following comment blocks illustrate the sort of information you should include at the start of each 

source file: what it’s called, modification date and version, who wrote it, and a general description of what 

it does.  There’s also a “Files required” section.  This is useful in larger projects, where your code may 

rely on other modules; you can list any dependencies here.  It is also a good idea to include information on 

what processor this code is written for; useful if you move it to a different PIC later.  You should also 

document what each pin is used for.  It’s common, when working on a project, to change the pin 

assignments – often to simplify the circuit layout.  Clearly documenting the pin assignments helps to avoid 

making mistakes when they are changed! 

For example: 

;************************************************************************ 

;                                                                       * 

;   Filename:      BA_L1-Turn_on_LED-10F200.asm                         * 

;   Date:          2/1/12                                               * 

;   File Version:  0.1                                                  * 

;                                                                       * 

;   Author:        David Meiklejohn                                     * 

;   Company:       Gooligum Electronics                                 * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Architecture:  Baseline PIC                                         * 

;   Processor:     10F200                                               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: none                                                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 1, example 1                                 * 

;                                                                       * 

;   Turns on LED.  LED remains on until power is removed.               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

Note that the file version is ‘0.1’.  I don’t call anything ‘version 1.0’ until it works; when I first start 

development I use ‘0.1’.  You can use whatever scheme makes sense to you, as long as you’re consistent. 
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Next in the template, we find: 

    list      p=10F200            ; list directive to define processor 

    #include <p10F200.inc>        ; processor specific variable definitions 

 

or, if you are using the PIC12F508, you would have: 

    list      p=12F508            ; list directive to define processor 

    #include <p12F508.inc>        ; processor specific variable definitions 

 

The first line tells the assembler which processor to assemble for.  It’s not strictly necessary, as it is set in 

MPLAB (configured when you selected the device in the project wizard).  MPLAB 8 displays the 

processor it’s configured for at the bottom of the IDE window; see the screen shots above. 

Nevertheless, you should always use the list directive at the start of your assembler source file.  If you 

rely only on the setting in MPLAB, mistakes can easily happen, and you’ll end up with unusable code, 

assembled for the wrong processor.  If there is a mismatch between the list directive and MPLAB’s 

setting, MPLAB will warn you when you go to assemble, and you can catch and correct the problem. 

The next line uses the #include directive which causes an include file (‘p10F200.inc’ or ‘p12F508.inc’, 

located in the MPASM install directory) to be read by the assembler.  This file sets up aliases for all the 

features of the processor, so that we can refer to registers etc. by name (e.g. ‘GPIO’) instead of numbers.  

Lesson 6 explains how this is done; for now we’ll simply used these pre-defined names, or labels. 

These two things – the list directive and the include file – are specific to the processor.  If you 

remember that, it’s easy to move code to other PICs later. 

 

Next we have, in the 10F200 template: 

    __CONFIG   _MCLRE_ON & _CP_OFF & _WDT_OFF 

 

This sets the processor configuration.  The 10F200 has a number of options that are set by setting various 

bits in a “configuration word” that sits outside the normal address space.  The __CONFIG directive is used 

to set these bits as needed.  We’ll examine these in greater detail in later lessons, but briefly the options 

being set here are: 

 _MCLRE_ON 

Enables the external reset, or “master clear” ( MCLR  ) signal. 

If enabled, the processor will be reset if pin 8 is pulled low.  If disabled, pin 8 can be used as an 

input: GP3.  That’s why, on the circuit diagram, pin 8 is labelled “GP3/MCLR”; it can be either 

an input pin or an external reset, depending on the setting of this configuration bit. 

The Gooligum training board includes a pushbutton which will pull pin 8 low when pressed, 

resetting the PIC if external reset is enabled.  The PICkit 2 and PICkit 3 are also able to pull the 

reset line low, allowing MPLAB to control MCLR  (if enabled) – useful for starting and stopping 

your program. 

So unless you need to use every pin for I/O, it’s a good idea to enable external reset by including 

‘_MCLRE_ON’ in the __CONFIG directive. 

 _CP_OFF 

Turns off code protection.  

When your code is in production and you’re selling PIC-based products, you may not want 

competitors stealing your code.  If you use _CP_ON instead, your code will be protected, meaning 

that if someone tries to use a PIC programmer to read it, all they will see are zeros. 

Since we’re not designing anything for sale, we’ll make our lives easier by leaving code 

protection turned off. 

../6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
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 _WDT_OFF 

Disables the watchdog timer. 

This is a way of automatically restarting a crashed program; if the program is running properly, it 

continually resets the watchdog timer.  If the timer is allowed to expire, the program isn’t doing 

what it should, so the chip is reset and the crashed program restarted – see lesson 7. 

The watchdog timer is very useful in production systems, but a nuisance when prototyping, so 

we’ll leave it disabled. 

 

The 12F508 template has a very similar __CONFIG directive: 

    __CONFIG   _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

The first three options are the same as before, but note that MCLR  is on pin 4 on the 12F508, instead of 

pin 8.  As on the 10F200, MCLR  is shared with GP3.  The LPC Demo Board also includes a pushbutton 

which will pull GP3/ MCLR  (pin 4) low when pressed.  Unless we want to use the pushbutton on the LPC 

Demo Board as an input, it’s best to leave it as a rest button, and enable external reset by specifying 

‘_MCLRE_ON’. 

The 12F508 __CONFIG directive also includes: 

 _IntRC_OSC 

This selects the internal RC oscillator as the clock source. 

Every processor needs a clock – a regular source of cycles, used to trigger processor operations 

such as fetching the next program instruction. 

Most modern PICs, including the 10F200 and 12F508, include an internal ‘RC’ oscillator, which 

can be used as the simplest possible clock source, since it’s all on the chip!  It’s built from passive 

components – resistors and capacitors – hence the name RC. 

The internal RC oscillator on the 10F200 and 12F508 runs at approximately 4 MHz.  Program 

instructions are processed at one quarter this speed: 1 MHz, or 1 µs per instruction. 

Most PICs, including the 12F508, support a number of clock options, including more accurate 

crystal oscillators, as we’ll see in lesson 7, but the 10F200 does not; it only has the internal RC 

oscillator, which is why this wasn’t part of the 10F200’s __CONFIG directive. 

To turn on an LED, we don’t need accurate timing, so we’ll stick with the internal RC oscillator, 

and include ‘_IntRC_OSC’ in the 12F508’s __CONFIG directive. 

 

The comments following the __CONFIG directive in the template can be deleted, but it is a good idea to 

use comments to document the configuration settings. 

For example: 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, int RC clock  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

The next piece of template code demonstrates how to define variables: 

;***** VARIABLE DEFINITIONS 

TEMP_VAR    UDATA 

temp        RES     1             ;example variable definition 

 

../7%20-%20Special%20features/PIC_Base_A_7.pdf
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The UDATA directive tells the linker that this is the start of a section of uninitialised data.  This is data 

memory space that is simply set aside for use later.  The linker will decide where to place it in data 

memory.  The label, such as ‘TEMP_VAR’ here, is only needed if there is more than one UDATA section. 

The RES directive is used to reserve a number of memory locations.  Each location in data memory is 8 

bits, or 1 byte, wide, so in this case, 1 byte is being reserved for a variable called ‘temp’.  The address of 

the variable is assigned when the code is linked (after assembly), and the program can refer to the variable 

by name (i.e. temp), without having to know what its address in data memory is. 

We’ll use variables in later tutorials, but since we don’t need to store any data to simply turn on an LED, 

this section can be deleted. 

 

So far, we haven’t seen a single PIC instruction.  It’s only been assembler or linker directives.  The next 

piece of the 10F200 template code introduces our first instruction: 

;********************************************************************** 

RESET_VECTOR    CODE   0xFF       ; processor reset vector 

 

; Internal RC calibration value is placed at location 0xFF by Microchip 

; as a movlw k, where the k is a literal value. 

 

The CODE directive is used to introduce a section of program code. 

The 0xFF after CODE is an address in hexadecimal (signified in MPASM by the ‘0x’ prefix).  Program 

memory on the 10F200 extends from 000h to 0FFh.  This CODE directive is telling the linker to place the 

section of code that follows it at 0x0FF – the very top of the 10F200’s program memory. 

But there is no code following this first CODE directive, so what’s going on?  Remember that the internal 

RC oscillator is not as accurate as a crystal.  To compensate for that inherent inaccuracy, Microchip uses a 

calibration scheme.  The speed of the internal RC oscillator can be varied over a small range by changing 

the value of the OSCCAL register (refer back to the register map).  Microchip tests every 10F200 in the 

factory, and calculates the value which, if loaded into OSCCAL, will make the oscillator run as close as 

possible to 4 MHz.  This calibration value is inserted into an instruction placed at the top of the program 

memory (0x0FF).  The instruction placed there is: 

        movlw k 

 

‘k’ is the calibration value inserted in the factory. 

‘movlw’ is our first PIC assembler instruction.  It loads the W register with an 8-bit value (between 0 and 

255), which may represent a number, character, or something else. 

Microchip calls a value like this, that is embedded in an instruction, a literal.  It refers to a load or store 

operation as a ‘move’ (even though nothing is moved; the source never changes). 

So, ‘movlw’ means “move literal to W”. 

When the 10F200 is powered on or reset, the first instruction it executes is this movlw instruction at 

address 0x0FF.  After executing this instruction, the W register will hold the factory-set calibration value.  

And after executing an instruction at 0x0FF, there is no more program memory
10

, so the program counter, 

which points to the next instruction to be executed, “wraps around” to point at the start of memory: 0x000. 

0x0FF is the 10F200’s true “reset vector” (where code starts running after a reset), but 0x000 is the 

effective reset vector, where you place the start of your own code. 

Confused? 

                                                      

10
 The 10F200 has only 256 words of program memory, from address 000h to 0FFh. 
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What it really boils down to is that, when the 10F200 starts, it picks up a calibration value stored at the top 

of program memory, and then starts executing code from the start of program memory.  Since you should 

never overwrite the calibration value at the top of memory, the start of your code will always be placed at 

0x000, and when your code starts, the W register will hold the oscillator calibration value. 

 

This “RESET_VECTOR” code section, as presented in the template, is not really very useful (other than 

comments telling you what you should already know from reading the data sheet), because it doesn’t 

actually stop your program overwriting the calibration value.  Sure, it’s unlikely that your program would 

completely fill available memory, but to be absolutely sure, we can use the RES directive to reserve the 

address at the top of program memory: 

;***** RC CALIBRATION 

RCCAL   CODE    0x0FF       ; processor reset vector 

        res 1               ; holds internal RC cal value, as a movlw k 

 

Now, even if our program grows to fill all available program memory, the linker won’t allow us to 

overwrite the calibration value, because it’s been reserved. 

 

The corresponding code section for the 12F508 version is much the same: 

;***** RC CALIBRATION 

RCCAL   CODE    0x1FF       ; processor reset vector 

        res 1               ; holds internal RC cal value, as a movlw k 

 

The only difference is that, because the 12F508 has 512 words of program memory, extending from 

address 000h to 1FFh, its calibration instruction is located at 0x1FF. 

 

You can choose to use the oscillator calibration value, or simply ignore it.  But if you’re using the internal 

RC oscillator, you should immediately copy this value to the OSCCAL register, to calibrate the oscillator 

with the factory setting, and that’s what the next piece of code from the template does: 

MAIN CODE    0x000 

 movwf   OSCCAL            ; update register with factory cal value 

 

This CODE directive tells the linker to place the following section of code at 0x000 – the effective reset 

vector. 

The ‘movwf’ instruction copies (Microchip would say “moves”) the contents of the W register into the 

specified register – “move W to file register”. 

In this case, W holds the factory calibration value, so this instruction writes that calibration value into the 

OSCCAL register. 

Changing the labels and comments a little (for consistency with later lessons), we have: 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000       ; effective reset vector 

        movwf   OSCCAL      ; apply internal RC factory calibration 

 

 

At this point, all the preliminaries are out of the way.  The processor has been specified, the configuration 

set, the oscillator calibration value updated, and program counter pointing at the right location to run user 

code. 

If this seems complicated (and unfortunately, it is!), at least the worst is over.  We can finally start the 

main part of the program, and focus on actually implementing the application. 
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The final piece of template code is simply an example showing where and how to place your code: 

start  

    nop                       ; example code 

    movlw   0xFF              ; example code 

    movwf   temp              ; example code 

 

; remaining code goes here 

 

 

 END                       ; directive 'end of program' 

 

 

‘start’ is an example of a program label, used in loops, branches and subroutines.  It’s not necessary to 

label the start of your code ‘start’.  But it does make it easier to follow the code. 

‘nop’ is a “no operation” instruction; it does nothing other than waste an instruction cycle – something 

you might want to do as part of a delay loop (we’ll look at examples in the next lesson). 

‘movlw’ and ‘movwf’ we’ve seen before. 

‘END’ is an assembler directive, marking the end of the program source.  The assembler will ignore any 

text after the ‘END’ directive – so it really should go right at the end! 

 

Of course, we need to replace these example instructions with our own.  This is where we place the code 

to turn on the LED! 

Turning on the LED 

To turn on the LED on GP1, we need to do two things: 

 Configure GP1 as an output 

 Set GP1 to output a high voltage 

We could leave the other pins configured as inputs, or set them to output a low.  Since, in this circuit, they 

are not connected to anything, it doesn’t really matter.  But for the sake of this exercise, we’ll configure 

them as inputs. 

When a baseline PIC is powered on, all pins are configured by default as inputs, and the content of the 

port register, GPIO, is undefined. 

 

To configure GP1 as an output, we have to write a ‘0’ to bit 1 of the TRIS register. This is done by: 

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

The ‘tris’ instruction stores the contents of W into a TRIS register. 

Although there is only one TRIS register on the 10F200 or 12F508, it is still necessary to specify ‘GPIO’ 

(or equivalently the number 6, but that would be harder to follow) as the operand. 

Note that to specify a binary number in MPASM, the syntax b‘binary digits’ is used, as shown. 

 

To set the GP1 output to ‘high’, we have to set bit 1 of GPIO to ‘1’.  This can be done by: 

        movlw   b'000010'       ; set GP1 high 

        movwf   GPIO 

 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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As the other pins are all inputs, it doesn’t matter what they are set to. 

Note again that, to place a value into a register, you first have to load it into W.  You’ll find that this sort 

of load/store process is common in PIC programming. 

 

Finally, if we leave it there, when the program gets to the end of this code, it will restart.  So we need to 

get the PIC to just sit doing nothing, indefinitely, with the LED still turned on, until it is powered off. 

What we need is an “infinite loop”, where the program does nothing but loop back on itself, indefinitely.  

Such a loop could be written as: 

here    goto    here 

 

‘here’ is a label representing the address of the goto instruction. 

‘goto’ is an unconditional branch instruction.  It tells the PIC to go to a specified program address. 

This code will simply go back to itself, always.  It’s an infinite, do-nothing, loop. 

 

A shorthand way of writing the same thing, that doesn’t need a unique label, is: 

        goto    $               ; loop forever 

 

‘$’ is an assembler symbol meaning the current program address. 

So this line will always loop back on itself. 

 

This little program, although small, has a structure common to most PIC programs: an initialisation 

section, where the I/O pins and other facilities are configured and initialised, followed by a “main loop”, 

which repeats forever.  Although we’ll add to it in future lessons, we’ll always keep this basic structure of 

initialisation code followed by a main loop. 

 

Complete program 

Putting together all the above, here’s the complete assembler source needed for turning on an LED, for the 

PIC10F200: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 1, example 1                                 * 

;                                                                       * 

;   Turns on LED.  LED remains on until power is removed.               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=10F200            

    #include    <p10F200.inc>    

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF 
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;***** RC CALIBRATION  

RCCAL   CODE    0x0FF       ; processor reset vector 

        res 1               ; holds internal RC cal value, as a movlw k 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000       ; effective reset vector 

        movwf   OSCCAL      ; apply internal RC factory calibration  

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

        movlw   b'000010'       ; set GP1 high 

        movwf   GPIO 

 

;***** Main loop           

        goto    $               ; loop forever 

 

 

        END 

 

The 12F508 version is very similar, with changes to the list, #include, __CONFIG and RCCAL CODE 

directives, as noted earlier. 

 

That’s it!  Not a lot of code, really… 

 

Building the Application and Programming the PIC 

Now that we have the complete assembler source, we can build the final application code and program it 

into the PIC. 

This is done in two steps: 

 Build the project 

 Use a programmer to load the program code into the PIC 

The first step, building the project, involves assembling the source files
11

 to create object files, and linking 

these object files, to build the executable code.  Normally this is transparent; MPLAB does all of this for 

you in a single operation.  The fact that, behind the scenes, there are multiple steps only becomes 

important when you start working with projects that consist of multiple source files or libraries of pre-

assembled routines. 

A PIC programmer, such as the PICkit 2 or PICkit 3, is then used to upload the executable code into the 

PIC.  Although a separate application is sometimes used for this “programming” process, it’s convenient 

when developing code to do the programming step from within MPLAB, which is what we’ll look at here. 

Although the concepts are the same, the details of building your project and programming the PIC depend 

on the IDE you are using, so we’ll look at how it’s done in both MPLAB 8 and MPLAB X. 

                                                      

11
 Although there is only one source file in this simple example, larger projects often consist of multiple files; we’ll 

see an example in lesson 3. 
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MPLAB 8.xx 

Building the project 

When you build a project using MPLAB 8, it needs to know whether you will be using a hardware 

debugger to debug your code. 

We won’t be debugging, so select “Release” under the “Project → Build Configuration” menu item, or, 

more conveniently, select “Release” from the drop-down menu in the toolbar. 

To build the project, select the “Project  Make” menu item, press F10, or click on the “Make” button in 

the toolbar:  

“Make” will assemble any source files which need assembling (ones which have changed since the last 

time the project was built), then link them together. 

The other option is “Project  Build All” (Ctrl+F10), which assembles all the source files, regardless of 

whether they have changed (are “out of date”) or not. 

For a small, single-file project like this, “Make” and “Build All” have the same effect; you can use either.  

In fact, the only reason to use “Make” is that, in a large project, it saves time to not have to re-assemble 

everything each time a single change is made. 

 

When you build the project (run “Make”), you’ll see text in the Output window showing the code being 

assembled, similar to this: 

Make: The target "C:\Work\Gooligum\Tutorials\Series 2\Baseline\1 - Light an LED\BA_L1-Turn_on_LED-
10F200.o" is out of date. 
Executing: "C:\Program Files\Microchip\MPASM Suite\MPASMWIN.exe" /q /p10F200 "BA_L1-Turn_on_LED-
10F200.asm" /l"BA_L1-Turn_on_LED-10F200.lst" /e"BA_L1-Turn_on_LED-10F200.err" /o"BA_L1-Turn_on_LED-
10F200.o" 
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If you see any errors or warnings, you probably have a syntax error somewhere, so check your code 

against the listing above. 

The next several lines show the code being linked: 

Make: The target "C:\Work\Gooligum\Tutorials\Series 2\Baseline\1 - Light an LED\BA_L1-Turn_on_LED-

10F200.cof" is out of date. 

Executing: "C:\Program Files\Microchip\MPASM Suite\mplink.exe" /p10F200 "BA_L1-Turn_on_LED-10F200.o" 

/z__MPLAB_BUILD=1 /o"BA_L1-Turn_on_LED-10F200.cof" /M"BA_L1-Turn_on_LED-10F200.map" /W 

MPLINK 4.41, Linker 

Device Database Version 1.5 

Copyright (c) 1998-2011 Microchip Technology Inc. 

Errors    : 0 

 

MP2HEX 4.41, COFF to HEX File Converter 

Copyright (c) 1998-2011 Microchip Technology Inc. 

Errors    : 0 

 

Loaded C:\Work\Gooligum\Tutorials\Series 2\Baseline\1 - Light an LED\BA_L1-Turn_on_LED-10F200.cof. 

 

The linker, “MPLINK”, creates a “COFF” object module file, which is converted into a “.hex” hex file, 

which contains the actual machine codes to be loaded into the PIC. 

In addition to the hex file, other outputs of the build process include a “.lst” list file which allows you to 

see how MPASM assembled the code and the values assigned to symbols, and a “.map” map file, which 

shows how MPLINK laid out the data and code segments in the PIC’s memory. 

Programming the PIC 

The final step is to upload the final assembled and linked code into the PIC. 

First, ensure that you have connected you PICkit 2 or PICkit 3 programmer to your Gooligum training 

board or Microchip LPC Demo Board, with the PIC correctly installed in the appropriate IC socket
12

, and 

that the programmer is plugged into your PC.  

You can now select your programmer from the “Programmer → Select Programmer” menu item. 

 

If you are using a PICkit 2, you should see messages in a “PICkit 2” tab in the Output window, similar to 

these: 

Initializing PICkit 2 version 0.0.3.63 

Found PICkit 2 - Operating System Version 2.32.0 

Target power not detected - Powering from PICkit 2 ( 5.00V) 

PICkit 2 Ready 

 

If the operating system in the PICkit 2 is out of date, you will see some additional messages while it is 

updated. 

If you don’t get the “Found PICkit 2” and “PICkit 2 Ready” messages, you have a problem somewhere 

and should check that everything is plugged in correctly. 

 

                                                      

12
 Or, in general, that the PIC you wish to program is connected to whichever programmer or debugger you are using, 

whether it’s in a demo/development/training board, a production board, or a standalone programmer. 
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If you are using a PICkit 3, you may 

see a message telling you new 

firmware must be downloaded. 

This is because, unlike the PICkit 2, 

the PICkit 3 uses different firmware to 

support each PIC device family, such 

as baseline or mid-range. 

You’ll only see this prompt when you 

change to a new device family. 

If you do see it, just click ‘OK’. 

 

 

You may also see a voltage caution 

warning, as shown on the right. 

This is because many newer PIC 

devices, including those with ‘LF’ in 

their part number, do not support 5 V 

operation, and can be damaged if 

connected to a 5 V supply. 

The PICkit 3 will supply 5 V if you 

select a 5 V device, such as the 

10F200 or 12F508. 

We are using a 5 V device, so you can 

click ‘OK’. 

 

You may now see an error message in 

the output window, such as: 

PK3Err0045: You must connect to a target device to use PICkit 3. 

This is because, despite the previous warning about power, the PICkit 3 will not actually supply power to 

our circuit (necessary to program the PIC, unless you have separate power supply), until you tell it to do 

so. 

Select the “Programmer → Settings” menu item.  This will open the PICkit 3 Settings window.  In the 

“Power” tab, select “Power target circuit from PICkit 3”, as shown: 

You can leave the 

voltage set to 5.0 V, 

and then click ‘OK’. 

 

You’ll get the 

voltage caution 

again, so click ‘OK’ 

again. 
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If you now choose the “Programmer → Reconnect” menu item, you should see messages in a “PICkit 3” 

tab in the Output window (after yet another voltage caution), similar to these: 

PICkit 3 detected 

Connecting to PICkit 3... 

Firmware Suite Version...... 01.26.92 

Firmware type......................Baseline 

PICkit 3 Connected. 

 

It does seem that the PICkit 3 is a little fiddlier to work with, than the PICkit 2… 

 

After you select your programmer, an additional toolbar will appear. 

 

For the PICkit 2, it looks like:  

 

For the PICkit 3, we have:  

 

As you can see, they are very similar. 

The first icon (on the left) is used to initiate programming.  When you click on it, you should see messages 

like: 

Programming Target (5/01/2012  12:41:49 PM) 

Erasing Target 

Programming Program Memory (0x0 - 0x7) 

Verifying Program Memory (0x0 - 0x7) 

Programming Configuration Memory 

Verifying Configuration Memory 

PICkit 2 Ready 

 

Or, if you are using a PICkit 3, simply: 

Programming... 

Programming/Verify complete 

 

Your PIC is now programmed! 

 

If you are using a PICkit 3, the LED on GP1 should immediately light up. 

 

If you have a PICkit 2, you won’t see anything yet.  That is because, by default, the PICkit 2 holds the 

MCLR  line low after programming.  Since we have used the _MCLRE_ON configuration option, enabling 

external reset, the PIC is held in reset and the program will not run.  If we had not configured external 

resets, the LED would have lit as soon as the PIC was programmed. 

icon, or select the “Programmer  Release from Reset” To allow the program to run, click on the  

menu item. 

The LED should now light! 
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MPLAB X 

Building the project 

Before you build your project using MPLAB X, you should first ensure that it is the “main” project.  It 

should be highlighted in bold in the Projects window. 

To set the project you want to work on (and build) as the main project, you should right-click it and select 

“Set as Main Project”.  If you happen to have more than one project in your project window, you can by 

removing any project you are not actively working on (to reduce the chance of confusion) from the 

Projects window, by right-clicking it and selecting “Close”. 

To build the project, right-click it in the Projects window and select “Build”, or select the “Run → Build 

Main Project” menu item, or simply click on the “Build Main Project” button (looks like a hammer) in the 

toolbar: 

This will assemble any source files which have changed since the project was last built, and link them. 

An alternative is “Clean and Build”, which removes any assembled (object) files and then re-assembles all 

files, regardless of whether they have been changed.  This action is available by right-clicking in the 

Projects window, or under the “Run” menu, or by clicking on the “Clean and Build Main Project” button 

(looks like a hammer with a brush) in the toolbar. 

 

When you build the project, you’ll see messages in the Output window, showing your source files being 

assembled and linked.  At the end, you should see: 

BUILD SUCCESSFUL (total time: 2s) 

(of course, your total time will probably be different…) 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 1: Light an LED Page 32 

If, instead, you see an error message, you’ll need to check your code and your project configuration. 

Programming the PIC 

The final step is to upload the executable code into the PIC. 

First, ensure that you have connected you PICkit 2 or PICkit 3 programmer to your Gooligum training 

board or Microchip LPC Demo Board, with the PIC correctly installed in the appropriate IC socket, and 

that the programmer is plugged into your PC.  

If you have been following this lesson, you will have specified the programmer when you created your 

project (in step 4 of the wizard). 

If you want to check that the correct programmer is selected, or if you want to change your tool selection, 

you can right-click your project in the Projects window and select “Properties”, or simply click on the 

“Project Properties” button on the left side of the Project Dashboard: 
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This will open the project properties window, where you can verify or change your hardware tool 

(programmer) selection: 

After closing the project properties window, you can now program the PIC. 

You can do this by right-clicking your project in the Projects window, and select “Make and Program 

Device”.  This will repeat the project build, which we did earlier, but because nothing has changed (we 

have not edited the code), the “make” command will see that there is nothing to do, and the assembler will 

not run. 

Instead, you should see output like: 

BUILD SUCCESSFUL (total time: 266ms) 

Loading C:/Work/Gooligum/Tutorials/Series 2/Baseline/1 - Light an LED/BA_L1-Turn_on_LED-

10F200/dist/default/production/BA_L1-Turn_on_LED-10F200.production.hex... 

Loading completed 

Connecting to programmer... 

Programming target... 

(the total time is much smaller than before, because no assembly had to be done). 
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If you are using a PICkit 3, MPLAB X will download new firmware into it, and you will see messages in 

the PICkit 3 output window like: 

Downloading Firmware... 

Downloading AP... 

AP download complete 

Firmware Suite Version.....01.27.20 

Firmware type..............Baseline 

You may also see a voltage caution warning, as shown below: 

Since we are using a 5 V device, you can click ‘OK’.  And feel free to click “Do not show this message 

again”, to avoid seeing this caution every time you program your PIC. 

You may now see an error message in the PICkit 3 output window, stating: 

Target device was not found. You must connect to a target device to use PICkit 3. 

This happens if the PIC is unpowered, so we need to tell the PICkit 3 to supply power. 

Open the project properties window (as on the previous page), select ‘PICkit 3’ in the categories tree, and 

choose the ‘Power’ option in the drop-down categories list: 
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Select “Power target circuit from PICkit3”, as shown.  You can leave the voltage set to 5.0 V, and then 

click ‘OK’. 

 

If you now perform “Make and Program Device” again, the programming should be successful and you 

should see, in the build output window, messages ending in: 

Programming completed 

 

Note that this action combines making (or building) the project, with programming the PIC.  What were 

two steps in MPLAB 8 are combined into one step here.  In fact, with MPLAB X, there is no 

straightforward way to simply program the PIC, without building your project as well. 

This makes sense, because you will almost always want to program your PIC with the latest code.  If you 

make a change in the editor, you want to program that change into the PIC.  With MPLAB X, you can be 

sure that whatever code you see in your editor window is what will be programmed into the PIC. 

But most times, you’ll want to go a step further, and run your program, after uploading it into the PIC, to 

see if it works.  For that reason, MPLAB X makes it very easy to build your code, program it into your 

PIC, and then run it, all in a single operation. 

There are a few ways to do this: 

 Right-click your project in the Projects window, and select “Run”, or 

 Select the “Run → Run Main Project” menu item, or 

 Press ‘F6’, or 

 Click on the “Make and Program Device” button in the toolbar:  

 

Whichever of these you choose, you should see output messages ending in: 

Running target... 

The LED on GP1 should now light. 

 

Being able to build, program and run in a single step, by simply pressing ‘F6’ or clicking on the “Make 

and Program Device” button is very useful, but what if you don’t want to automatically run your code, 

immediately after programming? 

If you want to avoid running your code, click on the “Hold in Reset” toolbar button ( ) before 

programming.  You can now program your PIC as above. 

Your code won’t run until you click the reset toolbar button again, which now looks like and is 

now tagged as “Release from Reset”. 

 

Summary 

The sections above, on building your project and programming the PIC, have made using MPLAB X seem 

much more complicated than it really is. 

Certainly, there are a lot of options and ways of doing things, but in practice it’s very simple. 

Most of the time, you will be working with a single project, and only one hardware tool, such as a 

programmer or debugger, which you will have selected when you first ran the New Project wizard. 
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In that case (and most times, it will be), just press ‘F6’ or click on to build, program and run your 

code – all in a single, easy step. 

That’s all there is to it.  Use the New Project wizard to create your project, add a template file to base your 

code on, use the editor to edit your code, and then press ‘F6’.  

 

Conclusion 

For such a simple task as lighting an LED, this has been a very long lesson! 

In summary, we: 

 Introduced two baseline PICs: 

o 10F200 

o 12F508 

 Showed how to configure and use the PIC’s output pins 

 Implemented an example circuit using two development boards: 

o Gooligum training and development board 

o Microchip Low Pin Count Demo Board 

 Looked at Microchip’s assembly template code and saw: 

o  some PIC assembler directives 

o some PIC configuration options 

o our first few PIC instructions 

 Modified it to create our (very simple!) PIC program 

 Introduced two development environments: 

o MPLAB 8.xx 

o MPLAB X 

 Showed how to use these development environments to: 

o Create a new project 

o Include existing template code 

o Modify that template code 

o Build the program 

o Program the PIC, using: 

 PICkit 2 

 PICkit 3 

o Run the program 

 

That is a lot, to accomplish so little – although you can of course ignore the sections that aren’t relevant to 

your environment.  You should use MPLAB 8 if it’s still available, supported, and works with your PC, in 

which case you can ignore the MPLAB X sections for now, and come back to them if you upgrade later.  
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If you have the Gooligum training board, you can ignore sections about the Microchip LPC Demo board.  

And if you’re lucky enough to have a PICkit 2, you can ignore the sections about the PICkit 3. 

 

Nevertheless, after all this, you have a solid base to build on.  You have a working development 

environment.  You can create projects, modify your code, load (program) your code into your PIC, and 

make it run. 

Congratulations!  You’ve taken your first step in PIC development! 

That first step is the hardest.  From this point, we build on what’s come before. 

 

In the next lesson, we’ll make the LED flash… 

 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 2: Flash an LED 

 

 

In lesson 1 we lit a single LED connected to one of the pins of a PIC10F200 or PIC12F508. 

Now we’ll make it flash. 

In doing this, we will learn about: 

 Using loops to create delays 

 Variables 

 Using exclusive-or (xor) to flip bits 

 The ‘read-modify-write’ problem 

 

The development environments and microcontrollers used for this lesson are the same as those in lesson 1. 

Again, it is assumed that you are using a Microchip PICkit 2or PICkit 3 programmer and either the 

Gooligum Baseline and Mid-Range PIC Training and Development Board or Microchip’s Low Pin Count 

(LPC) Demo Board, with Microchip’s MPLAB 8 or MPLAB X integrated development environment.  But it 

is of course possible to adapt these instructions to a different programmers and/or development boards. 

We will also assume that, if you have the Gooligum training board, you will continue to use the PIC10F200, 

and that it you have the Microchip  LPC Demo Board, you will be using a PIC12F508 – both introduced in 

lesson 1. 

 

Example Circuit 

Here’s the PIC10F200 version of the circuit again. 

 

If you have the Gooligum training board, simply plug the 

PIC10F200 into the 8-pin IC socket marked ‘10F’. 

 

Connect a shunt across the jumper (JP12) on the LED 

labelled ‘GP1’, and ensure that every other jumper is 

disconnected.  

 

 

../1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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Here’s the corresponding PIC12F508 version. 

 

You will need to use a PIC12F508 if you have 

Microchip’s Low Pin Count Demo Board. 

 

Refer back to lesson 1 to see how to build this circuit, 

either by soldering a resistor, LED (and optional isolating 

jumper) to the demo board, or by making connections on 

the demo board’s 14-pin header. 

 

 

 

 

Creating a new project 

It is a good idea, where practical, to base a new software project on work you’ve done before.  In this case, it 

makes sense to build on the program from lesson 1 – we just have to add extra instructions to flash the LED. 

How to create a new project, based on an existing one, depends on whether you’re using MPLAB 8 or 

MPLAB X, so we’ll take a look at both. 

 

MPLAB 8.xx 

There are a couple of ways to do this, but the following method works well. 

First, open the project you created in lesson 1 in MPLAB 8.  You can do this easily by double-clicking the 

‘*.mcp’ project file in your project folder. 

Now use the “Project  

Save Project As…” 

menu item to save the 

project in a new folder, 

with a new name.   

 

When a project is saved 

to a new location, all the 

files belonging to that 

project (“User” files, 

with relative paths) are 

copied to that location.  

You will find that in this 

case the ‘*.asm’ source 

file from lesson 1 has 

been copied into your 

new folder. 

 

../1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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The next step is to use the project wizard ( “Project  Project Wizard…”) to reconfigure the project, giving 

the source file a new name. 

The correct device (PIC10F200 or PIC12F508) will already be selected, as will the toolsuite (MPASM), so 

simply click 

“Next” until you 

get to Step 

Three, and select 

“Reconfigure 

Active Project” 

and “Make 

changes without 

saving”, as 

shown: 

 

 

 

 

 

 

 

 

 

 

 

You are now presented with the following window, showing the assembler source file with a “U” to indicate 

a user file, in the 

new project 

directory, but 

with the same 

name as before: 
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Click on the “U” until it changes to a “C”.  You can now click on the file name and rename it to something 

more appropriate to this lesson, such as ‘BA_L2-Flash_LED.asm’: 

Finally click “Next” then “Finish” and the project is reconfigured, with the renamed source file: 
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It’s a good idea at this point to save your new project, using the “Save Workspace” icon, or the “Project  

Save Project” menu item. 

If you double-click on the source file (‘BA_L2-Flash_LED-10F200.asm’ in this example), you’ll see a copy 

of your code from lesson 1: 

 

 

MPLAB X 

To create a new project in MPLAB X, based on an existing project, you first need to run MPLAB X (you 

can’t simply double-click on a project file, like you can with MPLAB 8 projects), and then open your 

existing project within MPLAB X. 

If you were recently working on the project you want to copy (such as the project from lesson 1), it is 

probably already visible in the Projects window.  If it’s not, it may appear under the “File  Open Recent 

Project” menu list.  Or you can use the “File  Open Project” menu item, or click on the “Open Project…” 

toolbar button and browse to your project folder, select it, and click ‘Open Project’: 
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You should now right-click the project name (‘BA_L1-Turn_on_LED-10F200’ in this example) in the 

Projects window, and select “Copy…”. 

The “Copy Project” dialog now gives you a chance to give your copied project a new name, such as 

‘BA_L2-Flash_LED’.  You can also specify (and create, if you wish) a new folder for this project, by 

browsing to it: 

When you are satisfied with your new project name and location, click ‘Copy’. 

Your new project should now appear in the Projects window. 

You can close your old project by right-clicking it and selecting “Close”, so that only your new project is 

visible. 

 

If you expand your new project, you’ll see that source file from the old project has been copied into the new 

project, with its original name: 

To rename the source file, to 

something more appropriate for 

this project, right-click it and 

select “Rename…”. 

Type in the new name, such as 

‘BA_L2-Flash_LED’ and then 

click ‘OK’. 

Note that there is no need to type 

the ‘.ASM’ suffix – the Rename 

dialog will keep the existing file 

extension. 

 

You now have a new project, with 

a new name in a new location, 

with a renamed source file, copied 

from your old project. 
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If you double-click your new source file, you’ll see a copy of your code from lesson 1 in an editor window: 

Flashing the LED 

Whether you are using MPLAB 8 or X, you can now use the editor to update your code from lesson 1. 

We’ll need to add some code to make the LED flash, but first the comments should be updated to reflect the 

new project.  For example: 

;************************************************************************ 

;                                                                       * 

;   Filename:      BA_L2-Flash_LED-10F200.asm                           * 

;   Date:          20/1/12                                              * 

;   File Version:  1.0                                                  * 

;                                                                       * 

;   Author:        David Meiklejohn                                     * 

;   Company:       Gooligum Electronics                                 * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Architecture:  Baseline PIC                                         * 

;   Processor:     10F200                                               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: none                                                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 2, example 1                                 * 

;                                                                       * 

;   Flashes a LED at approx 1 Hz.                                       * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 
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;   Pin assignments:                                                    * 

;       GP1 = flashing LED                                              * 

;                                                                       * 

;************************************************************************ 

 

We’re using the same PIC device as before, and it will be configured the same way, so we can leave the 

processor definition and configuration sections unchanged.  There is also no need to change the internal RC 

oscillator calibration or reset vector sections. 

So, for the PIC10F200 version, we still have, unchanged from lesson 1: 

    list        p=10F200            

    #include    <p10F200.inc>    

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF 

 

 

;***** RC CALIBRATION  

RCCAL   CODE    0x0FF       ; processor reset vector 

        res 1               ; holds internal RC cal value, as a movlw k 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000       ; effective reset vector 

        movwf   OSCCAL      ; apply internal RC factory calibration 

 

while for the PIC12F508, we have instead (also unchanged from lesson 1): 

    list        p=12F508           

    #include    <p12F508.inc>       

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, int RC clock  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x1FF       ; processor reset vector 

        res 1               ; holds internal RC cal value, as a movlw k 

         

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000       ; effective reset vector 

        movwf   OSCCAL      ; apply internal RC factory calibration 

 

 

Again, we need to set up the PIC so that only GP1 is configured as an output, so we can leave the 

initialisation code from lesson 1 intact: 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 
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In lesson 1, we made GP1 high, and left it that way.  To make it flash, we need to set it high, then low, and 

then repeat.  You may think that you could achieve this with something like: 

flash 

        movlw   b'000010'       ; set GP1 high 

        movwf   GPIO 

        movlw   b'000000'       ; set GP1 low 

        movwf   GPIO 

        goto    flash           ; repeat forever 

 

If you try this code, you’ll find that the LED appears to remain on continuously.  In fact, it’s flashing too fast 

for the eye to see. 

Our PIC is using an internal RC oscillator
1
, clocked at a nominal 4 MHz.  Each instruction executes in four 

clock cycles, or 1 µs – except instructions which branch to another location, such as ‘goto’, which require 

two instruction cycles, or 2 µs
2
. 

This loop takes a total of 6 µs, so the LED flashes at 1/(6 µs) = 166.7 kHz.  That’s much to fast to see! 

To slow it down to a more sedate (and visible!) 1 Hz, we have to add a delay.  But before looking at delays, 

we can make a small improvement to the code. 

To flip, or toggle, a single bit – to change it from 0 to 1 or from 1 to 0, you can exclusive-or it with 1. 

That is: 

0 XOR 1 = 1 

1 XOR 1 = 0 

So to repeatedly toggle GP1, we can read the current state of GPIO, exclusive-or the bit corresponding to 

GP1, then write it back to GPIO, as follows: 

        movlw   b'000010'       ; bit mask to toggle GP1 only 

flash 

        xorwf   GPIO,f          ; toggle GP1 using mask in W 

        goto    flash           ; repeat forever 

 

The ‘xorwf’ instruction exclusive-ors the W register with the specified register – “exclusive-or W with file 

register”, and writes the result either to the specified file register (GPIO in this case) or to W. 

Note that there is no need to set GP1 to an initial state; whether it’s high or low to start with, it will be 

successively flipped.  

Many of the PIC instructions, like xorwf, are able to place the result of an operation (e.g. add, subtract, or in 

this case XOR) into either a file register or W.   This is referred to as the instruction destination.  A ‘,f’ at 

the end indicates that the result should be written back to the file register; to place the result in W, use ‘,w’ 

instead. 

This single instruction – ‘xorwf GPIO,f’ – is doing a lot of work.  It reads GPIO, performs the XOR 

operation, and then writes the result back to GPIO. 

The read-modify-write problem 

And therein lays a potential problem.  You’ll find it referred to as the read-modify-write problem.  When an 

instruction reads a port register, such as GPIO, the value that is read back is not necessarily the value that 

                                                      

1
 The 12F508 has been configured (using the __config directive) to use its internal RC oscillator, while the 10F200 

can only use an internal RC oscillator; there is no other choice.   

2
 Assuming a 4 MHz processor clock 
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you originally wrote to it.  When the PIC reads a port register, it doesn’t read the value in the “output latch” 

(i.e. the value you wrote to it).  Instead, it reads the pins themselves – the voltages present in the circuit. 

Normally, that doesn’t matter.  When you write a ‘1’, the corresponding pin (if configured as an output) will 

go to a high voltage level, and when you then read that pin, it’s still at a high voltage, so it reads back as a 

‘1’.  But if there’s excessive load on that pin, the PIC may not be able to drive it high, and it will read as a 

‘0’.  Or capacitance loading the output line may mean a delay between the PIC’s attempt to raise the voltage 

and the voltage actually swinging high enough to register as a ‘1’.   Or noise in the circuit may mean that a 

line that normally reads as a ‘1’, sometimes (randomly) reads as a ‘0’. 

In this simple case, particularly when we slow the flashing down to 1 Hz, you’ll find that this isn’t an issue.  

The above code will usually work correctly.  But it’s good to get into good habits early.  For the reasons 

given above, it is considered “bad practice” to assume a value you have previously written is still present on 

an I/O port register. 

It’s better to keep a copy of what the port value is supposed to be, and operate on that, then copy it to the port 

register.  This is referred to as using a shadow register. 

We could use W as a shadow register, as follows: 

        movlw   b'000000'       ; start with W zeroed 

flash 

        xorlw   b'000010'       ; toggle W bit corresponding to GP1 (bit 1) 

        movwf   GPIO            ; and write to GPIO 

        goto    flash           ; repeat forever 

 

Each time around the loop, the contents of W are updated and then written to the I/O port. 

The ‘xorlw’ instruction exclusive-ors a literal value with the W register, placing the result in W – 

“exclusive-or literal to W”. 

Normally, instead of ‘movlw  b'000000'’ (or simply ‘movlw  0’) you’d use the ‘clrw’ instruction – 

“clear W”. 

‘clrw’ has the same effect as ‘movlw  0’, except that ‘clrw’ sets the ‘Z’ (zero) status flag, while the 

‘movlw’ instruction doesn’t affect any of the status flags, including Z. 

Status flags are bits in the STATUS register: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS GPWUF - - TO   PD   Z DC C 

 

Certain arithmetic or logical operations will set or clear the Z, DC or C status bits, and other instructions can 

test these bits, and take different actions depending on their value.  We’ll see examples of testing these flags 

in later lessons. 

 

We’re not using Z here, so we can use clrw to make the code more readable: 

        clrw     ; use W to shadow GPIO - initially zeroed 

flash 

        xorlw   b'000010'       ; toggle W bit corresponding to GP1 (bit 1) 

        movwf   GPIO            ; and write to GPIO 

        goto    flash           ; repeat forever 

 

 

It would be very unusual to be able to use W as a shadow register, because it is used in so many PIC 

instructions.  When we add delay code, it will certainly need to be able to change the contents of W, so we’ll 

have to use a file register to hold the shadow copy of GPIO. 
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In lesson 1, we saw how to allocate data memory for variables (such as shadow registers), using the UDATA 

and RES directives.  In this case, we need something like: 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

sGPIO   res 1                    ; shadow copy of GPIO 

 

 

The flashing code now becomes: 

        clrf    sGPIO           ; clear shadow register 

flash 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

        goto    flash           ; repeat forever 

 

That’s nearly twice as much code as the first version, that operated on GPIO directly, but this version is 

much more robust. 

There are two new instructions here. 

‘clrf’ clears (sets to 0) the specified register – “clear file register”. 

‘movf’, with ‘,w’ as the destination, copies the contents of the specified register to W – “move file register 

to destination”.  This is the instruction used to read a register. 

‘movf’, with ‘,f’ as the destination, copies the contents of the specified register to itself.  That would seem 

to be pointless; why copy a register back to itself?  The answer is that the ‘movf’ instruction affects the Z 

status flag, so copying a register to itself is a sneaky way to test whether the value in the register is zero. 

Delay Loops 

To make the flashing visible, we need to slow it down, and that means getting the PIC to “do nothing” 

between LED changes. 

The baseline PICs do have a “do nothing” instruction: ‘nop’ – “no operation”.  All it does is to take some 

time to execute. 

How much time depends on the clock rate.  Instructions are executed at one quarter the rate of the processor 

clock.  In this case, the PIC is using the internal RC clock, running at a nominal 4 MHz (see lesson 1).  The 

instructions are clocked at ¼ of this rate: 1 MHz.   Each instruction cycle is then 1 µs. 

Most baseline PIC instructions, including ‘nop’, execute in a single cycle.  The exceptions are those which 

jump to another location (such as ‘goto’) or if an instruction is conditionally skipped (we’ll see an example 

of this soon).  So ‘nop’ provides a 1 µs delay – not very long! 

Another “do nothing” instruction is ‘goto $+1’.  Since ‘$’ stands for the current address, ‘$+1’ is the 

address of the next instruction.  Hence, ‘goto $+1’ jumps to the following instruction – apparently useless 

behaviour.  But all ‘goto’ instructions executes in two cycles.  So ‘goto $+1’ provides a 2 µs delay in a 

single instruction – equivalent to two ‘nop’s, but using less program memory. 

 

To flash at 1 Hz, the PIC should light the LED, wait for 0.5 s, turn off the LED, wait for another 0.5 s, and 

then repeat. 

../1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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Our code changes the state of the LED once each time around the loop, so we need to add a delay of 0.5 s 

within the loop.  That’s 500,000 µs, or 500,000 instruction cycles.  Clearly we can’t do that with ‘nop’s or 

‘goto’s alone! 

The answer, of course, is to use loops to execute instructions enough times to build up a useful delay.  But 

we can’t just use a ‘goto’, or else it would loop forever and the delay would never finish.  So we have to 

loop some finite number of times, and for that we need to be able to count the number of times through the 

loop (incrementing or decrementing a loop counter variable) and test when the loop is complete. 

 

Here’s an example of a simple “do nothing” delay loop: 

        movlw   .10 

        movwf   dc1  ; dc1 = 10 = number of loop iterations 

dly1    nop 

        decfsz  dc1,f 

        goto    dly1 

 

The first two instructions write the decimal value “10” to a loop counter variable called ‘dc1’. 

The ‘decfsz’ instruction performs the work of implementing the loop – “decrement file register, skip if 

zero”.  First, it decrements the contents of the specified register, writes the result back to the register (as 

specified by the ‘,f’ destination), then tests whether the result was zero.  If it’s not yet zero, the next 

instruction is executed, which will normally be a ‘goto’ which jumps back to the start of the loop.  But if the 

result of the decrement is zero, the next instruction is skipped; since this is typically a ‘goto’, skipping it 

means exiting the loop. 

The ‘decfsz’ instruction normally executes in a single cycle.  But if the result is zero, and the next 

instruction is skipped, an extra cycle is added, making it a two-cycle instruction. 

There is also an ‘incfsz’ instruction, which is equivalent to ‘decfsz’, except that it increments instead of 

decrementing.  It’s used if you want to count up instead of down.  For a loop with a fixed number of 

iterations, counting down is more intuitive than counting up, so ‘decfsz’ is more commonly used for this. 

 

In the code above, the loop counter, ‘dc1’, starts at 10.  At the end of the first loop, it is decremented to 9, 

which is non-zero, so the ‘goto’ instruction is not skipped, and the loop repeats from the ‘dly1’ label.  This 

process continues – 8,7,6,5,4,3,2 and on the 10
th
 iteration through the loop, dc1 = 1.  This time, dc1 is 

decremented to zero, and the “skip if zero” comes into play.  The ‘goto’ is skipped, and execution continues 

after the loop. 

You can see that the number of loop iterations is equal to the initial value of the loop counter (10 in this 

example).  Call that initial number N.  The loop executes N times. 

To calculate the total time taken by the loop, add the execution time of each instruction in the loop: 

        nop    1 

        decfsz  dc1,f  1 (except when result is zero) 

        goto    dly1  2 
 

Note that to specify a decimal value in MPASM, you prefix it with a ‘.’.  If you don’t include the ‘.’, 

the assembler will use the default radix (hexadecimal), and you won’t be using the number you 

think you are!  Although it’s possible to set the default radix to decimal, you’ll run into problems if 

you rely on a particular default radix and then later copy and paste your code into another project, 

with a different default radix, giving different results.  It’s much safer, and clearer, to simply prefix 

all hexadecimal numbers with ‘0x’ and all decimal numbers with ‘.’. 
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That’s a total of 4 cycles, except the last time through the loop, when the decfsz takes an extra cycle and 

the goto is not executed (saving 2 cycles), meaning the last loop iteration is 1 cycle shorter.  And there are 

two instructions before the loop starts, adding 2 cycles. 

Therefore the total delay time = (N × 4  1 + 2) cycles = (N × 4 + 1) µs 

If there was no ‘nop’, the delay would be (N × 3 + 1) µs; if two ‘nop’s, then it would be (N × 5 +1) µs, etc. 

It may seem that, because 255 is the highest 8-bit number, the maximum number of iterations (N) should be 

255.  But not quite.  If the loop counter is initially 0, then the first time through the loop, the ‘decfsz’ 

instruction will decrement it, and if an 8-bit counter is decremented from 0, the result is 255, which is non-

zero, and the loop continues – another 255 times.  Therefore the maximum number of iterations is in fact 

256, with the loop counter initially 0. 

So for the longest possible single loop delay, we can write something like: 

        clrf    dc1             ; loop 256 times 

dly1    nop 

        decfsz  dc1,f 

        goto    dly1 

 

The two “move” instructions have been replaced with a single ‘clrf’, using 1 cycle less, so the total time 

taken is 256 × 4 = 1024 µs  1 ms. 

That’s still well short of the 0.5 s needed, so we need to wrap (or nest) this loop inside another, using 

separate counters for the inner and outer loops, as shown: 

        movlw   .200            ; loop (outer) 200 times 

        movwf   dc2 

        clrf    dc1             ; loop (inner) 256 times 

dly1    nop                     ; inner loop = 256 x 4 – 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

        decfsz  dc2,f 

        goto    dly1 

 

The loop counter ‘dc2’ is being used to control how many times the inner loop is executed. 

Note that there is no need to clear the inner loop counter (dc1) on each iteration of the outer loop, because 

every time the inner loop completes, dc1 = 0. 

The total time taken for each iteration of the outer loop is 1023 cycles for the inner loop, plus 1 cycle for the 

‘decfsz  dc2,f’ and 2 cycles for the ‘goto’ at the end, except for the final iteration, which, as we’ve 

seen, takes 1 cycle less.  The three setup instructions at the start add 3 cycles, so if the number of outer loop 

iterations is N: 

Total delay time = (N × (1023 + 3)  1 + 3) cycles = (N × 1026 + 2) µs. 

The maximum delay would be with N = 256, giving 262,658 µs.  We need a bit less than double that.  We 

could duplicate all the delay code, but it takes fewer lines of code if we duplicate only the inner loop: 

        ; delay 500ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 
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The two inner loops of 1023 cycles each, plus the 3 cycles for the outer loop control instructions (decfsz 

and goto) make a total of 2049 µs.  Dividing this into 500,000 gives 244.02 – pretty close to a whole 

number, so an outer loop count of 244 will be very close to what’s needed. 

The calculations are shown in the comments above.  The total time for this delay code is 499,958 cycles.  In 

theory, that’s 499.958 ms – within 0.01% of the desired result!  Given that that’s much more accurate than 

the 4 MHz internal RC oscillator, there is no point trying for more accuracy than this. 

 

But suppose the calculation above had come out as needing some fractional number of outer loop iterations, 

say 243.5 – what would you do?  Generally you’d fine-tune the timing by adding or removing ‘nop’s.  E.g. 

suppose that both inner loops had 2 ‘nop’s instead of 1.  Then they would execute in 256 × 5  1 = 1279 

cycles, and the calculation for the outer loop counter would be 500,000 ÷ (1279 + 1279 + 3) = 195.24.  

That’s not as good a result as the one above, because ideally we want a whole number of loops.  244.02 is 

much closer to being a whole number than 195.24. 

For even finer control, you can add ‘nop’s to the outer loop, immediately before the ‘decfsz  dc2,f’ 

instruction.  One extra ‘nop’ would give the outer loop a total of 1023 + 1023 + 4 = 2050 cycles, instead of 

2049.  The loop counter calculation becomes 500,000 ÷ 2050 = 243.90.  That’s not bad, but 244.02 is better, 

so we’ll leave the code above unchanged. 

With a bit of fiddling, once you get some nested loops close to the delay you need, adding or removing ‘nop’ 

or ‘goto $+1’ instructions can generally get you quite close to the delay you need.  And remember that it is 

pointless to aim for high precision (< 1%) when using the internal RC oscillator.  When using a crystal, it 

makes more sense to count every last cycle accurately, as we’ll see in lesson 7. 

For delays longer than about 0.5 s, you’ll need to add more levels of nesting to your delay loops – with 

enough levels you can count for years! 

 

Complete program 

Putting together all these pieces, here’s the complete PIC10F200 version of our LED flashing program: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 2, example 1                                 * 

;                                                                       * 

;   Flashes a LED at approx 1 Hz.                                       * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = flashing LED                                              * 

;                                                                       * 

;************************************************************************ 

 

    list        p=10F200            

    #include    <p10F200.inc>    

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

sGPIO   res 1               ; shadow copy of GPIO 

../7%20-%20Special%20features/PIC_Base_A_7.pdf
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dc1     res 1               ; delay loop counters 

dc2     res 1 

 

 

;***** RC CALIBRATION  

RCCAL   CODE    0x0FF       ; processor reset vector 

        res 1               ; holds internal RC cal value, as a movlw k 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000       ; effective reset vector 

        movwf   OSCCAL      ; apply internal RC factory calibration  

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

        clrf    sGPIO           ; start with shadow GPIO zeroed 

 

;***** Main loop 

main_loop 

        ; toggle LED on GP1 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

 

        ; delay 500ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

        goto    main_loop       ; repeat forever 

 

 

        END      

           

 

The 12F508 version is very similar, with changes to the list, #include, __CONFIG and RCCAL CODE 

directives, as shown earlier. 

 

 

If you follow the programming procedure described in lesson 1, you should now see your LED flashing at 

something very close to 1 Hz. 

../1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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Conclusion 

It’s taken two lessons and dozens of pages to get here, but we finally have a flashing LED! 

In this lesson, we built on the first, showing how to base a new project on an existing one, modifying it and 

adding whatever additional features the new project needs. 

We saw how to toggle a pin, discussed how “read-modify-write” operations on a port can be problematic, 

and showed how to use shadow registers can be used to avoid such potential problems. 

We also saw how to use decrement instructions with conditional tests to implement loops, and how to use 

loops to create delays of any length. 

 

In the next lesson we’ll step up to a slightly bigger PIC, the 12F509. 

We’ll also see how to make our programs more modular, so that useful pieces of code such as the 500 ms 

delay developed here can be easily re-used. 

 

../3%20-%20Modular%20code/PIC_Base_A_3.pdf
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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 3: Introducing Modular Code 

 

 

Lesson 2 introduced delay loops, which we used in flashing an LED. 

Delay loops are an example of useful pieces of code that could be re-used in other applications; you don’t 

want to have to re-invent the wheel (or delay loop!) every time.  Or, in a larger application, you may need to 

use delays in several parts of the program.  It would be wasteful to have to include multiple copies of the 

same code in the one program.  And if you wanted to make a change to your delay code, it would be not only 

more convenient, but less likely to introduce errors, if you only have to change it in one place. 

Code that is made up of pieces that can be easily re-used, either within the same program, or in other 

programs, is called modular.  You’ll save yourself a lot of time if you learn to write re-usable, modular code, 

which is why it’s being covered in such an early lesson, even though these techniques are most useful in 

larger programs. 

As your programs become larger and more complex, you’ll need a PIC with more memory than the 10F200 

or 12F508 we’ve seen so far.  Unfortunately the baseline PIC architecture has some limitations which need 

to be taken in to account when working with devices with more memory, and it’s very important to learn 

how techniques such as banking and paging are used properly access date and program memory in larger 

PICs.  We’ll need a bigger baseline PIC to learn these techniques with, so this lesson will also introduce the 

PIC12F509. 

In this lesson, we will learn about: 

 The PIC12F509 MCU 

 Subroutines 

 Banking and paging 

 Relocatable code 

 External modules 

 

We’ll continue to assume that you’re using either the Gooligum Baseline and Mid-range PIC Training and 

Development Board or Microchip’s Low Pin Count (LPC) Demo Board, with Microchip’s MPLAB 8 or 

MPLAB X integrated development environment and a Microchip PICkit 2or PICkit 3 programmer – see 

lesson 1 for details. 

Introducing the PIC12F509 

As we saw in lesson 1, the 12F509 is essentially a 12F508 with more memory. 

It comes in the same packages, with the same pin-out and number of I/O pins, has the same peripherals (such 

as timers; see lesson 5) and runs at the same clock speed. 

file:///C:/Work/Gooligum/Tutorials/Series%202/Base_mid%20dev%20board/Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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However, the 12F509 has twice the program memory (1024 words instead of 512) and more data memory 

(41 bytes instead of 25): 

Banking 

There’s a problem with having extra data memory: baseline PIC instructions can only directly access, or 

address, a small number of registers. 

At the lowest level, PIC instructions consist of bits.  In the baseline PIC architecture, each instruction word is 

twelve bits wide.  Some of these bits designate which instruction it is; this set of bits is called the opcode. 

For example, the opcode for movlw is 1100. 

The remaining bits in each 12-bit instruction word are used to specify whatever value is associated with that 

instruction, such as a literal value, a register, or an address.  In the case of movlw, the opcode is four bits 

long, leaving the other eight bits to hold the literal value that will be moved into W. 

Thus, the 12-bit instruction word for ‘movlw 1’ is 1100 00000001 in binary, the first four bits meaning 

‘movlw’ and the last eight bits being the binary for ‘1’. 

 

In the baseline architecture, only five bits are allocated to register addressing. 

For example, the opcode for clrf is 0000011, which is seven bits long, and the remaining five bits specify 

which register is to be acted on (cleared, in this case). 

The program code in the last lesson included the instruction ‘clrf dc1’, where dc1 is a variable, stored in 

one of the PIC’s general purpose registers. 

Although it’s easiest for us to use names (such as ‘dc1’) for the variables in our programs, the PIC really 

only knows about numbers: each register having its own number, or address.   

When our project is built, the linker assigns an address to every variable.  All the names, such as variables 

and program labels, in our source code are replaced with numeric addresses assigned by the linker, before the 

assembled code is loaded into the PIC and run. 

Suppose that the linker decides that the variable ‘dc1’ should be stored in the register at address 20.  After 

being assembled and linked, our source code of ‘clrf dc1’ would end up as the 12-bit binary instruction 

0000011 10100, where the first seven bits mean ‘clrf’ and the remaining five bits are ‘20’ in binary. 

 

Five bits is enough to allow up to 32 registers to be directly addressed, numbered from 0 to 31. 

This is called a register bank. 

 

We saw in lesson 1 that the 12F508 has a total of 32 registers (exactly one full bank), consisting of 7 special 

function registers, such as STATUS and GPIO, followed by 25 general purpose registers, which can be used 

to store variables. 

That’s exactly one bank of registers, as much as any baseline instruction can directly access. 

Device 
Program Memory 

(words) 

Data Memory 

(bytes) 
Package I/O pins 

Clock rate 

(maximum) 

12F508 512 25 8-pin 6 4 MHz 

12F509 1024 41 8-pin 6 4 MHz 

16F505 1024 72 14-pin 12 20 MHz 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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The 12F509 has 41 general 

purpose registers, in addition to 

the 7 special function registers; 

48 in total.  That’s too many to 

fit into a single bank. 

To allow these additional 

registers to be addressed, they 

are arranged into two banks, as 

shown on the right. 

 

The bank to be accessed is 

selected by bit 5 in the FSR 

register (FSR<5>).  If it is 

cleared to ‘0’, bank 0 is 

selected, and any instructions 

which reference a register will 

address a register in bank 0.  If 

FSR<5> is set to ‘1’, bank 1 is 

selected, and subsequent 

instructions will reference 

registers in bank 1. 

 

The special function registers appear in both banks.  Regardless of which bank is selected, you can refer 

directly to any special function register, such as GPIO1
.   

 

The first set of nine general purpose registers (07h – 0Fh) are mapped into both banks.  Whichever bank is 

selected, these same registers will be addressed.  Registers like this, which appear at the same location across 

all banks, are referred to as shared.  They are very useful for storing data or variables which you want to 

access often, regardless of which bank is selected, without having to include bank selection instructions.  If 

you address a register as 07h or 27h, it will contain the same data; it’s the same physical register. 

The next 16 general purpose registers (10h – 1Fh) are accessed through bank 0 only.  If you set FSR<5> to 

select bank 1, you’ll access an entirely separate set of 16 general purpose registers (30h – 3Fh)
2
. 

 

Thus, the 12F509 has 9 shared general purpose registers, and 32 banked general purpose registers (16 in each 

of two banks), for a total of 41 bytes of data memory. 

 

Taking this banking scheme further, the 16F505 has 72 bytes of data memory, arranged into four banks: 8 

shared registers and 64 banked registers (16 in each bank).  As in the other baseline devices, the special 

function registers are mapped into each bank. 

                                                      

1
 That’s not true in the midrange devices, where you have to be very careful to select the correct bank before accessing 

special function registers. 

2
 When referring to numeric register addresses, FSR<5> is considered to be bit 5 of the register address, with bits 0 to 

4 of the address coming from the instruction word. 

PIC12F509 Registers 

Address Bank 0 Address Bank 1 

00h INDF 20h INDF 

01h TMR0 21h TMR0 

02h PCL 22h PCL 

03h STATUS 23h STATUS 

04h FSR 24h FSR 

05h OSCCAL 25h OSCCAL 

06h GPIO 26h GPIO 

07h 

General 

Purpose 

Registers 

27h 

Map to Bank 0 

07h – 0Fh 
  

0Fh 2Fh 

10h 

General 

Purpose 

Registers 

30h 

General 

Purpose 

Registers 

  

1Fh 3Fh 
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The four data banks in the 16F505 are selected by bits 5 and 6 of the FSR register (FSR<6:5>): ‘00’ selects 

bank 0, ‘01’ for bank 1, ‘10’ for bank 2, and ‘11’ selects bank 3. 

Similarly, the 16F59 has 134 general purpose registers: 6 shared and 16 in each of 8 banks.  To specify 

which of the eight banks is selected, three bits are needed: FSR<7:5>. 

Since the FSR has only eight bits, this scheme can’t be extended any further, so eight is the maximum 

number of data banks possible in the midrange architecture. 

 

Later in this lesson, under “Using the BANKSEL directive”, we’ll see how, and when, to correctly specify 

these bank selection bits. 

Paging 

A similar problem exists with addressing program memory. 

As discussed above, baseline PIC instructions are twelve bits wide and consist of an opcode, designating the 

instruction, with the remaining bits specifying the a value, such as a register address. 

The opcode for goto is 101.  That’s three bits, leaving nine bits to specify the address to jump to. 

Nine bits are enough to specify any value from 0 to 511.  That’s 512 addresses in all. 

This is called a page of program memory. 

 

The program memory on the 12F508 is 512 words, which is exactly one page.  Since the goto instruction 

can specify any of these 512 addresses, it can be used to jump anywhere in the 12F508’s memory, directly. 

That’s fine for the 12F508, but it’s a problem for a device such as the 12F509, with 1024 words. 

 

The solution is to use a bit in the STATUS register, PA0, to select which page is to be accessed: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS GPWUF - PA0 TO   PD   Z DC C 

 

The program counter (PC) holds the full 12-bit address of the next instruction to be executed.  Whenever a 

goto instruction is executed, the lower 9 bits of the program counter (PC<8:0>) are taken from the goto 

instruction word, but the 10
th
 bit (PC<9>) is provided by the current value to PA0. 

Therefore, to goto an address in the first 512 words of program memory (page 0), you must first clear PA0.  

To jump to code in page 1, you must first set PA0 to ‘1’. 

If you don’t update PA0, but then try to goto an address in a different page, you will instead jump to the 

corresponding address in the current page – not the location you were trying to access, and your program will 

almost certainly fail. 

For baseline devices with 2048 words of program memory, such as the 16F59, this paging scheme is 

extended, with bit 6 of the STATUS register, referred to as PA1, providing PC<10>.  Given two page 

selection bits (PA0 and PA1), up to four 512-word pages can be selected, allowing a total of 2048 words. 

 

We’ll see in the “Using the PAGESEL directive” section, later in this lesson, when and how to correctly 

specify these page selection bits. 
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Subroutines 

Here again is the main program code from lesson 2: 

;***** Initialisation 

start  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

        clrf    sGPIO           ; start with shadow GPIO zeroed 

 

;***** Main loop 

main_loop 

        ; toggle LED on GP1 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

 

        ; delay 500ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

        goto    main_loop       ; repeat forever 

 

 

        END     

 

Suppose that you wanted to include another 500 ms delay in another part of the program.  To place the delay 

code inline, as it is above, would mean repeating all 11 lines of the delay routine somewhere else.  And you 

have to be very careful when copying and pasting code – you can’t refer to the labels ‘dly1’ or ‘dly2’ in the 

copied code, or else it will jump back to the original delay routine – probably not the intended effect! 

The usual way to use the same code in a number of places in a program is to place it into a subroutine.  The 

main code loop would then something look like this: 

main_loop 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

        call    delay500        ; delay 500ms 

        goto    main_loop       ; repeat forever 

 

The ‘call’ instruction – “call subroutine” – is similar to ‘goto’, in that it jumps to another program address.  

But first, it copies (or pushes) the address of the next instruction onto the stack. 

The stack is a set of registers, used to hold the return addresses of subroutines.  When a subroutine is 

finished, the return address is copied (popped) from the stack to the program counter, and program 

execution continues with the instruction following the subroutine call. 

The baseline PICs only have two stack registers, so a maximum of two return addresses can be stored.  This 

means that you can call a subroutine from within another subroutine, but you can’t nest the subroutine calls 
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any deeper than that.  But for the sort of programs you’ll want to write on a baseline PIC, you’ll find this 

isn’t usually a problem.  If it is, then it’s time to move up to a mid-range PIC, or a PIC18… 

The instruction to return from a subroutine is ‘retlw’ – “return with literal in W”.  This instruction places a 

literal value in the W register, and then pops the return address from the stack, to return execution to the 

calling code. 

Note that the baseline PICs do not have a simple ‘return’ instruction, only ‘retlw’; you can’t avoid 

returning a literal in W.  If you need to preserve the value in W when a subroutine is called, you must first 

save it in another register. 

 

Here is the 500 ms delay routine, written as a subroutine: 

delay500                        ; delay 500ms 

        movlw   .244            ; outer loop: 244x(1023+1023+3)-1+3+4 

        movwf   dc2             ;   = 499,962 cycles 

        clrf    dc1  

dly1    nop                     ; inner loop 1 = 256x4-1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

        retlw   0 

 

Note that this code returns a ‘0’ in W.  It doesn’t have to be ‘0’; any number would do, but it’s conventional 

to return a ‘0’ if you’re not returning some specific value. 

Parameter Passing with W 

A re-usable 500 ms delay routine is all very well, but it’s only useful if you need a delay of 500 ms.  What if 

you want a 200 ms delay – write another routine?  Have multiple delay subroutines, one for each delay 

length?  It’s more useful to have a single routine that can provide a range of delays.  The requested delay 

time would be passed as a parameter to the delay subroutine. 

If you had a number of parameters to pass (for example, a ‘multiply’ subroutine would have to be given the 

two numbers to multiply), you’d need to place the parameters in general purpose registers, accessed by both 

the calling program and the subroutine.  But if there is only one parameter to pass, it’s often convenient to 

simply place it in W. 

For example, in the delay routine above, we could simply remove the ‘movlw   .244’ line, and instead pass 

this number (244) as a parameter: 

        movlw   .244             

        call    delay           ; delay 244 x 2.049ms = 500ms 

 

But passing a value of ‘244’ to specify a delay of 500 ms is a little obscure.  It would be better if the delay 

subroutine worked in multiples of an easier-to-use duration than 2.049 ms. 

Ideally, we’d pass the number of milliseconds wanted, directly, i.e. pass a parameter of ‘500’ for a 500 ms 

delay.  But that won’t work.  The baseline PICs are 8-bit devices; the largest value you can pass in any single 

register, including W, is 255. 

If the delay routine produces a delay which is some multiple of 10 ms, it could be used for any delay from 10 

ms to 2.55 s, which is quite useful – you’ll find that you commonly want delays in this range. 
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To implement a W × 10 ms delay, we need an inner set of loops which create a 10 ms (or close enough) 

delay, and an outer loop which counts the specified number of those 10 ms loops. 

To count multiples of 10 ms, we need to add a third loop counter, as in the following code: 

delay10                         ; delay W x 10ms 

        movwf   dc3             ; delay = 1+Wx(3+10009+3)-1+4 -> Wx10.015ms 

 

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

                                 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

 

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

  

        retlw   0 

 

Example 1: Flash LED (using delay subroutine with parameter passing) 

To illustrate where subroutines and parameter passing are useful, 

suppose that, instead of the LED being on half the time (a 50% duty 

cycle), we want the LED to flash briefly, for say 200 ms, once per 

second (a 20% duty cycle). 

That would require a delay of 200 ms while the LED is on, then a 

delay of 800 ms while it is off. 

 

We’ll demonstrate this using the circuit shown on the right. 

It’s the same as the circuit used in the last two lessons, except that 

we’re now using a 12F509 instead of a 10F200 or 12F508. 

If you have a Gooligum training board, you should remove the 

PIC10F200 from the ‘10F’ socket, and instead plug a PIC12F509 into 

the top section of the 14-pin IC socket – the section marked ‘12F’
3
.  

And as before, connect jumper JP12, to enable the LED on GP1. 

If you have the Microchip Low Pin Count Demo board, refer back to lesson 1 to see how to build this circuit, 

either by soldering a resistor and to the demo board, or by making connections on the demo board’s 14-pin 

header. 

 

The first part of our program will be much the same as before, except that we need to change the processor 

identification section, to reflect the fact that we’re now using a 12F509: 

    list        p=12F509       

    #include    <p12F509.inc> 

 

                                                      

3
 Note that, although the PIC12F509 comes in an 8-pin package, it will not work in the 8-pin ‘10F’ socket.  You must 

install it in the ‘12F’ section of the 14-pin socket. 
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The configuration section is the same as in our previous 12F508 code: 

                ; ext reset, no code protect, no watchdog, int RC clock  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

However, the memory address of the RC calibration section has to be changed; the 12F509 has more 

memory, extending from 000h to 3FFh, so its calibration instruction is at 0x3FF: 

RCCAL   CODE    0x3FF       ; processor reset vector 

        res 1               ; holds internal RC cal value, as a movlw k 

 

 

Using the ‘delay10’ subroutine presented above, our main loop becomes: 

main_loop 

        ; turn on LED 

        movlw   b'000010'       ; set GP1 (bit 1) 

        movwf   GPIO   

        ; delay 0.2 s 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        call    delay10          

        ; turn off LED 

        clrf    GPIO            ; (clearing GPIO clears GP1) 

        ; delay 0.8 s 

        movlw   .80             ; delay 80 x 10ms = 800ms 

        call    delay10   

           

        ; repeat forever        

        goto    main_loop      

 

Note that this code does not use a shadow register.  It’s no longer necessary, because the GP1 bit is being 

directly set/cleared.  It’s not being flipped; there’s no dependency on its previous value.  At no time does the 

GPIO register have to be read.  It’s only being written to.  So “read-modify-write” is not a consideration 

here.  If that’s unclear, go back to the description in lesson 2, and think about why an ‘xor’ operation on an 

I/O register is different to simply writing a new value directly to the I/O register.  It’s important to 

understand this point, but if you’re ever in doubt about whether the “read-modify-write” problem may apply, 

it’s best to be safe and use a shadow register. 

Complete program 

Here is the complete program to do this, illustrating how all the above pieces fit together. 

You’ll see that the subroutine has been placed into a “SUBROUTINES” section toward the end, and clearly 

documented – if you’re using subroutines in your code, it’s good to be able to easily find them and see what 

they do, in case you’ve forgotten, or if you want to re-use a subroutine in another program: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 3, example 1                                 * 

;                                                                       * 

;   Demonstrates simple subroutine calls with parameter passing         * 

;                                                                       * 

;   Flashes a LED at approx 1 Hz, with 20% duty cycle                   * 

;   LED continues to flash until power is removed                       * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = flashing LED                                              * 

;                                                                       * 

;************************************************************************ 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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    list        p=12F509       

    #include    <p12F509.inc> 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, int RC clock  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

dc3     res 1 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF       ; processor reset vector 

        res 1               ; holds internal RC cal value, as a movlw k 

         

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000       ; effective reset vector 

        movwf   OSCCAL      ; apply internal RC factory calibration  

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start   

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

;***** Main loop 

main_loop 

        ; turn on LED 

        movlw   b'000010'       ; set GP1 (bit 1) 

        movwf   GPIO   

        ; delay 0.2 s 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        call    delay10          

        ; turn off LED 

        clrf    GPIO            ; (clearing GPIO clears GP1) 

        ; delay 0.8 s 

        movlw   .80             ; delay 80 x 10ms = 800ms 

        call    delay10   

           

        ; repeat forever        

        goto    main_loop        

 

 

 

;***** SUBROUTINES ****************************************************** 

 

;***** Variable delay: 10 ms to 2.55 s 

; 

;  Delay = W x 10 ms 

; 

delay10                      

        movwf   dc3             ; delay = 1+Wx(3+10009+3)-1+4 = W x 10.015ms 

dly2    movlw   .13             ; repeat inner loop 13 times 
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        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

 

        retlw   0 

 

 

        END 

 

CALL Instruction Address Limitation 

Before moving on from subroutines, it is important that you be aware of another limitation in the baseline 

PIC architecture, this time regarding the addressing of subroutines. 

We saw above that the opcode for the goto instruction is only three bits long, with the remaining nine bits in 

the 12-bit instruction giving the address to jump to. 

However, the opcode for the call instruction is 1001.  That’s four bits, leaving only eight bits to specify the 

address of the subroutine being called. 

Eight bits can hold a value from 0 to 255.  There’s no problem if your subroutine is in the first 256 words of 

a memory page.  But what if it’s at an address above 255?  With only eight bits available for the address in 

the call instruction, how can you specify an address higher than 255?  The answer is that, on the baseline 

PICs, you can’t. 

Although it’s possible for a subroutine to use goto to jump to anywhere in a memory, the entry point for 

every subroutine must be within the first 256 words of a memory page. 

That can be an awkward limitation to work around; if your main code is more than 256 instructions long and 

(as in the program above) you place your subroutines immediately after the main code, you’ll have a 

problem. 

The MPASM assembler will warn you if you try to call a subroutine past the 256-word boundary, but the 

only way to fix it is to re-arrange your code. 

One approach would be to place the subroutines toward the beginning of the main code section, which we 

know is located at address 0x000 (the start of the first page), with a goto instruction immediately before the 

subroutines, to jump around them to the start of the main program code.  A problem with that approach is 

that all the subroutines plus the main code may be too big to fit into a single page (i.e. more than 512 words 

in total), but any one code section has to fit within a single page. 

The solution to that is simple – place the subroutines in the section located at 0x000 (so we know they are 

toward the start of a page), but put the main code into its own code section, which the linker can place 

anywhere in program memory – wherever it fits – perhaps on a different page. 

However  this doesn’t necessarily mean that the subroutines will all start within the first 256 words in the 

page; if the subroutines together total more than 256 instruction words, there could still be problems. 

A robust solution is to use a jump table, or subroutine vectors (or long calls).  The idea is that only the entry 

points for each subroutine are placed at the start of a page.  Each entry point consists of a ‘goto’ instruction, 

In the baseline PIC architecture, subroutine calls are limited to the first 256 locations of any 

program memory page. 
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jumping to the main body of the subroutine, which could be anywhere in memory – preferably in another 

CODE section so that the linker is free to place it wherever it fits best. 

The previous program could be restructured to use a subroutine vector, as follows: 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration 

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

delay10 goto    delay10_R       ; delay W x 10ms 

 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

;***** Main loop 

main_loop 

        ; turn on LED 

        movlw   b'000010'       ; set GP1 (bit 1) 

        movwf   GPIO   

        ; delay 0.2 s 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        call    delay10          

        ; turn off LED 

        clrf    GPIO            ; (clearing GPIO clears GP1) 

        ; delay 0.8 s 

        movlw   .80             ; delay 80 x 10ms = 800ms 

        call    delay10   

         

        goto    main_loop       ; repeat forever        

 

 

;***** SUBROUTINES ****************************************************** 

SUBS    CODE 

 

;***** Variable delay: 10 ms to 2.55 s 

; 

;  Delay = W x 10 ms 

; 

delay10_R                        

        movwf   dc3             ; delay = 1+Wx(3+10009+3)-1+4 = W x 10.015ms 

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

 

        retlw   0 
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Dividing the program into so many CODE sections is overkill for such a small program, but if you adopt this 

approach you will avoid potential problems as your programs grow larger. 

The entry point for the ‘delay10’ subroutine is guaranteed to be within the first 256 words of the program 

memory page, while the subroutine proper, renamed to ‘delay10_R’ (R for routine) is in a separate code 

section which could be anywhere in memory – perhaps on a separate page. 

And therein lies a problem; as written, this code is not guaranteed to work!  As explained earlier, a goto or 

call only works correctly if the address you are jumping to is in the same page as the address you are 

jumping from – unless you have set the page selection bits correctly first. 

Using the PAGESEL directive 

If your program includes multiple code sections, you can’t know beforehand where the linker will place them 

in memory, so you can’t know how to set the page selection bits when jumping to or calling locations in 

other sections. 

The solution is to use the ‘pagesel’ directive, which instructs the assembler and linker to generate code to 

select the correct page for the given program address. 

To ensure that the program above will work correctly, regardless of which pages the main code and 

subroutines are on, pagesel directives should be added to the start-up and subroutine vector code, as 

follows: 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration 

        pagesel start 

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

delay10                         ; delay W x 10ms 

        pagesel delay10_R 

        goto    delay10_R        

 

And, then, since the delay10 subroutine entry point may be in a different page from the main code, pagesel 

directives should be added to the main loop, as follows: 

main_loop 

        ; turn on LED 

        movlw   b'000010'       ; set GP1 (bit 1) 

        movwf   GPIO   

        ; delay 0.2 s 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        pagesel delay10 

        call    delay10          

        ; turn off LED 

        clrf    GPIO            ; (clearing GPIO clears GP1) 

        ; delay 0.8 s 

        movlw   .80             ; delay 80 x 10ms = 800ms 

        call    delay10   

         

        pagesel main_loop     ; repeat forever        

        goto    main_loop        

 

Note that there is no ‘pagesel’ before the second call to ‘delay10’.  It’s unnecessary, because the first 

‘pagesel’ has already set the page selection bits for calls to ‘delay10’.  If you’re going to successively call 

subroutines in a single section, there is no need to add a ‘pagesel’ for each; the first is enough. 

Finally, note the ‘pagesel’ before the ‘goto’ at the end of the loop.  This is necessary because, at that 

point, the page selection bits will still be set for whatever page the ‘delay10’ entry point is on, not 

necessarily the current page. 
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An alternative is to place a ‘pagesel $’ directive (“select page for current address”) after each call 

instruction, to ensure that the current page is selected after returning from a subroutine. 

You do not, however, need to use pagesel before every goto or call, or after every call. Remember that 

a single code section is guaranteed to be wholly contained within a single page
4
.  So, once you know that 

you’ve selected the correct page, subsequent goto or call instructions to addresses in the same section will 

work correctly.  But be careful! 

If in doubt, using pagesel before every goto and call is a safe approach that will always work. 

Example 2: Flash LED (calling subroutine via jump table) 

To clearly show how subroutine vectors and the pagesel directive are used, here are the reset, main and 

subroutine code sections of our “flash an LED with a 20% duty cycle” program: 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

delay10                         ; delay W x 10ms 

        pagesel delay10_R 

        goto    delay10_R        

 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start   

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

;***** Main loop 

main_loop 

        ; turn on LED 

        movlw   b'000010'       ; set GP1 (bit 1) 

        movwf   GPIO   

        ; delay 0.2 s 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        pagesel delay10 

        call    delay10          

        ; turn off LED 

        clrf    GPIO            ; (clearing GPIO clears GP1) 

        ; delay 0.8 s 

        movlw   .80             ; delay 80 x 10ms = 800ms 

        call    delay10   

           

        ; repeat forever   

        pagesel main_loop      

        goto    main_loop    

 

 

;***** SUBROUTINES ****************************************************** 

SUBS    CODE 

 

                                                      

4
 unless you are an advanced PIC developer and create your own linker scripts… 
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;***** Variable delay: 10 ms to 2.55 s 

; 

;  Delay = W x 10 ms 

; 

delay10_R        

        movwf   dc3             ; delay = ?+1+Wx(3+10009+3)-1+4 = W x 10.015ms 

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

 

        retlw   0 

 

Relocatable Modules 

If you wanted to take a subroutine you had written as part of one program, and re-use it in another, you could 

simply copy and paste the source code into the new program. 

There are a few potential problems with this approach: 

 Address labels, such as ‘dly1’, may already be in use in the new program or in other pieces of code 

that you’re copying. 

 You need to know which variables are needed by the subroutine, and remember to copy their 

definitions to the new program. 

 Variable names have the same problem as address labels – they may already be used in new 

program, in which case you’d need to identify and rename all references to them. 

These problems can be avoided by keeping the subroutine code in a separate source file, where it is 

assembled into an object file.  The main code is assembled into a separate object file.  These object files – 

one for the main code, plus one for each module, are then linked together to create the final executable code, 

which is output as a .hex file to be programmed into the PIC. This assembly/link (or build) process sounds 

complicated, but MPLAB takes care of the details, as we’ll see later. 

To be relocatable, a module must have its own code sections, which the linker can place anywhere in 

memory (hence the term ‘relocatable’). 

It must also have its own data sections, to keep its variables separate from the rest of the program’s variables.  

Again, the linker can place these data sections anywhere in data memory – perhaps in a different bank from 

your other variables. 

When you are using more than one data section, which will usually be the case if you are using relocatable 

modules, you must ensure that you set the bank selection bits correctly when accessing variables. 

Using the BANKSEL directive 

Typically, when you use the UDATA and RES directives to declare and allocate space for variables, you don’t 

specify an address, allowing the linker to locate the section anywhere in data memory, fitting it around other 

sections.  The potential problem with this is that “anywhere in data memory” also means “in any bank”. 

When you refer to registers allocated within relocatable data sections, you can’t know what bank they will be 

in, so you can’t know how to set the bank selection bits in FSR. 
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The solution is similar to that for paging: use the banksel directive to instruct the assembler and linker to 

generate appropriate code to select the correct bank for the given variable (or data address label). 

To ensure that the ‘delay10’ routine accesses the register bank containing the delay loop counter variables, a 

banksel directive should be added, as follows: 

delay10_R                        

        banksel dc3             ; delay = ?+1+Wx(3+10009+3)-1+4 = W x 10.015ms 

        movwf   dc3              

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

 

        retlw   0 

 

banksel is used the first time a group of variables is accessed, but not subsequently – unless another bank 

has been selected (for example, after calling a subroutine which may have selected a different bank). 

We know that all three variables will be in the same bank, since they are all declared as part of the same data 

section
5
.  If you select the bank for one variable in a data section, then it will also be the correct bank for 

every other variable in that section, so we only need to use banksel once.  You only need another banksel 

if you’re going to access a variable in a different data section. 

Note that the code could have been started with ‘banksel dc1’, instead of ‘banksel dc3’; it would make 

no difference, because dc1 and dc3 are in the same section and therefore the same bank.  But it seems 

clearer, and more maintainable, to have banksel refer to the variable you’re about to access, and to place it 

immediately before that access. 

Declaring a Shared Data Section 

As discussed earlier, not all data memory is banked.  The special function registers and some of the general 

purpose registers are mapped into every bank.  These shared registers are useful for storing variables that are 

used throughout a program, without having to worry about setting bank selection bits to access them. 

The UDATA_SHR directive is used to declare a section of shared data memory. 

It’s used in the same way as UDATA; the only difference is that registers reserved in a UDATA_SHR section 

won’t be banked. 

Since there is less shared memory available than banked memory, it should be used sparingly.  However, it 

can make sense to allocate shadow registers in shared memory, as they are likely to be used often. 

To summarise: 

 The first time you access a variable declared in a UDATA section, use banksel. 

 To access subsequent variables in the same UDATA section, you don’t need to use banksel. 

(unless you had selected another bank between variable accesses) 

 Following a call to a subroutine or external module, which may have selected a different bank, use 

banksel for the first variable accessed after the call. 

 To access variables in a UDATA_SHR section, there is never any need to use banksel. 

                                                      

5
 again assuming that you’re not an advanced developer with custom linker scripts… 
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Example 3: Flash LED (using a relocatable module) 

To demonstrate how to use re-usable code modules, we’ll take our general-purpose delay subroutine, and 

place it in a separate file.  We’ll then call this external module from the main program. 

We’ll setup a project with the following files: 

 delay10.asm   - containing the W × 10 ms delay routine 

 BA_L3-Flash_LED-main.asm - the main code (calling the delay routine) 

(or whatever names you choose) 

 

How to do this depends on whether you’re using MPLAB 8 or MPLAB X, so again we’ll look at both. 

Creating a multiple-file project, using MPLAB 8.xx 

To create the multiple-file project, open an existing project and then save it with a new name, such as 

“BA_L3-Flash_LED-mod”, in the same way as you did when creating a new project in lesson 2. 

Open the assembler (.asm) source file from example 2, containing the main loop and the ‘delay10’ 

subroutine, and save it, using “File  Save As…” as “delay10.asm”. 

Next close the editor window and run the project wizard to reconfigure the active project, as before. 

When you reach “Step Four: Add existing files to your project” window, rename the source file to “BA_L3-

Flash_LED-main.asm” (for example), in the same way as was done in lesson 2 – changing the “U” next to 

the filename to “C”, and editing the file name. 

Now find the “delay10.asm” file you saved before in the left hand pane, and click on “Add>>” to add it to 

your project.  The filename is already correct, but you should click on the “A” next to the filename to change 

it to a “U” to indicate that this is a user file, as shown:  

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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After clicking “Next >” and then “Finish”, you will see that your project now contains both source files: 

Of course there are a number of ways to create a multiple-file project. 

If you simply want to add an existing file (or files) to a project, you can right-click on “Source Files” in the 

project window, and then select “Add Files” from the context menu, or else select the “Project  Add Files 

to Project…” menu 

item.  Either way, 

you will be presented 

with the window 

shown on the right.  

As you can see, it 

gives you the option, 

for each file, to 

specify whether it is 

a user (relative path) 

or system (absolute 

path) file.  If you’re 

unsure, just select 

“Auto” and let 

MPLAB decide.  

If you want to create 

a new file from 

scratch, instead of 

using an existing 

one, use the “Project 

 Add New File to 

Project…” menu 

item (also available 
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under the File menu).  You’ll be presented with a blank editor window, into which you can copy text from 

other files (or simply start typing!). 

Creating a multiple-file project, using MPLAB X 

To create the multiple-file project, open an existing project and then save it with a new name, such as 

“BA_L3-Flash_LED-mod”, in the same way as you did when creating new project in lesson 2. 

Rename the source file to “BA_L3-Flash_LED-main.asm” (for example), in the same way as was done in 

lesson 2 – right-click it in the Projects window and select “Rename…”. 

Next we need to copy this file, creating a new file which will contain our delay module. 

There are a few ways to do this, 

but the easiest is probably to right-

click the source file in the Projects 

window and select “Copy”. 

Right-click “Source Files” in the 

project tree, and select “Paste”. 

A new .asm file (a copy of the 

original) should appear in the 

project tree. 

You can now right-click this new 

file, and rename it to 

“delay10.asm”. 

Your project should look like the 

one shown on the right. 

 

Another way to do this is to double-click the original source file (the one you want to copy), opening an 

editor window.  If you now activate the editor window, by clicking anywhere in it, you can use the “File → 

Save As…” menu item to save the file as “delay10.asm”. 

The only problem is that this new source file hasn’t appeared in the Projects window; MPLAB X doesn’t yet 

know that the new file is part of the project.  So, we need to add it. 

To add an existing file (or files) to a project, you can right-click on “Source Files” in the Projects window, 

and then select “Add Existing Item…”.  You will be presented with the window shown below: 

 As you can see, it gives you the option to specify whether the file has a relative path (appropriate for most 

“user” files) or absolute path (for most “system” files).  If you’re unsure, just select “Auto” and let MPLAB 

decide. 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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If you want to create a new file from scratch, instead of using an existing one, you can use the “File  New 

File…” menu item, in which case you’ll be asked to choose the file type.  You should select “Assembler” 

from the Categories window, and the “ASM File” file type, and then click “Next >”: 

You’ll be presented with the “New ASM File” window, which you can also get to (more easily) by right-

clicking your project in the Projects window, and selecting “New → ASM File…”: 
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When you click “Finish”, the new file will be appear in the project tree, and you will be presented with a 

blank editor window, into which you can copy text, such as the delay subroutine, from other files (or simply 

start typing!). 

 

 

However you created them, now that you have a project which includes the two source files, we can consider 

their content… 

Creating a relocatable module 

Converting an existing subroutine, such as our ‘delay10’ routine, into a standalone, relocatable module is 

easy.  All you need to do is to declare any symbols (address labels or variables) that need to be accessible 

from other modules, using the GLOBAL directive. 

Here is the complete “delay10.asm” file: 

;************************************************************************ 

;                                                                       * 

;   Architecture:  Baseline PIC                                         * 

;   Processor:     any                                                  * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: none                                                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Variable Delay : N x 10 ms (10 ms - 2.55 s)         * 

;                                                                       * 

;       N passed as parameter in W reg                                  * 

;       exact delay = W x 10.015ms                                      * 

;                                                                       * 

;   Returns: W = 0                                                      * 

;   Assumes: 4 MHz clock                                                * 

;                                                                       * 

;************************************************************************ 

 

    #include    <p12F509.inc>   ; any baseline device will do 

 

    GLOBAL      delay10_R 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

dc3     res 1 

 

 

;***** SUBROUTINES ****************************************************** 

        CODE 

 

;***** Variable delay: 10 ms to 2.55 s 

; 

;  Delay = W x 10 ms 

; 

delay10_R 

        banksel dc3             ; delay = ?+1+Wx(3+10009+3)-1+4 = W x 10.015 ms 

        movwf   dc3              
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dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

 

        retlw   0 

 

 

        END 

 

This consists of the subroutine from the earlier example, plus a UDATA section to reserve data memory for its 

variables.  Because this memory is banked, a banksel directive has been added to ensure that the bank 

containing these variables is accessed. 

Toward the start, a GLOBAL directive has been added to declare that the ‘delay10_R’ label is to be made 

available (exported) to other modules, allowing them to call this subroutine. 

You should also include (pardon the pun) a ‘#include’ directive, to define any “standard” symbols used in 

the code, such as the instruction destinations ‘w’ and ‘f’.  This delay routine will work on any baseline PIC; 

it’s not specific to any, so you can use the include file for any of the baseline PICs, such as the 12F509. 

Note that there is no list directive; this avoids the processor mismatch errors that would be reported if you 

specify more than one processor in the modules comprising a single project. 

Of course it’s also important to add a block of comments at the start; they should describe what this module 

is for, how it is used, any effects it has (including side effects, such as returning ‘0’ in the W register), and 

any assumptions that have been made.  In this case, this routine will generate the expected delay if the 

processor is clocked at exactly 4 MHz.  This assumption should be documented in the comments. 

Calling relocatable modules 

Having created an external relocatable module (i.e. one in a separate file), we need to declare, in the main (or 

calling) file any labels we want to use from the module being called , so that the linker knows that these 

labels are defined in another module.  That’s done with the EXTERN directive. 

Here is the complete example “main code” file (“BA_L3-Flash_LED-main.asm”), which calls the delay 

module: 

;************************************************************************ 

;                                                                       * 

;   Architecture:  Baseline PIC                                         * 

;   Processor:     12F508/509                                           * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: delay10.asm     (provides W x 10 ms delay)          * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 3, example 3                                 * 

;                                                                       * 

;   Demonstrates how to call external modules                           * 

;                                                                       * 

;   Flashes a LED at approx 1 Hz                                        * 

;   LED continues to flash until power is removed                       * 

;                                                                       * 

;************************************************************************ 
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;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = flashing LED                                              * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F509       

    #include    <p12F509.inc> 

 

    EXTERN      delay10_R       ; W x 10 ms delay 

     

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, int RC clock  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res     1               ; shadow copy of GPIO 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

         

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

delay10                         ; delay W x 10 ms 

        pagesel delay10_R 

        goto    delay10_R        

 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start   

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

        clrf    sGPIO           ; start with shadow GPIO zeroed 

 

;***** Main loop 

main_loop 

        ; toggle LED on GP1 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

        ; delay 0.5 s 

        movlw   .50             ; delay 50 x 10 ms = 500 ms 

        pagesel delay10         ;   -> 1 Hz flashing at 50% duty cycle 

        call    delay10          

           



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 23 

        ; repeat forever   

        pagesel main_loop      

        goto    main_loop    

 

 

        END 

 

Instead of re-using the main code from the previous example, this is actually an adaptation of the “Flash an 

LED” program from lesson 2, because that program used a shadow register – allowing us to demonstrate that 

the main program can have its own variables, in their own data section, with no need to declare or reference 

the external module’s variables at all. 

The shadow register is declared as a shared (non-banked) variable by placing it in a UDATA_SHR section, so 

there is no need to use banksel before accessing it. 

The inline delay routine has been replaced with a call our external delay module, and the variables used by 

the delay routine removed.  And toward the start of the program, an EXTERN directive has been added, to 

declare that the ‘delay10_R’ label is a reference to another module. 

Note that a subroutine vector is still used (to avoid potential problems due to the baseline architecture’s 

subroutine addressing limitation, explained earlier), as it is not possible to know where in program memory 

the linker will place the module. 

You should also document, in the comments block at the start of the source code, the fact that this program 

relies on an external module, what that module does, and what file it is defined in. 

 

To summarise: 

 The GLOBAL and EXTERN directives work as a pair. 

 GLOBAL is used in the file that defines a module, to export a symbol for use by other modules. 

 EXTERN is used when calling external modules.  It declares that a symbol has been defined 

elsewhere. 

 

The Build Process (Revisited) 

In a multiple-file project, when you select “Project  Build All” or click on 

the “Build All” toolbar button (in MPLAB 8), or select “Run → Clean and 

Build” or click on the “Clean and Build” toolbar button (in MPLAB X), the 

assembler will assemble all the source files, producing a new ‘.o’ object file 

for each.  The linker then combines these ‘.o’ files to build a single ‘.hex’ 

file, containing an image of the executable code to be programmed into the 

PIC. 

If, however, you’ve been developing a multi-file project, and you’ve already 

built it, and then go back and alter just one of the source files, there’s no 

need to re-assemble all the other source files, if they haven’t changed.  The 

object files corresponding to those unchanged source files will still be there, 

and they’ll still be valid. 

That’s what the “Project  Make” menu item or the “Make” toolbar button 

(in MPLAB 8), or “Run → Build” or the “Build” toolbar button (in MPLAB 

X) do, as was discussed briefly in lesson 1.  Like “Build All” or “Clean and 

Build”, it builds your project, but it only assembles source files which have a 

newer date stamp than the corresponding object file.  This is what you 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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normally want, to save unnecessary assembly time (not that it makes much difference with such a small 

project!), so MPLAB 8 includes a handy shortcut for “Make” – just press ‘F10’.  And as we saw in lesson 1, 

MPLAB X goes a step further, providing a single toolbar button to “Make and Program Device” – or just 

press ‘F6’. 

After you build (or make) the project, you’ll see a number of new files in the project directory
6
.  In addition 

to your ‘.asm’ source files and the ‘.o’ object files and the ‘.hex’ output file we’ve already discussed, you’ll 

find ‘.lst’ files corresponding to each of the source files, and a ‘.map’ file corresponding to the project name
7
. 

I won’t describe these in detail, but they are worth looking at if you are curious about the build process.  And 

they can be valuable to refer to if you when debugging, as they show exactly what the assembler and linker 

are doing. 

The ‘.lst’ list files show the output of the assembler; you can see the opcodes corresponding to each 

instruction.  They also show the value of every label.  But you’ll see that, for the list files belonging to the 

source files (e.g. ‘delay10.lst’), they contain a large number of question marks.  For example: 

0000                00050 delay10_R 

0000   ???? ????    00051         banksel dc3        ; delay = ?+1+Wx(3+10009+3)-1+4 = W x 10.015 ms 

0002   00??         00052         movwf   dc3              

0003   0C0D         00053 dly2    movlw   .13        ; repeat inner loop 13 times 

0004   00??         00054         movwf   dc2        ; -> 13x(767+3)-1 = 10009 cycles 

0005   00??         00055         clrf    dc1        ; inner loop = 256x3-1 = 767 cycles 

0006   02??         00056 dly1    decfsz  dc1,f            

0007   0A??         00057         goto    dly1 

0008   02??         00058         decfsz  dc2,f      ; end middle loop 

0009   0A??         00059         goto    dly1            

000A   02??         00060         decfsz  dc3,f      ; end outer loop 

000B   0A??         00061         goto    dly2 

                    00062  

000C   0800         00063         retlw   0 

 

The banksel directive is completely undefined at this point; even the instruction hasn’t been decided, so it’s 

shown as ‘???? ????’.  It can’t be defined, because the location of ‘dc3’ is unknown. 

Similarly, many of the instruction opcodes are only partially complete.  The question marks can’t be filled in, 

until the locations of all the data and program labels are known. 

Assigning locations to the various objects is the linker’s job, and you can see the choices it has made by 

looking at the project’s ‘.map’ map file.  It shows where each section will be placed, and what the final data 

and program addresses are.  For example (reformatted a little here): 

                                           Section Info 

                            Section       Type    Address   Location Size(Bytes) 

                          ---------  ---------  ---------  ---------  --------- 

                              RESET       code   0x000000    program   0x00000a 

                             .cinit    romdata   0x000005    program   0x000004 

                              .code       code   0x000007    program   0x00001a 

                               MAIN       code   0x000014    program   0x000018 

                              RCCAL       code   0x0003ff    program   0x000002 

.config_0FFF_BA_L3-FLASH_LED-MAIN.O       code   0x000fff    program   0x000002 

                         .udata_shr      udata   0x000007       data   0x000001 

                             .udata      udata   0x000010       data   0x000003 

   

                               Program Memory Usage  

                               Start         End       

                           ---------   ---------       

                            0x000000    0x00001f       

                            0x0003ff    0x0003ff       

                            0x000fff    0x000fff       

                                                      

6
 With MPLAB X, you’ll find these files under folders such as “build”, within your project folder. 

7
 With MPLAB X, the linker does not, by default, generate a map file.  You can change this in ‘mplink’ section of the 

“Project Properties” window, by specifying a file name in the ‘Generate map file’ field. 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 25 

            34 out of 1029 program addresses used, program memory utilization is 3% 

                            Symbols - Sorted by Name 

                   Name    Address   Location    Storage File                      

              ---------  ---------  ---------  --------- ---------                 

                delay10   0x000003    program     static C:\...\BA_L3-Flash_LED-main.asm 

              delay10_R   0x000007    program     extern C:\...\delay10.asm 

                   dly1   0x00000d    program     static C:\...\delay10.asm 

                   dly2   0x00000a    program     static C:\...\delay10.asm 

              main_loop   0x000017    program     static C:\...\BA_L3-Flash_LED-main.asm 

                  start   0x000014    program     static C:\...\BA_L3-Flash_LED-main.asm 

                    dc1   0x000010       data     static C:\...\delay10.asm 

                    dc2   0x000011       data     static C:\...\delay10.asm 

                    dc3   0x000012       data     static C:\...\delay10.asm 

                  sGPIO   0x000007       data     static C:\...\BA_L3-Flash_LED-main.asm 

 

These addresses are used when the linker creates the ‘.hex’ file, containing the final assembled code, with 

fully resolved addresses, that will be loaded into the PIC. 

 

Conclusion 

Again, that’s a lot theory, without moving far forward.  We’re still only flashing an LED. 

The intent of this lesson was to give you an understanding of the baseline PIC memory architecture, 

including its limitations and how to work around them, to avoid potential problems as your programs grow.  

We’ve also seen how to create re-usable code modules, which should help you to avoid wasting time 

“reinventing the wheel” for each new project in future.  In fact, we’ll continue to use our delay module in 

later lessons. 

 

In addition to providing an output (such as a blinking LED), real PIC applications usually involve responding 

to the environment, or at least to user input. 

So, in the next lesson we’ll look at reading and responding to switches, such as pushbuttons. 

And since real switches “bounce”, and that can be a problem for microcontroller applications, we’ll look at 

ways to “debounce” them. 

 

../4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 4: Reading Switches 

 

 

The previous lessons introduced simple digital output, by turning on or flashing an LED.  That’s more useful 

than it seems, because, with some circuit changes (such as adding transistors and relays), it can be readily 

adapted to turning on and off almost any electrical device. 

But most systems need to interact with their environment in some way; to respond according to user 

commands or varying inputs.  The simplest form of input is an on/off switch.  This lesson shows how to read 

and respond to a simple pushbutton switch, or, equivalently, a slide or toggle switch, or even something more 

elaborate such as a mercury tilt switch, or a sensor with a digital output – anything that makes or breaks a 

single connection, or is “on” or “off”, “high” or “low”. 

This lesson covers: 

 Reading digital inputs 

 Conditional branching 

 Using internal pull-ups 

 Hardware and software approaches to switch debouncing 

Example Circuit 

To show how to read a pushbutton switch, we’ll need a circuit with a pushbutton! 

The Gooligum baseline training board provides tact switches connected to pins GP2 and GP3, while the 

Microchip Low Pin Count demo board only has a tact switch connected to GP3, as in the circuit shown 

below, so we’ll use this circuit in this lesson. 

We’ll continue to use a LED on GP1, as in the previous 

lessons.  If you’re using the Gooligum training board, 

you should connect jumper JP3, to bring the 10 kΩ 

resistor into the circuit. 

 

The pushbutton is connected to GP3 via a 1 kΩ resistor.  

This is good practice, but not strictly necessary.  Such 

resistors are used to provide some isolation between the 

PIC and the external circuit, for example to limit the 

impact of over- or under-voltages on the input pin, or to 

provide some protection against an input pin being 

inadvertently programmed as an output.  If the switch 

was to be pressed while the pin was mistakenly 

configured as an output and set “high”, the result is 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
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likely to be a dead PIC – unless there is a resistor to limit the current flowing to ground. 

In this case, that scenario is impossible, because, as mentioned in lesson 1, GP3 can only ever be an input.  

So why the resistor?  It is necessary to allow the PIC to be safely and successfully programmed. 

You might recall, from lesson 0, that the PICkit 2and PICkit 3 are In-Circuit Serial Programming (ICSP) 

programmers.  The ICSP protocol allows the PICs that support it to be programmed while in-circuit.  That is, 

they don’t have to be removed from the circuit and placed into a separate, stand-alone programmer.  That’s 

very convenient, but it does place some restrictions on the circuit.  The programmer must be able to set 

appropriate voltages on particular pins, without being affected by the rest of the circuit.  That implies some 

isolation, and often a simple resistor, such as the 1 kΩ resistor here, is all that is needed. 

To place a PIC such as the 12F509 into programming mode, a high voltage (around 12V) is applied to pin 4 

– the same pin that is used for GP3.  Imagine what would happen if, while the PIC was being programmed, 

with 12V applied to pin 4, that pin was grounded by someone pressing a pushbutton connected directly to it!  

The result in this case wouldn’t be a dead PIC; it would be a dead PICkit 2 or PICkit 3 programmer…  Or 

suppose that a sensor with a digital output was connected to the GP3 input.  That sensor may not react well 

to having 12 V applied directly to its output! 

But, if you are sure that you know what you are doing and understand the risks, you can leave out isolation 

or protection resistors, such as the 1 kΩ resistor on GP3. 

The 10 kΩ resistor holds GP3 high while the switch is open.  How can we be sure?  According to the 

PIC12F509 data sheet, the “input leakage current” flowing into GP3 can be up to 5 µA (parameter D061).  

That equates to a voltage drop of up to 55 mV across the 10 kΩ and 1 kΩ resistors in series (5 µA × 11 kΩ), 

so, with the switch open, the voltage at GP3 will be a minimum of VDD  55 mV.  The minimum supply 

voltage is 2.0 V (parameter D001), so in the worst case, the voltage at GP3 = 2.0  55 mV = 1.945 V.  The 

lowest input voltage guaranteed to be read as “high” is given as 0.25 VDD + 0.8 V (parameter D040A).  For 

VDD = 2.0 V, this is 0.25 × 2.0 V + 0.8 V = 1.3 V.  That’s well below the worst-case “high” input to GP3 of 

1.945 V, so with these resistors, the pin is guaranteed to read as “high”, over the allowable supply voltage 

range. 

In practice, you generally don’t need to bother with such detailed analysis.  As a rule of thumb, 10 kΩ is a 

good value for a pull-up resistor like this.  But, it’s good to know that the rule of thumb is supported by the 

characteristics specified in the data sheet. 

When the switch is pressed, the pin is pulled to ground through the 1 kΩ resistor.  Now the input leakage 

current flows out of  GP3, giving a voltage drop across the 1 kΩ resistor of up to 5 mV (5 µA × 1 kΩ), so 

with the switch closed, the voltage at GP3 will be a maximum of 5 mV.  The highest input voltage 

guaranteed to be read as a “low” is 0.15 VDD (parameter D030A).  For VDD = 2.0 V (the worst case), this is 

0.15 × 2.0 V = 300 mV.  That’s above the maximum “low” input to GP3 of 5 mV, so the pin is guaranteed 

to read as “low” when the pushbutton is pressed. 

Again, that’s something you come to know as a rule of thumb.  With just a little experience, you’ll look at a 

circuit like this and see immediately that GP3 is normally held high, but is pulled low if the pushbutton is 

pressed. 

Interference from MCLR   

There is a potential problem with using a pushbutton on GP3; as we have seen, the same pin can instead be 

configured (using the PIC’s configuration word) as the processor reset, MCLR  . 

This is potentially a problem because, by default, as we saw in lesson 1, MPLAB provides for control of the 

MCLR  line through the “Release from Reset” and “Hold in Reset” menu items (MPLAB 8 only) and toolbar 

buttons (MPLAB 8 and MPLAB X). 

../1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../PIC_Intro_0.pdf
../1%20-%20Light%20an%20LED/PIC_Base_A_1%20-%20Light%20an%20LED.doc
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That’s not actually a problem if you’re using a PICkit 3, because when the PICkit 3 is used a programmer
1
, 

its MCLR  output is disconnected (“tri-stated”) immediately after programming, meaning that the PICkit 3 

won’t affect the PIC’s MCLR  / GP3 input.  The pull-up resistor and pushbutton are able to pull GP3 high 

and low, as described above. 

It’s different with the PICkit 2 where, by default, the PICkit 2 continues to assert control over the MCLR  line 

and, because of the 1 kΩ isolation resistor, the 10 kΩ pull-up resistor and the pushbutton cannot overcome 

the PICkit 2’s control of that line. 

If you are using MPLAB 8, this 

problem can be overcome by changing 

the PICkit 2 programming settings, to 

tri-state the PICkit 2’s MCLR  output 

(effectively disconnecting it) when it is 

not being used to hold the PIC in reset. 

To do this, select the PICkit 2 as a 

programmer (using the “Programmer 

→ Select Programmer” submenu) and 

then use the “Programmer → Settings” 

menu item to display the PICkit 2 

Settings dialog window, shown on the 

right. Select the ‘3-State on “Release 

from Reset”’ option in the Settings tab 

and then click “OK”. 

After using the PICkit 2 to program 

your device, it will hold MCLR   low, 

holding the GP3 input low, overriding 

the pull-up resistor. 

When you now click on the on the  

button in the programming toolbar, or 

select the “Programmer  Release 

from Reset” menu item, the PICkit 2 

will release control of MCLR  , 

allowing GP3 to be driven high or low 

by the pull-up resistor and pushbutton. 

 

 

 

MPLAB X also allows you to prevent the PICkit 2 asserting control over MCLR  , in much the same way. 

 

                                                      

1
 as opposed to being used as a debugger; see lesson 0 

When the PICkit 2 is used as a programmer with MPLAB, it will, by default, assert control of the 

MCLR   line, overriding any pushbutton switch on the PIC’s MCLR  / GP3 input. 

../../PIC_Intro_0.pdf
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To do this, open the Project Properties window, by selecting the “File → Project Properties” menu item, or 

right-clicking the project name in the Projects window and selecting “Properties”, or simply clicking on the 

“Project Properties” button to the left of the Dashboard. 

If you click on “PICkit 2”, you will see the settings shown below: 

Select “3-State on ‘Release from Reset’”, and then click “OK”. 

 

Now, when you build and run your project, the PICkit 2’s MCLR  output will be tri-stated, making it possible 

for you to use a pushbutton on GP3. 

 

 

Reading Digital Inputs 

In general, to read a pin, we need to: 

 Configure the pin as an input 

 Read or test the bit corresponding to the pin 

 

Recall, from lesson 1, that the pins on the PICs we’ve seen so far, including the 12F509, are all only digital 

inputs or outputs.  When configured as outputs, they can be turned on or off, but nothing in between.  

Similarly, when configured as inputs, they can only read a voltage as being “high” or “low”. 

 

../1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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As mentioned above, the data sheet defines input voltage ranges where the pin is guaranteed to read as 

“high” or “low”.  For voltages between these ranges, the pin might read as either; the input behaviour for 

intermediate voltages is undefined. 

As you might expect, a “high” input voltage reads as a ‘1’, and a “low” reads as a ‘0’. 

 

To configure a pin as an input, set the corresponding TRIS bit to ‘1’. 

 

However, as we’ve seen, GP3 is a special pin.  If it is not configured as MCLR  , it can only be an input.  It is 

not possible to use GP3 as an output.  So, when using GP3 as an input, there’s no need to set its TRIS bit.  

Although for clarity, you may as well do so. 

 

Reading an input isn’t much use unless we’re able to respond to that input – to do something different, 

depending on whether the input is high or low. 

This is where bit test instructions are useful.  There are two: 

‘btfsc f,b’ tests bit ‘b’ in register ‘f’.  If it is ‘0’, the following instruction is skipped – “bit test file 

register, skip if clear”. 

‘btfss f,b’ tests bit ‘b’ in register ‘f’.  If it is ‘1’, the following instruction is skipped – “bit test file 

register, skip if set”. 

 

Their use is illustrated in the following example. 

 

Example 1: Read a switch 

We’ll start by simply lighting the LED only while the pushbutton is pressed. 

Of course, that’s a waste of a microcontroller.  To get the same effect, you could leave the PIC 

out and build the circuit shown on the right! 

But, this simple example avoids having to deal with the problem of switch contact bounce, 

which we’ll look at later. 

 

 

Here’s some code that will do this: 

start  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO            ; (GP3 is an input) 

 

        clrf    GPIO         ; start with GPIO clear (GP1 low) 

loop 

        btfss   GPIO,3          ; if button pressed (GP3 low) 

        bsf     GPIO,1          ;   turn on LED 

        btfsc   GPIO,3          ; if button up (GP3 high) 

        bcf     GPIO,1          ;   turn off LED 

 

        goto    loop            ; repeat forever 
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Note that the logic seems to be inverse; the LED is turned on if GP3 is clear, yet the ‘btfss’ instruction 

tests for the GP3 bit being set.  The bit test instructions skip the next instruction if the bit test condition is 

met, so the instruction following a bit test is executed only if the condition is not met.  Often, following a bit 

test instruction, you’ll place a ‘goto’ or ‘call’ to jump to a block of code that is to be executed if the bit 

test condition is not met.  In this case, there is no need, as the LED can be turned on or off with single 

instructions: 

‘bsf f,b’ sets bit ‘b’ in register ‘f’ to ‘1’ – “bit set file register”. 

‘bcf f,b’ clears bit ‘b’ in register ‘f’ to ‘0’ – “bit clear file register”. 

 

Previously, we have set, cleared and toggled bits by operating on the whole GPIO port at once. 

That is what these bit set and clear instructions are doing behind the scenes; they read the entire port, set or 

clear the designated bit, and then rewrite the result.  They are examples of ‘read-modify-write’ instructions, 

as discussed in lesson 2, and their use can lead to unintended effects – you may find that bits other than the 

designated one are also being changed. 

This unwanted effect often occurs when sequential bit set/clear instructions are performed on the same port.  

Trouble can be avoided by separating sequential ‘bsf’ and ‘bcf’ instructions with a ‘nop’. 

 

Although unlikely to be necessary in this case, since the bit set/clear instructions are not sequential, a shadow 

register (see lesson 2) could be used as follows: 

start  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO            ; (GP3 is an input) 

 

        clrf    GPIO         ; start with GPIO clear (LED off) 

        clrf    sGPIO           ; update shadow copy 

 

loop 

        btfss   GPIO,3          ; if button pressed (GP3 low) 

        bsf     sGPIO,1         ;   turn on LED 

        btfsc   GPIO,3          ; if button up (GP3 high) 

        bcf     sGPIO,1         ;  turn off LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

 

        goto    loop            ; repeat forever 

 

 

It’s possible to optimise this a little.  There is no need to test for button up as well as button down; it will be 

either one or the other, so we can instead write a value to the shadow register, assuming the button is up, and 

then test just once, updating the shadow if the button is found to be down. 

 

It’s also not really necessary to initialise GPIO at the start; whatever it is initialised to, it will be updated the 

first time the loop completes, a few µs later – much too fast to see. 

If setting the initial values of output pins correctly is important, to avoid power-on glitches that may affect 

circuits connected to them, the correct values should be written to the port registers before configuring the 

pins as outputs, i.e. initialise GPIO before using tris to configure the port. 

 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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But when dealing with human perception, it’s not important, so the following code is acceptable: 

start     

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO            ; (GP3 is an input) 

 

loop 

        clrf    sGPIO           ; assume button up -> LED off 

        btfss   GPIO,3          ; if button pressed (GP3 low) 

        bsf     sGPIO,1         ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

 

        goto    loop            ; repeat forever 

 

 

If you didn’t use a shadow register, but tried to take the same approach – assuming a state (such as “button 

up”), setting GPIO, then reading the button and changing GPIO accordingly – it would mean that the LED 

would be flickering on and off, albeit too fast to see.  Using a shadow register is a neat solution that avoids 

this problem, as well as any read-modify-write concerns, since the physical register (GPIO) is only ever 

updated with the correctly determined value. 

 

Complete program 

Here’s the “light an LED when button pressed” code again, along with the other parts we need to make a 

complete working program.  Note that the comments include the statement that the pushbutton switch is 

“active low”, meaning that it’s connected such that when it is pressed (activated), the PIC input is driven 

low.  It makes it easier to maintain your code if you are clear about any assumptions like that. 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 4, example 1b                                * 

;                                                                       * 

;   Demonstrates reading a switch                                       * 

;   (using shadow register to update port)                              * 

;                                                                       * 

;   Turns on LED when pushbutton on GP3 is pressed                      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = LED                                                       * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F509        

    #include    <p12F509.inc>   

 

 

;***** CONFIGURATION 

                ; int reset, no code protect, no watchdog, int RC clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 
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;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start     

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO            ; (GP3 is an input) 

 

 

;***** Main loop 

main_loop 

        ; turn on LED only if button pressed 

        clrf    sGPIO           ; assume button up -> LED off 

        btfss   GPIO,3          ; if button pressed (GP3 low) 

        bsf     sGPIO,1         ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    main_loop             

 

 

        END 

 

 

Debouncing 

In most applications, you want your code to respond to transitions; some action should be triggered when a 

button is pressed or a switch is toggled. 

This presents a problem when interacting with real, physical switches, because their contacts bounce. 

When most switches change, the contacts in the switch will make and break a number of times before 

settling into the new position.  This contact bounce is generally too fast for a human to perceive, but 

microcontrollers are fast enough to react to each of these rapid, unwanted transitions. 

Overcoming this problem is called switch debouncing. 

 

There are many possible ways to address the problem of switch bounce, some of which we’ll look at in this 

section. 

 

The picture at the top of the next page is a recording of an actual switch bounce, using a common pushbutton 

switch: 
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The switch transitions several times before settling into the new state (low), after around 250 µs. 

A similar problem can be caused by electromagnetic interference (EMI).  Unwanted spikes may appear on an 

input line, due to electromagnetic noise, especially (but not only) when switches or sensors are some distance 

from the microcontroller.  But any solution which deals effectively with contact bounce will generally also 

remove or ignore input spikes caused by EMI. 

Hardware debouncing 

Debouncing is effectively a filtering problem; you want to filter out fast transitions, leaving only the slower 

changes that result from intentional human input. 

That suggests a low-pass filter; the simplest of which consists of a resistor 

and a capacitor (an “RC filter”).  

To debounce a normally-open pushbutton switch, pulled high by a resistor, 

the simplest hardware solution is to place a capacitor directly across the 

switch, as shown at right. 

In theory, that’s all that’s needed.  The idea is that, when the switch is 

pressed, the capacitor is immediately discharged, and the input will go 

instantly to 0 V.  When the contacts bounce open, the capacitor will begin to 

charge, through the resistor.  The voltage at the input pin is the voltage 

across the capacitor: 







 


RC

t

DDin eVV 1  

This is an exponential function with a time constant equal to the product RC. 
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The general I/O pins on the PIC12F509 act as TTL inputs: given a 5 V power supply, any input voltage 

between 0 V and 0.8 V reads as a ‘0’.  As long as the input remains below 0.8 V, the PIC will continue to 

read ‘0’, which is what we want, to avoid transitions to ‘1’ due to switch bounce.   

Solving the above equation for VDD = 5.0 V and Vin = 0.8 V gives t = 0.174RC. 

This is the maximum time that the capacitor can charge, before the input voltage goes higher than that 

allowed for a logical ‘0’.  That is, it’s the longest ‘high’ bounce that will be filtered out. 

In the pushbutton press recorded above, the longest ‘high’ bounce is approx. 25 µs.  Assuming a pull-up 

resistance of 10 kΩ, as in the original circuit, we can solve for C = 25 µs ÷ (0.174 × 10 kΩ) = 14.4 nF.  So, 

in theory, any capacitor 15 nF or more could be used to effectively filter out these bounces. 

In practice, you don’t really need all these calculations.  As a rule of thumb, if you choose a time constant 

several times longer than the maximum settling time (250 µs in the switch press above), the debouncing will 

be effective.  So, for example, 1 ms would be a reasonable time constant to aim for here – it’s a few times 

longer than the settling time, but still well below human perception (no one will notice a 1 ms delay after 

pressing a button). 

To create a time constant of 1 ms, you can use a 10 kΩ pull-up resistor with a 100 nF capacitor: 

 10 kΩ × 100 nF = 1 ms 

 

Testing the above circuit, with R = 10 kΩ, C = 100 nF and using the same pushbutton switch as before, gave 

the following response: 

 

Sure enough, the bounces are all gone, but there is now an overshoot – a ringing at around 2 MHz, decaying 

in around 2 µs.  The problem is that the description above is idealised.  In the real world, capacitors and 

switches and the connections between them all have resistance, so the capacitor cannot discharge instantly.  

More significantly, every component and interconnection has some inductance.  The combination of 
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inductance and capacitance leads to oscillation (the 2 MHz ringing).  Inductance has the effect of 

maintaining current flow.  When the switch contacts are closed, a high current rapidly discharges the 

capacitor.  The inductance causes this current flow to continue beyond the point where the capacitor is fully 

discharged, slightly charging in the opposite direction, making Vin go (briefly) negative.  Then it reverses, 

the capacitor discharging in the opposite direction, overshooting again, and so on – the oscillation losing 

energy to resistance and quickly dying away. 

So – is this a problem?  Yes! 

According to the PIC12F509 data sheet, the absolute minimum voltage allowed on any input pin is -0.3 V.  

But the initial overshoot in the pushbutton press response, shown above, is approx. -1.5 V.  That means that 

this simple debounce circuit is presenting voltages outside the 12F509’s absolute maximum ratings.  You 

might get away with it.  Or you might end up with a fried PIC! 

 

To avoid this, we need to limit the discharge current from the capacitor, since 

it is the high discharge current that is working through stray inductance to 

drive the input voltage to a dangerously low level. 

In the circuit shown at right, the discharge current is limited by the addition 

of resistor R2. 

We still want the capacitor to discharge much more quickly than it charges, 

since the circuit is intended to work essentially the same way as the first – a 

fast discharge to 0 V, followed by much slower charging during ‘high’ 

bounces.  So we should have R2 much smaller than R1. 

The following oscilloscope trace shows the same pushbutton response as 

before, with R1 = 10 kΩ, R2 = 100 Ω and C = 100 nF: 
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The ringing has been eliminated. 

Instead of large steps from low to high, the bounces show as “ramps”, of up to 75 µs, where the voltage rises 

by up to 0.4 V. 

This effect could be reduced, and the decline from high to low made smoother, by adjusting the values of R1, 

R2 and C.  But small movements up and down, of a fraction of a volt, will never be eliminated.  And the fact 

that the high  low transition takes time to settle can present a problem. 

With a 5 V power supply, according to the PIC12F509 data sheet, a voltage between 0.8 V and 2.0 V on a 

TTL-compatible input (any of the general I/O pins) is undefined.  Voltages between 0.8 V and 2.0 V could 

read as either a ‘0’ or a ‘1’.  If we can’t guarantee what value will be read, we can’t say that the switch has 

been debounced; it’s still an unknown. 

An effective solution to this problem is to use a Schmitt trigger 

buffer, such as a 74HC14 inverter, as shown in the circuit on the 

right.  

A Schmitt trigger input displays hysteresis; on the high  low 

transition, the buffer will not change state until the input falls to 

a low voltage threshold (say 0.8 V).  It will not change state until 

the input rises to a high voltage threshold (say 1.8 V). 

That means that, given a slowly changing input signal, which is 

generally falling, with some small rises on the way down (as in 

the trace above), only a single transition will appear at the 

buffer’s output.  Similarly, a Schmitt trigger will clean up slowly 

rising, noisy input signal, producing a single sharp transition, at 

the correct TTL levels, suitable for interfacing directly to the PIC. 

Of course, if you use a Schmitt trigger inverter, as shown here, you must reverse your program’s logic: when 

the switch is pressed, the PIC will see a ‘1’ instead of a ‘0’. 

Note that when some of the PIC12F509’s pins are configured for special function inputs, instead of general 

purpose inputs, they use Schmitt trigger inputs.  For example, as we’ve seen, pin 4 of the 12F509 can be 

configured as an external reset line ( MCLR  ) instead of GP3.  When connecting a switch for external MCLR   

you only need an RC filter for debouncing; the Schmitt trigger input is built into the reset circuitry on the 

PIC. 

Software debouncing 

One of the reasons to use microcontrollers is that they allow you to solve what would otherwise be a 

hardware problem, in software.  A good example is switch debouncing. 

If the software can ignore input transitions due to contact bounce or EMI, while responding to genuine 

switch changes, no external debounce circuitry is needed.  As with the hardware approach, the problem is 

essentially one of filtering; we need to ignore any transitions too short to be ‘real’. 

But to illustrate the problem, and provide a base to build on, we’ll start with some code with no debouncing 

at all. 

Suppose the task is to toggle the LED on GP1, once, each time the button on GP3 is pressed. 

In pseudo-code, this could be expressed as: 

do forever 

 wait for button press 

 toggle LED 

 wait for button release 

end 
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Note that it is necessary to wait for the button to be released before restarting the loop.  This ensures that the 

LED will toggle only once per button press.  If we didn’t wait for the button to be released before continuing, 

the LED would continue to toggle as long as the button was held down; not the desired behaviour. 

This pseudo-code could be implemented as: 

loop 

        ; wait for button press 

wait_dn btfsc   GPIO,3          ; wait until GP3 low 

        goto    wait_dn 

 

        ; toggle LED on GP1 

        movf    sGPIO,w 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

 

        ; wait for button release 

wait_up btfss   GPIO,3          ; wait until GP3 high 

        goto    wait_up       

 

        ; repeat forever 

        goto    loop 

 

If you build this into a complete program
2
 and test it, you will find that it is difficult to reliably change the 

LED when you press the button; sometimes it will change, other times not.  This is due to contact bounce. 

Debounce delay 

A simple approach to software is to estimate the maximum time the switch could possibly take to settle, and 

then merely wait at least that long, after detecting the first transition.  If the wait time, or delay, is longer than 

the maximum possible settling time, you can be sure that after this delay the switch will have finished 

bouncing. 

It’s only a matter of adding a suitable debounce delay, after each transition is detected, as in the following 

pseudo-code: 

do forever 

 wait for button press 

 toggle LED 

delay debounce_time 

 wait for button release 

delay debounce_time 

end 

 

Note that the LED is toggled immediately after the button press is detected.  There’s no need to wait for 

debouncing.  By acting on the button press as soon as it is detected, the user will experience as fast a 

response as possible. 

But it is important to ensure that the “button pressed” state is stable (debounced), before waiting for button 

release.  Otherwise, the first bounce after the button press would be seen as a release. 

The necessary minimum delay time depends on the characteristics of the switch.  For example, the switch 

tested above was seen to settle in around 250 µs.  Repeated testing showed no settling time greater than 1 ms, 

but it’s difficult to be sure of that, and perhaps a different switch, say that used in production hardware, 

rather than the prototype, may behave differently.  So it’s best to err on the safe side, and use the longest 

                                                      

2
 You’d need to add processor configuration, reset vector, initialisation code etc., and declare the sGPIO variable, as 

we’ve done before.  Or download the complete source code from www.gooligum.com.au.   

http://www.gooligum.com.au/
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delay we can get away with.  People don’t notice delays of 20 ms or less (flicker is only barely perceptible at 

50 Hz, corresponding to a 20 ms delay), so a good choice is probably 20 ms. 

As you can see, choosing a suitable debounce delay is not an exact science! 

The previous code can be modified to call the 10 ms delay module we developed in lesson 3, as follows: 

main_loop 

        ; wait for button press 

wait_dn btfsc   GPIO,3           ; wait until GP3 low 

        goto    wait_dn 

 

        ; toggle LED on GP1 

        movf    sGPIO,w 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

 

        ; delay to debounce button press 

        movlw   .2               

        pagesel delay10 

        call    delay10         ; delay 2 x 10 ms = 20 ms  

        pagesel $ 

 

        ; wait for button release 

wait_up btfss   GPIO,3          ; wait until GP3 high 

        goto    wait_up        

 

        ; delay to debounce button press 

        movlw   .2               

        pagesel delay10 

        call    delay10         ; delay 2 x 10 ms = 20 ms  

        pagesel $ 

 

        ; repeat forever   

        goto    main_loop   

 

If you build and test this code, you should find that the LED now reliably changes state every time you press 

the button. 

Counting algorithm 

There are a couple of problems with using a fixed length delay for debouncing. 

Firstly, the need to be “better safe than sorry” means making the delay as long as possible, and probably 

slowing the response to switch changes more than is really necessary, potentially affecting the feel of the 

device you’re designing. 

More importantly, the delay approach cannot differentiate between a glitch and the start of a switch change.  

As discussed, spurious transitions can be caused be EMI, or electrical noise – or a momentary change in 

pressure while a button is held down. 

A commonly used approach, which avoids these problems, is to regularly read (or sample) the input, and 

only accept that the switch is in a new state, when the input has remained in that state for some number of 

times in a row.  If the new state isn’t maintained for enough consecutive times, it’s considered to be a glitch 

or a bounce, and is ignored. 

For example, you could sample the input every 1 ms, and only accept a new state if it is seen 10 times in a 

row; i.e. high or low for a continuous 10 ms. 

To do this, set a counter to zero when the first transition is seen.  Then, for each sample period (say every 1 

ms), check to see if the input is still in the desired state and, if it is, increment the counter before checking 

../3%20-%20Modular%20code/PIC_Base_A_3.pdf
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again.  If the input has changed state, that means the switch is still bouncing (or there was a glitch), so the 

counter is set back to zero and the process restarts.  The process finishes when the final count is reached, 

indicating that the switch has settled into the new state. 

The algorithm can be expressed in pseudo-code as: 

count = 0 

while count < max_samples 

 delay sample_time 

 if input = required_state 

  count = count + 1 

 else 

  count = 0 

end 

 

Here is the modified “toggle an LED” loop, illustrating the use of this counting debounce algorithm: 

main_loop 

        banksel db_cnt          ; select data bank for this section 

 

        ; wait for button press  

db_dn   clrf    db_cnt          ; wait until button pressed (GP3 low) 

        clrf    dc1             ; debounce by counting: 

dn_dly  incfsz  dc1,f           ;   delay 256x3 = 768 us. 

        goto    dn_dly 

        btfsc   GPIO,3          ;   if button up (GP3 high), 

        goto    db_dn           ;       restart count 

        incf    db_cnt,f        ;   else increment count 

        movlw   .13             ;   max count = 10ms/768us = 13 

        xorwf   db_cnt,w        ;   repeat until max count reached 

        btfss   STATUS,Z 

        goto    dn_dly 

 

        ; toggle LED on GP1 

        movf    sGPIO,w 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

 

        ; wait for button release 

db_up   clrf    db_cnt          ; wait until button released (GP3 high) 

        clrf    dc1             ; debounce by counting: 

up_dly  incfsz  dc1,f           ;   delay 256x3 = 768 us. 

        goto    up_dly 

        btfss   GPIO,3          ;   if button down (GP3 low), 

        goto    db_up           ;       restart count 

        incf    db_cnt,f        ;   else increment count 

        movlw   .13             ;   max count = 10ms/768us = 13 

        xorwf   db_cnt,w        ;   repeat until max count reached 

        btfss   STATUS,Z 

        goto    up_dly 

 

        ; repeat forever   

        goto    main_loop   

 

There are two debounce routines here; one for the button press, the other for button release.  The program 

first waits for a pushbutton press, debounces the press, and then toggles the LED before waiting for the 

pushbutton to be released, and then debouncing the release. 

The only difference between the two debounce routines is the input test: ‘btfsc GPIO,3’ when testing for 

button up, versus ‘btfss GPIO,3’ to test for button down.  
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The above code demonstrates one method for counting up to a given value (13 in this case): 

The count is zeroed at the start of the routine. 

It is incremented within the loop, using the ‘incf’ instruction – “increment file register”.  As with many 

other instructions, the incremented result can be written back to the register, by specifying ‘,f’ as the 

destination, or to W, by specifying ‘,w’ – but normally you would use it as shown, with ‘,f’, so that the 

count in the register is incremented. 

The baseline PICs also provide a ‘decf’ instruction – “decrement file register”, which is similar to ‘incf’, 

except that it performs a decrement instead of increment. 

We’ve seen the ‘xorwf’ instruction before, but not used in quite this way.  The result of exclusive-oring any 

binary number with itself is zero.  If any dissimilar binary numbers are exclusive-ored, the result will be non-

zero.  Thus, XOR can be used to test for equality, which is how it is being used here.  First, the maximum 

count value is loaded into W, and then this maximum count value in W is xor’d with the loop count.  If the 

loop counter has reached the maximum value, the result of the XOR will be zero.  Note that we do not care 

what the result of the XOR actually is, only whether it is zero or not.  And we certainly do not want to 

overwrite the loop counter with the result, so we specify ‘,w’ as the destination of the ‘xorwf’ instruction – 

writing the result to W, effectively discarding it. 

To check whether the result of the XOR was zero (which will be true if the count has reached the maximum 

value), we use the ‘btfss’ instruction to test the zero flag bit, Z, in the STATUS register. 

 

Alternatively, the debounce loop could have been coded by initialising the loop counter to the maximum 

value at the start of the loop, and using ‘decfsz’ at the end of the loop, as follows: 

        ; wait for button press, debounce by counting: 

db_dn   movlw   .13             ; max count = 10ms/768us = 13 

        movwf   db_cnt         

        clrf    dc1              

dn_dly  incfsz  dc1,f           ; delay 256x3 = 768 us. 

        goto    dn_dly 

        btfsc   GPIO,3          ; if button up (GP3 high), 

        goto    db_dn           ;   restart count 

        decfsz  db_cnt,f        ; else repeat until max count reached 

        goto    dn_dly 

 

That’s two instructions shorter, and at least as clear, so it’s a better way to code this routine. 

But in some situations it is better to count up to a given value, so it’s also worth knowing how to do that, 

including the use of XOR to test for equality, as shown above. 

Complete program 

Substituting this new debounce routine into the previous “toggle an LED” loop, and wrapping it in the other 

pieces we need to create a full working program, we get: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 4, example 2d                                * 

;                                                                       * 

;   Demonstrates use of counting algorithm for debouncing               * 

;                                                                       * 

;   Toggles LED when pushbutton is pressed then released,               * 

;   using a counting algorithm to debounce switch                       * 

;   (alternative version using decfsz in debounce loop)                 * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 
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;       GP1 = LED                                                       * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F509        

    #include    <p12F509.inc>   

 

 

;***** CONFIGURATION 

                ; int reset, no code protect, no watchdog, int RC clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

        UDATA 

db_cnt  res 1                   ; debounce counter 

dc1     res 1                   ; delay counter 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        clrf    GPIO            ; start with LED off 

        clrf    sGPIO           ;   update shadow  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO            ; (GP3 is an input) 

 

;***** Main loop 

main_loop 

        banksel db_cnt          ; select data bank for this section 

 

        ; wait for button press, debounce by counting: 

db_dn   movlw   .13             ; max count = 10ms/768us = 13 

        movwf   db_cnt         

        clrf    dc1              

dn_dly  incfsz  dc1,f           ; delay 256x3 = 768 us. 

        goto    dn_dly 

        btfsc   GPIO,3          ; if button up (GP3 high), 

        goto    db_dn           ;   restart count 

        decfsz  db_cnt,f        ; else repeat until max count reached 

        goto    dn_dly  

 

        ; toggle LED on GP1 

        movf    sGPIO,w 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 
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        ; wait for button release, debounce by counting: 

db_up   movlw   .13             ; max count = 10ms/768us = 13 

        movwf   db_cnt         

        clrf    dc1              

up_dly  incfsz  dc1,f           ; delay 256x3 = 768 us. 

        goto    up_dly 

        btfss   GPIO,3          ; if button down (GP3 low), 

        goto    db_up           ;   restart count 

        decfsz  db_cnt,f        ; else repeat until max count reached 

        goto    up_dly 

 

        ; repeat forever 

        goto    main_loop             

 

 

        END 

 

Internal Pull-ups 

The use of pull-up resistors is so common that most 

modern PICs make them available internally, on at least 

some of the pins. 

By using internal pull-ups, we can do away with the 

external pull-up resistor, as shown in the circuit on the 

right. 

Strictly speaking, the internal pull-ups are not simple 

resistors.  Microchip refer to them as “weak pull-ups”; 

they provide a small current which is enough to hold a 

disconnected, or floating, input high, but does not 

strongly resist any external signal trying to drive the 

input low.  This current is typically 250 µA on most 

input pins (parameter D070), or up to 30 µA on GP3, 

when configured with internal pull-ups enabled. 

 

The internal weak pull-ups are controlled by the GPPU   bit in the OPTION register: 

The OPTION register is used to control various aspects of the PIC’s operation, including the timer (which 

will be introduced in the next lesson), as well as weak pull-ups. 

Like TRIS, OPTION is not directly addressable, is write-only, and can only be written using a special 

instruction: ‘option’ – “load option register”. 

By default (after a power-on or reset), GPPU   = 1 and the internal pull-ups are disabled. 

To enable internal pull-ups, clear GPPU  . 

Assuming no other options are being set (leaving all the other bits at the default value of ‘1’), internal pull-

ups are enabled by: 

        movlw   b'10111111'     ; enable internal pull-ups 

                ; -0------          pullups enabled (/GPPU = 0) 

        option 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OPTION GPWU   GPPU   T0CS T0SE PSA PS2 PS1 PS0 

../5%20-%20Timer%200/PIC_Base_A_5.pdf
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Note the way that this has been commented: the line with ‘-0------’ makes it clear that only bit 6 ( GPPU  ) 

is relevant to enabling or disabling the internal pull-ups, and that they are enabled by clearing this bit. 

The initialisation code from the last example now becomes: 

;***** Initialisation 

start 

        movlw   b'10111111'     ; enable internal pull-ups 

                ; -0------          pullups enabled (/GPPU = 0) 

        option 

        clrf    GPIO            ; start with LED off 

        clrf    sGPIO           ;   update shadow  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO            ; (GP3 is an input) 

 

The rest of the program remains the same as before – the only difference is that the internal weak pull-ups 

have been enabled. 

 

In the PIC12F509, internal pull-ups are only available on GP0, GP1 and GP3.   

Internal pull-ups on the baseline PICs are not selectable by pin; they are either all on, or all off.  However, if 

a pin is configured as an output, the internal pull-up is disabled for that pin (preventing excess current being 

drawn). 

 

To test that the internal pull-ups are working, you will need to remove the 10 kΩ external pull-up resistor 

from the circuit we used previously. 

If you have the Gooligum baseline training board, simply remove jumper JP3 and the pull-up resistor is 

disconnected from the pushbutton on GP3. 

If you’re using the Microchip Low Pin Count Demo 

Board, there’s no easy way to disconnect the pull-up 

resistor from the pushbutton on that board. 

One option is to build the above circuit (without a 

pull-up resistor), using prototyping breadboard, as 

illustrated on the left. 

You would use the LPC demo board to program the 

12F509, as usual, but then, when the PIC is 

programmed, remove it from the demo board and 

place into your breadboarded circuit. 

Note that, unlike the circuit above, the prototype 

illustrated here does not include a current-limiting 

resistor between GP3 and the pushbutton.  As 

discussed earlier, that’s generally ok, but to be safe, 

it’s good practice to include a current limiting resistor, 

of around 1 kΩ, between the PIC pin and the 

pushbutton. 

But as this example illustrates, functional PIC-based 

circuits really can need very few external components! 

 

When you have a version of the circuit without an external pull-up resistor, you should try testing it with the 

program from the previous example.  You will find that the program no longer responds to the pushbutton.  



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 4: Reading Switches Page 20 

However, if you modify the initialisation code, adding the instructions to enable the weak pull-ups, you will 

find that the program now responds correctly again – even with no external pull-up resistor! 

Conclusion 

You should now be able to write programs which read and respond to simple switches or other digital inputs, 

and be able to effectively debounce switch or other noisy inputs. 

 

As an exercise, you could try modifying the examples in this lesson, to use a different pin as an input, instead 

of GP3.  Hint: change the bit in GPIO being tested by the bit test instructions. 

If you have the Gooligum baseline training board, you already have a pushbutton switch on GP2, making it 

easy to use as an input: jumper JP7 is used to connect a pull-up resistor to this switch.  Note however that, 

because there is no internal weak pull-up available for GP2, you can’t use GP2 for the final example.  To 

test weak pull-ups, without using GP3, you would need to add a pushbutton switch to the training board’s 

breadboard area, and connect it to GP0 (the only other pin with weak pull-ups is GP1, but you’re already 

using that to drive the LED…)
3
. 

 

That’s it for reading switches for now.  There’s plenty more to explore, of course, such as reading keypads 

and debouncing multiple switch inputs – topics to explore later. 

But in the next lesson we’ll look at the PIC12F509’s timer module. 

 

                                                      

3
 If you use a switch with a weak pull-up on GP0 or GP1, you will have to unplug the PICkit 2 or PICkit 3 from the 

training board, and power the board externally while testing, because the PICkit 2 or 3 puts too much load on those 

pins, more than the internal weak pull-ups can overcome. 
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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 5: Using Timer0 

 

 

The lessons until now have covered the essentials of baseline PIC microcontroller operation: controlling 

digital outputs, timed via programmed delays, with program flow responding to digital inputs.  That’s all you 

really need to perform a great many tasks; such is the versatility of these devices.  But PICs (and most other 

microcontrollers) offer a number of additional features that make many tasks much easier.  Possibly the most 

useful of all are timers; so useful that at least one is included in every current 8-bit PIC. 

A timer is simply a counter, which increments automatically.  It can be driven by the processor’s instruction 

clock, in which case it is referred to as a timer, incrementing at some predefined, steady rate.  Or it can be 

driven by an external signal, where it acts as a counter, counting transitions on an input pin.  Either way, the 

timer continues to count, independently, while the PIC performs other tasks. 

And that is why timers are so very useful.  Most programs need to perform a number of concurrent tasks; 

even something as simple as monitoring a switch while flashing an LED.  The execution path taken within a 

program will generally depend on real-world inputs.  So it is very difficult in practice to use programmed 

delay loops, as in lesson 2, as an accurate way to measure elapsed time.  But a timer will just keep counting, 

steadily, while your program responds to various inputs, performs calculations, or whatever. 

As we’ll see when we look at mid-range PICs, timers are commonly used to drive interrupts (routines which 

interrupt the normal program flow) to allow regularly timed “background” tasks to run.  The baseline 

architecture doesn’t support interrupts, but, as we’ll see, timers are nevertheless very useful. 

This lesson covers: 

 Introduction to the Timer0 module 

 Creating delays with Timer0 

 Debouncing via Timer0 

 Using Timer0 counter mode with an external clock 

Timer0 Module 

The baseline PICs provide only a single timer, referred to these days as Timer0.  It used to be called the Real 

Time Clock Counter (RTCC), and you will find it called RTCC in some older literature.  When Microchip 

released more advanced PICs, with more than one timer, they started to refer to the RTCC as Timer0. 

Timer0 is very simple.  The visible part is a single 8-bit register, TMR0, which holds the current value of the 

timer.  It is readable and writeable.  If you write a value to it, the timer is reset to that value and then starts 

incrementing from there.  When it has reached 255, it rolls over to 0, and then continues to increment. 

In the baseline architecture, there is no “overflow flag” to indicate that TMR0 has rolled over from 255 to 0; 

the only way to check the status of the timer is to read TMR0. 

As mentioned above, TMR0 can be driven by either the instruction clock (FOSC/4) or an external signal. 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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The configuration of Timer0 is set by a number of bits in the OPTION register: 

The clock source is selected by the T0CS bit: 

T0CS = 0 selects timer mode, where TMR0 is incremented at a fixed rate by the instruction clock. 

T0CS = 1 selects counter mode, where TMR0 is incremented by an external signal, on the T0CKI pin.  On 

the PIC12F508/9, this is physically the same pin as GP2. 

T0CKI is a Schmitt Trigger input, meaning that it can be driven by and will respond cleanly to a smoothly 

varying input voltage (e.g. a sine wave), even with a low level of superimposed noise; it doesn’t have to be a 

sharply defined TTL-level signal, as required by the GP inputs. 

In counter mode, the T0SE bit selects whether Timer0 responds to rising or falling signals (“edges”) on 

T0CKI.  Clearing T0SE to ‘0’ selects the rising edge; setting T0SE to ‘1’ selects the falling edge. 

Prescaler 

By default, the timer increments by one for every instruction cycle (in timer mode) or transition on T0CKI 

(in counter mode).  If timer mode is selected, and the processor is clocked at 4 MHz, the timer will increment 

at the instruction cycle rate of 1 MHz.  That is, TMR0 will increment every 1 µs.  Thus, with a 4 MHz clock, 

the maximum period that Timer0 can measure directly, by default, is 255 µs. 

To measure longer periods, we need to use the prescaler. 

The prescaler sits between the clock source and the timer.  It is used to reduce the clock rate seen by the 

timer, by dividing it by a power of two: 2, 4, 8, 16, 32, 64, 128 or 256. 

To use the prescaler with Timer0, clear the PSA bit to ‘0’. 

[If PSA = 1, the prescaler is instead assigned to the watchdog timer – a topic covered in lesson 7.] 

When assigned to Timer0, the prescale ratio is set by the PS<2:0> bits, as shown in the following table: 

 

If PSA = 0 (assigning the prescaler to Timer0) and PS<2:0> = ‘111’ 

(selecting a ratio of 1:256), TMR0 will increment every 256 

instruction cycles in timer mode.  Given a 1 MHz instruction cycle 

rate, the timer would increment every 256 µs. 

Thus, when using the prescaler with a 4 MHz processor clock, the 

maximum period that Timer0 can measure directly is 255 × 256 µs = 

65.28ms. 

Note that the prescaler can also be used in counter mode, in which 

case it divides the external signal on T0CKI by the prescale ratio. 

If you don’t want to use the prescaler with Timer0, set PSA to ‘1’. 

 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OPTION GPWU   GPPU   T0CS T0SE PSA PS2 PS1 PS0 

PS<2:0> 

bit value 

Timer0 

prescale ratio 

000 1 : 2 

001 1 : 4 

010 1 : 8 

011 1 : 16 

100 1 : 32 

101 1 : 64 

110 1 : 128 

111 1 : 256 

Note that if T0CS is set to ‘1’, it overrides the TRIS setting for GP2.  That is, GP2 cannot be 

used as an output until T0CS is cleared.  All the OPTION bits are set to ‘1’ at power on, so you 

must remember to clear T0CS before using GP2 as an output.  Instances like this, where multiple 

functions are mapped to a single pin, can be a trap for beginners, so be careful! 

These “traps” are often highlighted in the data sheets, so read them carefully! 

../7%20-%20Special%20features/PIC_Base_A_7.pdf
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To make all this theory clearer (hopefully!), here are some practical examples… 

Timer Mode 

The examples in this section demonstrate the use of Timer0 in timer mode, to: 

 Measure elapsed time  

 Perform a regular task while responding to user input 

 Debounce a switch 

For each of these, we’ll use the circuit shown on the 

right, which adds an LED to the circuit used in 

lesson 4. 

The second LED has been added to GP2, although 

any of the unused pins would have been suitable. 

If you have the Gooligum baseline training board, 

connect jumpers JP3, JP12 and JP13 to enable the 

pull-up resistor on GP3 and the LEDs on GP1 and 

GP2. 

If you are using Microchip’s Low Pin Count Demo 

Board, you will need to connect LEDs to GP1 and 

GP2, as described in lesson 1. 

Example 1: Reaction Timer 

To illustrate how Timer0 can be used to measure elapsed time, we’ll implement a very simple reaction time 

“game”: wait a couple of seconds then light an LED to indicate ‘start’. If the button is pressed within a 

predefined time (say 200 ms) light the other LED to indicate ‘success’.  If the user is too slow, leave the 

‘success’ LED unlit.  Either way, delay another second before turning off the LEDs and restarting. 

We’ll use the LED on GP2 as the ‘start’ signal and the LED on GP1 to indicate “success”. 

The program flow can be illustrated in pseudo-code as: 

do forever 

 turn off both LEDs 

 delay 2 sec 

 indicate start 

clear timer 

 wait up to 1 sec for button press 

 if button pressed and elapsed time < 200ms 

  indicate success 

 delay 1 sec 

end 

 

There are many enhancements we could add, to make this a better game.  For example, success/fail 

could be indicated by a bi-colour red/green LED.  The delay prior to the ‘start’ indication should 

be random, so that it’s difficult to cheat by predicting when it’s going to turn on.  The difficulty 

level could be made adjustable, and the measured reaction time in milliseconds could be displayed, 

using 7-segment displays.  You can probably think of more – but the intent of here is to keep it as 

simple as possible, while providing a real-world example of using Timer0 to measure elapsed time. 

../4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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A problem is immediately apparent: even with maximum prescaling, Timer0 can only measure up to 65 ms.  

To overcome this, we need to extend the range of the timer by adding a counter variable, which is 

incremented when the timer overflows.  That means monitoring the value in TMR0 and incrementing the 

counter variable when TMR0 reaches a certain value. 

This example utilises the (nominally) 4 MHz internal RC clock, giving an instruction cycle time of 

(approximately) 1 µs.  Using the prescaler, with a ratio of 1:32, means that the timer increments every 32 µs.  

If we clear TMR0 and then wait until TMR0 = 250, 8 ms (250 × 32 µs) will have elapsed.  If we then reset 

TMR0 and increment a counter variable, we’ve implemented a counter which increments every 8 ms.  Since 

25 × 8 ms = 200 ms, 200 ms will have elapsed when the counter reaches 25.  Hence, any counter value > 25 

means the allowed time has been exceeded.  And since 125 × 8 ms = 1 s, one second will have elapsed when 

the counter reaches 125, and we can stop waiting for the button press. 

 

The following code sets Timer0 to timer mode (freeing GP2 to be used as an output), with the prescaler 

assigned to Timer0, with a 1:32 prescale ratio by: 

        movlw   b'11010100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)             

        option                  ;   -> increment every 32 us 

 

Assuming a 4 MHz clock, such as the internal RC oscillator, TMR0 will increment every 32 µs. 

 

To generate an 8 ms delay, we can clear TMR0 and then wait until it reaches 250, as follows: 

        clrf    TMR0            ; clear Timer0 

w_tmr0  movf    TMR0,w          ; wait for 8 ms  

        xorlw   .250            ;  (250 ticks x 32 us/tick = 8 ms) 

        btfss   STATUS,Z 

        goto    w_tmr0 

 

Note that XOR is used to test for equality (TMR0 = 250), as we did in lesson 4. 

 

In itself, that’s an elegant way to create a delay; it’s much shorter and simpler than “busy loops”, such as the 

delay routines from lessons 2 and 3. 

But the real advantage of using a timer is that it keeps ticking over, at the same rate, while other instructions 

are executed.  That means that additional instructions can be inserted into this “timer wait” loop, without 

affecting the timing – within reason; if this extra code takes too long to run, the timer may increment more 

than once before it is checked at the end of the loop, and the loop may not finish when intended. 

With 32 instruction cycles per timer increment, it’s safe to insert a short piece of code to check whether the 

pushbutton has been checked, without risk of skipping a timer increment. 

For example: 

        clrf    TMR0            ;   clear Timer0         

w_tmr0                          ;   repeat for 8 ms: 

        btfss   GPIO,3          ;     if button pressed (GP3 low) 

        goto    wait_end        ;       finish delay loop immediately  

        movf    TMR0,w          ;      

        xorlw   .250            ;   (250 ticks x 32 us/tick = 8 ms) 

        btfss   STATUS,Z         

        goto    w_tmr0 

wait_end 

../4%20-%20Reading%20switches/PIC_Base_A_4.pdf
../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
../3%20-%20Modular%20code/PIC_Base_A_3.pdf


© Gooligum Electronics 2013  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 5: Using Timer0 Page 5 

This timer loop code can then be embedded into an outer loop which increments a variable used to count the 

number of 8 ms periods, as follows: 

        banksel cnt_8ms         ; clear timer (8 ms counter) 

        clrf    cnt_8ms         ; repeat for 1 sec: 

wait1s  clrf    TMR0            ;   clear Timer0         

w_tmr0                          ;   repeat for 8 ms: 

        btfss   GPIO,3          ;     if button pressed (GP3 low) 

        goto    wait1s_end      ;       finish delay loop immediately  

        movf    TMR0,w         

        xorlw   .250            ;   (250 ticks x 32 us/tick = 8 ms) 

        btfss   STATUS,Z         

        goto    w_tmr0 

        incf    cnt_8ms,f       ;   increment 8 ms counter 

        movlw   .125            ; (125 x 8 ms = 1 sec)  

        xorwf   cnt_8ms,w 

        btfss   STATUS,Z 

        goto    wait1s 

wait1s_end 

 

The test at the end of the outer loop (cnt_8ms = 125) ensures that the loop completes when one second has 

elapsed, if the button has not yet been pressed. 

Finally, we need to check whether the user has pressed the button quickly enough (if at all).  That means 

comparing the elapsed time, as measured by the 8 ms counter, with some threshold value – in this case 25, 

corresponding to a reaction time of 200 ms.  The user has been successful if the 8 ms count is less than 25. 

The easiest way to compare the magnitude of two values (is one larger or smaller than the other?) is to 

subtract them, and see if a borrow results. 

If A ≥ B, A − B is positive or zero and no borrow is needed. 

If A < B, A − B is negative, requiring a borrow. 

The baseline PICs provide just a single instruction for subtraction:  ‘subwf f,d’ – “subtract W from file 

register”, where ‘f’ is the register being subtracted from, and, ‘d’ is the destination; ‘,f’ to write the result 

back to the register, or ‘,w’ to place the result in W. 

The result of the subtraction is reflected in the Z (zero) and C (carry) bits in the STATUS register: 

The Z bit is set if and only if the result is zero (so subtraction is another way to test for equality). 

Although the C bit is called “carry”, in a subtraction it acts as a “not borrow”.  That is, it is set to ‘1’ only if a 

borrow did not occur. 

The table at the right shows the possible status flag 

outcomes from the subtraction A − B: 

 

 

 

We can use this to test whether the elapsed time is less than 200 ms (cnt_8ms < 25) as follows: 

        movlw   .25             ; if time < 200 ms (25 x 8 ms) 

        subwf   cnt_8ms,w 

        btfss   STATUS,C 

        bsf     GPIO,1          ;   turn on success LED 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS GPWUF - PA0 TO   PD   Z DC C 

 Z C 

A > B 0 1 

A = B 1 1 

A < B 0 0 
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The subtraction being performed here is cnt_8ms − 25, so C = 0 only if cnt_8ms < 25 (see the table 

above).  If C = 1, the elapsed time must be greater than the allowed 200 ms, and the instruction to turn on the 

success LED is skipped. 

Complete program 

Here’s the complete code for the reaction timer, showing how the above code fragments fit together: 

;************************************************************************ 

;   Description:    Lesson 5, example 1                                 *     

;                   Reaction Timer game.                                * 

;                                                                       * 

;   Demonstrates use of Timer0 to time real-world events                * 

;                                                                       * 

;   User must attempt to press button within 200 ms of "start" LED      * 

;   lighting.  If and only if successful, "success" LED is lit.         * 

;                                                                       * 

;       Starts with both LEDs unlit.                                    * 

;       2 sec delay before lighting "start"                             * 

;       Waits up to 1 sec for button press                              * 

;       (only) on button press, lights "success"                        * 

;       1 sec delay before repeating from start                         * 

;                                                                       * 

;************************************************************************ 

;   Pin assignments:                                                    * 

;       GP1 = success LED                                               * 

;       GP2 = start LED                                                 * 

;       GP3 = pushbutton switch (active low)                            * 

;************************************************************************ 

    list        p=12F509    

    #include    <p12F509.inc> 

 

    EXTERN  delay10_R       ; W x 10 ms delay 

 

;***** CONFIGURATION 

                ; int reset, no code protect, no watchdog, int RC clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

cnt_8ms res 1                   ; counter: increments every 8 ms 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

delay10                         ; delay W x 10 ms 

        pagesel delay10_R 

        goto    delay10_R  

 

       

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 
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;***** Initialisation 

start 

        ; configure ports 

        movlw   b'111001'       ; configure GP1 and GP2 (only) as outputs 

        tris    GPIO 

        ; configure timer 

        movlw   b'11010100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)             

        option                  ;   -> increment every 32 us 

 

;***** Main loop 

main_loop 

        ; turn off both LEDs 

        clrf    GPIO    

                  

        ; delay 2 sec 

        movlw   .200            ; 200 x 10 ms = 2 sec 

        pagesel delay10 

        call    delay10 

        pagesel $            

         

        ; indicate start 

        bsf     GPIO,2          ; turn on start LED      

            

        ; wait up to 1 sec for button press 

        banksel cnt_8ms         ; clear timer (8 ms counter) 

        clrf    cnt_8ms         ; repeat for 1 sec: 

wait1s  clrf    TMR0            ;   clear Timer0         

w_tmr0                          ;   repeat for 8 ms: 

        btfss   GPIO,3          ;     if button pressed (GP3 low) 

        goto    wait1s_end      ;       finish delay loop immediately  

        movf    TMR0,w         

        xorlw   .250            ;   (250 ticks x 32 us/tick = 8 ms) 

        btfss   STATUS,Z         

        goto    w_tmr0 

        incf    cnt_8ms,f       ;   increment 8 ms counter 

        movlw   .125            ; (125 x 8 ms = 1 sec)  

        xorwf   cnt_8ms,w 

        btfss   STATUS,Z 

        goto    wait1s 

wait1s_end 

         

        ; indicate success if elapsed time < 200 ms        

        movlw   .25             ; if time < 200 ms (25 x 8 ms) 

        subwf   cnt_8ms,w 

        btfss   STATUS,C 

        bsf     GPIO,1          ;   turn on success LED 

         

        ; delay 1 sec 

        movlw   .100            ; 100 x 10 ms = 1 sec 

        pagesel delay10 

        call    delay10 

        pagesel $         

 

        ; repeat forever 

        goto    main_loop             

 

 

        END 
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Example 2: Flash LED while responding to input 

As discussed above, timers can be used to maintain the accurate timing of regular (“background”) events, 

while performing other actions in response to input signals.  To illustrate this, we’ll flash the LED on GP2 at 

1 Hz (similar to lesson 2), while lighting the LED on GP1 whenever the pushbutton on GP3 is pressed (as 

was done in lesson 4).  This example also shows how Timer0 can be used to provide a fixed delay. 

When creating an application which performs a number of tasks, it is best, if practical, to implement and test 

each of those tasks separately.  In other words, build the application a piece at a time, adding each new part 

to base that is known to be working.  So we’ll start by simply flashing the LED. 

The delay needs to written in such a way that button scanning code can be added within it later.  Calling a 

delay subroutine, as was done in lesson 3, wouldn’t be appropriate; if the button press was only checked at 

the start and/or end of the delay, the button would seem unresponsive (a 0.5 sec delay is very noticeable). 

Since the maximum delay that Timer0 can generate directly from a 1 MHz instruction clock is 65 ms, we 

have to extend the timer by adding a counter variable, as we did in example 1. 

To produce a given delay, various combinations of prescaler value, maximum timer count and number of 

repetitions will be possible.  But noting that 125 × 125 × 32 µs = 500 ms, a delay of exactly 500 ms can be 

generated by: 

 Using a 4 MHz processor clock, providing a 1 MHz instruction clock and a 1 µs instruction cycle 

 Assigning a 1:32 prescaler to the instruction clock, incrementing Timer0 every 32 µs 

 Resetting Timer0 to zero, as soon as it reaches 125 (i.e. every 125 × 32 µs = 4 ms) 

 Repeating 125 times, creating a delay of 125 × 4 ms = 500 ms. 

 

The following code implements the above steps: 

;***** Initialisation 

start  

        ; configure ports 

        clrf    GPIO            ; start with all LEDs off 

        clrf    sGPIO           ;   update shadow         

        movlw   b'111001'       ; configure GP1 and GP2 (only) as outputs 

        tris    GPIO  

        ; configure timer 

        movlw   b'11010100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)             

        option                  ;   -> increment every 32 us 

 

;***** Main loop 

main_loop     

        ; delay 500 ms 

        banksel dly_cnt 

        movlw   .125            ; repeat 125 times (125 x 4 ms = 500 ms) 

        movwf   dly_cnt    

dly500  clrf    TMR0            ;   clear timer0            

w_tmr0  movf    TMR0,w          ;   wait for 4 ms 

        xorlw   .125            ;     (125 ticks x 32 us/tick = 4 ms) 

        btfss   STATUS,Z 

        goto    w_tmr0 

        decfsz  dlycnt,f        ; end 500 ms delay loop 

        goto    dly500 

 

        ; toggle flashing LED        

        movf    sGPIO,w 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
../4%20-%20Reading%20switches/PIC_Base_A_4.pdf
../3%20-%20Modular%20code/PIC_Base_A_3.pdf
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        xorlw   b'000100'       ; toggle LED on GP2 

        movwf   sGPIO           ;   using shadow register 

        movwf   GPIO 

 

        ; repeat forever 

        goto    main_loop  

           

 

Here’s the code developed in lesson 4, for turning on a LED when the pushbutton is pressed: 

        clrf    sGPIO           ; assume button up -> LED off 

        btfss   GPIO,3          ; if button pressed (GP3 low) 

        bsf     sGPIO,1         ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

 

It’s quite straightforward to place some code similar to this (replacing the clrf with a bcf instruction, to 

avoid affecting any other bits in the shadow register) within the timer wait loop; since the timer increments 

every 32 instructions, there are plenty of cycles available to accommodate these additional instructions, 

without risk that the “TMR0 = 125” condition will be skipped (see discussion in example 1). 

Here’s how: 

w_tmr0                          ;   repeat for 4 ms: 

                                ;     check and respond to button press       

        bcf     sGPIO,1         ;       assume button up -> indicator LED off 

        btfss   GPIO,3          ;       if button pressed (GP3 low) 

        bsf     sGPIO,1         ;         turn on indicator LED 

        movf    sGPIO,w         ;     update port (copy shadow to GPIO) 

        movwf   GPIO 

        movf    TMR0,w      

        xorlw   .125            ;   (125 ticks x 32 us/tick = 4 ms)             

        btfss   STATUS,Z 

        goto    w_tmr0 

 

Complete program 

Here’s the complete code for the flash + pushbutton demo. 

Note that, because GPIO is being updated from the shadow copy on every “spin” of the timer wait loop, 

there is no need to update GPIO when the LED on GP2 is toggled; the change will be picked up next time 

through the timer wait loop. 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 5, example 2                                 * 

;                                                                       * 

;   Demonstrates use of Timer0 to maintain timing of background actions * 

;   while performing other actions in response to changing inputs       * 

;                                                                       * 

;   One LED simply flashes at 1 Hz (50% duty cycle).                    * 

;   The other LED is only lit when the pushbutton is pressed            * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = "button pressed" indicator LED                            * 

;       GP2 = flashing LED                                              * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

../4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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    list        p=12F509       

    #include    <p12F509.inc> 

 

 

;***** CONFIGURATION 

                ; int reset, no code protect, no watchdog, int RC clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

        UDATA 

dly_cnt res 1                   ; delay counter 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

         

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start  

        ; configure ports 

        clrf    GPIO            ; start with all LEDs off 

        clrf    sGPIO           ;   update shadow         

        movlw   b'111001'       ; configure GP1 and GP2 (only) as outputs 

        tris    GPIO  

        ; configure timer 

        movlw   b'11010100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)             

        option                  ;   -> increment every 32 us 

 

;***** Main loop 

main_loop     

        ; delay 500 ms while responding to button press 

        banksel dly_cnt 

        movlw   .125            ; repeat 125 times (125 x 4 ms = 500 ms) 

        movwf   dly_cnt      

dly500  clrf    TMR0            ;   clear timer0  

w_tmr0                          ;   repeat for 4 ms: 

                                ;     check and respond to button press       

        bcf     sGPIO,1         ;       assume button up -> indicator LED off 

        btfss   GPIO,3          ;       if button pressed (GP3 low) 

        bsf     sGPIO,1         ;         turn on indicator LED 

        movf    sGPIO,w         ;     update port (copy shadow to GPIO) 

        movwf   GPIO 

        movf    TMR0,w      

        xorlw   .125            ;   (125 ticks x 32 us/tick = 4 ms)             

        btfss   STATUS,Z 

        goto    w_tmr0 
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        decfsz  dly_cnt,f       ; end 500 ms delay loop 

        goto    dly500 

 

        ; toggle flashing LED        

        movf    sGPIO,w 

        xorlw   b'000100'       ; toggle LED on GP2 

        movwf   sGPIO           ;   using shadow register 

 

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

Example 3: Switch debouncing 

Lesson 4 explored the topic of switch bounce, and described a counting algorithm to address it, which was 

expressed as: 

count = 0 

while count < max_samples 

 delay sample_time 

 if input = required_state 

  count = count + 1 

 else 

  count = 0 

end 

 

The switch is deemed to have changed when it has been continuously in the new state for some minimum 

period, for example 10 ms.  This is done by continuing to increment a count while checking the state of the 

switch.  “Continuing to increment a count” while something else (such as checking a switch) occurs is 

exactly what a timer does.  Since a timer increments automatically, using a timer can simplify the logic, as 

follows: 

reset timer 

while timer < debounce time 

 if input ≠ required_state 

  reset timer 

end 

 

On completion, the input will have been in the required state (changed) for the minimum debounce time. 

 

Assuming a 1 MHz instruction clock and a 1:64 prescaler, a 10 ms debounce time will be reached when the 

timer reaches 10 ms ÷ 64 µs = 156.3; taking the next highest integer gives 157. 

The following code demonstrates how Timer0 can be used to debounce a “button down” event: 

wait_dn clrf    TMR0            ; reset timer 

chk_dn  btfsc   GPIO,3          ; check for button press (GP3 low) 

        goto    wait_dn         ;   continue to reset timer until button down 

        movf    TMR0,w          ; has 10ms debounce time elapsed? 

        xorlw   .157            ;   (157 = 10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_dn 

 

That’s shorter than the equivalent routine presented in lesson 4, and it avoids the need to use two data 

registers as counters.  But – it uses Timer0, and on baseline PICs, there is only one timer.  It’s a scarce 

resource!  If you’re using it to time a regular background process, as we did in example 2, you won’t be able 

../4%20-%20Reading%20switches/PIC_Base_A_4.pdf
../4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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to use it for debouncing.  You must be careful, as you build a library of routines that use Timer0, if you use 

more than one routine which uses Timer0 in a program, that the way they use or setup Timer0 doesn’t clash. 

But if you’re not using Timer0 for anything else, using it for switch debouncing is perfectly reasonable. 

Complete program 

The following program is equivalent to that presented in lesson 4.  By using Timer0 for debouncing, it’s 

shorter and uses less data memory: 

;************************************************************************ 

;   Description:    Lesson 5, example 3                                 * 

;                                                                       * 

;   Demonstrates use of Timer0 to implement debounce counting algorithm * 

;                                                                       * 

;   Toggles LED when pushbutton is pressed then released                * 

;                                                                       * 

;************************************************************************ 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F509  

    #include    <p12F509.inc> 

 

 

;***** CONFIGURATION 

                ; int reset, no code protect, no watchdog, int RC clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure ports 

        clrf    GPIO            ; start with LED off 

        clrf    sGPIO           ;   update shadow         

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO  

        ; configure timer    

        movlw   b'11010101'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----101          prescale = 64 (PS = 101)           

        option                  ;   -> increment every 64 us 
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;***** Main loop 

main_loop 

        ; wait for button press, debounce using timer0: 

wait_dn clrf    TMR0            ; reset timer 

chk_dn  btfsc   GPIO,3          ; check for button press (GP3 low) 

        goto    wait_dn         ;   continue to reset timer until button down 

        movf    TMR0,w          ; has 10ms debounce time elapsed? 

        xorlw   .157            ;   (157=10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_dn 

 

        ; toggle LED on GP1 

        movf    sGPIO,w 

        xorlw   b'000010'       ; toggle shadow register 

        movwf   sGPIO            

        movwf   GPIO            ; write to port 

 

        ; wait for button release, debounce using timer0: 

wait_up clrf    TMR0            ; reset timer 

chk_up  btfss   GPIO,3          ; check for button release (GP3 high) 

        goto    wait_up         ;   continue to reset timer until button up 

        movf    TMR0,w          ; has 10ms debounce time elapsed? 

        xorlw   .157            ;   (157=10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_up 

 

        ; repeat forever 

        goto    main_loop         

 

 

        END 

      

Counter Mode 

As explained above, Timer0 can also be used to count external events, consisting of a transition (rising or 

falling) on the T0CKI input. 

This is useful in a number of ways, such as performing an action after some number of input transitions, or 

measuring the frequency of an input signal, for example from a sensor triggered by the rotation of an axle.  

The frequency in Hertz of the signal is simply the number of transitions counted in 1 s. 

However, it’s not really practical to build a frequency counter, using only the techniques (and 

microcontrollers) we’ve covered so far!   

To show how to use Timer0 as a 

counter, we’ll go back to LED 

flashing, but driving the counter 

with a crystal-based external clock, 

providing a much more accurate 

time base. 

The circuit used for this is as 

shown on the right. 

A 32.768 kHz “watch crystal” is 

driven by a CMOS inverter to 

generate a 32.768 kHz clock 

signal. 
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The capacitor and resistor values shown should work with most watch crystals designed for a 12.5 pF load 

capacitance.  The exact value of the capacitor loading the first inverter (3.3 nF here) isn’t important – and in 

theory isn’t necessary – but in practice it helps the oscillator start reliably. 

The oscillator output is buffered by another inverter, before being fed to the T0CKI (GP2) input on the PIC. 

 

The Gooligum baseline training board already has this oscillator circuit in place (in the upper right of the 

board) – jumper JP22 connects the 32 kHz clock signal to T0CKI.  And, as before, jumper JP12 enables the 

LED on GP1. 

If you have Microchip’s Low Pin Count Demo Board, you will need to build the oscillator circuit separately.  

Since it will be used in a number of lessons, and to limit the effect of stray capacitance, it’s a good idea to 

build it on something more permanent than breadboard, such as a strip prototyping board.  You should then 

connect it to the 14-pin header on the demo board (GP2/T0CKI is brought out as pin 9 on the header, while 

power and ground are pins 13 and 14), as illustrated in the photograph below: 

 

Note that in this photo, one of the load capacitors is variable – this makes it possible to tune the oscillation 

frequency, but it’s not really necessary. 

 

We’ll use this 32.768 kHz signal with Timer0, to generate the timing needed to flash the LED on GP1 at 

almost exactly 1 Hz (the accuracy being set by the accuracy of the crystal oscillator, which can be expected 

to be much better than that of the PIC’s internal RC oscillator). 

 

Those familiar with binary numbers will have noticed that 32768 = 2
15

, making it very straightforward to 

divide the 32768 Hz input down to 1 Hz. 

Since 32768 = 128 × 256, if we apply a 1:128 prescale ratio to the 32768 Hz signal on T0CKI, TMR0 will be 

incremented 256 times per second.   The most significant bit of TMR0 (TMR0<7>) will therefore be cycling 

at a rate of exactly 1 Hz; it will be ‘0’ for 0.5 s, followed by ‘1’ for 0.5 s. 

So if we clock TMR0 with the 32768 Hz signal on T0CKI, prescaled by 128, the task is simply to light the 

LED (GP1 high) when TMR0<7> = 1, and turn off the LED (GP1 low) when TMR0<7> = 0. 

 

http://www.gooligum.com/devboards/base-mid/base-mid.html
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To configure Timer0 for counter mode (external clock on T0CKI) with a 1:128 prescale ratio, set the T0CS 

bit to ‘1’, PSA to ‘0’ and PS<2:0> to ‘110’: 

        movlw   b'11110110'     ; configure Timer0: 

                ; --1-----          counter mode (T0CS = 1) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----110          prescale = 128 (PS = 110)  

        option                  ;   -> increment at 256 Hz with 32.768 kHz input 

 

Note that the value of T0SE bit is irrelevant; we don’t care if the counter increments on the rising or falling 

edge of the signal on T0CKI – only the frequency is important.  Either edge will do. 

 

Next we need to continually set GP1 high whenever TMR0<7> = 1, and low whenever TMR0<7> = 0. 

In other words, continually update GP1 with the current value or TMR0<7>. 

Unfortunately, there is no simple “copy a single bit” instruction in baseline PIC assembler! 

If you’re not using a shadow register for GPIO, the following “direct approach” is effective, if a little 

inelegant: 

start   ; transfer TMR0<7> to GP1 

        btfsc   TMR0,7          ; if TMR0<7>=1 

        bsf     GPIO,1          ;   set GP1 

        btfss   TMR0,7          ; if TMR0<7>=0 

        bcf     GPIO,1          ;   clear GP1 

 

        ; repeat forever 

        goto    start            

 

As described in lesson 4, if you are using a shadow register (as previously discussed, it’s generally a good 

idea to do so, to avoid potential, and difficult to debug, problems), this can be implemented as: 

loop    ; transfer TMR0<7> to GP1 

        clrf    sGPIO           ; assume TMR0<7>=0 -> LED off 

        btfsc   TMR0,7          ; if TMR0<7>=1 

        bsf     sGPIO,1         ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    loop   

 

But since this is actually an instruction longer, it’s only really simpler if you were going to use a shadow 

register anyway. 

 

Another approach is to use the PIC’s rotate instructions.  These instructions move every bit in a register to 

the left or right, as illustrated: 

‘rlf f,d’ – “rotate left file register through carry” 

 

 

‘rrf f,d’ – “rotate right file register through carry” 

 

 

register bits 

C 7 6 5 4 3 2 1 0 

register bits 

C 7 6 5 4 3 2 1 0 

../4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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In both cases, the bit being rotated out of bit 7 (for rlf) or bit 0 (for rrf) is copied into the carry bit in the 

STATUS register, and the previous value of carry is rotated into bit 0 (for rlf) or bit 7 (for rrf). 

As usual, ‘f’ is the register being rotated, and ‘d’ is the destination: ‘,f’ to write the result back to the 

register, or ‘,w’ to place the result in W. 

 

The ability to place the result in W is useful, since it means that we can “left rotate” TMR0, to copy the 

current value from TMR0<7> into C, without affecting the value in TMR0. 

There are no instructions for rotating W, only the addressable special-function and general purpose registers.  

That’s a pity, since such an instruction would be useful here.  Instead, we’ll need to rotate the bit copied from 

TMR0<7> into bit 0 of a temporary register, then rotate again to move the copied bit into bit 1, and then 

copy the result to GPIO, as follows: 

        rlf     TMR0,w          ; copy TMR0<7> to C 

        clrf    temp 

        rlf     temp,f          ; rotate C into temp 

        rlf     temp,w          ; rotate once more into W (-> W<1> = TMR0<7>) 

        movwf   GPIO            ; update GPIO with result (-> GP1 = TMR0<7>) 

 

Note that ‘temp’ is cleared before being used.  That’s not strictly necessary in this example; since only GP1 

is being used as an output, it doesn’t actually matter what the other bits in GPIO are set to. 

Of course, if any other bits in GPIO were being used as outputs, you couldn’t use this method anyway, since 

this code will clear every bit other than GP1!  In that case, you’re better off using the bit test and set/clear 

instructions, which are generally the most practical way to “copy a bit”.  But it’s worth remembering that the 

rotate instructions are also available, and using them may lead to shorter code. 

Complete program 

Here’s the complete “flash a LED at 1 Hz using a crystal oscillator” program, using the “copy a bit via 

rotation” method: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 5, example 4b                                * 

;                                                                       * 

;   Demonstrates use of Timer0 in counter mode and rotate instructions  * 

;                                                                       * 

;   LED flashes at 1 Hz (50% duty cycle),                               * 

;   with timing derived from 32.768 kHz input on T0CKI                  * 

;                                                                       * 

;   Uses rotate instructions to copy MSB from Timer0 to GP1             * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1   = flashing LED                                            * 

;       T0CKI = 32.768 kHz signal                                       * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F509    

    #include    <p12F509.inc> 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, int RC clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 



© Gooligum Electronics 2013  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 5: Using Timer0 Page 17 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

temp    res 1                   ; temp register used for rotates 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   b'111101'       ; configure GP1 (only) as output 

        tris    GPIO    

        ; configure timer 

        movlw   b'11110110'     ; configure Timer0: 

                ; --1-----          counter mode (T0CS = 1) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----110          prescale = 128 (PS = 110)  

        option                  ;   -> increment at 256 Hz with 32.768 kHz input 

 

;***** Main loop 

main_loop 

        ; TMR0<7> cycles at 1Hz, so continually copy to LED (GP1)  

        rlf     TMR0,w          ; copy TMR0<7> to C 

        clrf    temp 

        rlf     temp,f          ; rotate C into temp 

        rlf     temp,w          ; rotate once more into W (-> W<1> = TMR0<7>) 

        movwf   GPIO            ; update GPIO with result (-> GP1 = TMR0<7>) 

 

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

Conclusion 

Hopefully the examples in this lesson have given you an idea of the flexibility and usefulness of the Timer0 

peripheral. 

With it, we were able to: 

 Time an event 

 Perform a periodic action while responding to input 

 Debounce a switch 

 Count external pulses 

We’ll revisit Timer0 later, and introduce other timers when we move onto the mid-range architecture. 

But first, in the next lesson we’ll take a quick look at how some of the MPASM assembler directives can be 

used to make our code easier to read and maintain, which will be important as our programs grow bigger. 

../6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 6: Assembler Directives and Macros 

 

 

As the programs presented in these tutorials are becoming longer, it’s appropriate to take a look at some of 

the facilities that MPASM (the Microchip PIC assembler) provides to simplify the process of writing and 

maintaining code. 

This lesson covers: 

 Arithmetic and bitwise operators 

 Text substitution with #define 

 Defining constants with equ or constant 

 Conditional assembly using if / else / endif, ifdef and ifndef 

 Outputting warning and error messages 

 Assembler macros 

Each of these topics is illustrated by making use of it in code from previous lessons in this series. 

Arithmetic Operators 

MPASM supports the following arithmetic operators: 

negate  - 

multiply * 

divide  / 

modulus % 

add  + 

subtract  - 

Precedence is in the traditional order, as above. 

For example, 2 + 3 * 4 = 2 + 12 = 14. 

To change the order of precedence, use parentheses: ( and ). 

For example, (2 + 3) * 4 = 5 * 4 = 20. 

Note:  These calculations take place during the assembly process, before any code is generated.  

They are used to calculate constant values which will be included in the code to be assembled.  

They do not generate any PIC instructions. 
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These arithmetic operators are useful in showing how a value has been derived, making it easier to 

understand the code and to make changes. 

For example, consider this code from lesson 2: 

        ; delay 500 ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

Where does the value of 244 come from?  It is the number of outer loop iterations needed to make 500 ms. 

To make this clearer, we could change the comments to: 

        ; delay 500 ms 

        movlw   .244            ; outer loop: #iterations =  

        movwf   dc2             ;  500ms/(1023+1023+3)us/loop = 244 

 

Or, instead of writing the constant ‘244’ directly, write it as an expression: 

        ; delay 500 ms 

        movlw   .500000/(.1023+.1023+.3) ; number of outer loop iterations 

        movwf   dc2                      ; for 500 ms delay 

 

If you’re using mainly decimal values in your expressions, as here, you may wish to change the default radix 

to decimal, to avoid having to add a ‘.’ before each decimal value. 

That’s not necessarily a good idea; if your code assumes that some particular default radix has been set, you 

need to be very careful if you copy that code into another program, which may have a different default radix.  

But, if you’re prepared to take the risk, add the ‘radix’ directive near the start of the program. 

For example: 

        radix   dec 

 

The valid radix values are ‘hex’ for hexadecimal (base 16), ‘dec’ for decimal (base 10) and ‘oct’ for octal 

(base 8).  The default radix is hex. 

With the default radix set to decimal, this code fragment can be written as: 

        ; delay 500 ms 

        movlw   500000/(1023+1023+3) ; # outer loop iterations for 500 ms 

        movwf   dc2 

 

Defining Constants 

Programs often contain numeric values which may need to be tuned or changed later, particularly during 

development.  When a change needs to be made, finding these values in the code can be difficult.  And 

making changes may be error-prone if the same value (or another value derived from the value being 

changed) occurs more than once in the code. 

To make the code more maintainable, each constant value should be defined only once, near the start of the 

program, where it is easy to find and change. 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf


© Gooligum Electronics 2013  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 3 

A good example is the reaction timer developed in lesson 5, where “success” was defined as pressing a 

pushbutton less than 200 ms after a LED was lit.  But what if, during testing, we found that 200 ms is 

unrealistically short?  Or too long? 

To change this maximum reaction time, you’d need to find and then modify this fragment of code: 

        ; indicate success if elapsed time < 200 ms        

        movlw   .25             ; if time < 200 ms (25 x 8 ms) 

        subwf   cnt_8ms,w 

        btfss   STATUS,C 

        bsf     GPIO,1          ;   turn on success LED 

 

To make this easier to maintain, we could define the maximum reaction time as a constant, at the start of the 

program. 

 

This can be done using the ‘equ’ (short for “equate”) directive, as follows: 

MAXRT   equ     .200            ; Maximum reaction time in ms 

 

Alternatively, you could use the ‘constant’ directive: 

constant MAXRT=.200         ; Maximum reaction time in ms 

 

The two directives are equivalent.  Which you choose to use is simply a matter of style. 

‘equ’ is more commonly found in assemblers, and perhaps because it is more familiar, most people use it. 

Personally, I prefer to use ‘constant’, mainly because I like to think of any symbol placed on the left hand 

edge (column 1) of the assembler source as being a label for a program or data register address, and I prefer 

to differentiate between address labels and constants to be used in expressions.  But it’s purely your choice. 

 

However you define this constant, it can be referred to later in your code, for example: 

        ; check elapsed time        

        movlw   MAXRT/8         ; if time < max reaction time (8 ms/count) 

        subwf   cnt_8ms,w 

        btfss   STATUS,C 

        bsf     GPIO,1          ;   turn on success LED 

 

 

Note how constants can be usefully included in arithmetic expressions.  In this way, the constant can be 

defined simply in terms of real-world quantities (e.g. ms), making it readily apparent how to change it to a 

new value (e.g. 300 ms), while arithmetic expressions are used to convert that into a quantity that matches 

the program’s logic.  And if that logic changes later (say, counting by 16 ms instead of 8 ms increments), 

then only the arithmetic expression needs to change; the constant can remain defined in the same way. 

Text Substitution 

As well as being able to define numeric constants, it is also very useful to be able to define “text constants”, 

where a text string is substituted into the assembler source code. 

Text substitution is commonly used to refer to I/O pins by a descriptive label.  This makes your code more 

readable, and easier to update if pin assignments change later. 

Why would pin assignments change?  Whether you design your own printed circuit boards, or layout your 

circuit on prototyping board, swapping pins around can often simplify the physical circuit layout.  That’s one 

of the great advantages of designing with microcontrollers; as you layout your design, you can go back and 

modify the code to simplify that layout, perhaps repeating that process a number of times. 

../5%20-%20Timer%200/PIC_Base_A_5.pdf
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For example, consider again the reaction timer from lesson 5.  The I/O pins were assigned as follows: 

;   Pin assignments:                                                    * 

;       GP1 = success LED                                               * 

;       GP2 = start LED                                                 * 

;       GP3 = pushbutton                                                * 

 

These assignments are completely arbitrary; the LEDs could be on any pin other than GP3 (which is input 

only), while the pushbutton could be on any unused pin. 

 

One way of defining these pins would be to use numeric constants: 

    constant nSTART=2               ; start LED 

    constant nSUCCESS=1             ; success LED 

constant nBUTTON=3              ; pushbutton 

 

(The ‘n’ prefix used here indicates that these are numeric constants; this is simply a convention, and you can 

choose whatever naming style works for you.) 

They would then be referenced in the code, as for example: 

        bsf     GPIO,nSTART         ; turn on start LED 

 

w_tmr0  btfss   GPIO,nBUTTON        ; check for button press (low) 

 

        bsf     GPIO,nSUCCESS       ; turn on success LED 

 

A significant problem with this approach is that larger PICs (i.e. most of them!) have more than one port.  

Instead of GPIO, larger PICs have ports named PORTA, PORTB, PORTC, and so on.  What if you moved 

an input or output from PORTA to PORTC?  The above approach, using numeric constants, wouldn’t work, 

because you’d have to go through your code and change all the PORTA references to PORTC. 

 

This problem can be solved using text substitution, using the ‘#define’ directive, as follows: 

    #define START       GPIO,2      ; start LED 

#define SUCCESS     GPIO,1      ; success LED 

#define BUTTON      GPIO,3      ; pushbutton 

 

These definitions are then referenced later in the code, as shown: 

        bsf     START               ; turn on start LED 

 

w_tmr0  btfss   BUTTON              ; check for button press (low) 

 

        bsf     SUCCESS             ; turn on success LED 

 

Note that there are no longer any references to GPIO in the main body of the code.  If you later move this 

code to a PIC with more ports, you only need to update the definitions at the start.  Of course, you would also 

need to modify the corresponding port initialisation code, such as ‘tris’ instructions.  This is a good reason 

to keep all your initialisation code in one easily-found place, such as at the start of the program, or in an 

“init” subroutine. 

Bitwise Operators 

We’ve seen that operations on binary values are fundamental to PIC microcontrollers: setting and clearing 

individual bits, flipping bits, testing the status of bits and rotating the bits in registers.  Many configuration 

options are specified as a collection of bits (or flags) which are assembled into a byte or word; for example, 

the ‘__CONFIG’ directive and the ‘option’ instruction. 

../5%20-%20Timer%200/PIC_Base_A_5.pdf
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To facilitate operations on bits, MPASM provides the following bitwise operators: 

compliment  ~ 

 left shift  << 

 right shift  >> 

 bitwise AND  & 

 bitwise exclusive OR ^ 

 bitwise inclusive OR | 

Precedence is in the order listed above. 

Parentheses are used to change the order of precedence: ‘(’ and ‘)’. 

We’ve seen an example of the bitwise AND operator being used in every program so far: 

                ; int reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG    _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

These symbols are defined in the ‘p12F509.inc’ include file as follows: 

;----- CONFIG Options -------------------------------------------------- 

_OSC_LP              EQU  H'0FFC'    ; LP oscillator 

_LP_OSC              EQU  H'0FFC'    ; LP oscillator 

_OSC_XT              EQU  H'0FFD'    ; XT oscillator 

_XT_OSC              EQU  H'0FFD'    ; XT oscillator 

_OSC_IntRC           EQU  H'0FFE'    ; internal RC oscillator 

_IntRC_OSC           EQU  H'0FFE'    ; internal RC oscillator 

_OSC_ExtRC           EQU  H'0FFF'    ; external RC oscillator 

_ExtRC_OSC           EQU  H'0FFF'    ; external RC oscillator 

_WDT_OFF             EQU  H'0FFB'    ; WDT disabled 

_WDT_ON              EQU  H'0FFF'    ; WDT enabled 

_CP_ON               EQU  H'0FF7'    ; Code protection on 

_CP_OFF              EQU  H'0FFF'    ; Code protection off 

_MCLRE_OFF           EQU  H'0FEF'    ; GP3/MCLR pin function is digital input 

_MCLRE_ON            EQU  H'0FFF'    ; GP3/MCLR pin function is MCLR 

 

The ‘equ’ directive is described above; you can see that these are simply symbols for numeric constants. 

 

In binary, the values in the ‘__CONFIG’ directive above are: 

_MCLRE_OFF H'0FEF' = 1111 1110 1111 

_CP_OFF  H'0FFF' =  1111 1111 1111 

_WDT_OFF    H'0FFB' =  1111 1111 1011 

_IntRC_OSC        H'0FFE' =  1111 1111 1110 

 -------------- 

ANDing these together gives: 1111 1110 1010 

So the directive above is equivalent to: 

__CONFIG    b'111111101010' 

 

For each of these configuration bit symbols, where a bit in the definition is ‘0’, it has the effect of setting the 

corresponding bit in the configuration word to ‘0’, because either ‘0’ or ‘1’ ANDed with ‘0’ equals ‘0’. 

The 12-bit configuration word in the PIC12F509 is as shown: 

Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

- - - - - - - MCLRE CP   WDTE FOSC1 FOSC0 
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These configuration options were described briefly in lessons 1 and 3.  Recapping: 

MCLRE enables the external processor reset, or “master clear”, on pin 4.  Clearing it allows GP3 to be used 

as an input. 

CP  disables code protection.   Clearing CP  protects your code from being read by PIC programmers. 

WDTE enables the watchdog timer, which is used to reset the processor if it crashes.  For more details, see 

lesson 7.  Clearing WDTE disables the watchdog timer. 

The FOSC bits set the clock, or oscillator, configuration; FOSC<1:0> = 10 specifies the internal RC 

oscillator.  The other oscillator configurations are described in lesson 7. 

 

Given this, to configure the PIC12F509 for internal reset (GP3 as an input), no code protection, no watchdog 

timer and the internal RC oscillator, the lower five bits of the configuration word must be set to 01010. 

That’s the same pattern of bits produced by the __CONFIG directive, above (the value of the upper seven bits 

is irrelevant, as they are not used), showing that ANDing together the symbols in the Microchip-provided 

include file gives the correct result.  Using the symbols is simpler, and safer; it’s easy to mistype a long 

binary value, leading to a difficult-to-debug processor configuration error.  If you mistype a symbol, the 

assembler will tell you, making it easy to correct the mistake. 

 

It is also useful (clearer and less error-prone) to be able to use symbols instead of binary numbers when 

setting bits in special-function registers, such as OPTION. 

The bits in the OPTION register are defined in the ‘p12F509.inc’ include file as follows: 

PSA              EQU  H'0003' 

T0SE             EQU  H'0004' 

T0CS             EQU  H'0005' 

NOT_GPPU         EQU  H'0006' 

NOT_GPWU         EQU  H'0007' 

PS0              EQU  H'0000' 

PS1              EQU  H'0001' 

PS2              EQU  H'0002 

 

Unlike the definitions used for the configuration bits, these symbols define a bit position, not a pattern.  It 

tells us, for example, that T0CS is bit 5. 

 

To set only bit 5, normally we’d use something like: 

    movlw   b'00100000'         ; select counter mode: TOCS=1 

    option                      ; (set bit 5 in OPTION) 

 

But note that the binary constant b’00100000’ is a ‘1’ shifted left five times, and so can be represented by 

the expression “1<<5”, using the binary left-shift operator ‘<<’. 

That means that this code can be used instead of the above: 

    movlw   1<<T0CS             ; select counter mode: TOCS=1 

    option                       

 

This works because the symbol ‘T0CS’ is defined in the include file to be equal to ‘5’. 

This code is clearer, needing fewer comments, and it is harder to make a mistake, as mistyping a symbol is 

likely to be picked up by the assembler, while mistyping a binary constant (say getting the ‘1’ in the wrong 

position) is likely to be missed. 

 

../1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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Typically a number of bits need to be set at the same time.  To do this, simply bitwise-OR the expressions 

together.  For example, the crystal-based LED flasher code from lesson 5 included: 

    movlw   b'11110110'     ; configure Timer0: 

            ; --1-----          counter mode (T0CS = 1) 

            ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

            ; -----110          prescale = 128 (PS = 110)  

    option                  ;   -> increment at 256 Hz with 32.768 kHz input 

 

This can be replaced by: 

        ; configure Timer0 

        movlw   1<<T0CS|0<<PSA|b'110'  

                                  ; counter mode (T0CS = 1) 

                                  ; prescaler assigned to Timer0 (PSA = 0) 

                                  ; prescale = 128 (PS = 110) 

        option                    ; -> increment at 256 Hz with 32.768 kHz input  

 

Including ‘0<<PSA’ in the expression does nothing, since a zero left-shifted any number of times is still zero, 

and ORing zero into any expression has no effect.  But it makes it explicit that we are clearing PSA. 

In this application, we don’t care what the GPWU  , GPPU   and T0SE bits are set to, so they are not 

included in the expression.  And where a bit field (such as PS<2:0>) is most clearly expressed as a binary 

pattern, it can be ORed into the expression as a binary constant, as shown. 

On the other hand, the first form, where the  value to be loaded into a register is presented as a binary 

number and comments are used to show what each bit position means, is often clearer, so that’s the style 

we’ll mainly use in these lessons.  But, as in most questions of style, it’s up to you!  In some cases, the 

second style, where a number of expressions are ORed together is clearer, and you’ll sometimes encounter it 

in other people’s code – so it’s useful to be able to understand expressions like ‘1<<T0CS|0<<PSA|b'110'’ 

even if you don’t use them yourself. 

Macros 

We’ve seen in lesson 3 that, if we wish to reuse the same piece of code a number of times in a program, it 

often makes sense to place that code into a subroutine and to call the subroutine from the main program. 

But that’s not always appropriate, or even possible.  The subroutine call and return is an overhead that takes 

some time; only four instruction cycles, but in timing-critical pieces of code, it may not be justifiable.  A 

more significant problem is that baseline PICs have only two stack registers, meaning that you must be very 

careful when nesting subroutine calls, or else the stack will overflow and your subroutine won’t return to the 

right place.  It’s usually not worth using up a stack level, just to avoid repeating a short piece of code. 

Another problem with subroutines is that, as we saw in lesson 3, to pass parameters to them, you need to load 

the parameters into registers – an overhead that leads to longer code, perhaps negating the space-saving 

advantage of using a subroutine, for small pieces of code.  And loading parameters into registers, before 

calling a subroutine, isn’t very readable.  It would be nicer to be able to simply list the parameters on a single 

line, as part of the subroutine call. 

 

Macros address these problems, and are often appropriate where a subroutine is not.  A macro is a sequence 

of instructions that is inserted (or expanded) into the source code by the assembler, prior to assembly.   

Note:  The purpose of a macro is to make the source code more compact; unlike a subroutine, it 

does not make the resultant object code any smaller.  The instructions within a macro are 

expanded into the source code, every time the macro is called. 

../5%20-%20Timer%200/PIC_Base_A_5.pdf
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Here’s a simple example.  Lesson 3 introduced a ‘delay10’ subroutine, which took as a parameter in W a 

delay as a multiples of 10 ms.  So to delay for 200 ms, we had: 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        call    delay10 

 

This was used in a program which flashed a LED with a 20% duty cycle: on for 200 ms, then off for 800 ms.  

Rewritten a little from the code presented in lesson 3, the main loop looks like this: 

main_loop 

        bsf     FLASH           ; turn on LED 

        movlw   .20             ; stay on for 200 ms     

        pagesel delay10         ;   (delay 20 x 10 ms) 

        call    delay10 

        bcf     FLASH           ; turn off LED 

        movlw   .80             ; stay off for 800 sec    

        call    delay10         ;   (delay 80 x 10 ms) 

        pagesel main_loop       ; repeat forever 

        goto    main_loop        

 

 

It would be nice to be able to simply write something like ‘DelayMS 200’ for a 200 ms delay. 

We can do that by defining a macro, as follows: 

DelayMS MACRO   ms                  ; delay time in ms 

        movlw   ms/.10              ; divide by 10 to pass to delay10 routine 

        pagesel delay10 

        call    delay10 

        pagesel $ 

        ENDM 

 

This defines a macro called ‘DelayMS’, which takes a single parameter: ‘ms’, the delay time in milliseconds.  

Parameters are referred to within the macro in the same way as any other symbol, and can be used in 

expressions, as shown. 

A macro definition consists of a label (the macro’s name), the ‘MACRO’ directive, and a comma-separated list 

of symbols, or arguments, used to pass parameters to the macro, all on one line.  It is followed by a sequence 

of instructions and/or assembler directives, finishing with the ‘ENDM’ directive. 

When the source code is assembled, the macro’s instruction sequence is inserted into the code, with the 

arguments replaced by the parameters that were passed to the macro. 

 

That may sound complex, but using a macro is easy.  Having defined the ‘DelayMS’ macro as above, it can 

be called from the main loop, as follows: 

main_loop 

        bsf     FLASH               ; turn on LED  

        DelayMS .200                ; stay on for 200 ms 

        bcf     FLASH               ; turn off LED 

        DelayMS .800                ; stay off for 800 ms 

        goto    loop                ; repeat forever 

 

This ‘DelayMS’ macro is an example of a wrapper, making the ‘delay10’ subroutine easier to use. 

Note that the pagesel directives have been included as part of the macro, first to select the correct page for 

the ‘delay10’ subroutine, and then to select the current page again after the subroutine call.  That makes the 

macro transparent to use; there is no need for pagesel directives before or after calling it. 

 

../3%20-%20Modular%20code/PIC_Base_A_3.pdf
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As a more complex example, consider the debounce code presented in lesson 5: 

wait_dn clrf    TMR0            ; reset timer 

chk_dn  btfsc   GPIO,3          ; check for button press (GP3 low) 

        goto    wait_dn         ;   continue to reset timer until button down 

        movf    TMR0,w          ; has 10ms debounce time elapsed? 

        xorlw   .157            ;   (157 = 10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_dn 

 

If you had a number of buttons to debounce in your application, you would want to use code very similar to 

this, multiple times.  But since there is no way of passing a reference to the pin to debounce (such as 

‘GPIO,3’) as a parameter to a subroutine, it’s necessary to use a macro to achieve this. 

 

For example, a debounce macro could be defined as follows: 

; Debounce switch on given input port,pin 

; Waits for switch to be 'high' continuously for 10 ms 

; 

; Uses: TMR0  Assumes: TMR0 running at 256 us/tick 

; 

DbnceHi MACRO  port,pin 

    local      start,wait,DEBOUNCE 

    variable   DEBOUNCE=.10*.1000/.256  ; debounce count = 10ms/(256us/tick) 

 

        pagesel $              ; select current page for gotos 

start   clrf   TMR0            ; button down, so reset timer (counts "up" time) 

wait    btfss  port,pin        ; wait for switch to go high (=1) 

        goto   start  

        movf   TMR0,w          ; has switch has been up continuously for 

        xorlw  DEBOUNCE        ;   debounce time? 

        btfss  STATUS,Z        ; if not, keep checking that it is still up 

        goto   wait 

        ENDM 

 

There are a few things to note about this macro definition, starting with the comments.  As with subroutines, 

you’ll eventually build up a library of useful macros, which you might keep together in an include file, such 

as ‘stdmacros.inc’ (which you would reference using the #include directive, instead of copying the macros 

into your code.)  When documenting a macro, it’s important to note any resources (such as timers) used by 

the macro, and any initialisation that has to have been done before the macro is called. 

The macro is called ‘DbnceHi’ instead of ‘DbnceUp’ because it’s waiting for a pin to be consistently high.  

For some switches, that will correspond to “up”, but not in every case.  Using terms such as “high” instead of 

“up” is more general, and thus more reusable. 

The ‘local’ directive declares symbols (address labels and variables) which are only used within the macro.  

If you call a macro more than once, you must declare any address labels within the macro as “local”, or else 

the assembler will complain that you have used the same label more than once.  Declaring macro labels as 

local also means that you don’t need to worry about whether those labels are used within the main body of 

code.  A good example is ‘start’ in the definition above.  There is a good chance that there will be a 

‘start’ label in the main program, but that doesn’t matter, as the scope of a label declared to be “local” is 

limited to the macro it is defined in. 

The ‘variable’ directive is very similar to the ‘constant’ directive, introduced earlier.  The only 

difference is that the symbol it defines can be updated later.  Unlike a constant, the value of a variable can be 

changed after it has been defined.  Other than that, they can be used interchangeably. 

In this case, the symbol ‘DEBOUNCE’ is being defined as a variable, but is used as a constant.  It is never 

updated, being used to make it easy to change the debounce period from 10 ms if required, without having to 

../5%20-%20Timer%200/PIC_Base_A_5.pdf
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find the relevant instruction within the body of the macro (and note the way that an arithmetic expression has 

been used, to make it easy to see how to set the debounce to some other number of milliseconds). 

So why define ‘DEBOUNCE’ as a variable, instead of a constant?  If it was defined as a constant, there would 

potentially be a conflict if there was another constant called ‘DEBOUNCE’ defined somewhere else in the 

program.  But surely declaring it to be “local” would avoid that problem?  Unfortunately, the ‘local’ 

directive only applies to labels and variables, not constants.  And that’s why ‘DEBOUNCE’ is declared as a 

“local variable”.  Its scope is limited to the macro and will not affect anything outside it.  You can’t do that 

with constants. 

Finally, note that the macro begins with a ‘pagesel $’ directive.  That is placed there because we cannot 

assume that the page selection bits are set to the current page when the macro is called.  If the current page 

was not selected, the ‘goto’ commands within the macro body would fail; they would jump to a different 

page.  That illustrates another difference between macros and subroutines: when a subroutine is called, the 

page the subroutine is on must have been selected (or else it couldn’t have been called successfully), so any 

‘goto’ commands within the subroutine will work.  You can’t safely make that assumption for macros. 

Complete program 

The following program demonstrates how this “debounce” macro is used in practice. 

It is based on the “toggle an LED” program included in lesson 5, but the press of the pushbutton is not 

debounced, only the release.  It is not normally necessary to debounce both actions – although you may have 

to think about it a little to see why! 

Using the macro doesn’t make the code any shorter, but the main loop is much simpler: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 6, example 4                                 * 

;                   Toggles LED when button is pressed                  * 

;                                                                       * 

;   Demonstrates use of macro defining Timer0-based debounce routine    * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F509  

    #include    <p12F509.inc> 

 

 

;***** CONFIGURATION 

                ; int reset, no code protect, no watchdog, int RC clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

; pin assignments 

    constant    nLED=1              ; indicator LED on GP1 

    #define     BUTTON  GPIO,3      ; pushbutton on GP3 

 

 

;***** MACROS 

; Debounce switch on given input port,pin 

; Waits for switch to be 'high' continuously for 10 ms 

; 

; Uses: TMR0  Assumes: TMR0 running at 256 us/tick 

; 

../5%20-%20Timer%200/PIC_Base_A_5.pdf
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DbnceHi MACRO   port,pin 

    local       start,wait,DEBOUNCE 

    variable    DEBOUNCE=.10*.1000/.256 ; debounce count = 10ms/(256us/tick) 

 

        pagesel $               ; select current page for gotos 

start   clrf    TMR0            ; button down, so reset timer (counts "up" time) 

wait    btfss   port,pin        ; wait for switch to go high (=1) 

        goto    start  

        movf    TMR0,w          ; has switch has been up continuously for  

        xorlw   DEBOUNCE        ;   debounce time? 

        btfss   STATUS,Z        ; if not, keep checking that it is still up 

        goto    wait 

        ENDM 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

 

;***** MAIN PROGRAM ***************************************************** 

;***** Initialisation 

start 

        ; configure ports 

        clrf    GPIO            ; start with LED off 

        clrf    sGPIO           ;   update shadow 

        movlw   ~(1<<nLED)      ; configure LED pin (only) as output  

        tris    GPIO     

        ; configure timer           

        movlw   b'11010111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)           

        option                  ;   -> increment every 256 us 

 

;***** Main loop 

main_loop 

        ; wait for button press 

wait_dn btfsc   BUTTON          ; wait until button low 

        goto    wait_dn  

 

        ; toggle LED 

        movf    sGPIO,w           

        xorlw   1<<nLED         ; toggle shadow register 

        movwf   sGPIO            

        movwf   GPIO            ; write to port 

 

        ; wait for button release 

        DbnceHi BUTTON          ; wait until button high (debounced) 

 

        ; repeat forever 

        goto    main_loop     

     

        END 
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Conditional Assembly 

We’ve seen how the processor include files, such as ‘p12F509.inc’, define a number of symbols that allow 

you to refer to registers and flags by name, instead of numeric value. 

While looking at the ‘p12F509.inc’ file, you may have noticed these lines: 

    IFNDEF __12F509 

        MESSG "Processor-header file mismatch.  Verify selected processor." 

    ENDIF 

 

This is an example of conditional assembly, where the actions performed by the assembler (outputting 

messages and generating code) depend on whether specific conditions are met. 

When the processor type is specified by the ‘list p=’ directive, or selected in MPLAB, a symbol 

specifying the processor is defined; for the PIC12F509, the symbol is ‘__12F509’.  This is useful because 

the assembler can be made to perform different actions depending on which processor symbol has been 

defined. 

In this case, the idea is to check that the correct processor include file is being used.  If you include the file 

for the wrong processor, you’ll almost certainly have problems.  This code checks for that. 

The ‘IFNDEF’ directive instructs the assembler to assemble the following block of code if the specified 

symbol has not been defined. 

The ‘ENDIF’ directive marks the end of the block of conditionally-assembled code. 

In this case, everything between ‘IFNDEF’ and ‘ENDIF’ is assembled if the symbol ‘__12F509’ has not been 

defined.  And that will only be true if a processor other than the PIC12F509 has been selected. 

The ‘MESSG’ directive tells the assembler to print the specified message in the MPLAB output window.  This 

message is only informational; it’s useful for providing information about the assembly process or for issuing 

warnings that do not necessarily mean that assembly has to stop. 

So, this code tests that the correct processor has been selected and, if not, warns the user about the mismatch. 

 

Similar to ‘IFNDEF’, there is also an ‘IFDEF’ directive which instructs the assembler to assemble a block of 

code if the specified symbol has been defined. 

A common use of ‘IFDEF’ is when debugging, perhaps to disable parts of the program while it is being 

debugged.  Or you might want to use a different processor configuration, say with code protection enabled. 

For example: 

;***** CONFIGURATION 

    #define     DEBUG 

 

    IFDEF DEBUG 

                    ; int reset, no code protect, no watchdog, int RC clock 

        __CONFIG    _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC 

    ELSE 

                    ; int reset, code protect on, no watchdog, int RC clock 

        __CONFIG    _MCLRE_OFF & _CP_ON & _WDT_OFF & _IntRC_OSC 

    ENDIF 

 

If the ‘DEBUG’ symbol has been defined (it doesn’t have to be set equal to anything, just defined), the first 

__CONFIG directive is assembled, turning off code protection and the watchdog timer. 

The ‘ELSE’ directive marks the beginning of an alternative block of code, to be assembled if the previous 

conditional block was not selected for assembly. 
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That is, if the ‘DEBUG’ symbol has not been defined, the second __CONFIG directive is assembled, turning on 

code protection and the watchdog timer. 

When you have finished debugging, you can either comment out the ‘#define DEBUG’ directive, or change 

‘DEBUG’ to another symbol, such as ‘RELEASE’.  The debugging code will now no longer be assembled. 

 

In many cases, simply testing whether a symbol exists is not enough.  You may want the assembler to 

assemble different sections of code and/or issue different messages, depending on the value of a symbol, or 

of an expression containing perhaps a number of symbols. 

As an example, suppose your code is used to support a number of hardware configurations, or revisions.  At 

some point the printed circuit board may have been revised, requiring different pin assignments.  In that case, 

you could use a block of code similar to: 

    constant    REV='A'             ; hardware revision 

 

; pin assignments 

    IF REV=='A'                         ; pin assignments for REV A: 

        constant    nLED=1              ;   indicator LED on GP1 

        #define     BUTTON  GPIO,3      ;   pushbutton on GP3 

    ENDIF 

    IF REV=='B'                         ; pin assignments for REV B: 

        constant    nLED=0              ;   indicator LED on GP0 

        #define     BUTTON  GPIO,2      ;   pushbutton on GP2 

    ENDIF 

    IF REV!='A' && REV!='B' 

        ERROR "Revision must be 'A' or 'B'" 

    ENDIF 

 

This code allows for two hardware revisions, selected by setting the constant ‘REV’ equal to ‘A’ or ‘B’. 

It’s easy to try this out with your Gooligum baseline training board: close jumpers JP7 and JP3 to enable 

pull-up resistors on GP2 and GP3, and jumpers JP11 and JP12 to enable LEDs on GP0 and GP1. 

 

The ‘IF expr’ directive instructs the assembler to assemble the following block of code if the expression 

expr is true.  Normally a logical expression (such as a test for equality) is used with the ‘IF’ directive, but 

arithmetic expressions can also be used, in which case an expression that evaluates to zero is considered to 

be logically false, while any non-zero value is considered to be logically true. 

MPASM supports the following logical operators: 

not (logical compliment) ! 

 greater than or equal to  >= 

 greater than   > 

 less than   < 

 less than or equal to  <= 

 equal to    == 

 not equal to   != 

 logical AND   && 

 logical OR   || 

Precedence is in the order shown. 

As usual, parentheses can be used to change the order of precedence: ‘(’ and ‘)’. 

Note that the test for equality is two equals signs; ‘==’, not ‘=’.  
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In the code above, setting ‘REV’ to ‘A’ means that the first pair of #define directives will be executed, while 

setting ‘REV’ to ‘B’ executes the second pair. 

But what if ‘REV’ was set to something other than ‘A’ or ‘B’?  Then neither set of pin assignments would be 

selected and the symbols ‘nLED’ and ‘BUTTON’ would be left undefined.  The rest of the code would not 

assemble correctly, so it is best to check for that error condition. 

This error condition can be tested for, using the logical expression: 

REV!='A' && REV!='B' 

 

Incidentally, this can be rewritten equivalently
1
 as: 

!(REV=='A' || REV=='B') 

 

You can of course use whichever form seems clearest to you. 

The ‘ERROR’ directive does essentially the same thing as ‘MESSG’, but instead of printing the specified 

message and continuing, ‘ERROR’ will make the assembly process fail. 

 

The ‘IF’ directive is also very useful for checking that macros have been called correctly, particularly for 

macros which may be reused in other programs. 

For example, consider the delay macro defined earlier: 

DelayMS MACRO   ms                  ; delay time in ms 

        movlw   ms/.10              ; divide by 10 to pass to delay10 routine 

        pagesel delay10 

        call    delay10 

        pagesel $ 

        ENDM 

 

The maximum delay allowed is 2.55 s, because all the registers, including W, are 8-bit and so can only hold 

numbers up to 255.  If you try calling ‘DelayMS’ with an argument greater than 2550, the assembler will 

warn you about “Argument out of range”, but it will carry on anyway, using the least significant 8 bits of 

‘ms/.10’.  That’s not a desirable behaviour.  It would be better if the assembler reported an error and halted, 

if the macro is called with an argument that is out of range. 

That can be done as follows: 

DelayMS MACRO   ms                  ; delay time in ms 

    IF ms>2550 

        ERROR "Maximum delay time is 2550 ms" 

    ENDIF 

        movlw   ms/.10              ; divide by 10 to pass to delay10 routine 

        pagesel delay10 

        call    delay10 

        pagesel $ 

        ENDM 

 

By testing that parameters are within allowed ranges like this, you can make your code more robust. 

Conclusion 

MPASM offers many more advanced facilities that can make your life as a PIC assembler programmer 

easier, but that’s enough for now. 

                                                      

1
 This equivalence is known as De Morgan’s theorem. 
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The features we’ve seen in this lesson will help make your code easier to understand and maintain, and make 

you more productive, by: 

 using arithmetic expressions to make it clear how numeric constants are derived 

 using constants and text substitution, so make your code more readable and so that future 

configuration changes can be made in a single place 

 using symbols and bitwise operators instead of cryptic binary constants 

 creating macros to make your code shorter, more readable, and easier to re-use 

Other MPASM directives will be introduced in future lessons, as appropriate. 

 

The next lesson covers the 12F509’s sleep mode, watchdog timer, and clock (oscillator) options. 

 

../7%20-%20Special%20features/PIC_Base_A_7.pdf
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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 7: Sleep Mode, the Watchdog Timer and Clock Options 

 

 

We’ve now covered, at least at an introductory level, the major features of the PIC10F200, PIC12F508 and 

PIC12F509 (admittedly, some of the simplest of the “modern” PICs), including digital input, output, and 

using the Timer0 module as either a timer or counter. 

That’s enough to build a surprising number of applications, but these MCUs have a few other features which 

can be quite useful.  These are covered in chapter 7 of the PIC12F508/509/16F505 data sheet, titled “Special 

Features of the CPU”.  Although you should refer to the latest data sheet for the full details, this lesson will 

introduce the following “special” (and very useful) features: 

 Sleep mode (power down) 

 Wake-up on change (power up) 

 The watchdog timer 

 Oscillator (clock) configurations 

Sleep Mode 

The material covered so far in these tutorials should allow you to design a simple project such as the 

Gooligum Electronics “Toy Traffic Lights” kit: lighting LEDs, responding to and debouncing buttons and 

switches, and timing.  But there’s one thing the Toy Traffic Lights project does, that hasn’t been covered yet; 

it turns itself “off” (saving power), and comes back “on” at the touch of a button.  There is no on/off switch; 

the circuit is always powered, and yet the batteries are able to last for years. 

That is done by putting the PIC into the power-saving standby, or sleep mode. 

To demonstrate sleep mode, we’ll use the circuit from 

lesson 5, as shown on the right. 

If you have the Gooligum baseline training board, 

connect jumpers JP3, JP12 and JP13 to enable the 

pull-up resistor on GP3 and the LEDs on GP1 and 

GP2.  Or, if you are using Microchip’s Low Pin 

Count Demo Board, you will need to connect LEDs to 

GP1 and GP2, as described in lesson 1. 

To demonstrate to yourself that power consumption 

really is reduced when the PIC enters sleep mode, you 

would have to use an external power supply, instead 

of using your PICkit 2 or PICkit 3 to power the 

circuit.  You can then place a multimeter inline with 

the power supply, to measure the supply current. 

http://www.gooligum.com.au/kits/trafficlights/trafficlights.html
../5%20-%20Timer%200/PIC_Base_A_5.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
../1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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The instruction for placing the PIC into standby mode is ‘sleep’ – “enter sleep mode”. 

To illustrate the use of the sleep instruction, consider the following fragment of code.  It turns on the LED on 

GP1, waits for the button to be pressed, and then enters sleep mode: 

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

        bsf     GPIO,1          ; turn on LED 

 

wait_lo btfsc   GPIO,3          ; wait for button press (low) 

        goto    wait_lo 

 

        sleep                   ; enter sleep mode 

 

        goto    $               ; (this instruction should never run) 

 

Note that the final ‘goto $’ instruction (an endless loop) will never be executed, because ‘sleep’ will halt 

the processor; any instructions after ‘sleep’ will never be reached. 

When you run this program, the LED will turn on and then, when you press the button, nothing will appear 

to happen!  The LED stays on.  Shouldn’t it turn off?  What’s going on? 

The current supplied from a 5 V supply, before pressing the button, with the LED on, was measured to be 

10.83 mA.  After pressing the button, the measured current dropped to 10.47 mA, a fall of only 0.36 mA. 

This happens because, when the PIC goes into standby mode, the PIC stops executing instructions, saving 

some power (360 µA in this case), but the I/O ports remain in the state they were in, before the ‘sleep’ 

instruction was executed. 

In this case, the fix is simple – turn off the LED before entering sleep mode, as follows: 

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

        bsf     GPIO,1          ; turn on LED 

 

wait_lo btfsc   GPIO,3          ; wait for button press (low) 

        goto    wait_lo 

 

        bcf     GPIO,1          ; turn off LED 

 

        sleep                   ; enter sleep mode 

 

When this program is run, the LED will turn off when the button is pressed. 

The current measured in the prototype with the PIC in standby and the LED off was less than 0.1 µA – too 

low to register on the multimeter used!  That was with the unused pins tied to VDD or VSS (whichever is 

most convenient on the circuit board), as floating CMOS inputs will draw unnecessary current. 

Note: For low power consumption in standby mode, the I/O ports must be configured to stop 

sourcing or sinking current, before entering SLEEP mode. 

Note: To minimise power in standby mode, configure all unused pins as inputs, and tie them VDD 

or VSS through resistors (do not connect them directly to VDD or VSS, as the PIC may be damaged 

if these pins are inadvertently configured as outputs). 
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For clarity, tying the unused inputs to VDD or VSS was not shown in the circuit diagram above.  If you have 

the Gooligum training board, you can use the supplied 22 kΩ resistors to tie GP0, GP4 and GP5 to ground, 

via the expansion header and breadboard. 

Wake-up from sleep 

Most baseline PICs include a facility for coming out of standby mode when an input changes, called wake-up 

on change.  This is used, for example, in the “Toy Traffic Lights” project to power on the device when the 

button is pressed. 

Wake-up on change is available on the GP0, GP1 and GP3 pins on the PIC12F509 (these are the same pins 

that internal pull-ups are available for).  Note that on the baseline PICs, this is all or nothing; either all of the 

available pins are enabled for wake-up on change, or none of them are. 

On the PIC12F509, wake-up on change is controlled by the GPWU   bit in the OPTION register: 

By default (after a power-on or reset), GPWU   = 1 and wake-up on change is disabled. 

To enable internal wake-up on change, clear GPWU  . 

Assuming no other options are being set (leaving all the other bits at the default value of ‘1’), wake-up on 

change is enabled by: 

        movlw   b'01111111'     ; enable wake-up on change 

                ; 0-------          (/GPWU = 0) 

        option 

 

If wake-up on change is enabled, the PIC will be reset if, in sleep mode, the value at any of the “wake-up on 

change” pins becomes different to the last time those pins were read, prior to entering sleep. 

 

It is also important to ensure that any input which will be used to trigger a wake-up is stable before entering 

sleep mode.  Consider what would happen if wake-up on change was enabled in the program above.  As soon 

as the button is pressed, the LED will turn off and the PIC will enter standby mode, as intended.  But on the 

first switch bounce, the input would be seen to have changed, and the PIC would be reset. 

Even if the circuit included hardware debouncing, there’s still a problem: the LED will go off and the PIC 

will enter standby as soon as the button is pressed, but when the button is subsequently released, it will be 

seen as a change, and the PIC will reset and the LED will come back on!  To successfully use the pushbutton 

to turn the circuit (PIC and LED) “off”, it is necessary to wait for the button to go high and remain stable 

(debounced) before entering sleep mode. 

There’s another problem: when the button is pressed while the PIC is in sleep mode, the PIC will reset, and 

the LED will light.  That’s what we want.  The problem is that PICs are fast, and human fingers are slow – 

the button will still be down when the program first checks for “button down” and the LED will immediately 

turn off again.  To avoid this, we must wait for the button to be in a stable “up” state before checking that it 

is “down”, in case the program is starting following a button press. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OPTION GPWU   GPPU   T0CS T0SE PSA PS2 PS1 PS0 

Note: You should read the input pins configured for wake-up on change just prior to entering sleep 

mode. Otherwise, if the value at a pin had changed since the last time it was read, a “wake up on 

change” reset will occur immediately upon entering sleep mode, as the input value would be seen 

to be different from that last read. 

http://www.gooligum.com.au/kits/trafficlights/trafficlights.html
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So the necessary sequence is: 

turn on LED 

wait for stable button high 

wait for button low 

turn off LED 

wait for stable button high 

sleep 

 

The following code, which makes use of the debounce macro defined in lesson 6, implements this: 

;***** Initialisation 

        ; configure port 

        movlw   ~(1<<nLED)      ; configure LED pin (only) as an output 

        tris    GPIO 

        ; configure wake-on-change and Timer0 

        movlw   b'01000111'     ; configure wake-up on change and Timer0: 

                ; 0-------          enable wake-up on change (/GPWU = 0) 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111) 

        option                  ;   -> increment every 256 us 

 

;***** Main code 

        ; turn on LED 

        bsf     LED              

 

        ; wait for stable button high (in case it is still bouncing) 

        DbnceHi BUTTON           

  

        ; wait for button press                                

wait_lo btfsc   BUTTON          ; wait until button low 

        goto    wait_lo 

 

        ; go into standby (low power) mode 

        bcf     LED             ; turn off LED 

 

        DbnceHi BUTTON          ; wait for stable button release 

 

        sleep                   ; enter sleep mode 

 

(the labels ‘LED’ and ‘BUTTON’ are defined earlier in the program; see the complete listing below) 

 

This code does essentially the same thing as the “toggle a LED” programs developed in lesson 4, except that 

in this case, when the LED is off, the PIC is drawing negligible power. 

Since the same start-up instructions are executed, whether the PIC has been powered on for the first time, or 

was reset by a wake-up from sleep, how is it possible to tell whether a wake-up on change has occurred? 

Of course, that’s not necessarily important.  The program above debounces the pushbutton when it first 

starts, just in case it had restarted because of a wake-up from sleep.  If the PIC had just been powered on, 

there would be no need to do this debouncing, but it doesn’t hurt to do it anyway – if the button is already up, 

then the debounce routine only introduces a 10 ms delay. 

Note: On baseline PICs, wake-up on pin change causes a processor reset; instruction execution 

recommences from the reset vector, as it does following all types of reset, including power-on.  

Execution does not resume at the instruction following “sleep”. 

../6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
../4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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But sometimes you would like your program to behave differently, depending on why it was (re)started. 

You can do that by testing the GPWUF flag bit in the STATUS register: 

GPWUF is set to ‘1’ by a wake-up on change, and is cleared by all other resets.  So if GPWUF has been set, 

it means that a wake-on-change reset has occurred. 

Complete program 

To demonstrate how the GPWUF flag can be tested, to differentiate between wake-up on change and power-

on resets, the following program, based on the code above, lights the LED on GP2 following a wake-up on 

change reset, but not when the PIC is first powered on.  And since the wake-up on change condition is being 

tested anyway, the initial button debounce is only performed if a wake-up on change has occurred.  (Note 

that the debounce macro is defined in an include file.) 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 7, example 2b                                * 

;                                                                       * 

;   Demonstrates differentiation between wake up on change              * 

;   and POR reset                                                       * 

;                                                                       * 

;   Turn on LED after each reset                                        * 

;   Turn on WAKE LED only if reset was due to wake on change            * 

;   then wait for button press, turn off LEDs, debounce, then sleep     * 

;                                                                       * 

;************************************************************************ 

;   Pin assignments:                                                    * 

;       GP1 = on/off indicator LED                                      * 

;       GP2 = wake-on-change indicator LED                              * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F509  

    #include    <p12F509.inc> 

     

    #include    <stdmacros-base.inc> ; DbcneHi - debounce switch, wait for high 

                                     ;   (requires TMR0 running at 256 us/tick)     

    radix       dec 

 

 

;***** CONFIGURATION 

                ; int reset, no code protect, no watchdog, int RC clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

; pin assignments 

    #define     LED     GPIO,1      ; on/off indicator LED on GP1 

    constant    nLED=1              ;   (port bit 1) 

    #define     WAKE    GPIO,2      ; wake on change indicator LED on GP2 

    constant    nWAKE=2             ;   (port bit 2) 

    #define     BUTTON  GPIO,3      ; pushbutton on GP3 (active low) 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS GPWUF - PA0 TO   PD   Z DC C 
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;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        clrf    GPIO            ; start with all LEDs off 

        movlw   ~(1<<nLED|1<<nWAKE) ; configure LED pins as outputs 

        tris    GPIO 

        ; configure wake-on-change and Timer0         

        movlw   b'01000111'     ; configure wake-up on change and Timer0: 

                ; 0-------          enable wake-up on change (/GPWU = 0) 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111) 

        option                  ;   -> increment every 256 us 

 

;***** Main code 

        ; turn on LED 

        bsf     LED              

 

        ; test for wake-on-change reset 

        btfss   STATUS,GPWUF    ; if wake-up on change has occurred, 

        goto    wait_lo 

        bsf     WAKE            ;   turn on wake-up indicator 

        DbnceHi BUTTON          ;   wait for button to stop bouncing 

 

        ; wait for button press                                

wait_lo btfsc   BUTTON          ; wait until button low 

        goto    wait_lo 

 

        ; go into standby (low power) mode 

        clrf    GPIO            ; turn off LEDs 

 

        DbnceHi BUTTON          ; wait for stable button release 

 

        sleep                   ; enter sleep mode 

 

 

        END 

 

Watchdog Timer 

In the real world, computer programs sometimes “crash”; they will stop responding to input, stuck in a 

continuous loop they can’t get out of, and the only way out is to reset the processor (e.g. Ctrl-Alt-Del on 

Windows PCs – and even that sometimes won’t work, and you need to power cycle a PC to bring it back).  

Microcontrollers are not immune to this.  Their programs can become stuck because some unforseen 

sequence of inputs has occurred, or perhaps because an expected input signal never arrives.  Or, in the 

electrically noisy industrial environment in which microcontrollers are often operating, power glitches and 

EMI on signal lines can create an unstable environment, perhaps leading to a crash. 

Crashes present a special problem for equipment which is intended to be reliable, operating autonomously, in 

environments where user intervention isn’t an option. 
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One of the major functions of a watchdog timer is to automatically reset the microcontroller in the event of a 

crash.  It is simply a free-running timer (running independently of any other processor function, including 

sleep) which, if allowed to overflow, will reset the PIC.  In normal operation, an instruction which clears the 

watchdog timer is regularly executed – often enough to prevent the timer ever overflowing.  This instruction 

is often placed in the “main loop” of a program, where it would normally be expected to be executed often 

enough to prevent watchdog timer overflows.  If the program crashes, the main loop presumably won’t 

complete; the watchdog timer won’t be cleared, and the PIC will be reset.  Hopefully, when the PIC restarts, 

whatever condition led to the crash will have gone away, and the PIC will resume normal operation. 

The instruction for clearing the watchdog timer is ‘clrwdt’ – “clear watchdog timer”. 

The watchdog timer has a nominal time-out period of 18 ms.  If that’s not long enough, it can be extended by 

using the prescaler. 

As we saw in lesson 5, the prescaler is configured using a number of bits in the OPTION register: 

To assign the prescaler to the watchdog timer, set the PSA bit to ‘1’. 

 

When assigned to the watchdog timer, the prescale ratio is set by the 

PS<2:0> bits, as shown in the table on the right. 

 

Note that the prescale ratios are one half of those that apply when the 

prescaler is assigned to Timer0. 

For example, if PSA = 1 (assigning the prescaler to the watchdog 

timer) and PS<2:0> = ‘011’ (selecting a ratio of 1:8), the watchdog 

time-out period will be 8 × 18 ms = 144 ms. 

With the maximum prescale ratio, the watchdog time-out period is 

128 × 18 ms = 2.3 seconds. 

 

 

 

The watchdog timer is controlled by the WDTE bit in the configuration word: 

Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

- - - - - - - MCLRE CP   WDTE FOSC1 FOSC0 

 

Setting WDTE to ‘1’ enables the watchdog timer. 

To set WDTE, use the symbol ‘_WDT_ON’ instead of ‘_WDT_OFF’ in the __CONFIG directive. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OPTION GPWU   GPPU   T0CS T0SE PSA PS2 PS1 PS0 

PS<2:0> 

bit value 

WDT 

prescale ratio 

000 1 : 1 

001 1 : 2 

010 1 : 4 

011 1 : 8 

100 1 : 16 

101 1 : 32 

110 1 : 64 

111 1 : 128 

Note: The baseline PICs include a single prescaler, which can be used with either the Timer0 

module or the Watchdog Timer, but not both. 

If the prescaler is assigned to the Watchdog Timer, it cannot be used with Timer0. 

../5%20-%20Timer%200/PIC_Base_A_5.pdf
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Since the configuration word cannot be accessed by programs running on the PIC (it can only be written to 

when the PIC is being programmed), the watchdog timer cannot be enabled or disabled at runtime.  It 

can only be configured to be ‘on’ or ‘off’ when the PIC is programmed. 

Watchdog Timer example 

To demonstrate how the watchdog timer allows the PIC to recover from a crash, we’ll use a simple program 

which turns on an LED for 1.0 s, turns it off again, and then enters an endless loop (simulating a crash). 

If the watchdog timer is disabled, the loop will never exit and the LED will remain off.  But if the watchdog 

timer is enabled, with a period of 2.3 s, the program should restart itself after 2.3 s, and the LED will flash: 

on for 1.0 sec and off for 1.3 s (approximately). 

To make it easy to select between configurations with the watchdog timer on or off, you can use a construct 

such as: 

    #define     WATCHDOG        ; define to enable watchdog timer 

 

    IFDEF WATCHDOG 

                    ; ext reset, no code protect, watchdog, int RC clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_ON & _IntRC_OSC 

    ELSE 

                    ; ext reset, no code protect, no watchdog, int RC clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

ENDIF 

 

Note that these __CONFIG directives enable external reset (‘_MCLRE_ON’), allowing the pushbutton switch 

connected to pin 4 to reset the PIC.  That’s useful because, with this program going into an endless loop, 

having to power cycle the PIC to restart it would be annoying; pressing the button is much more convenient. 

 

The code to flash the LED once and then enter an endless loop is simple, making use of the ‘DelayMS’ 

macro introduced in lesson 6: 

;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<nLED)          ; configure LED pin (only) as an output 

        tris    GPIO 

        ; configure watchdog timer 

        movlw   1<<PSA | b'111'     ; prescaler assigned to WDT (PSA = 1) 

                                    ; prescale = 128 (PS = 111) 

        option                      ; -> WDT period = 2.3 s 

 

;***** Main code 

        bsf     LED                 ; turn on LED 

        DelayMS 1000                ; delay 1 sec 

        bcf     LED                 ; turn off LED 

 

        goto    $                   ; wait forever 

 

If you build and run this with ‘#define WATCHDOG’ commented out (place a ‘;’ in front of it), the LED 

will light once, and then remain off.  But if you define ‘WATCHDOG’, the LED will continue to flash. 

 

As mentioned in the discussion of “wake-up on change”, sometimes you’d like your program to behave 

differently, depending on why it was restarted.  In particular, if, in normal operation, a watchdog timer reset 

should never occur, you may wish to turn on an alarm indicator if a watchdog timer reset has happened, to 

show that an unexpected problem has occurred. 

../6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
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Watchdog timer resets are indicated by the TO  bit in the STATUS register: 

The TO   bit is cleared to ‘0’ by a reset caused by watchdog timer, and is set to ‘1’ by power-on reset, 

entering sleep mode, or by execution of the ‘clrwdt’ instruction. 

If TO   has been cleared, it means that a watchdog timer reset has occurred. 

To demonstrate how the TO   flag is used, the code above can be modified, to light the LED if a watchdog 

timer reset has occurred, but not when the PIC is first powered on, as follows: 

;***** Initialisation 

start 

        ; configure port 

        clrf    GPIO                ; start with all LEDs off    

        movlw   ~(1<<nLED|1<<nWDT)  ; configure LED pins as outputs 

        tris    GPIO 

        ; configure watchdog timer 

        movlw   1<<PSA | b'111'     ; prescaler assigned to WDT (PSA = 1) 

                                    ; prescale = 128 (PS = 111) 

        option                      ; -> WDT period = 2.3 s 

 

;***** Main code 

        ; test for WDT-timeout reset 

        btfss   STATUS,NOT_TO       ; if WDT timeout has occurred, 

        bsf     WDT                 ;   turn on "error" LED 

 

        ; flash LED   

        bsf     LED                 ; turn on "flash" LED   

        DelayMS 1000                ; delay 1 sec 

        bcf     LED                 ; turn off "flash" LED 

 

        ; wait forever 

        goto    $ 

 

 

Of course, you will normally want to avoid watchdog timer resets. 

As discussed earlier, to prevent the watchdog timer timing out, simply place a ‘clrwdt’ instruction within 

the main loop, with the watchdog timer period set to be longer than it should ever take to complete the loop. 

To demonstrate that the ‘clrwdt’ instruction really does stop the watchdog expiring (if executed often 

enough), simply include it in the endless loop at the end of the code: 

loop    clrwdt                  ; clear watchdog timer 

        goto    loop            ;   repeat forever 

 

If you replace the ‘goto $’ line with this “clear watchdog timer” loop, you will find that, after flashing 

once, the LED remains off – regardless of the watchdog timer setting. 

Periodic wake from sleep 

The watchdog timer can also be used to wake the PIC from sleep mode. 

This is useful in situations where inputs do not need to be responded to instantly, but can be checked 

periodically.  To minimise power drain, the PIC can sleep most of the time, waking up every so often (say, 

once per second), checking inputs and, if there is nothing to do, going back to sleep. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS GPWUF - PA0 TO   PD   Z DC C 
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Note that a periodic wake-up can be combined with wake-up on pin change; you may for example wish to 

periodically log the value of a sensor, but also respond immediately to button presses. 

Setting up a periodic wake-up is easy: simply configure the watchdog timer for the desired wake-up period, 

perform the “main code” tasks (testing and responding to inputs), then enter sleep mode.  When the 

watchdog timer period has elapsed, the PIC will wake up, perform the main tasks, and then go to sleep again. 

To illustrate this process, we can simply replace the endless loop with a ‘sleep’ instruction: 

;***** Initialisation 

start  

        ; configure port 

        movlw   ~(1<<nLED)          ; configure LED pin (only) as an output 

        tris    GPIO 

        ; configure watchdog timer 

        movlw   1<<PSA | b'111'     ; prescaler assigned to WDT (PSA = 1) 

                                    ; prescale = 128 (PS = 111) 

        option                      ; -> WDT period = 2.3 s 

 

;***** Main code 

        bsf     LED                 ; turn on LED 

        DelayMS 1000                ; delay 1 sec 

        bcf     LED                 ; turn off LED 

 

        sleep                       ; enter sleep mode 

 

You’ll find that the LED is on for 1 s, and then off for around 2 s.  That is because the watchdog timer is 

cleared automatically when the PIC enters sleep mode. 

Oscillator (Clock) Options 

Every example in these lessons, until now, has used the 4 MHz internal RC oscillator as the PIC’s clock 

source.  It’s usually a very good option – simple to use, needing no external components, using none of the 

PIC pins, and reasonably accurate. 

However, there are situations where it is more appropriate to use some external clock circuitry. 

Reasons to use external clock circuitry include: 

 Greater accuracy and stability. 

A crystal or ceramic resonator is significantly more accurate than the internal RC oscillator, with less 

frequency drift due to temperature and voltage variations. 

 Generating a specific frequency. 

For example, as we saw in lesson 5, the signal from a 32.768 kHz crystal can be readily divided 

down to 1Hz.   Or, to produce accurate timing for RS-232 serial data transfers, a crystal frequency 

such as 1.843200 MHz can be used, since it is an exact multiple of common baud rates, such as 

38400 or 9600 (1843200 = 48 × 38400 = 192 × 9600). 

 Synchronising with other components. 

Sometimes it simplifies design if a number of microcontrollers (or other chips) are clocked from a 

common source, so that their outputs change synchronously – although you need to be careful; clock 

signals which are subject to varying delays in a circuit will not be synchronised in practice (a 

phenomenon known as clock skew), leading to unpredictable results. 

 Lower power consumption. 

At a given supply voltage, PICs draw less current when they are clocked at a lower speed.  For 

example, the PIC12F508/509 data sheet states (parameter D010) that, with VDD = 2.0 V, supply 

current is typically 170 µA for a clock speed of 4 MHz, but only 15 µA at 32 kHz. 

Power consumption can be minimised by running the PIC at the slowest practical clock speed.  And 

for many applications, very little speed is needed. 
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PICs support a number of clock, or oscillator, configurations, allowing, through appropriate oscillator 

selection, any of these goals to be met (but not necessarily all at once – low power consumption and high 

frequencies don’t mix!) 

 

The oscillator configuration is selected by the FOSC bits in the configuration word: 

 

The PIC12F508 and 509 have two FOSC bits, allowing 

selection of one of four oscillator configurations, as in the 

table on the right. 

The internal RC oscillator is the one we have been using so 

far, providing a nominal 4 MHz internal clock source, and 

has already been discussed. 

The other oscillator options are described in detail in the 

PIC12F508/509 data sheet, as well as in a number of 

application notes available on the Microchip web site, 

www.microchip.com. 

Instead of needlessly repeating all that material here, the following sections outline some of the most 

common oscillator configurations. 

External clock input 

An external oscillator can be used to 

clock the PIC. 

As discussed above, this is sometimes 

done to synchronise various parts of a 

circuit is to the same clock signal.  Or, 

you may choose to use an existing 

external clock signal simply because it is 

available and is more accurate and stable 

than the PIC’s internal RC oscillator – 

assuming you can afford the loss of two 

of the PIC’s I/O pins. 

Lesson 5 included the design for a 

32.768 kHz crystal oscillator, shown in 

the circuit on the right.  We can use it to 

demonstrate how to use an external 

clock signal. 

To use an external oscillator with the 

PIC12F509, the PIC has to be configured in either ‘LP’ or ‘XT’ oscillator mode.  You should use ‘LP’ for 

frequencies below around 200 kHz, and ‘XT’ for higher frequencies. 

The clock signal is connected to the CLKIN input: pin 2 on a PIC12F509. 

To implement this circuit using the Gooligum baseline training board, place a shunt in position 4 (“EC”) of 

jumper block JP20, connecting the 32.768 kHz signal to CLKIN, and in JP12 to enable the LED on GP1. 

Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

- - - - - - - MCLRE CP   WDTE FOSC1 FOSC0 

FOSC<1:0> Oscillator configuration 

00 LP oscillator 

01 XT oscillator 

10 Internal  RC oscillator 

11 External RC oscillator 

http://www.microchip.com/
../5%20-%20Timer%200/PIC_Base_A_5.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
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When using an external clock signal in the ‘LP’ and ‘XT’ oscillator modes, the OSC2 pin (pin 3 on a 

PIC12F509) is unused; it is left disconnected and the associated I/O pin (GP4) is not available for use. 

Many PICs, such as the 16F506, offer an ‘EC’ (external clock) oscillator mode, which leaves the OSC2 pin 

available for I/O, as we’ll see in the next lesson.  But that’s not an option on the 12F509. 

 

To illustrate the operation of this circuit, we can modify the crystal-driven LED flasher program developed 

in lesson 5.  In that program, the external 32.768 kHz signal was used to drive the Timer0 counter. 

Now, however, the 32.768 kHz signal is driving the processor clock, giving an instruction clock rate of 8192 

Hz.  If Timer0 is configured in timer mode with a 1:32 prescale ratio, TMR0<7> will be cycling at exactly 1 

Hz (since 8192 = 32 × 256) – as is assumed in the main body of the program from lesson 5. 

So, to adapt that program for this circuit, all we need to do is change the configuration statement from: 

__CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

to: 

__CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _LP_OSC 

 

(The _XT_OSC option should be used instead of _LP_OSC for higher clock frequencies) 

and also to change the timer initialisation code from: 

        movlw   b'11110110'     ; configure Timer0: 

                ; --1-----          counter mode (T0CS = 1) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----110          prescale = 128 (PS = 110)  

        option                  ;   -> increment at 256 Hz with 32.768 kHz input 

to: 

        movlw   b'11010100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)  

        option                  ;   -> increment at 256 Hz with 32.768 kHz clock 

 

The LED on GP1 should then flash at almost exactly 1 Hz – to within the accuracy of the crystal oscillator. 

Crystals and ceramic resonators 

Generally, there is no need to build your own crystal oscillator; PICs include an oscillator circuit designed to 

drive crystals directly. 

A parallel (not serial) cut crystal, or a ceramic 

resonator, is placed between the OSC1 and OSC2 

pins, which are grounded via loading capacitors, as 

shown in the circuit diagram on the right. 

You should consult the crystal or resonator 

manufacturer’s data when selecting load capacitors; 

those shown here are appropriate for a crystal 

designed for a load capacitance of 12.5 pF. 

For some crystals it may be necessary to reduce the 

drive current by placing a resistor between OSC2 

and the crystal, but in most cases it is not needed, 

and the circuit shown here can be used. 

../8%20-%207-segment%20displays/PIC_Base_A_8.pdf
../5%20-%20Timer%200/PIC_Base_A_5.pdf
../5%20-%20Timer%200/PIC_Base_A_5.pdf
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If you are using the Gooligum baseline training board, place shunts in position 2 (“32kHz”) of JP20
1
 and 

position 2 of JP21 (“32kHz”), connecting the 32.768 kHz crystal between OSC1 and OSC2, and in JP12 to 

enable the LED on GP1. 

 

The PIC12F509 provides two crystal oscillator modes: ‘XT’ and ‘LP’. 

They differ in the gain and frequency response of the drive circuitry. 

‘XT’ (“crystal”) is the mode used most commonly for crystal or ceramic resonators operating between 200 

kHz and 4 MHz. 

Lower frequencies generally require lower gain.  The ‘LP’ (“low power”) mode uses less power and is 

designed to drive common 32.786 kHz “watch” crystals, as used in the external clock circuit above, although 

it can also be used with other low-frequency crystals or resonators. 

The circuit as shown here can be used to operate the PIC12F509 at 32.768 kHz, giving low power 

consumption and an 8192 Hz instruction clock rate, which, as in the external clock example, is easily divided 

to create an accurate 1 Hz signal. 

To flash the LED at 1 Hz, the program is exactly the same as for the external clock, including the 

configuration directive, which must include the _LP_OSC option: 

__CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _LP_OSC 

 

 

A convenient option, when you want greater 

accuracy and stability than the internal RC 

oscillator can provide, but do not need as much as 

that offered by a crystal, is to use a ceramic 

resonator. 

These are available in convenient 3-terminal 

packages which include appropriate loading 

capacitors, as shown in the circuit diagram on the 

right.  The resonator package incorporates the 

components within the dashed lines. 

If you have the Gooligum baseline training board, 

move the shunts to position 3 (“4MHz”) of JP20 

and position 1 of JP21 (“4MHz”), connecting the 

4.0 MHz resonator between OSC1 and OSC2, 

and leave JP12 closed, to enable the LED on GP1. 

 

To test this circuit, we can use the “flash an LED” program developed in lesson 2; the only change needed is 

to replace the _IntRC_OSC configuration option with _XT_OSC, to select crystal oscillator mode. 

                                                      

1
 You will find, with the Gooligum training board, that the LED in the external clock and 32.768 kHz crystal examples 

will flash, even with no shunt installed in JP20!  This is because, when configured in _LP_OSC mode, the OSC1 input 

is very sensitive, and picks up crosstalk from the 32.768 kHz signal on the board.  If you want to prevent this effect, you 

can dampen the 32.768 kHz signal by loading it with a 100 Ω resistor, placed between the 32.768 kHz signal (pin 1 of 

the expansion header) and ground, via the breadboard.  The external clock example will still work with this resistor in 

place, but only with a shunt in the “EC” position of JP20 – as it should.  And the 32.768 kHz crystal example will also 

then only work with shunts in the “32kHz” positions of JP20 and JP21 – as we’d expect. 

http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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However, in lesson 2 we concluded that, since the internal RC oscillator is only accurate to within 1% or so, 

there was no reason to strive for precise loop timing; a delay of 499.958 ms was considered close enough to 

the desired 500 ms.  Although a ceramic resonator isn’t really much more accurate (typically 0.5%), as an 

exercise we might as well try to make the loop timing as precise as possible – good practice, in case one day 

you use a crystal oscillator with 50 ppm accuracy! 

Therefore in the following program an additional short loop and some nop instructions have been added to 

pad out the total loop time to exactly 500,000 instruction cycles, which will be as close to 500 ms as the 

accuracy of the resonator or crystal oscillator allows. 

Complete program 

Here is the complete program, including more precise delay loops: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 7, example 4c                                *   

;                                                                       * 

;   Demonstrates PIC oscillator, using 4 MHz crystal (or resonator)     *   

;                                                                       * 

;   LED on GP1 flashes at 1 Hz (50% duty cycle),                        *  

;   with timing derived from 1 MHz instruction clock                    *     

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1         = flashing LED                                      * 

;       OSC1, OSC2  = 4.00 MHz crystal (or resonator)                   * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F509 

    #include    <p12F509.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, XT crystal 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _XT_OSC 

 

; pin assignments 

    constant    nLED=1          ; flashing LED on GP1   

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

 

 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        clrf    GPIO          ; start with GPIO clear (LED off) 

        clrf    sGPIO         ; update shadow register         

        movlw   ~(1<<nLED)    ; configure LED pin (only) as an output 

        tris    GPIO 

 

;***** Main loop 

main_loop 

        ; toggle LED 

        movf    sGPIO,w   

        xorlw   1<<nLED       ; flip LED pin bit (shadow) 

        movwf   sGPIO            

        movwf   GPIO          ; write to GPIO 

 

        ; delay 500 ms 

        movlw   .244          ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2           ;   = 499,958 cycles 

        clrf    dc1           ; inner loop: 256 x 4 - 1 

dly1    nop                   ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                   ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

        movlw   .11           ; delay another 11 x 3 - 1 + 2 = 34 cycles 

        movwf   dc2           ;  -> delay so far = 499,958 + 34  

dly3    decfsz  dc2,f         ;  = 499,992 cycles 

        goto    dly3 

        nop                   ; main loop overhead = 6 cycles, so add 2 nops 

        nop                   ;  -> loop time = 499,992 + 6 + 2 = 500,000 cycles 

 

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

External RC oscillator 

Finally, a low-cost, low-power option: the baseline PICs 

can be made to oscillate with timing derived from an 

external resistor and capacitor, as shown on the right. 

To implement this circuit using the Gooligum baseline 

training board, move the shunt to position 1 (“RC”) of 

JP20, connecting the 10 kΩ resistor and 82 nF capacitor to 

OSC1.  Remove the shunt from JP21 and leave JP12 

closed, enabling the LED on GP1. 

 

External RC oscillators can be appropriate when a very low 

clock rate can be tolerated – drawing significantly less 

power than when the internal 4 MHz RC oscillator is used.  

http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
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It can also simplify some programming tasks when the PIC is run slowly, needing fewer, shorter delay loops. 

The external RC oscillator is a relaxation type.  The capacitor is charged through the resistor, the voltage v at 

the OSC1 pin rising with time t according to the formula: 







 


RC

t

DD eVv 1  

The voltage increases until it reaches a threshold, typically 0.75 × VDD.  A transistor is then turned on, which 

quickly discharges the capacitor until the voltage falls to approx. 0.25 × VDD.  The capacitor then begins 

charging through the resistor again, and the cycle repeats. 

This is illustrated by the following oscilloscope trace, recorded at the OSC1 pin in the circuit above, with 

the component values shown: 

 

 

In theory, assuming upper and lower thresholds of 0.75 × VDD and 0.25 × VDD, the period of oscillation is 

equal to 1.1 × RC (in seconds, with R in Ohms and C in Farads). 

In practice, the capacitor discharge is not instantaneous (and of course it can never be), so the period is a 

little longer than this.  Microchip does not commit to a specific formula for the frequency (or period) of the 

external RC oscillator, only stating that it is a function of VDD, R, C and temperature, and in some 

documents providing some reference charts.  But for rough design guidance, you can assume the period of 

oscillation is approximately 1.2 × RC. 

Microchip recommends keeping R between 5 kΩ and 100 kΩ, and C above 20 pF. 

In the circuit above, R = 10 kΩ and C = 82 nF.  Those values will give a period of approximately: 

 1.2 × 10×10
3
 × 82×10

-9
 s = 984 µs 

Inverting that gives 1016 Hz. 
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In practice, the measured frequency was 1052 Hz; reasonably close, but the lesson should be clear: don’t use 

an external RC oscillator if you want high accuracy or good stability. 

So, given a roughly 1 kHz clock, what can we do with it?  Flash an LED, of course! 

Using a similar approach to before, we can use the instruction clock (approx. 256 Hz) to increment Timer0.  

In fact, with a prescale ratio of 1:256, TMR0 will increment at approx. 1 Hz. 

TMR0<0> would then cycle at 0.5 Hz, TMR0<1> at 0.25 Hz, etc. 

Now consider what happens when the prescale ratio is set to 1:64.  TMR0 will increment at 4 Hz, TMR0<0> 

will cycle at 2 Hz, and TMR0<1> will cycle at 1 Hz, etc. 

And that suggests a very simple way to make the LED on GP1 flash at 1Hz.  If we continually copy TMR0 

to GPIO, each bit of GPIO will continually reflect each corresponding bit of TMR0.  In particular, 

GPIO<1> will always be set to the same value as TMR0<1>.  Since TMR0<1> is cycling at 1 Hz, 

GPIO<1> (and hence GP1) will also cycle at 1 Hz. 

Complete program 

The following program implements the approach described above.  Note that the external RC oscillator is 

selected by using the option _ExtRC_OSC in the configuration statement. 

The “main loop” is only three instructions long – by far the shortest “flash an LED” program we have done 

so far, illustrating how a slow clock rate can sometimes simplify some programming problems. 

On the other hand, it is also the least accurate of the “flash an LED” programs, being only approximately 1 

Hz.  But for many applications, the exact speed doesn’t matter; it only matters that the LED visibly flashes. 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 7, example 4d                                * 

;                                                                       * 

;   Demonstrates use of PIC oscillator in external RC mode (~1 kHz)     * 

;                                                                       * 

;   LED on GP1 flashes at approx 1 Hz (50% duty cycle),                 * 

;   with timing derived from instruction clock                          * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1  = flashing LED                                             * 

;       OSC1 = R (10k) / C (82n)                                        * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F509        

    #include    <p12F509.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, external RC osc 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _ExtRC_OSC 

 

 

;***** RC CALIBRATION 

Only use an external RC oscillator if the exact clock rate is unimportant. 
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RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   b'111101'       ; configure GP1 (only) as output 

        tris    GPIO    

        ; configure timer 

        movlw   b'11010101'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----101          prescale = 64 (PS = 101)  

        option                  ;   -> increment at 4 Hz with 1 kHz clock 

 

;***** Main loop 

main_loop     

        ; TMR0<1> cycles at 1 Hz, so continually copy to LED (GP1) 

        movf    TMR0,w          ; copy TMR0 to GPIO 

        movwf   GPIO  

 

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

Conclusion 

That completes our coverage of the PIC12F509. 

We’ve seen that baseline PICs can be put into a low-power sleep mode, and that they can be configured to be 

woken by an external event (a pin change), or on a regular basis by the watchdog timer, which is also (in 

fact, primarily) useful for restarting the device if it gets “stuck”, following some type of error condition. 

We also saw that PICs can be clocked in a number of ways, that there are alternatives to the internal RC 

oscillator, such as an external clock, and the PIC’s own oscillator circuitry driving a crystal, resonator, or a 

simple RC timing circuit – and we discussed some of the reasons for using those alternatives. 

 

To introduce further topics, we need a larger device.  In the next lesson we’ll move onto the 14-pin 16F506, 

and see how to use lookup tables (and those extra pins) to drive 7-segment displays, and how to use 

multiplexing to drive multiple displays. 

And it will be nice to finally get away from flashing LEDs for a while! 

 

../8%20-%207-segment%20displays/PIC_Base_A_8.pdf
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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 8: Driving 7-Segment Displays 

 

 

The applications we’ve looked at so far have used only one or two LEDs as outputs.  That’s enough for 

simple indicators, but many applications need to be able to display information in numeric, alphanumeric or 

graphical form.  Although LCD and OLED displays are becoming more common, there is still a place, when 

displaying numeric (or sometimes hexadecimal) information, for 7-segment LED displays. 

To drive a single 7-segment display, in a straightforward manner, we need seven outputs.  That rules out the 

PIC12F509 we’ve been using so far.  Its bigger brother, the 14-pin 16F505, is quite suitable, but to avoid 

using too many different devices, we’ll jump to the more capable 16F506.  In fact, the 16F506 can be made 

to drive up to four 7-segment displays, using a technique known as multiplexing.  But to display even a 

single digit, that digit has to be translated into a specific pattern of segments in the display.  That translation 

is normally done through lookup tables. 

In summary, this lesson covers: 

 Introductory overview of the PIC16F506 MCU 

 Driving a single 7-segment display  

 Using lookup tables 

 Using multiplexing to drive multiple displays 

 Binary-coded decimal (BCD) 

Introducing the PIC16F506 

The previous lessons have focussed on the 10F200 (or 12F508) and 12F509. 

We saw in lesson 1 that the 12F508 and 12F509 are part of a family which includes the 14-pin 16F505.  That 

lesson included the following table, summarising the differences within the 12F508/12F509/16F505 family: 

Although the 16F505 is architecturally very similar to the 12F508/509, it has more data memory, more I/O 

pins (11 I/O and 1 input-only), a higher maximum clock speed and wider range of oscillator options. 

The 12F510 and 16F506 form a very similar family, adding peripherals with analog (continuously variable) 

inputs: analog comparators and an analog-to-digital converter (ADC).  We’ll explore those capabilities in 

Device 
Program Memory 

(words) 

Data Memory 

(bytes) 
Package I/O pins 

Clock rate 

(maximum) 

12F508 512 25 8-pin 6 4 MHz 

12F509 1024 41 8-pin 6 4 MHz 

16F505 1024 72 14-pin 12 20 MHz 

../1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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lessons 9 and 10, but briefly – a comparator allows us to compare two analog signals (one of which is often a 

fixed reference voltage), while the ADC allows us to measure analog signals. 

The following table compares the features of the devices in both families: 

Although the 16F505 would be adequate for this lesson, we may as well jump directly to the 16F506, which 

does everything the 16F505 does (although it does have 5 bytes less data memory…) and continue to use it 

when we look at analog inputs in the upcoming lessons.  We’ll just ignore the analog side for now. 

The expanded capabilities of the 16F506 (other than analog) are detailed in the following sections. 

Additional oscillator options 

The 16F506 supports an expanded range of oscillator options, selected by bits in the configuration word: 

In the 12F510/16F506 devices, the internal RC oscillator can optionally run at a nominal 8 MHz instead of 4 

MHz.  Be careful, if you select 8 MHz, that any code (such as delays) written for a 4 MHz clock is correct. 

The speed of the internal RC oscillator is selected by the IOSCFS bit. 

Setting IOSCFS to ‘1’ (by ANDing the symbol ‘_IOSCFS_ON’ into the configuration word expression) 

selects 8 MHz operation; clearing it to ‘0’ (with ‘_IOSCFS_OFF’) selects 4 MHz. 

 

The three FOSC bits allow the selection of eight clock options (twice the number available in the 12F509), 

as in the table below. 

The ‘LP’ and ‘XT’ 

oscillator options are 

exactly the same as 

described in lesson 7: 

‘LP’ mode being 

typically used to 

drive crystals with a 

frequency less than 

200 kHz, and ‘XT’ 

mode being intended 

for crystals or 

resonators with a 

frequency between 

200 kHz and 4 MHz. 

Device 

Program 

Memory 

(words) 

Data 

Memory 

(bytes) 

Package 
I/O 

pins 

Comp-

arators 

Analog 

Inputs 

Clock rate 

(maximum) 

12F508 512 25 8-pin 6 - - 4 MHz 

12F509 1024 41 8-pin 6 - - 4 MHz 

12F510 1024 38 8-pin 6 1 3 8 MHz 

16F505 1024 72 14-pin 12 - - 20 MHz 

16F506 1024 67 14-pin 12 2 3 20 MHz 

Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

- - - - - IOSCFS MCLRE CP   WDTE FOSC2 FOSC1 FOSC0 

FOSC<2:0> Standard symbol Oscillator configuration 

000 _LP_OSC LP oscillator 

001 _XT_OSC XT oscillator 

010 _HS_OSC HS oscillator 

011 _EC_RB4EN EC oscillator + RB4 

100 _IntRC_OSC_RB4EN Internal RC oscillator + RB4 

101 _IntRC_OSC_CLKOUTEN Internal RC oscillator + CLKOUT 

110 _ExtRC_OSC_RB4EN External RC oscillator + RB4 

111 _ExtRC_OSC_CLKOUTEN External RC oscillator + CLKOUT 

../9%20-%20Comparators/PIC_Base_A_9.pdf
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The ‘HS’ (“high speed”) mode extends this to 20 MHz.  The crystal or resonator, with appropriate loading 

capacitors, is connected between the OSC1 and OSC2 pins in exactly the same way as for the ‘LP’ or ‘XT’ 

modes. 

As explained in lesson 7, the ‘LP’ and ‘XT’ (and indeed ‘HS’) modes can be used with an external clock 

signal, driving the OSC1, or CLKIN, pin.  The downside to using the “crystal” modes with an external clock 

is that the OSC2 pin remains unused, wasting a potentially valuable I/O pin. 

The ‘EC’ oscillator mode addresses this problem.  It is designed for use with an external clock signal driving 

the CLKIN pin, the same as is possible in the crystal modes, but with the significant advantage that the 

“OSC2 pin”, pin 3 on the 16F506, is available for digital I/O as pin ‘RB4’. 

There are now two internal RC oscillator modes.  ‘_IntRC_OSC_RB4EN’ is just like the 12F509’s 

‘_IntRC_OSC’ mode, where the internal RC oscillator runs (at either 4 MHz or 8 MHz on the 16F506) 

leaving all pins available for digital I/O – including RB4 (pin 3). 

The second internal RC option, ‘_IntRC_OSC_CLKOUTEN’, assigns pin 3 as ‘CLKOUT’ instead of RB4.  

In this mode, the instruction clock, which runs at one quarter the speed of the processor clock, i.e. a nominal 

1 MHz (or 2 MHz if IOSCFS is set), is output on the CLKOUT pin.  This output clock signal can be used to 

provide a clock signal to external devices, or for synchronising other devices with the PIC. 

Lesson 7 showed how an external RC oscillator can be used with the 12F509.  Although this mode usefully 

allows for low cost, low power operation, it has the same drawback as the externally-clocked “crystal” 

modes: pin 3 (OSC2) cannot be used for anything. 

The external RC oscillator modes on the 16F506 overcome this drawback.  In the first option, 

‘_ExtRC_OSC_RB4EN’, pin 3 is available for digital I/O as RB4. 

The other external RC option, ‘_ExtRC_OSC_CLKOUTEN’, assigns pin 3 to CLKOUT, with the instruction 

clock appearing as an output signal, running at one quarter the rate of the external RC oscillator (FOSC/4). 

In summary, the expanded range of clock options provides for higher speed operation, more usable I/O pins, 

or a clock output to allow for external device synchronisation. 

Additional I/O pins 

The 16F506 provides twelve I/O pins (one being input-only), compared with the six (with one being input-

only) available on the 12F508/509/510. 

Twelve is too many pins to represent in a single 8-bit register, so instead of a single port named GPIO, the 

16F506 has two ports, named PORTB and PORTC. 

Six I/O pins are allocated to each port: 

 

The direction of each I/O pin is controlled by corresponding TRIS registers: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

PORTB   RB5 RB4 RB3 RB2 RB1 RB0 

PORTC   RC5 RC4 RC3 RC2 RC1 RC0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TRISB   RB5 RB4  RB2 RB1 RB0 

TRISC   RC5 RC4 RC3 RC2 RC1 RC0 

../7%20-%20Special%20features/PIC_Base_A_7.pdf
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As in the 12F509, the TRIS registers are not mapped into data memory and can only be accessed through the 

‘tris’ instruction, with an operand of 6 (or ‘PORTB’) to load TRISB, or an operand of 7 (or ‘PORTC’) to 

load TRISC. 

RB3 is input only and, like GP3 on the 12F509, it shares a pin with MCLR  ; the pin assignment being 

controlled by the MCLRE bit in the configuration word. 

 

The 16F506 comes in a 14-pin package; the pin diagram is shown below. 

Note that RC5 and T0CKI (the Timer0 external clock input) share the same pin. 

We have seen that on the 12F509, T0CKI shares a pin with GP2, and to use GP2 as an output you must first 

disable T0CKI by clearing the T0CS bit in the OPTION register. 

In the same way, to use RC5 as an output on the 16F506, you must first disable T0CKI by clearing T0CS. 

 

The RB0, RB1 and RB2 pins are configured as analog inputs by default.  To use any of these pins for digital 

I/O, they must be deselected as analog inputs.  This can be done by clearing the ADCON0 register, as we’ll 

see in lesson 10 on analog-to-digital conversion. 

The RB0, RB1, RC0 and RC1 pins are configured as comparator inputs by default.  To use any of these 

pins for digital I/O, the appropriate comparator must be disabled (by clearing the C1ON bit in the 

CM1CON0 register, and/or the C2ON bit in the CM2CON0 register), or its inputs reassigned, as explained 

in lesson 9. 

1 

2 

3 

4 

14 

13 

12 

11 

P
IC

1
6

F
5

0
6
 

VDD VSS 

RB5/OSC1/CLKIN 

RB4/OSC2/CLKOUT 

RB3/ MCLR   

RB0/AN0/C1IN+ 

RB1/AN1/C1IN- 

RB2/AN2/C1OUT 

5 

6 

7 

10 

9 

8 

RC5/T0CKI 

RC4/C2OUT 

RC3 

RC0/C2IN+ 

RC1/C2IN- 

RC2/CVREF 

Note: On PICs with comparators and/or analog (ADC) inputs, the comparator and analog inputs 

are enabled on start-up.  To use a pin for digital I/O, any comparator or analog input assigned to 

that pin must first be disabled. 

../10%20-%20ADC/PIC_Base_A_10.pdf
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This is a common trap for beginners, who wonder why their LED won’t light, when they haven’t deselected 

analog input on the pin they are using.  That is why this tutorial series began with digital-only PICs. 

For now, we’ll just include the instructions to disable these analog inputs in the examples in this lesson, and 

leave the full explanations for lessons 9 and 10. 

 

Additional data memory 

The data memory, or register file, of the 16F506 is arranged in four banks, as follows: 

 

There are only 3 shared data registers (0Dh – 0Fh), which are mapped into all four banks. 

In addition, there are 4 × 16 = 64 non-shared (banked) data registers, filling the top half of each bank. 

Thus, the 16F506 has a total of 3 + 64 = 67 general purpose data registers. 

 

The bank is selected by the FSR<6:5> bits, as was explained (for the 16F505) in lesson 3.   Although an 

additional bank selection bit is used, compared with the single bit in the 12F509, you don’t need to be aware 

of that; simply use the banksel directive in the usual way. 

PIC16F506 Registers 

 Bank 0  Bank 1  Bank 2  Bank 3 

00h INDF 20h INDF 40h INDF 60h INDF 

01h TMR0 21h TMR0 41h TMR0 61h TMR0 

02h PCL 22h PCL 42h PCL 62h PCL 

03h STATUS 23h STATUS 43h STATUS 63h STATUS 

04h FSR 24h FSR 44h FSR 64h FSR 

05h OSCCAL 25h OSCCAL 45h OSCCAL 65h OSCCAL 

06h PORTB 26h PORTB 46h PORTB 66h PORTB 

07h PORTC 27h PORTC 47h PORTC 67h PORTC 

08h CM1CON0 28h CM1CON0 48h CM1CON0 68h CM1CON0 

09h ADCON0 29h ADCON0 49h ADCON0 69h ADCON0 

0Ah ADRES 2Ah ADRES 4Ah ADRES 6Ah ADRES 

0Bh CM2CON0 2Bh CM2CON0 4Bh CM2CON0 6Bh CM2CON0 

0Ch VRCON 2Ch VRCON 4Ch VRCON 6Ch VRCON 

0Dh Shared 

GP 

Registers 

2Dh 
Map to Bank 0 

0Dh – 0Fh 

4Dh 
Map to Bank 0 

0Dh – 0Fh 

6Dh 
Map to Bank 0 

0Dh – 0Fh 
0Fh 2Fh 4Fh 6Fh 

10h 

General 

Purpose 

Registers 

30h 

General 

Purpose 

Registers 

50h 

General 

Purpose 

Registers 

70h 

General 

Purpose 

Registers 

    

1Fh 3Fh 5Fh 7Fh 

../9%20-%20Comparators/PIC_Base_A_9.pdf
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Driving a 7-segment LED Display 

A 7-segment LED display is simply a collection of LEDs, typically one per segment (but often having two or 

more LEDs per segment for large displays), arranged in the “figure 8” pattern we are familiar with from 

numeric digital displays.  7-segment display modules also commonly include one or two LEDs for decimal 

points. 

7-segment LED display modules come in one of two varieties: common-anode or common-cathode. 

In a common-cathode module, the cathodes belonging to each segment are wired together within the module, 

and brought out through one or two (or sometimes more) pins.  The anodes for each segment are brought out 

separately, each to its own pin.  Typically, each segment (anode) would be connected to a separate output pin 

on the PIC, as shown in the following circuit diagram
1
: 

The common cathode pins are 

connected together and grounded. 

To light a given segment in a 

common-cathode display, the 

corresponding PIC output is set 

high.  Current flows from the 

output and through the given 

segment (limited by a series 

resistor) to ground. 

In a common-anode module, this is 

reversed; the anodes for each 

segment are wired together and the 

cathodes are accessible separately.  

In that case, the common anode 

pins are connected to the positive 

supply and each cathode is 

connected to a separate PIC output.  

To light a segment in a common-anode display, the corresponding PIC output is set low; current flows from 

the positive supply, through the segment and into the PIC’s output. 

Although, on the PIC16F506, a single pin can source or sink up to 25 mA, the maximum per port is 100 mA 

and the maximum current into VDD (the device’s supply current) is 150 mA.  Given that the PIC itself 

consumes some current (up to around 2 mA) and that we’d potentially like to be able to draw current from 

the unused output pins, we should limit the total current drawn by the 7-segment display to no more than 100 

mA or so.  Since all the segments may be lit at once (when displaying ‘8’), we should to limit the current per 

pin to 100 mA ÷ 7 = 14.3 mA.  The 330 Ω resistors limit the current to 10 mA, well within spec while giving 

a bright display. 

If you are using the Gooligum baseline training board, you can implement this circuit by: 

 placing shunts (six of them) across every position in jumper block JP4, connecting segments A-D, F 

and G to pins RB0-1 and RC1-4 

 placing a single shunt in position 1 (“RA/RB4”) of JP5, connecting segment E to pin RB4 

 placing a shunt across pins 1 and 2 (“GND”) of JP6, connecting digit 1 to ground. 

All other shunts should be removed.  

                                                      

1
 The segment anodes are connected to PIC pins in the (apparently) haphazard way shown, because this reflects the 

connections on the Gooligum baseline training board.  You’ll often find that, by rearranging your PIC pin assignments, 

you can simplify your PCB layout and routing – even if it makes your schematic messier! 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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If you are using Microchip’s 

Low Pin Count Demo Board, 

you will have to supply your 

own 7-segment display module, 

and connect it (and the current-

limiting resistors) to the board.  

This can be done via the 14-pin 

header on the Low Pin Count 

Demo Board, as illustrated on 

the right.  Note that the header 

pins corresponding to the “RB” 

pins on the 16F506 are labelled 

“RA” on the demo board, 

reflecting the PIC16F690 it is 

supplied with, not the 16F506 

used here. 

Be careful, because your 7-segment display module may have a different pin-out to that shown above.  If you 

have a common-anode display, you will need to wire it correctly and make appropriate changes to the code 

presented here, but the techniques for driving the display are essentially the same. 

 

Lookup tables 

To display each digit, a corresponding pattern of segments must be lit, as follows: 

Segment: A B C D E F G 

Pin: RC1 RC2 RC4 RC3 RB4 RB1 RB0 

0 on on on on on on off 

1 off on on off off off off 

2 on on off on on off on 

3 on on on on off off on 

4 off on on off off on on 

5 on off on on off on on 

6 on off on on on on on 

7 on on on off off off off 

8 on on on on on on on 

9 on on on on off on on 

 

We need a way to determine, or look up, the pattern corresponding to the digit to be displayed, and that is 

most effectively done with a lookup table. 

 

The most common method of implementing lookup tables in the baseline PIC architecture is to use a 

computed jump into a table of ‘retlw’ instructions. 
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For example, to look up the binary pattern to be applied to PORTC, corresponding to the digit in W, we 

could use the following subroutine: 

; pattern table for 7 segment display on port C 

;   RC4:1 = CDBA 

get7sC  addwf   PCL,f 

        retlw   b'011110'       ; 0 

        retlw   b'010100'       ; 1 

        retlw   b'001110'       ; 2 

        retlw   b'011110'       ; 3 

        retlw   b'010100'       ; 4 

        retlw   b'011010'       ; 5 

        retlw   b'011010'       ; 6 

        retlw   b'010110'       ; 7 

        retlw   b'011110'       ; 8 

        retlw   b'011110'       ; 9 

 

Baseline PICs have a single addition instruction: ‘addwf f,d’ – “add W to file register”, placing the result 

in the register if the destination is ‘,f’, or in W if the destination is ‘,w’. 

As mentioned in lesson 3, the program counter (PC) is a 12-bit register holding the full address of the next 

instruction to be executed.  The lower eight bits of the program counter (PC<7:0>) are mapped into the PCL 

register.  If you change the contents of PCL, you change the program counter – affecting which instruction 

will be executed next.  For example, if you add 2 to PCL, the program counter will be advanced by 2, 

skipping the next two instructions. 

 

In the code above, the first instruction adds the table index, or offset (corresponding to the digit being looked 

up), in W to PCL, writing the result back to PCL. 

If W contains ‘0’, 0 is added to PCL, leaving the program counter unchanged, and the next instruction is 

executed as normal: the first ‘retlw’, returning the pattern for digit ‘0’ in W. 

But consider what happens if the subroutine is called with W containing ‘4’.  PCL is incremented by 4, 

advancing the program counter by 4, so the next four instructions will be skipped.  The fifth ‘retlw’ 

instruction will be executed, returning the pattern for digit ‘4’ in W. 

This lookup table could then be used (‘called’, since it is actually a subroutine) as follows: 

        movf    digit,w         ; get digit to display 

        call    get7sC          ; lookup pattern for port C 

        movwf   PORTC           ;   then output it 

 

(assuming that the digit to be displayed is stored in a variable called ‘digit’) 

A second lookup table, called the same way, would be used to lookup the pattern to be output on PORTB. 

The define table directive 

Since lookup tables are very useful, and commonly used, the MPASM assembler provides a shorthand way 

to define them: the ‘dt’ (short for “define table”) directive.  Its syntax is: 

[label] dt      expr1[,expr2,…,exprN] 

 

where each expression is an 8-bit value.  This generates a series of retlw instructions, one for each 

expression.  The directive is equivalent to: 

[label] retlw   expr1 

        retlw   expr2 

        … 

        retlw   exprN 

 

../3%20-%20Modular%20code/PIC_Base_A_3.pdf
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Thus, we could write the code above as: 

get7sC  addwf   PCL,f 

        dt      b'011110',b'010100',b'001110',b'011110',b'010100'  ; 0,1,2,3,4 

        dt      b'011010',b'011010',b'010110',b'011110',b'011110'  ; 5,6,7,8,9 

 

or it could even be written as: 

get7sC  addwf   PCL,f 

        dt      0x1E,0x14,0x0E,0x1E,0x14,0x1A,0x1A,0x16,0x1E,0x1E   ; 0-9 

 

Of course, the dt directive is more appropriate in some circumstances than others.  Your table may be easier 

to understand if you use only one expression per line, in which case it is clearer to simply use retlw. 

A special case where ‘dt’ makes your code much more readable is with text strings.  For example: 

        dt      "Hello world",0 

 

is equivalent to: 

        retlw   'H' 

        retlw   'e' 

        retlw   'l' 

        retlw   'l' 

        retlw   'o' 

        retlw   ' ' 

        retlw   'w' 

        retlw   'o' 

        retlw   'r' 

        retlw   'l' 

        retlw   'd' 

        retlw   0 

 

The ‘dt’ form is clearly preferable in this case. 

 

Lookup table address limitation 

A significant limitation of the baseline PIC architecture is that, when any instruction modifies PCL, bit 8 of 

the program counter (PC<8>) is cleared.  That means that, whatever the result of the table offset addition, 

when PCL is updated, the program counter will be left pointing at an address in the first 256 words of the 

current program memory page (PC<9> is updated from the PA0 bit, in the same way as for a goto or call 

instruction; see lesson 3.) 

This is very similar to the address limitation, discussed in lesson 3, which applies to subroutines on baseline 

PICs.  But the constraint on lookup tables is even more limiting – because the result of the offset addition 

must be within the first 256 words of a page, not just the start of the table, the whole table has to fit within 

the first 256 words of a page. 

We have seen that a workaround for the limitation on subroutine addressing is to use a vector table, but no 

such workaround is possible for lookup tables. 

Therefore you must take care to ensure that any lookup tables are located toward the beginning of a program 

memory page.  A simple way to do that is to place the lookup tables in a separate code section, located 

explicitly at the start of a page, by specifying its address with the CODE directive. 

In the baseline PIC architecture, lookup tables must be wholly contained within the first 256 

locations of a program memory page. 

../3%20-%20Modular%20code/PIC_Base_A_3.pdf
../3%20-%20Modular%20code/PIC_Base_A_3.pdf
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For example: 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; pattern table for 7 segment display on port B 

;   RB4 = E, RB1:0 = FG 

get7sB  addwf   PCL,f 

        retlw   b'010010'       ; 0 

        retlw   b'000000'       ; 1 

        retlw   b'010001'       ; 2 

        retlw   b'000001'       ; 3 

        retlw   b'000011'       ; 4 

        retlw   b'000011'       ; 5 

        retlw   b'010011'       ; 6 

        retlw   b'000000'       ; 7 

        retlw   b'010011'       ; 8 

        retlw   b'000011'       ; 9 

 

This places the tables explicitly at the beginning of page 1 (the 16F506 has two program memory pages), out 

of the way of the start-up code located at the beginning of page 0 (0x000). 

This means of course that you need to use the pagesel directive if calling these lookup tables from a 

different code section. 

 

To display a digit, we need to look up and then write the correct patterns for ports B and C, meaning two 

table lookups for each digit displayed. 

Ideally we’d have a single routine which, given the digit to be displayed, performs the table lookups and 

writes the patterns to the I/O ports.  To avoid the need for multiple pagesel directives, this “display digit” 

subroutine can be located on the same page as the lookup tables. 

For example: 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; pattern table for 7 segment display on port B 

;   RB4 = E, RB1:0 = FG 

get7sB  addwf   PCL,f 

        retlw   b'010010'       ; 0 

        retlw   b'000000'       ; 1 

        ... (etc.) 

 

; pattern table for 7 segment display on port C 

;   RC4:1 = CDBA 

get7sC  addwf   PCL,f 

        retlw   b'011110'       ; 0 

        retlw   b'010100'       ; 1 

        ... (etc.) 

 

; Display digit passed in 'digit' variable on 7-segment display 

set7seg_R 

        movf    digit,w         ; get digit to display 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    digit,w         ; repeat for port C 

        call    get7sC 

        movwf   PORTC 

        retlw   0 
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Then to display a digit, it is simply a matter of writing the value into the ‘digit’ variable (assumed to be in 

a shared data segment to avoid the need for banking), and calling the ‘set7seg_R’ routine. 

Note that it’s assumed that the ‘set7seg_R’ routine is called through a vector in page 0 labelled ‘set7seg’, 

so that the subroutine doesn’t have to be in the first 256 words of page 1; it can be anywhere on page 1 and 

we still avoid the need for a ‘pagesel’ when calling the lookup tables from it. 

 

So, given these lookup tables and a subroutine that will display a selected digit, what to do with them?  

We’ve been blinking LEDs at 1 Hz, so counting seconds seems appropriate. 

Complete program 

The following program incorporates the code fragments presented above, and code (e.g. macros) and 

techniques from previous lessons, to count repeatedly from 0 to 9, with 1 s between each count. 

;************************************************************************ 

;   Description:    Lesson 8, example 1a                                * 

;                                                                       * 

;   Demonstrates use of lookup tables to drive 7-segment display        * 

;                                                                       * 

;   Single digit 7-segment LED display counts repeating 0 -> 9          * 

;   1 second per count, with timing derived from int 4 MHz oscillator   * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RB0-1,RB4, RC1-4 = 7-segment display bus (common cathode)       * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

     

    #include    <stdmacros-base.inc>    ; DelayMS - delay in milliseconds 

                                        ;   (calls delay10) 

    EXTERN      delay10_R               ; W x 10 ms delay 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4 MHz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

digit   res 1                   ; digit to be displayed 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

         

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 
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;***** Subroutine vectors 

delay10                         ; delay W x 10 ms 

        pagesel delay10_R 

        goto    delay10_R        

set7seg                         ; display digit on 7-segment display 

        pagesel set7seg_R        

        goto    set7seg_R 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start   

        ; configure ports 

        clrw                    ; configure PORTB and PORTC as all outputs 

        tris    PORTB 

        tris    PORTC 

        clrf    ADCON0          ; disable AN0, AN1, AN2 inputs  

        bcf     CM1CON0,C1ON    ;     and comparator 1 -> RB0,RB1 digital 

        bcf     CM2CON0,C2ON    ; disable comparator 2 -> RC1 digital 

 

        ; initialise variables 

        clrf    digit           ; start with digit = 0 

 

;***** Main loop 

main_loop 

        ; display digit 

        pagesel set7seg          

        call    set7seg 

 

        ; delay 1 sec 

        DelayMS 1000             

 

        ; increment digit 

        incf    digit,f          

        movlw   .10 

        xorwf   digit,w         ; if digit = 10 

        btfsc   STATUS,Z 

        clrf    digit           ;   reset it to 0 

 

        ; repeat forever 

        pagesel main_loop        

        goto    main_loop 

 

 

;***** LOOKUP TABLES **************************************************** 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; pattern table for 7 segment display on port B 

;   RB4 = E, RB1:0 = FG 

get7sB  addwf   PCL,f 

        retlw   b'010010'       ; 0 

        retlw   b'000000'       ; 1 

        retlw   b'010001'       ; 2 

        retlw   b'000001'       ; 3 

        retlw   b'000011'       ; 4 

        retlw   b'000011'       ; 5 

        retlw   b'010011'       ; 6 

        retlw   b'000000'       ; 7 

        retlw   b'010011'       ; 8 

        retlw   b'000011'       ; 9 
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; pattern table for 7 segment display on port C 

;   RC4:1 = CDBA 

get7sC  addwf   PCL,f 

        retlw   b'011110'       ; 0 

        retlw   b'010100'       ; 1 

        retlw   b'001110'       ; 2 

        retlw   b'011110'       ; 3 

        retlw   b'010100'       ; 4 

        retlw   b'011010'       ; 5 

        retlw   b'011010'       ; 6 

        retlw   b'010110'       ; 7 

        retlw   b'011110'       ; 8 

        retlw   b'011110'       ; 9 

 

; Display digit passed in 'digit' variable on 7-segment display 

set7seg_R 

        movf    digit,w         ; get digit to display 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    digit,w         ; repeat for port C 

        call    get7sC 

        movwf   PORTC 

        retlw   0 

 

 

        END 

 

 

Multiplexing 

To display multiple digits, as in (say) a digital clock, the obvious approach is to extend the method we’ve 

just used for a single digit.  That is, where one digit requires 7 outputs, two digits would apparently need 14 

outputs; four digits would need 28 outputs, etc. 

At that rate, you would very quickly run out of output pins, even on the bigger PICs! 

 

A technique commonly used to conserve pins is to multiplex a number of displays (and/or inputs – a topic 

we’ll look at another time). 

When displays are multiplexed, only one (or a subset) of them is on at any time. 

Display multiplexing relies on speed, and human persistence of vision, to create an illusion that a number of 

displays are on at once, whereas in fact they are being lit rapidly in sequence, so quickly that it appears that 

they are on continuously. 

To multiplex 7-segment displays, it is usual to connect each display in parallel, so that one set of output pins 

on the PIC is connected to every display, the connections between the modules and to the PIC forming a bus. 

 If the common cathodes were all grounded, every module would display the same digit (feebly, since the 

output current would be shared between them). 

Instead, to allow a different digit to be displayed on each module, the individual displays must be capable of 

being switched on or off under software control. 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 8: Driving 7-segment Displays Page 14 

For that, transistors are usually used as switches, as illustrated below
2
: 

Note that it is not possible to connect the common cathodes directly to the PIC’s pins; the combined current 

from all the segments in a module will be up to 70 mA – too high for a single pin to sink.  Instead, the pin is 

used to switch a transistor on or off. 

Almost any low-cost NPN transistor
3
, such as a BC547, could be used for this, as is it not a demanding 

application.  It’s also possible to use FETs; for example, MOSFETs are usually used to switch high-power 

devices. 

When the output pin is set ‘high’, the transistor’s base is pulled high, turning it ‘on’.  The 1 kΩ resistors are 

used to limit the base current to around 4 mA – enough to saturate the transistor, effectively grounding the 

module’s common cathode connection, allowing the display connected to that transistor to light. 

These transistors are then used to switch each module on, in sequence, for a short time, while the pattern for 

that digit is output on the display bus.  This is repeated for each digit in the display, quickly enough to avoid 

visible flicker (preferably at least 70 times per second). 

To implement this circuit using the Gooligum baseline training board: 

 keep the six shunts in every position of jumper block JP4, connecting segments A-D, F and G to pins 

RB0-1 and RC1-4 

 keep the shunt in position 1 (“RA/RB4”) of JP5, connecting segment E to pin RB4 

 move the shunt in JP6 to across pins 2 and 3 (“RC5”), connecting digit 1 to the transistor controlled 

by RC5 

 place shunts in jumpers JP8, JP9 and JP10, connecting pins RC5, RB5 and RC0 to their respective 

transistors 

All other shunts should be removed.  

 

                                                      

2
 Again, the diagram reflects the connections on the Gooligum baseline training board, not what looks neatest. 

3
 If you had common-anode displays, you would normally use PNP transistors as high-side switches (between VDD and 

each common anode), instead of the NPN low-side switches shown here. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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Example application 

To demonstrate display multiplexing, we’ll implement a simple timer: the first digit will count minutes and 

the next two digits will count seconds (00 to 59). 

The approach taken in the single-digit example above – set the outputs and then delay for 1 s – won’t work, 

because the display multiplexing has to continue throughout the delay. 

Ideally the display multiplexing would be a “background task”; one that continues steadily while the main 

program is free to perform tasks such as responding to changing inputs.  That’s an ideal application for 

timer-based interrupts – a feature available on more advanced PICs (as we will see in midrange lesson 12), 

but not baseline devices like the 16F506. 

But a timer can still be used to good advantage when implementing multiplexing on a baseline PIC.  It would 

be impractical to try to use programmed delays while multiplexing; there’s too much going on.  But Timer0 

can provide a steady tick that we can base our timing on – displaying each digit for a single tick, and then 

counting ticks to decide when a certain time (e.g. 1 sec)  has elapsed and we need to perform an action (such 

as incrementing counters). 

If the tick period is too short, there may not be enough time to complete all the program logic needed 

between ticks, but if it’s too long, the display will flicker. 

Many PIC developers use a standard 1 ms tick, but to simplify the task of counting in seconds, an 

(approximately) 2 ms tick is used in this example.  If each of three digits is updated at a rate of 2 ms per 

digit, the whole 3-digit display is updated every 6 ms, so the display rate is 1 ÷ 6 ms = 167 Hz – fast enough 

to avoid perceptible flicker. 

To generate an approximately 2 ms tick, we can use Timer0 in timer mode (based on the 1 MHz instruction 

clock), with a prescale ratio of 1:256.  Bit 2 of Timer0 will then be changing with a period of 2048 µs. 

 

In pseudo-code, the multiplexing technique used here is: 

time = 0:00 

repeat 

 tick count = 0 

repeat 

  display minutes digit for 1 tick (2 ms) 

  display tens digit for 1 tick 

  display ones digit for 1 tick 

 until tick count = #ticks in 1 second 

 

 increment time by 1 second 

forever 

 

 

To store the time, the simplest approach is to use three variables, to store the minutes, tens and ones digits 

separately.  Setting the time to zero then means clearing each of these variables. 

To display a single digit, such as minutes, the code becomes: 

        ; display minutes for 2.048 ms 

w60_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w60_hi 

        movf    mins,w          ; output minutes digit 

        pagesel set7seg 

        call    set7seg   

        pagesel $       

        bsf     MINUTES         ; enable minutes display 

w60_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w60_lo 

../../Midrange/12%20-%207-segment%20displays/PIC_Mid_A_12.pdf
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This routine begins by waiting for TMR0<2> to go high, then displays the minutes digit (with the others 

turned off), and finally waits for TMR0<2> to go low again. 

The routine to display the tens digit also begins with a wait for TMR0<2> to go high: 

        ; display tens for 2.048 ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        movf    tens,w          ; output tens digit 

        pagesel set7seg 

        call    set7seg      

        pagesel $    

        bsf     TENS            ; enable tens display 

w10_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w10_lo 

 

There is no need to explicitly turn off the minutes digit, since, whenever a new digit pattern is output by the 

‘set7seg’ routine, the “digit enable” pins, RB5, RC0 and RC5 are always cleared (because the digit 

pattern tables contain ‘0’s for these bits).  Thus, all the displays are blanked whenever a new digit is output. 

The ones digit is then displayed in the same way: 

        ; display ones for 2.048 ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        movf    ones,w          ; output ones digit 

        pagesel set7seg 

        call    set7seg     

        pagesel $     

        bsf     ONES            ; enable ones display 

w1_lo   btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w1_lo 

 

By waiting for TMR0<2> high at the start of each digit display routine, we can be sure that each digit is 

displayed for exactly 2.048 ms (or, as close as the internal RC oscillator allows, which is only accurate to 1% 

or so…). 

 

Note that the ‘set7seg’ subroutine has been modified to accept the digit to be displayed as a parameter 

passed in W, instead of placing it a shared variable; it shortens the code a little to do it this way. 

It’s also a good idea to blank the display, by clearing the digit enable lines, before outputting the new digit 

pattern on the display bus – this avoids “ghosting” (visible in low light) due to PORTB being updated while 

the pattern for the previous digit is still being output on PORTC. 

So the ‘set7seg’ routine becomes: 

; Display digit passed in W on 7-segment display 

set7seg_R 

        ; disable displays 

        clrf    PORTB           ; clear all digit enable lines on PORTB 

        clrf    PORTC           ;   and PORTC 

         

        ; output digit pattern 

        movwf   temp            ; save digit 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    temp,w          ; get digit  

        call    get7sC          ;   then repeat for port C 

        movwf   PORTC 

        retlw   0 
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Note also the ‘pagesel $’ after the subroutine call.  It is necessary to ensure that the current page is 

selected before the ‘goto’ commands in the wait loops are executed. 

After TMR0<2> goes low at the end of the ‘ones’ display routine, there is approximately 1 ms before it will 

go high again, when the ‘minutes’ display will be scheduled to begin again.  That means that there is a 

“spare” 1 ms, after the end of the ‘ones’ routine, in which to perform the program logic of counting ticks and 

incrementing the time counters; 1 ms is 1000 instruction cycles – plenty of time! 

The following code construct continues multiplexing the digit display until 1 second has elapsed: 

; multiplex display for 1 sec 

        movlw   1000000/2048/3  ; display each of 3 digits for 2.048 ms each 

        movwf   mpx_cnt         ;   repeat multiplex loop for 1 second 

 

mplex_loop 

        ; display minutes for 2.048 ms 

 

        ; display tens for 2.048 ms 

 

        ; display ones for 2.048 ms 

 

        decfsz  mpx_cnt,f       ; continue to multiplex display 

        goto    mplex_loop      ;   until 1 s has elapsed 

 

Since there are three digits displayed in the loop, and each is displayed for 2 ms (approx.), the total time 

through the loop is 6 ms, so the number of iterations until 1 second has elapsed is 1 s ÷ 6 ms = 167, small 

enough to fit into a single 8-bit counter, which is why a tick period of approximately 2 ms was chosen. 

Note that, even if the internal RC oscillator was 100% accurate, giving an instruction clock of exactly 1 

MHz, the time taken by this loop will be 162 × 3 × 2.048 ms = 995.3 ms.  Hence, this “clock” is guaranteed 

to be out by at least 0.5%.  But accuracy isn’t the point of this exercise. 

After displaying the current time for (close to) 1 second, we need to increment the time counters, and that 

can be done as follows: 

; increment counters 

        incf    ones,f          ; increment ones 

        movlw   .10 

        xorwf   ones,w          ; if ones overflow, 

        btfss   STATUS,Z 

        goto    end_inc   

        clrf    ones            ;   reset ones to 0 

        incf    tens,f          ;   and increment tens 

        movlw   .6 

        xorwf   tens,w          ;   if tens overflow, 

        btfss   STATUS,Z 

        goto    end_inc   

        clrf    tens            ;       reset tens to 0 

        incf    mins,f          ;       and increment minutes 

        movlw   .10 

        xorwf   mins,w          ;       if minutes overflow, 

        btfsc   STATUS,Z 

        clrf    mins            ;           reset minutes to 0 

end_inc 

 

It’s simply a matter of incrementing the ‘ones’ digit as was done for a single digit, checking for overflows 

and incrementing the higher digits accordingly.  The overflow (or carry) from seconds to minutes is done by 

testing for “tens = 6”.  If you wanted to make this purely a seconds counter, counting from 0 to 999 seconds, 

you’d simply change this to test for “tens = 10”, instead. 

After incrementing the time counters, the main loop begins again, displaying the updated time. 
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Complete program 

Here is the complete program, incorporating the above code fragments. 

One point to note is that TMR0 is never initialised; there’s no need, as it simply means that there may be a 

delay of up to 2 ms before the display begins for the first time, which isn’t at all noticeable. 

;************************************************************************ 

;   Description:    Lesson 8, example 2                                 * 

;                                                                       * 

;   Demonstrates use of multiplexing to drive multiple 7-seg displays   * 

;                                                                       * 

;   3 digit 7-segment LED display: 1 digit minutes, 2 digit seconds     * 

;   counts in seconds 0:00 to 9:59 then repeats,                        * 

;   with timing derived from int 4 MHz oscillator                       * 

;                                                                       * 

;************************************************************************ 

;   Pin assignments:                                                    * 

;       RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode)        * 

;       RC5             = minutes enable (active high)                  * 

;       RB5             = tens enable                                   * 

;       RC0             = ones enable                                   * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4 MHz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 

 

; pin assignments 

    #define MINUTES PORTC,5     ; minutes enable 

    #define TENS    PORTB,5     ; tens enable 

    #define ONES    PORTC,0     ; ones enable 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

temp    res 1                   ; used by set7seg routine (temp digit store) 

 

        UDATA 

mpx_cnt res 1                   ; multiplex counter 

mins    res 1                   ; current count: minutes 

tens    res 1                   ;   tens 

ones    res 1                   ;   ones 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

         

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 
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;***** Subroutine vectors 

set7seg                         ; display digit on 7-segment display 

        pagesel set7seg_R        

        goto    set7seg_R 

 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start   

        ; configure ports 

        clrw                    ; configure PORTB and PORTC as all outputs 

        tris    PORTB 

        tris    PORTC 

        clrf    ADCON0          ; disable AN0, AN1, AN2 inputs  

        bcf     CM1CON0,C1ON    ;     and comparator 1 -> RB0,RB1 digital 

        bcf     CM2CON0,C2ON    ; disable comparator 2 -> RC0,RC1 digital 

         

        ; configure timer 

        movlw   b'11010111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) -> RC5 usable 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)             

        option                  ;   -> increment every 256 us         

                                ;      (TMR0<2> cycles every 2.048ms) 

        ; initialise variables 

        banksel mins            ; start with count = 0:00 

        clrf    mins 

        clrf    tens 

        clrf    ones 

 

;***** Main loop 

main_loop 

 

; multiplex display for 1 sec 

        movlw   1000000/2048/3  ; display each of 3 digits for 2.048 ms each 

        movwf   mpx_cnt         ;   repeat multiplex loop for approx 1 second 

         

mplex_loop 

        ; display minutes for 2.048 ms 

w60_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w60_hi 

        movf    mins,w          ; output minutes digit 

        pagesel set7seg 

        call    set7seg   

        pagesel $       

        bsf     MINUTES         ; enable minutes display 

w60_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w60_lo 

 

        ; display tens for 2.048 ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        movf    tens,w          ; output tens digit 

        pagesel set7seg 

        call    set7seg      

        pagesel $    

        bsf     TENS            ; enable tens display 

w10_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w10_lo 
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        ; display ones for 2.048 ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        movf    ones,w          ; output ones digit 

        pagesel set7seg 

        call    set7seg     

        pagesel $     

        bsf     ONES            ; enable ones display 

w1_lo   btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w1_lo 

 

        decfsz  mpx_cnt,f       ; continue to multiplex display 

        goto    mplex_loop      ;   until 1 sec has elapsed 

 

; increment time counters 

        incf    ones,f          ; increment ones 

        movlw   .10 

        xorwf   ones,w          ; if ones overflow, 

        btfss   STATUS,Z 

        goto    end_inc   

        clrf    ones            ;   reset ones to 0 

        incf    tens,f          ;   and increment tens 

        movlw   .6 

        xorwf   tens,w          ;   if tens overflow, 

        btfss   STATUS,Z 

        goto    end_inc   

        clrf    tens            ;       reset tens to 0 

        incf    mins,f          ;       and increment minutes 

        movlw   .10 

        xorwf   mins,w          ;       if minutes overflow, 

        btfsc   STATUS,Z 

        clrf    mins            ;           reset minutes to 0 

end_inc  

 

; repeat forever 

        goto    main_loop        

 

 

;***** LOOKUP TABLES **************************************************** 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; pattern table for 7 segment display on port B 

;   RB4 = E, RB1:0 = FG 

get7sB  addwf   PCL,f 

        retlw   b'010010'       ; 0 

        retlw   b'000000'       ; 1 

        retlw   b'010001'       ; 2 

        retlw   b'000001'       ; 3 

        retlw   b'000011'       ; 4 

        retlw   b'000011'       ; 5 

        retlw   b'010011'       ; 6 

        retlw   b'000000'       ; 7 

        retlw   b'010011'       ; 8 

        retlw   b'000011'       ; 9 

 

; pattern table for 7 segment display on port C 

;   RC4:1 = CDBA 

get7sC  addwf   PCL,f 

        retlw   b'011110'       ; 0 

        retlw   b'010100'       ; 1 

        retlw   b'001110'       ; 2 
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        retlw   b'011110'       ; 3 

        retlw   b'010100'       ; 4 

        retlw   b'011010'       ; 5 

        retlw   b'011010'       ; 6 

        retlw   b'010110'       ; 7 

        retlw   b'011110'       ; 8 

        retlw   b'011110'       ; 9 

 

; Display digit passed in W on 7-segment display 

set7seg_R 

        ; disable displays 

        clrf    PORTB           ; clear all digit enable lines on PORTB 

        clrf    PORTC           ;   and PORTC 

         

        ; output digit pattern 

        movwf   temp            ; save digit 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    temp,w          ; get digit  

        call    get7sC          ;   then repeat for port C 

        movwf   PORTC 

        retlw   0 

 

 

        END 

 

Binary-Coded Decimal 

In the previous example, each digit in the time count was stored in its own 8-bit variable. 

Since a single digit can only have values from 0 to 9, while an 8-bit register can store any integer from 0 to 

255, it is apparent that storing each digit in a separate variable is an inefficient use of storage space.  That can 

be an issue on devices with such a small amount of data memory – only 67 bytes on the 16F506. 

 

The most space-efficient way to store integers is to use pure binary representation.  E.g. the number ‘183’ 

would be stored in a single byte as b’10110111’ (or 0xB7).  That’s three digits in a single byte.  Of course, 3-

digit numbers larger than 255 need two bytes, but any 4-digit number can be stored in two bytes, as can any 

5-digit number less than 65536. 

The problem with such “efficient” binary representation is that it’s difficult (i.e. time consuming) to unpack 

into decimal; necessary so that it can be displayed. 

Consider how you would convert a number such as 0xB7 into decimal. 

First, determine how many hundreds are in it.  Baseline PICs do not have a “divide” instruction; the simplest 

approach is to subtract 100, check to see if there is a borrow, and subtract 100 again if there wasn’t (keeping 

track of the number of hundreds subtracted; this number of hundreds is the first digit): 

 0xB7 − 100 = 0x53 

Now continue to subtract 10 from the remainder (0x53) until a borrow occurs, keeping track of how many 

tens were successfully subtracted, giving the second digit: 

 0x53 − (8 × 10) = 0x03 

The remainder (0x03) is of course the third digit. 

Not only is this a complex routine, and takes a significant time to run (up to 12 subtractions are needed for a 

single conversion), it also requires storage; intermediate results such as “remainder” and “tens count” need to 

be stored somewhere. 
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Sometimes converting from pure binary into decimal is unavoidable, perhaps for example when dealing with 

quantities resulting from an analog to digital conversion (which we’ll look at in lesson 10).  But often, when 

storing numbers which will be displayed in decimal form, it makes sense to store them using binary-coded 

decimal representation. 

In binary-coded decimal, or BCD, two digits are packed into each byte – one in each nybble (or “nibble”, as 

Microchip spells it). 

For example, the BCD representation of 56 is 0x56.  That is, each decimal digit corresponds directly to a hex 

digit when converted to BCD. 

All eight bits in the byte are used, although not as efficiently as for binary.  But BCD is far easier to work 

with for decimal operations, as we’ll see. 

Example application 

To demonstrate the use of BCD, we’ll modify the previous example to store “seconds” as a BCD variable. 

So only two variables for the time count are now needed, instead of three: 

        UDATA 

mpx_cnt res 1                   ; multiplex counter 

mins    res 1                   ; time count: minutes 

secs    res 1                   ;   seconds (BCD) 

 

To display minutes is the same as before (since minutes is still being stored in its own variable), but to 

display the tens digit, we must first extract the digit from the high nybble, as follows: 

        ; display tens for 2.048 ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        swapf   secs,w          ; get tens digit 

        andlw   0x0F            ;   from high nybble of seconds 

        pagesel set7seg 

        call    set7seg         ;   then output it     

        pagesel $    

 

 

To move the contents of bits 4-7 (the high nybble) into bits 0-3 (the low nybble) of a register, you could use 

four ‘rrf’ instructions, to shift the contents of the register four bits to the right. 

But the baseline PICs provide a very useful instruction for working with BCD: ‘swapf f,d’ – “swap 

nybbles in file register”.  As usual, ‘f’ is the register supplying the value to be swapped, and ‘d’ is the 

destination: ‘,f’ to write the swapped result back to the register, or ‘,w’ to place the result in W. 

 

Having gotten the tens digit into the lower nybble (in W, since we don’t want to change the contents of the 

‘secs’ variable), the upper nybble has to be cleared, so that only the tens digit is passed to the ‘set7seg’ 

routine. 

This is done through a technique called masking. 

It relies on the fact that any bit ANDed with ‘1’ remains unchanged, while any bit ANDed with ‘0’ is cleared 

to ‘0’.  That is: 

 n AND 1 = n 

 n AND 0 = 0 

So if a byte is ANDed with binary 00001111, the high nybble will be cleared, leaving the low nybble 

unchanged. 

../10%20-%20ADC/PIC_Base_A_10.pdf
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So far we’ve only seen the exclusive-or instructions, but the baseline PICs provide equivalent instructions for 

the logical “and” and “or” operations, including ‘andlw’, which ANDs a literal value with the contents of 

W, placing the result in W – “and literal with W”. 

So the ‘andlw 0x0F’ instruction masks off the high nybble, leaving only the tens digit left in W, to be 

passed to the ‘set7seg’ routine. 

And why express the bit mask in hexadecimal (0x0F) instead of binary (b’00001111’)?  Simply because, 

when working with BCD values, hexadecimal notation seems clearer. 

 

Extracting the ones digit is simply a masking operation, as the ones digit is already in the lower nybble: 

        ; display ones for 2.048 ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        movf    secs,w          ; get ones digit 

        andlw   0x0F            ;   from low nybble of seconds 

        pagesel set7seg 

        call    set7seg         ;   then output it    

        pagesel $     

 

 

The only other routine that has to be done differently, due to storing seconds in BCD format, is incrementing 

the time count, as follows: 

; increment time counters 

        incf    secs,f          ; increment seconds 

        movf    secs,w          ; if ones overflow, 

        andlw   0x0F 

        xorlw   .10 

        btfss   STATUS,Z  

        goto    end_inc  

        movlw   .6              ;   BCD adjust seconds 

        addwf   secs,f  

        movlw   0x60 

        xorwf   secs,w          ;   if seconds = 60, 

        btfss   STATUS,Z 

        goto    end_inc   

        clrf    secs            ;       reset seconds to 0 

        incf    mins,f          ;       and increment minutes 

        movlw   .10 

        xorwf   mins,w          ;       if minutes overflow, 

        btfsc   STATUS,Z 

        clrf    mins            ;           reset minutes to 0 

end_inc 

 

To check to see whether the ‘ones’ digit has been incremented past 9, it is extracted (by masking) and tested 

to see if it equals 10.  If it does, then we need to reset the ‘ones’ digit to 0, and increment the ‘tens’ digit.  

But remember that BCD digits are essentially hexadecimal digits.  The ‘tens’ digit is really counting by 16s, 

as far as the PIC is concerned, which operates purely on binary numbers, regardless of whether we consider 

them to be in BCD format.  If the ‘ones’ digit is equal to 10, then adding 6 to it would take it to 16, which 

would overflow, leaving ‘ones’ cleared to 0, and incrementing ‘tens’. 

Putting it another way, you could say that adding 6 adjusts for BCD digit overflow.  Some microprocessors 

provide a “decimal adjust” instruction, that performs this adjustment.  The PIC doesn’t, so we do it manually. 

Finally, note that to check for seconds overflow, the test is not for “seconds = 60”, but “seconds = 0x60”, i.e. 

the value to be compared is expressed in hexadecimal, because seconds is stored in BCD format.  Forgetting 

to express the seconds overflow test in hex would be an easy mistake to make… 
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The rest of the code is exactly the same as before, so won’t be repeated here (although the source files for all 

the examples are of course available for download from www.gooligum.com.au). 

 

Overall, the BCD version uses 104 words of program memory, and 4 bytes of data memory, compared with 

102 words and 5 bytes for the un-packed version. 

Is saving a single byte of data memory worth the additional complexity and two extra words of program 

memory?  In this example, probably not.  But in cases where you need to store more data, adding instructions 

to pack and extract that data can be well worth while.  As with any trade-off, “it depends”. 

 

Conclusion 

That completes our survey of digital I/O with the baseline PIC devices.  More is possible, of course, but to go 

much further in digital I/O, it is better to make the jump to the midrange architecture. 

 

But before doing so, we’ll take a look at analog inputs, using comparators (in lesson 9) and analog to digital 

conversion (in lesson 10). 

 

http://www.gooligum.com.au/
../9%20-%20Comparators/PIC_Base_A_9.pdf
../10%20-%20ADC/PIC_Base_A_10.pdf
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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 9: Analog Comparators 

 

 

We’ve seen how to respond to simple on/off digital signals, but we live in an “analog” world; many of the 

sensors you will want your PIC-based projects to respond to, such as temperature or light, have smoothly 

varying outputs whose magnitude represents the value being measured; they are analog outputs. 

In many cases, you will want to treat the output of an analog sensor as though it was digital (i.e. on or off, 

high or low), without worrying about the exact value.  It may be that a pulse, that does not meet the 

requirements for a “digital” input, has to be detected: for example, the output of a Hall-effect sensor attached 

to a rotating part.  Or we may simply wish to respond to a threshold (perhaps temperature) being crossed. 

In such cases, where we only need to respond to an input voltage being higher or lower than a threshold, it is 

usually appropriate to use an analog comparator.  In fact, analog comparators are so useful that most PICs 

include them, as built-in peripherals. 

This lesson explains how to use comparators, on baseline PIC devices
1
, to respond to analog inputs. 

In summary, this lesson covers: 

 Using comparators to compare voltage levels 

 Adding comparator hysteresis 

 Using a comparator to drive Timer0 

 Using absolute and programmable voltage references 

Comparators 

A comparator (technically, an analog comparator, since comparators 

with digital inputs also exist) is a device which compares the voltages 

present on its positive and negative inputs.  If the voltage on the 

positive input is greater than that on the negative input, the output is set 

“high”; otherwise the output is “low”. 

An example is shown in the diagram on the right. 

The two 10 kΩ resistors act as a voltage divider, presenting 2.5 V at the 

comparator’s negative input.  This sets the on/off threshold voltage. 

The potentiometer can be adjusted to set the positive input to any 

voltage between 0 V and 5 V. 

                                                      

1
 The comparators on most baseline PICs (those with comparators), including the 10F2xx series, are very similar to 

those in the PIC16F506, used in this lesson. 
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When the potentiometer is set to a voltage under 2.5 V, the comparator’s output will be low and the LED 

will not be lit.  But when the potentiometer is turned up past halfway, the comparator’s output will go high, 

lighting the LED. 

Comparators are typically used when a circuit needs to react to a sensor’s analog output being above or 

below some threshold, triggering some event (e.g. time to fill the tank, turn off a heater, or start an alarm). 

They are also useful for level conversion.  Suppose a sensor is outputting pulses which are logically “on/off” 

(i.e. the output is essentially digital), but do not match the voltage levels needed by the digital devices they 

are driving.  For example, the digital inputs of a PIC, with VDD = 5 V (i.e. TTL-compatible), require at least 

2.0 V to register as “high”.  That’s a problem if a sensor is delivering a stream of 0 - 1 V pulses.  By passing 

this signal through a comparator with an input threshold of 0.5 V, the 1 V pulses would be recognised as 

being “high”. 

Similarly, comparators can be used to shape or condition poorly defined or slowly-changing signals.  The 

logic level of a signal between 0.8 V and 2.0 V is not defined for digital inputs on a PIC with VDD = 5 V.  

And excessive current can flow when a digital input is at an intermediate value.  Digital input signals which 

spend any significant amount of time in this intermediate range should be avoided.  Such input signals can be 

cleaned up by passing them through a comparator; the output will have sharply-defined transitions between 

valid digital voltage levels. 

The PIC16F506 includes two comparators, having different capabilities, as discussed in the following 

sections. 

Comparator 1 

Comparator 1 is the simpler of the two comparators. 

It is controlled by the CM1CON0 register: 

The comparator’s inputs are determined by C1NREF and C1PREF. 

C1PREF selects which pin will be used as the positive reference (or input): 

 C1PREF = 1 selects C1IN+ 

 C1PREF = 0  selects C1IN- 

[Note that, despite its name, the C1IN- pin can be used as the comparator’s positive reference.] 

C1NREF selects the negative reference: 

 C1NREF = 1 selects the C1IN- pin 

 C1NREF = 0 selects a 0.6 V internal reference voltage 

By default (after a power-on reset), every bit of CM1CON0 is set to ‘1’. 

This selects the C1IN+ pin as the positive reference, and C1IN- as the negative reference – the “normal” 

way to use the comparator. 

Alternatively, the internal 0.6 V absolute reference can be selected as the negative reference, freeing up one 

I/O pin, with either C1IN+ or C1IN- providing the positive reference.  Selecting C1IN+ as the positive 

reference is clearer, but occasionally it might make more sense to use C1IN-, perhaps because it simplifies 

your PCB layout, or you may be using comparator 1 for multiple measurements, alternately comparing 

C1IN- with 0.6 V, and then C1IN+ with C1IN-.  For example, the 0.6 V reference could be used to solve the 

problem of detecting 0 - 1 V pulses, mentioned earlier. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

CM1CON0 C1OUT C1OUTEN   C1POL C1T0CS   C1ON C1NREF C1PREF C1WU   
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The comparator’s output appears as the C1OUT bit: it is normally set to ‘1’ if and only if the positive 

reference voltage is higher than the negative reference voltage. 

That’s the normal situation, but the operation of the comparator can be inverted by clearing the C1POL 

output polarity bit: 

 C1POL = 1 selects normal operation 

 C1POL = 0 selects inverted operation, where C1OUT = 1 only if positive ref < negative ref. 

 

Finally, the C1ON bit turns the comparator on or off: ‘1’ to turn it on, ‘0’ to turn it off. 

Those are the only bits needed for basic operation of comparator 1.  We’ll examine the other bits in the 

CM1CON1 register, later. 

 

We will illustrate the comparator’s basic operation using the circuit shown below. 

If you have the Gooligum baseline training board, 

you can implement this circuit by placing a shunt 

across pins 1 and 2 (‘POT’) of JP24, connecting the 

10 kΩ pot (RP2) to C1IN+, and in JP19 to enable 

the LED on RC3. 

The connection to C1IN- (labelled ‘GP/RA/RB1’ on 

the board) is available as pin 9 on the 16-pin header.  

+V and GND are brought out on pins 15 and 16, 

respectively, making it easy to add the 10 kΩ 

resistors (supplied with the board), forming a voltage 

divider, by using the solderless breadboard. 

 

The circuit can alternatively be built using the 

Microchip Low Pin Count Demo Board. 

The 10 kΩ potentiometer on that board is already 

connected to C1IN+ (labelled ‘RA0’ on the board), 

via a 1 kΩ resistor (not shown in this diagram).  But 

you must ensure that jumper JP5 is closed; it will be, 

if you haven’t modified your demo board.  The LED labelled ‘DS4’ on the demo board is connected to RC3 

(via a 470 Ω resistor, instead of 330 Ω as shown here, but that makes no difference) via jumper JP4. 

You can connect 10 kΩ resistors (which you will need to provide, along with a breadboard or other 

prototyping board) via the 14-pin header on the demo board.  C1IN- (labelled ‘RA1’) is available on pin 8, 

and +V and GND are pins 13 and 14 respectively. 

 

It is straightforward to configure the PIC as a simple comparator, turning on the LED if the potentiometer is 

turned more than halfway toward the +5V supply (right) side. 

First configure RC3 as an output: 

        ; configure ports 

        movlw   ~(1<<nLED)      ; configure LED pin (only) as an output 

        tris    PORTC  

 

There is no need to configure RB0 or RB1 as inputs, as the comparator settings override TRISB. 

 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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Next, we can configure comparator 1: 

        ; configure comparator 1 

        movlw   1<<C1PREF|1<<C1NREF|1<<C1POL|1<<C1ON         

                                ; +ref is C1IN+ (C1PREF = 1) 

                                ; -ref is C1IN- (C1NREF = 1) 

                                ; normal polarity (C1POL = 1) 

                                ; comparator on (C1ON = 1) 

        movwf   CM1CON0         ; -> C1OUT = 1 if C1IN+ > C1IN-   

 

This turns comparator 1 on, and configures it to test for C1IN+ > C1IN-.  This is the default setting, so in 

theory these initialisation instructions are unnecessary.  But relying implicitly on default settings is obscure 

and error-prone; it is much clearer to explicitly initialise the registers for the functions you are using. 

 

To turn on the LED when the comparator output is high, repeatedly test C1OUT: 

loop    btfsc   CM1CON0,C1OUT   ; if comparator output high 

        bsf     LED             ;   turn on LED 

        btfss   CM1CON0,C1OUT   ; if comparator output low 

        bcf     LED             ;   turn off LED 

 

        goto    loop            ; repeat forever 

 

You should find that, as you turn the potentiometer past halfway, the LED turns on and off 

 

To make the circuit a little more interesting, we’ll 

add a light-dependent resistor (LDR, or CdS 

photocell), as shown on the right. 

As the light level increases, the resistance of the 

LDR falls, and the voltage at the potential divider 

(formed by the LDR and the 22 kΩ resistor) 

connected to C1IN+ rises. 

The exact resistance range of the photocell is not 

important; the ones supplied with the Gooligum 

baseline training board have a resistance of around 

20 kΩ or so for normal indoor lighting conditions, 

which is why a 22 kΩ resistor is used for the lower 

arm of the potential divider here – the voltage at 

C1IN+ will vary around 2.5 V or so when it’s not 

too bright, not too dark. 

If you are using the Gooligum baseline training 

board, you only need to move the shunt in JP24 

across to pins 2 and 3 (‘LDR1’), connecting the 

photocell (PH1) and 22 kΩ resistor in the lower left of the board to C1IN+. 

If you are using the Microchip Low Pin Count Demo Board, you can’t take the 10 kΩ potentiometer out of 

the circuit – it, and the 1 kΩ resistor in series between it and C1IN+, must be used as the “fixed” resistance, 

forming the lower arm of the potential divider.  You must also remove jumper JP5 (you may need to cut the 

PCB trace – ideally you’d install a jumper, so that you can reconnect it again later), to disconnect the pot 

from the +5 V supply. 

If you turn the pot all the way to the right, you’ll have a total resistance of 11 kΩ between C1IN+ and 

ground.  That means that ideally you’d use a photocell with a resistance of around 10 kΩ with normal indoor 

lighting.  The photocell can then be connected between pin 7 on the 14-pin header and +5 V. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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If you don’t have a photocell, there is no problem with continuing to use the potentiometer-only circuit for 

these lessons; but it’s certainly more fun to build a circuit that responds to light! 

 

When you build this circuit and use the above code, you will find that the LED turns on when the LDR is 

illuminated. 

If you would prefer it to work the other way, so that the LED is lit when the light level falls (simulating e.g. 

the way that streetlamps turn on automatically when it gets dark), there’s no need to change the circuit 

connections or program logic.  Simply change the comparator initialisation instructions, to invert the output, 

by clearing the C1POL bit: 

        ; configure comparator 1         

        movlw   1<<C1PREF|1<<C1NREF|0<<C1POL|1<<C1ON 

                                ; +ref is C1IN+ (C1PREF = 1) 

                                ; -ref is C1IN- (C1NREF = 1) 

                                ; inverted polarity (C1POL = 0) 

                                ; turn comparator on (C1ON = 1) 

        movwf   CM1CON0         ; -> C1OUT = 1 if C1IN+ < C1IN-  

 

 

We can save an I/O pin if we don’t use an external voltage divider as the negative reference; we could 

instead use the 0.6 V internal reference, which is enabled by clearing the C1NREF bit: 

        ; configure comparator 1 

        movlw   1<<C1PREF|0<<C1NREF|0<<C1POL|1<<C1ON 

                                ; +ref is C1IN+ (C1PREF = 1) 

                                ; -ref is 0.6 V (C1NREF = 0) 

                                ; inverted polarity (C1POL = 0) 

                                ; turn comparator on (C1ON = 1) 

        movwf   CM1CON0         ; -> C1OUT = 1 if C1IN+ < 0.6 V  

 

 

Since the negative reference is now 0.6 V instead of 

2.5 V, you will find that you will need to make it 

darker than before, to make the LED come on. 

 

To convince yourself that it really is the internal 

reference voltage being used, you could remove the 

10 kΩ voltage divider resistors, as shown on the 

right.  You should find that removing the resistors 

makes no difference to the circuit’s operation. 

 

The important difference is that RB1 is now 

available for use. 

 

 

Adding hysteresis 

You will notice, as the light level changes slowly past the threshold where the LED turns on and off, that the 

LED appears to fade in and out in brightness.  This is caused by noise in the circuit and fluctuations in the 

light source (particularly at 50 or 60 Hz, from mains-powered incandescent or fluorescent lamps): when the 

input is very close to the threshold voltage, small input voltage variations due to noise and/or fluctuating 
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light levels cause the comparator to rapidly switch between high and low.  This rapid switching, similar to 

switch bounce, can be a problem if the microcontroller is supposed to count input transitions, or to perform 

an action on each change. 

To avoid this phenomenon, hysteresis can be added to a comparator, by adding positive feedback – feeding 

some of the comparator’s output back to its positive input. 

 

Consider the comparator circuit shown on the right. 

The threshold voltage, Vt, is set by a voltage divider, formed by 

resistors R1 and R2. 

This would normally set the threshold at Vdd
RR

R
Vt

21

2


 . 

However, resistor Rh feeds some of the comparator’s output back, 

increasing the threshold to some higher level, Vth, when the 

output is high, and decreasing it to a lower level, Vtl, when the 

output is low. 

Now consider what happens when Vin is low (less than Vtl) and 

begins to increase.  Initially, since Vin < Vt, the comparator output 

is high, and the threshold is high: Vt = Vth. 

Eventually Vin rises above Vth, and the comparator output goes 

low, lowering the threshold: Vt = Vtl. 

Now suppose the input voltage begins to fall.  As it falls past the high threshold, Vth, nothing happens.  It 

has to keep falling, all the way down to the low threshold, Vtl, before the comparator output changes again. 

There are now two voltage thresholds: one (the higher) applying when the input signal is rising; the other 

(lower) applying when the input is falling.  The comparator’s output depends not only on its inputs, but on 

their history – a key characteristic of hysteresis. 

The voltage difference between the two thresholds is known as the hysteresis band: Vhb = Vth – Vtl. 

This is the amount the input signal has to fall, after rising through the high threshold, or rise, after falling 

through the low threshold, before the comparator output switches again.  It should be higher than the 

expected noise level in the circuit, making the comparator immune to most noise. 

 

To calculate the high and low thresholds, recall Thévenin’s theorem, 

which states that any two-terminal network of resistors and voltage 

sources can be replaced by a single voltage source, Veq, in series with a 

single resistor, Req. 

Thus, the circuit above is equivalent to that on the left, where 

Vdd
RR

R
Veq

21

2


  

and Req is the parallel combination of R1 and R2: 
21

21

RR

RR
Req


  

Therefore, when the comparator’s output is low (= 0 V): 

Veq
ReqRh

Rh
Vtl


    (thus Vtl < Veq) 
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and, when the comparator’s output is high (= Vdd): 

 VeqVdd
ReqRh

Req
VeqVth 


  (thus Vth > Veq) 

This little bit of mathematics proves that Vth > Vtl, that is, the high input threshold is higher than the low 

input threshold. 

 

The output of comparator 1 can be made available on the C1OUT pin (shared with RB2); we can use this to 

add hysteresis to the circuit. 

The comparator output is enabled by clearing the C1OUTEN  bit in the CM1CON0 register: 

 C1OUTEN  = 0 places the output of comparator 1 on the C1OUT pin 

  C1OUTEN  = 1 disables comparator output on C1OUT (i.e. normal operation). 

In most examples of comparator hysteresis, the comparator’s positive input is used as the threshold, and 

feedback is used to alter that threshold, as shown above. 

However, in the example above, where the internal 0.6 V reference is used as the negative reference, it is not 

possible to use feedback to adjust the threshold; being an internal reference, there is no way to affect it. 

But that’s not a problem – it is also possible to introduce hysteresis by feeding the comparator output into the 

input signal (i.e. the signal being measured), assuming the input is connected to the positive input.  It may 

not seem as intuitive, but the principle is essentially the same. 

C1 on: C1IN+ < 0.6VWhen the input is higher than the threshold, the comparator output goes high, pulling 

the input even higher, via the feedback resistor.  The circuit driving the input then has to effectively work 

harder, against the comparator’s output, to bring the input back below the threshold.  Similarly, when the 

input is low, the comparator’s output goes low, dragging the input even lower, meaning that the input drive 

has to increase further before the comparator will change state again. 

Suppose there is no feedback resistor and that the 

voltage on C1IN+ is equal to the threshold voltage of 

0.6 V.  This would happen if the light level is such 

that the LDR has a resistance of 161.3 kΩ: 

Vin = 22 / (22 + 161.3) × 5 V = 0.6 V 

With the input so close to the threshold, we would 

expect the output to jitter. 

Now suppose that we add a 100 kΩ feedback resistor, 

as shown on the right. 

You can do this with the Gooligum baseline training 

board by placing the supplied 100 kΩ resistor 

between pins 8 (‘GP/RA/RB0’) and 13 

(‘GP/RA/RB2’) on the 16-pin header. 

Or, if you are using the Microchip Low Pin Count 

Demo Board, you would place the feedback resistor 

between pins 7 and 9 on the 14-pin header. 

Note: The comparator output overrides digital I/O.  To use a pin for digital I/O, any comparator 

output assigned to that pin must be disabled.  Comparator outputs are disabled on start-up. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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The effect is similar to that for threshold voltage feedback.  At that level of illumination, the potential divider 

formed by the LDR and the 22 kΩ resistor is equivalent to a source (input) voltage of 0.6 V, connected to 

C1IN+ via a resistance of: 

 Req = (161.3 × 22) / (161.3 + 22) kΩ = 19.4 kΩ 

When the comparator output is low, the feedback resistor pulls the input voltage down to: 

Vinl = 100 / (100 + 19.4) × 0.6 V = 0.50 V 

When the comparator is high, the input voltage is pulled up to: 

Vinh = 0.6V + 19.4 / (100 + 19.4) × (5.0 V – 0.6 V) = 1.3 V 

Note that these voltages are not input thresholds.  The comparator threshold is still the internal voltage 

reference of 0.6 V.  These calculations only serve to demonstrate that the addition of positive feedback pulls 

the input lower when the comparator output is low and higher when the output is high, making the input less 

sensitive to small changes. 

The code is essentially the same as before; since C1OUTEN  must be cleared to enable the comparator output 

pin, that bit should not be set when CM1CON0 is loaded.  Since the symbol for it (NOT_C1OUTEN) hasn’t 

been included in the examples so far, it has been cleared (through omission), so C1OUT has in fact always 

been enabled so far. 

However, it is very important to set the C1POL bit.  If it is not set, the comparator output, appearing on 

C1OUT, will be inverted, and the feedback will be negative, instead of the positive feedback needed to 

create hysteresis. 

Instead, we can have the LED continue to indicate low light by inverting the display logic: light the LED 

only when C1OUT = 0. 

 

But before the comparator output can actually appear on the C1OUT pin, that pin has to be deselected as an 

analog input. 

Deselecting analog inputs is explained in the next lesson on analog-to-digital conversion, but for now all we 

need to remember is that all the analog inputs can be disabled by clearing the ADCON0 register. 

 

The code for turning on an LED on RC3, when the photocell is not illuminated, using the internal 0.6 V 

reference, with hysteresis, is: 

        ; configure ports 

        movlw   ~(1<<nLED)      ; configure LED pin (only) as an output 

        tris    PORTC  

        clrf    ADCON0          ; disable analog inputs -> C1OUT usable 

         

        ; configure comparator 1         

        movlw   1<<C1PREF|0<<C1NREF|1<<C1POL|0<<NOT_C1OUTEN|1<<C1ON 

                                ; +ref is C1IN+ (C1PREF = 1) 

                                ; -ref is 0.6 V (C1NREF = 0) 

                                ; normal polarity (C1POL = 1) 

                                ; enable C1OUT pin (/C1OUTEN = 0) 

                                ; turn comparator on (C1ON = 1)  

        movwf   CM1CON0         ; -> C1OUT = 1 if C1IN+ > 0.6V, 

                                ;    C1OUT pin enabled 

Note:  To enable comparator output on a pin, any analog input assigned to that pin must first be 

disabled. 

../10%20-%20ADC/PIC_Base_A_10.pdf
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;***** Main loop 

main_loop 

        ; display comparator output (inverted) 

        btfsc   CM1CON0,C1OUT   ; if comparator output high 

        bcf     LED             ;   turn off LED 

        btfss   CM1CON0,C1OUT   ; if comparator output low 

        bsf     LED             ;   turn on LED 

 

        ; repeat forever 

        goto    main_loop 

 

Wake-up on comparator change 

As we saw in lesson 7, most PICs can be put into standby, or sleep mode, to conserve power until they are 

woken by an external event.  We’ve seen that that event can be a change on a digital input; it can also be a 

change on comparator output. 

That’s useful if your application is battery-powered and has to spend a long time waiting to respond to an 

input level change from a sensor. 

Wake-up on change for comparator 1 is controlled by the C1WU   bit in the CM1CON0 register. 

By default (after a power-on reset), C1WU  = 1 and wake-up on comparator change is disabled. 

To enable wake-up on comparator change, clear C1WU  . 

Since the symbol for setting C1WU   (NOT_C1WU) has not been included in the expression loaded into 

CM1CON0 in any of the examples so far, C1WU  has always been cleared (by omission), and wake-up on 

comparator change has been implicitly enabled every time. 

But to explicitly enable wake-up on comparator change, you should use an expression such as: 

        movlw   1<<C1PREF|1<<C1NREF|0<<C1POL|0<<NOT_C1WU|1<<C1ON 

        movwf   CM1CON0      

 

 

To determine whether a reset was due to a comparator change, test the CWUF flag in the STATUS register: 

 CWUF = 1  indicates that a wake-up from sleep on comparator change reset occurred 

 CWUF = 0  after all other resets. 

Although there are two comparators in the 16F506, this flag doesn’t tell you which comparator’s output 

changed; by default (after a power-on reset) wake-up on change for each comparator is disabled, but if you 

have enabled wake-up on change for both, you need to have stored the previous value of each comparator’s 

output so that you can test to see which one changed.  It’s the same situation as for wake-up on change for 

the digital inputs; there is only one flag (GPWUF/RBWUF), but potentially a number of inputs that may 

have changed to trigger the wake-up.  The only way to know what has changed is to compare each 

comparator output against the previously-recorded value. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS RBWUF CWUF PA0 TO   PD   Z DC C 

Note: You should read the output of the comparator configured for wake-up on change just prior to 

entering sleep mode. Otherwise, if the comparator output had changed since the last time it was 

read, a “wake up on comparator change” reset will occur immediately upon entering sleep mode. 

../7%20-%20Special%20features/PIC_Base_A_7.pdf
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The following example program configures Comparator 1 for wake-up on change and then goes to sleep.  

When the comparator output changes, the PIC resets, the wake-up on change condition is detected, and a 

LED is turned on for one second, to indicate that the comparator output has changed.  The PIC then goes 

back to sleep, to wait until the next comparator output change. 

We’ll keep the same circuit as before, with the feedback resistor providing hysteresis in place, to make the 

comparator less sensitive to small variations – we only want the PIC to wake on a significant change, as you 

move the photocell between light to dark and back again. 

Note that, when the comparator is initialised, there is a delay of 10 ms to allow it to settle before entering 

standby.  This is necessary because signal levels can take a while to settle after power-on, and if the 

comparator output was changing while going into sleep mode, the PIC would immediately wake and the 

LED would flash – a false trigger.  Note also that the comparator output is read (any instruction which reads 

CM1CON0 will do) immediately before the sleep instruction is executed, as explained above. 

The delays are generated by the DelayMS macro, introduced in lesson 6. 

start 

        ; configure ports 

        clrf    PORTC           ; start with LED off 

        movlw   ~(1<<nLED)      ; configure LED pin (only) as an output 

        tris    PORTC  

        clrf    ADCON0          ; disable analog inputs -> C1OUT usable 

 

        ; check for wake-up on comparator change 

        btfsc   STATUS,CWUF     ; if wake-up on comparator change occurred, 

        goto    flash           ;   flash LED then sleep 

 

        ; else power-on reset 

        movlw   b'00111010'     ; configure comparator 1: 

                ; -0------          enable C1OUT pin (/C1OUTEN = 0) 

                ; --1-----          normal polarity (C1POL = 1)   

                ; ----1---          turn comparator on (C1ON = 1) 

                ; -----0--          -ref is 0.6 V (C1NREF = 0) 

                ; ------1-          +ref is C1IN+ (C1PREF = 1) 

                ; -------0          enable wake on comparator change (/C1WU = 0)   

        movwf   CM1CON0         ;   -> C1OUT = 1 if C1IN+ > 0.6V, 

                                ;      C1OUT pin enabled, 

                                ;      wake on comparator change enabled 

                                 

        DelayMS 10              ; delay 10 ms to allow comparator to settle 

 

        goto    standby         ; sleep until comparator change 

         

;***** Main code 

        ; flash LED 

flash   bsf     LED             ; turn on LED 

        DelayMS 1000            ; delay 1 sec 

 

        ; sleep until comparator change 

standby bcf     LED             ; turn off LED 

        movf    CM1CON0,w       ; read comparator to clear mismatch condition 

        sleep                   ; enter sleep mode                    

 

 

Note that, in this example, the binary value ‘b'01111010’ was used to initialise the comparator control 

register, instead of the equivalent (but much longer!) expression: 

 ‘1<<C1PREF|0<<C1NREF|1<<C1POL|1<<NOT_C1OUTEN|0<<NOT_C1WU|1<<C1ON’. 

Either style is ok, as long as it is clearly commented. 

../6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
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Finally, you should be aware that, if a comparator is turned on when the PIC enters sleep mode, it will 

continue to draw current.  If the comparator is to wake the PIC up when an input level changes, then of 

course it has to remain active, using power, while the PIC is in standby.  But if you’re not using wait on 

comparator change, you should turn off all comparators (clear C1ON to turn off comparator 1) before 

entering sleep mode, to save power. 

 

Incrementing Timer0 

We saw in lesson 5 that Timer0 can be used as a counter, clocked by an external signal on T0CKI. 

That’s useful, but what if you want to count pulses that are not clean digital signals?  The obvious answer is 

to pass the pulses through a comparator (with hysteresis, if the signal is noisy), and then feed the output of 

the comparator into T0CKI.  Indeed, on some PICs, you need to make an electrical connection, external to 

the PIC, from the comparator output (e.g. the C1OUT pin) to the counter input (e.g. T0CKI). 

 

However, on the 16F506, the output of comparator 1 can drive Timer0 directly, through an internal 

connection. 

To enable the connection from comparator 1 to Timer0, clear the C1T0CS  bit in the CM1CON0 register: 

 C1T0CS  = 1  selects T0CKI as the Timer0 counter clock source 

 C1T0CS  = 0  selects the output of comparator 1 as the Timer0 counter clock source 

Note that this setting only matters if Timer0 is in counter mode, i.e. OPTION:T0CS = 1. 

 

If Timer0 is in timer mode (T0CS = 0), the timer will be incremented by the instruction clock (FOSC/4), 

regardless of the setting of C1T0CS  . 

 

So, to use comparator 1 as the counter clock source, you must set T0CS = 1 and C1T0CS  = 0. 

In this mode, Timer0 otherwise operates as usual, with the T0SE bit determining whether the counter 

increments on the rising or falling edge of the comparator output, and the PSA and PS<2:0> bits selecting 

the prescaler assignment. 

 

There is one quirk to be aware of: when T0CS is set to ‘1’, the TRIS setting for RC5 is overridden, and 

RC5 cannot be used as a digital output – regardless of whether T0CKI is actually used as the counter clock 

source. 

 

Note: To minimise power consumption, turn comparators off before entering sleep mode. 

Note: When using comparator 1 to drive Timer0, RC5 cannot be used as an output – even though 

the T0CKI function on that pin is not being used. 

../5%20-%20Timer%200/PIC_Base_A_5.pdf
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To show how comparator 1 can be used with Timer0, we can use the external clock circuit from lesson 5, but 

with the clock signal degraded by passing it through an RC filter and clamping with two diodes, as shown: 

 

The effect of this can be seen in the oscilloscope trace, below: 

The top trace is the “clean” digital output of the clock circuit, and the degraded signal is below.  It peaks at 

approximately 1 V. 

../5%20-%20Timer%200/PIC_Base_A_5.pdf
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You can build this circuit with the Gooligum baseline training board, using the supplied 10 kΩ resistor, 1 nF 

capacitor and two 1N4148 diodes – connecting them to signals on the 16-pin header: 32.768 kHz oscillator 

output on pin 1 (‘32 kHz’), C1IN+ input on pin 8 (‘GP/RA/RB0’) and ground on pin16 (‘GND’) – using the 

solderless breadboard, as illustrated below: 

You should also remove the shunt from JP24 (disconnecting the pot or photocell from C1IN+), but leave 

JP19 in place (enabling the LED on RC3). 

If you are using Microchip’s Low Pin Count Demo Board, you can build the circuit in a similar way, by 

making connections to the 14-pin header on that board, although you will of course have to supply your own 

32.768 kHz oscillator.  Note that, if you are using Microchip’s LPC Demo Board, the components connected 

to the C1IN+ input, including the potentiometer, will affect the signal on C1IN+.  You may need to adjust the 

pot to make it work. 

 

Whichever board you use, you must only connect these additional components to C1IN+ after programming 

the PIC, to avoid interference with the programming process.  You need to program the PIC before making 

the connection to C1IN+.  You can then apply power (whether from a PICkit 2, PICkit3, or external power 

supply) and release reset – and the LED on RC3 should start flashing. 

 

The degraded signal is not suitable for driving T0CKI directly; it doesn’t go high enough to register as a 

digital “high”.  But it is quite suitable for passing through a comparator referenced to 0.6 V, so the internal 

reference voltage is a good choice here.  Therefore the only comparator input needed is C1IN+, as shown in 

the circuit on the previous page. 

Note: Components such as diodes and capacitors connected to the ICSP programming pins 

(RB0/AN0/C1IN+ and RB1/AN1/C1IN- on a PIC16F506) may interfere with the ICSP 

programming signals, and must be disconnected before the PIC can be successfully programmed. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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Lesson 5 included a program which flashed an LED at 1 Hz, with Timer0 driven by an external 32.768 kHz 

clock.  It needs very little modification to work with comparator 1 instead of T0CKI.  Other than changing 

references from GPIO to PORTC (since we are now using a 16F506 instead of a 12F509), all we need do is 

to configure the comparator, with comparator output selected as the Timer0 clock source: 

        ; configure comparator 1 

        movlw   1<<C1PREF|0<<C1NREF|0<<C1POL|0<<NOT_C1T0CS|1<<C1ON 

                                    ; +ref is C1IN+ (C1PREF = 1) 

                                    ; -ref is 0.6 V (C1NREF = 0) 

                                    ; normal polarity (C1POL = 1) 

                                    ; select C1 as TMR0 clock (/C1T0CS = 0) 

                                    ; turn comparator on (C1ON = 1) 

        movwf   CM1CON0             ; -> C1OUT = 1 if C1IN+ > 0.6V, 

                                    ;    TMR0 clock from C1 

 

Once again, although it is not strictly necessary to include ‘0<<NOT_C1T0CS’ in the expression being loaded 

into CM1CON0 (since ORing a zero value into an expression has no effect), doing so makes it explicit that 

we are enabling comparator 1 as a clock source, by clearing C1T0CS  . 

 

Complete program 

Here is how the example from lesson 5 (actually the lesson 6 version) has been modified: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 9, example 3                                 * 

;                   Crystal-based (degraded signal) LED flasher         * 

;                                                                       * 

;   Demonstrates comparator 1 clocking TMR0                             * 

;                                                                       * 

;   LED flashes at 1 Hz (50% duty cycle),                               * 

;   with timing derived from 32.768 kHz input on C1IN+                  * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       C1IN+ = 32.768 kHz signal                                       * 

;       RC3   = flashing LED                                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4 MHz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 

 

; pin assignments 

    constant nFLASH=3               ; flashing LED on RC3 

     

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sPORTC  res 1                       ; shadow copy of PORTC 

 

 

file:///C:/Work/Gooligum/Tutorials/Series%202/Base_mid%20dev%20board/Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
../6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
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;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration 

 

         

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure ports 

        movlw   ~(1<<nFLASH)        ; configure LED pin (only) as output 

        tris    PORTC   

         

        ; configure Timer0 

        movlw   1<<T0CS|0<<PSA|b'110'  

                                    ; counter mode (T0CS = 1) 

                                    ; prescaler assigned to Timer0 (PSA = 0) 

                                    ; prescale = 128 (PS = 110) 

        option                      ; -> incr at 256 Hz with 32.768 kHz input 

         

        ; configure comparator 1 

        movlw   1<<C1PREF|0<<C1NREF|0<<C1POL|0<<NOT_C1T0CS|1<<C1ON 

                                    ; +ref is C1IN+ (C1PREF = 1) 

                                    ; -ref is 0.6 V (C1NREF = 0) 

                                    ; normal polarity (C1POL = 1) 

                                    ; select C1 as TMR0 clock (/C1T0CS = 0) 

                                    ; turn comparator on (C1ON = 1) 

        movwf   CM1CON0             ; -> C1OUT = 1 if C1IN+ > 0.6V, 

                                    ;    TMR0 clock from C1 

 

;***** Main loop 

main_loop 

        ; TMR0<7> cycles at 1 Hz, so continually copy to LED (GP1) 

        clrf    sPORTC              ; assume TMR0<7>=0 -> LED off 

        btfsc   TMR0,7              ; if TMR0<7>=1 

        bsf     sPORTC,nFLASH       ;   turn on LED 

 

        movf    sPORTC,w            ; copy shadow to port 

        movwf   PORTC 

 

        ; repeat forever 

        goto    main_loop               

 

 

        END 

 

 

Comparator 2 

Comparator 2 is quite similar to comparator 1, but a wider range of inputs can be selected and it can be used 

with the programmable voltage reference. 

It cannot, however, be selected as a clock source for Timer0. 
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It is controlled by the CM2CON0 register: 

Most of these bits are directly equivalent to those in CM1CON0: 

  C2OUT  is the comparator output bit (the output appears here) 

 C2OUTEN   determines whether the output is placed on the C2OUT pin or not 

  C2POL selects the output polarity 

  C2ON  turns the comparator on or off 

 C2WU   enables/disables wake-up on comparator change 

They have the same options and work in the same way as the corresponding bits in CM1CON0. 

The C2PREF bits select the positive reference: 

Note that C1IN+ (a “comparator 1” input) can 

be selected as in input to comparator 2. 

Furthermore, C1IN+ can be used as an input to 

both comparators at the same time – something 

that can be useful if you want to compare two 

signals (one for each comparator) against a 

common external (perhaps varying) reference 

on C1IN+.  Or, the two comparators could be used to define upper and lower limits for the signal on C1IN+. 

 

C2NREF selects the negative reference: 

 C2NREF = 1 selects the C2IN- pin 

 C2NREF = 0 selects the programmable internal reference voltage (see below) 

 

By default (after a power-on reset), every bit of CM2CON0 is set to ‘1’. 

 

Programmable voltage reference 

We’ve seen that comparator 1 can be used with a fixed 0.6 V internal voltage reference, avoiding the need to 

provide an external reference voltage and saving a pin.  However, 0.6 V is not always suitable, so an external 

reference may need to be used. 

Comparator 2 is more flexible, in that it can be used with a programmable internal voltage reference 

(CVREF), selectable from a range of 32 voltages, from 0V to 0.72 × VDD. 

The voltage reference is controlled by the VRCON register: 

The reference voltage is set by the VR<3:0> bits and VRR, which selects a high or low voltage range: 

 VRR = 1 selects the low range, where CVREF = VR<3:0>/24 × VDD. 

 VRR = 0 selects the high range, where CVREF = VDD/4 + VR<3:0>/32 × VDD. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

CM2CON0 C2OUT C2OUTEN   C2POL C2PREF2 C2ON C2NREF C2PREF1 C2WU   

C2PREF1 C2PREF2 Positive Reference 

0 0 C2IN- 

0 1 C1IN+ 

1 – C2IN+ 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

VRCON VREN VROE VRR - VR3 VR2 VR1 VR0 
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The available reference voltages are summarised in the following table, as a fraction of VDD and as an 

absolute voltage for the case where VDD = 5 V: 

VRR = 1 (low range)  VRR = 0 (high range) 

VR<3:0> fraction VDD CVREF (VDD = 5V)  VR<3:0> fraction VDD CVREF (VDD = 5V) 

0 0.000 0.00V  0 0.250 1.25V 

1 0.042 0.21V  1 0.281 1.41V 

2 0.083 0.42V  2 0.313 1.56V 

3 0.125 0.62V  3 0.344 1.72V 

4 0.167 0.83V  4 0.375 1.88V 

5 0.208 1.04V  5 0.406 2.03V 

6 0.250 1.25V  6 0.438 2.19V 

7 0.292 1.46V  7 0.469 2.34V 

8 0.333 1.67V  8 0.500 2.50V 

9 0.375 1.87V  9 0.531 2.66V 

10 0.417 2.08V  10 0.563 2.81V 

11 0.458 2.29V  11 0.594 2.97V 

12 0.500 2.50V  12 0.625 3.13V 

13 0.542 2.71V  13 0.656 3.28V 

14 0.583 2.92V  14 0.688 3.44V 

15 0.625 3.12V  15 0.719 3.59V 

 

Note that the low and high ranges overlap, with 0.250×VDD, 0.500×VDD and 0.625×VDD selectable in both.  

Thus, of the 32 selectable voltages, only 29 are unique. 

 

The VREN bit enables (turns on) the voltage reference.  

To use the voltage reference, set VREN = 1. 

 

Since the voltage reference module draws current, you should turn it off by clearing VREN to minimise 

power consumption in sleep mode – unless of course you are using wake on comparator change with CVREF 

as the negative reference, in which case the voltage reference needs to remain on. 

The only exception to this is you wish to set CVREF = 0V.  In that case, with VRR = 1 and VR<3:0> = 0, the 

module can be turned off (VREN = 0) to conserve power and the reference voltage will be very close to 0V.  

That’s useful if you wish to test for the input signal going negative (zero-crossing); the inputs can accept 

small negative voltages, down to -0.3V. 

 

The VROE bit enables the voltage reference output on the CVREF pin.  When VROE = 1, the CVREF output 

is enabled and, since it shares a pin with RC2, RC2 cannot then be used for digital I/O. 
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To demonstrate how the programmable voltage reference 

can be used with comparator 2, we can use the circuit 

shown on the right, with a photocell (and 22 kΩ resistor) 

connected to C2IN+.  The LED on RC3 will indicate a 

low level of illumination, and the LED on RC1 will 

indicate bright light.  When neither LED is lit, the light 

level will be in the middle; not too dim or too bright. 

To implement this circuit using the Gooligum baseline 

training board, you should remove the shunt from of 

JP24 and instead place a shunt in position 2 (‘C2IN+’) of 

JP25, connecting photocell PH2 to C2IN+.  You should 

also place shunts in JP17 and JP19, enabling the LEDs 

on RC1 and RC3. 

If you are using Microchip’s Low Pin Count Demo 

Board, you can connect a photocell and resistor (or pot) 

to C2IN+ via pin 10 on the 14-pin header.  The demo 

board already has LEDs on RC1 and RC3. 

 

To test whether the input is within limits, we will first configure the programmable voltage reference to 

generate the “low” threshold voltage, compare the input with this low level, and then reconfigure the voltage 

reference to generate the “high” threshold and compare the input with this higher level. 

This process could be extended to multiple input thresholds, by configuring the voltage reference to generate 

each threshold in turn.  However, if you wish to test against more than a few threshold levels, you would 

probably be better off using an analog-to-digital converter (described in the next lesson). 

This example uses 2.0 V as the “low” threshold and 3.0 V as the “high” threshold, but, since the reference is 

programmable, you can always choose your own levels!  

 

Comparator 2 is configured to use C2IN+ as the positive reference, and CVREF as the negative reference: 

        ; configure comparator 2 

        movlw   1<<C2PREF1|0<<C2NREF|1<<C2POL|1<<C2ON 

                                    ; +ref is C2IN+ (C2PREF1 = 1) 

                                    ; -ref is CVref (C2NREF = 0) 

                                    ; normal polarity (C2POL = 1) 

                                    ; turn comparator on (C2ON = 1) 

        movwf   CM2CON0             ; -> C2OUT = 1 if C2IN+ > CVref 

 

The voltage reference can be configured to generate approximately 2.0 V, by: 

        movlw   1<<VREN|0<<VRR|.5   ; configure voltage reference: 

                                    ;   enable voltage reference (VREN = 1) 

                                    ;   CVref = 0.406*Vdd (VRR = 0, VR = 5) 

        movwf   VRCON               ;   -> CVref = 2.03 V 

 

The closest match to 3.0 V is obtained by: 

        movlw   1<<VREN|0<<VRR|.11  ; configure voltage reference: 

                                    ;   enable voltage reference (VREN = 1) 

                                    ;   CVref = 0.594*Vdd (VRR = 0, VR = 11) 

        movwf   VRCON               ;   -> CVref = 2.97 V    

 

 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../10%20-%20ADC/PIC_Base_A_10.pdf
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After changing the voltage reference, it can take a little while for it to settle and stably generate the newly-

selected voltage.  According to the PIC12F510/16F506 data sheet, this settling time can be up to 10 µs. 

Therefore, we should insert a 10 µs delay after configuring the voltage reference, before reading the 

comparator output. 

As we saw in lesson 2, a useful instruction for generating a two-instruction-cycle delay is ‘goto $+1’.  

Since each instruction cycle is 1 µs (with a 4 MHz processor clock), each ‘goto $+1’ creates a 2 µs delay, 

and five of these instructions will give us the 10 µs delay we are after. 

Since we need to insert this delay twice (once for each time we re-configure the voltage reference), it makes 

sense to define it as a macro: 

; 10 us delay 

;   (assuming 4 MHz processor clock) 

Delay10us   MACRO 

            goto $+1        ; 2 us delay * 5 = 10 us 

            goto $+1 

            goto $+1 

            goto $+1 

            goto $+1 

            ENDM 

 

This ‘Delay10us’ macro can then be used to add the necessary 10 µs delay after each voltage reference re-

configuration. 

Complete program 

Here is how these code fragments fit together. 

Note that a shadow register is used for PORTC – in this case not so much to avoid read-write-modify 

problems, but simply because it makes the main loop logic more straightforward.  If the loop started with 

PORTC being cleared, and then one of the LEDs turned on, the LED would end up being turned off then on, 

rapidly.  The flickering would be too fast to be visible, but the LED’s apparent brightness would be lower.  

Using a shadow register avoids that, without having to add more complex logic. 

;************************************************************************ 

;   Description:    Lesson 9, example 4                                 * 

;                                                                       * 

;   Demonstrates use of Comparator 2 and programmable voltage reference * 

;                                                                       * 

;   Turns on Low LED  when C2IN+ < 2.0 V (low light level)              * 

;         or High LED when C2IN+ > 3.0 V (high light level)             * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       C2IN+ = voltage to be measured (LDR/resistor divider)           * 

;       RC3   = "Low" LED                                               * 

;       RC1   = "High" LED                                              * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 

../2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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; pin assignments 

    constant    nLO=RC3         ; "Low" LED 

    constant    nHI=RC1         ; "High" LED 

 

 

;***** MACROS 

; 10 us delay 

; Assumes: 4 MHz processor clock 

; 

Delay10us   MACRO 

            goto $+1        ; 2 us delay * 5 = 10 us 

            goto $+1 

            goto $+1 

            goto $+1 

            goto $+1 

            ENDM 

         

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sPORTC  res 1                   ; shadow copy of PORTC 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration 

 

         

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation  

start 

        ; configure ports 

        movlw   ~(1<<nLO|1<<nHI)    ; configure PORTC LED pins as outputs 

        tris    PORTC  

         

        ; configure comparator 2 

        movlw   1<<C2PREF1|0<<C2NREF|1<<C2POL|1<<C2ON 

                                    ; +ref is C2IN+ (C2PREF1 = 1) 

                                    ; -ref is CVref (C2NREF = 0) 

                                    ; normal polarity (C2POL = 1) 

                                    ; turn comparator on (C2ON = 1) 

        movwf   CM2CON0             ; -> C2OUT = 1 if C2IN+ > CVref 

 

 

;***** Main loop 

main_loop 

        ; start with shadow PORTC clear 

        clrf    sPORTC               

         

;*** Test for low illumination 

        ; set low input threshold 

        movlw   1<<VREN|0<<VRR|.5   ; configure voltage reference: 

                                    ;   enable voltage reference (VREN = 1) 

                                    ;   CVref = 0.406*Vdd (VRR = 0, VR = 5) 

        movwf   VRCON               ;   -> CVref = 2.03 V 

        Delay10us                   ; wait 10 us to settle 
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        ; compare with input 

        btfss   CM2CON0,C2OUT       ; if C2IN+ < CVref 

        bsf     sPORTC,nLO          ;   turn on Low LED 

         

;*** Test for high illumination 

        ; set high input threshold 

        movlw   1<<VREN|0<<VRR|.11  ; configure voltage reference: 

                                    ;   enable voltage reference (VREN = 1) 

                                    ;   CVref = 0.594*Vdd (VRR = 0, VR = 11) 

        movwf   VRCON               ;   -> CVref = 2.97 V         

        Delay10us                   ; wait 10 us to settle 

         

        ; compare with input 

        btfsc   CM2CON0,C2OUT       ; if C2IN+ > CVref 

        bsf     sPORTC,nHI          ;   turn on High LED 

 

;*** Display test results 

        movf    sPORTC,w            ; copy shadow to PORTC 

        movwf   PORTC 

 

        ; repeat forever 

        goto    main_loop         

 

 

        END 

 

Using both comparators with the programmable voltage reference 

For a final example, suppose that we want to test two input signals (say, light level in two locations) by 

comparing them against a common reference.  We would need to use two comparators, with an input signal 

connected to each, and a single threshold voltage level connected to both.  

What if we want to use the programmable voltage reference to generate the common threshold? 

We’ve see that CVREF cannot be selected as an input to comparator 1, so it would seem that it’s not possible 

to use the programmable voltage reference with comparator 1. 

But although no internal connection is 

available, that doesn’t rule out an 

external connection – and as we saw 

above, the programmable reference can 

be made available on the CVREF pin. 

So, to use the programmable voltage 

reference with comparator 1, we need to 

set the VROE bit in the VRCON 

register, to enable the CVREF output, 

and connect the CVREF pin to a 

comparator 1 input – as shown in the 

circuit diagram on the left, where 

CVREF is connected to C1IN-. 

If you are using the Gooligum baseline 

training board, you can keep the board 

set up as before, with shunts in JP17, 

JP19, and position 2 (‘C2IN+’) of JP25, 

and add a shunt across pins 2 and 3 

(‘LDR1’) of JP24, to also connect 

photocell PH1 to C1IN+.  You also need 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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to connect CVREF to C1IN-, which you can do by linking pins 9 (‘GP/RA/RB1’) and 11 (‘RC2’) on the 16-

pin header. 

If you are using Microchip’s Low Pin Count Demo Board, the connection from CVREF to C1IN- can be 

made by linking pins 8 and 12 on the 14-pin header, and the photocells and associated resistors can be 

connected via the 14-pin header as before. 

 

Note: Whichever board you are using, you should disconnect your PICkit 2 or PICkit 3 from the board when 

you run the program (applying external power instead), because the programmer loads RB1/AN1/C1IN-, 

pulling down the reference voltage delivered by the CVREF pin.  The circuit will still operate with a PICkit 2 

or PICkit 3 connected, but the reference voltage will be much lower than it should be. 

 

Most of the initialisation and main loop code is very similar to that used in earlier examples, but when 

configuring the voltage reference, we must ensure that the VROE bit is set: 

        movlw   1<<VREN|1<<VROE|1<<VRR|.12 

                                    ; CVref = 0.500*Vdd (VRR = 1, VR = 12) 

                                    ; enable CVref output pin (VROE = 1) 

                                    ; enable voltage reference (VREN = 1) 

        movwf   VRCON               ; -> CVref = 2.50 V, 

                                    ;    CVref output pin enabled   

 

 

Complete program 

Here is the full listing for the “two inputs with a common programmed voltage reference” program: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 9, example 5                                 * 

;                                                                       * 

;   Demonstrates use of comparators 1 and 2                             * 

;   with the programmable voltage reference                             * 

;                                                                       * 

;   Turns on: LED 1 when C1IN+ > 2.5 V                                  * 

;         and LED 2 when C2IN+ > 2.5 V                                  * 

;                                                                       * 

;************************************************************************ 

;   Pin assignments:                                                    * 

;       C1IN+ = input 1 (LDR/resistor divider)                          * 

;       C1IN- = connected to CVref                                      * 

;       C2IN+ = input 2 (LDR/resistor divider)                          * 

;       CVref = connected to C1IN-                                      * 

;       RC1   = indicator LED 2                                         * 

;       RC3   = indicator LED 1                                         * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 
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; pin assignments 

    constant    nLED1=RC3       ; indicator LED 1 

    constant    nLED2=RC1       ; indicator LED 2 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sPORTC  res 1                   ; shadow copy of PORTC 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration 

 

         

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation  

start 

        ; configure ports 

        movlw   ~(1<<nLED1|1<<nLED2)    ; configure PORTC LED pins as outputs 

        tris    PORTC  

         

        ; configure comparator 1 

        movlw   1<<C1PREF|1<<C1NREF|1<<C1POL|1<<C1ON 

                                    ; +ref is C1IN+ (C1PREF = 1) 

                                    ; -ref is C1IN- (C1NREF = 1) 

                                    ; normal polarity (C1POL = 1) 

                                    ; comparator on (C1ON = 1) 

        movwf   CM1CON0             ; -> C1OUT = 1 if C1IN+ > C1IN- (= CVref) 

         

        ; configure comparator 2 

        movlw   1<<C2PREF1|0<<C2NREF|1<<C2POL|1<<C2ON 

                                    ; +ref is C2IN+ (C2PREF1 = 1) 

                                    ; -ref is CVref (C2NREF = 0) 

                                    ; normal polarity (C2POL = 1) 

                                    ; comparator on (C2ON = 1) 

        movwf   CM2CON0             ; -> C2OUT = 1 if C2IN+ > CVref 

         

        ; configure voltage reference 

        movlw   1<<VREN|1<<VROE|1<<VRR|.12 

                                    ; CVref = 0.500*Vdd (VRR = 1, VR = 12) 

                                    ; enable CVref output pin (VROE = 1) 

                                    ; enable voltage reference (VREN = 1) 

        movwf   VRCON               ; -> CVref = 2.50 V, 

                                    ;    CVref output pin enabled                

 

 

;***** Main loop 

main_loop 

        ; start with shadow PORTC clear 

        clrf    sPORTC               

         

        ; test input 1 

        btfsc   CM1CON0,C1OUT       ; if C1IN+ > CVref 

        bsf     sPORTC,nLED1        ;   turn on LED 1 
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        ; test input 2 

        btfsc   CM2CON0,C2OUT       ; if C2IN+ > CVref 

        bsf     sPORTC,nLED2        ;   turn on LED 2 

 

        ; display test results 

        movf    sPORTC,w            ; copy shadow to PORTC 

        movwf   PORTC 

 

        ; repeat forever 

        goto    main_loop         

 

        END 

 

 

Conclusion 

This has been a long lesson, for such an apparently simple peripheral. 

As we’ve seen, the comparators on baseline PICs can be configured with flexible combinations of inputs, 

including an absolute voltage reference and a programmable voltage reference (which can be made available 

externally).  We’ve also seen how to use the external comparator outputs to generate hysteresis, and how 

comparator 1 can be used to clock the timer – which, as we demonstrated, can be used to count pulses that 

would be otherwise unsuited to digital inputs. 

 

The next lesson continues the topic of analog inputs on baseline PICs, with an overview of analog-to-digital 

conversion. 

 

../10%20-%20ADC/PIC_Base_A_10.pdf
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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 10: Analog-to-Digital Conversion 

 

 

We saw in the last lesson how a comparator can be used to respond to an analog signal being above or below 

a specific threshold.  In other cases, the value of the input is important and you need to measure, or digitise 

it, so that your code can process a digital representation of the signal’s value.  

This lesson explains how to use the analog-to-digital converter (ADC), available on a number of baseline 

PICs, to read analog inputs, converting them to digital values you can operate on. 

To display these values, we’ll make use of the 7-segment displays used in lesson 8. 

In summary, this lesson covers: 

 Using an ADC module to read analog inputs 

 Hexadecimal output on 7-segment displays 

Analog-to-Digital Converter 

The analog-to-digital converter (ADC) on the 16F506 allows you to measure analog input voltages to a 

resolution of 8 bits.  An input of 0 V (or VSS, if VSS is not at 0 V) will read as 0, while an input of VDD 

corresponds to the full-scale reading of 255. 

Three analog input pins are available: AN0, AN1 and AN2.  But, since there is only one ADC module, only 

one input can be read (or converted) at once. 

The analog-to-digital converter is controlled by the ADCON0 register: 

 

Before a pin can be selected as an input channel for the ADC, it must first be configured as an analog input, 

using the ANS<1:0> bits: 

Note that pins cannot be independently 

configured as analog inputs. 

If only one analog input is needed, it has to be 

AN2.  If any analog inputs are configured, AN2 

must be one of them. 

If only two analog inputs are needed, they must 

be AN0 and AN2. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

ADCON0 ANS1 ANS0 ADCS1 ADCS0 CHS1 CHS0 GO/ DONE   ADON 

ANS<1:0> Pins configured as analog inputs 

00 none 

01 AN2 only 

10 AN0 and AN2 

11 AN0, AN1 and AN2 

../9%20-%20Comparators/PIC_Base_A_9.pdf
../8%20-%207-segment%20displays/PIC_Base_A_8.pdf
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By default, following power-on, ANS<1:0> is set to ‘11’, configuring AN0, AN1 and AN2 as analog inputs. 

This is the default behaviour for all PICs; all pins that can be configured as analog inputs will be configured 

as analog inputs at power-on, and you must explicitly disable the analog configuration on a pin if you wish to 

use it for digital I/O.  This is because, if a pin is configured as a digital input, it will draw excessive current if 

the input voltage is not at a digital “high” or “low” level, i.e. somewhere in-between.  Thus, the safe, low-

current option is to default to analog inputs and to leave it up to your program to only enable digital inputs on 

those pins known to be digital. 

All of the analog inputs can be disabled (enabling digital I/O on the RB0, RB1 and RB2 pins) by clearing 

ADCON0, which clears ANS<1:0> to ‘00’. 

 

The ADON bit turns the ADC module on or off: ‘1’ to turn it on, ‘0’ to turn it off.  The ADC module is 

turned on (ADON = 1) by default, at power-on. 

Hence, clearing ADCON0 will also clear ADON to ‘0’, disabling the ADC module, conserving power. 

However, disabling the ADC module is not enough to disable the analog inputs; the ANS<1:0> bits must be 

used to configure analog pins for digital I/O, regardless of the value of ADON. 

 

The analog-to-digital conversion process is driven by a clock, which is derived from either the processor 

clock (FOSC) or the internal RC oscillator (INTOSC).  For accurate conversions, the ADC clock rate must be 

selected such that the ADC conversion clock period, TAD, be between 500 ns and 50 µs. 

The ADC conversion clock is selected by the ADCS<1:0> 

bits: 

Note that, if the internal RC oscillator is being used as the 

processor clock, the INTOSC/4 and FOSC/4 options are the 

same. 

But whether you are using a high-speed 20 MHz crystal, a 

low-power 32 kHz watch crystal, or a low-speed external 

RC oscillator, the INTOSC/4 ADC clock option 

(ADCS<1:0> = ‘11’) will always work, giving accurate 

conversions. 

INTOSC/4 is always a safe choice. 

 

Each analog-to-digital conversion requires 13 TAD periods to complete. 

If you are using the INTOSC/4 ADC clock option, and the internal RC oscillator is running at 4 MHz, 

INTOSC/4 = 1 MHz and TAD = 1 µs.  Each conversion will then take a total of 13 µs. 

If the internal RC oscillator is running at 8 MHz, TAD = 500 ns (the shortest period allowed, making this the 

fastest conversion rate possible), each conversion will take 13 × 500 ns = 6.5 µs. 

 

Having turned on the ADC, selected the ADC conversion clock, and configured the analog input pins, the 

next step is to select an input (or channel) to be converted. 

ADCS<1:0> ADC conversion clock 

00 FOSC/16 

01 FOSC/8 

10 FOSC/4 

11 INTOSC/4 

Note: To minimise power consumption, the ADC module should be turned off before entering 

sleep mode. 
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CHS<1:0> selects the ADC channel: 

 

 

Note that, in addition to the three analog input 

pins, AN0 to AN2, the 0.6V internal voltage 

reference can be selected as an ADC input 

channel. 

 

Why measure the 0.6V absolute reference voltage, if it never changes? 

That’s the point – it never changes (except for some drift with temperature).  But if you’re not using a 

regulated power supply (e.g. running direct from batteries), VDD will vary as the power supply changes.  

Since the full scale range of the ADC is VSS to VDD, your analog measurements are a fraction of VDD and 

will vary as VDD varies.  By regularly measuring (sampling) the 0.6 V absolute reference, it is possible to 

achieve greater measurement accuracy by correcting for changes in VDD.  It is also possible to use the 0.6 V 

reference to indirectly measure VDD, and hence battery voltage, as we’ll see in a later example. 

 

Having set up the ADC and selected an input channel to be sampled, the final step is to begin the conversion, 

by setting the GO/ DONE  bit to ‘1’. 

Your code then needs to wait until the GO/ DONE  bit has been cleared to ‘0’, which indicates that the 

conversion is complete.  You can then read the conversion result from the ADRES register. 

You should copy the result from ADRES before beginning the next conversion, so that it isn’t overwritten 

during the conversion process
1
. 

Also for best results, the source impedance of the input being sampled should be no more than 10 kΩ. 

Example 1: Binary Output 

As a simple demonstration of how to use 

the ADC, we can use a potentiometer to 

provide a variable voltage to an analog 

input, and four LEDs to show a 4-bit 

binary representation of that value, using 

the circuit shown on the right. 

To implement it using the Gooligum 

baseline training board, place a shunt 

across pins 1 and 2 (‘POT’) of JP24, 

connecting the 10 kΩ pot (RP2) to AN0, 

and shunts in JP16-19, enabling the LEDs 

on RC0-3. 

If you are using Microchip’s Low Pin 

Count Demo Board, the onboard pot and 

LEDs are already connected to AN0 and 

RC0 – RC3.  You only need to ensure 

that jumpers JP1-5 are closed. 

                                                      

1
 The result actually remains in ADRES for the first four TAD periods after the conversion begins.  This is the sampling 

period, and for best results the input signal should not be changing rapidly during this period. 

CHS<1:0> ADC channel 

00 analog input AN0 

01 analog input AN1 

10 analog input AN2 

11 0.6V internal voltage reference 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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To make the display meaningful (i.e. a binary representation of the input voltage, corresponding to sixteen 

input levels), the top four bits of the ADC result (in ADRES) should be copied to the four LEDs. 

The bottom four bits of the ADC result are thrown away; they are not significant. 

 

To use RC0 and RC1 as digital outputs, we need to disable the C2IN+ and C2IN- inputs, which can be done 

by disabling comparator 2: 

        clrf    CM2CON0         ; disable comparator 2 -> RC0, RC1 digital 

 

This also disables C2OUT, making RC4 available for digital I/O, even though it isn’t used in this example. 

To use RC2 as a digital output, the CVREF output has to be disabled.  By default, on power-up, the voltage 

reference module is disabled, including the CVREF output.  But it doesn’t hurt to explicitly disable it as part 

of your initialisation code: 

        clrf    VRCON           ; disable CVref -> RC2 usable 

 

 

AN0 has to be configured as an analog input.  It’s not possible to configure AN0 as an analog input without 

AN2, so for the minimal number of analog inputs, set ANS<1:0> = ‘10’ (AN0 and AN2 analog). 

It makes sense to choose INTOSC/4 as the conversion clock (ADCS<1:0> = ‘11’), as a safe default, 

although in fact any of the ADC clock settings will work when the processor clock is 4 MHz or 8 MHz. 

AN0 has to be selected as the ADC input channel: CHS<1:0> = ‘00’. 

And of course the ADC module has to be enabled: ADON = ‘1’. 

So we have: 

        movlw   b'10110001'     ; configure ADC: 

                ; 10------          AN0, AN2 analog (ANS = 10) 

                ; --11----          clock = INTOSC/4 (ADCS = 11) 

                ; ----00--          select channel AN0 (CHS = 00) 

                ; -------1          turn ADC on (ADON = 1) 

        movwf   ADCON0          ;   -> AN0 ready for sampling    

 

Alternatively the ‘movlw’ could be written as: 

        movlw   b'10'<<ANS0|b'11'<<ADCS0|b'00'<<CHS0|1<<ADON 

 

But that’s unwieldy, and harder to understand. 

 

Having configured the LED outputs (PORTC) and the ADC, the main loop is quite straightforward: 

main_loop 

        ; sample analog input 

        bsf     ADCON0,GO       ; start conversion 

w_adc   btfsc   ADCON0,NOT_DONE ; wait until done 

        goto    w_adc 

         

        ; display result on 4 x LEDs 

        swapf   ADRES,w         ; copy high nybble of result  

        movwf   LEDS            ;   to low nybble of output port (LEDs) 

 

        ; repeat forever 

        goto    main_loop   
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You’ll see that two symbols are used for the GO/ DONE  bit, depending on the context: when setting the bit to 

start the conversion, it is referred to as “GO”, but when using it as a flag to check whether the conversion is 

complete, it is referred to as “NOT_DONE”. 

Using the appropriate symbol for the context makes the intent of the code clearer, even though both symbols 

refer the same bit. 

Finally, note the use of the ‘swapf’ instruction.  The output bits we need to copy are in the high nybble of 

ADRES, while the output LEDs (RC0 – RC3) form the low nybble of PORTC, making ‘swapf’ a neat 

solution; much shorter than using four right-shifts. 

 

Example 2: Hexadecimal Output 

A binary LED display, as in example 1, is not a very useful form of output.  To create a more human-

readable output, we can modify the multi-digit 7-segment LED circuit from lesson 8 by dropping one digit, 

and adding a photocell and resistor to supply a voltage that increases with light level (as we saw in lesson 9), 

as shown below: 

To implement this circuit using the Gooligum baseline training board, place shunts: 

 across every position (all six of them) of jumper block JP4, connecting segments A-D, F and G to 

pins RB0-1 and RC1-4 

 in position 1 (‘RA/RB4’) of JP5, connecting segment E to pin RB4 

 across pins 2 and 3 (‘RC5’) of JP6, connecting digit 1 to the transistor controlled by RC5 

 in jumpers JP8 and JP9, connecting pins RC5 and RB5 to their respective transistors 

 in position 1 (‘AN2’) of JP25, connecting photocell PH2 to AN2. 

All other shunts should be removed.  

If you are using Microchip’s Low Pin Count Demo Board, you will need to supply your own display 

modules, resistors, transistors and photocell, and connect them to the PIC via the 14-pin header on that 

board, as described in lessons 8 and 9. 

../8%20-%207-segment%20displays/PIC_Base_A_8.pdf
../9%20-%20Comparators/PIC_Base_A_9.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../8%20-%207-segment%20displays/PIC_Base_A_8.pdf
../9%20-%20Comparators/PIC_Base_A_9.pdf
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To display a hexadecimal value representing the light level, we can adapt the multiplexed 7-segment display 

code from lesson 8. 

 

First, to drive the displays using RC1-RC5 and RB0, RB1, RB4 and RB5, we need to disable the 

comparators, comparator outputs, and voltage reference output: 

        ; configure ports  

        clrw                    ; configure PORTB and PORTC as all outputs 

        tris    PORTB 

        tris    PORTC 

        clrf    CM1CON0         ; disable comparator 1 -> RB0, RB1 digital 

        clrf    CM2CON0         ; disable comparator 2 -> RC0, RC1 digital 

        clrf    VRCON           ; disable CVref -> RC2 usable 

 

 

To use RB0 and RB1 for digital I/O, it is also necessary to deselect AN0 and AN1 as analog inputs, 

configuring only AN2 as an analog input with ANS = 01. 

Since we are using AN2 as an analog input, we need to select it as the active ADC input with CHS = 10. 

So, to configure and select only AN2 as an analog input, we initialise the ADC using: 

        movlw   b'01111001'     ; configure ADC: 

                ; 01------          AN2 (only) analog (ANS = 01) 

                ; --11----          clock = INTOSC/4 (ADCS = 11) 

                ; ----10--          select channel AN2 (CHS = 10) 

                ; -------1          turn ADC on (ADON = 1) 

        movwf   ADCON0          ;   -> AN2 ready for sampling     

 

 

As we did in lesson 8, the timer is used to provide a ~2 ms tick to drive the display multiplexing: 

        ; configure timer 

        movlw   b'11010111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) -> RC5 usable 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)             

        option                  ;   -> increment every 256 us         

                                ;      (TMR0<2> cycles every 2.048 ms) 

 

This assumes a 4 MHz clock, not 8 MHz, so the configuration directive needs to include ‘_IOSCFS_OFF’: 

                ; ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 

 

Note also that, by clearing the T0CS bit, placing the timer in timer mode, the T0CKI input (see lesson 5) is 

disabled, making RC5 (which, on the PIC16F506, shares its pin with T0CKI) available as a digital output.  

So, even if we weren’t using Timer0 in this example, we’d still have to clear T0CS, to make it possible to 

use RC5 as an output. 

 

The lookup tables have to be extended to include 7-segment representations of the letters ‘A’ to ‘F’, but the 

lookup code remains the same as in lesson 8. 

 

Since each digit is displayed for 2 ms, and the analog to digital conversion only takes around 13 µs, the ADC 

read can be completed well within the time spent waiting to begin displaying the next digit (~1 ms), without 

affecting the display multiplexing.  

../8%20-%207-segment%20displays/PIC_Base_A_8.pdf
../8%20-%207-segment%20displays/PIC_Base_A_8.pdf
../5%20-%20Timer%200/PIC_Base_A_5.pdf
../8%20-%207-segment%20displays/PIC_Base_A_8.pdf
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The main loop, then, simply consists of reading the analog input and displaying each digit of the result, then 

repeating that quickly enough for the display to appear to be continuous: 

main_loop 

        ; sample input 

        bsf     ADCON0,GO       ; start conversion 

w_adc   btfsc   ADCON0,NOT_DONE ; wait until conversion complete 

        goto    w_adc 

 

        ; display high nybble for 2.048 ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        swapf   ADRES,w         ; get "tens" digit 

        andlw   0x0F            ;   from high nybble of ADC result 

        [code to display "tens" digit then wait for TMR<2> to go low goes here] 

 

        ; display ones for 2.048 ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        movf    ADRES,w         ; get ones digit 

        andlw   0x0F            ;   from low nybble of ADC result 

        [code to display "ones" digit then wait for TMR<2> to go low goes here] 

 

        ; repeat forever 

        goto    main_loop 

 

 

Complete program 

Here is the complete “hexadecimal light meter”, so that you can see where and how the various program 

fragments fit in: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 10, example 2                                * 

;                                                                       * 

;   Displays ADC output in hexadecimal on 7-segment LED displays        * 

;                                                                       * 

;   Continuously samples analog input,                                  * 

;   displaying result as 2 x hex digits on multiplexed 7-seg displays   * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       AN2             = voltage to be measured (e.g. pot or LDR)      * 

;       RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode)        * 

;       RC5             = "tens" digit enable (active high)             * 

;       RB5             = ones digit enable                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4 MHz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 
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; pin assignments 

    #define TENS    PORTC,5     ; "tens" digit enable 

    #define ONES    PORTB,5     ; ones digit enable 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

temp    res 1                   ; used by set7seg routine (temp digit store) 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

set7seg                         ; display digit on 7-segment display 

        pagesel set7seg_R        

        goto    set7seg_R 

 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start    

        ; configure ports  

        clrw                    ; configure PORTB and PORTC as all outputs 

        tris    PORTB 

        tris    PORTC 

        clrf    CM1CON0         ; disable comparator 1 -> RB0, RB1 digital 

        clrf    CM2CON0         ; disable comparator 2 -> RC0, RC1 digital 

        clrf    VRCON           ; disable CVref -> RC2 usable 

         

        ; configure ADC 

        movlw   b'01111001'     ; configure ADC: 

                ; 01------          AN2 (only) analog (ANS = 01) 

                ; --11----          clock = INTOSC/4 (ADCS = 11) 

                ; ----10--          select channel AN2 (CHS = 10) 

                ; -------1          turn ADC on (ADON = 1) 

        movwf   ADCON0          ;   -> AN2 ready for sampling 

         

        ; configure timer 

        movlw   b'11010111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) -> RC5 usable 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)             

        option                  ;   -> increment every 256 us         

                                ;      (TMR0<2> cycles every 2.04 8ms) 

 

;***** Main loop 

main_loop 

        ; sample input 

        bsf     ADCON0,GO       ; start conversion 

w_adc   btfsc   ADCON0,NOT_DONE ; wait until conversion complete 

        goto    w_adc 
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        ; display high nybble for 2.048 ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        swapf   ADRES,w         ; get "tens" digit 

        andlw   0x0F            ;   from high nybble of ADC result 

        pagesel set7seg 

        call    set7seg         ;   then output it 

        pagesel $    

        bsf     TENS            ; enable "tens" display 

w10_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w10_lo 

 

        ; display ones for 2.048 ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        movf    ADRES,w         ; get ones digit 

        andlw   0x0F            ;   from low nybble of ADC result 

        pagesel set7seg 

        call    set7seg         ;   then output it    

        pagesel $     

        bsf     ONES            ; enable ones display 

w1_lo   btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w1_lo 

 

        ; repeat forever 

        goto    main_loop 

 

 

;***** LOOKUP TABLES **************************************************** 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; pattern table for 7 segment display on port B 

;   RB4 = E, RB1:0 = FG 

get7sB  addwf   PCL,f 

        retlw   b'010010'       ; 0 

        retlw   b'000000'       ; 1 

        retlw   b'010001'       ; 2 

        retlw   b'000001'       ; 3 

        retlw   b'000011'       ; 4 

        retlw   b'000011'       ; 5 

        retlw   b'010011'       ; 6 

        retlw   b'000000'       ; 7 

        retlw   b'010011'       ; 8 

        retlw   b'000011'       ; 9 

        retlw   b'010011'       ; A 

        retlw   b'010011'       ; b 

        retlw   b'010010'       ; C 

        retlw   b'010001'       ; d 

        retlw   b'010011'       ; E 

        retlw   b'010011'       ; F 

 

; pattern table for 7 segment display on port C 

;   RC4:1 = CDBA 

get7sC  addwf   PCL,f 

        retlw   b'011110'       ; 0 

        retlw   b'010100'       ; 1 

        retlw   b'001110'       ; 2 

        retlw   b'011110'       ; 3 

        retlw   b'010100'       ; 4 

        retlw   b'011010'       ; 5 

        retlw   b'011010'       ; 6 
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        retlw   b'010110'       ; 7 

        retlw   b'011110'       ; 8 

        retlw   b'011110'       ; 9 

        retlw   b'010110'       ; A 

        retlw   b'011000'       ; b 

        retlw   b'001010'       ; C 

        retlw   b'011100'       ; d 

        retlw   b'001010'       ; E 

        retlw   b'000010'       ; F 

 

; Display digit passed in W on 7-segment display 

set7seg_R 

        ; disable displays 

        clrf    PORTB           ; clear all digit enable lines on PORTB 

        clrf    PORTC           ;   and PORTC 

         

        ; output digit pattern 

        movwf   temp            ; save digit 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    temp,w          ; get digit  

        call    get7sC          ;   then repeat for port C 

        movwf   PORTC 

        retlw   0 

 

 

        END 

 

 

Of course, most people are more comfortable with a decimal output, perhaps 0-99, instead of hexadecimal. 

And you’ll find, if you build this as a light meter, using an LDR (CdS photocell), that although the output is 

quite stable when lit by daylight, the least significant digit jitters badly when the LDR is lit by incandescent 

and, in particular, fluorescent lighting.  This is because these lights flicker at 50 or 60 Hz (depending on 

where you live); too quickly for your eyes to detect, but not too fast for this light meter to react to, since it is 

sampling and updating the display 244 times per second. 

So some obvious improvements to the design would be to scale and display the output as 0-99 in decimal, 

and to smooth or filter high-frequency noise, such as that caused by fluorescent lighting. 

We’ll make those improvements in lesson 11.  But first we’ll look at one last example. 

 

Example 3: Measuring Supply Voltage 

As mentioned above, the 0.6 V absolute voltage reference can be sampled by the ADC, and this provides a 

way to infer the supply voltage (actually VDD – VSS, but to keep this simple we’ll assume VSS = 0 V). 

Assuming that VDD = 5.0 V and VSS = 0 V, the 0.6 V reference should read as: 

 0.6 V ÷ 5.0 V × 255 = 30 

Now if VDD was to fall to, say, 3.5 V, the 0.6 V reference will read as: 

 0.6 V ÷ 3.5 V × 255 = 43 

As VDD falls, the 0.6 V reference will give a larger ADC result, since it remains constant as VDD decreases. 

So to check for the power supply falling too low, the value returned by sampling the 0.6 V reference can be 

compared with a threshold.  For example, a value above 43 indicates that VDD < 3.5 V, and perhaps a 

warning should be displayed, or the device shut down before power falls too low. 

../11%20-%20Int%20arithmetic%20+%20arrays/PIC_Base_A_11.pdf
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To illustrate this, we can use adapt the circuit and program from example 2, displaying the ADC reading 

corresponding to the 0.6 V reference as two hex digits, and light a “low voltage warning” LED attached to 

RC0 (as shown below) if VDD falls below some threshold. 

If you are using the Gooligum baseline training board, you should set it up as in the last example, but remove 

the shunt from JP25 (disconnecting the photocell from AN2) and close JP16 (connecting the LED on RC0). 

 

To implement this low voltage warning, the code from example 2 can be used with very little modification. 

To make the code easier to maintain, we can define the voltage threshold as a constant: 

    constant MINVDD=3500            ; Minimum Vdd (in mV) 

constant VRMAX=255*600/MINVDD   ; Threshold for 0.6 V ref measurement 

 

Note that, because MPASM only supports integer expressions, “MINVDD” has to be expressed in millivolts 

instead of volts (so that fractions of a volt can be specified). 

 

The initialisation code remains the same, except that the ADC configuration is changed to disable all the 

analog inputs and selecting the internal 0.6 V reference as the ADC input channel: 

        movlw   b'00111101'     ; configure ADC: 

                ; 00------          no analog inputs (ANS = 00) -> RB0-2 digital 

                ; --11----          clock = INTOSC/4 (ADCS = 11) 

                ; ----11--          select 0.6 V reference (CHS = 11) 

                ; -------1          turn ADC on (ADON = 1) 

        movwf   ADCON0          ;   -> 0.6 V reference ready for sampling 

 

 

After sampling the 0.6 V input, we can test for VDD being too low by comparing the conversion result 

(ADRES) with the threshold (VRMAX): 

        ; sample 0.6 V reference 

        bsf     ADCON0,GO       ; start conversion 

w_adc   btfsc   ADCON0,NOT_DONE ; wait until conversion complete 

        goto    w_adc 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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        ; test for low Vdd (measured 0.6 V > threshold) 

        movlw   VRMAX 

        subwf   ADRES,w         ; if ADRES > VRMAX 

        btfsc   STATUS,C 

        bsf     WARN            ;   turn on warning LED 

 

        ; display high nybble for 2.048 ms 

        [wait for TMR0<2> high then display "tens" digit] 

 

 

There’s a slight problem with this approach: when a digit is displayed, the LED on RC0 will be 

extinguished, since the lookup table for PORTC always returns a ‘0’ for bit 0.  To avoid that problem, the 

‘set7seg_R’ routine would need to be modified to include logical masking operations so that RC0 is not 

overwritten.  But it’s not really a significant problem; the LED will remain lit for ~1 ms, while the “display 

high nybble” routine waits for TMR0<2> to go high, out of a total multiplex cycle time of ~4 ms.  That is, 

when the LED is ‘lit’, it will actually be on for ~25% of the time, and that’s enough to make it visible. 

 

To test this application, you need to be able to vary VDD. 

If you are using a PICkit 2 or PICkit 3 to power your circuit, you can use the standalone PICkit 2 or PICkit 3 

programming application (each downloadable from www.microchip.com) to vary VDD, while the circuit is 

powered.  But first, you should exit MPLAB, so that you don’t have two applications trying to control the 

PICkit 2 at once. 

Although the PICkit 2 Programmer application is shown below, the PICkit 3 version looks almost identical, 

and the method for varying target power (VDD) is the same for both. 

In the programmer 

application, select the 

Baseline device family, 

then the PIC16F506 

device and then click 

‘On’, as illustrated. 

 

Your circuit should now 

be powered on, and, 

assuming the supply 

voltage is 5.0 V, the 

display should show ‘1E’ 

(hexadecimal for 30), or 

something close to that. 

 

You can now start to 

decrease VDD, by 

clicking on the down 

arrow next to the voltage 

display, 0.1 V at a time. 

When you get to 3.5 V, 

the display should read ‘2b’ (hex for 43) – but note that the PICkit 2 does not deliver as accurate a voltage as 

the PICkit 3, so if you are using a PICkit 2, you may see different values at “3.5 V”.   

When the voltage is low enough for the display to read ‘2b’, the warning LED should light. 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 10: Analog-to-Digital Conversion Page 13 

Conclusion 

We’ve seen that it’s relatively simple to setup and use the ADC on the PIC16F506, whether for the usual 

purpose of reading an analog quantity, or even to infer the PIC’s supply voltage. 

 

However, as mentioned earlier, the light meter project would be more useful if the output was converted to a 

range of 0-99 and displayed in decimal, and if the results were filtered to smooth out short term fluctuations. 

 

The next lesson will complete our overview of baseline PIC assembler, by demonstrating how to perform 

some simple arithmetic operations, including moving averages and working with arrays, to implement these 

suggested improvements. 

 

../11%20-%20Int%20arithmetic%20+%20arrays/PIC_Base_A_11.pdf
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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 11: Integer Arithmetic and Arrays 

 

 

In the last lesson, we saw how to read an analog input and display the “raw” result.  But in most cases the 

raw values aren’t directly usable; normally they will need to be processed in some way before being 

displayed or used in decision making.  While advanced signal processing is beyond the capabilities of 

baseline and even midrange PICs, this lesson demonstrates that basic post-processing, such as integer scaling 

and simple filtering, can be readily accomplished with even the lowest-end PICs. 

This lesson introduces some of the basic integer arithmetic operations.  For more complete coverage of this 

topic, refer to Microchip’s application notes AN526: “PIC16C5X / PIC16CXXX Math Utility Routines”, and 

AN617: “Fixed Point Routines”, available at www.microchip.com. 

We’ll also see how to use indirect addressing to implement arrays, illustrated by a simple moving average 

routine, used to filter noise from an analog signal. 

In summary, this lesson covers: 

 Multi-byte (including 16-bit and 32-bit) addition and subtraction 

 Two’s complement representation of negative numbers 

 8-bit unsigned multiplication 

 Using indirect addressing to work with arrays 

 Calculating a moving average 

Integer Arithmetic 

At first sight, the baseline PICs seem to have very limited arithmetic capabilities: just a single 8-bit addition 

instruction (addwf) and a single 8-bit subtraction instruction (subwf). 

However, addition and subtraction can be extended to arbitrarily large numbers by using the carry flag (C, in 

the STATUS register), which indicates when a result cannot be represented in a single 8-bit byte. 

The addwf instruction sets the carry flag if the result overflows a single byte, i.e. is greater than 255. 

And as explained in lesson 5, the carry flag acts as a “not borrow” in a subtraction: the subwf instruction 

clears C if a borrow occurs, i.e. the result is negative. 

The carry flag allows us to cascade addition or subtraction operations when working with long numbers. 

Multi-byte variables 

To store values larger than 8-bits, you need to allocate multiple bytes of memory to each, for example: 

        UDATA 

a       res 2                   ; 16-bit variables "a" and "b" 

b       res 2  

../10%20-%20ADC/PIC_Base_A_10.pdf
http://www.microchip.com/
../5%20-%20Timer%200/PIC_Base_A_5.pdf
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You must then decide how to order the bytes within the variable – whether to place the least significant byte 

at the lowest address in the variable (known as little-endian ordering) or the highest (big-endian). 

For example, to store the number 0x482C in variable “a”, the bytes 0x48 and 0x2C would be placed in 

memory as shown: 

Big-endian ordering has the advantage of making values easy to read 

in a hex dump, where increasing addresses are presented left to right.  

On the other hand, little-endian ordering makes a certain sense, 

because increasing addresses store increasingly significant bytes. 

Which ordering you chose is entirely up to you; both are valid.  This 

tutorial uses little-endian ordering, but the important thing is to be consistent. 

16-bit addition 

The following code adds the contents of the two 16-bit variables, “a” and “b”, so that b = b + a, assuming 

little-endian byte ordering: 

        movf    a,w        ; add LSB 

        addwf   b,f 

        btfsc   STATUS,C   ; increment MSB if carry 

        incf    b+1,f 

        movf    a+1,w      ; add MSB 

        addwf   b+1,f 

 

After adding the least significant bytes (LSB’s), the carry flag is checked, and, if the LSB addition 

overflowed, the most significant byte (MSB) of the result is incremented, before the MSB’s are added. 

Multi-byte (including 32-bit) addition 

It may appear that this approach would be easily extended to longer numbers by testing the carry after the 

final ‘addwf’, and incrementing the next MSB of the result if carry was set.  But there’s a problem.  What if 

the LSB addition overflows, while (b+1) contains $FF?  The ‘incf b+1,f’ instruction will increment (b+1) 

to $00, which should result in a “carry”, but it doesn’t, since ‘incf’ does not affect the carry flag. 

By re-ordering the instructions, it is possible to use the ‘incfsz’ instruction to neatly avoid this problem: 

        movf    a,w        ; add LSB 

        addwf   b,f 

        movf    a+1,w      ; get MSB(a) 

        btfsc   STATUS,C   ; if LSB addition overflowed, 

        incfsz  a+1,w      ;   increment copy of MSB(a) 

        addwf   b+1,f      ; add to MSB(b), unless MSB(a) is zero 

 

On completion, the carry flag will now be set correctly, allowing longer numbers to be added by repeating 

the final four instructions.  For example, for a 32-bit add: 

        movf    a,w        ; add byte 0 (LSB) 

        addwf   b,f 

        movf    a+1,w      ; add byte 1 

        btfsc   STATUS,C 

        incfsz  a+1,w 

        addwf   b+1,f  

        movf    a+2,w      ; add byte 2 

        btfsc   STATUS,C  

        incfsz  a+2,w      

        addwf   b+2,f        

        movf    a+3,w      ; add byte 3 (MSB) 

        btfsc   STATUS,C     

        incfsz  a+3,w       

        addwf   b+3,f        

 a a+1 

Little-endian 0x2C 0x48 

Big-endian 0x48 0x2C 
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Multi-byte (including 16-bit and 32-bit) subtraction 

Long integer subtraction can be done using a very similar approach. 

For example, to subtract the contents of the two 16-bit variables, “a” and “b”, so that b = b  a, assuming 

little-endian byte ordering: 

        movf    a,w        ; subtract LSB 

        subwf   b,f 

        movf    a+1,w      ; get MSB(a) 

        btfss   STATUS,C   ; if borrow from LSB subtraction, 

        incfsz  a+1,w      ;   increment copy of MSB(a) 

        subwf   b+1,f      ; subtract MSB(b), unless MSB(a) is zero 

 

This approach is readily extended to longer numbers, by repeating the final four instructions. 

For a 32-bit subtraction, we have: 

        movf    a,w        ; subtract byte 0 (LSB) 

        subwf   b,f 

        movf    a+1,w      ; subtract byte 1 

        btfss   STATUS,C 

        incfsz  a+1,w 

        subwf   b+1,f  

        movf    a+2,w      ; subtract byte 2 

        btfss   STATUS,C  

        incfsz  a+2,w      

        subwf   b+2,f        

        movf    a+3,w      ; subtract byte 3 (MSB) 

        btfss   STATUS,C     

        incfsz  a+3,w       

        subwf   b+3,f        

 

Two’s complement 

Microchip’s application note AN526 takes a different approach to subtraction. 

Instead of subtracting a number, it is negated (made negative), and then added. That is, b  a = b + (a). 

Negating a binary number is also referred to as taking its two’s complement, since the operation is equivalent 

to subtracting it from a power of two. 

The two’s complement of an n-bit number, “a”, is given by the formula 2
n
 – a. 

For example, the 8-bit two’s complement of 10 is 2
8
 – 10 = 256 – 10 = 246. 

The two’s complement of a number acts the same as a negative number would, in fixed-length binary 

addition and subtraction. 

For example, 10 + (10) = 0 is equivalent to 10 + 246 = 256, since in an 8-bit addition, the result (256) 

overflows, giving an 8-bit result of 0. 

Similarly, 10 + (9) = 1 is equivalent to 10 + 247 = 257, which overflows, giving an 8-bit result of 1. 

And 10 + (11) = 1 is equivalent to 10 + 245 = 255, which is the two’s complement of 1. 

Thus, two’s complement is normally used to represent negative numbers in binary integer arithmetic, 

because addition and subtraction continue to work the same way.  The only thing that needs to change is how 

the numbers being added or subtracted, and the results, are interpreted. 

For unsigned quantities, the range of values for an n-bit number is from 0 to 2
n
1. 

For signed quantities, the range is from 2
n-1

 to 2
n-1
1. 

For example, 8-bit signed numbers range from 128 to 127. 
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The usual method used to calculate the two’s complement of a number is to take the ones’ complement (flip 

all the bits) and then add one. 

This method is used in the 16-bit negate routine provided in AN526: 

neg_A   comf    a,f        ; negate a ( -a -> a ) 

        incf    a,f 

        btfsc   STATUS,Z 

        decf    a+1,f 

        comf    a+1,f 

 

There is a new instruction here: ‘comf f,d’ – “complement register file”, which calculates the ones’ 

complement of register ‘f’, placing the result back into the register if the destination is ‘,f’, or in W if the 

destination is ‘,w’. 

 

One reason you may wish to negate a number is to display it, if it is negative. 

To test whether a two’s complement signed number is negative, check its most significant bit, which acts as 

a sign bit: ‘1’ indicates a negative number, ‘0’ indicates non-negative (positive or zero). 

Unsigned multiplication 

It may seem that baseline PICs have no multiplication or division instructions, but that’s not quite true: the 

“rotate left” instruction (rlf) can be used to shift the contents of a register one bit to the left, which has the 

effect of multiplying it by two: 

Since the rlf instruction rotates bit 7 into the carry bit, 

and carry into bit 0, these instructions can be cascaded, 

allowing arbitrarily long numbers to be shifted left, and 

hence multiplied by two. 

For example, to multiply the contents of 16-bit variable “a” by two, assuming little-endian byte ordering: 

        ; left-shift 'a' (multiply by 2) 

        bcf     STATUS,C        ; clear carry 

        rlf     a,f             ; left shift LSB 

        rlf     a+1,f           ; then MSB (LSB<7> -> MSB<0> via carry) 

 

[Although we won’t consider division here (see AN526 for details), a similar sequence of “rotate right” 

instructions (rrf) can be used to shift an arbitrarily long number to the right, dividing it by two.] 

You can see, then, that it is quite straightforward to multiply an arbitrarily long number by two.  Indeed, by 

repeating the shift operation, multiplying or dividing by any power of two is easy to implement. 

But that doesn’t help us if we want to multiply by anything other than a power of two – or does it?  

Remember that every integer is composed of powers of two; that is how binary notation works 

For example, the binary representation of 100 is 01100100 – the ‘1’s in the binary number corresponding to 

powers of two: 

100 = 64 + 32 + 4 = 2
6
 + 2

5
 + 2

2
. 

Thus, 100 × N = (2
6
 + 2

5
 + 2

2
) × N = 2

6
 × N + 2

5
 × N + 2

2
 × N 

In this way, multiplication by any integer can be broken down into a series of multiplications by powers of 

two (repeated left shifts) and additions. 

The general multiplication algorithm, then, consists of a series of shifts and additions, an addition being 

performed for each ‘1’ bit in the multiplier, indicating a power of two that has to be added. 

See AN526 for a flowchart illustrating the process. 

register bits 

C 7 6 5 4 3 2 1 0 
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Here is the 8-bit unsigned multiplication routine from AN526: 

; Variables: 

;   mulcnd - 8 bit multiplicand 

;   mulplr - 8 bit multiplier 

;   H_byte - High byte of the 16 bit result 

;   L_byte - Low byte of the 16 bit result 

;   count  - loop counter 

; 

; ***************************** Begin Multiplier Routine 

mpy_S   clrf    H_byte          ; start with result = 0 

        clrf    L_byte 

        movlw   8               ;   count = 8 

        movwf   count 

        movf    mulcnd,w        ;   multiplicand in W 

        bcf     STATUS,C        ;   and carry clear 

loop    rrf     mulplr,f        ; right shift multiplier 

        btfsc   STATUS,C        ; if low-order bit of multiplier was set 

        addwf   H_byte,f        ;   add multiplicand to MSB of result 

        rrf     H_byte,f        ; right shift result 

        rrf     L_byte,f 

        decfsz  count,f         ; repeat for all 8 bits 

        goto    loop 

 

It may seem strange that rrf is being used here, instead of rlf.  This is because the multiplicand is being 

added to the MSB of the result, before being right shifted.  The multiplier is processed starting from bit 0.  

Suppose that bit 0 of the multiplier is a ‘1’.  The multiplicand will be added to the MSB of the result in the 

first loop iteration.  After all eight iterations, it will have been shifted down (right) into the LSB.  Subsequent 

multiplicand additions, corresponding to higher multiplier bits, won’t be shifted down as far, so their 

contribution to the final result is higher.  You may need to work an example on paper to see how it works… 

 

Example 1: Light meter with decimal output 

Lesson 10 included a simple light meter based on a light-dependent resistor, which displayed the 8-bit ADC 

output as a two-digit hexadecimal number, using 7-segement LED displays, as shown below: 

../10%20-%20ADC/PIC_Base_A_10.pdf
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That’s adequate for demonstrating the operation of the ADC module, but it’s not a very good light meter.  

Most people would find it easier to read the display if it was in decimal, not hex, with a scale from 00 – 99 

instead of 00h – FFh. 

 

To scale the ADC output from 0 – 255 to 0 – 99, it has to be multiplied by 99/255. 

Multiplying by 99 isn’t difficult, but dividing by 255 is. 

The task is made much easier by using an approximation: instead of multiplying by 99/255, multiply by 

100/256.  That’s a difference of 0.6%; not really significant, given that the ADC is only accurate to 2 lsb 

(2/256, or 0.8%) in any case. 

 

Dividing by 256 is trivial – to divide a 16-bit number by 256, the result is already there – it’s simply the most 

significant byte, with the LSB being the remainder.  That gives a result which is always rounded down; if 

you want to round “correctly”, increment the result if the LSB is greater than 127 (LSB<7> = 1) .  For 

example: 

; Variables: 

;   a = 16-bit value (little endian) 

;   b = a / 256 (rounded)  

        movf    a+1,w           ; result = MSB 

        btfsc   a,7             ; if LSB<7> = 1 

        incf    a+1,w           ;   result = MSB+1 

        movwf   b               ; write result 

 

Note that, if MSB = 255 and LSB > 127, the result will “round” to zero; probably not what you want. 

And in this example, since we’re scaling the output to 0 – 99, we wouldn’t want to round the result up to 

100, since it couldn’t be displayed in two digits.  We could check for that case and handle it, but it’s easiest 

to simply ignore rounding, and that’s valid, because the numbers displays on the light meter don’t 

correspond to any “real” units which would need to be accurately measured.  In other words, the display is in 

arbitrary units; regardless of the rounding, it will display higher numbers in brighter light, and that’s all 

we’re trying to do. 

 

To multiply the raw ADC result by 100, we can adapt the routine from AN526: 

        ; scale to 0-99: adc_dec = adc_out * 100 

        ;   -> MSB of adc_dec = adc_out * 100 / 256 

        clrf    adc_dec         ; start with adc_dec = 0 

        clrf    adc_dec+1 

        movlw   .8              ;   count = 8 

        movwf   mpy_cnt 

        movlw   .100            ;   multiplicand (100) in W 

        bcf     STATUS,C        ;   and carry clear 

l_mpy   rrf     adc_out,f       ; right shift multiplier 

        btfsc   STATUS,C        ; if low-order bit of multiplier was set 

        addwf   adc_dec+1,f     ;   add multiplicand (100) to MSB of result 

        rrf     adc_dec+1,f     ; right shift result 

        rrf     adc_dec,f 

        decfsz  mpy_cnt,f       ; repeat for all 8 bits 

        goto    l_mpy 

 

The 16-bit variable ‘adc_dec’ now holds the raw ADC result multiplied by 100. 

This means that most significant byte of ‘adc_dec’ (the value stored in the memory location ‘adc_dec+1’) 

is equal to the raw ADC result × 100/256. 
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After scaling the ADC result, we need to extract the “tens” and “ones” digits from it. 

That can be done by repeated subtraction; the “tens” digit is determined by continually subtracting 10 from 

the original value, counting the subtractions until the remainder is less than 10.  The “ones” digit is then 

simply the remainder: 

        ; extract digits of result 

        movf    adc_dec+1,w     ; start with scaled result 

        movwf   ones            ;   in ones digit 

        clrf    tens            ; and tens clear 

l_bcd   movlw   .10             ; subtract 10 from ones 

        subwf   ones,w 

        btfss   STATUS,C        ; (finish if < 10) 

        goto    end_bcd 

        movwf   ones  

        incf    tens,f          ; increment tens 

        goto    l_bcd           ; repeat until ones < 10 

end_bcd 

 

The ‘ones’ and ‘tens’ variables now hold the two digits to be displayed. 

 

Complete program 

The rest of the program is essentially the same as the hexadecimal-output example from lesson 10.  Here is 

how the scaling and digit extraction routines fit in: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 11, example 1                                * 

;                                                                       * 

;   Displays ADC output in decimal on 2-digit 7-segment LED display     * 

;                                                                       * 

;   Continuously samples analog input, scales result to 0 - 99          * 

;   and displays as 2 x dec digits on multiplexed 7-seg displays        * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       AN2             = voltage to be measured (e.g. pot or LDR)      * 

;       RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode)        * 

;       RC5             = tens digit enable (active high)               * 

;       RB5             = ones digit enable                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4 MHz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 

 

; pin assignments 

    #define TENS_EN     PORTC,5     ; tens digit enable 

    #define ONES_EN     PORTB,5     ; ones digit enable 

 

 

../10%20-%20ADC/PIC_Base_A_10.pdf
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;***** VARIABLE DEFINITIONS 

        UDATA 

adc_out res 1                   ; raw ADC output 

adc_dec res 2                   ; scaled ADC output (LE 16 bit, 0-99 in MSB) 

mpy_cnt res 1                   ; multiplier count 

                                ; digits to be displayed: 

tens    res 1                   ;   tens 

ones    res 1                   ;   ones 

 

temp    res 1                   ; (temp storage used by set7seg) 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 

 

;***** SUBROUTINE VECTORS 

set7seg                         ; display digit on 7-segment display 

        pagesel set7seg_R        

        goto    set7seg_R 

 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start    

        ; configure ports  

        clrw                    ; configure PORTB and PORTC as all outputs 

        tris    PORTB 

        tris    PORTC 

        clrf    CM1CON0         ; disable comparator 1 -> RB0, RB1 digital 

        clrf    CM2CON0         ; disable comparator 2 -> RC0, RC1 digital 

        clrf    VRCON           ; disable CVref -> RC2 usable 

         

        ; configure ADC 

        movlw   b'01111001'     ; configure ADC: 

                ; 01------          AN2 (only) analog (ANS = 01) 

                ; --11----          clock = INTOSC/4 (ADCS = 11) 

                ; ----10--          select channel AN2 (CHS = 10) 

                ; -------1          turn ADC on (ADON = 1) 

        movwf   ADCON0          ;   -> AN2 ready for sampling 

           

        ; configure timer 

        movlw   b'11010111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) -> RC5 usable 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)             

        option                  ;   -> increment every 256 us         

                                ;      (TMR0<2> cycles every 2.048ms) 

 

;***** Main loop 

main_loop 

        ; sample input 

        bsf     ADCON0,GO       ; start conversion 
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w_adc   btfsc   ADCON0,NOT_DONE ; wait until conversion complete 

        goto    w_adc 

        movf    ADRES,w         ; save ADC result in adc_out 

        banksel adc_out 

        movwf   adc_out 

 

        ; scale to 0-99: adc_dec = adc_out * 100 

        ;   -> MSB of adc_dec = adc_out * 100 / 256 

        clrf    adc_dec         ; start with adc_dec = 0 

        clrf    adc_dec+1 

        movlw   .8              ;   count = 8 

        movwf   mpy_cnt 

        movlw   .100            ;   multiplicand (100) in W 

        bcf     STATUS,C        ;   and carry clear 

l_mpy   rrf     adc_out,f       ; right shift multiplier 

        btfsc   STATUS,C        ; if low-order bit of multiplier was set 

        addwf   adc_dec+1,f     ;   add multiplicand (100) to MSB of result 

        rrf     adc_dec+1,f     ; right shift result 

        rrf     adc_dec,f 

        decfsz  mpy_cnt,f       ; repeat for all 8 bits 

        goto    l_mpy 

 

        ; extract digits of result 

        movf    adc_dec+1,w     ; start with scaled result 

        movwf   ones            ;   in ones digit 

        clrf    tens            ; and tens clear 

l_bcd   movlw   .10             ; subtract 10 from ones 

        subwf   ones,w 

        btfss   STATUS,C        ; (finish if < 10) 

        goto    end_bcd 

        movwf   ones  

        incf    tens,f          ; increment tens 

        goto    l_bcd           ; repeat until ones < 10 

end_bcd 

 

        ; display tens digit for 2.048 ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        movf    tens,w          ; output tens digit 

        pagesel set7seg 

        call    set7seg  

        pagesel $    

        bsf     TENS_EN         ; enable tens display 

w10_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w10_lo 

 

        ; display ones digit for 2.048 ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        banksel ones            ; output ones digit 

        movf    ones,w 

        pagesel set7seg 

        call    set7seg   

        pagesel $     

        bsf     ONES_EN         ; enable ones display 

w1_lo   btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w1_lo 

 

        ; repeat forever 

        goto    main_loop 
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;***** LOOKUP TABLES **************************************************** 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; pattern table for 7 segment display on port B 

;   RB4 = E, RB1:0 = FG 

get7sB  addwf   PCL,f 

        retlw   b'010010'       ; 0 

        retlw   b'000000'       ; 1 

        retlw   b'010001'       ; 2 

        retlw   b'000001'       ; 3 

        retlw   b'000011'       ; 4 

        retlw   b'000011'       ; 5 

        retlw   b'010011'       ; 6 

        retlw   b'000000'       ; 7 

        retlw   b'010011'       ; 8 

        retlw   b'000011'       ; 9 

 

; pattern table for 7 segment display on port C 

;   RC4:1 = CDBA 

get7sC  addwf   PCL,f 

        retlw   b'011110'       ; 0 

        retlw   b'010100'       ; 1 

        retlw   b'001110'       ; 2 

        retlw   b'011110'       ; 3 

        retlw   b'010100'       ; 4 

        retlw   b'011010'       ; 5 

        retlw   b'011010'       ; 6 

        retlw   b'010110'       ; 7 

        retlw   b'011110'       ; 8 

        retlw   b'011110'       ; 9 

 

; Display digit passed in W on 7-segment display 

set7seg_R 

        ; disable displays 

        clrf    PORTB           ; clear all digit enable lines on PORTB 

        clrf    PORTC           ;   and PORTC 

         

        ; output digit pattern 

        banksel temp 

        movwf   temp            ; save digit 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    temp,w          ; get digit  

        call    get7sC          ;   then repeat for port C 

        movwf   PORTC 

        retlw   0 

 

 

        END 

 

Moving Averages, Indirect Addressing and Arrays 

Moving averages 

A problem with the light meter, as developed so far, is that the display can become unreadable in fluorescent 

light, because fluorescent lights flicker (too fast for the human eye to notice), and since the meter reacts very 

quickly (244 samples per second), the display changes too fast to follow. 
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One solution would be to reduce the sampling rate, to say one sample per second, so that the changes become 

slow enough for a human to see.  But that’s not a good solution; the display would still jitter significantly, 

since some samples would be taken when the illumination was high and others when it was low. 

Instead of using a single raw sample, it is often better to smooth the results by implementing a filter based on 

a number of samples over time (a time series).  Many filter algorithms exist, with various characteristics. 

One that is particularly easy to implement is the simple moving average, also known as a box filter.  This is 

simply the mean value of the last N samples.  It is important to average enough samples to produce a smooth 

result, and to maintain a fast response time, a new average should be calculated every time a new sample is 

read.  For example, you could keep the last ten samples, and then to calculate the simple moving average by 

adding all the sample values and then dividing by ten.  Whenever a new sample is read, it is added to the list, 

the oldest sample is discarded, and the calculation is repeated.  In fact, it is not necessary to repeat all the 

additions; it is only necessary to subtract the oldest value (the sample being discarded) and to add the new 

sample value. 

Sometimes it makes more sense to give additional weight to more recent samples, so that the moving average 

more closely tracks the most recent input.  A number of forms of weighting can be used, including arithmetic 

and exponential, which require more calculation.  But a simple moving average is sufficient for our purpose 

here. 

Indirect addressing and arrays 

Instead of talking about a “list” of samples, we’d normally call it an array. 

An array is a contiguous set of variables which can be accessed through a numeric index. 

For example, to calculate an average in C, you might write something like: 

int s[10];      /* array of samples */ 

int avg;        /* sample average */ 

int i; 

 

avg = 0;                    

for (i = 0; i < 10; i++)    /* add all the samples */ 

    avg = avg + s[i]; 

avg = avg / 10;             /* divide by 10 to calculate average */ 

 

But how could we do that in PIC assembler? 

You could define a series of variables: s0, s1, s2, … , s9, but there is then no way to add them in a loop, since 

each variable would have to be referred to by its own block of code.  That would make for a long, and 

difficult to maintain program. 

There is of course a way: the baseline PICs support indirect addressing (making array indexing possible), 

through the FSR and INDF registers. 

 

The INDF (indirect file) “register” acts as a window, through which the contents of any other register can be 

accessed. 

The FSR (file select register) holds the address of the register which will be accessed through INDF. 

 

For example, if FSR = 08h, INDF accesses the register at address 08h, which is CM1CON0 on the 

PIC16F506. 

So, on the PIC16F506, if FSR = 08h, reading or writing INDF is the same as reading or writing CM1CON0. 
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Recall that the bank selection bits form the upper bits of the FSR register. 

When you write a value into FSR, INDF will access the register at the address given by that value, 

irrespective of banking.  That is, indirect addressing allows linear, un-banked access to the register file. 

For example, if FSR = 54h, INDF will access the register at address 54h; this happens to be in bank 2, but 

that’s not a consideration when using indirect addressing. 

The PIC12F510/16F506 data sheet includes the following code to clear registers 10h – 1Fh: 

        movlw   0x10      ; initialize pointer to RAM 

        movwf   FSR   

next    clrf    INDF      ; indirectly clear register (pointed to by FSR) 

        incf    FSR,f     ; inc pointer 

        btfsc   FSR,4     ; all done? 

        goto    next      ; NO, clear next 

continue 

                          ; YES, continue 

 

The ‘clrf INDF’ instruction clears the register pointed to by FSR, which is incremented from 10h to 1Fh. 

Note that at the test at the end of the loop, ‘btfsc FSR,4’, finishes the loop when the end of bank 0 (1Fh) 

has been reached.  In fact, this test can be used for the end of any bank, not just bank 0. 

Example 2: Light meter with smoothed decimal output 

To effectively smooth the light meter’s output, so that it doesn’t jitter under fluorescent lighting, a simple 

moving average is quite adequate – assuming that the sample window (the time that samples are averaged 

over) is longer than the variations to be smoothed. 

The electricity supply, and hence the output of most A/C lighting, cycles at 50 or 60 Hz in most places.  A 50 

Hz cycle is 20 ms long, so the sample window needs to be longer than that.  Our example light meter 

program samples every 4 ms, so at least five samples need to be averaged (5 x 4 ms = 20 ms) to smooth a 50 

Hz cycle.  But a longer window would be better; two or three times the cycle time would ensure that cyclic 

variations are smoothed out. 

We have seen that the data memory on any baseline PIC with multiple data memory banks is not contiguous.  

The 16F506 has four banked 16-byte general purpose register (GPR) regions (forming the “top half” of each 

of the four banks), plus one 3-byte non-banked (or shared) GPR region.  Thus, the largest contiguous block 

of memory that can be allocated on the 16F506 is 16 bytes.  It is easiest to implement arrays if they are 

contiguous, so the largest single array we can easily define is 16 bytes – which happens to be a good size for 

the sample array (or buffer) for this application. 

 

Since each data section has to fit within a single data memory region, and the largest available data memory 

region on a PIC16F506 is 16 bytes, if you try something like: 

        UDATA 

adc_dec res 2                   ; scaled ADC output (LE 16 bit, 0-99 in MSB) 

mpy_cnt res 1                   ; multiplier count 

smp_buf res 16                  ; array of samples for moving average 

 

you will get a “'.udata' can not fit the section” error from the linker, because we have tried to 

reserve a total of 19 bytes in a single UDATA section.  Unnamed UDATA sections are given the default name 

‘.udata’, so the error message is telling us that this section, which is named ‘.udata’, is too big. 

Note: When FSR is updated for indirect register access, the bank selection bits will be overwritten. 
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So we need to split the variable definitions into two (or more) UDATA sections, with no more than 16 bytes in 

each section.  To declare more than one UDATA section, they have to have different names, for example: 

VARS1   UDATA 

adc_dec res 2                   ; scaled ADC output (LE 16 bit, 0-99 in MSB) 

mpy_cnt res 1                   ; multiplier count 

 

ARRAY1  UDATA 

smp_buf res 16                  ; array of samples for moving average 

 

Although we don’t know which bank the array will be placed in, we do know that it will fill the whole of one 

of the 16-byte banked GPR memory regions, forming the top half of whichever bank it is in. 

That means that to clear the array, we can adapt the code from the data sheet: 

        ; clear sample buffer 

        movlw   smp_buf 

        movwf   FSR 

l_clr   clrf    INDF            ; clear each byte 

        incf    FSR,f 

        btfsc   FSR,4           ; until end of bank is reached 

        goto    l_clr 

 

This approach wouldn’t work if the array was any smaller than 16 bytes, in which case we would need to use 

a subtraction or XOR to test for FSR reaching the end of the array. 

 

Since the 16-byte array uses all the banked data space in one bank, there is no additional room in that bank to 

store any other variables we may need to access while working with the array, such as the running total of 

sample values in the array.  In the baseline architecture, accessing variables in other banks is very awkward 

when using indirect memory access, because selecting another bank means changing FSR, which is being 

used to access the array. 

To reduce the number of bank selection changes necessary, and the need to save/restore FSR after each one, 

it makes sense to place variables associated with the array in shared memory, wherever possible. 

For example: 

SHR1    UDATA_SHR 

adc_sum res 2                   ; sum of samples (LE 16-bit), for average 

adc_avg res 1                   ; average ADC output 

 

It was ok to work directly with FSR in the “clear sample buffer” loop above, since it is short and no bank 

selection occurs within it.  But it’s not practical to remove the need for banking altogether throughout the 

sampling loop, where we read a sample, update the moving average calculation, scale the result, convert it to 

decimal and then display it, before moving on to the next sample.  So we need to save the pointer to the 

“current” sample in a variable (‘smp_idx’) which will not be overwritten when a bank is selected. 

 

Updating and calculating the total of the samples (stored in a 16-bit variable called ‘adc_sum’) is done as 

follows: 

        banksel smp_idx 

        movf    smp_idx,w       ; set FSR to current sample buffer index 

        movwf   FSR 

        movf    INDF,w          ; subtract old sample from running total 

        subwf   adc_sum,f 

        btfss   STATUS,C 

        decf    adc_sum+1,f 

        movf    ADRES,w         ; save new sample (ADC result) 

        movwf   INDF 
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        addwf   adc_sum,f       ; and add to running total 

        btfsc   STATUS,C 

        incf    adc_sum+1,f 

 

This total then has to be divided by 16 (the number of samples) to give the moving average. 

 

As we’ve seen, dividing by any power of two can be simply done through a series of right-shifts.  In this 

case, since we need to keep ‘adc_sum’ intact from one loop iteration to the next (to maintain the running 

total), we would need to take a copy of it and right-shift the copy four times (to divide by 16).  Since 

‘adc_sum’ is a 16-bit quantity, both the MSB and LSB would have to be right-shifted, so we’d need eight 

right-shifts in total, plus a few instructions to copy ‘adc_sum’ – around a dozen instructions in total. 

But since we need to right-shift by four bits, and the swapf instruction swaps the nybbles (four bits) in a 

byte, shifting the upper nybble right by four bits, we can use it to divide by 16 more efficiently. 

Suppose the running total in ‘adc_sum’ is 0ABCh.  (The upper nybble will always be zero because the result 

of adding 16 eight-bit numbers is a twelve-bit number; the sum can never be more than 0FF0h). 

The result we want (0ABCh divided by 16, or right-shifted four times) is ABh. 

Swapping the nybbles in the LSB gives CBh.  Next we need to clear the high nybble to remove the ‘C’, 

which as we saw in lesson 8, can be done through a masking operation, using AND, leaving 0Bh. 

Swapping the nybbles in the MSB gives A0h. 

Finally we need to combine the upper nybble in the MSB (A0h) with the lower nybble in the LSB (0Bh). 

This can be done with an inclusive-or, since any bit ORed with ‘0’ remains unchanged, while any bit ORed 

with ‘1’ is set to ‘1’.  That is: 

 n OR 0 = n 

 n OR 1 = 1 

So, for example, A0h OR 0Bh = ABh.  (In binary, 1010 0000 OR 0000 1011 = 1010 1011.) 

 

The baseline PICs provide two “inclusive-or” instructions: 

 iorwf – “inclusive-or W with register file” 

 iorlw – “inclusive-or literal with W” 

These are used in the same way as the exclusive-or instructions we’ve seen before. 

For completeness, the baseline PICs provide one more logic instruction we haven’t covered so far: 

 andwf – “and W with register file” 

 

We can use ‘swapf’ to rearrange the nybbles, ‘andlw’ to mask off the unwanted nybble, and ‘iorwf’ to 

combine the bytes, creating an efficient “divide by 16” routine, as follows: 

        swapf   adc_sum,w       ; divide total by 16 

        andlw   0x0F 

        movwf   adc_avg 

        swapf   adc_sum+1,w 

        iorwf   adc_avg,f 

 

The result is the moving average, which can be scaled, converted to decimal and displayed as before. 
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Complete program 

Although much of this code is the same as in the previous example, here is the complete “light meter with 

smoothed decimal display” program, showing how all the parts fit together: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 11, example 2                                * 

;                                                                       * 

;   Demonstrates use of indirect addressing                             * 

;   to implement a simple moving average filter                         * 

;                                                                       * 

;   Displays ADC output in decimal on 2-digit 7-segment LED display     * 

;                                                                       * 

;   Continuously samples analog input, averages last 16 samples,        * 

;   scales result to 0 - 99 and displays as 2 x dec digits              * 

;   on multiplexed 7-seg displays                                       * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       AN2             = voltage to be measured (e.g. pot or LDR)      * 

;       RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode)        * 

;       RC5             = tens digit enable (active high)               * 

;       RB5             = ones digit enable                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4 MHz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 

 

; pin assignments 

    #define TENS_EN     PORTC,5     ; tens digit enable 

    #define ONES_EN     PORTB,5     ; ones digit enable 

 

 

;***** VARIABLE DEFINITIONS 

VARS1   UDATA 

adc_dec res 2                   ; scaled ADC output (LE 16 bit, 0-99 in MSB) 

mpy_cnt res 1                   ; multiplier count 

smp_idx res 1                   ; index into sample array 

                                ; digits to be displayed: 

tens    res 1                   ;   tens 

ones    res 1                   ;   ones 

 

temp   res 1                    ; (temp storage used by set7seg) 

 

ARRAY1  UDATA 

smp_buf res 16                  ; array of samples for moving average 

 

SHR1    UDATA_SHR 

adc_sum res 2                   ; sum of samples (LE 16-bit), for average 

adc_avg res 1                   ; average ADC output 
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;***** RC CALIBRATION 

RCCAL   CODE    0x3FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 

 

;***** SUBROUTINE VECTORS 

set7seg                         ; display digit on 7-segment display 

        pagesel set7seg_R        

        goto    set7seg_R 

 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start    

        ; configure ports  

        clrw                    ; configure PORTB and PORTC as all outputs 

        tris    PORTB 

        tris    PORTC 

        clrf    CM1CON0         ; disable comparator 1 -> RB0, RB1 digital 

        clrf    CM2CON0         ; disable comparator 2 -> RC0, RC1 digital 

        clrf    VRCON           ; disable CVref -> RC2 usable 

         

        ; configure ADC 

        movlw   b'01111001'     ; configure ADC: 

                ; 01------          AN2 (only) analog (ANS = 01) 

                ; --11----          clock = INTOSC/4 (ADCS = 11) 

                ; ----10--          select channel AN2 (CHS = 10) 

                ; -------1          turn ADC on (ADON = 1) 

        movwf   ADCON0          ;   -> AN2 ready for sampling 

           

        ; configure timer 

        movlw   b'11010111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) -> RC5 usable 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)             

        option                  ;   -> increment every 256 us         

                                ;      (TMR0<2> cycles every 2.048ms) 

 

        ; initialise variables 

        clrf    adc_sum         ; sample buffer total = 0 

        clrf    adc_sum+1 

 

        ; clear sample buffer 

        movlw   smp_buf 

        movwf   FSR 

l_clr   clrf    INDF            ; clear each byte 

        incf    FSR,f 

        btfsc   FSR,4           ; until end of bank is reached 

        goto    l_clr 

 

 

;***** Main loop 

main_loop 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 17 

        ; set index to start of sample buffer 

        movlw   smp_buf          

        banksel smp_idx  

        movwf   smp_idx 

 

; *** repeat for each sample in buffer 

l_smp_buf    

 

        ; sample input 

        bsf     ADCON0,GO       ; start conversion 

w_adc   btfsc   ADCON0,NOT_DONE ; wait until conversion complete 

        goto    w_adc 

 

        ; calculate moving average 

        banksel smp_idx 

        movf    smp_idx,w       ; set FSR to current sample buffer index 

        movwf   FSR 

        movf    INDF,w          ; subtract old sample from running total 

        subwf   adc_sum,f 

        btfss   STATUS,C 

        decf    adc_sum+1,f 

        movf    ADRES,w         ; save new sample (ADC result) 

        movwf   INDF 

        addwf   adc_sum,f       ; and add to running total 

        btfsc   STATUS,C 

        incf    adc_sum+1,f 

        swapf   adc_sum,w       ; divide total by 16 

        andlw   0x0F 

        movwf   adc_avg 

        swapf   adc_sum+1,w 

        iorwf   adc_avg,f 

 

        ; scale to 0-99: adc_dec = adc_avg * 100 

        ;   -> MSB of adc_dec = adc_avg * 100 / 256 

        banksel adc_dec 

        clrf    adc_dec         ; start with adc_dec = 0 

        clrf    adc_dec+1 

        movlw   .8              ;   count = 8 

        movwf   mpy_cnt 

        movlw   .100            ;   multiplicand (100) in W 

        bcf     STATUS,C        ;   and carry clear 

l_mpy   rrf     adc_avg,f       ; right shift multiplier 

        btfsc   STATUS,C        ; if low-order bit of multiplier was set 

        addwf   adc_dec+1,f     ;   add multiplicand (100) to MSB of result 

        rrf     adc_dec+1,f     ; right shift result 

        rrf     adc_dec,f 

        decfsz  mpy_cnt,f       ; repeat for all 8 bits 

        goto    l_mpy 

 

        ; extract digits of result 

        movf    adc_dec+1,w     ; start with scaled result 

        movwf   ones            ;   in ones digit 

        clrf    tens            ; and tens clear 

l_bcd   movlw   .10             ; subtract 10 from ones 

        subwf   ones,w 

        btfss   STATUS,C        ; (finish if < 10) 

        goto    end_bcd 

        movwf   ones  

        incf    tens,f          ; increment tens 

        goto    l_bcd           ; repeat until ones < 10 

end_bcd 
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        ; display tens digit for 2.048 ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        movf    tens,w          ; output tens digit 

        pagesel set7seg 

        call    set7seg  

        pagesel $    

        bsf     TENS_EN         ; enable tens display 

w10_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w10_lo 

 

        ; display ones digit for 2.048 ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        banksel ones            ; output ones digit 

        movf    ones,w 

        pagesel set7seg 

        call    set7seg   

        pagesel $     

        bsf     ONES_EN         ; enable ones display 

w1_lo   btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w1_lo 

 

        ; end sample buffer loop 

        banksel smp_idx         ; increment sample buffer index 

        incf    smp_idx,f 

        btfsc   smp_idx,4       ; repeat loop until end of buffer 

        goto    l_smp_buf 

 

        ; repeat main loop forever 

        goto    main_loop 

 

 

;***** LOOKUP TABLES 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; pattern table for 7 segment display on port B 

;   RB4 = E, RB1:0 = FG 

get7sB  addwf   PCL,f 

        retlw   b'010010'       ; 0 

        retlw   b'000000'       ; 1 

        retlw   b'010001'       ; 2 

        retlw   b'000001'       ; 3 

        retlw   b'000011'       ; 4 

        retlw   b'000011'       ; 5 

        retlw   b'010011'       ; 6 

        retlw   b'000000'       ; 7 

        retlw   b'010011'       ; 8 

        retlw   b'000011'       ; 9 

 

; pattern table for 7 segment display on port C 

;   RC4:1 = CDBA 

get7sC  addwf   PCL,f 

        retlw   b'011110'       ; 0 

        retlw   b'010100'       ; 1 

        retlw   b'001110'       ; 2 

        retlw   b'011110'       ; 3 

        retlw   b'010100'       ; 4 

        retlw   b'011010'       ; 5 

        retlw   b'011010'       ; 6 

        retlw   b'010110'       ; 7 
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        retlw   b'011110'       ; 8 

        retlw   b'011110'       ; 9 

 

; Display digit passed in W on 7-segment display 

set7seg_R 

        ; disable displays 

        clrf    PORTB           ; clear all digit enable lines on PORTB 

        clrf    PORTC           ;   and PORTC 

         

        ; output digit pattern 

        banksel temp 

        movwf   temp            ; save digit 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    temp,w          ; get digit  

        call    get7sC          ;   then repeat for port C 

        movwf   PORTC 

        retlw   0 

 

 

        END 

 

 

You should find that the resulting display is stable, even under fluorescent lighting, and yet still responds 

quickly to changing light levels. 

 

Conclusion 

This tutorial series has now introduced every baseline PIC instruction and every special function register 

(except those associated with EEPROM access on those few baseline PICs with EEPROMs). 

That concludes our introduction to the baseline PIC architecture and assembly programming. 

 

The material in these lessons is revisited in a tutorial series on programming baseline PICs in C. 

In that series it becomes apparent that some tasks are more easily expressed in C than assembler, especially 

the most recent topic of arithmetic and arrays, but that C can be relatively inefficient.  It is also seen that 

different C compilers take different approaches – with pros and cons that become apparent as the various 

examples are implemented in each. 

 

Now that you have a basic understanding of programming baseline PICs in assembler (and C, if you go 

through the baseline C tutorial series), you may wish to move on to the midrange PIC architecture and 

assembler tutorials, where you will be introduced to the more flexible and capable midrange PIC core, and 

some of its diverse range of peripherals.  These lessons are also followed up by a series on programming 

midrange PICs in C. 

 

Enjoy! 

 

 

../../Baseline%20C
../../Baseline%20C
../../Midrange
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Introduction to PIC Programming 

Programming Baseline PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 1: Basic Digital Output 

 

 

Although assembly language is commonly used to programming small microcontrollers, it is less appropriate 

for complex applications on larger MCUs; it can become unwieldy and difficult to maintain as programs 

grow longer.  A number of higher-level languages are used in embedded systems development, including 

BASIC, Forth and even Pascal.  But the most commonly used “high level” language is C. 

C is often considered to be inappropriate for very small MCUs, such as the baseline PICs we have examined 

in the baseline assembler tutorial series, because they have limited resources and their architecture is not well 

suited to C code.  However, as this tutorial series will demonstrate, it is quite possible to use C for simple 

programs on baseline PICs – although it is true that C may not be able to make the most efficient use of the 

limited memory on these small devices, as we will see in later lessons. 

This lesson introduces the “free” Custom Computer Services (CCS) compiler bundled with MPLAB
1
, and 

Microchip’s XC8 compiler (running in “Free mode”), both of which fully support all current baseline PICs
2
.  

As we’ll see, the XC8 and CCS compilers take quite different approaches to many implementation tasks.  

Most other PIC C compilers take a similar approach to one or the other, or fall somewhere in between, 

making these compilers a good choice for an introduction to programming PICs in C. 

This lesson covers basic digital output, through that standby of introductory microcontroller courses: flashing 

LEDs – although the concepts can be applied to anything which can be controlled by a high/low, on/off 

signal, including power MOSFET switches and relays. 

It is assumed that you are already familiar with the material covered in those baseline assembler lessons 1 to 

3.  If not, you should review those lessons while working through this one.  Specifically, this lesson does not 

provide a detailed overview of the baseline PIC architecture, installing and using MPLAB or programmers 

such as the PICkit 2.  Instead, this lesson explains how to create C projects in MPLAB, and how to 

implement the examples from the assembler lessons, in C. 

In summary, this lesson covers: 

 Introduction to the Microchip XC8 and CCS PCB compilers 

 Using MPLAB 8 and MPLAB X to create C projects 

 Simple control of digital output pins 

 Programmed delays 

with examples for both compilers. 

This tutorial assumes a working knowledge of the C language; it does not attempt to teach C. 

                                                      

1
 CCS PCB is bundled with MPLAB 8 only.  

2
 at the time of writing (September 2012) 

../../Baseline
../7%20-%20ADC%20+%20arrays/PIC_Base_C_7.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
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Introducing XC8 and CCS PCB 

Up until version 8.10, MPLAB was bundled with HI-TECH’s “PICC-Lite” compiler, which supported all the 

baseline (12-bit) PICs available at that time, including those used in this tutorial series, with no restrictions.  

It also supports a small number of the mid-range (14-bit) PICs – although, for most of the mid-range devices 

it supported, PICC-Lite limited the amount of data and program memory that could be used, to provide an 

incentive to buy the full compiler.  Microchip have since acquired HI-TECH Software, and no longer supply 

or support PICC-Lite.  As such, PICC-Lite will not be covered in these tutorials. 

Microchip have developed the former HI-TECH C compiler into their own “MPLAB XC8” compiler.  It is 

available for download at www.microchip.com. 

XC8’s “Free mode” supports all 8-bit (including baseline and mid-range) PICs, with no memory restrictions.  

However, in this mode, most compiler optimisation is turned off, making the generated code around twice 

the size of that generated by PICC-Lite.  

This gives those developing for baseline and mid-range PICs easy access to a free compiler supporting a 

much wider range of devices than PICC-Lite, without memory usage restrictions, albeit at the cost of much 

larger generated code.  And XC8 will continue to be maintained, supporting new baseline and mid-range 

devices over time. 

But if you are using Windows and developing code for a supported baseline PIC, it is quite valid to continue 

to use PICC-Lite (if you are able to locate a copy – by downloading MPLAB 8.10 from the archives on 

www.microchip.com, for example), since it will generate much more efficient code, while allowing all the 

(limited) memory on your baseline PIC to be used.  It can be installed alongside XC8.  But to repeat – PICC-

Lite won’t be described in these lessons. 

MPLAB 8 includes a free copy of CCS’s PCB C compiler for Windows, which supports most baseline PICs, 

including those used in these tutorials.  Although it’s now a little date (at the time of writing, the version 

bundled with MPLAB was 4.073, while the latest commercially available version was 4.135), it remains 

useful and so is used in these tutorials. 

If you are using MPLAB 8, you should select the CCS compiler as an option when installing MPLAB, to 

ensure that the integration with the MPLAB IDE will be done correctly. 

The XC8 installer (for Windows, Linux or Mac) has to be downloaded separately from www.microchip.com.  

When you run the XC8 installer, you will be asked to enter a license activation key.  Unless you have 

purchased the commercial version, you should leave this blank.  You can then choose whether to run the 

compiler in “Free mode”, or activate an evaluation license.  We’ll be using “Free mode” in these lessons, but 

it’s ok to use the evaluation license (for 60 days) if you choose to. 

Custom Computer Services (CCS) “PCB” 

CCS (www.ccsinfo.com) specialises in PIC development, offering hardware development platforms, as well 

as a range of C compilers supporting (as of February 2012) almost all the PIC processors from the baseline 

10Fs through to the 16-bit PIC24Fs and dsPICs.  They also offer an IDE, including a “C-aware” editor, and 

debugger/simulator. 

“PCB” is the command-line compiler supporting the baseline (12-bit) PICs. 

A separate command-line compiler, called “PCM”, supports the mid-range (14-bit) PICs, including most 

PIC16s.  Similarly, “PCH” supports the 16-bit instruction-width, 8-bit data width PIC18 series, while “PCD” 

supports the 24-bit instruction-width, 16-bit data width PIC24 and dsPIC series.  These command-line 

compilers are available for both Windows and Linux.  A plug-in allows these compilers to be integrated into 

both MPLAB 8 and MPLAB X
3
. 

                                                      

3
 Note that the free version of the CCS PCB compiler, supplied with MPLAB 8, will not work with MPLAB X. 

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/
http://www.ccsinfo.com/
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CCS also offer a Windows IDE, called “PCW”, which incorporates the PCB and PCM compilers.  “PCWH” 

extends this to include PCH for 18F support, while “PCWHD” supports the full suite of PICs.  A lower-cost 

IDE, called “PCDIDE” includes only the PCD compiler. 

The CCS compilers and IDEs are relatively inexpensive: as of February 2012, the advertised costs range 

from US$50 for PCB, through US$150 for PCM, US$350 for PCW, to US$600 for the full PCWHD suite. 

 

As we’ll see, the CCS approach is to provide a large number of PIC-specific inbuilt functions, such as 

read_adc(), which make it easy to access or use PIC features, without having to be aware of and specify 

all the registers and bits involved.  That means that the CCS compilers can be used without needing a deep 

understanding of the underlying hardware, which can be a two-edged sword; it is easier to get started and 

less-error prone (in that the compiler can be expected to set up the registers correctly), but can be less 

flexible and more difficult to debug when something is wrong (especially if the bug is in the compiler’s 

implementation, and not your code). 

 

Microchip “MPLAB XC8” 

XC8 supports the whole 8-bit PIC10/12/16/18 series in a single edition, with different licence keys unlocking 

different levels of code optimisation – “Free” (free, but no optimisation), “Standard” and “PRO” (most 

expensive and highest optimisation). 

Microchip XC compilers are also available for the PIC24, dsPIC and PIC32 families. 

The XC8 compiler is more expensive than those from CCS: as of August 2012, the advertised costs include 

US$495 for the “Standard” mode, and US$995 for this compiler in “PRO” mode. 

We’ll see that XC8 exposes the PIC’s registers as variables, to be accessed “directly” by the developer, in 

much the same way that they would be in assembler, instead of via built-in functions.  This means that, to 

effectively use the XC8 compiler, you need a strong understanding of the underlying PIC hardware, 

equivalent to that needed for programming in assembler. 

 

These differing approaches are highlighted in the examples below.  Instead of trying to force either compiler 

into a particular style, the examples for each compiler are written in a style similar in “spirit” to the sample 

code provided with each.  Although it is possible to map registers into variables in the CCS compilers, the 

examples in these tutorials use the CCS built-in functions where that seems reasonable, since that is how that 

compiler was intended to be used.  However, identical comments are used where reasonable, to highlight the 

correspondence between both C compilers and the original assembler version of each example. 

 

Data Types 

One of the problems with implementing ANSI-standard C on microcontrollers is that there is often a need to 

work with individual bits, while the smallest data-type included in the ANSI standard is ‘char’, which is 

normally considered to be a single byte, or 8 bits.  Another problem is the length of a standard integer 

(‘int’) is not defined, being implementation-dependent.  Whether an ‘int’ is 16 or 32 bits is an issue on 

larger systems, but it makes a much more significant difference to code portability on microcontrollers.  

Similarly, the sizes of ‘float’, ‘double’, and the effect of the modifiers ‘short’ and ‘long’ is not defined 

by the standard. 

So different compilers use various sizes for the “standard” data types, and for microcontroller 

implementations it is common to add a single-bit type as well – generally specific to that compiler. 
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Here are the data types and sizes supported by CCS PCB and XC8: 

You’ll see that very few of these line up; the only point of 

agreement is that ‘char’ is 8 bits! 

XC8 defines a single ‘bit’ type, unique to XC8. 

CCS PCB defines ‘int1’, ‘int8’, ‘int16’ and ‘int32’ 

types, which make it easy to be explicit about the size of a 

data element (such as a variable). 

The “standard” ‘int’ type is 8 bits in CCS PCB, but 16 bits in 

XC8. 

But by far the greatest difference is in the definition of 

‘short’: in XC8, it is a synonym for ‘int’ and is a 16-bit 

type, whereas in CCS PCB, ‘short’ is a single-bit type, the 

same as an ‘int1’.  That could be very confusing when 

porting code from CCS PCB to another compiler, so for clarity 

it is probably best to use ‘int1’ when defining single-bit 

variables. 

XC8 also offers the non-standard 24-bit ‘short long’ type.  

And note that floating-point variables in XC8 can be either 24 

or 32 bits; this is set by a compiler option.  The only floating-

point representation available in CCS PCB is 32-bit, which 

may be a higher level of precision than is needed in most 

applications for small applications, so XC8’s ability to work 

with 24-bit floating point numbers can be useful. 

 

To make it easier to create portable code, XC8 provides the ‘stdint.h’ header file, which defines the C99 

standard types such as ‘uint8_t’ and ‘int16_t’. 

Unfortunately, CCS PCB does not come with a version of ‘stdint.h’, although the size of CCS types such 

as ‘int8’, and ‘int16’ is clear. 

 

Example 1: Turning on an LED 

In baseline assembler lesson 1 we saw how to turn on a single LED, and leave it on; the (very simple) circuit, 

using a PIC10F200, is shown below: 

This circuit is intended for use with the Gooligum baseline training 

board, where you can simply plug the 10F200 into the ‘10F’ 

socket, and connect jumper JP12. 

If you have the Microchip Low Pin Count Demo board, which does 

not support PIC10F devices, you will have to substitute a 12F508 

or 12F509 and connect an LED to pin GP1: see baseline assembler 

lesson 1 for details. 

 

To turn on the LED on GP1, we must clear bit 1 of the TRIS, 

configuring GP1 as an output, and then set bit 1 of GPIO, setting 

GP1 high, turning the LED on. 

Type XC8 CCS PCB 

bit 1 - 

int1 - 1 

char 8 8 

int8 - 8 

short 16 1 

int 16 8 

int16 - 16 

short long 24 - 

long 32 16 

int32 - 32 

float 24 or 32 32 

double 24 or 32 - 

../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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At the start of the assembly language program, the PIC was configured, and the internal RC oscillator was 

calibrated, by loading the factory calibration value into the OSCCAL register. 

Finally, the end of the program consisted of an infinite loop, to leave the LED turned on. 

 

Here are the key parts of the 10F200 version of the assembler code from baseline lesson 1: 

                ; ext reset, no code protect, no watchdog  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF 

 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

 

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

        movlw   b'000010'       ; set GP1 high 

        movwf   GPIO 

 

        goto    $               ; loop forever 

 

XC8 

XC8 projects in MPLAB are created in a similar way to assembler projects, but as we saw in baseline lesson 

1, the details depend on which version of the MPLAB IDE you are using. 

MPLAB 8.xx 

You should use the project wizard to create a new project, as before. 

To specify that this is an XC8 project, select the “Microchip XC8 ToolSuite” when you reach “Step Two: 

Select a language toolsuite”:  
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When completing the wizard, note that there is no need to add existing files to your project, unless you wish 

to make use of some existing code, perhaps from a previous project.  There is no equivalent to the MPASM 

“template files” we saw in baseline lesson 1. 

After finishing the project wizard, you can use the “File → Add New File to Project…” menu item to create 

a ‘.c’ source file in your project folder. 

It should appear under “Source Files” in the project window, as usual: 

 

If you have installed more than one HI-TECH or XC8 compiler, you need to tell the XC8 toolsuite which 

compiler, or 

driver, to use. 

Open the project 

build options 

window (Project 

→ Build 

Options… → 

Project) then 

select the 

“Driver” tab, as 

shown on the 

right.  

 

To select the 

compiler you 

wish to use, 

move it to the 

top of the list of 

available 

drivers, by using 

the “Move up” 

button).  The 

“Current driver” 
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panel shows which compiler will be used for your device; since not every compiler supports every PIC, the 

toolsuite selects the first driver in the list which supports the device you are compiling for.  When you have 

selected the compiler you wish to use, click “OK” to continue. 

 You are now ready to start coding! 

MPLAB X 

You should use the New Project wizard to create your new project, as usual. 

When you reach step 5, “Select Compiler”, select “XC8” (taking care to select the version you wish to use, if 

you have more than one XC8 compiler installed), to specify that this is an XC8 project:  

After completing the wizard, right-click ‘Source Files’ in the project tree within the Projects window, and 

select “New → C Source File…” to create a ‘.c’ source file in your project folder: 
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Note that, when you right-click ‘Source Files’ and select the “New” sub-menu, to create a new file and add it 

to your project, you are presented with a number of options, including any file types you have recently used, 

and “Other”.  This leads you to the “New File” dialog, which allows you to base your new file on an existing 

template.  You’ll find some templates for use with XC8 under ‘Microchip Embedded’:  

The “main.c” template is a reasonable start, but it’s slightly different from the C source code style used in 

these tutorials, so we won’t use it here.  Nevertheless, these code templates are a helpful feature of MPLAB 

X, and as you become more experienced, you can even develop your own. 

When you have created a blank C source file, it should appear in the project tree, as usual: 
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You can now use the editor to start coding! 

XC8 Source code 

As usual, you should include a comment block at the start of each program or module.  Most of the 

information in the comment block should be much the same, regardless of the programming language used, 

since it relates to what this application is, who wrote it, dependencies and the assumed environment, such as 

pin assignments.  However, when writing in C, it is a good idea to state which compiler has been used 

because, as we have seen for data types, C code for microcontrollers is not necessarily easily portable. 

So we might use something like: 

/************************************************************************ 

*                                                                       * 

*   Filename:      BC_L1-Turn_on_LED-10F200-HTC.c                       * 

*   Date:          7/6/12                                               * 

*   File Version:  1.1                                                  * 

*                                                                       * 

*   Author:        David Meiklejohn                                     * 

*   Company:       Gooligum Electronics                                 * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Architecture:  Baseline PIC                                         * 

*   Processor:     10F200                                               * 

*   Compiler:      MPLAB XC8 v1.00 (Free mode)                          * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Files required: none                                                * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Description:    Lesson 1, example 1                                 * 

*                                                                       * 

*   Turns on LED.  LED remains on until power is removed.               * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*                                                                       * 

************************************************************************/ 

 

Note that, as we did our previous assembler code, the processor architecture and device are specified in the 

comment block.  This is important for the XC8 compiler, as there is no way to specify the device in the code; 

i.e. there is no equivalent to the MPASM ‘list p=’ or ‘processor’ directives.  Instead, the processor is 

specified in the IDE (MPLAB), or as a command-line option. 

 

Most of the symbols relevant to specific processors are defined in header files.  But instead of including a 

specific file, as we would do in assembler, it is normal to include a single “catch-all” file: “xc.h” (or 

“htc.h”).  This file identifies the processor being used, and then calls other header files as appropriate.  So 

our next line, which should be at the start of every XC8 program, is: 

#include <xc.h> 

 

 

Next, we need to configure the processor. 

This can be done with a “configuration pragma”. 
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For the 10F200 version of this example, we would have: 

// ext reset, no code protect, no watchdog 

#pragma config MCLRE = ON, CP = OFF, WDTE = OFF 

 

Or, you can use the ‘__CONFIG’ macro, in a very similar way to the __CONFIG directive in MPASM: 

__CONFIG(MCLRE_ON & CP_OFF & WDTE_OFF); 

 

The symbols are the same in both, but note that the pragma uses ‘=’ (with optional spaces) between each 

setting, such as ‘MCLRE’, and its value, such as ‘ON’, while the macro uses ‘_’ (with no spaces)
4
. 

To see which symbols to use for a given PIC, you need to consult the “pic_chipinfo.html” file, in the 

“docs” directory within the compiler install directory. 

 

For the 12F508 or 12F509 version
5
, we have: 

// ext reset, no code protect, no watchdog, int RC clock  

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & OSC_IntRC); 

 

 

As with most C compilers, the entry point for “user” code is a function called ‘main()’. 

So an XC8 program will look like: 

void main() 

{ 

    ;   // user code goes here 

} 

 

Declaring main() as void isn’t strictly necessary, since any value returned by main() is only relevant 

when the program is being run by an operating system which can act on that return value, but of course there 

is no operating system here.  Similarly it would be more “correct” to declare main() as taking no parameters 

(i.e. main(void)), given that there is no operating system to pass any parameters to the program.  How you 

declare main() is really a question of personal style. 

 

At the start of our assembler programs, we’ve always loaded the OSCCAL register with the factory 

calibration value (although it is only necessary when using the internal RC oscillator).  There is no need to 

do so when using XC8; the default start-up code, which runs before main(), loads OSCCAL for us. 

 

XC8 makes the PIC’s special function registers available as variables defined in the header files. 

Loading the TRIS register with 111101b (clearing bit 1, configuring GP1 as an output) is simply: 

TRIS = 0b111101;        // configure GP1 (only) as an output 

 

 

Individual bits, such as GP1, can be accessed through bit-fields defined in the header files. 

For example, the “pic10f200.h” file header file defines a union called GPIObits, containing a structure 

with bit-field members GP0, GP1, etc. 

                                                      

4
 Although the ‘__CONFIG’ macro is now (as of XC8 v1.10) considered to be a “legacy” feature, it is still supported and 

we will continue to use it in these tutorials (the examples were originally written for HI-TECH C). 

5
 The source code for the 12F508 and 12F509 is exactly the same. 
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So, to set GP1 to ‘1’, we can write: 

    GPIObits.GP1 = 1;       // set GP1 high 

 

 

Baseline assembler lesson 2 explained that setting or clearing a single pin in this way is a “read-modify-

write” (“rmw”) operation, which may lead to problems, even though setting GP1 individually, as above, will 

almost certainly work in this case. 

To avoid any potential for rmw problems, we can load the value 000010b into GPIO (setting bit 1, and 

clearing all the other bits), with: 

    GPIO = 0b000010;        // set GP1 high 

 

 

Finally, we need to loop forever.  There are a number of C constructs that could be used for this, but the one 

used in most of the XC8 sample code (and it’s as good as any) is: 

for (;;) 

{                       // loop forever 

    ; 

} 

 

Complete program 

Here is the complete 10F200 version of the code to turn on an LED on GP1, for XC8: 

/************************************************************************ 

*   Description:    Lesson 1, example 1                                 * 

*                                                                       * 

*   Turns on LED.  LED remains on until power is removed.               * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog 

__CONFIG(MCLRE_ON & CP_OFF & WDTE_OFF); 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    // Initialisation 

    TRIS = 0b111101;        // configure GP1 (only) as an output 

 

    GPIO = 0b000010;        // set GP1 high 

 

    // Main loop 

    for (;;) 

    {                       // loop forever 

        ; 

    } 

} 

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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The 12F508/509 version is the same, except for the different __CONFIG line, given earlier. 

Building the project 

Whether you use MPLAB 8 or MPLAB X, the process of compiling and linking your code (making or 

building your project) is essentially the same as for an assembler project (see baseline assembler lesson 1). 

To compile the source code in MPLAB 8, select “Project → Build”, press F10, or click on the “Build” 

toolbar button: 

This is equivalent to the assembler “Make” option, compiling all the source files which have changed, and 

linking the resulting object files and any library functions, creating an output ‘.hex’ file, which can then be 

programmed into the PIC as normal.  The other Project menu item or toolbar button, “Rebuild”, is equivalent 

to the MPASM “Build All”, recompiling all your source files, regardless of whether they have changed. 

Building an XC8 project in MPLAB X is exactly the same as for a MPASM assembler project: click on the 

“Build” or “Clean and Build” toolbar button, or select the equivalent items in the “Run” menu, to compile 

and link your code.  When it builds without errors and you are ready to program your code into your PIC, 

select the “Run → Run Main Project” menu item, click on the “Make and Program Device” toolbar button, 

or simply press F6. 

CCS PCB 

The process of creating a new CCS PCB project in MPLAB 8 is the same as that for XC8, except that you 

need to select the 

“CCS C Compiler” 

toolsuite, in the 

project wizard, as 

shown on the right. 

 

Note that the free 

version of CCS 

PCB, bundled with 

MPLAB 8, cannot 

be used with 

MPLAB X.  

However, if you 

purchase the most 

recent version of 

MPLAB X, you 

can use MPLAB C 

to create and build 

CCS C projects, in 

the same way as for 

XC8. 

../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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CCS PCB Source code 

The comment block at the start of CCS PCB programs can of course be similar to that for any other C 

compiler (including XC8), but the comments should state that this code is for the CCS compiler. 

It’s not as important for the comments to state which processor is being used, since, unlike XC8, CCS PCB 

requires a ‘#device’ directive, used to specify which processor the code is to be compiled for. 

Also unlike XC8, there is no “catch-all” header file, so you are expected to include the appropriate ‘.h’ file 

(found in the “devices” directory within the CCS PCB install directory), which defines all the symbols 

relevant to the processor you are using.  This file will incorporate the appropriate ‘#device’ directive, so 

you would not normally place that directive separately in your source code.  Instead, at the start of every 

CCS PCB program, you should include a line such as: 

#include <10F200.h> 

 

However, you will find that this file, for the 10F200, defines the pins as PIN_B0, PIN_B1, etc., instead of the 

more commonly-used GP0, GP1, etc.  This is true for the other 10F and 12F PICs as well.  So to be able to 

use the normal symbols, we can add these lines at the start of our code, when working with 10F or 12F PICs: 

#define GP0 PIN_B0      // define GP pins 

#define GP1 PIN_B1 

#define GP2 PIN_B2 

#define GP3 PIN_B3 

#define GP4 PIN_B4 

#define GP5 PIN_B5 

 

(if you’re using a 10F device, you only need to define GP0 to GP3, because the 10Fs only have four pins) 

 

The ‘#fuses’ directive is used to configure the processor. 

For the 10F200, we have: 

// ext reset, no code protect, no watchdog 

#fuses MCLR,NOPROTECT,NOWDT 

 

While for the 12F508 or 12F509, we also need to configure the oscillator: 

// ext reset, no code protect, no watchdog, int RC clock  

#fuses MCLR,NOPROTECT,NOWDT,INTRC 

 

Again, although this is similar to the __CONFIG directive we know from MPASM, the configuration 

symbols are different.  For example, ‘NOPROTECT’ instead of ‘_CP_OFF’, and ‘INTRC’ instead of 

‘_IntRC_OSC’. 

To see which symbols to use for a given PIC, you need to consult the header file for that device. 

 

In the same way as XC8, the user program starts with main(): 

void main() 

{ 

    ;   // user code goes here 

} 

 

And, as with XC8, the default start-up code, run before main() is entered, loads the factory calibration value 

into OSCCAL, so there is no need to write code to do that. 

 

As mentioned earlier, the approach taken by CCS PCB is to make much of the PIC functionality available 

through built-in functions, reducing the need to access registers directly. 
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The ‘output_high()’ function loads the TRIS register to configure the specified pin as an output, and then 

sets that output high.  So to make GP1 an output and set it high, we can use simply: 

   output_high(GP1);        // configure GP1 (only) as an output and set high 

 

However, as explained for the XC8 version and in detail in baseline assembler lesson 2, setting or clearing a 

single pin may lead to potential “read-modify-write” problems, and it is safer to write a value to the whole 

port (GPIO) in a single operation. 

CCS C, we can do this with the ‘output_x()’ built-in function, which outputs an entire byte to port x: 

    output_b(0b000010);     // configure GPIO as all output and set GP1 high 

 

Note that, as far as CCS is concerned, on a 10F200 or 12F508/509, GPIO is port ‘b’. 

Also note that the ‘output_x()’ function configures the port with every pin as an output, before outputting 

the specified value. 

This behaviour of loading TRIS every time an output is made high (or low) makes the code simpler to write, 

but can be slower and use more memory, so CCS PCB provides a ‘#use fast_io’ directive and 

‘set_tris_X()’ functions to override this slower “standard I/O”, but for simplicity, and in the spirit of 

CCS C programming style, we’ll keep this default behaviour for now. 

 

To loop forever, we could use the ‘for(;;) {}’ loop used in the XC8 example above, but since the 

standard CCS PCB header files define the symbol ‘TRUE’ (and XC8 doesn’t), we can use: 

    while (TRUE) 

    {                       // loop forever 

        ; 

    } 

 

Complete program 

Here is the complete 10F200 version of the code to turn on an LED on GP1, using CCS PCB: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 1, example 1                                 * 

*                                                                       * 

*   Turns on LED.  LED remains on until power is removed.               * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*                                                                       * 

************************************************************************/ 

 

#include <10F200.h> 

 

#define GP0 PIN_B0      // define GP pins 

#define GP1 PIN_B1 

#define GP2 PIN_B2 

#define GP3 PIN_B3 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog 

#fuses MCLR,NOPROTECT,NOWDT 

 

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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/***** MAIN PROGRAM *****/ 

void main() 

{ 

    // Initialisation     

    output_b(0b000010);     // configure GPIO as all output and set GP1 high 

 

    // Main loop 

    while (TRUE) 

    {                       // loop forever 

        ; 

    } 

} 

 

The 12F508/509 versions are the same, except that you need to #include a different header (12F508.h or 

12F509.h, instead of 10F200.h), and change the #fuses directive, as shown earlier. 

Building the project 

To compile the source code in MPLAB 8, select “Project → Build”, press F10, or click on the “Make 

Project” toolbar button: 

This is the CCS equivalent to the XC8 “Build project” option, compiling all changed source files and linking 

the object files and library functions to create an output ‘.hex’ file, which can be programmed into the PIC as 

normal. 

The other Project menu item or toolbar button, “Build All”, is equivalent to the XC8 “Rebuild” or the 

MPASM “Build All”, recompiling your entire project, regardless of what’s changed. 

Comparisons 

Even in an example as simple as turning on a single LED, the difference in approach between XC8 and CCS 

PCB is apparent. 

The XC8 code shows a closer correspondence to the assembler version, with the TRIS register being 

explicitly written to.   

On the other hand, in the CCS PCB example, GPIO is configured as all outputs and written to, through a 

single built-in function that performs both operations, effectively hiding the existence of the TRIS register 

from the programmer. 

 

Example 2: Flashing an LED (20% duty cycle) 

In baseline lesson 2, we used the same circuits as above, but made the LED flash by toggling the GP1 

output.  The delay was created by an in-line busy-wait loop. 

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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Baseline lesson 3 showed how to move the delay loop into a 

subroutine, and to generalise it, so that the delay, as a multiple 

of 10 ms, is passed as a parameter to the routine, in W. 

This was demonstrated on the PIC12F509, using the circuit 

shown on the right.  If you are using the Gooligum baseline 

training board, remember to remove the 10F200 from the ‘10F’ 

socket, before plugging the 12F509 into the ‘12F’ section of the 

14-pin socket. 

 

The example program flashed the LED at 1 Hz with a duty cycle 

of 20%, by turning it on for 200 ms and then off for 800 ms, and 

continually repeating. 

 

Here is the main loop from the assembler code from baseline lesson 3: 

main_loop 

        ; turn on LED 

        movlw   b'000010'       ; set GP1 (bit 1) 

        movwf   GPIO   

        ; delay 0.2 s 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        pagesel delay10 

        call    delay10          

        ; turn off LED 

        clrf    GPIO            ; (clearing GPIO clears GP1) 

        ; delay 0.8 s 

        movlw   .80             ; delay 80 x 10ms = 800ms 

        call    delay10   

           

        ; repeat forever   

        pagesel main_loop      

        goto    main_loop    

 

XC8 

We’ve seen how to turn on the LED on GP1, with: 

        GPIObits.GP1 = 1;       // set GP1 

or 

        GPIO = 0b000010;        // set GP1 (bit 1 of GPIO) 

 

 

And of course, to turn the LED off, it is simply: 

        GPIObits.GP1 = 0;       // clear GP1 

or 

        GPIO = 0;               // (clearing GPIO clears GP1) 

 

 

These statements can easily be placed within an endless loop, to repeatedly turn the LED on and off.  All we 

need to add is a delay. 

XC8 provides a built-in function, ‘_delay(n)’, which creates a delay ‘n’ instruction clock cycles long.  The 

maximum possible delay depends on which PIC you are using, but it is a little over 50,000,000 cycles. With 

../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
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a 4 MHz processor clock, corresponding to a 1 MHz instruction clock, that’s a maximum delay of a little 

over 50 seconds. 

The compiler also provides two macros: ‘__delay_us()’ and ‘__delay_ms()’, which use the 

‘_delay(n)’ function create delays specified in µs and ms respectively.  To do so, they reference the 

symbol “_XTAL_FREQ”, which you must define as the processor oscillator frequency, in Hertz. 

Since our PIC is running at 4 MHz, we have: 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

Then, to generate a 200 ms delay, we can write: 

        __delay_ms(200);        // stay on for 200 ms 

 

Complete program 

Putting these delay macros into the main loop, we have: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 1, example 2                                 * 

*                                                                       * 

*   Flashes an LED at approx 1 Hz, with 20% duty cycle                  * 

*   LED continues to flash until power is removed.                      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, int RC clock  

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & OSC_IntRC); 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    // Initialisation 

    TRIS = 0b111101;            // configure GP1 (only) as an output 

 

    // Main loop 

    for (;;) 

    { 

        GPIO = 0b000010;        // turn on LED on GP1 (bit 1) 

         

        __delay_ms(200);        // stay on for 200 ms 

 

        GPIO = 0;               // turn off LED (clearing GPIO clears GP1) 

 

        __delay_ms(800);        // stay off for 800 ms 

 

    }                           // repeat forever 

} 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC C, Lesson 1: Basic Digital Output  Page 18 

CCS PCB 

In the previous example, we turned on the LED with: 

        output_high(GP1);       // set GP1 

or 

        output_b(0b000010);     // set GP1 (bit 1 of GPIO) 

 

Similarly, the LED can be turned off by: 

        output_low(GP1);        // clear GP1 

or 

        output_b(0);            // (clearing GPIO clears GP1) 

 

 

In a similar way to XC8, CCS PCB provides built-in delay functions: ‘delay_us()’ and ‘delay_ms()’, 

which create delays of a specified number of µs and ms respectively.  They accept a 16-bit unsigned value 

(0-65535) as a parameter.  Unlike the XC8 macros, which can only generate a constant delay, the CCS delay 

functions accept either a variable or a constant as a parameter. 

Since the functions are built-in, there is no need to include any header files before using them.  But you must 

still specify the processor clock speed, so that the delays can be created correctly. 

This is done using the ‘#use delay’ pre-processor directive to the processor oscillator frequency, in Hertz. 

For example, since our PIC is running at 4 MHz, we have: 

#use delay (clock=4000000)      // oscillator frequency for delay_ms() 

 

 

To create a 200 ms delay, we can then use: 

        delay_ms(200);          // stay on for 200 ms 

 

Complete program 

Here is the complete code to flash an LED on GP1, with a 20% duty cycle, using CCS PCB: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 1, example 2                                 * 

*                                                                       * 

*   Flashes an LED at approx 1 Hz, with 20% duty cycle                  * 

*   LED continues to flash until power is removed.                      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*                                                                       * 

************************************************************************/ 

 

#include <12F509.h> 

 

#define GP0 PIN_B0              // define GP pins 

#define GP1 PIN_B1 

#define GP2 PIN_B2 

#define GP3 PIN_B3 

#define GP4 PIN_B4 

#define GP5 PIN_B5 
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/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, int RC clock  

#fuses MCLR,NOPROTECT,NOWDT,INTRC 

 

#use delay (clock=4000000)      // oscillator frequency for delay_ms() 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    // Main loop  

    while (TRUE) 

    {  

        output_b(0b000010);     // turn on LED on GP1 (bit 1) 

 

        delay_ms(200);          // stay on for 200ms 

 

        output_b(0);            // turn off LED (clearing GPIO clears GP1) 

 

        delay_ms(800);          // stay off for 800ms 

         

    }                           // repeat forever 

} 

 

 

Example 3: Flashing an LED (50% duty cycle) 

The first LED flashing example in baseline assembler lesson 2 used an XOR operation to flip the GP1 bit 

every 500 ms, creating a 1 Hz flash with a 50% duty cycle. 

In that example, we used a shadow register to maintain a copy of the port register (GPIO), and flipped the 

shadow bit corresponding to GP1, instead of working on port directly.  As that lesson explained, this was to 

avoid potential problems due to read-modify-write operations on the port bits.  If you’re a little hazy on this 

concept, it would be a good idea to review that section of baseline assembler lesson 2. 

As noted earlier, when you use a statement like ‘GPIObits.GP1 = 1’ in XC8, or ‘output_high(GP1)’ in 

CCS PCB, the compilers translate those statements into bit set or clear instructions, acting directly on the 

port registers, which may lead to read-modify-write problems. 

To avoid such problems, shadow variables can be used in C programs, in the same way that shadow registers 

are used in assembler programs. 

 

To demonstrate this, we can continue to use the circuit from the previous example, and model our code on 

the corresponding example from baseline assembler lesson 3: 

;***** Initialisation 

start   

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

        clrf    sGPIO           ; start with shadow GPIO zeroed 

 

;***** Main loop 

Note: Any C statements which directly modify individual port bits may be subject to read-modify-

write considerations. 

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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main_loop 

        ; toggle LED on GP1 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

        ; delay 0.5 s 

        movlw   .50             ; delay 50 x 10 ms = 500 ms 

        pagesel delay10         ;   -> 1 Hz flashing at 50% duty cycle 

        call    delay10          

           

        ; repeat forever   

        pagesel main_loop      

        goto    main_loop 

 

XC8 

To toggle GP1, you could use the statement: 

GPIObits.GP1 = ~GPIObits.GP1; 

 

or: 

GPIObits.GP1 = !GPIObits.GP1; 

 

 

This statement is also supported: 

    GPIObits.GP1 = GPIObits.GP1 ? 0 : 1; 

 

It works because single-bit bit-fields, such as GP1, hold either a ‘0’ or ‘1’, representing ‘false’ or ‘true’ 

respectively, and so can be used directly in a conditional expression like this. 

 

However, since these statements modify individual bits in GPIO, to avoid potential read-modify-write issues 

we’ll instead use a shadow variable, which can be declared and initialised with: 

uint8_t     sGPIO = 0;          // shadow copy of GPIO 

 

This makes it clear that the variable is an unsigned, eight-bit integer.  We could have declared this as an 

‘unsigned char’, or simply ‘char’ (because ‘char’ is unsigned by default), but you can make your code 

clearer and more portable by using the C99 standard integer types defined in the “stdint.h” header file. 

To define these standard integer types, add this line toward the start of your program: 

#include <stdint.h> 

 

This variable declaration could be placed within the main() function, which is what you should do for any 

variable that is only accessed within main().  However, a variable such as a shadow register may need to be 

accessed by other functions.  For example, it’s quite common to place all of your initialisation code into a 

function called init(), which might initialise the shadow register variables as well as the ports, and your 

main() code may also need to access them.  It is often best to define such variables as global (or “external”) 

variables toward the start of your code, before any functions, so that they can be accessed throughout your 

program. 

But remember that, to make your code more maintainable and to minimise data memory use, you should 

declare any variable which is only used by one function, as a local variable within that function. 

We’ll see examples of that later, but in this example we’ll define sGPIO as a global variable. 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC C, Lesson 1: Basic Digital Output  Page 21 

Flipping the shadow copy of GP1 and updating GPIO, can then be done by: 

        sGPIO ^= 0b000010;      // toggle shadow bit corresponding to GP1 

        GPIO = sGPIO;           // write to GPIO 

 

Complete program 

Here is how the XC8 code to flash an LED on GP1, with a 50% duty cycle, fits together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 1, example 3                                 * 

*                                                                       * 

*   Flashes an LED at approx 1 Hz.                                      * 

*   LED continues to flash until power is removed.                      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, int RC clock  

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & OSC_IntRC); 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

 

/***** GLOBAL VARIABLES *****/ 

uint8_t     sGPIO = 0;          // shadow copy of GPIO 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    // Initialisation 

    TRIS = 0b111101;            // configure GP1 (only) as an output 

 

    // Main loop 

    for (;;) 

    { 

        // toggle LED on GP1 

        sGPIO ^= 0b000010;      // toggle shadow bit corresponding to GP1 

        GPIO = sGPIO;           // write to GPIO 

 

        // delay 500 ms 

        __delay_ms(500); 

 

    }   // repeat forever 

} 
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CCS PCB 

CCS PCB provides a built-in function specifically for toggling an output pin: ‘output_toggle()’.  To 

toggle GP1, all that is needed is: 

    output_toggle(GP1); 

 

But since this function performs a read-modify-write operation on GPIO, we’ll use a shadow variable, which 

can be declared and initialised with: 

unsigned int8   sGPIO = 0;      // shadow copy of GPIO 

 

CCS PCB doesn’t come with an equivalent to ‘stdint.h’, so we can’t use the C99 standard ‘uint8_t’ type, 

as we did with XC8.  We could have declared this variable as a ‘char’, and that would be ok, but by declaring 

it as an ‘unsigned int8’, it’s very clear that this variable is an unsigned, eight-bit integer. 

And, as in the XC8 example, we’ll define this as a global variable, outside main(), so that it can be accessed 

by any other functions you add to the code in future. 

 

Toggling the shadow copy of GP1 is then the same as for XC8: 

        sGPIO ^= 0b000010;      // toggle shadow bit corresponding to GP1 

 

To write the result to GPIO, we can use the output_b() built-in function, as before: 

        output_b(sGPIO);        // write to GPIO 

 

 [Recall that CCS PCB refers to GPIO on the 10F and 12F PICs as port B.] 

Complete program 

Here is the complete CCS PCB code to flash an LED on GP1, with a 50% duty cycle: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 1, example 3                                 * 

*                                                                       * 

*   Flashes an LED at approx 1 Hz.                                      * 

*   LED continues to flash until power is removed.                      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*                                                                       * 

************************************************************************/ 

 

#include <12F509.h> 

 

#define GP0 PIN_B0              // define GP pins 

#define GP1 PIN_B1 

#define GP2 PIN_B2 

#define GP3 PIN_B3 

#define GP4 PIN_B4 

#define GP5 PIN_B5 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, int RC clock  

#fuses MCLR,NOPROTECT,NOWDT,INTRC 
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#use delay (clock=4000000)      // oscillator frequency for delay_ms() 

 

 

/***** GLOBAL VARIABLES *****/ 

unsigned int8   sGPIO = 0;      // shadow copy of GPIO 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

   // Main loop  

   while (TRUE) 

   {  

        // toggle LED on GP1        

        sGPIO ^= 0b000010;      // toggle shadow bit corresponding to GP1 

        output_b(sGPIO);        // write to GPIO  

 

        // delay 500ms 

        delay_ms(500);  

                 

   }    // repeat forever 

} 

Comparisons 

Although this is a very small, simple application, it is instructive to compare the source code size (lines of 

code
6
) and resource utilisation (program and data memory usage) for the two compilers and the assembler 

version of this example from baseline lesson 3. 

Source code length is a rough indication of how difficult or time-consuming a program is to write.  We 

expect that C code is easier and quicker to write than assembly language, but that a C compiler will produce 

code that is bigger or uses memory less efficiently than hand-crafted assembly.  But is this true? 

It’s also interesting to see whether the delay functions provided by the C compilers generate accurately-timed 

delays, and how their accuracy compares with our assembler version. 

Memory usage is reported correctly by MPLAB for assembler and XC8 projects, but note that the CCS PCB 

compiler does not accurately report data memory usage to MPLAB.  We can get it from the ‘*.lst’ file 

generated by the CCS compiler. 

The MPLAB simulator
7
 can be used to accurately measure the time between LED flashes – ideally it would 

be exactly 1.000000 seconds, and the difference from that gives us the overall timing error.  

Here is the resource usage and accuracy summary for the “Flash an LED at 50% duty cycle” programs: 

Flash_LED 

                                                      

6
 ignoring whitespace, comments, and “unnecessary” lines such as the redefinition of pin names in the CCS C examples 

7
 a topic for a future tutorial? 

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Delay accuracy 

(timing error) 

Microchip MPASM 28 34 4 0.15% 

XC8 (Free mode) 11 36 4 0.0024% 

CCS PCB 9 43 6 0.0076% 
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The assembler version called the delay routine as an external module, so it’s quite comparable with the C 

programs which make use of built-in delay functions.  Nevertheless, the assembly language source code is 

around three times as long as the C versions!  This illustrates how much more compact C code can be. 

As for C being less efficient – the XC8 version is barely larger than the assembler version, despite having 

most compiler optimisations disabled in “Free” mode.  This is largely because the built-in delay code is 

highly optimised, but it does show that C is not necessarily inherently inefficient – at least for simple 

applications like this. 

On the other hand, the CCS compiler is noticeably less efficient in this example, generating code 26% bigger 

than the assembler version. 

Finally, note that the time delays in both C versions are amazingly accurate! 

Summary 

Overall, we have seen that, although XC8 and CCS PCB take quite different approaches, basic digital output 

operations can be expressed succinctly using either C compiler. 

We saw that the CCS approach is to use built-in functions to perform operations which may take a number of 

statements in XC8 to accomplish (such as configuring pin direction and outputting a value in a single 

statement).  Whether this approach is better is largely a matter of personal style, although having so many 

built-in functions available can make development much easier. 

Whichever compiler you use, it could be argued that, because the C code is significantly shorter than 

corresponding assembler code, with the program structure more readily apparent, C programs are more 

easily understood, faster to write, and simpler to debug, than assembler. 

So why use assembler?  One argument is that, because assembler is closer to the hardware, the developer 

benefits from having a greater understanding of exactly what the hardware is doing; there are no unexpected 

or undocumented side effects, no opportunities to be bitten by bugs in built-in or library functions.  This 

argument may apply to CCS PCB, which as we have seen, tends to hide details of the hardware from the 

programmer; it is not always apparent what the program is always doing “behind the scenes”.  But it doesn’t 

really apply to XC8, which exposes all the PIC’s registers as variables, and the programmer has to modify 

the register contents in the same way as would be done in assembler. 

Although it’s not really apparent in the comparison table above, C compilers consistently use more resources 

than assembler (for equivalent programs).  There comes a point, as programs grow, that a C program will not 

fit into a particular PIC, while the same program would fit if it had been written in assembler.  In that case, 

the choice is to write in assembler, or use a more expensive PIC.  For a one-off project, a more expensive 

chip probably makes sense, whereas for volume production, using resources efficiently by writing in 

assembly is the right choice.  And if you need to write a really tight loop, where every instruction cycle 

counts, assembly may be the only viable choice.  Although again, using a faster, but more expensive chip 

may be a better solution, unless your application is high-volume. 

If this is a hobby for you, then it’s purely a question of personal preference, because as we have seen, both 

the Microchip and CCS “free” C compilers, as well as assembler, are viable options. 

 

In addition to providing an output (such as a blinking LED), PIC applications usually have to respond 

sensors and/or user input. 

In the next lesson we’ll see how to use our C compilers to read and respond to switches, such as pushbuttons. 

And since real switches “bounce”, which can be a problem for microcontroller applications, we’ll look at 

ways to “debounce” them, in software. 

 

../2%20-%20Reading%20switches/PIC_Base_C_2.pdf
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Introduction to PIC Programming 

Programming Baseline PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 2: Reading Switches 

 

The previous lesson introduced simple digital output, by flashing an LED.  That’s more useful than it may 

seem, because, with appropriate circuit changes, the same principles can be readily adapted to turning on and 

off almost any electrical device. 

But most systems also need to respond to user commands or sensor inputs.  The simplest form of input is an 

on/off switch – an example of a digital input: anything that makes or breaks a single connection, or is “on” or 

“off”, “high” or “low”. 

This lesson revisits the material from baseline assembler lesson 4 (which, if you are not familiar with, you 

should review before you start), showing how to read and respond to a simple pushbutton switch, and handle 

the inevitable “bouncing” of mechanical switch contacts. 

The examples are re-implemented using Microchip’s XC8 compiler (running in “Free mode”) and CCS 

PCB
1
, introduced in lesson 1.  

This lesson covers: 

 Reading digital inputs 

 Using internal pull-ups 

 Switch debouncing (using a counting algorithm) 

with examples for both compilers. 

This tutorial assumes a working knowledge of the C language; it does not attempt to teach C. 

Example 1: Reading Digital Inputs 

Baseline assembler lesson 4 introduced digital inputs, 

using a pushbutton switch in the simple circuit shown on 

the right. 

If you’re using the Gooligum baseline training board, you 

should connect jumper JP3, to bring the 10 kΩ resistor 

into the circuit, and JP12 to enable the LED on GP1. 

The Microchip Low Pin Count Demo Board has a 

pushbutton, 10 kΩ pull-up resistor and 1 kΩ isolation 

resistor connected to GP3, as shown.  But if you are 

using that board, you will need to connect an LED to 

GP1, as described in baseline assembler lesson 1. 

The 10 kΩ resistor normally holds the GP3 input high, 

                                                      

1
 XC8 is available as a free download from www.microchip.com, and CCS PCB is bundled for free with MPLAB 8 
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until the pushbutton is pressed, pulling the input low. 

Note: if you are using a PICkit 2 programmer, you must enable ‘3-State on “Release from Reset”’, as 

described in baseline assembler lesson 4, to allow the pushbutton to pull GP3 low when pressed. 

 

As an initial example, the pushbutton input was copied to the LED output, so that the LED was on, whenever 

the pushbutton is pressed. 

In pseudo-code, the operation is: 

do forever 

 if button down 

  turn on LED 

 else 

  turn off LED 

end 

 

The assembly code we used to implement this, using a shadow register, was: 

start     

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO            ; (GP3 is an input) 

 

loop 

        clrf    sGPIO           ; assume button up -> LED off 

        btfss   GPIO,3          ; if button pressed (GP3 low) 

        bsf     sGPIO,1         ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

 

        goto    loop            ; repeat forever 

 

XC8 

To copy a value from one bit to another, e.g. GP3 to GP1, using XC8, can be done as simply as: 

    GPIObits.GP1 = GPIObits.GP3;            // copy GP3 to GP1 

 

But that won’t do quite what we want; given that GP3 goes low when the button is pressed, simply copying 

GP3 to GP1 would lead to the LED being on when the button is up, and on when it is pressed – the opposite 

of the required behaviour. 

We can address that by inverting the logic: 

    GPIObits.GP1 = !GPIObits.GP3;           // copy !GP3 to GP1 

or 

    GPIObits.GP1 = GPIObits.GP3 ? 0 : 1;    // copy !GP3 to GP1 

 

This works well in practice, but to allow a valid comparison with the assembly source above, which uses a 

shadow register, we should not use statements which modify individual bits in GPIO.  Instead we should 

write an entire byte to GPIO at once. 

For example, we could write: 

    if (GPIObits.GP3 == 0)   // if button pressed 

        GPIO = 0b000010;     //   turn on LED 

    else 

        GPIO = 0;            // else turn off LED 

../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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However, this can be written much more concisely using C’s conditional expression: 

    GPIO = GPIObits.GP3 ? 0 : 0b000010; // if GP3 high, clear GP1, else set GP1 

 

It may seem a little obscure, but this is exactly the type of situation the conditional expression is intended for. 

Complete program 

Here is the complete XC8 code to turn on an LED when a pushbutton is pressed: 

/************************************************************************ 

*   Description:    Lesson 2, example 1                                 * 

*                                                                       * 

*   Demonstrates reading a switch                                       * 

*                                                                       * 

*   Turns on LED when pushbutton is pressed                             * 

*                                                                       * 

************************************************************************* 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock  

__CONFIG(MCLRE_OFF & CP_OFF & WDT_OFF & OSC_IntRC); 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    // Initialisation 

    TRIS = 0b111101;            // configure GP1 (only) as an output 

 

    // Main loop 

    for (;;) 

    { 

        // turn on LED only if button pressed 

        GPIO = GPIObits.GP3 ? 0 : 0b000010;     // if GP3 high, clear GP1 

                                                //else set GP1 

    }   

} 

 

Note that the processor configuration has been changed to disable the external MCLR  reset, to allow us to 

use GP3 as an input. 

CCS PCB 

Reading a digital input pin with CCS PCB is done through the ‘input()’ built-in function, which returns 

the state of the specified pin as a ‘0’ or ‘1’. 

 

To output a single bit, we could use the ‘output_bit()’ function.  For example: 

        output_bit(GP1, ~input(GP3)); 

 

This would set GP1 to the inverse of the value on GP3, which is exactly what we want. 
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But once again, statements like this, which change only one bit in a port, are potentially subject to read-

modify-write issues.  We should instead use code which writes an entire byte to GPIO (or, as CCS would 

have it, port B) at once: 

        output_b(input(GP3) ? 0 : 0b000010);    // if GP3 high, clear GP1  

                                                //   else set GP1 

 

Again, using the ‘?:’ conditional expression makes this seem a little obscure, but this is very concise and, 

when you are familiar with these expressions, clear. 

Complete program 

Here is the complete CCS PCB code to turn on an LED when a pushbutton is pressed: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 2, example 1                                 * 

*                                                                       * 

*   Demonstrates reading a switch                                       * 

*                                                                       * 

*   Turns on LED when pushbutton is pressed                             * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <12F509.h> 

 

#define GP0 PIN_B0              // define GP pins 

#define GP1 PIN_B1 

#define GP2 PIN_B2 

#define GP3 PIN_B3 

#define GP4 PIN_B4 

#define GP5 PIN_B5 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock  

#fuses NOMCLR,NOPROTECT,NOWDT,INTRC 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    // Main loop 

    while (TRUE) 

    { 

        // turn on LED only if button pressed 

        output_b(input(GP3) ? 0 : 0b000010);    // if GP3 high, clear GP1  

                                                //   else set GP1 

    }   // repeat forever 

} 

 

Note again that the processor configuration has been changed to disable the external MCLR  reset, so that 

GP3 is available as an input. 
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Comparisons 

Here is the resource usage summary for the “Turn on LED when pushbutton pressed” programs: 

PB_LED 

At only 5 or 6 lines, the C source code is amazingly succinct – thanks mainly to the use of C’s conditional 

expression (‘?:’). 

Example 2: Switch Debouncing 

Baseline lesson 4 included a discussion of the switch contact bounce problem, and various hardware and 

software approaches to addressing it. 

The problem was illustrated by an example application, using the circuit from example 1 (above), where the 

LED is toggled each time the pushbutton is pressed.  If the switch is not debounced, the LED toggles on 

every contact bounce, making it difficult to control. 

The most sophisticated software debounce method presented in that lesson was a counting algorithm, where 

the switch is read (sampled) periodically (e.g. every 1 ms) and is only considered to have definitely changed 

state if it has been in the new state for some number of successive samples (e.g. 10), by which time it is 

considered to have settled. 

The algorithm was expressed in pseudo-code as: 

count = 0 

while count < max_samples 

 delay sample_time 

 if input = required_state 

  count = count + 1 

 else 

  count = 0 

end 

 

It was implemented in assembler as follows: 

        ; wait for button press, debounce by counting: 

db_dn   movlw   .13             ; max count = 10ms/768us = 13 

        movwf   db_cnt         

        clrf    dc1              

dn_dly  incfsz  dc1,f           ; delay 256x3 = 768 us. 

        goto    dn_dly 

        btfsc   GPIO,3          ; if button up (GP3 high), 

        goto    db_dn           ;   restart count 

        decfsz  db_cnt,f        ; else repeat until max count reached 

        goto    dn_dly 

 

This code waits for the button to be pressed (GP3 being pulled low), by sampling GP3 every 768 µs and 

waiting until it has been low for 13 times in succession – approximately 10 ms in total. 

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 18 13 1 

XC8 (Free mode) 6 29 2 

CCS PCB 5 22 4 

../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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XC8  

To implement the counting debounce algorithm (above) using XC8, the pseudo-code can be translated 

almost directly into C: 

        db_cnt = 0; 

        while (db_cnt < 10) 

        { 

            __delay_ms(1); 

            if (GPIObits.GP3 == 0) 

                db_cnt++; 

            else 

                db_cnt = 0; 

        } 

 

where the debounce counter variable has been declared as: 

    uint8_t     db_cnt;             // debounce counter 

 

Note that, because this variable is only used locally (other functions would never need to access it), it should 

be declared within main(). 

 

Whether you modify this code to make it shorter is largely a question of personal style.  Compressed C code, 

using a lot of “clever tricks” can be difficult to follow. 

But note that the while loop above is equivalent to the following for loop: 

        for (db_cnt = 0; db_cnt < 10;) 

        { 

            __delay_ms(1); 

            if (GPIObits.GP3 == 0) 

                db_cnt++; 

            else 

                db_cnt = 0; 

        } 

 

That suggests restructuring the code into a traditional for loop, as follows: 

        for (db_cnt = 0; db_cnt <= 10; db_cnt++) 

        { 

            __delay_ms(1); 

            if (GPIObits.GP3 == 1) 

                db_cnt = 0; 

        } 

 

In this case, the debounce counter is incremented every time around the loop, regardless of whether it has 

been reset to zero within the loop body.  For that reason, the end of loop test has to be changed from ‘<’ to 

‘<=’, so that the number of iterations remains the same. 

 

Alternatively, the loop could be written as: 

        for (db_cnt = 0; db_cnt < 10;) 

        { 

            __delay_ms(1); 

            db_cnt = (GPIObits.GP3 == 0) ? db_cnt+1 : 0; 

        } 

 

However the previous version seems easier to understand. 
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Complete program 

Here is the complete XC8 code to toggle an LED when a pushbutton is pressed, including the debounce 

routines for button-up and button-down: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 2, example 2                                 * 

*                                                                       * 

*   Demonstrates use of counting algorithm for debouncing               * 

*                                                                       * 

*   Toggles LED when pushbutton is pressed then released,               * 

*   using a counting algorithm to debounce switch                       * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       GP3 = pushbutton switch                                         * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock  

__CONFIG(MCLRE_OFF & CP_OFF & WDT_OFF & OSC_IntRC); 

 

 

/***** GLOBAL VARIABLES *****/ 

uint8_t     sGPIO;                  // shadow copy of GPIO 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    uint8_t     db_cnt;             // debounce counter 

 

    // Initialisation 

    GPIO = 0;                       // start with LED off 

    sGPIO = 0;                      //   update shadow 

    TRIS = 0b111101;                // configure GP1 (only) as an output 

 

    // Main loop 

    for (;;) 

    { 

        // wait for button press, debounce by counting: 

        for (db_cnt = 0; db_cnt <= 10; db_cnt++) 

        { 

            __delay_ms(1);          // sample every 1 ms 

            if (GPIObits.GP3 == 1)  // if button up (GP3 high) 

                db_cnt = 0;         //   restart count 

        }                           // until button down for 10 successive reads 

 

        // toggle LED on GP1 

        sGPIO ^= 0b000010;          // toggle shadow GP1 

        GPIO = sGPIO;               // write to GPIO 
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        // wait for button release, debounce by counting: 

        for (db_cnt = 0; db_cnt <= 10; db_cnt++) 

        { 

            __delay_ms(1);          // sample every 1 ms 

            if (GPIObits.GP3 == 0)  // if button down (GP3 low) 

                db_cnt = 0;         //   restart count 

        }                           // until button up for 10 successive reads 

    }  

} 

 

CCS PCB 

To adapt the debounce routine to CCS PCB, the only change needed is to use the input() function to read 

GP3, and to use the delay_ms() delay function: 

        for (db_cnt = 0; db_cnt <= 10; db_cnt++) 

        { 

            delay_ms(1); 

            if (input(GP3) == 1) 

                db_cnt = 0;  

        } 

 

where the debounce counter variable has been declared as: 

    unsigned int8   db_cnt;         // debounce counter 

 

Once again, because this variable is only used locally, it should be declared within main(). 

Complete program 

This debounce routine fits into the “toggle an LED when a pushbutton is pressed” program, as follows: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 2, example 2                                 * 

*                                                                       * 

*   Demonstrates use of counting algorithm for debouncing               * 

*                                                                       * 

*   Toggles LED when pushbutton is pressed then released,               * 

*   using a counting algorithm to debounce switch                       * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       GP3 = pushbutton switch                                         * 

*                                                                       * 

************************************************************************/ 

 

#include <12F509.h> 

 

#define GP0 PIN_B0              // define GP pins 

#define GP1 PIN_B1 

#define GP2 PIN_B2 

#define GP3 PIN_B3 

#define GP4 PIN_B4 

#define GP5 PIN_B5 

 

 

/***** CONFIGURATION *****/ 
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// int reset, no code protect, no watchdog, int RC clock  

#fuses NOMCLR,NOPROTECT,NOWDT,INTRC 

 

#use delay (clock=4000000)      // oscillator frequency for delay_ms() 

 

 

/***** GLOBAL VARIABLES *****/ 

unsigned int8   sGPIO = 0;          // shadow copy of GPIO 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    unsigned int8   db_cnt;         // debounce counter 

 

    // Initialisation 

    output_b(0);                    // start with LED off 

    sGPIO = 0;                      //   update shadow 

 

    // Main loop 

    while (TRUE) 

    { 

        // wait for button press, debounce by counting: 

        for (db_cnt = 0; db_cnt <= 10; db_cnt++) 

        { 

            delay_ms(1);            // sample every 1 ms 

            if (input(GP3) == 1)    // if button up (GP3 high) 

                db_cnt = 0;         //   restart count 

        }                           // until button down for 10 successive reads 

 

        // toggle LED on GP1 

        sGPIO ^= 0b000010;          // toggle shadow GP1 

        output_b(sGPIO);            // write to GPIO 

 

        // wait for button release, debounce by counting: 

        for (db_cnt = 0; db_cnt <= 10; db_cnt++) 

        { 

            delay_ms(1);            // sample every 1 ms 

            if (input(GP3) == 0)    // if button down (GP3 low) 

                db_cnt = 0;         //   restart count 

        }                           // until button up for 10 successive reads 

 

    }   // repeat forever 

} 

 

As before, the processor configuration in both the XC8 and CCS programs has been changed to disable the 

external MCLR  reset, so that GP3 is available as an input. 

 

Example 3: Internal (Weak) Pull-ups 

As we saw in baseline assembler lesson 4, many PICs include internal “weak pull-ups”, which can be used to 

pull floating inputs (such as an open switch) high. 

They perform the same function as external pull-up resistors, pulling an input high when a connected switch 

is open, but supplying only a small current; not enough to present a problem when a closed switch grounds 

the input. 

../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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This means that, on pins where weak pull-ups are 

available, it is possible to directly connect switches 

between an input pin and ground, as shown on the right. 

To build this circuit, you will need to remove the 10 kΩ 

external pull-up resistor from the circuit we used 

previously. 

If you have the Gooligum baseline training board, you 

can simply remove jumper JP3 to disconnect the pull-up 

resistor from the pushbutton on GP3. 

If you’re using the Microchip Low Pin Count Demo 

Board, there’s no easy way to take the pull-up resistor on 

that board out of the circuit.  One option is to build the 

circuit using prototyping breadboard, as shown in 

baseline assembler lesson 4. 

 

In the baseline (12-bit) PICs, such as the 12F509, the weak pull-ups are not individually selectable; they are 

either all on, or all off. 

 

To enable the weak pull-ups, clear the GPPU  bit in the OPTION register. 

In the example assembler program from baseline lesson 4, this was done by: 

        movlw   b'10111111'     ; enable internal pull-ups 

                ; -0------          pullups enabled (/GPPU = 0) 

        option 

 

XC8 

To load the OPTION register in XC8, simply assign a value to the variable OPTION. 

For example: 

        OPTION = 0b10111111;    // enable internal pull-ups  

                 //-0------          pullups enabled (/GPPU = 0) 

 

Note that this is commented in a similar way to the assembler version, with ‘-0------’ making it clear we 

are concerned with the value of bit 6 ( GPPU  ), and that clearing it enables pull-ups. 

 

However, if we use the symbols for register bits, defined in the header files, we can write instead: 

    OPTION = ~nGPPU;                // enable weak pull-ups (/GPPU = 0) 

 

 

To enable weak pull-ups in the “toggle an LED” program from the previous example, simply add this 

“OPTION =” line into the initialisation routine. 

The new initialisation code becomes: 

    // Initialisation 

    OPTION = ~nGPPU;                // enable weak pull-ups (/GPPU = 0) 

    GPIO = 0;                       // start with LED off 

    sGPIO = 0;                      //   update shadow 

    TRIS = 0b111101;                // configure GP1 (only) as an output 

../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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CCS PCB 

Enabling the internal weak pull-ups using CCS PCB is a little obscure, and not well documented. 

The CCS compiler provides a built-in function for enabling pull-ups, ‘PORT_x_PULLUPS()’, but the 

documentation (in the online help) for this function states that it is only available for 14-bit (midrange) and 

16-bit (18F) PICs.  For baseline PICs, we are told: 

Note: use SETUP_COUNTERS on PCB parts 

However, the documentation for the built-in ‘SETUP_COUNTERS()’ function makes does not mention the 

weak pull-ups at all. 

To figure this out, we need to go digging in the header files.  “12F509.h” includes the following lines: 

// Timer 0 (AKA RTCC)Functions: SETUP_COUNTERS() or SETUP_TIMER_0(), 

… 

#define RTCC_INTERNAL   0 

… 

#define RTCC_DIV_1      8 

#define RTCC_DIV_2      0 

… 

// Constants used for SETUP_COUNTERS() are the above 

// constants for the 1st param and the following for 

// the 2nd param: 

… 

// Watch Dog Timer Functions: SETUP_WDT() or SETUP_COUNTERS() (see above) 

… 

#define WDT_18MS        0x8008    

… 

#define DISABLE_PULLUPS            0x40  // for 508 and 509 only 

#define DISABLE_WAKEUP_ON_CHANGE   0x80  // for 508 and 509 only 

 

And here, finally, is a clue. 

As explained in baseline assembler lesson 5, the OPTION register in the baseline PICs is mainly used for 

selecting Timer0 options, including prescaler assignment and prescale ratio.  And since the prescaler is 

shared with the watchdog timer (see baseline assembler lesson 7), some of these OPTION bits are also used 

to select watchdog timing options. 

That is why the Timer0 and watchdog options are both being set by the ‘SETUP_COUNTERS()’ function, the 

use of which is being de-emphasised by CCS, in favour of more specialised built-in functions.  But as well as 

Timer0 and watchdog options, the OPTION register on the baseline PICs also controls the weak pull-up and 

wake-up on change (see baseline assembler lesson 7) functions. 

Therefore, for the baseline PICs, the ‘SETUP_COUNTERS()’ function also controls the weak pull-up and 

wake-up on change functions, in addition to setting timer and watchdog options.  It’s just not documented 

very well! 

 

It is not possible to simply enable the weak pull-ups.  Instead, we must configure Timer0 (something we’ll 

look at in more detail in the next lesson); the pull-ups are implicitly enabled by default. 

For example: 

        setup_counters(RTCC_INTERNAL,RTCC_DIV_1); 

 

To setup the timer without enabling the pull-ups, you explicitly disable them by ORing the 

‘DISABLE_PULLUPS’ symbol with the second parameter. 

For example: 

        setup_counters(RTCC_INTERNAL,RTCC_DIV_1|DISABLE_PULLUPS); 

../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
../3%20-%20Timer%200/PIC_Base_C_3.pdf
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To enable weak pull-ups in the “toggle an LED” program from the last example, add this 

‘SETUP_COUNTERS()’ line to the initialisation routine. 

Our new initialisation code is: 

    // Initialisation 

    setup_counters(RTCC_INTERNAL,RTCC_DIV_1);   // enable weak pull-ups 

    output_b(0);                    // start with LED off 

    sGPIO = 0;                      //   update shadow 

 

Comparisons 

Here is the resource usage summary for the “toggle an LED using weak pull-ups” programs: 

Toggle_LED+WPU 

The C programs are less than half as long as the assembler versions, but even the CCS compiler, which has 

optimisations enabled (unlike the XC8 compiler in “Free mode”), generates code more than twice the size of 

the hand-written assembler version.  

Summary 

This lesson has shown that basic digital input operations can readily be performed in C, using either the XC8 

or CCS compiler, despite their quite different approaches. 

However, we also saw, in example 3, that the use of CCS’s built-in functions does not necessarily make the 

code easier to follow; the operation of a built-in function may not always be clear, or well-documented.  

Sometimes, the XC8 approach of directly accessing the PIC registers is actually easier to follow. 

 

 

In the next lesson we’ll see how to use these C compilers to configure and access Timer0. 

  

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 43 36 3 

XC8 (Free mode) 21 94 3 

CCS PCB 20 82 6 

../3%20-%20Timer%200/PIC_Base_C_3.pdf
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Introduction to PIC Programming 

Programming Baseline PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 3: Using Timer 0 

 

 

As demonstrated in the previous lessons, C can be a viable choice for programming digital I/O operations on 

baseline (12-bit) PICs, although, as we saw, programs written in C can consume significantly more memory 

(a limited resource on these tiny MCUs) than equivalent programs written in assembler. 

This lesson revisits the material from baseline assembler lesson 5 (which you should refer to while working 

through this tutorial) on the Timer0 module: using it to time events, to maintain the timing of a background 

task, for switch debouncing, and as a counter. 

Selected examples are re-implemented using Microchip’s XC8 compiler (running in “Free mode”) and CCS 

PCB
1
, introduced in lesson 1. We’ll also see the C equivalents of some of the assembler features covered in 

baseline assembler lesson 6, including macros. 

In summary, this lesson covers: 

 Configuring Timer0 as a timer or counter 

 Accessing Timer0 

 Using Timer0 for switch debouncing 

 Using C macros 

with examples for XC8 and CCS PCB. 

Note that this tutorial series assumes a working knowledge of the C language; it does not attempt to teach C. 

 

Example 1: Using Timer0 as an Event Timer 

To demonstrate how Timer0 can be used to measure 

elapsed time, baseline assembler lesson 5 included an 

example “reaction timer” game, based on the circuit on 

the right.  

To implement this circuit using the Gooligum baseline 

training board, connect jumpers JP3, JP12 and JP13 to 

enable the pull-up resistor on GP3 and the LEDs on 

GP1 and GP2. 

If you are using Microchip’s Low Pin Count Demo 

Board, you will need to connect LEDs to GP1 and 

GP2, as described in baseline assembler lesson 1. 

                                                      

1
 XC8 is available as a free download from www.microchip.com, and CCS PCB is bundled for free with MPLAB 8 

../1%20-%20Basic%20digital%20output/PIC_Base_C_1.pdf
../2%20-%20Reading%20switches/PIC_Base_C_2.pdf
../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
../1%20-%20Basic%20digital%20output/PIC_Base_C_1.pdf
../../Baseline/6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
http://www.microchip.com/
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The pushbutton has to be pressed as quickly as possible after the LED on GP2 is lit.  If the button is pressed 

quickly enough (that is, within some predefined reaction time), the LED on GP1 is lit, to indicate ‘success’.  

Thus, we need to measure the elapsed time between indicating ‘start’ and detecting a pushbutton press. 

An ideal way to do that is to use Timer0, in its timer mode (clocked by the PIC’s instruction clock, which in 

this example is 1 MHz). 

The program flow can be represented in pseudo-code as: 

do forever 

 turn off both LEDs 

 delay 2 sec 

 indicate start 

clear timer 

 wait up to 1 sec for button press 

 if button pressed and elapsed time < 200ms 

  indicate success 

 delay 1 sec 

end 

 

To use Timer0 to measure the elapsed time, we need to extend its range (normally limited to 65 ms) by 

adding a counter variable, which is incremented each time the timer overflows (or reaches a certain value).  

In the example in baseline lesson 5, Timer0 is configured so that it is clocked every 32 µs, using the 1 MHz 

instruction clock with a 1:32 prescaler.  After 250 counts, 8 ms (250 × 32 µs) will have elapsed; this is used 

to increment a counter, which is effectively measuring time in 8 ms intervals.  This “8 ms counter” can then 

be checked, when the pushbutton is pressed, to see whether the maximum reaction time has been exceeded. 

As explained in that lesson, to select timer mode, with a 1:32 prescaler, we must clear the T0CS and PSA 

bits, in the OPTION register, and set the PS<2:0> bits to 100.  This was done by: 

        movlw   b'11010100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)             

        option                  ;   -> increment every 32 us 

 

The following code was used in baseline assembler lesson 6 to implement the button press / timing test: 

        ; wait up to 1 sec for button press 

        banksel cnt_8ms             ; clear timer (8 ms counter) 

        clrf    cnt_8ms             ; repeat for 1 sec: 

wait1s  clrf    TMR0                ;   clear Timer0         

w_tmr0                              ;   repeat for 8 ms:          

        btfss   BUTTON              ;     if button pressed (low) 

        goto    wait1s_end          ;       finish delay loop immediately  

        movf    TMR0,w 

        xorlw   8000/32             ;   (8 ms at 32 us/tick) 

        btfss   STATUS,Z 

        goto    w_tmr0 

        incf    cnt_8ms,f           ;   increment 8 ms counter 

        movlw   1000/8              ; (1 sec at 8 ms/count) 

        xorwf   cnt_8ms,w 

        btfss   STATUS,Z 

        goto    wait1s 

wait1s_end         

         

        ; check elapsed time        

        movlw   MAXRT/8             ; if time < max reaction time (8 ms/count) 

        subwf   cnt_8ms,w 

        btfss   STATUS,C 

        bsf     SUCCESS             ;   turn on success LED 

../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_6.pdf


© Gooligum Electronics 2013  www.gooligum.com.au 

Baseline PIC C, Lesson 3: Using Timer0  Page 3 

XC8 

As we saw in the previous lesson, loading the OPTION register in XC8 is done by assigning a value to the 

variable OPTION: 

    OPTION = 0b11010100;            // configure Timer0: 

             //--0-----                 timer mode (T0CS = 0) 

             //----0---                 prescaler assigned to Timer0 (PSA = 0) 

             //-----100                 prescale = 32 (PS = 100) 

             //                         -> increment every 32 us 

 

Note that this has been commented in a way which documents which bits affect each setting, with ‘-’s 

indicating “don’t care”. 

Alternatively, you could express that using the symbols defined in the processor header file 

(“pic12f509.h” in this case).   

For example, since the intent is to clear T0CS and PSA, and to set PS<2:0> to 100, we could make that 

intent explicit by writing: 

    OPTION = ~T0CS & ~PSA & 0b11111000 | 0b100; 

 

(‘0b11111000’ is used to mask off the lower three bits, so that the value of PS<2:0> can be OR’ed in.) 

Or, you could write: 

    OPTION = ~T0CS & ~PSA | PS2 & ~PS1 & ~PS0; 

 

(specifying the individual PS<2:0> bits) 

Which approach you use is largely a question of personal style – and you can adapt your style as appropriate.  

Although it is often preferable to use symbolic bit names to specify just one or two register bits, using binary 

constants is quite acceptable if several bits need to be specified at once, especially where some bits need to 

be set and others cleared (as is the case here) – assuming that it is clearly commented, as above. 

 

The TMR0 register is accessed through a variable, TMR0, so to clear it, we can write: 

            TMR0 = 0;               // clear timer0 

 

and to wait until 8 ms has elapsed: 

            while (TMR0 < 8000/32)  // wait for 8 ms (32 us/tick) 

                ; 

 

The “wait up to one second for button press” routine can then the implemented as: 

        cnt_8ms = 0; 

        while (BUTTON == 1 && cnt_8ms < 1000/8) 

        { 

            TMR0 = 0;               // clear timer0 

            while (TMR0 < 8000/32)  // wait for 8 ms (32 us/tick) 

                ; 

            ++cnt_8ms;              // increment 8 ms counter 

        } 

 

where ‘BUTTON’ has been defined as a symbol for ‘GPIObits.GP3’. 

As discussed in baseline assembler lesson 6, your code will be easier to understand and maintain if you use 

symbolic names to refer to pins.  If your design changes, you can update the definitions in one place (usually 

placed at the start of your c, or in a header file).  Of course, you may also need to modify your initialisation 

statements, such as ‘TRIS =’.  This is a good reason to keep all your initialisation code in one easily-found 

place, such as at the start of the program, or in an “init()” function. 

../2%20-%20Reading%20switches/PIC_Base_C_2.pdf
../../Baseline/6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
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Finally, checking elapsed time is simply: 

        if (cnt_8ms < MAXRT/8)      // if time < max reaction time (8 ms/count) 

            SUCCESS = 1;            //   turn on success LED 

 

Complete program 

Here is the complete reaction timer program, using XC8, so that you can see how the various parts fit 

together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 3, example 1                                 * 

*                   Reaction Timer game.                                * 

*                                                                       * 

*   User must attempt to press button within defined reaction time      * 

*   after "start" LED lights.  Success is indicated by "success" LED.   * 

*                                                                       * 

*       Starts with both LEDs unlit.                                    * 

*       2 sec delay before lighting "start"                             * 

*       Waits up to 1 sec for button press                              * 

*       (only) on button press, lights "success"                        * 

*       1 sec delay before repeating from start                         * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = success LED                                               * 

*       GP2 = start LED                                                 * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock  

__CONFIG(MCLRE_OFF & CP_OFF & WDT_OFF & OSC_IntRC); 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

// Pin assignments 

#define START   GPIObits.GP2        // LEDs 

#define SUCCESS GPIObits.GP1 

 

#define BUTTON  GPIObits.GP3        // pushbutton 

 

 

/***** CONSTANTS *****/ 

#define MAXRT   200             // Maximum reaction time (in ms) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    uint8_t     cnt_8ms;            // counter: increments every 8 ms 

 

    // Initialisation 

    TRIS = 0b111001;                // configure GP1 and GP2 (only) as outputs 
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    OPTION = 0b11010100;            // configure Timer0: 

             //--0-----                 timer mode (T0CS = 0) 

             //----0---                 prescaler assigned to Timer0 (PSA = 0) 

             //-----100                 prescale = 32 (PS = 100) 

             //                         -> increment every 32 us 

 

    // Main loop                                 

    for (;;) 

    { 

        // start with both LEDs off 

        GPIO = 0;                    

 

        // delay 2 sec 

        __delay_ms(2000);           // delay 2000 ms              

 

        // indicate start  

        START = 1;                  // turn on start LED 

 

        // wait up to 1 sec for button press 

        cnt_8ms = 0; 

        while (BUTTON == 1 && cnt_8ms < 1000/8) 

        { 

            TMR0 = 0;               // clear timer0 

            while (TMR0 < 8000/32)  // wait for 8 ms (32 us/tick) 

                ; 

            ++cnt_8ms;              // increment 8 ms counter 

        } 

        // check elapsed time 

        if (cnt_8ms < MAXRT/8)      // if time < max reaction time (8 ms/count) 

            SUCCESS = 1;            //   turn on success LED 

 

        // delay 1 sec 

        __delay_ms(1000);           // delay 1000 ms      

     

    }   // repeat forever 

} 

 

CCS PCB 

Lesson 2 introduced the ‘setup_counters()’ function, which, as we saw, has to be used if you need to 

enable or disable the weak pull-ups.  But its primary purpose (hence the name “setup counters”) is to setup 

Timer0 and the watchdog timer. 

To configure Timer0 for timer mode (using the internal instruction clock), with the prescaler set to 1:32 and 

assigned to Timer0, you could use: 

        setup_counters(RTCC_INTERNAL,RTCC_DIV_32); 

 

However, CCS is de-emphasising the use of ‘setup_counters()’, in favour of more specific timer and 

watchdog setup functions, including ‘setup_timer_0()’: 

        setup_timer_0(RTCC_INTERNAL|RTCC_DIV_32); 

 

Note that ‘setup_counters()’ takes two parameters, while ‘setup_timer_0()’ takes a single parameter 

formed by OR’ing the two symbols. 

Both functions work correctly, but ‘setup_timer_0()’ produces smaller code, since it is only configuring 

Timer0, so it is the better choice here. 

 

../2%20-%20Reading%20switches/PIC_Base_C_2.pdf
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As we have seen in the previous lessons, the CCS approach is to expose the PIC’s functionality through 

built-in functions, instead of accessing the registers directly. 

To set Timer0 to a specific value, use the ‘set_timer0()’ function, for example: 

        set_timer0(0);                  // clear timer0 

 

To read the current value of Timer0, use the ‘get_timer0()’ function, for example: 

        while (get_timer0() < 8000/32)  // wait for 8ms (32us/tick) 

 

The code is then otherwise the same as for XC8.  

Complete program 

Here is the complete reaction timer program, using CCS PCB: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 3, example 1                                 * 

*                   Reaction Timer game.                                * 

*                                                                       * 

*   User must attempt to press button within defined reaction time      * 

*   after "start" LED lights.  Success is indicated by "success" LED.   * 

*                                                                       * 

*       Starts with both LEDs unlit.                                    * 

*       2 sec delay before lighting "start"                             * 

*       Waits up to 1 sec for button press                              * 

*       (only) on button press, lights "success"                        * 

*       1 sec delay before repeating from start                         * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = success LED                                               * 

*       GP2 = start LED                                                 * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <12F509.h> 

 

#define GP0 PIN_B0              // define GP pins 

#define GP1 PIN_B1 

#define GP2 PIN_B2 

#define GP3 PIN_B3 

#define GP4 PIN_B4 

#define GP5 PIN_B5 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock  

#fuses NOMCLR,NOPROTECT,NOWDT,INTRC 

 

#use delay (clock=4000000)      // oscillator frequency for delay_ms() 

 

// Pin assignments 

#define START   GP2             // LEDs 

#define SUCCESS GP1 

 

#define BUTTON  GP3             // pushbutton 
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/***** CONSTANTS *****/ 

#define MAXRT   200             // Maximum reaction time (in ms) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    unsigned int8   cnt_8ms;            // counter: increments every 8 ms 

 

    // Initialisation 

    // configure Timer0: timer mode, prescale = 32 (increment every 32 us) 

    setup_timer_0(RTCC_INTERNAL|RTCC_DIV_32); 

 

 

    // Main loop                                 

    while (TRUE) 

    { 

        // start with both LEDs off 

        output_b(0);                  // clear GPIO 

 

        // delay 2 sec 

        delay_ms(2000);               // delay 2000 ms 

 

        // indicate start   

        output_high(START);           // turn on start LED 

         

        // wait up to 1 sec for button press 

        cnt_8ms = 0; 

        while (input(BUTTON) == 1 && cnt_8ms < 1000/8) 

        { 

            set_timer0(0);                  // clear timer0 

            while (get_timer0() < 8000/32)  // wait for 8 ms (32 us/tick) 

                ; 

            ++cnt_8ms;                      // increment 8 ms counter 

        } 

        // check elapsed time 

        if (cnt_8ms < MAXRT/8)        // if time < max reaction time (8ms/count) 

            output_high(SUCCESS);     //   turn on success LED 

 

        // delay 1 sec 

        delay_ms(1000);               // delay 1000 ms 

     

    }   // repeat forever 

} 

Comparisons 

As we did in the previous lessons, we can compare, for each language/compiler (MPASM assembler, XC8 

and CCS PCB), the length of the source code (ignoring comments and white space) versus program and data 

memory used by the resulting code: 

Reaction_timer 

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 53 55 4 

XC8 (Free mode) 23 83 4 

CCS PCB 22 84 6 
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The C source code is around half as long as the assembler version, but the code generated by both C 

compilers is significantly larger (around 50%) and uses more data memory – again illustrating the trade-off 

between programmer efficiency (source code length / complexity) and resource-usage. 

Example 2: Background Process Timing 

We saw in baseline assembler lesson 5 that one of the key uses of timers is to provide regular timing for 

“background” processes, while a “foreground” process responds to user signals.  Timers are ideal for this, 

because they continue to run, at a steady rate, regardless of any processing the PIC is doing.  On more 

advanced PICs, a timer is generally used with an interrupt routine, to run these background tasks.  But as 

we’ll see, they can still be useful for maintaining the timing of background tasks, even without interrupts. 

The example in baseline lesson 5 used the circuit from example 1, flashing the LED on GP2 at a steady 1 

Hz, while lighting the LED on GP1 whenever the pushbutton is pressed. 

The 500 ms delay needed for the 1 Hz flash was derived from Timer0 as follows: 

 Using a 4 MHz processor clock, providing a 1 MHz instruction clock and a 1 µs instruction cycle 

 Assigning a 1:32 prescaler to the instruction clock, incrementing Timer0 every 32 µs 

 Resetting Timer0 to zero, as soon as it reaches 125 (i.e. every 125 × 32 µs = 4 ms) 

 Repeating 125 times, creating a delay of 125 × 4 ms = 500 ms. 

 

This was implemented by the following code: 

main_loop     

        ; delay 500 ms 

        banksel dly_cnt 

        movlw   .125            ; repeat 125 times (125 x 4 ms = 500 ms) 

        movwf   dly_cnt    

dly500  clrf    TMR0            ;   clear timer0            

w_tmr0  movf    TMR0,w          ;   wait for 4 ms 

        xorlw   .125            ;     (125 ticks x 32 us/tick = 4 ms) 

        btfss   STATUS,Z 

        goto    w_tmr0 

        decfsz  dlycnt,f        ; end 500 ms delay loop 

        goto    dly500 

 

        ; toggle flashing LED        

        movf    sGPIO,w 

        xorlw   b'000100'       ; toggle LED on GP2 

        movwf   sGPIO           ;   using shadow register 

        movwf   GPIO 

 

        ; repeat forever 

        goto    main_loop    

         

And then the code which responds to the pushbutton was placed within the timer wait loop: 

w_tmr0                          ;   repeat for 4 ms: 

                                ;     check and respond to button press       

        bcf     sGPIO,1         ;       assume button up -> indicator LED off 

        btfss   GPIO,3          ;       if button pressed (GP3 low) 

        bsf     sGPIO,1         ;         turn on indicator LED 

        movf    sGPIO,w         ;     update port (copy shadow to GPIO) 

        movwf   GPIO 

        movf    TMR0,w      

        xorlw   .125            ;   (125 ticks x 32 us/tick = 4 ms)             

        btfss   STATUS,Z 

        goto    w_tmr0 

../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf


© Gooligum Electronics 2013  www.gooligum.com.au 

Baseline PIC C, Lesson 3: Using Timer0  Page 9 

The additional code doesn’t affect the timing of the background task (flashing the LED), because there are 

only a few additional instructions; they are able to be executed within the 32 µs available between each 

“tick” of Timer0. 

XC8  

This assembly code can be implemented in C as: 

    for (;;)  

    { 

        // delay 500 ms while responding to button press 

        for (dc = 0; dc < 125; dc++)   // repeat 125 times (125 x 4 ms = 500 ms) 

        {   

            TMR0 = 0;                  //   clear timer0 

            while (TMR0 < 125)         //   repeat for 4 ms (125 x 32 us) 

            {                          //     check and respond to button press 

                sGPIO &= ~(1<<1);      //       assume button up -> LED off 

                if (GP3 == 0)          //       if button pressed (GP3 low) 

                    sGPIO |= 1<<1;     //         turn on LED on GP1 

                GPIO = sGPIO;          //     update port (copy shadow to GPIO) 

            } 

        } 

        // toggle flashing LED        

        sGPIO ^= 1<<2;                 // toggle LED on GP2 using shadow reg 

                 

    }   // repeat forever 

 

There is no need to update GPIO after the LED on GP2 is toggled, because GPIO is being continually 

updated from sGPIO within the inner timer wait loop. 

 

Note the syntax used to set, clear and toggle bits in the shadow GPIO variable, sGPIO: 

            sGPIO |= 1<<1;              // turn on LED on GP1 

            sGPIO &= ~(1<<1);           // turn off LED on GP1 

            sGPIO ^= 1<<2;              // toggle LED on GP2 

     

We could instead have written: 

            sGPIO |= 0b000010;          // turn on LED on GP1 

            sGPIO &= 0b111101;          // turn off LED on GP1 

            sGPIO ^= 0b000100;          // toggle LED on GP2 

 

But the left shift (‘<<’) form more clearly specifies which bit is being operated on. 

 

If we define symbols representing the port bit positions: 

#define nFLASH  2               // flashing LED on GP2 

#define nPRESS  1               // "button pressed" indicator LED on GP1 

 

we can write these statements as: 

            sGPIO |= 1<<nPRESS;         // turn on indicator LED 

            sGPIO &= ~(1<<nPRESS);      // turn off indicator LED 

            sGPIO ^= 1<<nFLASH;         // toggle flashing LED 

 

These symbols can also be used when configuring the port directions: 

    TRIS = ~(1<<nFLASH|1<<nPRESS);  // configure LEDs (only) as outputs 

 

This makes the code clearer, more general, and therefore more maintainable. 
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However, this approach doesn’t work well on bigger PICs, which have more than one port.  You still need to 

keep track of which port each pin belongs to, and if you change your pin assignments later, you may well 

need to make a number of changes throughout your code. 

 

A more robust approach is to make use of bitfields within C structures. 

For example: 

struct { 

    unsigned    GP0     : 1; 

    unsigned    GP1     : 1; 

    unsigned    GP2     : 1; 

    unsigned    GP3     : 1; 

    unsigned    GP4     : 1; 

    unsigned    GP5     : 1; 

} sGPIObits; 

 

It is then possible to refer to each bit as a structure member, for example: 

        sGPIObits.GP1 = 1; 

 

and if we also defined a symbol such as: 

#define sPRESS  sGPIObits.GP1 

 

we can then write this as: 

        sPRESS = 1; 

 

That’s nice – we have “shadow bits” and we can refer to them easily by symbolic names – but there’s still a 

problem.  As well as being able to access individual bits, we also need to be able to refer to the whole 

shadow register as a single variable, to read or update all the bits at once.  After all, that’s the whole point of 

using a shadow register. 

We want to be able to change a single bit, as in: 

        sGPIObits.GP1 = 1;   // set shadow GP1 

 

and also read the whole shadow register in a single operation, as in: 

        GPIO = sGPIO;        // copy shadow register to port 

 

How can we do both? 

 

The C union construct is intended for exactly this situation, where we need to access the memory holding a 

variable in more than one way. 

We can define for example:  

union {                             // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 



© Gooligum Electronics 2013  www.gooligum.com.au 

Baseline PIC C, Lesson 3: Using Timer0  Page 11 

This allows us to refer to the shadow register as sGPIO.port, representing the whole port, in a single 

operation.  For example: 

        sGPIO.port = 0;      // clear shadow register 

 

        GPIO = sGPIO.port;   // update port (copy shadow to GPIO) 

 

We can also refer to the individual shadow bits as, for example: 

        sGPIO.GP1 = 1;       // set shadow GP1 

 

 

If we define symbols representing these shadow bits: 

#define sFLASH  sGPIO.GP2       // flashing LED (shadow) 

#define sPRESS  sGPIO.GP1       // "button pressed" indicator LED (shadow) 

 

we can rewrite the previous bit-manipulation statements as: 

        sPRESS = 1;             // turn on indicator LED 

        sPRESS = 0;             // turn off indicator LED 

        sFLASH = !sFLASH;       // toggle flashing LED 

 

and, very concisely: 

        sPRESS = !BUTTON;       //     turn on indicator only if button pressed 

 

Besides clarity and conciseness, a big advantage of this technique is that, if (on a larger PIC) you were to 

move one of these functions (such as the flashing LED) to another port, you only need to modify the symbol 

definition and perhaps your initialisation routine.  The rest of your program could stay the same – these 

statements would still work. 

Defining the shadow register as a union incorporating a bitfield structure may seem like a lot of trouble for 

an apparently small benefit, but it’s an elegant approach that will pay off as your applications become more 

complex. 

Complete program 

Here is how this shadow register union / bitfield structure definition is used in practice: 

/************************************************************************ 

*   Description:    Lesson 3, example 2b                                * 

*                                                                       * 

*   Demonstrates use of Timer0 to maintain timing of background actions * 

*   while performing other actions in response to changing inputs       * 

*                                                                       * 

*   One LED simply flashes at 1 Hz (50% duty cycle).                    * 

*   The other LED is only lit when the pushbutton is pressed            * 

*                                                                       * 

*   Uses union / bitfield structure to represent shadow register        * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = "button pressed" indicator LED                            * 

*       GP2 = flashing LED                                              * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 
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/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock  

__CONFIG(MCLRE_OFF & CP_OFF & WDT_OFF & OSC_IntRC); 

 

// Pin assignments 

#define sFLASH  sGPIO.GP2       // flashing LED (shadow) 

#define sPRESS  sGPIO.GP1       // "button pressed" indicator LED (shadow) 

#define BUTTON  GPIObits.GP3    // pushbutton 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    uint8_t   dc;                   // delay counter 

 

    //*** Initialisation   

     

    // configure port 

    GPIO = 0;                       // start with all LEDs off 

    sGPIO.port = 0;                 //   update shadow 

    TRIS = ~(1<<1|1<<2);            // configure GP1 and GP2 (only) as outputs 

     

    // configure Timer0     

    OPTION = 0b11010100;            // configure Timer0: 

             //--0-----                 timer mode (T0CS = 0) 

             //----0---                 prescaler assigned to Timer0 (PSA = 0) 

             //-----100                 prescale = 32 (PS = 100) 

             //                         -> increment every 32 us 

 

     

    //*** Main loop    

    for (;;)  

    { 

        // delay 500 ms while responding to button press 

        for (dc = 0; dc < 125; dc++)  // repeat 125 times (125 x 4 ms = 500 ms) 

        {   

            TMR0 = 0;                 //   clear timer0 

            while (TMR0 < 125)        //   repeat for 4 ms (125 x 32 us) 

            {                               

                sPRESS = !BUTTON;     //     turn on LED only if button pressed 

                GPIO = sGPIO.port;    //     update port (copy shadow to GPIO) 

            } 

        } 

        // toggle flashing LED        

        sFLASH = !sFLASH;             // toggle flashing LED (shadow) 

    }   

} 
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CCS PCB 

There are no new features to introduce.  We only need  to convert the references to GPIO and TMR0 in the 

XC8 code into the CCS PCB built-in function equivalents: 

    while (TRUE) 

    { 

        // delay 500 ms while responding to button press 

        for (dc = 0; dc < 125; dc++)    // repeat for 500ms (125 x 4ms = 500ms) 

        {   

            set_timer0(0);              //   clear timer0 

            while (get_timer0() < 125)  //   repeat for 4ms (125 x 32us) 

            {                       

                sPRESS = !input(BUTTON);  // turn on LED only if button pressed  

                output_b(sGPIO.port);     // update port (copy shadow to GPIO) 

            } 

        } 

        // toggle flashing LED        

        sFLASH = !sFLASH;               // toggle flashing LED (shadow) 

                

    }   // repeat forever 

 

The shadow register union is defined in much the same way as for XC8: 

union {                             // shadow copy of GPIO 

    unsigned int8   port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

and symbols defined to represent the shadow register bits corresponding to the LEDs and pushbutton: 

#define sFLASH  sGPIO.GP2       // flashing LED (shadow) 

#define sPRESS  sGPIO.GP1       // "button pressed" indicator LED (shadow) 

#define BUTTON  PIN_B3          // pushbutton on GP3 

 

Note that we have to use ‘PIN_B3’, instead of ‘GP3’.  In previous examples, we defined ‘GP3’ as an alias for 

‘PIN_B3’, but we can’t do that anymore, because ‘GP3’ has been defined as an element of sGPIO. 

Comparisons 

Here is the resource usage summary for the “Flash an LED while responding to a pushbutton” programs (the 

C versions defining the shadow register as a union containing a bitfield structure, as above): 

Flash+PB_LED 

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 37 31 2 

XC8 (Free mode) 28 69 2 

CCS PCB 27 47 6 
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The C source code is comparatively long in this example, because of the shadow register union / bitfield 

structure definition.  It’s a big part of the source code – something you wouldn’t normally bother with, for 

such a small program.  But we’ll keep doing it this way, because it’s good practice that will serve us well as 

our programs become longer, and the extra lines of variable definition won’t seem to be such a big deal. 

It’s interesting to note that the code generated by XC8 (in “Free mode”) is now much larger than that 

generated by the CCS compiler – showing the impact of having most optimisation disabled.  The paid-for 

versions of XC8 could be expected to generate more compact code. 

 

Example 3: Switch debouncing 

The previous lesson demonstrated one method commonly used to debounce switches: sampling the switch 

state periodically, and only considering it to have definitely changed when it has been in the new state for 

some minimum number of successive samples. 

This “counting algorithm” was expressed as: 

count = 0 

while count < max_samples 

 delay sample_time 

 if input = required_state 

  count = count + 1 

 else 

  count = 0 

end 

 

 

As explained in baseline assembler lesson 5, this can be simplified by using a timer, since it increments 

automatically: 

reset timer 

while timer < debounce time 

 if input ≠ required_state 

  reset timer 

end 

 

 

This algorithm was implemented in assembler, to wait for and debounce a “button down” event, as follows: 

wait_dn clrf    TMR0            ; reset timer 

chk_dn  btfsc   GPIO,3          ; check for button press (GP3 low) 

        goto    wait_dn         ;   continue to reset timer until button down 

        movf    TMR0,w          ; has 10ms debounce time elapsed? 

        xorlw   .157            ;   (157 = 10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_dn 

 

This code assumes that Timer0 is available, and is in timer mode, with a 1 MHz instruction clock and a 1:64 

prescaler, giving 64 µs per tick. 

Of course, since the baseline PICs only have a single timer, it is likely that Timer0 is being used for 

something else, and so is not available for switch debouncing.  But if it is available, it is perfectly reasonable 

to use it to debounce switches. 

 

This was demonstrated by applying this timer-based debouncing method to the “toggle an LED on 

pushbutton press” program developed in baseline assembler lesson 4.  

../2%20-%20Reading%20switches/PIC_Base_C_2.pdf
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XC8 

Timer0 can be configured for timer mode, with a 1:64 prescaler, by: 

    OPTION = 0b11010101;            // configure Timer0: 

             //--0-----                 timer mode (T0CS = 0) 

             //----0---                 prescaler assigned to Timer0 (PSA = 0) 

             //-----101                 prescale = 64 (PS = 101) 

             //                         -> increment every 64 us 

 

This is the same as for the 1:32 prescaler examples, above, except that the PS<2:0> bits are set to ‘101’ 

instead of ‘100’. 

The timer-based debounce algorithm, given above in pseudo-code, is readily translated into C: 

        TMR0 = 0;                   // reset timer 

        while (TMR0 < 157)          // wait at least 10 ms (157 x 64 us = 10 ms) 

            if (GPIObits.GP3 == 1)  //   if button up,  

                TMR0 = 0;           //     restart wait 

 

Using C macros 

This fragment of code is one that we might want to use a number of times, perhaps modified to debounce 

switches on inputs other than GP3, in this or other programs. 

As we saw in baseline assembler lesson 6, the MPASM assembler provides a macro facility, which allows a 

parameterised segment of code to be defined once and then inserted multiple times into the source code.   

Macros can also be used when programming in C. 

 

For example, we could define our debounce routine as a macro as follows: 

#define DEBOUNCE 10*1000/256    // switch debounce count = 10 ms/(256us/tick) 

 

// DbnceLo() 

// 

// Debounce switch on given input pin 

// Waits for switch input to be low continuously for DEBOUNCE*256/1000 ms 

// 

// Uses: TMR0       Assumes: TMR0 running at 256 us/tick 

// 

#define DbnceLo(PIN) TMR0 = 0;                /* reset timer              */ \ 

                     while (TMR0 < DEBOUNCE)  /* wait until debounce time */ \ 

                         if (PIN == 1)        /*   if input high,         */ \ 

                             TMR0 = 0         /*     restart wait         */ 

 

Note that a backslash (‘\’) is placed at the end of all but the last line, to continue the macro definition over 

multiple lines.  To make the backslashes visible to the C pre-processor, the older “/* */” style comments 

must be used, instead of the newer “//” style. 

 

This macro can then be used within your program as, for example: 

        DbnceLo(GPIObits.GP3);    // wait until button pressed (GP3 low) 

 

You can define macros toward the start of your source code, but as you build your own library of useful 

macros, you would normally keep them together in one or more header files, such as “stdmacros.h”, and 

reference them from your main program, using the #include directive. 

 

../../Baseline/6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
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Complete program 

Here is how this timer-based debounce code (without using macros) fits into the XC8 version of the “toggle 

an LED on pushbutton press” program: 

/************************************************************************ 

*   Description:    Lesson 3, example 3a                                * 

*                                                                       * 

*   Demonstrates use of Timer0 to implement debounce counting algorithm * 

*                                                                       * 

*   Toggles LED when pushbutton is pressed then released                * 

*                                                                       * 

************************************************************************* 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock  

__CONFIG(MCLRE_OFF & CP_OFF & WDT_OFF & OSC_IntRC); 

 

// Pin assignments 

#define sFLASH  sGPIO.GP1           // flashing LED (shadow) 

#define BUTTON  GPIObits.GP3        // pushbutton 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure port 

    GPIO = 0;                       // start with LED off 

    sGPIO.port = 0;                 //   update shadow 

    TRIS = 0b111101;                // configure GP1 (only) as an output 

     

    // configure timer 

    OPTION = 0b11010101;            // configure Timer0: 

             //--0-----                 timer mode (T0CS = 0) 

             //----0---                 prescaler assigned to Timer0 (PSA = 0) 

             //-----101                 prescale = 64 (PS = 101) 

             //                         -> increment every 64 us 
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    //*** Main loop 

    for (;;) 

 { 

        // wait for button press, debounce using timer0: 

        TMR0 = 0;                   // reset timer 

        while (TMR0 < 157)          // wait at least 10 ms (157 x 64 us = 10 ms) 

            if (BUTTON == 1)        //   if button up, 

                TMR0 = 0;           //     restart wait 

         

        // toggle LED 

        sFLASH = !sFLASH;           // toggle flashing LED (shadow) 

        GPIO = sGPIO.port;          // write to GPIO 

 

        // wait for button release, debounce using timer0: 

        TMR0 = 0;                   // reset timer 

        while (TMR0 < 157)          // wait at least 10ms (157 x 64us = 10ms) 

            if (BUTTON == 0)        //   if button down, 

                TMR0 = 0;           //     restart wait 

    }   

} 

 

 

CCS PCB 

To configure Timer0 for timer mode with a 1:64 prescaler, using CCS PCB, use: 

setup_timer_0(RTCC_INTERNAL|RTCC_DIV_64); 

 

This is the same as we have seen before, except with ‘RTCC_DIV_64’ instead of ‘RTCC_DIV_32’. 

 

The timer-based debounce algorithm can then be expressed as: 

        set_timer0(0);                // reset timer 

        while (get_timer0() < 157)    // wait at least 10 ms (157 x 64us = 10ms) 

            if (input(GP3) == 1)      //   if button up, 

                set_timer0(0);        //     restart wait 

 

 

In the same way as for XC8, this could instead be defined as a macro, as follows: 

#define DEBOUNCE 10*1000/256    // switch debounce count = 10 ms/(256us/tick) 

 

// DbnceLo() 

// 

// Debounce switch on given input pin 

// Waits for switch input to be low continuously for 10 ms 

// 

// Uses: TMR0       Assumes: TMR0 running at 256 us/tick 

// 

#define DbnceLo(PIN)                                                       \  

    set_timer0(0);                          /* reset timer              */ \ 

    while (get_timer0() < DEBOUNCE)         /* wait until debounce time */ \ 

        if (input(PIN) == 1)                /*   if input high,         */ \ 

            set_timer0(0)                   /*     restart wait         */ 

 

 

and then called from the main program as, for example: 

        DbnceLo(GP3); // wait until button pressed (GP3 low) 
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Complete program 

Here is how the timer-based debounce code (without using macros) fits into the CCS PCB version of the 

“toggle an LED on pushbutton press” program: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 3, example 3a                                * 

*                                                                       * 

*   Demonstrates use of Timer0 to implement debounce counting algorithm * 

*                                                                       * 

*   Toggles LED when pushbutton is pressed then released                * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <12F509.h> 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock  

#fuses NOMCLR,NOPROTECT,NOWDT,INTRC 

 

// Pin assignments 

#define sFLASH  sGPIO.GP1       // flashing LED (shadow) 

#define BUTTON  PIN_B3          // pushbutton on GP3 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of GPIO 

    unsigned int8   port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    // Initialisation 

 

    // configure port     

    output_b(0);                    // start with LED off 

    sGPIO.port = 0;                 //   update shadow 

    

    // configure Timer0:  

    setup_timer_0(RTCC_INTERNAL|RTCC_DIV_64);   // timer mode, prescale = 64 

                                                // -> increment every 64 us 

 

    // Main loop   

    while (TRUE) 
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    { 

        // wait for button press, debounce using timer0: 

        set_timer0(0);                   // reset timer 

        while (get_timer0() < 157)       // wait at least 10ms (157x64us = 10ms)  

            if (input(BUTTON) == 1)      //   if button up, 

                set_timer0(0);           //     restart wait 

         

        // toggle LED 

        sFLASH = !sFLASH;                // toggle flashing LED (shadow) 

        output_b(sGPIO.port);            // write to GPIO 

 

        // wait until button released (GP3 high), debounce using timer0: 

        set_timer0(0);                   // reset timer 

        while (get_timer0() < 157)       // wait at least 10ms (157x64us = 10ms) 

            if (input(BUTTON) == 0)      //   if button down, 

                set_timer0(0);           //     restart wait 

   

    }   // repeat forever 

} 

 

Example 4: Using Counter Mode 

So far we’ve used Timer0 in “timer mode”, where it is clocked by the PIC’s instruction clock, which runs at 

one quarter the speed of the processor clock (i.e. 1 MHz when the 4 MHz internal RC oscillator is used).  As 

discussed in baseline assembler lesson 5, the timer can instead be used in “counter mode”, where it counts 

transitions (rising or falling) on the PIC’s T0CKI input. 

To illustrate how to use Timer0 as 

a counter, using C, we can use the 

example from baseline assembler 

lesson 5.  An external 32.768 kHz 

crystal oscillator (as shown on the 

right) is used to drive the counter, 

providing a time base that can be 

used to flash an LED at a more 

accurate 1 Hz. 

To configure the Gooligum 

baseline training board for use 

with this example, close jumpers 

JP22 (connecting the 32 kHz 

clock signal to T0CKI) and JP12 

(enabling the LED on GP1). 

If you are using Microchip’s Low Pin Count Demo Board, you will need to build the oscillator circuit 

separately, as described in baseline assembler lesson 5. 

 

If the 32.768 kHz clock input is divided (prescaled) by 128, bit 7 of TMR0 will cycle at 1 Hz. 

 

To configure Timer0 for counter mode (external clock on T0CKI) with a 1:128 prescale ratio, we need to set 

the T0CS bit to ‘1’, PSA to ‘0’ and PS<2:0> to ‘110’.  This was done by: 

        movlw   b'11110110'     ; configure Timer0: 

                ; --1-----          counter mode (T0CS = 1) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----110          prescale = 128 (PS = 110)  

        option                  ;   -> increment at 256 Hz with 32.768 kHz input 

../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
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The value of T0SE bit is irrelevant; we don’t care if the counter increments on the rising or falling edge of 

the input clock signal – only the frequency is important.  Either edge will do. 

Bit 7 of TMR0 (which is cycling at 1 Hz) was then continually copied to GP1, as follows: 

loop    ; transfer TMR0<7> to GP1 

        clrf    sGPIO           ; assume TMR0<7>=0 -> LED off 

        btfsc   TMR0,7          ; if TMR0<7>=1 

        bsf     sGPIO,1         ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    loop   

 

XC8 

As always, to configure Timer0 using XC8, simply assign the appropriate value to OPTION: 

    OPTION = 0b11110110;        // configure Timer0: 

             //--1-----             counter mode (T0CS = 1) 

             //----0---             prescaler assigned to Timer0 (PSA = 0) 

             //-----110             prescale = 128 (PS = 110) 

             //                     -> increment at 256 Hz with 32.768 kHz input 

 

To copy bit 7 of TMR0 to the LED (via a shadow bit), we can use the following construct: 

        sFLASH = 0;                 // assume TMR<7>=0 -> LED off        

        if (TMR0 & 1<<7)            // if TMR0<7>=1 

            sFLASH = 1;             //   turn on LED 

 

This works because the expression “1<<7” equals 10000000 binary, so the result of ANDing TMR0 with 

1<<7 will only be non-zero if TMR0<7> is set. 

Or, we could write this equivalently as: 

        sFLASH = (TMR0 & 1<<7) ? 1 : 0; // sFLASH = 1 only if TMR0<7> = 1 

 

or (perhaps more clearly) as : 

        sFLASH = (TMR0 & 1<<7) != 0;    // sFLASH = TMR0<7> 

 

Which construct you use is, as ever, a matter of personal style; we’ll use the final version here. 

Complete program 

Here is the XC8 version of the “flash an LED using crystal-driven timer” program: 

/************************************************************************ 

*   Description:    Lesson 3, example 4                                 * 

*                                                                       * 

*   Demonstrates use of Timer0 in counter mode                          * 

*                                                                       * 

*   LED flashes at 1 Hz (50% duty cycle),                               * 

*   with timing derived from 32.768 kHz input on T0CKI                  * 

*                                                                       * 

************************************************************************* 

*   Pin assignments:                                                    * 

*       GP1   = flashing LED                                            * 

*       T0CKI = 32.768 kHz signal                                       * 

*                                                                       * 

************************************************************************/ 
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#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & OSC_IntRC); 

// Pin assignments 

#define sFLASH  sGPIO.GP1           // flashing LED (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure port     

    TRIS = 0b111101;            // configure GP1 (only) as an output 

     

    // configure timer     

    OPTION = 0b11110110;        // configure Timer0: 

             //--1-----             counter mode (T0CS = 1) 

             //----0---             prescaler assigned to Timer0 (PSA = 0) 

             //-----110             prescale = 128 (PS = 110) 

             //                     -> increment at 256 Hz with 32.768 kHz input 

  

                 

    //*** Main loop 

    for (;;) 

    { 

        // TMR0<7> cycles at 1 Hz, so continually copy to LED 

        sFLASH = (TMR0 & 1<<7) != 0;    // sFLASH = TMR0<7> 

 

        GPIO = sGPIO.port;              // copy shadow to GPIO 

    }   

} 

 

CCS PCB 

To configure Timer0 for counter mode, instead of timer mode, using the CCS PCB ‘setup_timer_0()’ 

function, use either ‘RTCC_EXT_L_TO_H’ (to count low to high input transitions on T0CKI), or 

‘RTCC_EXT_H_TO_L’, (for high to low transitions), instead of ‘RTCC_INTERNAL’. 

In this example, we don’t care if the counter increments on rising or falling edges – it will count at the same 

rate in either case.  So it doesn’t matter whether we use ‘RTCC_EXT_L_TO_H’ or ‘RTCC_EXT_H_TO_L’ here. 



© Gooligum Electronics 2013  www.gooligum.com.au 

Baseline PIC C, Lesson 3: Using Timer0  Page 22 

We can configure the timer with either: 

    setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_128); 

or 

    setup_timer_0(RTCC_EXT_H_TO_L|RTCC_DIV_128); 

 

To copy bit 7 of TMR0 to the LED, we could use the following: 

        sFLASH = 0;                 // assume TMR<7>=0 -> LED off        

        if (get_timer0() & 1<<7)    // if TMR0<7>=1 

            sFLASH = 1;             //   turn on LED 

or 

        sFLASH = (get_timer0() & 1<<7) != 0;    // sFLASH = TMR0<7> 

 

 

However, CCS PCB does provide a facility for accessing (testing or setting/clearing) bits directly. 

The bit to be accessed must first be declared as a variable, using the #bit directive. 

For example: 

#bit TMR0_7 = 0x01.7                // bit 7 of TMR0 

 

This variable can then be used the same way as any other single-bit variable, and can be assigned directly, 

making it possible to write simply: 

        sFLASH = TMR0_7;     

 

 

As you can see, defining bit variables in this way makes for straightforward, easy-to-read code.  However, 

CCS discourages this practice; as the help file warns, “Register locations change between chips”.  For 

example, the code above assumes that TMR0 is located at address 0x01.  If this code is migrated to a PIC 

with a different address for TMR0, and you forget to change the bit variable definition, the problem may be 

very hard to find – the compiler wouldn’t produce an error.  Your code would simply continue to test bit 7 of 

whatever register happened to now be at address 0x01. 

So although, by using the #bit directive, you can make your code clearer and more efficient, you should use 

it carefully.  Using the CCS built-in functions is safer, and easier to maintain. 

 

Complete program 

Here is how the code, using CCS PCB, with the #bit pre-processor directive, for the “flash an LED using 

crystal-driven timer” fits together: 

/************************************************************************ 

*   Description:    Lesson 3, example 4                                 * 

*                                                                       * 

*   Demonstrates use of Timer0 in counter mode                          * 

*                                                                       * 

*   LED flashes at 1 Hz (50% duty cycle),                               * 

*   with timing derived from 32.768 kHz input on T0CKI                  * 

*                                                                       * 

************************************************************************* 

*   Pin assignments:                                                    * 

*       GP1   = flashing LED                                            * 

*       T0CKI = 32.768 kHz signal                                       * 

*                                                                       * 

************************************************************************/ 
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#include <12F509.h> 

 

#bit TMR0_7 = 0x01.7                // bit 7 of TMR0 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, int RC clock  

#fuses MCLR,NOPROTECT,NOWDT,INTRC 

 

// Pin assignments 

#define sFLASH  sGPIO.GP1           // flashing LED (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of GPIO 

    unsigned int8   port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    // Initialisation 

     

    // configure Timer0:  

    setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_128); // counter mode, prescale = 128 

                                                 // -> increment at 256 Hz 

                                                 //    with 32.768 kHz input 

 

    // Main loop 

    while (TRUE) 

    { 

        // TMR0<7> cycles at 1 Hz, so continually copy to LED 

        sFLASH = TMR0_7; 

         

        output_b(sGPIO.port);       // copy shadow to GPIO 

         

    }   // repeat forever 

} 

 

Summary 

These examples have demonstrated that Timer0 can be effectively configured and accessed using the XC8 

and CCS C compilers, with the program algorithms being able to be expressed quite succinctly in C. 

We’ve also seen that using symbolic names and macros can help make your code more maintainable, and 

how the union and bitfield structure constructs can be used to make it possible to access both a whole 

variable and its individual bits, in an elegant way. 

 

In the next lesson we’ll see how these C compilers can be used with processor features such as sleep mode 

and the watchdog timer, and to select various clock, or oscillator, configurations. 

../4%20-%20Sleep%20+%20WDT/PIC_Base_C_4.pdf
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Introduction to PIC Programming 

Programming Baseline PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 4: Sleep Mode and the Watchdog Timer 

 

 

Continuing the series on C programming, this lesson revisits material from baseline lesson 7, which 

examined the baseline PIC architecture’s power-saving sleep mode, its ability to wake from sleep when an 

input changes and the watchdog timer – generally used to automatically restart a crashed program, but also 

useful for periodically waking the PIC from sleep, for low-power operation.  As before, selected examples 

from that lesson are re-implemented using Microchip’s XC8 compiler (running in “Free mode”) and CCS 

PCB
1
, introduced in lesson 1. 

Baseline assembler lesson 7 also described the various clock, or oscillator, configurations available for the 

PIC12F508/509 – a topic which does not really need a separate treatment for C, since the programming 

techniques needed to implement the examples from that lesson have already been covered in lessons 1 to 3.  

Only the PIC configuration is different, so this lesson includes a table listing the corresponding configuration 

word settings between MPASM, XC8 and CCS PCB. 

In summary, this lesson covers: 

 Sleep mode (power down) 

 Wake-up on change (power up on input change) 

 The watchdog timer, including periodic wake from sleep 

 Configuration word settings 

with examples for XC8 and CCS PCB. 

Circuit Diagram 

The examples in this lesson use the circuit shown on 

the right, consisting of a PIC12F509 and 100 nF 

bypass capacitor, with LEDs on GP1 and GP2, and a 

pushbutton switch on GP3.  

If you have the Gooligum baseline training board, 

connect jumpers JP3, JP12 and JP13 to enable the 

pull-up resistor on GP3 and the LEDs on GP1 and 

GP2.  Or, if you are using Microchip’s Low Pin 

Count Demo Board, you will need to connect LEDs to 

GP1 and GP2, as described in baseline lesson 1. 

However, if you want to be able to see how the power 

consumption is reduced when the PIC is placed into 

sleep mode, you should use an external power supply, 

                                                      

1
 XC8 is available as a free download from www.microchip.com, and CCS PCB is bundled for free with MPLAB 8 

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_1.pdf
../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
../1%20-%20Basic%20digital%20output/PIC_Base_C_1.pdf
../3%20-%20Timer%200/PIC_Base_C_3.pdf
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instead of using your PICkit 2 or PICkit 3 to power the circuit.  You can then place a multimeter in-line with 

the power supply, to measure the supply current. 

Sleep Mode 

As explained in baseline lesson 7, the assembler instruction for placing the PIC into sleep mode is ‘sleep’. 

This was demonstrated by the following code, which turns on an LED, waits for a pushbutton press, and then 

turns off the LED (saving power) before placing the PIC permanently into sleep mode (effectively shutting it 

down): 

        ; turn on LED 

        bsf     LED       

                

        ; wait for button press 

wait_lo btfsc   BUTTON          ; wait until button low 

        goto    wait_lo 

         

        ; go into standby (low power) mode 

        bcf     LED             ; turn off LED 

        sleep                   ; enter sleep mode 

 

        goto    $               ; (this instruction should never run) 

 

XC8 

To place the PIC into sleep mode, XC8 provides a ‘SLEEP()’ macro. 

It is defined in the “pic.h” header file (called from the “xc.h” file we’ve included at the start of each XC8 

program), as: 

#define SLEEP()  asm("sleep") 

 

‘asm()’ is a XC8 statement which embeds a single assembler instruction, in-line, in the C source code.  But 

since ‘SLEEP()’ is provided as a standard macro, it makes sense to use it, instead of the ‘asm()’ statement. 

Complete program 

The following program shows how the XC8 ‘SLEEP()’ macro is used: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 4, example 1                                 * 

*                                                                       * 

*   Demonstrates sleep mode                                             * 

*                                                                       * 

*   Turn on LED, wait for button pressed, turn off LED, then sleep      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       GP3 = pushbutton (active low)                                   * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock  

__CONFIG(MCLRE_OFF & CP_OFF & WDT_OFF & OSC_IntRC); 

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
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// Pin assignments 

#define LED     GPIObits.GP1    // Indicator LED on GP1 

#define nLED    1               //   (port bit 1) 

#define BUTTON  GPIObits.GP3    // Pushbutton (active low) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

    // configure port 

    TRIS = ~(1<<nLED);          // configure LED pin (only) as an output 

 

 

    //*** Main code   

    // turn on LED 

    LED = 1;                     

 

    // wait for button press 

    while (BUTTON == 1)         // wait until button low 

        ; 

 

    // go into standby (low power) mode 

    LED = 0;                    // turn off LED 

    SLEEP();                    // enter sleep mode 

 

    for (;;)                    // (this loop should never execute) 

        ; 

} 

 

CCS PCB 

Consistent with CCS’ stated approach of allowing most tasks to be performed through built-in functions, the 

PCB compiler provides a function for entering sleep mode: ‘sleep()’. 

 

Unlike the XC8 version, this is a built-in function, not a macro.  But it’s used the same way. 

Complete program 

Here is the CCS PCB version of the “sleep after pushbutton press” program: 

************************************************************************* 

*                                                                       * 

*   Description:    Lesson 4, example 1                                 * 

*                                                                       * 

*   Demonstrates sleep mode                                             * 

*                                                                       * 

*   Turn on LED, wait for button pressed, turn off LED, then sleep      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       GP3 = pushbutton (active low)                                   * 

*                                                                       * 

************************************************************************/ 

 

#include <12F509.h> 

 

#define GP0 PIN_B0              // define GP pins 
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#define GP1 PIN_B1 

#define GP2 PIN_B2 

#define GP3 PIN_B3 

#define GP4 PIN_B4 

#define GP5 PIN_B5 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock 

#fuses NOMCLR,NOPROTECT,NOWDT,INTRC 

 

// Pin assignments 

#define LED     GP1             // Indicator LED 

#define BUTTON  GP3             // Pushbutton (active low) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    // turn on LED     

    output_high(LED);       

 

    // wait for button press     

    while (input(BUTTON) == 1)      // wait until button low 

        ; 

 

    // go into standby (low power) mode 

    output_low(LED);                // turn off LED         

    sleep();                        // enter sleep mode 

 

    while (TRUE)                    // (this loop should never execute) 

        ; 

} 

 

Wake-up on Change 

We saw in baseline assembler lesson 7 that, if the GPWU   bit in the OPTION register is cleared, the 

PIC12F509 will come out of sleep (“wake-up”), if any of the GP0, GP1 or GP3 inputs change. 

Note that, in the baseline PIC architecture, wake-up on change can only be enabled on certain pins, and that 

it is either enabled for all of these pins or for none of them; it is not individually selectable. 

This feature can be used in low-power applications, where the PIC spends most of the time sleeping (saving 

power), waking only to respond to external events which lead to an input change.  It’s also useful when 

designing devices with a “soft” on/off feature, such as the Gooligum Electronics “Hangman” project, which 

is based on a baseline PIC (the 16F505). 

Note also that it’s important to read any input pins configured for wake on change, and to ensure that they 

are stable (by debouncing any switches) just prior to entering sleep mode, to avoid the PIC immediately 

waking up. 

 

Baseline PICs restart when they wake from sleep, recommencing execution at the reset vector (0x000), in the 

same way they do when first powered on (power-on reset) or following an external reset on MCLR  . 

If the reset was due to a wake on change, it may be necessary to debounce whichever input changed, to avoid 

the program responding to spurious input transitions from the switch bounce.  You could perform this 

debounce “just in case”, regardless of why the PIC (re)started. 

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
http://www.gooligum.com.au/index.html
http://www.gooligum.com.au/kits/hangman/hangman.html
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But in some cases you’ll want your program to behave differently if it was restarted by a wake on change, 

can be done by testing the GPWUF flag in the STATUS register.  GPWUF is set to ‘1’ only if a wake on 

change reset has occurred. 

These concepts were demonstrated in baseline lesson 7, through an example similar to that in the sleep mode 

section, above, and using the same circuit.  One of the LEDs is turned on and then, when the pushbutton is 

pressed, it is turned off and the PIC is put into sleep mode.  But in this example, wake on change is enabled, 

so that when the pushbutton is pressed again (changing the input on GP3), the program restarts and the LED 

is turned on again.  If GPWUF is set, a second LED is lit, to indicate that a wake on change happened. 

This was implemented in assembler as: 

        ; turn on LED 

        bsf     LED              

 

        ; test for wake-on-change reset 

        btfss   STATUS,GPWUF    ; if wake-up on change has occurred, 

        goto    wait_lo 

        bsf     WAKE            ;   turn on wake-up indicator 

        DbnceHi BUTTON          ;   wait for button to stop bouncing 

 

        ; wait for button press                                

wait_lo btfsc   BUTTON          ; wait until button low 

        goto    wait_lo 

 

        ; go into standby (low power) mode 

        clrf    GPIO            ; turn off LEDs 

 

        DbnceHi BUTTON          ; wait for stable button release 

 

        sleep                   ; enter sleep mode 

 

XC8 

To enable wake-up on change using XC8, simply ensure that the GPWU   bit in the OPTION register is 

cleared, for example: 

    OPTION = 0b01000111;        // configure wake-up on change and Timer0: 

             //0-------             enable wake-up on change (/GPWU = 0) 

             //--0-----             timer mode (T0CS = 0) 

             //----0---             prescaler assigned to Timer0 (PSA = 0) 

             //-----111             prescale = 256 (PS = 111) 

             //                     -> increment every 256 us 

 

 

Testing the GPWUF flag is simple; it is defined as a bit-field in the header files provided with the compiler 

(as all the special function register bit are), and can be accessed directly: 

    if (STATUSbits.GPWUF)       // if wake on change has occurred,  

    {                 

        WAKE = 1;               //   turn on wake-up indicator 

        DbnceHi(BUTTON);        //   wait for button to stop bouncing 

    } 

 

The test could instead be written more explicitly as: 

    if (STATUSbits.GPWUF == 1) { … }    // if wake on change has occurred... 

 

But it’s considered quite acceptable, and perfectly clear, to leave out the ‘== 1’ when testing a flag bit. 

  

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC C, Lesson 4: Sleep Mode and the Watchdog Timer Page 6 

Complete program 

Here is how the above fragments fit into the program: 

/************************************************************************ 

*   Description:    Lesson 4, example 2                                 * 

*                                                                       * 

*   Demonstrates wake-up on change                                      * 

*       plus differentiation from POR reset                             * 

*                                                                       * 

*   Turn on LED after each reset                                        * 

*   Turn on WAKE LED only if reset was due to wake on change            * 

*   then wait for button press, turn off LEDs, debounce, then sleep     * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = on/off indicator LED                                      * 

*       GP2 = wake-on-change indicator LED                              * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

#include "stdmacros-HTC.h"  // DbnceHi() - debounce switch, wait for high 

                            // Requires: TMR0 at 256us/tick 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock  

__CONFIG(MCLRE_OFF & CP_OFF & WDT_OFF & OSC_IntRC); 

 

// Pin assignments 

#define LED     GPIObits.GP1    // LED to turn on/off 

#define nLED    1               //   (port bit 1) 

#define WAKE    GPIObits.GP2    // indicates wake on change condition 

#define nWAKE   2               //   (port bit 2) 

#define BUTTON  GPIObits.GP3    // Pushbutton (active low) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //***** Initialisation 

     

    // configure port 

    GPIO = 0;                   // start with both LEDs off     

    TRIS = ~(1<<nLED|1<<nWAKE); // configure LED pins as outputs 

     

    // configure wake-on-change and timer 

    OPTION = 0b01000111;        // configure wake-up on change and Timer0: 

             //0-------             enable wake-up on change (/GPWU = 0) 

             //--0-----             timer mode (T0CS = 0) 

             //----0---             prescaler assigned to Timer0 (PSA = 0) 

             //-----111             prescale = 256 (PS = 111) 

             //                     -> increment every 256 us 

 

     

    //***** Main code   

     

    // turn on LED 

    LED = 1;     
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    // test for wake-on-change reset     

    if (STATUSbits.GPWUF)       // if wake on change has occurred,  

    {                 

        WAKE = 1;               //   turn on wake-up indicator 

        DbnceHi(BUTTON);        //   wait for button to stop bouncing 

    } 

     

    // wait for button press 

    while (BUTTON == 1)         // wait until button low 

        ; 

     

    // go into standby (low power) mode 

    GPIO = 0;                   // turn off both LEDs 

     

    DbnceHi(BUTTON);            // wait for stable button release 

         

    SLEEP();                    // enter sleep mode 

} 

 

CCS PCB 

Although the CCS PCB compiler provides built-in functions to perform most tasks, there are no built-in 

functions for explicitly enabling wake on change, or for detecting a wake on change reset. 

We saw in lesson 2 that weak pull-ups are enabled implicitly whenever Timer0 is configured, and that the 

only way to disable weak pull-ups is to use the setup_counters() function with an additional 

‘DISABLE_PULLUPS’ symbol. 

Similarly, wake-up on change is enabled implicitly whenever Timer0 is configured, whether you use 

setup_timer_0() or setup_counters().  

To setup the timer without enabling wake-up on change, you must use the setup_counters() function 

with the ‘DISABLE_WAKEUP_ON_CHANGE’ symbol ORed with the second parameter. 

For example: 

        setup_counters(RTCC_INTERNAL,RTCC_DIV_1|DISABLE_WAKEUP_ON_CHANGE); 

 

 

CCS PCB does not provide any built-in function which can be used to detect that a wake-up on change reset 

has occurred.  Although the compiler does provide a ‘restart_cause()’ function, which returns a value 

indicating the cause of the last reset, this does not encompass wake on change resets on the baseline PICs.  

The “12F509.h” header file does define the symbol ‘PIN_CHANGE_FROM_SLEEP’, which is presumably 

intended to be used in detecting a wake-up on pin change, but it is not a valid return code from the 

‘restart_cause()’ function. 

So to detect a wake on change reset, we need to use the #bit directive, introduced in lesson 3, to allow 

access to the GPWUF flag, as follows: 

#bit GPWUF = 0x03.7         // GPWUF flag in STATUS register 

 

 

This flag can then be tested directly, in the same way as we did with XC8: 

    if (GPWUF)                  // if wake on change has occurred, 

    {                 

        output_high(WAKE);      //   turn on wake-up indicator 

        DbnceHi(BUTTON);        //   wait for stable button high 

    } 

 

../2%20-%20Reading%20switches/PIC_Base_C_2.pdf
../3%20-%20Timer%200/PIC_Base_C_3.pdf
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Complete program 

The following listing shows how these fragments fit into the “wake-up on change demo” program: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 4, example 2                                 * 

*                                                                       * 

*   Demonstrates wake-up on change                                      * 

*       plus differentiation from POR reset                             * 

*                                                                       * 

*   Turn on LED after each reset                                        * 

*   Turn on WAKE LED only if reset was due to wake on change            * 

*   then wait for button press, turn off LEDs, debounce, then sleep     * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = on/off indicator LED                                      * 

*       GP2 = wake-on-change indicator LED                              * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <12F509.h> 

 

#define GP0 PIN_B0              // define GP pins 

#define GP1 PIN_B1 

#define GP2 PIN_B2 

#define GP3 PIN_B3 

#define GP4 PIN_B4 

#define GP5 PIN_B5 

 

#bit GPWUF = 0x03.7         // GPWUF flag in STATUS register 

 

#include "stdmacros-CCS.h"  // DbnceHi() - debounce switch, wait for high 

                            // Requires: TMR0 at 256us/tick 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC clock 

#fuses NOMCLR,NOPROTECT,NOWDT,INTRC 

 

// Pin assignments 

#define LED     GP1             // LED to turn on/off 

#define WAKE    GP2             // indicates wake on change condition 

#define BUTTON  GP3             // Pushbutton (active low) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

 

    // configure port 

    output_b(0);                // start with both LEDs off 

 

    // configure wake-on-change and timer     

    setup_timer_0(RTCC_INTERNAL|RTCC_DIV_256);  // enable wake-up on change 

                                                // configure Timer0: 

                                                //  timer mode, prescale = 256  

                                                //  -> increment every 256 us 
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    //*** Main code  

  

    // turn on LED 

    output_high(LED);           // turn on LED 

 

    // test for wake-on-change reset         

    if (GPWUF)                  // if wake on change has occurred,  

    {                 

        output_high(WAKE);      //   turn on wake-up indicator 

        DbnceHi(BUTTON);        //   wait for button to stop bouncing 

    } 

 

    // wait for button press     

    while (input(BUTTON) == 1)  // wait until button low 

        ; 

 

    // go into standby (low power) mode 

    output_b(0);                // turn off both LEDs 

     

    DbnceHi(BUTTON);            // wait for stable button release 

         

    sleep();                    // enter sleep mode 

} 

 

Watchdog Timer 

As described in baseline assembler lesson 7, the watchdog timer is free-running counter which, if enabled, 

operates independently of any program running on the PIC.  It is typically used to avoid program crashes, 

where your application enters a state it will never return from, such as a loop waiting for a condition that will 

never occur.  If the watchdog timer overflows, the PIC is reset, restarting your program – hopefully allowing 

it to recover and operate normally.  To avoid this “WDT reset” from occurring, your program must 

periodically reset, or clear, the watchdog timer before it overflows.  This watchdog time-out period on the 

baseline PICs is nominally 18 ms, but can be extended to a maximum of 2.3 seconds by assigning the 

prescaler to the watchdog timer (in which case the prescaler is no longer available for use with Timer0). 

The watchdog timer can also be used to regularly wake the PIC from sleep mode, perhaps to sample and log 

an environmental input (say a temperature sensor), for low power operation. 

The examples in this section illustrate these concepts. 

 

Enabling the watchdog timer and detecting WDT resets 

We saw in baseline assembler lesson 7 that the watchdog timer is controlled by the WDTE bit in the 

processor configuration word: setting WDTE to ‘1’ enables the watchdog timer. 

The assembler examples in that lesson included the following construct, to make it easy to select whether the 

watchdog timer is enabled or disabled when the code is built: 

    #define     WATCHDOG        ; define to enable watchdog timer 

 

    IFDEF WATCHDOG 

                    ; ext reset, no code protect, watchdog, int RC clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_ON & _IntRC_OSC 

    ELSE 

                    ; ext reset, no code protect, no watchdog, int RC clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

    ENDIF 

 

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
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To select the maximum watchdog time-out period of 2.3 seconds, the prescaler was assigned to the watchdog 

timer (by setting the PSA bit in OPTION), with a prescale ratio of 128:1 (18 ms × 128 = 2.3 s), by: 

        movlw   1<<PSA | b'111'     ; prescaler assigned to WDT (PSA = 1) 

                                    ; prescale = 128 (PS = 111) 

        option                      ; -> WDT period = 2.3 s 

 

 

To demonstrate the effect of the watchdog timer, an LED is turned on for 1 second, and then turned off, 

before the program enters an endless loop.  Without the watchdog timer, the LED would remain off, until the 

power is cycled.  But if the watchdog timer is enabled, a WDT reset will occur after 2.3 seconds, restarting 

the program, lighting the LED again.  The LED will be seen to flash – on for 1 s, with a period of 2.3 s. 

 

If you want your program to behave differently when restarted by a watchdog time-out, test the TO   flag in 

the STATUS register: it is cleared to ‘0’ only when a WDT reset has occurred. 

The example in baseline assembler lesson 7 used this approach to turn on an “error” LED, to indicate if a 

restart was due to a WDT reset: 

        ; test for WDT-timeout reset 

        btfss   STATUS,NOT_TO       ; if WDT timeout has occurred, 

        bsf     WDT                 ;   turn on "error" LED 

 

        ; flash LED   

        bsf     LED                 ; turn on "flash" LED   

        DelayMS 1000                ; delay 1 sec 

        bcf     LED                 ; turn off "flash" LED 

 

        ; wait forever 

        goto    $ 

 

XC8 

Since the watchdog timer is controlled by a configuration bit, the only change we need to make to enable it is 

to use a different __CONFIG() statement, with the symbol ‘WDT_ON’ replacing ‘WDT_OFF’. 

A construct very similar to that in the assembler example can be used to select between processor 

configurations: 

#define     WATCHDOG            // define to enable watchdog timer 

 

#ifdef WATCHDOG 

    // ext reset, no code protect, watchdog, int RC clock 

    __CONFIG(MCLRE_ON & CP_OFF & WDT_ON & OSC_IntRC); 

#else 

     // ext reset, no code protect, no watchdog, int RC clock 

    __CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & OSC_IntRC); 

#endif 

 

 

Assigning the prescaler to the watchdog timer and selecting a prescale ratio of 128:1 is done by: 

    OPTION = PSA | 0b111;       // prescaler assigned to WDT (PSA = 1) 

                                // prescale = 128 (PS = 111) 

                                // -> WDT period = 2.3 s 

 

The symbol ‘PSA’ is defined in the header files provided with XC8. 

 

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
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To check for a WDT timeout reset, the TO   flag can be tested directly, using: 

    if (!STATUSbits.nTO)        // if WDT timeout has occurred, 

        WDT = 1;                //   turn on "error" LED 

 

Note that the test condition is inverted, using ‘!’, since this flag is “active” when clear. 

 

Complete program 

Here is the complete program, showing how the above code fragments are used: 

/************************************************************************ 

*   Description:    Lesson 4, example 3a                                * 

*                                                                       * 

*   Demonstrates watchdog timer                                         * 

*       plus differentiation from POR reset                             * 

*                                                                       * 

*   Turn on LED for 1 s, turn off, then enter endless loop              * 

*   If enabled, WDT timer restarts after 2.3 s -> LED flashes           * 

*   Turns on WDT LED to indicate WDT reset                              * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*       GP2 = WDT-reset indicator LED                                   * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

 

/***** CONFIGURATION *****/ 

#define     WATCHDOG            // define to enable watchdog timer 

 

#ifdef WATCHDOG 

    // ext reset, no code protect, watchdog, int RC clock 

    __CONFIG(MCLRE_ON & CP_OFF & WDT_ON & OSC_IntRC); 

#else 

     // ext reset, no code protect, no watchdog, int RC clock 

    __CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & OSC_IntRC); 

#endif    

 

// Pin assignments 

#define LED     GPIObits.GP1    // LED to flash 

#define nLED    1               //   (port bit 1) 

#define WDT     GPIObits.GP2    // watchdog timer reset indicator 

#define nWDT    2               //   (port bit 2) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

 

    // configure port 

    GPIO = 0;                   // start with all LEDs off 

    TRIS = ~(1<<nLED|1<<nWDT);  // configure LED pins as outputs 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC C, Lesson 4: Sleep Mode and the Watchdog Timer Page 12 

    // configure watchdog timer 

    OPTION = PSA | 0b111;       // prescaler assigned to WDT (PSA = 1) 

                                // prescale = 128 (PS = 111) 

                                // -> WDT period = 2.3 s 

     

    //*** Main code   

    // test for WDT-timeout reset 

    if (!STATUSbits.nTO)        // if WDT timeout has occurred, 

        WDT = 1;                //   turn on "error" LED 

 

    // flash LED 

    LED = 1;                    // turn on "flash" LED 

    __delay_ms(1000);           // delay 1 sec 

    LED = 0;                    // turn off "flash" LED  

  

    // wait forever 

    for (;;)                     

        ; 

} 

 

CCS PCB 

To enable the watchdog timer, simply replace the symbol ‘NOWDT’ with ‘WDT’ in the #fuses statement. 

Once again, we can use a conditional compilation construct to allow the watchdog to be enabled or disabled 

when building the code: 

#define     WATCHDOG            // define to enable watchdog timer 

 

#ifdef WATCHDOG 

    // ext reset, no code protect, watchdog, int RC clock 

    #fuses MCLR,NOPROTECT,WDT,INTRC 

#else 

     // ext reset, no code protect, no watchdog, int RC clock 

    #fuses MCLR,NOPROTECT,NOWDT,INTRC 

#endif    

 

 

Unlike the situation for enabling and detecting wake-up on change, the CCS PCB compiler provides built-in 

functions for setting up the watchdog timer and detecting that a WDT reset has occurred. 

Although it is possible to use the ‘setup_counters()’ function to setup the watchdog timer, CCS has de-

emphasised its use, in favour of the more specific ‘setup_wdt()’. 

The setup_wdt() function takes a single parameter, which on the baseline PICs specifies the watchdog 

timeout period, from ‘WDT_18MS’ (18 ms), ‘WDT_36MS’ (36 ms), ‘WDT_72MS’ (72 ms), etc., through to 

‘WDT_2304MS’ (2.3 s). 

So in this example we have: 

    setup_wdt(WDT_2304MS);                  // WDT period = 2.3 s) 

 

 

As mentioned above, one of the available built-in functions is ‘restart_cause()’, which returns a value 

indicating why the PIC was (re)started.  Although it doesn’t accommodate wake-up on change resets, it does 

correctly detect WDT resets, in which case it returns the value corresponding to ‘WDT_TIMEOUT’ (a symbol 

defined in the “12F509.h” header file).  For example: 

    if (restart_cause() == WDT_TIMEOUT)     // if WDT timeout has occurred, 

        output_high(WDT);                   //   turn on "error" LED 
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There is, however, one complicating factor:  setup_wdt() has the side effect of resetting the TO   flag, 

which the restart_cause() function relies on to determine whether a WDT timeout had occurred. 

That is, if setup_wdt() is called before restart_cause(), the information about why the restart had 

happened is lost.  Therefore, it is important to call restart_cause() before setup_wdt(), as in the 

following program. 

Complete program 

Here is how the code fits together, when using CCS PCB: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 4, example 3a                                * 

*                                                                       * 

*   Demonstrates watchdog timer                                         * 

*       plus differentiation from POR reset                             * 

*                                                                       * 

*   Turn on LED for 1 s, turn off, then enter endless loop              * 

*   If enabled, WDT timer restarts after 2.3 s -> LED flashes           * 

*   Turns on WDT LED to indicate WDT reset                              * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*       GP2 = WDT-reset indicator LED                                   * 

*                                                                       * 

************************************************************************/ 

 

#include <12F509.h> 

 

#define GP0 PIN_B0              // define GP pins 

#define GP1 PIN_B1 

#define GP2 PIN_B2 

#define GP3 PIN_B3 

#define GP4 PIN_B4 

#define GP5 PIN_B5 

 

#use delay (clock=4000000)      // oscillator frequency for delay_ms() 

 

 

/***** CONFIGURATION *****/ 

#define     WATCHDOG            // define to enable watchdog timer 

 

#ifdef WATCHDOG 

    // ext reset, no code protect, watchdog, int RC clock 

    #fuses MCLR,NOPROTECT,WDT,INTRC 

#else 

     // ext reset, no code protect, no watchdog, int RC clock 

    #fuses MCLR,NOPROTECT,NOWDT,INTRC 

#endif    

 

// Pin assignments 

#define LED     GP1             // LED to flash 

#define WDT     GP2             // watchdog timer reset indicator 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //***** Initialisation 
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    // configure port 

    output_b(0);                            // start with both LEDs off 

     

    // test for WDT-timeout reset 

    // (note: must be done before initialising watchdog timer) 

    if (restart_cause() == WDT_TIMEOUT)     // if WDT timeout has occurred, 

        output_high(WDT);                   //   turn on "error" LED 

 

    // configure watchdog timer       

    setup_wdt(WDT_2304MS);                  // WDT period = 2.3 s  

 

     

    //***** Main code  

    // flash LED 

    output_high(LED);                       // turn on "flash" LED 

    delay_ms(1000);                         // delay 1 sec 

    output_low(LED);                        // turn off "flash" LED  

 

    // wait forever     

    while (TRUE)                             

        ; 

} 

 

 

Clearing the watchdog timer 

The previous example shows what happens when the watchdog timer overflows, but of course most of the 

time, during “normal” program operation, we want to prevent that from happening; a WDT reset should only 

occur when something has gone wrong. 

As mentioned above, to avoid overflows, the watchdog timer has to be regularly cleared.  This is typically 

done by inserting a ‘clrwdt’ instruction within the program’s “main loop”, and within any subroutine which 

may, in normal operation, not complete within the watchdog timer period. 

 

To demonstrate the effect of clearing the watchdog timer, a ‘clrwdt’ instruction was added into the endless 

loop in the example in baseline assembler lesson 7: 

;***** Main code 

        bsf     LED                 ; turn on LED 

 

        DelayMS 1000                ; delay 1 sec 

 

        bcf     LED                 ; turn off LED 

 

loop    clrwdt                      ; clear watchdog timer 

        goto    loop                ;   repeat forever 

 

With the ‘clrwdt’ instruction in place, the watchdog timer never overflows, so the PIC is never restarted by 

a WDT reset, and the LED remains turned off until the power is cycled, whether the watchdog timer is 

enabled or not. 

XC8 

Similar to the ‘SLEEP()’ macro we saw earlier, XC8 provides a ‘CLRWDT()’ macro, defined in the “pic.h” 

header file as: 

#define CLRWDT() asm("clrwdt") 

 

That is, the ‘CLRWDT()’ macro simply inserts a ‘clrwdt’ instruction into the code. 
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Using this macro, the assembler example above can be implemented with XC8 as follows: 

    //*** Main code   

    LED = 1;                    // turn on LED 

     

    __delay_ms(1000);           // delay 1 sec 

    

    LED = 0;                    // turn off LED  

     

    for (;;)                    // repeatedly clear watchdog timer forever 

        CLRWDT();    

 

 

CCS PCB 

Instead of a macro, the CCS PCB compiler provides a built-in function for clearing the watchdog timer: 

restart_wdt(). 

 

Here is the CCS PCB code, equivalent to the example above, using the restart_wdt()function: 

    //*** Main code 

    output_high(LED);               // turn on LED 

     

    delay_ms(1000);                 // delay 1 sec 

    

    output_low(LED);                // turn off LED  

     

    while (TRUE)                    // repeatedly clear watchdog timer forever 

        restart_wdt(); 

 

 

 

Periodic wake from sleep 

As explained in baseline assembler lesson 7, the watchdog timer is also often used to periodically wake the 

PIC from sleep mode, typically to check or log some inputs, take some action and then return to sleep mode, 

saving power.  This can be combined with wake-up on pin change, allowing immediate response to some 

inputs, such as a button press, while periodically checking others. 

 

To illustrate this, the example in that lesson replaced the endless loop with a ‘sleep’ instruction: 

;***** Main code 

        bsf     LED                 ; turn on LED 

 

        DelayMS 1000                ; delay 1 sec 

 

        bcf     LED                 ; turn off LED 

 

        sleep                       ; enter sleep mode 

 

With the watchdog timer enabled, with a period of 2.3 s, the LED is on for 1 s, and then off for 1.3 s, as in 

the earlier example.  But this time the PIC is in sleep mode while the LED is off, conserving power. 
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XC8 

There are no new instructions or concepts needed for this example; the main code is simply: 

    //*** Main code 

    LED = 1;                    // turn on LED 

     

    __delay_ms(1000);           // delay 1 sec 

    

    LED = 0;                    // turn off LED  

     

    SLEEP();                    // enter sleep mode 

 

CCS PCB 

Again, there are no new statements needed; the main code is much the same as we have seen before: 

    //*** Main code 

    output_high(LED);               // turn on LED 

     

    delay_ms(1000);                 // delay 1 sec 

    

    output_low(LED);                // turn off LED  

     

    sleep();                        // enter sleep mode 

 

 

Clock (Oscillator) Options 

Baseline lesson 7 also discussed the various clock, or oscillator, configurations available on the PIC12F509. 

A number of examples were used to demonstrate the various options.  Since the only new features in these 

examples were the configuration word settings, and no other new concepts were introduced, there would be 

little point in reproducing C versions of those examples here. 

 

However, for reference, here is a summary of the oscillator configuration options for the XC8 and CCS 

compilers, with the corresponding MPASM symbols: 

FOSC<1:0>  Oscillator configuration MPASM XC8 CCS PCB 

00   LP oscillator _LP_OSC OSC_LP LP 

01   XT oscillator _XT_OSC OSC_XT XT 

10   Internal  RC oscillator _IntRC_OSC OSC_IntRC INTRC 

11   External RC oscillator _ExtRC_OSC OSC_ExtRC RC 

 

 For example, to configure the processor for use with a LP crystal using XC8, you could use: 

    // ext reset, no code protect, watchdog, LP crystal 

    __CONFIG(MCLRE_ON & CP_OFF & WDT_ON & OSC_LP); 

 

Or to set the processor configuration for an external RC oscillator using CCS PCB, you could use: 

    // ext reset, no code protect, watchdog, ext RC oscillator 

    #fuses MCLR,NOPROTECT,WDT,RC 
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Summary 

Overall, we have seen that the sleep mode, wake-up on change, and watchdog timer features of the baseline 

PIC architecture can be accessed effectively in C programs, using both the XC8 and CCS compilers. 

However, CCS PCB lacks support for detecting wake-on-change resets, and its watchdog timer setup 

function has a side effect which meant that we had to rearrange one example.  This (non-obvious side 

effects) is certainly a potential issue when using compilers such as CCS’, which hide the details of the PIC 

architecture behind built-in functions.  On the other hand, the CCS source code in all of the examples is 

concise and clear.  You just need to be aware of the potential for side effects from those functions. 

 

The next lesson will focus on driving 7-segment displays (revisiting the material from baseline assembler 

lesson 8), showing how lookup tables and multiplexing can be implemented using C. 

And to do that, we’ll introduce the 14-pin PIC16F506. 

 

../5%20-%207-segment%20displays/PIC_Base_C_5.pdf
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Introduction to PIC Programming 

Programming Baseline PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 5: Driving 7-Segment Displays 

 

 

We saw in baseline assembler lesson 8 how to drive 7-segment LED displays, using lookup-tables and 

multiplexing techniques implemented in assembly language.  This lesson shows how C can be used to apply 

those techniques to drive multiple 7-segment displays, using the Microchip’s XC8 (running in “Free mode”) 

and CCS’ PCB
1
 compilers to re-implement the examples. 

In summary, this lesson covers: 

 Using lookup tables to drive a single 7-segment display 

 Using multiplexing to drive multiple displays 

 

Lookup Tables and 7-Segment Displays 

To demonstrate how to drive a single 7-segment display, we will use the circuit from baseline assembler 

lesson 8, as shown below. 

It uses a 16F506 which, as was 

explained in that lesson, is a 14-pin 

baseline PIC, with analog inputs 

(comparators and ADC), more 

oscillator modes and more data 

memory, but is otherwise similar to 

the 12F509 used in the earlier 

lessons.  It provides two 6-pin 

ports: PORTB and PORTC. 

A common-cathode 7-segment 

LED module is used here.  The 

common-cathode connection is 

grounded.  Each segment is driven, 

via a 330 Ω resistor, directly from 

one of the output pins.  To light a 

given segment, the corresponding 

output is set high. 

If a common-anode module is used instead, the anode connection is connected to VDD and the pins become 

active-low (cleared to zero to make the connected segment light) – you would need to make appropriate 

changes to the examples below. 

                                                      

1
 XC8 is available as a free download from www.microchip.com, and CCS PCB is bundled for free with MPLAB 8 
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If you are using the Gooligum baseline training board, you can implement this circuit by: 

 placing shunts (six of them) across every position in jumper block JP4, connecting segments A-D, F 

and G to pins RB0-1 and RC1-4 

 placing a single shunt in position 1 (“RA/RB4”) of JP5, connecting segment E to pin RB4 

 placing a shunt across pins 1 and 2 (“GND”) of JP6, connecting digit 1 to ground. 

All other shunts should be removed. 

 

As we saw in baseline assembler lesson 8, lookup tables on baseline PICs are normally implemented as a 

computed jump into a sequence of ‘retlw’ instructions, each returning a value corresponding to its position 

in the table.  Care has to be taken to ensure that the table is wholly contained within the first 256 words of a 

program memory page, and that the page selection bits are set correctly before accessing (calling) the table. 

The example program in that lesson implemented a simple seconds counter, displaying each digit from 0 to 

9, then repeating, with a 1 s delay between each count. 

XC8 

In C, a lookup table would usually be implemented as an initialised array.  For example: 

    uint8_t days[12] = {31,28,31,30,31,30,31,31,30,31,30,31}; 

 

The problem with such a declaration for XC8 is that the compiler has no way to know whether the array 

contents will change, so it is forced to place such an array in data memory (which even in larger 8-bit PICs is 

a very limited resource) and add code to initialise the array on program start-up – wasteful of both data and 

program space. 

If, instead, the array is declared as ‘const’, the compiler knows that the contents of the array will never 

change, and so can be placed in ROM (program memory), as a lookup table of retlw instructions. 

So to create lookup tables equivalent to those in the assembler example in baseline lesson 8, we can write: 

// pattern table for 7 segment display on port B 

const uint8_t pat7segB[10] = { 

    // RB4 = E, RB1:0 = FG 

    0b010010,   // 0 

    0b000000,   // 1 

    0b010001,   // 2 

    0b000001,   // 3 

    0b000011,   // 4 

    0b000011,   // 5 

    0b010011,   // 6 

    0b000000,   // 7 

    0b010011,   // 8 

    0b000011    // 9     

};  

 

// pattern table for 7 segment display on port C 

const uint8_t pat7segC[10] = { 

    // RC4:1 = CDBA 

    0b011110,   // 0 

    0b010100,   // 1 

    0b001110,   // 2 

    0b011110,   // 3 

    0b010100,   // 4 

    0b011010,   // 5 

    0b011010,   // 6 

    0b010110,   // 7 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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    0b011110,   // 8 

    0b011110    // 9 

}; 

 

Looking up the display patterns is easy; the digit to be displayed is used as the array index. 

To set the port pins for a given digit, we then have: 

        PORTB = pat7segB[digit];    // lookup port B and C patterns 

        PORTC = pat7segC[digit]; 

 

This is quite straightforward, and certainly simpler than the assembler version. 

 

However, the assembler example used two tables, one for PORTB, the other for PORTC, to simplify the 

code for writing the appropriate pattern to each port.  In C, it is easier to write more complex expressions, 

without having to be as concerned by (or even aware of) such implementation details. 

In this case, if you were writing the C program for this example from scratch, instead of converting an 

existing assembler program, it may seem more natural to use a single lookup table with patterns specifying 

all seven segments of the display, and to then extract the parts of each pattern corresponding to various pins. 

For example: 

// pattern table for 7 segment display on ports B and C 

const uint8_t pat7seg[10] = { 

    // RC4:1,RB4,RB1:0 = CDBAEFG 

    0b1111110,  // 0 

    0b1010000,  // 1 

    0b0111101,  // 2 

    0b1111001,  // 3 

    0b1010011,  // 4 

    0b1101011,  // 5 

    0b1101111,  // 6 

    0b1011000,  // 7 

    0b1111111,  // 8 

    0b1111011   // 9 

}; 

 

Bits 6:3 of each pattern provide the PORTC bits 4:1, so to get the value for PORTC, shift the pattern two 

bits to the right, and mask off bit 0: 

        PORTC = (pat7seg[digit] >> 2) & 0b011110;   

 

Extracting the bits for PORTB is a little more difficult. 

Pattern bit 2 gives the value for RB4.  To extract that bit (by ANDing with a single-bit mask) and shift it to 

position 4 (corresponding to RB4), we can use the expression: 

        (pat7seg[digit] & 1<<2) << 2 

 

Pattern bits 1:0 give the values of PORTB bits 1:0 (RB1 and RB0).  We don’t need to do any shifting; the 

bit positions already align, so to extract these bits, we can simply AND them with a mask:  

        (pat7seg[digit] & 0b00000011) 

 

Finally, we need to OR these two expressions together, to build the value to load into PORTB: 

            PORTB = (pat7seg[digit] & 1<<2) << 2 |     

                    (pat7seg[digit] & 0b00000011);       

 

Whether you would choose to do this in practice (it seems a bit clumsy here) is partly a matter of personal 

style, and also a question of whether the space savings, from using only one pattern array, are worth it. 
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Because we are now using a PIC16F506, instead of the simpler 12F509, there are a couple of differences 

from our earlier XC8 programs, in configuration and port initialisation, to be aware of. 

The 16F506 includes an analog-to-digital converter and two analog comparators.  As explained in baseline 

assembler lesson 8, the analog inputs associated with these peripherals must be disabled before those pins 

can be used for digital I/O, and this can be done by clearing the ADCON0 register (to deselect all of the 

ADC inputs) and the C1ON and C2ON bits (to disable the two comparators). 

This can be done in XC8 by: 

    ADCON0 = 0;                     // disable AN0, AN1, AN2 inputs 

    CM1CON0bits.C1ON = 0;           //     and comparator 1 -> RB0,RB1 digital 

    CM2CON0bits.C2ON = 0;           // disable comparator 2 -> RC1 digital 

 

We also saw that the 16F506 supports a wider range of clock options than the 12F509.  Since we want to use 

the internal RC oscillator, with RB4 available for I/O, we need to use the ‘OSC_IntRC_RB4EN’ symbol, 

instead of ‘OSC_IntRC’, and include ‘IOSCFS_OFF’ (to configure the internal oscillator for 4 MHz 

operation)  in the __CONFIG() macro, as follows: 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & IOSCFS_OFF & OSC_IntRC_RB4EN); 

 

For the full list of configuration symbols for the 16F506, see the “pic16f506.h” file in the XC8 include 

directory. 

Complete program 

Here is the complete single-lookup-table version of this example, for XC8: 

/************************************************************************ 

*   Description:    Lesson 5, example 1b                                * 

*                                                                       * 

*   Demonstrates use of lookup tables to drive a 7-segment display      * 

*                                                                       * 

*   Single digit 7-segment display counts repeating 0 -> 9              * 

*   1 second per count, with timing derived from int 4 MHz oscillator   * 

*   (single pattern lookup array)                                       * 

*                                                                       * 

************************************************************************* 

*   Pin assignments:                                                    * 

*       RB0-1,RB4, RC1-4 = 7-segment display bus (common cathode)       * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for delay functions 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & IOSCFS_OFF & OSC_IntRC_RB4EN); 

 

 

/***** LOOKUP TABLES *****/ 

 

// pattern table for 7 segment display on ports B and C 

const uint8_t pat7seg[10] = { 

    // RC4:1,RB4,RB1:0 = CDBAEFG 

    0b1111110,  // 0 

    0b1010000,  // 1 
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    0b0111101,  // 2 

    0b1111001,  // 3 

    0b1010011,  // 4 

    0b1101011,  // 5 

    0b1101111,  // 6 

    0b1011000,  // 7 

    0b1111111,  // 8 

    0b1111011   // 9 

};  

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    uint8_t     digit;              // digit to be displayed 

     

    //*** Initialisation 

 

    // configure ports 

    TRISB = 0;                      // configure PORTB and PORTC as all outputs 

    TRISC = 0; 

    ADCON0 = 0;                     // disable AN0, AN1, AN2 inputs 

    CM1CON0bits.C1ON = 0;           //     and comparator 1 -> RB0,RB1 digital 

    CM2CON0bits.C2ON = 0;           // disable comparator 2 -> RC1 digital 

         

    //*** Main loop 

    for (;;) 

    { 

        // display each digit from 0 to 9 for 1 sec 

        for (digit = 0; digit < 10; digit++) 

        { 

            // display digit by extracting pattern bits for all pins 

            PORTB = (pat7seg[digit] & 1<<2) << 2 |      // RB4  

                    (pat7seg[digit] & 0b00000011);      // RB0-1   

            PORTC = (pat7seg[digit] >> 2) & 0b011110;   // RC1-4   

         

            // delay 1 sec 

            __delay_ms(1000); 

        }   

    }       

} 

 

CCS PCB 

Like XC8, the CCS PCB compiler also places initialised arrays in program memory, as a table of retlw 

instructions, if the array is declared with the ‘const’ qualifier. 

Hence, the pattern lookup array is defined in the same way as for XC8. 

The expressions for extracting the pattern bits are also the same, since they are standard ANSI syntax.  But of 

course, the statements for assigning those patterns to the port pins are different, because CCS PCB uses built-

in functions: 

            output_b((pat7seg[digit] & 1<<2) << 2 |         // RB4 

                     (pat7seg[digit] & 0b00000011));        // RB0-1 

            output_c((pat7seg[digit] >> 2) & 0b011110);     // RC1-4 

 

 

As we did in the XC8 version, we need to make some changes to the configuration and port initialisation 

code, to reflect the fact that we’re using a 16F506 instead of a 12F509. 
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To disable the analog inputs, making all pins available for digital I/O, we can use the built-in functions 

setup_comparator() and setup_adc_ports().  We’ll see how to use them in lessons 6 and 7, but for 

now we can simply use: 

    setup_adc_ports(NO_ANALOGS);    // disable all analog and comparator inputs 

    setup_comparator(NC_NC_NC_NC);  // -> RB0, RB1, RC0, RC1 digital 

 

We also need to update the #fuses statement to use the internal RC oscillator, with RB4 available for I/O, 

by using the ‘INTRC_IO’ symbol instead of ‘INTRC’, and to run at 4 MHz, by including the symbol 

‘IOSC4’, as follows: 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

#fuses MCLR,NOPROTECT,NOWDT,IOSC4,INTRC_IO 

 

Note also that to define these symbols, you must include the correct header file for the target PIC – in this 

case it is “16F506.h” (located in the CCS PCB “Devices” directory), where you will find the full list of 

configuration symbols for the 16F506. 

Finally, now that we’re using a device with a port B, there is no need for the #define statements we used in 

the 12F509 examples to define GP pin labels. 

Complete program 

Here is the complete single-table-lookup version of the program, for CCS PCB: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 5, example 1b                                * 

*                                                                       * 

*   Demonstrates use of lookup tables to drive a 7-segment display      * 

*                                                                       * 

*   Single digit 7-segment display counts repeating 0 -> 9              * 

*   1 second per count, with timing derived from int 4 MHz oscillator   * 

*   (single pattern lookup array)                                       * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       RB0-1,RB4, RC1-4 = 7-segment display bus (common cathode)       * 

*                                                                       * 

************************************************************************/ 

 

#include <16F506.h> 

 

#use delay (clock=4000000)      // oscillator frequency for delay_ms() 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

#fuses MCLR,NOPROTECT,NOWDT,IOSC4,INTRC_IO 

 

 

/***** LOOKUP TABLES *****/ 

 

// pattern table for 7 segment display on ports B and C 

const int8 pat7seg[10] = { 

    // RC4:1,RB4,RB1:0 = CDBAEFG 

    0b1111110,  // 0 

    0b1010000,  // 1 

    0b0111101,  // 2 

    0b1111001,  // 3 

    0b1010011,  // 4 
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    0b1101011,  // 5 

    0b1101111,  // 6 

    0b1011000,  // 7 

    0b1111111,  // 8 

    0b1111011   // 9 

};  

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    unsigned int8   digit;              // digit to be displayed 

     

    //*** Initialisation 

    // configure ports 

    setup_adc_ports(NO_ANALOGS);    // disable all analog and comparator inputs 

    setup_comparator(NC_NC_NC_NC);  // -> RB0, RB1, RC0, RC1 digital 

 

         

    //*** Main loop 

    while (TRUE) 

    { 

        // display each digit from 0 to 9 for 1 sec 

        for (digit = 0; digit < 10; digit++) 

        { 

            // display digit by extracting pattern bits for all pins 

            output_b((pat7seg[digit] & 1<<2) << 2 |         // RB4 

                     (pat7seg[digit] & 0b00000011));        // RB0-1 

            output_c((pat7seg[digit] >> 2) & 0b011110);     // RC1-4 

         

            // delay 1 sec 

            delay_ms(1000); 

        }   

    }       

} 

 

Comparisons 

The following table summarises the source code length and resource usage for the “single-digit seconds 

counter” assembly and C example programs, for the versions (assembly and C) with two lookup tables with 

direct port updates, and the C versions that use a single combined lookup array with more complex pattern 

extraction for each port.  

Count_7seg_x1 

Assembler / Compiler Lookup tables 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM per-port 67 73 4 

XC8 (Free mode) per-port 38 104 4 

CCS PCB per-port 34 92 7 

XC8 (Free mode) combined 27 125 4 

CCS PCB combined 23 98 10 
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As you can see, the table-per-port C versions are much shorter than the assembler equivalent – and the 

versions using a single combined lookup table are even shorter.  But even with only one table in memory, the 

C compilers still generate larger code than the two-table version – due to the instructions needed to extract 

the patterns from each array entry. 

In this case, the added complexity of the code needed to extract bit patterns from an combined lookup array 

isn’t worth it – the generated code becomes bigger overall, and the CCS compiler used a lot of extra data 

memory (presumably to store intermediate results during the extraction process).  And the combined-table 

version is arguably harder to understand.  Nevertheless, if the lookup tables were much longer (say 50 entries 

instead of 10), it would be a different story – the space saved by storing only a single table in memory would 

more than make up for the extra instructions needed to decode it.  Sometimes you simply need to try both 

ways, to see what’s best. 

 

Multiplexing 

As explained in more detail in baseline assembler lesson 8, multiplexing can used to drive mutiple displays, 

using a minimal number of output pins.  Each display is lit in turn, one at a time, so rapidly that it appears to 

the human eye that each display is lit continuously. 

We’ll use the example circuit from that lesson, shown below, to demonstrate how to implement this 

technique, using C. 

To implement this circuit using the Gooligum baseline training board: 

 keep the six shunts in every position of jumper block JP4, connecting segments A-D, F and G to pins 

RB0-1 and RC1-4 

 keep the shunt in position 1 (“RA/RB4”) of JP5, connecting segment E to pin RB4 

 move the shunt in JP6 to across pins 2 and 3 (“RC5”), connecting digit 1 to the transistor controlled 

by RC5 

 place shunts in jumpers JP8, JP9 and JP10, connecting pins RC5, RB5 and RC0 to their respective 

transistors 

All other shunts should be removed.  

../../Baseline/8%20-%207-segment%20displays/PIC_Base_A_8.pdf
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Each 7-segment display is enabled (able to be lit when its segment inputs are set high) when the NPN 

transistor connected to its cathode pins is turned on (by pulling the base high), providing a path to ground. 

To multiplex the display, each transistor is turned on (by setting high the pin connected to its base) in turn, 

while outputting the pattern corresponding to that digit on the segment pins, which are wired as a bus. 

To ensure that the displays are lit evenly, a timer should be used to ensure that each display is enabled for the 

same period of time.  In the assembler example, this was done as follows: 

        ; display minutes for 2.048 ms 

w60_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w60_hi 

        movf    mins,w          ; output minutes digit 

        pagesel set7seg 

        call    set7seg   

        pagesel $       

        bsf     MINUTES         ; enable minutes display 

w60_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w60_lo 

 

Timer0 is used to time the display sequencing; it is configured such that bit 2 cycles every 2.048 ms, 

providing a regular tick to base the multiplex timing on. 

Since each display is enabled for 2.048 ms, and there are three displays, the output is refreshed every 6.144 

ms, or about 162 times per second – fast enough to appear continuous. 

The assembler example implemented a minutes and seconds counter, so the output refresh process was 

repeated for 1 second (i.e. 162 times), before incrementing the count. 

This approach is not 100% accurate (the prototype had a measured accuracy of 0.3% over ten minutes), but 

given that the timing is based on the internal RC oscillator, which is only accurate to within 1% or so, that’s 

not really a problem. 

XC8 

In the assembler version of this example (baseline lesson 8, example 2), the time count digits were stored as 

a separate variables: 

        UDATA 

mins    res 1                   ; current count: minutes 

tens    res 1                   ;   tens 

ones    res 1                   ;   ones 

 

This was done to simplify the assembler code, which, at the end of the main loop, incremented the “ones” 

variable, and if it overflowed from 9 to 0, incremented “tens” (and on a “tens” overflow from 5 to 0, 

incremented “minutes”). 

 

The next example (baseline lesson 8, example 3) then showed how the seconds value could be stored in a 

single value, using BCD format to simplify the process of extracting each digit for display: 

        UDATA 

mins    res 1                   ; time count: minutes 

secs    res 1                   ;   seconds (BCD) 

 

For example, to extract and display the tens digit, we had: 

        swapf   secs,w          ; get tens digit 

        andlw   0x0F            ;   from high nybble of seconds 

        pagesel set7seg 

        call    set7seg         ;   then output it     
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However, in C it is far more natural to simply store minutes and seconds as ordinary integer variables: 

    uint8_t     mins, secs;         // time counters 

 

And then the tens digit would be extracted by dividing seconds by ten, and displayed, as follows: 

        PORTB = pat7segB[secs/10];      // output tens digit      

        PORTC = pat7segC[secs/10];      //   on display bus 

 

Similarly, the ones digit is returned by the simple expression ‘secs%10’, which gives the remainder after 

dividing seconds by ten. 

 

Or course we need some code round that, to wait for TMR0<2> to go high and then low, and to enable the 

appropriate display module: 

        // display tens for 2.048 ms 

        while (!(TMR0 & 1<<2))          // wait for TMR0<2> to go high 

            ; 

        PORTB = 0;                      // disable displays 

        PORTC = 0; 

        PORTB = pat7segB[secs/10];      // output tens digit      

        PORTC = pat7segC[secs/10];      //   on display bus 

        TENS = 1;                       // enable tens display only 

        while (TMR0 & 1<<2)             // wait for TMR0<2> to go low 

            ; 

 

 

This code assumes that the symbol ‘TENS’ has been defined: 

// Pin assignments 

#define MINUTES PORTCbits.RC5   // minutes enable 

#define TENS    PORTBbits.RB5   // tens enable 

#define ONES    PORTCbits.RC0   // ones enable 

 

 

The block of code to display the tens digit has to be repeated with only minor variations for the minutes and 

ones digits. 

 

This repetition can be reduced in a couple of ways. 

The expression ‘TMR0 & 1<<2’, used to access TMR0<2>, is a little unwieldy.  Since it is used six times in 

the program (twice for each digit), it makes sense to define it as a macro: 

#define TMR0_2  (TMR0 & 1<<2)   // access to TMR0<2> 

 

The loop which waits for TMR0<2> to go high can then be written more simply as: 

        while (!TMR0_2)         // wait for TMR0<2> to go high 

            ; 

 

and to wait for it to go low: 

        while (TMR0_2)          // wait for TMR0<2> to go low 

            ; 
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More significantly, the code which outputs the digit patterns can be implemented as a function: 

void set7seg(uint8_t digit) 

{ 

    // pattern table for 7 segment display on port B 

    const uint8_t pat7segB[10] = { 

        // RB4 = E, RB1:0 = FG 

        0b010010,   // 0 

        0b000000,   // 1 

        0b010001,   // 2 

        0b000001,   // 3 

        0b000011,   // 4 

        0b000011,   // 5 

        0b010011,   // 6 

        0b000000,   // 7 

        0b010011,   // 8 

        0b000011    // 9     

    };  

 

    // pattern table for 7 segment display on port C 

    const uint8_t pat7segC[10] = { 

        // RC4:1 = CDBA 

        0b011110,   // 0 

        0b010100,   // 1 

        0b001110,   // 2 

        0b011110,   // 3 

        0b010100,   // 4 

        0b011010,   // 5 

        0b011010,   // 6 

        0b010110,   // 7 

        0b011110,   // 8 

        0b011110    // 9 

    }; 

     

    // Disable displays 

    PORTB = 0;                  // clear all digit enable lines on PORTB 

    PORTC = 0;                  //  and PORTC 

     

    // Output digit pattern 

    PORTB = pat7segB[digit];    // lookup and output port B and C patterns 

    PORTC = pat7segC[digit]; 

} 

 

It makes sense to include the pattern table definition within the function, so that the function is self-contained 

– only the function needs to “know” about the pattern table; it is never accessed directly from other parts of 

the program.  This is very similar to what was done in the assembler examples. 

It also makes sense to include the code to disable the displays, prior to outputting a new pattern on the 

segment bus, within this function, since otherwise it would have to be repeated for each digit. 

Displaying the tens digit then becomes: 

        // display tens for 2.048 ms 

        while (!TMR0_2)         // wait for TMR0<2> to go high 

            ; 

        set7seg(secs/10);       // output tens digit 

        TENS = 1;               // enable tens display 

        while (TMR0_2)          // wait for TMR0<2> to go low 

 

            ; 

 

This is much more concise than before. 
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To display all three digits of the current count for 1 second, we then have: 

        // for each time count, multiplex display for 1 second 

        // (display each of 3 digits for 2.048 ms each, 

        //  so repeat 1000000/2048/3 times to make 1 second)  

        for (mpx_cnt = 0; mpx_cnt < 1000000/2048/3; mpx_cnt++) 

        { 

            // display minutes for 2.048 ms 

            while (!TMR0_2)         // wait for TMR0<2> to go high 

                ; 

            set7seg(mins);          // output minutes digit 

            MINUTES = 1;            // enable minutes display 

            while (TMR0_2)          // wait for TMR0<2> to go low 

                ; 

                         

            // display tens for 2.048 ms 

            while (!TMR0_2)         // wait for TMR0<2> to go high 

                ; 

            set7seg(secs/10);       // output tens digit 

            TENS = 1;               // enable tens display 

            while (TMR0_2)          // wait for TMR0<2> to go low 

                ; 

                         

            // display ones for 2.048 ms 

            while (!TMR0_2)         // wait for TMR0<2> to go high 

                ; 

            set7seg(secs%10);       // output ones digit 

            ONES = 1;               // enable ones display 

            while (TMR0_2)          // wait for TMR0<2> to go low 

                ; 

        } 

 

 

Finally, instead of taking the assembler approach of incrementing all the counters (checking for and reacting 

to overflows) at the end of an endless loop, it seems much more natural in C to use nested for loops: 

    //*** Main loop 

    for (;;) 

    { 

        // count in seconds from 0:00 to 9:59 

        for (mins = 0; mins < 10; mins++) 

        { 

            for (secs = 0; secs < 60; secs++) 

            { 

                // for each time count, multiplex display for 1 second 

 

                // display multiplexing loop goes here 

            } 

        }   

    }       

 

Complete program 

Fitting all this together, including function prototypes, we have: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 5, example 2                                 * 

*                                                                       * 

*   Demonstrates use of multiplexing to drive multiple 7-seg displays   * 

*                                                                       * 
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*   3-digit 7-segment LED display: 1 digit minutes, 2 digit seconds     * 

*   counts in seconds 0:00 to 9:59 then repeats,                        * 

*   with timing derived from int 4 MHz oscillator                       * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode)        * 

*       RC5             = minutes enable (active high)                  * 

*       RB5             = tens enable                                   * 

*       RC0             = ones enable                                   * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & IOSCFS_OFF & OSC_IntRC_RB4EN); 

 

// Pin assignments 

#define MINUTES PORTCbits.RC5   // minutes enable 

#define TENS    PORTBbits.RB5   // tens enable 

#define ONES    PORTCbits.RC0   // ones enable 

 

 

/***** PROTOTYPES *****/ 

void set7seg(uint8_t digit);    // display digit on 7-segment display 

 

 

/***** MACROS *****/ 

#define TMR0_2  (TMR0 & 1<<2)   // access to TMR0<2> 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    uint8_t     mpx_cnt;            // multiplex counter 

    uint8_t     mins, secs;         // time counters 

     

    //*** Initialisation 

     

    // configure ports 

    TRISB = 0;                      // configure PORTB and PORTC as all outputs 

    TRISC = 0; 

    ADCON0 = 0;                     // disable AN0, AN1, AN2 inputs 

    CM1CON0bits.C1ON = 0;           //     and comparator 1 -> RB0,RB1 digital 

    CM2CON0bits.C2ON = 0;           // disable comparator 2 -> RC1 digital 

     

    // configure timer 

    OPTION = 0b11010111;            // configure Timer0: 

             //--0-----                 timer mode (T0CS = 0) -> RC5 usable 

             //----0---                 prescaler assigned to Timer0 (PSA = 0) 

             //-----111                 prescale = 256 (PS = 111) 

             //                         -> increment every 256 us 

             //                            (TMR0<2> cycles every 2.048 ms)  
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    //*** Main loop 

    for (;;) 

    { 

        // count in seconds from 0:00 to 9:59 

        for (mins = 0; mins < 10; mins++) 

        { 

            for (secs = 0; secs < 60; secs++) 

            { 

                // for each time count, multiplex display for 1 second 

                // (display each of 3 digits for 2.048 ms each, 

                //  so repeat 1000000/2048/3 times to make 1 second)  

                for (mpx_cnt = 0; mpx_cnt < 1000000/2048/3; mpx_cnt++) 

                { 

                    // display minutes for 2.048 ms 

                    while (!TMR0_2)         // wait for TMR0<2> to go high 

                        ; 

                    set7seg(mins);          // output minutes digit 

                    MINUTES = 1;            // enable minutes display 

                    while (TMR0_2)          // wait for TMR0<2> to go low 

                        ; 

                         

                    // display tens for 2.048 ms 

                    while (!TMR0_2)         // wait for TMR0<2> to go high 

                        ; 

                    set7seg(secs/10);       // output tens digit 

                    TENS = 1;               // enable tens display 

                    while (TMR0_2)          // wait for TMR0<2> to go low 

                        ; 

                         

                    // display ones for 2.048 ms 

                    while (!TMR0_2)         // wait for TMR0<2> to go high 

                        ; 

                    set7seg(secs%10);       // output ones digit 

                    ONES = 1;               // enable ones display 

                    while (TMR0_2)          // wait for TMR0<2> to go low 

                        ; 

                } 

            } 

        }   

    }       

} 

 

/***** FUNCTIONS *****/ 

 

/***** Display digit on 7-segment display *****/ 

void set7seg(uint8_t digit) 

{ 

    // pattern table for 7 segment display on port B 

    const uint8_t pat7segB[10] = { 

        // RB4 = E, RB1:0 = FG 

        0b010010,   // 0 

        0b000000,   // 1 

        0b010001,   // 2 

        0b000001,   // 3 

        0b000011,   // 4 

        0b000011,   // 5 

        0b010011,   // 6 

        0b000000,   // 7 

        0b010011,   // 8 

        0b000011    // 9     

    };  
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    // pattern table for 7 segment display on port C 

    const uint8_t pat7segC[10] = { 

        // RC4:1 = CDBA 

        0b011110,   // 0 

        0b010100,   // 1 

        0b001110,   // 2 

        0b011110,   // 3 

        0b010100,   // 4 

        0b011010,   // 5 

        0b011010,   // 6 

        0b010110,   // 7 

        0b011110,   // 8 

        0b011110    // 9 

    }; 

     

    // Disable displays 

    PORTB = 0;                  // clear all digit enable lines on PORTB 

    PORTC = 0;                  //  and PORTC 

     

    // Output digit pattern 

    PORTB = pat7segB[digit];    // lookup and output port B and C patterns 

    PORTC = pat7segC[digit]; 

} 

 

CCS PCB 

Converting this program for the CCS compiler isn’t difficult; it supports the same program structures, such 

as functions, as the XC8 compiler, and no new features are needed. 

 

Using the get_timer0() function, the macro for accessing TMR0<2> would be written as: 

#define TMR0_2  (get_timer0() & 1<<2)   // access to TMR0<2> 

 

Alternatively, as we saw in lesson 3, TMR0<2> could be accessed through a bit variable, declared as: 

#bit TMR0_2 = 0x01.2                    // access to TMR0<2> 

 

The main problem with this approach is that it’s not portable – you shouldn’t assume that TMR0 will always 

be at address 01h; if you migrate your code to another PIC, you may have to remember to change this line.  

On the other hand, the get_timer0() function will always work. 

Complete program 

Most of the code is very similar to the XC8 version, with register accesses replaced with their CCS built-in 

function equivalents: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 5, example 2                                 * 

*                                                                       * 

*   Demonstrates use of multiplexing to drive multiple 7-seg displays   * 

*                                                                       * 

*   3-digit 7-segment LED display: 1 digit minutes, 2 digit seconds     * 

*   counts in seconds 0:00 to 9:59 then repeats,                        * 

*   with timing derived from int 4 MHz oscillator                       * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode)        * 

../3%20-%20Timer%200/PIC_Base_C_3.pdf
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*       RC5             = minutes enable (active high)                  * 

*       RB5             = tens enable                                   * 

*       RC0             = ones enable                                   * 

*                                                                       * 

************************************************************************/ 

 

#include <16F506.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

#fuses MCLR,NOPROTECT,NOWDT,IOSC4,INTRC_IO 

 

// Pin assignments 

#define MINUTES PIN_C5              // minutes enable 

#define TENS    PIN_B5              // tens enable 

#define ONES    PIN_C0              // ones enable 

 

 

/***** PROTOTYPES *****/ 

void set7seg(unsigned int8 digit);      // display digit on 7-segment display 

 

 

/***** MACROS *****/ 

#define TMR0_2  (get_timer0() & 1<<2)   // access to TMR0<2> 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    unsigned int8    mpx_cnt;       // multiplex counter 

    unsigned int8    mins, secs;    // time counters 

     

    //*** Initialisation 

 

    // configure ports 

    setup_adc_ports(NO_ANALOGS);    // disable all analog and comparator inputs 

    setup_comparator(NC_NC_NC_NC);  // -> RB0, RB1, RC0, RC1 digital 

         

    // configure Timer0  

    setup_timer_0(RTCC_INTERNAL|RTCC_DIV_256); // timer mode, prescale = 256 

                                               // -> bit 2 cycles every 2.048 ms 

 

         

    //*** Main loop 

    while (TRUE) 

    { 

        // count in seconds from 0:00 to 9:59 

        for (mins = 0; mins < 10; mins++)  

        { 

            for (secs = 0; secs < 60; secs++) 

            { 

                // for each time count, multiplex display for 1 second 

                // (display each of 3 digits for 2.048 ms each, 

                //  so repeat 1000000/2048/3 times to make 1 second)  

                for (mpx_cnt = 0; mpx_cnt < 1000000/2048/3; mpx_cnt++) 

                { 

                    // display minutes for 2.048 ms 

                    while (!TMR0_2)         // wait for TMR0<2> to go high 

                        ; 

                    set7seg(mins);          // output minutes digit 
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                    output_high(MINUTES);   // enable minutes display 

                    while (TMR0_2)          // wait for TMR0<2> to go low 

                        ; 

                         

                    // display tens for 2.048 ms 

                    while (!TMR0_2)         // wait for TMR0<2> to go high 

                        ; 

                    set7seg(secs/10);       // output tens digit 

                    output_high(TENS);      // enable tens display 

                    while (TMR0_2)          // wait for TMR0<2> to go low 

                        ; 

                         

                    // display ones for 2.048 ms 

                    while (!TMR0_2)         // wait for TMR0<2> to go high 

                        ; 

                    set7seg(secs%10);       // output ones digit 

                    output_high(ONES);      // enable ones display 

                    while (TMR0_2)          // wait for TMR0<2> to go low 

                        ; 

                } 

            } 

        }   

    }       

} 

 

 

/***** FUNCTIONS *****/ 

 

/***** Display digit on 7-segment display *****/ 

void set7seg(unsigned int8 digit) 

{ 

    // pattern table for 7 segment display on port B 

    const int8 pat7segB[10] = { 

        // RB4 = E, RB1:0 = FG 

        0b010010,   // 0 

        0b000000,   // 1 

        0b010001,   // 2 

        0b000001,   // 3 

        0b000011,   // 4 

        0b000011,   // 5 

        0b010011,   // 6 

        0b000000,   // 7 

        0b010011,   // 8 

        0b000011    // 9     

    };  

 

    // pattern table for 7 segment display on port C 

    const int8 pat7segC[10] = { 

        // RC4:1 = CDBA 

        0b011110,   // 0 

        0b010100,   // 1 

        0b001110,   // 2 

        0b011110,   // 3 

        0b010100,   // 4 

        0b011010,   // 5 

        0b011010,   // 6 

        0b010110,   // 7 

        0b011110,   // 8 

        0b011110    // 9 

    }; 
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    // Disable displays 

    output_b(0);                    // clear all digit enable lines on PORTB 

    output_c(0);                    //  and PORTC 

     

    // Output digit pattern 

    output_b(pat7segB[digit]);      // lookup and output port B and C patterns 

    output_c(pat7segC[digit]);         

} 

 

Comparisons 

Here is the resource usage summary for the 3-digit time count example programs, including the BCD version 

of the assembler example from baseline assembler lesson 8: 

Count_7seg_x3 

Although the C source code is much shorter than the assembler program, the code generated by the C 

compilers is much bigger than the hand-written assembler version – the CCS version being nearly twice as 

large, despite having full optimisation enabled.  This is mainly because of the apparently simple division and 

modulus operations used in the C examples.  Something may be very easy to express (leading to shorter 

source code), but be inefficient to implement – and mathematical operations, even simple integer arithmetic, 

are a classic example. 

And without any optimisation, the XC8 compiler (running in ‘Free mode’) generates very poor code indeed, 

in this example – nearly five times as big as the assembler version! 

 

Summary 

We have seen in this lesson that lookup tables can be effectively implemented in C as initialised arrays 

qualified as ‘const’.  We also saw that C bit-manipulation expressions make it reasonably easy to extract 

more than one segment display pattern from a single table entry, making it seem natural to use a single 

lookup table – but that the extra instructions that the compiler generates to perform this pattern extraction 

may not be worth the savings in lookup table size. 

Similarly, we saw that it was quite straightforward to use multiplexing to implement a multi-digit display, 

without needing to be as concerned (as we were with assembly language) about how to store the values being 

displayed.  This allowed us to use simple arithmetic expressions such as ‘secs/10’ and as ‘secs%10’, but 

at a significant cost in generated code size – demonstrating that what seems easy or natural in C, is not 

always the most efficient way to do something. 

Although it would be possible to re-write the C programs so that the compilers can generate more efficient 

code, to some extent that misses the point of programming in C – it’s all about being able to save valuable 

time. 

Of course it is useful, when using C, to be aware of which program structures use more memory or need 

more instructions to implement than others (such as including floating point calculations when it is not 

necessary).  But if you really need efficiency, as you often will with these small devices, it’s difficult to do 

beat assembler. 

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 118 104 4 

XC8 (Free mode) 60 484 11 

CCS PCB 56 180 10 
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The next lesson ventures into analog territory, covering comparators and programmable voltage references 

(revisiting material from baseline assembler lesson 9). 
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Introduction to PIC Programming 

Programming Baseline PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 6: Analog Comparators 

 

 

Baseline assembler lesson 9 explained how to use the analog comparators and absolute and programmable 

voltage references available on baseline PICs, such as the PIC16F506, using assembly language.  This lesson 

demonstrates how to use C to access those facilities, re-implementing the examples using Microchip’s XC8 

(running in “Free mode”) and CCS’ PCB compilers
1
. 

In summary, this lesson covers: 

 Basic use of the analog comparator modules available on the PIC16F506 

 Using the internal absolute 0.6 V voltage reference 

 Configuring and using the internal programmable voltage reference 

 Enabling comparator output, to facilitate the addition of external hysteresis 

 Wake-up on comparator change 

 Driving Timer0 from a comparator output 

with examples for XC8 and CCS PCB. 

Comparators 

As we saw in baseline assembler lesson 9, an analog comparator is a 

device which compares the voltages present on its positive and negative 

inputs.  In normal (non-inverted) operation, the comparator’s output is 

set to a logical “high” only when the voltage on the positive input is 

greater than that on the negative input; otherwise the output is “low”.  

As such, they provide an interface between analog and digital circuitry. 

In the circuit shown on the right, the comparator output will go high, 

lighting the LED, only when the potentiometer is set to a position past 

“half-way”, i.e. positive input is greater than 2.5 V.  

Comparators are typically used to detect when an analog input is above 

or below some threshold (or, if two comparators are used, within a 

defined band) – very useful for working with many types of real-world 

sensors.  They are also used with digital inputs to match different logic 

levels, and to shape poorly defined signals. 

                                                      

1
 XC8 is available as a free download from www.microchip.com, and CCS PCB is bundled for free with MPLAB 8 
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Comparator 1 

In baseline assembler lesson 9, the circuit on the 

right, which includes a light dependent resistor 

(LDR, or CdS photocell), was used to demonstrate 

the basic operation of Comparator 1, the simpler of 

the two comparator modules in the PIC16F506.  

The exact resistance range of the photocell is not 

important, but would ideally have a resistance of 

around 20 kΩ or so for normal indoor lighting 

conditions, so that the voltage at C1IN+ will vary 

around 2.5 V or so. 

If you have the Gooligum baseline training board, 

you can implement this circuit by placing a shunt 

across pins 2 and 3 (‘LDR1’) of JP24, connecting 

the photocell in the lower left of the board (PH1) 

to C1IN+, and in JP19 to enable the LED on RC3. 

The connection to C1IN- (labelled ‘GP/RA/RB1’ 

on the board) is available as pin 9 on the 16-pin 

header.  +V and GND are brought out on pins 15 and 16, respectively, making it easy to add the 10 kΩ 

resistors (supplied with the board), forming a voltage divider, by using the solderless breadboard. 

If you are using the Microchip Low Pin Count Demo Board, the 10 kΩ potentiometer on that board, and the 

1 kΩ resistor in series between it and C1IN+, must be used as the “fixed” resistance, forming the lower arm 

of the potential divider.  You must also remove jumper JP5 (you may need to cut the PCB trace – ideally 

you’d install a jumper, so that you can reconnect it again later), to disconnect the pot from the +5 V supply.  

If you turn the pot all the way to the right, you’ll have a total resistance of 11 kΩ between C1IN+ and 

ground.  That means that ideally you’d use a photocell with a resistance of around 10 kΩ with normal indoor 

lighting.  The photocell can then be connected between pin 7 on the 14-pin header and +5 V.  Note that if 

you do not have a photocell available, you can still explore comparator operation by connecting the C1IN+ 

input directly to the centre tap on the 10 kΩ potentiometer. 

 

We saw in baseline assembler lesson 9 that, to configure Comparator 1 to behave like the standalone 

comparator shown on the previous page, where the output bit (C1OUT) indicates that the voltage on the 

C1IN+ input is higher than that on the C1IN- input, it is necessary to set the C1PREF, C1NREF and 

C1POL bits in the CM1CON0 register, and to turn on the comparator module by setting the C1ON bit: 

        movlw   1<<C1POL|1<<C1ON|1<<C1PREF|1<<C1NREF 

                                ;   pos ref is C1IN+ (C1PREF = 1) 

                                ;   neg ref is C1IN- (C1NREF = 1) 

                                ;   normal polarity (C1POL = 1) 

                                ;   comparator on (C1ON = 1) 

        movwf   CM1CON0         ;   -> C1OUT = 1 if C1IN+ > C1IN- 

 

 

The LED attached to RC3 was turned on when the comparator output was high (C1OUT = 1) by: 

loop    btfsc   CM1CON0,C1OUT   ; if comparator output high 

        bsf     LED             ;   turn on LED 

        btfss   CM1CON0,C1OUT   ; if comparator output low 

        bcf     LED             ;   turn off LED 

 

        goto    loop            ; repeat forever 

../../Baseline/9%20-%20Comparators/PIC_Base_A_9.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../Baseline/9%20-%20Comparators/PIC_Base_A_9.pdf
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XC8 

We saw in lesson 3 that symbols, defined in the XC8 header files, can be used to represent register bits to 

construct a value to load into the OPTION register, for example: 

    OPTION = ~T0CS & ~PSA | 0b111;  

 

However the OPTION register is an exception.  The XC8 header files define most special function registers, 

including CM1CON0, as unions of structures containing bit-fields corresponding to that register’s bits. 

If you wish to set and/or clear a number of bits in a register such as CM1CON0 at once, you can use a 

numeric constant such as: 

    CM1CON0 = 0b00101110;       // configure comparator 1: 

              //--1-----            normal polarity (C1POL = 1)   

              //----1---            comparator on (C1ON = 1) 

              //-----1--            -ref is C1IN- (C1NREF = 1) 

              //------1-            +ref is C1IN+ (C1PREF = 1) 

              //                    -> C1OUT = 1 if C1IN+ > C1IN- 

 

This is ok, as long as you express the value in binary, so that it is obvious which bits are being set or cleared, 

and clearly commented, as above. 

It is certainly much clearer then the equivalent: 

    CM1CON0 = 46; 

 

However, a more natural way to approach this, in XC8, is to use a sequence of assignments, to set or clear 

the appropriate register bits via the bit-fields defined in the header files. 

For example: 

    // configure comparator 1 

    CM1CON0bits.C1PREF = 1;     // +ref is C1IN+ 

    CM1CON0bits.C1NREF = 1;     // -ref is C1IN- 

    CM1CON0bits.C1POL = 1;      // normal polarity (C1IN+ > C1IN-) 

    CM1CON0bits.C1ON = 1;       // turn comparator on 

 

This is clear and easy to maintain, but a series of single-bit assignments like this requires more program 

memory than a whole-register assignment.  It is also no longer an atomic operation, where all the bits are 

updated at once.  This can be an important consideration in some instances
2
, but it is not relevant here.  Note 

also that the remaining bits in CM1CON0 are not being explicitly set or cleared; that is ok because in this 

example we don’t care what values they have. 

 

The comparator’s output bit, C1OUT, is available as the single-bit bit-field ‘CM1CON0bits.C1OUT’. 

For example: 

        LED = CM1CON0bits.C1OUT;    // turn on LED iff comparator output high 

 

 

With the above configuration, the LED will turn on when the LDR is illuminated. 

 

If instead you wanted it to operate the other way, so that the LED is lit when the LDR is in darkness, you 

could invert the comparator output test, so that the LED is set high when C1OUT is low: 

        LED = !CM1CON0bits.C1OUT;   // turn on LED iff comparator output low 

                                                      

2
 this can be a consideration with mid-range PICs, where interrupts may be used 

../3%20-%20Timer%200/PIC_Base_C_3.pdf
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Alternatively, you can configure the comparator so that its output is inverted, using either: 

    CM1CON0 = 0b00001110;       // configure comparator 1: 

              //--0-----            inverted polarity (C1POL = 0)   

              //----1---            comparator on (C1ON = 1) 

              //-----1--            -ref is C1IN- (C1NREF = 1) 

              //------1-            +ref is C1IN+ (C1PREF = 1) 

              //                    -> C1OUT = 1 if C1IN+ < C1IN- 

 

or: 

    // configure comparator 1 

    CM1CON0bits.C1PREF = 1;     // +ref is C1IN+ 

    CM1CON0bits.C1NREF = 1;     // -ref is C1IN- 

    CM1CON0bits.C1POL = 0;      // inverted polarity (C1IN+ < C1IN-) 

    CM1CON0bits.C1ON = 1;       // turn comparator on 

 

Complete program 

Here is the complete inverted polarity version of the program, for XC8: 

************************************************************************* 

*   Description:    Lesson 6, example 1b                                * 

*                                                                       * 

*   Demonstrates basic use of Comparator 1 polarity bit                 * 

*                                                                       * 

*   Turns on LED when voltage on C1IN+ < voltage on C1IN-               * 

*                                                                       * 

************************************************************************* 

*   Pin assignments:                                                    * 

*       C1IN+ = voltage to be measured (e.g. pot output or LDR)         * 

*       C1IN- = threshold voltage (set by voltage divider resistors)    * 

*       RC3   = indicator LED                                           * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & IOSCFS_OFF & OSC_IntRC_RB4EN); 

 

// Pin assignments 

#define LED     PORTCbits.RC3   // indicator LED on RC3 

#define nLED    3               //   (port bit 3) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

 

    // configure ports 

    TRISC = ~(1<<nLED);         // configure LED pin (only) as an output 

     

    // configure Comparator 1 

    CM1CON0bits.C1PREF = 1;     // +ref is C1IN+ 

    CM1CON0bits.C1NREF = 1;     // -ref is C1IN- 

    CM1CON0bits.C1POL = 0;      // inverted polarity (C1IN+ < C1IN-) 

    CM1CON0bits.C1ON = 1;       // turn comparator on 
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    //*** Main loop 

    for (;;) 

    { 

        // continually display comparator output 

        LED = CM1CON0bits.C1OUT;              

    } 

} 

 

CCS PCB 

As we’ve come to expect, the CCS PCB compiler provides a built-in function for configuring the 

comparators: ‘setup_comparator()’. 

It is used with symbols defined in the device-specific header files.  For example, “16F506.h” contains: 

//Pick one constant for COMP1 

#define CP1_B0_B1     0x3000000E 

#define CP1_B0_VREF   0x1000000A 

#define CP1_B1_VREF   0x20000008 

 

//Optionally OR with one or both of the following 

#define CP1_OUT_ON_B2 0x04000040 

#define CP1_INVERT    0x00000020 

#define CP1_WAKEUP    0x00000001 

#define CP1_TIMER0    0x00000010 

 

The first set of three symbols defines the positive and negative inputs for the comparator; one of these must 

be specified.  The last set of four symbols are used to select comparator options, such as inverted polarity, by 

ORing them into the expression passed to the ‘setup_comparator()’ function. 

 

For example, to use C1IN+ (which shares its pin with RB0) as the positive input, and C1IN- (which shares 

its pin with RB1) as the negative input, with normal polarity: 

    setup_comparator(CP1_B0_B1);    // C1 on, C1OUT = 1 if C1IN+ > C1IN- 

 

To turn off the comparator, use: 

    setup_comparator(NC_NC_NC_NC);  // turn off comparators 1 and 2  

 

This actually turns off both comparator modules on the PIC16F506.  If setup_comparator() is used to 

configure only one of the comparators, the other is turned off.  We’ll see later how to configure both 

comparators. 

To make it clear that comparator 2 is being turned off, when setting up comparator 1, you can write: 

    setup_comparator(CP1_B0_B1|NC_NC);    // C1 on, C1OUT = 1 if C1IN+ > C1IN- 

                                          // (disable C2) 

 

 

Like XC8, CCS PCB makes the C1OUT bit available as the single-bit variable ‘C1OUT’, so to copy the 

comparator output to the LED, we can use: 

        output_bit(LED,C1OUT);      // turn on LED iff comparator output high 

 

 

To invert the operation of this circuit, so that the LED turns on when the LDR is in darkness, you could copy 

the inverse of the comparator output to the LED, using: 

        output_bit(LED,~C1OUT);     // turn on LED iff comparator output low 
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Alternatively, you could configure the comparator for inverted output, using: 

    setup_comparator(CP1_B0_B1|CP1_INVERT); // C1 on, C1OUT = 1 if C1IN+ < C1IN- 

 

 

Complete program 

Here is the complete inverted polarity version of the program, for CCS PCB: 

************************************************************************* 

*                                                                       * 

*   Description:    Lesson 6, example 1b                                * 

*                                                                       * 

*   Demonstrates basic use of Comparator 1 polarity bit                 * 

*                                                                       * 

*   Turns on LED when voltage on C1IN+ < voltage on C1IN-               * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       C1IN+ = voltage to be measured (e.g. pot output or LDR)         * 

*       C1IN- = threshold voltage (set by voltage divider resistors)    * 

*       RC3   = indicator LED                                           * 

*                                                                       * 

************************************************************************/ 

 

#include <16F506.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

#fuses MCLR,NOPROTECT,NOWDT,IOSC4,INTRC_IO 

 

// Pin assignments 

#define LED     PIN_C3          // indicator LED on RC3 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure comparators 

    setup_comparator(CP1_B0_B1|CP1_INVERT); // C1 on, C1OUT = 1 if C1IN+ < C1IN- 

 

     

    //*** Main loop 

    while (TRUE) 

    { 

        // continually display comparator output 

        output_bit(LED,C1OUT); 

    } 

} 
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Comparisons 

The following table summarises the resource usage for the “comparator 1 inverted polarity” assembler and C 

example programs. 

Comp1_LED-neg 

The CCS version is amazingly short, at only 7 lines of code – demonstrating again that the use of built-in 

functions, for actions such as configuring comparators, can lead to very compact code.  The XC8 version is 

longer, because separate statements are used to set or clear each bit in CM1CON0 – but still only around 

half as long as the assembler version. 

 

Absolute Voltage Reference 

It is possible to assign an internal 0.6 V reference as 

the negative input for comparator 1.  

This means that the external 10 kΩ resistors, 

forming a voltage divider in the previous example, 

are unnecessary, and they can be removed – as in 

the circuit on the right.  You should find that 

removing the resistors makes no difference to the 

circuit’s operation. 

 

It also means that the RB1 pin is now available for 

use. 

 

To select the internal 0.6 V reference as the internal 

input, clear the C1NREF bit in the CM1CON0 

register. 

 

XC8 

Assuming that we still want inverted operation, where the LED is on when the LDR is in darkness, simply 

change the comparator configuration instructions to: 

    // configure comparator 1 

    CM1CON0bits.C1PREF = 1;     // +ref is C1IN+ 

    CM1CON0bits.C1NREF = 0;     // -ref is 0.6 V internal ref 

    CM1CON0bits.C1POL = 0;      // inverted polarity (C1IN+ < 0.6 V) 

    CM1CON0bits.C1ON = 1;       // turn comparator on 

 

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 20 14 0 

XC8 (Free mode) 12 29 0 

CCS PCB 7 28 4 
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Or alternatively: 

    CM1CON0 = 0b00001010;       // configure comparator 1: 

              //--0-----            inverted polarity (C1POL = 0)   

              //----1---            comparator on (C1ON = 1) 

              //-----0--            -ref is 0.6 V (C1NREF = 0) 

              //------1-            +ref is C1IN+ (C1PREF = 1) 

              //                    -> C1OUT = 1 if C1IN+ < 0.6 V 

 

CCS PCB 

To use the internal 0.6 V reference, we only need to change the parameter in the setup_comparator() 

function: 

    setup_comparator(CP1_B0_VREF|CP1_INVERT);   // C1 on: C1IN+ < 0.6 V 

 

This specifies that RB0 (C1IN+) be used as the positive input and the 0.6 V reference be used as the 

negative input on comparator 1, with the output inverted. 

 

External Output and Hysteresis 

As was explained in baseline assembler lesson 9, it is often desirable to add hysteresis to a comparator, to 

make it less sensitive to small changes in the input signal due to superimposed noise or other interference.  

For example, in the above examples using a photocell, you will find that the output LED flickers when the 

light level is close to the threshold, particularly with mains-powered artificial illumination, which varies at 

50 or 60 Hz. 

On the PIC16F506, the output of comparator 1 can be 

made available on the C1OUT pin. 

This is done by clearing the C1OUTEN  bit in 

CM1CON0. 

In the circuit on the right, hysteresis has been 

introduced by using a 100 kΩ resistor to feed some of 

the comparator’s output, on C1OUT, back into the 

C1IN+ input.  

You can build this with the Gooligum baseline training 

board by placing the supplied 100 kΩ resistor between 

pins 8 (‘GP/RA/RB0’) and 13 (‘GP/RA/RB2’) on the 

16-pin header. 

Or, if you are using the Microchip Low Pin Count 

Demo Board, you would place the feedback resistor 

between pins 7 and 9 on the 14-pin header. 

 

Note that, because C1OUT shares its pin with the AN2 analog input, the comparator output will not appear 

on C1OUT until the AN2 input is disabled; as we’ll see in the next lesson, a simple way to disable all the 

analog inputs is to clear the ADCON0 register
3
. 

Note also that, because hysteresis relies on positive feedback, the comparator output must not be inverted. 

                                                      

3
 See baseline assembler lesson 10 for an explanation of the ADCON0 register. 

../../Baseline/9%20-%20Comparators/PIC_Base_A_9.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../7%20-%20ADC%20+%20arrays/PIC_Base_C_7.pdf
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XC8 

To clear ADCON0 (disabling all analog inputs, including AN2, to make it possible for the output of 

comparator 1 to be placed on the C1OUT pin) using XC8, we can write: 

    ADCON0 = 0;                 // disable analog inputs -> C1OUT usable 

 

 

Comparator 1 can then be configured by: 

    // configure comparator 1 

    CM1CON0bits.C1PREF = 1;     // +ref is C1IN+ 

    CM1CON0bits.C1NREF = 0;     // -ref is 0.6 V internal ref 

    CM1CON0bits.C1POL = 1;      // normal polarity (C1IN+ > 0.6 V) 

    CM1CON0bits.nC1OUTEN = 0;   // enable C1OUT (for hysteresis feedback) 

    CM1CON0bits.C1ON = 1;       // turn comparator on 

 

or: 

    CM1CON0 = 0b00101010;       // configure comparator 1: 

              //-0------            enable C1OUT pin (/C1OUTEN = 0) 

              //--1-----            normal polarity (C1POL = 1)   

              //----1---            comparator on (C1ON = 1) 

              //-----0--            -ref is 0.6 V (C1NREF = 0) 

              //------1-            +ref is C1IN+ (C1PREF = 1) 

              //                    -> C1OUT = 1 if C1IN+ > 0.6V, 

              //                       C1OUT enabled (for hysteresis feedback) 

 

Note that the external output is enabled by clearing C1OUTEN  and that the output is not inverted. 

Since we want to light the LED when the photocell is in darkness (C1IN+ < 0.6 V), we need to invert the 

display logic: 

        LED = !CM1CON0bits.C1OUT;       // display comparator output (inverted) 

 

CCS PCB 

As we’ll see in the next lesson, the CCS compiler provides a ‘setup_adc_ports()’ built-in function, 

which is used to select, among other things, whether pins are analog or digital. 

It can be used to disable all the analog inputs, as follows: 

    setup_adc_ports(NO_ANALOGS);        // disable analog inputs -> C1OUT usable 

 

 

To enable C1OUT (which shares its pin with RB2), OR the ‘CP1_OUT_ON_B2’ symbol into the parameter 

passed to the setup_comparator() function: 

    setup_comparator(CP1_B0_VREF|CP1_OUT_ON_B2);  // C1 on: C1IN+ > 0.6 V 

                                                  //        C1OUT enabled 

 

 

Note again that, to make hysteresis possible, the comparator output bit is no longer inverted. 

If we still want the LED to indicate darkness (C1IN+ < 0.6 V), we have to invert the display logic instead: 

        // display comparator output (inverted) 

        output_bit(LED,~C1OUT); 

 

../7%20-%20ADC%20+%20arrays/PIC_Base_C_7.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC C, Lesson 6: Analog Comparators  Page 10 

Wake-up on Comparator Change 

We saw in baseline assembler lesson 9 that the comparator modules in the PIC16F506 can be used to wake 

the device from sleep when the comparator output changes – useful for conserving power while waiting for a 

signal change from a sensor. 

To enable wake-up on change for Comparator 1, clear the C1WU   bit in the CM1CON0 register. 

To determine whether a reset was due to a wake-up on comparator change, test the CWUF flag in the 

STATUS register.  If CWUF is set, we can be sure that the device has been woken from sleep by a 

comparator change.  If it is clear, some other type of reset has occurred. 

Note that there is no indication of which comparator was the source of the reset.  If you have configured both 

comparators for wake-up on change, you need to store the previous values of their outputs, so that you can 

determine which one changed. 

In the example in baseline assembler lesson 9, the previous circuit was used (keeping the hysteresis, making 

the comparator less sensitive), with the LED indicating when a comparator change occurs, by lighting for 

one second.  While waiting for a comparator change, the PIC was placed into sleep mode – immediately after 

reading CM1CON0 to prevent false triggering. 

XC8 

The CWUF flag can be tested directly, so we can simply write: 

    if (!STATUSbits.CWUF) 

    { 

        // power-on reset 

    } 

    else 

    { 

        // wake-up on comparator change occurred 

    } 

 

The test is inverted here so that the normal power-on initialisation code appears first – it seems clearer that 

way, since you would normally look toward the start of a program to find the initialisation code. 

 

The comparator configuration code is similar to what we’ve seen before, with the addition of 

“CM1CON0bits.nC1WU = 0;” to enable the wake-up on change function: 

    // configure comparator 1 

    CM1CON0bits.C1PREF = 1;     // +ref is C1IN+ 

    CM1CON0bits.C1NREF = 0;     // -ref is 0.6 V internal ref 

    CM1CON0bits.C1POL = 1;      // normal polarity (C1IN+ > 0.6 V) 

    CM1CON0bits.nC1OUTEN = 0;   // enable C1OUT (for hysteresis feedback) 

    CM1CON0bits.nC1WU = 0;      // enable wake-up on change 

    CM1CON0bits.C1ON = 1;       // turn comparator on 

 

Or, this could have been written as: 

    CM1CON0 = 0b00101010;       // configure comparator 1: 

              //-0------            enable C1OUT pin (/C1OUTEN = 0) 

              //--1-----            normal polarity (C1POL = 1)   

              //----1---            comparator on (C1ON = 1) 

              //-----0--            -ref is 0.6 V (C1NREF = 0) 

              //------1-            +ref is C1IN+ (C1PREF = 1) 

              //-------0            enable wake on change (/C1WU = 0) 

 

 

../../Baseline/9%20-%20Comparators/PIC_Base_A_9.pdf
../../Baseline/9%20-%20Comparators/PIC_Base_A_9.pdf
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The comparator initialisation is followed by a delay of 10 ms, allowing the comparator to settle before the 

device is placed into sleep mode, to avoid initial false triggering. 

As another (necessary) precaution to avoid false triggering, we read the current value of CM1CON0, 

immediately before entering sleep mode: 

    CM1CON0;                    // read comparator to clear mismatch condition 

    SLEEP();                    // enter sleep mode 

 

Any statement which reads CM1CON0 could be used. 

“CM1CON0” is an expression which evaluates to the value of the contents of CM1CON0, but does nothing.  

In general, the compiler’s optimiser will discard any such “do nothing” statements. 

However, CM1CON0 is declared as a ‘volatile’ variable in the processor header file.  This qualifier tells the 

compiler that the value of this variable may change at any time, to prevent the optimiser from eliminating 

apparently redundant references to it.  It also ensures that, when the variable’s name is used on its own in this 

way, the compiler will generate code which reads the variable’s memory location and discards the result, 

which is exactly what we want. 

Complete program 

Here is how the above code fragments fit together, within the complete “wake-up on comparator change 

demo” program: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 6, example 2                                 * 

*                                                                       * 

*   Demonstrates wake-up on comparator change                           * 

*                                                                       * 

*   Turns on LED for 1s when comparator 1 output changes,               * 

*   then sleeps until the next change                                   * 

*   (internal 0.6 V reference with hysteresis)                          * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       C1IN+ = voltage to be measured (e.g. pot output or LDR)         * 

*       C1OUT = comparator output (fed back to input via resistor)      * 

*       RC3   = indicator LED                                           * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for delay functions 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & IOSCFS_OFF & OSC_IntRC_RB4EN); 

 

// Pin assignments 

#define LED     PORTCbits.RC3   // indicator LED on RC3 

#define nLED    3               //   (port bit 3) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC C, Lesson 6: Analog Comparators  Page 12 

    //*** Initialisation 

     

    // configure ports 

    LED = 0;                    // start with LED off 

    TRISC = ~(1<<nLED);         // configure LED pin (only) as an output 

    ADCON0 = 0;                 // disable analog inputs -> C1OUT usable 

     

    // check for wake-up on comparator change 

    if (!STATUSbits.CWUF) 

    { 

        // power-on reset has occurred: 

         

        // configure comparator 1 

        CM1CON0bits.C1PREF = 1;     // +ref is C1IN+ 

        CM1CON0bits.C1NREF = 0;     // -ref is 0.6 V internal ref 

        CM1CON0bits.C1POL = 1;      // normal polarity (C1IN+ > 0.6 V) 

        CM1CON0bits.nC1OUTEN = 0;   // enable C1OUT (for hysteresis feedback) 

        CM1CON0bits.nC1WU = 0;      // enable wake-up on change 

        CM1CON0bits.C1ON = 1;       // turn comparator on 

         

        // delay 10 ms to allow comparator to settle 

        __delay_ms(10); 

    } 

    else 

    { 

        // wake-up on comparator change occurred: 

         

        // flash LED 

        LED = 1;                // turn on LED 

        __delay_ms(1000);       // delay 1 sec 

    } 

     

    //*** Sleep until comparator change 

    LED = 0;                    // turn off LED 

    CM1CON0;                    // read comparator to clear mismatch condition 

    SLEEP();                    // enter sleep mode 

} 

 

 

CCS PCB 

In lesson 4, we saw that, although CCS PCB provides a ‘restart_cause()’ function, which returns a 

value indicating why the device has been reset, it does not support wake on pin change resets.  

Unfortunately, this function does not support wake on comparator change resets either. 

Instead, we need to test the CWUF flag, which the PCB compiler does not normally provide direct access to.   

The solution, as we saw in lesson 4, is to use the #bit directive, as follows: 

#bit CWUF = 0x03.6          // CWUF flag in STATUS register 

 

This flag can then be referenced directly, in the same way as we did with XC8: 

    if (!CWUF) 

    { 

        // power-on reset 

    } 

    else 

    { 

        // wake-up on comparator change occurred 

    } 

../4%20-%20Sleep%20+%20WDT/PIC_Base_C_4.pdf
../4%20-%20Sleep%20+%20WDT/PIC_Base_C_4.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC C, Lesson 6: Analog Comparators  Page 13 

To configure comparator 1 for wake-up on change, OR the ‘CP1_WAKEUP’ symbol into the parameter passed 

to the setup_comparator() function: 

        setup_comparator(CP1_B0_VREF|CP1_OUT_ON_B2|CP1_WAKEUP); 

 

For clarity, you may wish to split this function call across multiple lines, so that the symbols can be 

commented separately: 

        setup_comparator(CP1_B0_VREF|       // C1 on: C1IN+ > 0.6V, 

                         CP1_OUT_ON_B2|     //        C1OUT pin enabled, 

                         CP1_WAKEUP);       //        wake-up on change enabled 

 

 

We cannot use the same method as we did with XC8 to read the current comparator output prior to entering 

sleep mode, because the CCS PCB compiler will not generate any instructions when an expression is not 

used for anything.  So, to read a bit or register, we must assign it to a variable. 

Since the PCB compiler exposes the C1OUT bit, we can use: 

    temp = C1OUT;               // read comparator to clear mismatch condition 

    sleep();                    // enter sleep mode 

 

Since C1OUT is a single-bit variable, the temp variable can be declared to be ‘int1’ (single bit), although 

‘int8’ (one byte, or 8 bits) is also appropriate; the generated code size is the same for both. 

Complete program 

The following listing shows how these code fragments fit into the CCS PCB version of the “wake-up on 

comparator change demo” program: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 6, example 2                                 * 

*                                                                       * 

*   Demonstrates wake-up on comparator change                           * 

*                                                                       * 

*   Turns on LED for 1 s when comparator 1 output changes,              * 

*   then sleeps until the next change                                   * 

*   (internal 0.6 V reference with hysteresis)                          * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       C1IN+ = voltage to be measured (e.g. pot output or LDR)         * 

*       C1OUT = comparator output (fed back to input via resistor)      * 

*       RC3   - indicator LED                                           * 

*                                                                       * 

************************************************************************/ 

 

#include <16F506.h> 

 

#bit CWUF = 0x03.6          // CWUF flag in STATUS register 

 

#use delay (clock=4000000)  // oscillator frequency for delay_ms() 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

#fuses MCLR,NOPROTECT,NOWDT,INTRC_IO,IOSC4 

 

// Pin assignments 

#define LED     PIN_C3          // indicator LED on RC3 
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/***** MAIN PROGRAM *****/ 

void main() 

{ 

    int1    temp;               // temp variable for reading C1 

     

    //*** Initialisation 

     

    // configure ports 

    setup_adc_ports(NO_ANALOGS);        // disable analog inputs -> C1OUT usable 

     

    // check for wake-up on comparator change 

    if (!CWUF) 

    { 

        // power-on reset has occurred: 

         

        // configure comparators 

        setup_comparator(CP1_B0_VREF|       // C1 on: C1IN+ > 0.6V, 

                         CP1_OUT_ON_B2|     //        C1OUT pin enabled, 

                         CP1_WAKEUP);       //        wake-up on change enabled 

                                                     

        // delay 10 ms to allow comparator to settle 

        delay_ms(10); 

    } 

    else 

    { 

        // wake-up on comparator change occurred: 

         

        // flash LED 

         

        output_high(LED);       // turn on LED        

        delay_ms(1000);         // delay 1 sec 

    } 

     

    //*** Sleep until comparator change 

    output_low(LED);            // turn off LED 

    temp = C1OUT;               // read comparator to clear mismatch condition 

    sleep();                    // enter sleep mode 

} 

 

Comparisons 

Here is the resource usage for the “wake-up on comparator change demo” assembler and C examples. 

Comp1_Wakeup 

Although the CCS source code continues to be the shortest, the CCS compiler generates the least efficient 

code in this example – even larger than the (unoptimised) XC8 version. 

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 33 43 3 

XC8 (Free mode) 23 58 3 

CCS PCB 17 66 7 
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Clocking Timer0 

As explained in baseline assembler lesson 9, the output of comparator 1 can be used to clock Timer0.  This is 

useful for counting pulses which do not meet the signal requirements for digital inputs (specified in the “DC 

Characteristics” table in the device data sheet). 

To demonstrate this, the circuit below was used.  The external clock module from baseline assembler lesson 

5 is used to supply a “clean” 32.768 kHz signal, which is degraded by being passed through a low-pass filter 

and clipped by two diodes, creating a signal with 32.768 kHz pulses which peak at around 1 V.  

 

This circuit can be built with the Gooligum baseline training board and the supplied 10 kΩ resistor, 1 nF 

capacitor and two 1N4148 diodes.  The 32.768 kHz oscillator output is available on pin 1 (‘32 kHz’) of the 

16-pin header, the C1IN+ input is pin 8 (‘GP/RA/RB0’) and ground is pin16 (‘GND’).  You should also 

remove the shunt from JP24 (disconnecting the pot or photocell from C1IN+). 

Note: you must only connect these additional components to C1IN+ after programming the PIC, to avoid 

interference with the programming process.  You need to program the PIC before making the connection to 

C1IN+.  You can then apply power (whether from a PICkit 2, PICkit3, or external power supply) and release 

reset – and the LED on RC3 should start flashing.  

 

The degraded signal cannot be used to drive a digital input directly, but the clock pulses can be detected by a 

comparator with a 0.6 V input voltage reference. 

 

The example program in baseline assembler lesson 9 used Timer0, driven from the 32.768 kHz clock, via 

comparator 1, to flash the LED at 1 Hz.  This was done by assigning the prescaler to Timer0, selecting a 

prescale ratio of 1:128, and then copying the value to TMR0<7> (which is then cycling at 1 Hz) to the LED 

output. 

 

To use comparator 1 as the source for Timer0, clear the C1T0CS  bit in the CM1CON0 register (to enable 

the comparator 1 timer output), and set the T0CS bit in the OPTION register (to select Timer0 external 

counter mode). 

../../Baseline/9%20-%20Comparators/PIC_Base_A_9.pdf
../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../Baseline/9%20-%20Comparators/PIC_Base_A_9.pdf
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XC8 

As we saw in lesson 3, to configure Timer0 for counter mode, using XC8, we can use: 

    OPTION = T0CS & ~PSA | 0b110;   // configure Timer0: 

                                    //   counter mode (T0CS = 1) 

                                    //   prescaler assigned to Timer0 (PSA = 0) 

                                    //   prescale = 128 (PS = 110) 

                                    //   -> incr at 256 Hz with 32.768 kHz input 

 

 

To configure comparator 1, with the timer output enabled, we have: 

    // configure comparator 1 

    CM1CON0bits.C1PREF = 1;         // +ref is C1IN+ 

    CM1CON0bits.C1NREF = 0;         // -ref is 0.6 V internal ref 

    CM1CON0bits.C1POL = 1;          // normal polarity (C1IN+ > 0.6 V) 

    CM1CON0bits.nC1T0CS = 0;        // enable TMR0 clock source 

    CM1CON0bits.C1ON = 1;           // turn comparator on 

                                    // -> C1OUT = 1 if C1IN+ > 0.6 V, 

                                    //    TMR0 clock from C1 

 

 

We can then copy TMR0<7> to the LED output, using a shadow register, as we’ve done before: 

        sFLASH = (TMR0 & 1<<7) != 0;    // sFLASH = TMR0<7> 

         

        PORTC = sPORTC.port;            // copy shadow to PORTC 

 

Complete program 

Here is how the code for the “comparator 1 timer output demo” program fits together, using XC8: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 6, example 3                                 * 

*                                                                       * 

*   Demonstrates use of comparator 1 to clock TMR0                      * 

*                                                                       * 

*   LED flashes at 1 Hz (50% duty cycle),                               * 

*   with timing derived from 32.768 kHz input on C1IN+                  * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       C1IN+ = 32.768 kHz signal                                       * 

*       RC3   = flashing LED                                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & IOSCFS_OFF & OSC_IntRC_RB4EN); 

 

// Pin assignments 

#define sFLASH  sPORTC.RC3          // flashing LED (shadow) 

../3%20-%20Timer%200/PIC_Base_C_3.pdf
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/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of PORTC 

    uint8_t         port; 

    struct { 

        unsigned    RC0     : 1; 

        unsigned    RC1     : 1; 

        unsigned    RC2     : 1; 

        unsigned    RC3     : 1; 

        unsigned    RC4     : 1; 

        unsigned    RC5     : 1; 

    }; 

} sPORTC; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure ports 

    TRISC = 0b110111;               // configure RC3 (only) as an output 

     

    // configure timer 

    OPTION = T0CS & ~PSA | 0b110;   // configure Timer0: 

                                    //   counter mode (T0CS = 1) 

                                    //   prescaler assigned to Timer0 (PSA = 0) 

                                    //   prescale = 128 (PS = 110) 

                                    //   -> incr at 256 Hz with 32.768 kHz input 

                                     

    // configure comparator 1 

    CM1CON0bits.C1PREF = 1;         // +ref is C1IN+ 

    CM1CON0bits.C1NREF = 0;         // -ref is 0.6 V internal ref 

    CM1CON0bits.C1POL = 1;          // normal polarity (C1IN+ > 0.6 V) 

    CM1CON0bits.nC1T0CS = 0;        // enable TMR0 clock source 

    CM1CON0bits.C1ON = 1;           // turn comparator on 

                                    // -> C1OUT = 1 if C1IN+ > 0.6 V, 

                                    //    TMR0 clock from C1 

     

       

    //*** Main loop 

    for (;;) 

    { 

        // TMR0<7> cycles at 1 Hz, so continually copy to LED 

        sFLASH = (TMR0 & 1<<7) != 0;    // sFLASH = TMR0<7> 

         

        PORTC = sPORTC.port;            // copy shadow to PORTC 

    } 

} 

 

 

 

CCS PCB 

We saw in lesson 3 that to configure Timer0 for counter mode, using CCS PCB, we can use: 

    setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_128); 

 

 

../3%20-%20Timer%200/PIC_Base_C_3.pdf
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To enable the timer output on comparator 1, we need to include the ‘CP1_TIMER0’ symbol in the parameter 

passed to the setup_comparator() function: 

    setup_comparator(CP1_B0_VREF|CP1_TIMER0);       // C1 on: C1IN+ > 0.6 V, 

                                                    //        TMR0 clock enabled 

 

 

Finally, bit 7 of TMR0 can be copied to the LED output, using a shadow register, by: 

        sFLASH = (get_timer0() & 1<<7) != 0;    // sFLASH = TMR0<7> 

         

        output_c(sPORTC.port);                  // copy shadow to PORTC 

 

 

Complete program 

Here is the complete “comparator 1 timer output demo” program, using CCS PCB: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 6, example 3                                 * 

*                                                                       * 

*   Demonstrates use of comparator 1 to clock TMR0                      * 

*                                                                       * 

*   LED flashes at 1 Hz (50% duty cycle),                               * 

*   with timing derived from 32.768 kHz input on C1IN+                  * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       C1IN+ = 32.768 kHz signal                                       * 

*       RC3   = flashing LED                                            * 

*                                                                       * 

************************************************************************/ 

 

#include <16F506.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

#fuses MCLR,NOPROTECT,NOWDT,INTRC_IO,IOSC4 

 

// Pin assignments 

#define sFLASH  sPORTC.RC3          // flashing LED (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of PORTC 

    unsigned int8   port; 

    struct { 

        unsigned    RC0     : 1; 

        unsigned    RC1     : 1; 

        unsigned    RC2     : 1; 

        unsigned    RC3     : 1; 

        unsigned    RC4     : 1; 

        unsigned    RC5     : 1; 

    }; 

} sPORTC; 

 

 

/***** MAIN PROGRAM *****/ 
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void main() 

{ 

    //*** Initialisation 

     

    // configure Timer0  

    setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_128); // counter mode, prescale = 128 

                                                 // -> increment at 256 Hz 

                                                 //    with 32.768 kHz input 

 

    // configure comparators 

    setup_comparator(CP1_B0_VREF|CP1_TIMER0);    // C1 on: C1IN+ > 0.6 V, 

                                                 //        TMR0 clock enabled 

     

       

    //*** Main loop 

    while (TRUE) 

    { 

        // TMR0<7> cycles at 1 Hz, so continually copy to LED 

        sFLASH = (get_timer0() & 1<<7) != 0;    // sFLASH = TMR0<7>         

         

        output_c(sPORTC.port);                  // copy shadow to PORTC  

    } 

} 

 

 

Comparator 2 and the Programmable Voltage Reference 

As described in greater detail in baseline assembler lesson 9, comparator 2 is very similar to comparator 1, 

except that: 

 A wider range of inputs can be used as the positive reference: C2IN+, C2IN- and C1IN+ 

 The negative reference can be either the C2IN- pin, or an internal programmable voltage reference 

 The fixed 0.6 V internal voltage reference cannot be used with comparator 2 

 The output of comparator 2 is not available as an input to Timer0 

 

Comparator 2 is controlled by the CM2CON0 register. 

 

The programmable voltage reference can be set to one of 32 available voltages, from 0 V to 0.72 × VDD. 

The reference voltage is set by the VR<3:0> bits and VRR, which selects a high or low voltage range: 

 VRR = 1 selects the low range, where CVREF = VR<3:0>/24 × VDD. 

 VRR = 0 selects the high range, where CVREF = VDD/4 + VR<3:0>/32 × VDD. 

With a 5 V supply, the available output range is from 0 V to 3.59 V. 

Since the low and high ranges overlap, only 29 of the 32 selectable voltages are unique (0.250 × VDD, 0.500 

× VDD and 0.625 × VDD are selectable in both ranges). 

 

The programmable voltage reference can optionally be output on the CVREF pin, whether or not it is also 

being used as the negative reference for comparator 2. 

../../Baseline/9%20-%20Comparators/PIC_Base_A_9.pdf
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In baseline assembler lesson 9, the circuit on the right 

was used to demonstrate how comparator 2 can be used 

with the programmable voltage reference to test whether 

an input signal is within an allowed band.  

The C2IN+ input is used with a photocell to detect light 

levels, as before.  The LED on RC3 indicates a low level 

of illumination, and the LED on RC1 indicates bright 

light.  When neither LED is lit, the light level will be in 

the middle; not too dim or too bright. 

If you are using the Gooligum baseline training board, 

you should remove the shunt from of JP24 and instead 

place a shunt in position 2 (‘C2IN+’) of JP25, connecting 

photocell PH2 to C2IN+.  You should also place shunts 

in JP17 and JP19, enabling the LEDs on RC1 and RC3. 

 

To test whether the input is within limits, the 

programmable voltage reference is first configured to 

generate the “low” threshold voltage, and the input is 

compared with this low level.  The voltage reference is 

then reconfigured to generate the “high” threshold and the input is compared with this higher level. 

This process could be extended to multiple input thresholds, by configuring the voltage reference to generate 

each threshold in turn.  However, if you wish to test against more than a few threshold levels, you would 

probably be better off using an analog-to-digital converter (described in the next lesson). 

This example uses 2.0 V as the “low” threshold and 3.0 V as the “high” threshold, but, since the reference is 

programmable, you can always choose your own levels!  

XC8 

Comparator 2 can be configured in much the same way as we have been configuring comparator 1, either by 

assigning a binary value to CM2CON0: 

    CM2CON0 = 0b00101010;       // configure comparator 2: 

              //--1-----            normal polarity (C2POL = 1)   

              //------1-            +ref is C2IN+ (C2PREF1 = 1) 

              //-----0--            -ref is CVref (C2NREF = 0) 

              //----1---            comparator on (C2ON = 1) 

              //                    -> C2OUT = 1 if C2IN+ > CVref 

 

or by a block of statements assigning values to the bit-fields defined in the header files for CM2CON0: 

    // configure comparator 2 

    CM2CON0bits.C2PREF1 = 1;        // +ref is C2IN+ 

    CM2CON0bits.C2NREF = 0;         // -ref is CVref 

    CM2CON0bits.C2POL = 1;          // normal polarity (C2IN+ > CVref) 

    CM2CON0bits.C2ON = 1;           // turn comparator on   

                                    // -> C2OUT = 1 if C2IN+ > CVref    

 

 

Similarly, to configure the programmable voltage reference, we could assign a binary value to the variable 

corresponding to VRCON: 

    VRCON = 0b10000101;    // configure programmable voltage reference: 

            //1-------         enable voltage reference (VREN = 1) 

            //--0-0101         CVref = 0.406*Vdd (VRR = 0, VR = 5) 

            //                 -> CVref = 2.03 V 

../../Baseline/9%20-%20Comparators/PIC_Base_A_9.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../7%20-%20ADC%20+%20arrays/PIC_Base_C_7.pdf
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Or, using the bit-fields defined in the processor header files, we could write: 

    // configure voltage reference 

    VRCONbits.VRR = 0;              // CVref = 0.406*Vdd (2.03V) if VR = 5 

                                    //      or 0.594*Vdd (2.97V) if VR = 11 

    VRCONbits.VREN = 1;             // turn voltage reference on 

 

We also need to assign a value between 0 and 15 to the VR<3:0> bits, to select the reference voltage. 

Although they are available as single-bit fields VR0 to VR3, they are also (much more conveniently) made 

available as a 4-bit field named VR within VRCONbits, allowing us to simply write: 

    VRCONbits.VR = 5;           // CVref = 0.406*Vdd (2.03V) 

 

 

Both of these examples selected a reference of 0.406 × VDD, giving CVREF = 2.03 V with a 5 V supply. 

 

To generate a reference voltage close to 3.0 V, we can use: 

    VRCON = 0b10001011;    // configure programmable voltage reference: 

            //1-------         enable voltage reference (VREN = 1) 

            //--0-1011         CVref = 0.594*Vdd (VRR = 0, VR = 11) 

            //                 -> CVref = 2.97 V 

 

or: 

    VRCONbits.VRR = 0;          // select high range 

    VRCONbits.VR = 11;          // CVref = 0.594*Vdd = 2.97 V 

    VRCONbits.VREN = 1;         // turn voltage reference on 

 

 

Note that, by coincidence, the only difference between the settings for the two voltages is VR = 5 to select 

2.03 V and VR = 11 to select 2.97 V. 

 

This allows us to configure the other voltage reference settings just once, in the initialisation code: 

    // configure voltage reference 

    VRCONbits.VRR = 0;              // CVref = 0.406*Vdd (2.03V) if VR = 5 

                                    //      or 0.594*Vdd (2.97V) if VR = 11 

    VRCONbits.VREN = 1;             // turn voltage reference on 

 

 

Then in the main loop we can switch between the two voltages, using: 

        VRCONbits.VR = 5;           // select low CVref (2.03 V) 

 

and: 

        VRCONbits.VR = 11;          // select high CVref (2.97 V) 

 

 

After changing the voltage reference, it can take a little while for it to settle and stably generate the newly-

selected voltage.  According to the data sheet, for the PIC16F506 this settling time can be up to 10 µs. 

Therefore, we should insert a 10 µs delay after selecting a new voltage, before testing the comparator output. 

As we saw in lesson 1, we can do this using the ‘__delay_us()’ macro built into XC8. 

 

../1%20-%20Basic%20digital%20output/PIC_Base_C_1.pdf
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Complete program 

Here is how the above code fragments fit together, to form the complete “comparator 2 and programmable 

voltage reference demo” program for XC8: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 6, example 4                                 * 

*                                                                       * 

*   Demonstrates use of comparator 2 and programmable voltage reference * 

*                                                                       * 

*   Turns on Low LED  when C2IN+ < 2.0 V (low light level)              * 

*         or High LED when C2IN+ > 3.0 V (high light level)             * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       C2IN+ = voltage to be measured (LDR/resistor divider)           * 

*       RC3   = "Low" LED                                               * 

*       RC1   = "High" LED                                              * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for delay functions 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & IOSCFS_OFF & OSC_IntRC_RB4EN); 

 

// Pin assignments 

#define sLO     sPORTC.RC3          // "Low" LED (shadow) 

#define sHI     sPORTC.RC1          // "High" LED (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of PORTC 

    uint8_t         port; 

    struct { 

        unsigned    RC0     : 1; 

        unsigned    RC1     : 1; 

        unsigned    RC2     : 1; 

        unsigned    RC3     : 1; 

        unsigned    RC4     : 1; 

        unsigned    RC5     : 1; 

    }; 

} sPORTC; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure ports 

    TRISC = 0b110101;               // configure RC1 and RC3 (only) as outputs 

     

    // configure comparator 2 

    CM2CON0bits.C2PREF1 = 1;        // +ref is C2IN+ 
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    CM2CON0bits.C2NREF = 0;         // -ref is CVref 

    CM2CON0bits.C2POL = 1;          // normal polarity (C2IN+ > CVref) 

    CM2CON0bits.C2ON = 1;           // turn comparator on   

                                    // -> C2OUT = 1 if C2IN+ > CVref   

     

    // configure voltage reference 

    VRCONbits.VRR = 0;              // CVref = 0.406*Vdd (2.03V) if VR = 5 

                                    //      or 0.594*Vdd (2.97V) if VR = 11 

    VRCONbits.VREN = 1;             // turn voltage reference on 

 

     

    //*** Main loop 

    for (;;) 

    { 

        // Test for low illumination 

        VRCONbits.VR = 5;           // select low CVref (2.03 V) 

        __delay_us(10);             // wait 10 us to settle 

        sLO = !CM2CON0bits.C2OUT;   // if C2IN+ < CVref turn on Low LED 

         

        // Test for high illumination 

        VRCONbits.VR = 11;          // select high CVref (2.97 V) 

        __delay_us(10);             // wait 10 us to settle 

        sHI = CM2CON0bits.C2OUT;    // if C2IN+ > CVref turn on High LED 

         

        // Display test results 

        PORTC = sPORTC.port;        // copy shadow to PORTC 

    } 

} 

 

CCS PCB 

As was alluded to earlier, the CCS PCB built-in ‘setup_comparator()’ function is used to configure both 

comparators, not only comparator 1. 

To configure comparator 2, OR one of the following symbols (defined in the “16F506.h” header file) into the 

expression passed to setup_comparator(): 

#define CP2_B0_B1     0x30001C00 

#define CP2_C0_B1     0x20100E00 

#define CP2_C1_B1     0x20200C00 

#define CP2_B0_VREF   0x10001800 

#define CP2_C0_VREF   0x00100A00 

#define CP2_C1_VREF   0x30200800 

 

You’ll notice that there are more available input combinations than there were for comparator 1, and that for 

comparator 2, ‘VREF’ refers to the programmable voltage reference, instead of the 0.6 V reference. 

You may also notice a mistake:  RB1 shares its pin with C1IN-, which is not available as an input to 

comparator 2.  CCS mistakenly included ‘B1’ in these symbols, when they should have written ‘C1’, 

referring to C2IN-, which shares its pin with RC1. 

If you do not include any of the comparator 1 configuration symbols in the expression, only comparator 2 

will be setup, with comparator 1 being turned off.  You can make this explicit by including the symbol 

‘NC_NC’ into the expression. 

For this example, we need: 

    setup_comparator(NC_NC|CP2_C0_VREF);    // C1: off 

                                            // C2: C2IN+ > CVref 

 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC C, Lesson 6: Analog Comparators  Page 24 

To enable one of comparator 2’s options, such as inverted polarity, output on C2OUT, or wake-up on 

change, OR one or more of these symbols into the setup_comparator() expression: 

//Optionally OR with one or both of the following 

#define CP2_OUT_ON_C4 0x00084000 

#define CP2_INVERT    0x00002000 

#define CP2_WAKEUP    0x00000100 

 

 

To setup the programmable voltage reference, CCS provides another built-in function: ‘setup_vref()’. 

It is used in this example as follows: 

        setup_vref(VREF_HIGH | 5);      // CVref = 0.406*Vdd = 2.03 V 

 

where ‘5’ is the value the VR bits are being set to. 

The first symbol is either ‘VREF_LOW’ or ‘VREF_HIGH’, and specifies the voltage range you wish to select.  

It is ORed with a number between 0 and 15, which is loaded into VR<3:0>, to specify the voltage. 

The symbol ‘VREF_A2’ can optionally be ORed into the expression, to indicate that the reference voltage 

should be output on the CVREF pin. 

 

Finally, as in the XC8 version, we should insert a 10 µs delay after configuring the voltage reference, to 

allow it to settle. 

This can be done with the built-in function ‘delay_us()’: 

        delay_us(10);                   // wait 10us to settle 

 

Complete program 

The following listing shows how these code fragments fit together in the CCS PCB version of the 

“comparator 2 and programmable voltage reference demo” program: 

************************************************************************* 

*   Description:    Lesson 6, example 4                                 * 

*                                                                       * 

*   Demonstrates use of Comparator 2 and programmable voltage reference * 

*                                                                       * 

*   Turns on Low LED  when C2IN+ < 2.0 V (low light level)              * 

*         or High LED when C2IN+ > 3.0 V (high light level)             * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       C2IN+ = voltage to be measured (LDR/resistor divider)           * 

*       RC3   = "Low" LED                                               * 

*       RC1   = "High" LED                                              * 

*                                                                       * 

************************************************************************/ 

 

#include <16F506.h> 

 

#use delay (clock=4000000)  // oscillator frequency for delay_ms() 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

#fuses MCLR,NOPROTECT,NOWDT,INTRC_IO,IOSC4 
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// Pin assignments 

#define sLO     sPORTC.RC3          // "Low" LED (shadow) 

#define sHI     sPORTC.RC1          // "High" LED (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of PORTC 

    unsigned int8   port; 

    struct { 

        unsigned    RC0     : 1; 

        unsigned    RC1     : 1; 

        unsigned    RC2     : 1; 

        unsigned    RC3     : 1; 

        unsigned    RC4     : 1; 

        unsigned    RC5     : 1; 

    }; 

} sPORTC; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure comparators 

    setup_comparator(NC_NC|CP2_C0_VREF);    // C1: off 

                                            // C2: C2IN+ > CVref 

     

     

    //*** Main loop 

    while (TRUE) 

    { 

        // Test for low illumination 

        setup_vref(VREF_HIGH | 5);      // CVref = 0.406*Vdd = 2.03 V 

        delay_us(10);                   // wait 10 us to settle 

        sLO = ~C2OUT;                   // if C2IN+ < CVref turn on Low LED 

         

        // Test for high illumination 

        setup_vref(VREF_HIGH | 11);     // CVref = 0.594*Vdd = 2.97 V 

        delay_us(10);                   // wait 10 us to settle 

        sHI = C2OUT;                    // if C2IN+ > CVref turn on High LED 

         

        // Display test results 

        output_c(sPORTC.port);      // copy shadow to PORTC  

    } 

} 

 

 

Using Both Comparators with the Programmable Voltage Reference 

As a final example, suppose that we want to test two input signals (say, light level in two locations) by 

comparing them against a common reference.  We would need to use two comparators, with an input signal 

connected to each, and a single threshold voltage level connected to both.  

What if we want to use the programmable voltage reference to generate the common threshold? 

We’ve see that CVREF cannot be selected as an input to comparator 1, so it would seem that it’s not possible 

to use the programmable voltage reference with comparator 1. 
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But although no internal connection is available, that doesn’t rule out an external connection – and as we saw 

above, the programmable reference can be made available on the CVREF pin. 

So, to use the programmable voltage 

reference with comparator 1, we need to 

set the VROE bit in the VRCON 

register, to enable the CVREF output, 

and connect the CVREF pin to a 

comparator 1 input – as shown in the 

circuit on the right, where CVREF is 

connected to C1IN-. 

If you are using the Gooligum baseline 

training board, you can keep the board 

set up as before, with shunts in JP17, 

JP19, and position 2 (‘C2IN+’) of JP25, 

and add a shunt across pins 2 and 3 

(‘LDR1’) of JP24, to also connect 

photocell PH1 to C1IN+.  You also need 

to connect CVREF to C1IN-, which you 

can do by linking pins 9 (‘GP/RA/RB1’) 

and 11 (‘RC2’) on the 16-pin header. 

 

Note: You should disconnect your PICkit 2 or PICkit 3 from the board when you run the program (applying 

external power instead), because the programmer loads RB1/AN1/C1IN-, pulling down the reference 

voltage delivered by the CVREF pin.   

XC8 

Most of the initialisation and main loop code is very similar to that used in earlier examples, although setting 

up both comparators this time, but when configuring the voltage reference, we must ensure that the VROE 

bit is set, so that CVREF is available externally: 

    // configure voltage reference 

    VRCONbits.VRR = 1;              // select low range 

    VRCONbits.VR = 12;              // CVref = 0.500*Vdd 

    VRCONbits.VROE = 1;             // enable CVref output pin 

    VRCONbits.VREN = 1;             // turn voltage reference on 

                                    // -> CVref = 2.50 V (if Vdd = 5 V), 

                                    //    CVref output pin enabled 

 

Complete program 

Here is the complete XC8 version of the “two inputs with a common programmed voltage reference” 

program: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 6, example 5                                 * 

*                                                                       * 

*   Demonstrates use of comparators 1 and 2                             * 

*   with the programmable voltage reference                             * 

*                                                                       * 

*   Turns on: LED 1 when C1IN+ > 2.5 V                                  * 

*         and LED 2 when C2IN+ > 2.5 V                                  * 

*                                                                       * 

************************************************************************* 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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*   Pin assignments:                                                    * 

*       C1IN+ = input 1 (LDR/resistor divider)                          * 

*       C1IN- = connected to CVref                                      * 

*       C2IN+ = input 2 (LDR/resistor divider)                          * 

*       CVref = connected to C1IN-                                      * 

*       RC1   = indicator LED 2                                         * 

*       RC3   = indicator LED 1                                         * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

                            

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & IOSCFS_OFF & OSC_IntRC_RB4EN); 

 

// Pin assignments 

#define sLED1   sPORTC.RC3      // indicator LED 1 

#define sLED2   sPORTC.RC1      // indicator LED 2 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of PORTC 

    uint8_t         port; 

    struct { 

        unsigned    RC0     : 1; 

        unsigned    RC1     : 1; 

        unsigned    RC2     : 1; 

        unsigned    RC3     : 1; 

        unsigned    RC4     : 1; 

        unsigned    RC5     : 1; 

    }; 

} sPORTC; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure ports 

    TRISC = 0b110101;               // configure RC1 and RC3 (only) as outputs 

 

    // configure comparator 1 

    CM1CON0bits.C1PREF = 1;         // +ref is C1IN+ 

    CM1CON0bits.C1NREF = 1;         // -ref is C1IN- (= CVref) 

    CM1CON0bits.C1POL = 1;          // normal polarity (C1IN+ > C1IN-) 

    CM1CON0bits.C1ON = 1;           // turn comparator on    

                                    // -> C1OUT = 1 if C1IN+ > C1IN- (= CVref) 

             

    // configure comparator 2 

    CM2CON0bits.C2PREF1 = 1;        // +ref is C2IN+ 

    CM2CON0bits.C2NREF = 0;         // -ref is CVref 

    CM2CON0bits.C2POL = 1;          // normal polarity (C2IN+ > CVref) 

    CM2CON0bits.C2ON = 1;           // turn comparator on   

                                    // -> C2OUT = 1 if C2IN+ > CVref   

     

    // configure voltage reference 

    VRCONbits.VRR = 1;              // select low range 
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    VRCONbits.VR = 12;              // CVref = 0.500*Vdd 

    VRCONbits.VROE = 1;             // enable CVref output pin 

    VRCONbits.VREN = 1;             // turn voltage reference on 

                                    // -> CVref = 2.50 V (if Vdd = 5 V), 

                                    //    CVref output pin enabled 

 

     

    //*** Main loop 

    for (;;) 

    { 

        // start with shadow PORTC clear 

        sPORTC.port = 0; 

         

        // test comparator inputs 

        sLED1 = CM1CON0bits.C1OUT;  // turn on LED 1 if C1IN+ > CVref 

        sLED2 = CM2CON0bits.C2OUT;  // turn on LED 2 if C2IN+ > CVref 

         

        // display test results 

        PORTC = sPORTC.port;        // copy shadow to PORTC         

    } 

} 

 

CCS PCB 

As we’ve seen, the ‘setup_comparator()’ function can be used to configure both comparators at once, so 

we can write: 

    // configure comparators 

    setup_comparator(CP1_B0_B1|CP2_C0_VREF);  // C1: C1IN+ > C1IN- 

                                              // C2: C2IN+ > CVref 

 

 

To enable the CVREF pin when configuring the voltage reference, we need OR the symbol ‘VREF_A2’ into 

the expression passed to ‘setup_vref()’: 

    setup_vref(VREF_LOW | 12 | VREF_A2);        // CVref = 0.500*Vdd = 2.50 V, 

                                                // CVref output pin enabled 

 

Complete program 

Here is the complete CCS version of the “two inputs with a common programmed voltage reference” 

program: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 6, example 5                                 * 

*                                                                       * 

*   Demonstrates use of comparators 1 and 2                             * 

*   with the programmable voltage reference                             * 

*                                                                       * 

*   Turns on: LED 1 when C1IN+ > 2.5 V                                  * 

*         and LED 2 when C2IN+ > 2.5 V                                  * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       C1IN+ = input 1 (LDR/resistor divider)                          * 

*       C1IN- = connected to CVref                                      * 

*       C2IN+ = input 2 (LDR/resistor divider)                          * 
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*       CVref = connected to C1IN-                                      * 

*       RC1   = indicator LED 2                                         * 

*       RC3   = indicator LED 1                                         * 

*                                                                       * 

************************************************************************/ 

 

#include <16F506.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

#fuses MCLR,NOPROTECT,NOWDT,INTRC_IO,IOSC4 

 

// Pin assignments 

#define sLED1   sPORTC.RC3      // indicator LED 1 

#define sLED2   sPORTC.RC1      // indicator LED 2 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of PORTC 

    unsigned int8   port; 

    struct { 

        unsigned    RC0     : 1; 

        unsigned    RC1     : 1; 

        unsigned    RC2     : 1; 

        unsigned    RC3     : 1; 

        unsigned    RC4     : 1; 

        unsigned    RC5     : 1; 

    }; 

} sPORTC; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure comparators 

    setup_comparator(CP1_B0_B1|CP2_C0_VREF);    // C1 on: C1IN+ > C1IN- 

                                                // C2 on: C2IN+ > CVref 

    // configure voltage reference     

    setup_vref(VREF_LOW | 12 | VREF_A2);        // CVref = 0.500*Vdd = 2.50 V, 

                                                // CVref output pin enabled 

     

    //*** Main loop 

    while (TRUE) 

    { 

        // start with shadow PORTC clear 

        sPORTC.port = 0; 

         

        // test comparator inputs 

        sLED1 = C1OUT;              // turn on LED 1 if C1IN+ > CVref 

        sLED2 = C2OUT;              // turn on LED 2 if C2IN+ > CVref 

         

        // display test results 

        output_c(sPORTC.port);      // copy shadow to PORTC 

    } 

} 
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Comparisons 

Here is the resource usage summary for this example. 

2xComp+VR 

The CCS source code continues to be the shortest, being 50% shorter than of the XC8 source code – mainly 

because of the availability of built-in functions.  But although the CCS compiler generates smaller code than 

the XC8 compiler (running in “Free mode”, with most optimisation disabled), the CCS-generated code is 

nevertheless nearly twice the size of the hand-written assembler version. 

 

Summary 

We have seen that it is possible to effectively utilise the comparators and voltage references available on 

baseline devices, such as the PIC16F506, using either the XC8 or CCS C compilers. 

As we have come to expect, source code written for the CCS compiler is consistently concise, due to the 

availability of built-in functions. 

However, we have also seen that, at least for the version of the compiler distributed with MPLAB
4
, CCS 

PCB lacks support for detecting wake-up on comparator change resets and that the symbols (defined in 

header files) for setting up the comparator 2 inputs are misleading. 

On the whole, although the XC8 source code is longer, it’s more straightforward in some ways – if you’re 

familiar with the PIC registers.  The CCS compiler lets you keep more distance from the detail of the 

internals, which as we’ve seen can be better or worse, depending on the situation. 

But both approaches work! 

 

 

 

The next lesson concludes our review of the baseline PIC architecture, covering analog to digital conversion 

and scaling and simple filtering of ADC readings for display (revisiting material from baseline lessons 10 

and 11). 

 

                                                      

4
 As of August, 2012 

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 29 21 1 

XC8 (Free mode) 34 52 1 

CCS PCB 22 41 6 

../7%20-%20ADC%20+%20arrays/PIC_Base_C_7.pdf
../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
../../Baseline/11%20-%20Int%20arithmetic%20+%20arrays/PIC_Base_A_11.pdf
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Introduction to PIC Programming 

Programming Baseline PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 7: Analog-to-Digital Conversion and Simple Filtering 

 

 

Baseline assembler lesson 10 explained how to use the analog-to-digital converter (ADC) available on 

baseline PICs, such as the PIC16F506, using assembly language.  This lesson demonstrates how to use C to 

control and access the ADC, re-implementing the examples using Microchip’s XC8 (running in “Free 

mode”) and CCS’ PCB compilers
1
. 

It then shows how a simple moving-average filter, as described in baseline assembler lesson 11, can be 

implemented in C.  The final example implements a simple light meter, with the light level smoothed, scaled 

and shown as two decimal digits, using 7-segment LED displays. 

In summary, this lesson covers: 

 Configuring the ADC peripheral 

 Reading analog inputs 

 Hexadecimal output on 7-segment displays 

 Working with arrays 

 Accessing more than one bank of data memory 

 Calculating a moving average to implement a simple filter 

with examples for XC8 and CCS PCB. 

 

Analog-to-Digital Converter 

As explained in more detail in baseline assembler lesson 10, the analog-to-digital converter (ADC) 

peripheral on baseline PICs allows analog input voltages to be measured, with a resolution of eight bits: 0 

corresponds to VSS, and 255 corresponds to VDD. 

The ADC module on the 16F506 has three external inputs, or channels: AN0, AN1 and AN2.  Since there is 

only one ADC module, only one channel can be selected at one time, meaning that only one input can be 

read (sampled or converted) at once. 

 

A simple example in baseline lesson 10 demonstrated basic ADC operation, using use a potentiometer to 

provide a variable voltage to an analog input, and four LEDs to show a 4-bit binary representation of that 

value, using the circuit shown on the next page. 

                                                      

1
 XC8 is available as a free download from www.microchip.com, and CCS PCB is bundled for free with MPLAB 8 

../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
../../Baseline/11%20-%20Int%20arithmetic%20+%20arrays/PIC_Base_A_11.pdf
../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
http://www.microchip.com/
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To implement it using the Gooligum 

baseline training board, place a shunt 

across pins 1 and 2 (‘POT’) of JP24, 

connecting the 10 kΩ pot (RP2) to AN0, 

and shunts in JP16-19, enabling the LEDs 

on RC0-3. 

If you are using Microchip’s Low Pin 

Count Demo Board, the onboard pot and 

LEDs are already connected to AN0 and 

RC0 – RC3.  You only need to ensure 

that jumpers JP1-5 are closed. 

 

The voltage on AN0 is continually 

sampled, with the most significant four 

bits of the result being displayed on the 

LEDs, forming a 4-bit binary display. 

 

The analog inputs share pins with RB0, RB1 and RB2.  By default (after a power-on reset), the analog 

inputs are enabled.  To use a pin for digital I/O, any analog function on that pin must first be disabled. 

 

Whether a pin is configured for analog input is 

controlled by the ANS<1:0> bits in the ADCON0 

register, as shown on in the table on the right. 

The pins cannot be configured independently; only the 

listed combinations are possible. 

A quick way to disable the analog inputs is to clear 

ADCON0, since clearing ANS<1:0> deselects all the 

analog inputs. 

In this example, only AN0 has to be configured as an analog input; either of the combinations which include 

AN0 could be used – in this case, the “AN0 and AN2” option, selected by ANS<1:0> = ‘10’, is used. 

 

The appropriate ADC input channel must also be 

selected.  This is controlled by the CHS<1:0> bits in 

ADCON0, as shown on the right. 

Note that, in addition to the three external analog inputs, 

the 0.6 V fixed voltage reference is selectable as an 

ADC channel.  We’ll use this feature in a later example. 

In this example, AN0 has to be selected as the ADC 

channel, specified by CHS<1:0> = ‘00’. 

 

An appropriate ADC conversion clock source must be selected, specified by the ADCS<1:0> bits in 

ADCON0.  As explained in baseline assembler lesson 10, the INTOSC/4 clock option (ADCS<1:0> = ‘11’) 

is a safe option which will always work, so that option is used here. 

 

Finally, the ADC peripheral must be turned on, by setting the ADON bit (in ADCON0) to ‘1’. 

ANS<1:0> Pins configured as analog inputs 

00 none 

01 AN2 only 

10 AN0 and AN2 

11 AN0, AN1 and AN2 

CHS<1:0> ADC channel 

00 analog input AN0 

01 analog input AN1 

10 analog input AN2 

11 0.6 V internal voltage reference 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
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In the example in baseline assembler lesson 10, the ADC was configured with the above options with: 

        movlw   b'10110001'     ; configure ADC: 

                ; 10------          AN0, AN2 analog (ANS = 10) 

                ; --11----          clock = INTOSC/4 (ADCS = 11) 

                ; ----00--          select channel AN0 (CHS = 00) 

                ; -------1          turn ADC on (ADON = 1) 

        movwf   ADCON0          ;   -> AN0 ready for sampling 

 

 

To begin a conversion, the GO/ DONE  bit (in ADCON0) is set: 

        bsf     ADCON0,GO       ; start conversion 

 

It is then necessary to wait until the GO/ DONE  bit is clear: 

w_adc   btfsc   ADCON0,NOT_DONE ; wait until done 

        goto    w_adc 

 

The result of the conversion is then available in the ADRES register: 

        swapf   ADRES,w         ; copy high nybble of result  

        movwf   PORTC           ;   to low nybble of output port (LEDs) 

 

Note that, in this example, the most significant four bits of the result are copied to the least four significant 

bits of PORTC, because the LEDs are connected to RC0 – RC3. 

 

We saw in baseline assembler lesson 10 that, to use RC0 and RC1 for digital I/O, the C2IN+ and C2IN- 

inputs must be disabled.  This was done by clearing CM2CON0: 

        clrf    CM2CON0         ; disable comparator 2 -> RC0, RC1 digital 

 

We also saw that, to use RC2 for digital I/O, the CVREF output has to be disabled.  Although the 

programmable voltage reference module is disabled by default, it was explicitly turned off in the example, by 

clearing VRCON: 

        clrf    VRCON           ; disable CVref -> RC2 usable 

 

 

XC8 

Since XC8 makes the special function registers directly accessible through variables defined in the device-

specific header files, the code to configure RC0 – RC3 as outputs is simply: 

    // configure ports 

    TRISC = 0b110000;           // configure RC0-RC3 as outputs 

    CM2CON0 = 0;                // disable comparator 2 -> RC0, RC1 digital 

    VRCON = 0;                  // disable CVref -> RC2 usable 

 

 

Configuring the ADC module could then be done in the same way, by assigning a value to ADCON0: 

    // configure ADC  

    ADCON0 = 0b10110001;        

             //10------          AN0, AN2 analog (ANS = 10) 

             //--11----          clock = INTOSC/4 (ADCS = 11) 

             //----00--          select channel AN0 (CHS = 00) 

             //-------1          turn ADC on (ADON = 1) 

 

../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
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However, as we have seen in the earlier lessons, the XC8 header files define most special function registers, 

including ADCON0, as unions of structures containing bit-fields corresponding to that register’s bits. 

Thus, we can configure the ADC module with: 

    // configure ADC     

    ADCON0bits.ADCS = 0b11;     // clock = INTOSC/4   

    ADCON0bits.ANS  = 0b10;     // AN0, AN2 analog 

    ADCON0bits.CHS  = 0b00;     // select channel AN0  

    ADCON0bits.ADON = 1;        // turn ADC on 

                                // -> AN0 ready for sampling 

 

Although this approach involves more statements, leading to a longer program and a larger executable, it has 

the advantage of clarity, is less prone to errors, and seems more “natural” when programming in C – so it’s 

the method we’ll use in the examples in this lesson.  But as ever, which approach you use is a question of 

personal programming style – they’re both valid. 

 

Like MPASM, the XC8 device headers define more than one symbol for the GO/ DONE  bit. 

In fact you can access it as any of: 

ADCON0bits.GO_nDONE 

ADCON0bits.GO 

ADCON0bits.nDONE 

 

 

As we did in baseline assembler lesson 10, we’ll use the “GO” bit-field when starting the conversion: 

        ADCON0bits.GO = 1;          // start conversion 

 

and we’ll use the “nDONE” version of the bit-field when waiting for the conversion to finish: 

        while (ADCON0bits.nDONE)    // wait until done 

            ; 

 

even though they are referring to the same bit – the intent of the code is clearer this way. 

 

The result of the conversion is available in ADRES, accessible through the ‘ADRES’ variable. 

 

We need to copy the upper four bits of the result to the lower four bits of PORTC (where the LEDs are 

connected).  This means shifting the result four bits to the right, so we can write simply: 

        LEDS = ADRES >> 4;      // copy high nybble of result to LEDs 

 

(having defined ‘LEDS’ as an alias for ‘PORTC’) 

 

Complete program 

Here is how the above code fragments fit together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 7, example 1                                 * 

*                                                                       * 

*   Demonstrates basic use of ADC                                       * 

*                                                                       * 

*   Continuously samples analog input, copying value to 4 x LEDs        * 

../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
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************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       AN0     = voltage to be measured (e.g. pot output)              * 

*       RC0-3   = output LEDs (RC3 is MSB)                              * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & IOSCFS_OFF & OSC_IntRC_RB4EN); 

 

// Pin assignments 

#define LEDS    PORTC           // output LEDs on RC0-RC3 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure ports 

    TRISC = 0b110000;           // configure RC0-RC3 as outputs 

    CM2CON0 = 0;                // disable comparator 2 -> RC0, RC1 digital 

    VRCON = 0;                  // disable CVref -> RC2 usable 

     

    // configure ADC     

    ADCON0bits.ADCS = 0b11;     // clock = INTOSC/4   

    ADCON0bits.ANS  = 0b10;     // AN0, AN2 analog 

    ADCON0bits.CHS  = 0b00;     // select channel AN0  

    ADCON0bits.ADON = 1;        // turn ADC on 

                                // -> AN0 ready for sampling 

 

     

    //*** Main loop 

    for (;;) 

    { 

        // sample analog input 

        ADCON0bits.GO = 1;          // start conversion 

        while (ADCON0bits.nDONE)    // wait until done 

            ; 

         

        // display result on 4 x LEDs 

        LEDS = ADRES >> 4;      // copy high nybble of result to LEDs 

    } 

} 

 

CCS PCB 

We saw in the lesson 6 that the CCS compiler provides a built-in function, ‘setup_comparator()’, which 

can be used to disable comparator 2 (so that we can use RC0 and RC1 as digital outputs): 

    setup_comparator(NC_NC_NC_NC);  // disable comparators -> RC0, RC1 digital 

 

Note that this command actually disables both comparators, but since comparator 1 is not used in this 

example, there is no reason to enable it. 

../6%20-%20Comparators/PIC_Base_C_6.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC C, Lesson 7: Analog-to-Digital Conversion and Simple Filtering Page 6 

Similarly, the ‘setup_vref()’ function can be used to disable the CVREF output, making RC2 usable: 

    setup_vref(FALSE);              // disable CVref -> RC2 usable 

 

 

A number of built-in functions are used to configure the ADC module. 

The ‘setup_adc_ports()’ function is used to select which ports are configured as analog inputs. 

It is called with one of the symbols defined in the device’s header file.  For example, “16F506.h” contains: 

// Constants used in SETUP_ADC_PORTS() are: 

#define AN0_AN1_AN2                    0xc0   // A0 A1 A2 

#define AN0_AN2                        0x80   // A0 A2 

#define AN2                            0x40   // A2 

#define NO_ANALOGS                        0   // None 

 

In this case, we want the AN0 and AN2 configuration, so we use: 

    setup_adc_ports(AN0_AN2);       // configure AN0 and AN2 for analog input 

 

Note that, if you wanted to disable all the analog inputs, you would use: 

    setup_adc_ports(NO_ANALOGS);    // no analog inputs (all digital) 

 

 

The ‘setup_adc()’ function is used to select the ADC clock source, or to turn the ADC module off (useful 

for saving power in sleep mode). 

It is also called with a symbol defined in the device’s header file.  For example, “16F506.h” contains: 

// Constants used for SETUP_ADC() are: 

#define ADC_OFF                0          // ADC Off 

#define ADC_CLOCK_DIV_32    0x00 

#define ADC_CLOCK_DIV_16    0x10 

#define ADC_CLOCK_DIV_8     0x20 

#define ADC_CLOCK_INTERNAL  0x30          // Internal 2-6us 

 

In this case we want the internal clock source, so we use: 

    setup_adc(ADC_CLOCK_INTERNAL);  // select INTOSC/4 clock and turn ADC on 

 

Note that the ADC is implicitly being turned on by this function.  If you don’t want it turned on, you need to 

explicitly turn it off, with: 

    setup_adc(ADC_OFF);             // turn ADC module off 

 

 

The ‘set_adc_channel()’ function is used to select the ADC input channel. 

The parameter corresponds to the value of the CHS channel selection bits, as defined in the device data sheet 

(and, for the 16F506, in the table above). 

In this case, we want channel 0, corresponding to AN0, so we use: 

    set_adc_channel(0);             // ADC channel = AN0 

 

 

Initiating the conversion, waiting for it to complete, then returning the result can be done with a single built-

in function: ‘read_adc()’. 
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It can optionally be passed one of the symbols defined in the header file, for example: 

// Constants used in READ_ADC() are: 

#define ADC_START_AND_READ     7  // This is the default if nothing is specified 

#define ADC_START_ONLY         1 

#define ADC_READ_ONLY          6 

 

This means that you can start a conversion with: 

    read_adc(ADC_START_ONLY);       // start ADC conversion 

 

and do something else while waiting for the conversion to complete (indicated by the ‘adc_done()’ built-in 

function), and then read the result with something like: 

    result = read_adc(ADC_READ_ONLY);  // read ADC result 

 

In this case, we want to initiate the conversion and then read the result in a single operation, so to sample the 

input and place the upper four bits of the result in the lower four bits of PORTC, we can write: 

    output_c(read_adc()>>4);  // read ADC and copy high nybble of result to LEDs 

 

Note that there is no need to specify ‘ADC_START_AND_READ’ as the parameter to ‘read_adc()’, since it is 

the default if nothing is specified. 

 

Complete program 

Here is how these code fragments fit together in the CCS version of the “4 LEDs ADC demo” program: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 7, example 1                                 * 

*                                                                       * 

*   Demonstrates basic use of ADC                                       * 

*                                                                       * 

*   Continuously samples analog input, copying value to 4 x LEDs        * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       AN0     = voltage to be measured (e.g. pot output or LDR)       * 

*       RC0-3   = output LEDs (RC3 is MSB)                              * 

*                                                                       * 

************************************************************************/ 

 

#include <16F506.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

#fuses MCLR,NOPROTECT,NOWDT,INTRC_IO,IOSC4 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure ports 

    setup_comparator(NC_NC_NC_NC);  // disable comparators -> RC0, RC1 digital 

    setup_vref(FALSE);              // disable CVref -> RC2 usable 
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    // configure ADC 

    setup_adc(ADC_CLOCK_INTERNAL);  // clock = INTOSC/4, turn ADC on 

    setup_adc_ports(AN0_AN2);       // AN0, AN2 analog 

    set_adc_channel(0);             // select channel AN0 

                                    // -> AN0 ready for sampling     

 

     

    //*** Main loop 

    while (TRUE) 

    { 

        // sample and display analog input 

        output_c(read_adc() >> 4);  // read ADC and copy result to LEDs 

    } 

} 

 

Hexadecimal Output 

To add a more useful, human-readable output to the ADC demo, the second example in baseline assembler 

lesson 10 implemented a two-digit hexadecimal display, based on the multiplexed 7-segment display circuit 

from baseline assembler lesson 8, dropping one digit, and adding a photocell and resistor to supply a voltage 

that increases with light level, as shown below: 

To implement this circuit using the Gooligum baseline training board, place shunts: 

 across every position (all six of them) of jumper block JP4, connecting segments A-D, F and G to 

pins RB0-1 and RC1-4 

 in position 1 (‘RA/RB4’) of JP5, connecting segment E to pin RB4 

 across pins 2 and 3 (‘RC5’) of JP6, connecting digit 1 to the transistor controlled by RC5 

 in jumpers JP8 and JP9, connecting pins RC5 and RB5 to their respective transistors 

 in position 1 (‘AN2’) of JP25, connecting photocell PH2 to AN2. 

All other shunts should be removed.  

../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
../../Baseline/8%20-%207-segment%20displays/PIC_Base_A_8.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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The source code was also adapted from the timer-based 7-segment display multiplexing routines presented in 

baseline assembler lesson 8, with the only important differences being: 

 the value to be displayed was now the result of an analog-to-digital conversion, performed using the 

code from the first example (above), instead of a time count; 

 the pattern lookup table for the 7-segment display was extended from 10 to 16 entries, to include 

representations of the letters ‘A’ to ‘F’; 

XC8  

The previous example included initialisation code to disable comparator 2 and the programmable voltage 

reference.  Extending this to also disable comparator 1 is simply: 

    CM1CON0 = 0;                    // disable comparator 1 -> RB0, RB1 digital 

    CM2CON0 = 0;                    // disable comparator 2 -> RC0, RC1 digital 

    VRCON = 0;                      // disable CVref -> RC2 usable 

 

We also need to configure the ADC, but this time with AN2 as the only analog input: 

    // configure ADC     

    ADCON0bits.ADCS = 0b11;         // clock = INTOSC/4   

    ADCON0bits.ANS  = 0b01;         // AN2 (only) analog 

    ADCON0bits.CHS  = 0b10;         // select channel AN2  

    ADCON0bits.ADON = 1;            // turn ADC on 

                                    // -> AN2 ready for sampling 

 

 

The ADC input is sampled, using code from the previous example: 

        // sample input 

        ADCON0bits.GO = 1;          // start conversion 

        while (ADCON0bits.nDONE)    // wait until done 

            ; 

 

 

Then the result is displayed, using code adapted from lesson 5: 

        // display high nybble for 2.048 ms 

        while (!TMR0_2)         // wait for TMR0<2> to go high 

            ; 

        set7seg(ADRES >> 4);    // output high nybble of result 

        TENS_EN = 1;            // enable "tens" digit  

        while (TMR0_2)          // wait for TMR0<2> to go low 

            ; 

                         

        // display low nybble for 2.048 ms 

        while (!TMR0_2)         // wait for TMR0<2> to go high 

            ; 

        set7seg(ADRES & 0x0F);  // output low nybble of result  

        ONES_EN = 1;            // enable ones digit 

        while (TMR0_2)          // wait for TMR0<2> to go low 

            ; 

 

 

The ‘set7seg()’ function is much the same as that presented in lesson 5, but with the pattern arrays 

(lookup tables) now extended from 10 to 16 entries, adding the 7-segment representations of the letters ‘A’ 

to ‘F’. 

 

 

../../Baseline/8%20-%207-segment%20displays/PIC_Base_A_8.pdf
../5%20-%207-segment%20displays/PIC_Base_C_5.pdf
../5%20-%207-segment%20displays/PIC_Base_C_5.pdf
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Complete program 

Here is the complete XC8 version of the “ADC demo with hexadecimal output” program, showing how these 

code fragments – mostly adapted from previous programs – fit together: 

/************************************************************************ 

*   Description:    Lesson 7, example 2                                 * 

*                                                                       * 

*   Displays ADC output in hexadeximal on 7-segment LED displays        * 

*                                                                       * 

*   Continuously samples analog input,                                  * 

*   displaying result as 2 x hex digits on multiplexed 7-seg displays   * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       AN2             = voltage to be measured (e.g. pot or LDR)      * 

*       RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode)        * 

*       RC5             = "tens" digit enable (active high)             * 

*       RB5             = ones digit enable                             * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & IOSCFS_OFF & OSC_IntRC_RB4EN); 

 

// Pin assignments 

#define TENS_EN     PORTCbits.RC5   // "tens" (high nybble) digit enable 

#define ONES_EN     PORTBbits.RB5   // ones digit enable 

 

 

/***** PROTOTYPES *****/ 

void set7seg(uint8_t digit);    // display digit on 7-segment display 

 

 

/***** MACROS *****/ 

#define TMR0_2  (TMR0 & 1<<2)   // access to TMR0<2> 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure ports 

    TRISB = 0;                      // configure PORTB and PORTC as all outputs 

    TRISC = 0; 

    CM1CON0 = 0;                    // disable comparator 1 -> RB0, RB1 digital 

    CM2CON0 = 0;                    // disable comparator 2 -> RC0, RC1 digital 

    VRCON = 0;                      // disable CVref -> RC2 usable 

     

    // configure ADC     

    ADCON0bits.ADCS = 0b11;         // clock = INTOSC/4   

    ADCON0bits.ANS  = 0b01;         // AN2 (only) analog 

    ADCON0bits.CHS  = 0b10;         // select channel AN2  

    ADCON0bits.ADON = 1;            // turn ADC on 

                                    // -> AN2 ready for sampling 
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    // configure timer 

    OPTION = 0b11010111;            // configure Timer0: 

             //--0-----                 timer mode (T0CS = 0) -> RC5 usable 

             //----0---                 prescaler assigned to Timer0 (PSA = 0) 

             //-----111                 prescale = 256 (PS = 111) 

             //                         -> increment every 256 us 

             //                            (TMR0<2> cycles every 2.048 ms)  

       

        

    //*** Main loop 

    for (;;) 

    { 

        // sample input 

        ADCON0bits.GO = 1;          // start conversion 

        while (ADCON0bits.nDONE)    // wait until done 

            ; 

 

        // display high nybble for 2.048 ms 

        while (!TMR0_2)         // wait for TMR0<2> to go high 

            ; 

        set7seg(ADRES >> 4);    // output high nybble of result 

        TENS_EN = 1;            // enable "tens" digit  

        while (TMR0_2)          // wait for TMR0<2> to go low 

            ; 

                         

        // display low nybble for 2.048 ms 

        while (!TMR0_2)         // wait for TMR0<2> to go high 

            ; 

        set7seg(ADRES & 0x0F);  // output low nybble of result  

        ONES_EN = 1;            // enable ones digit 

        while (TMR0_2)          // wait for TMR0<2> to go low 

            ; 

    }       

} 

 

 

/***** FUNCTIONS *****/ 

 

/***** Display digit on 7-segment display *****/ 

void set7seg(uint8_t digit) 

{ 

    // pattern table for 7 segment display on port B 

    const uint8_t pat7segB[16] = { 

        // RB4 = E, RB1:0 = FG 

        0b010010,   // 0 

        0b000000,   // 1 

        0b010001,   // 2 

        0b000001,   // 3 

        0b000011,   // 4 

        0b000011,   // 5 

        0b010011,   // 6 

        0b000000,   // 7 

        0b010011,   // 8 

        0b000011,   // 9  

        0b010011,   // A 

        0b010011,   // b 

        0b010010,   // C 

        0b010001,   // d 

        0b010011,   // E 

        0b010011    // F            

    };  
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    // pattern table for 7 segment display on port C 

    const uint8_t pat7segC[16] = { 

        // RC4:1 = CDBA 

        0b011110,   // 0 

        0b010100,   // 1 

        0b001110,   // 2 

        0b011110,   // 3 

        0b010100,   // 4 

        0b011010,   // 5 

        0b011010,   // 6 

        0b010110,   // 7 

        0b011110,   // 8 

        0b011110,   // 9 

        0b010110,   // A 

        0b011000,   // b 

        0b001010,   // C 

        0b011100,   // d 

        0b001010,   // E 

        0b000010    // F         

    }; 

     

    // disable displays 

    PORTB = 0;                  // clear all digit enable lines on PORTB 

    PORTC = 0;                  //  and PORTC 

     

    // output digit pattern 

    PORTB = pat7segB[digit];    // lookup and output port B and C patterns 

    PORTC = pat7segC[digit]; 

} 

 

CCS PCB 

Since the built-in ‘setup_comparator()’ function can be used to disable both comparators with a single 

call, the code to disable the comparators and the voltage reference is the same as in the first example, above: 

    setup_comparator(NC_NC_NC_NC);  // disable comps -> RB0-1, RC0-1 digital 

    setup_vref(FALSE);              // disable CVref -> RC2 usable 

 

 

In this example, the ADC has to be configured with AN2 as the only analog input: 

    setup_adc(ADC_CLOCK_INTERNAL);  // clock = INTOSC/4, turn ADC on 

    setup_adc_ports(AN2);           // AN2 (only) analog 

    set_adc_channel(2);             // select channel AN2 

 

 

Because we need to access the ADC result twice (once for each digit in the display), it makes sense to 

sample the input and store the result in a variable, for later reference: 

    adc_res = read_adc(); 

 

 

This result is then displayed, using code adapted from lesson 5: 

        // display high nybble for 2.048 ms 

        while (!TMR0_2)           // wait for TMR0<2> to go high 

            ; 

        set7seg(adc_res >> 4);    // output high nybble of result 

        output_high(TENS_EN);     // enable "tens" digit  

../5%20-%207-segment%20displays/PIC_Base_C_5.pdf
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        while (TMR0_2)            // wait for TMR0<2> to go low 

            ; 

                         

        // display low nybble for 2.048 ms 

        while (!TMR0_2)           // wait for TMR0<2> to go high 

            ; 

        set7seg(adc_res & 0x0F);  // output low nybble of result  

        output_high(ONES_EN);     // enable ones digit 

        while (TMR0_2)            // wait for TMR0<2> to go low 

            ; 

 

 

Note that, instead of storing the ADC result in a variable, we could have written: 

    // display high nybble for 2.048 ms 

    while (!TMR0_2)           // wait for TMR0<2> to go high 

        ; 

    set7seg(read_adc() >> 4); // sample input, then 

                              //   output high nybble of result 

    output_high(TENS_EN);     // enable "tens" digit 

    while (TMR0_2)            // wait for TMR0<2> to go low 

        ; 

                         

    // display low nybble for 2.048 ms 

    while (!TMR0_2)           // wait for TMR0<2> to go high 

        ; 

    set7seg(read_adc(ADC_READ_ONLY) & 0x0F);  // output low nybble of result 

    output_high(ONES);        // enable ones digit 

    while (TMR0_2)            // wait for TMR0<2> to go low 

        ; 

 

This uses the ‘read_adc()’ function to sample the input as part of the first digit display routine, and then 

uses the ‘read_adc(ADC_READ_ONLY)’ form of the function to return the already-sampled result, when 

displaying the second digit.  However, although this approach saves a line of code and avoids the need to 

allocate a variable, it seems a little unwieldy.  Again, it’s really a question of personal style. 

 

As in the XC8 example, the ‘set7seg()’ function is much the same as that presented in lesson 5, but with 

the pattern arrays extended from 10 to 16 entries. 

 

Complete program 

Here is the complete CCS version of the “ADC demo with hexadecimal output” program, showing how these 

code fragments – again mostly adapted from previous programs – fit together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 7, example 2                                 * 

*                                                                       * 

*   Displays ADC output in hexadeximal on 7-segment LED displays        * 

*                                                                       * 

*   Continuously samples analog input,                                  * 

*   displaying result as 2 x hex digits on multiplexed 7-seg displays   * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       AN2             = voltage to be measured (e.g. pot or LDR)      * 

*       RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode)        * 

../5%20-%207-segment%20displays/PIC_Base_C_5.pdf
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*       RC5             = "tens" digit enable (active high)             * 

*       RB5             = ones digit enable                             * 

*                                                                       * 

************************************************************************/ 

 

#include <16F506.h> 

 

 

/***** CONFIGURATION *****/ 

// Config: ext reset, no code protect, no watchdog, 4 MHz int clock 

#fuses MCLR,NOPROTECT,NOWDT,INTRC_IO,IOSC4 

 

// Pin assignments 

#define TENS_EN     PIN_C5          // "tens" (high nybble) enable 

#define ONES_EN     PIN_B5          // ones enable 

 

 

/***** PROTOTYPES *****/ 

void set7seg(unsigned int8 digit);      // display digit on 7-segment display 

 

 

/***** MACROS *****/ 

#define TMR0_2  (get_timer0() & 1<<2)   // access to TMR0<2> 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    unsigned int8   adc_res;        // result of ADC conversion 

     

    //*** Initialisation 

     

    // configure ports 

    setup_comparator(NC_NC_NC_NC);  // disable compss -> RB0-1, RC0-1 digital 

    setup_vref(FALSE);              // disable CVref -> RC2 usable 

                                     

    // configure ADC      

    setup_adc(ADC_CLOCK_INTERNAL);  // clock = INTOSC/4, turn ADC on 

    setup_adc_ports(AN2);           // AN2 (only) analog 

    set_adc_channel(2);             // select channel AN2 

                                    // -> AN2 ready for sampling  

     

    // configure Timer0                             

    setup_timer_0(RTCC_INTERNAL|RTCC_DIV_256); // timer mode, prescale = 256 

                                               // -> bit 2 cycles every 2.048 ms 

         

    //*** Main loop 

    while (TRUE) 

    { 

        // sample input 

        adc_res = read_adc(); 

 

        // display high nybble for 2.048 ms 

        while (!TMR0_2)           // wait for TMR0<2> to go high 

            ; 

        set7seg(adc_res >> 4);    // output high nybble of result 

        output_high(TENS_EN);     // enable "tens" digit  

        while (TMR0_2)            // wait for TMR0<2> to go low 

            ; 

                         

        // display low nybble for 2.048 ms 
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        while (!TMR0_2)           // wait for TMR0<2> to go high 

            ; 

        set7seg(adc_res & 0x0F);  // output low nybble of result  

        output_high(ONES_EN);     // enable ones digit 

        while (TMR0_2)            // wait for TMR0<2> to go low 

            ; 

    }       

} 

 

 

/***** FUNCTIONS *****/ 

 

/***** Display digit on 7-segment display *****/ 

void set7seg(unsigned int8 digit) 

{ 

    // pattern table for 7 segment display on port B 

    const int8 pat7segB[16] = { 

        // RB4 = E, RB1:0 = FG 

        0b010010,   // 0 

        0b000000,   // 1 

        0b010001,   // 2 

        0b000001,   // 3 

        0b000011,   // 4 

        0b000011,   // 5 

        0b010011,   // 6 

        0b000000,   // 7 

        0b010011,   // 8 

        0b000011,   // 9  

        0b010011,   // A 

        0b010011,   // b 

        0b010010,   // C 

        0b010001,   // d 

        0b010011,   // E 

        0b010011    // F     

    };  

 

    // pattern table for 7 segment display on port C 

    const int8 pat7segC[16] = { 

        // RC4:1 = CDBA 

        0b011110,   // 0 

        0b010100,   // 1 

        0b001110,   // 2 

        0b011110,   // 3 

        0b010100,   // 4 

        0b011010,   // 5 

        0b011010,   // 6 

        0b010110,   // 7 

        0b011110,   // 8 

        0b011110,   // 9 

        0b010110,   // A 

        0b011000,   // b 

        0b001010,   // C 

        0b011100,   // d 

        0b001010,   // E 

        0b000010    // F 

    }; 

     

    // disable displays 

    output_b(0);                    // clear all digit enable lines on PORTB 

    output_c(0);                    //  and PORTC 
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    // output digit pattern 

    output_b(pat7segB[digit]);      // lookup and output port B and C patterns 

    output_c(pat7segC[digit]);         

} 

Comparisons 

Here is the resource usage for the “ADC demo with hexadecimal output” assembler and C examples: 

ADC_hex-out 

Despite the different approaches of the two C compilers (direct register access versus built-in functions), the 

source code written for XC8 is much the same length as that for CCS PCB, and around two thirds the length 

of the assembler source.  On the other hand, the optimised code generated by the CCS compiler is more than 

50% larger than the assembler version. 

Measuring Supply Voltage 

The fact that the absolute 0.6 V reference can be selected as an ADC input channel means that it can be used 

to infer the supply voltage (effectively VDD, given that in most cases VSS = 0 V), since the 0.6 V reference 

will read as 0.6 V ÷ VDD × 255. 

For VDD = 5.0 V, the expected ADC result is 0.6 V ÷ 5.0 V × 255 = 30. 

As VDD falls, the ADC reading corresponding to 0.6 V rises.  This gives us a way to check that the power 

supply voltage (perhaps from a battery) is adequate, and to shut down the circuit and/or provide a warning if 

it falls too low. 

The circuit shown below was used in baseline assembler lesson 10 to demonstrate this.  

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 96 86 1 

XC8 (Free mode) 68 161 2 

CCS PCB 63 135 8 

../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
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If you are using the Gooligum baseline training board, you should set it up as in the last example, but remove 

the shunt from JP25 (disconnecting the photocell from AN2) and close JP16 (connecting the LED on RC0). 

 

As in the last example, the ADC result (now representing the value of the 0.6 V reference) is displayed in 

hex on the 7-segment displays, but to indicate low voltage, the LED on RC0 is lit if VDD falls below 3.5 V. 

XC8 

Most of the program code is the same as that in the previous example, but because we are now sampling the 

internal 0.6 V reference instead of AN0, the ADC has to be configured differently: 

    // configure ADC      

    ADCON0bits.ADCS = 0b11;         // clock = INTOSC/4   

    ADCON0bits.ANS  = 0b00;         // no analog inputs -> RB0-2 digital 

    ADCON0bits.CHS  = 0b11;         // select 0.6 V reference 

    ADCON0bits.ADON = 1;            // turn ADC on 

                                    // -> 0.6 V reference ready for sampling 

 

 

The code to sample the ADC and output the result on the 7-segment displays is the same as before, but we 

need to add some code to test for the under-voltage condition (VDD < 3.5 V). 

 

In the assembler example, the minimum allowable VDD was defined as a constant at the beginning of the 

program, so that it could be easily changed later: 

    constant MINVDD=3500            ; Minimum Vdd (in mV) 

 

It was necessary to express this as an integer, because MPASM does not support floating-point expressions.  

Thus, the expression to convert this minimum VDD value to a constant which could be used to compare the 

ADC result with also had to be written using only integers: 

    constant VRMAX=255*600/MINVDD   ; Threshold for 0.6V ref measurement 

 

 

Since C does support floating-point expressions, it is tempting to define the minimum VDD as a floating-

point constant: 

#define MINVDD  3.5             // minimum Vdd (Volts) 

 

and to then write the ADC comparison as: 

        if (ADRES > 0.6/MINVDD*255)     // if measured 0.6V > threshold 

            WARN = 1;                   //   light warning LED 

 

Writing it that way makes the code very clear, because we normally refer to the internal reference as 0.6 V, 

not 600 mV, and it is natural to express the minimum VDD as 3.5 V, not 3500 mV. 

But there is a big problem with this – and it is a very easy mistake to make, when using C with small 

microcontrollers.  The compiler sees ‘0.6/MINVDD*255’ as being a floating-point expression (which, of 

course, it is), and implements the comparison as a floating-point operation.  To do so, it links a number of 

floating-point routines into the code, and generates code to convert ADRES into floating-point form, passing it 

to a floating-point comparison routine.  This greatly increases the size of the generated code, blowing out to 

508 words of program memory
2
!  Compare this with the previous example, which is almost identical – 

                                                      

2
 using XC8 v1.01 running in ‘Free mode’ 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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lacking only this comparison routine – but required only 161 words of program memory.  You wouldn’t 

expect that adding such a simple routine would more than triple the size of the generated program!  And 

normally it wouldn’t; the only reason the generated code is so large is that floating-point routines have been 

inadvertently, and unnecessarily, included into it. 

There are a number of ways to overcome this problem, including the use of integer-only expressions, but 

surely the simplest method, while maintaining clarity, is to explicitly cast the expression as an integer: 

        if (ADRES > (int)(0.6/MINVDD*255))  // if measured 0.6 V > threshold 

            WARN = 1;                       //   light warning LED 

 

This simple change prevents the compiler from including floating-point code, reducing the size of the 

generated code from 508 to only 165 words of program memory! 

 

Program listing 

The only change to the program setup (device configuration, function prototypes etc.) from the previous 

example is the addition of the following constant definition: 

/***** CONSTANTS *****/ 

#define MINVDD  3.5             // minimum Vdd (Volts) 

 

Most of the rest of the source code is identical to the previous example, but it is worth looking at the main 

program code, so that you can see the new ADC configuration and how the comparison code fits into the 

sample and display loop: 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure ports 

    TRISB = 0;                      // configure PORTB and PORTC as all outputs 

    TRISC = 0; 

    CM1CON0 = 0;                    // disable comparator 1 -> RB0, RB1 digital 

    CM2CON0 = 0;                    // disable comparator 2 -> RC0, RC1 digital 

    VRCON = 0;                      // disable CVref -> RC2 usable 

     

    // configure ADC      

    ADCON0bits.ADCS = 0b11;         // clock = INTOSC/4   

    ADCON0bits.ANS  = 0b00;         // no analog inputs -> RB0-2 digital 

    ADCON0bits.CHS  = 0b11;         // select 0.6 V reference 

    ADCON0bits.ADON = 1;            // turn ADC on 

                                    // -> 0.6 V reference ready for sampling 

              

    // configure timer 

    OPTION = 0b11010111;            // configure Timer0: 

             //--0-----                 timer mode (T0CS = 0) -> RC5 usable 

             //----0---                 prescaler assigned to Timer0 (PSA = 0) 

             //-----111                 prescale = 256 (PS = 111) 

             //                         -> increment every 256 us 

             //                            (TMR0<2> cycles every 2.048 ms)  

Note: The inadvertent use of floating-point expressions in C programs can lead the C compiler to 

unnecessarily link floating-point routines into the object code, significantly increasing the size of 

the generated code. 
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    //*** Main loop 

    for (;;) 

    { 

        // sample 0.6 V reference 

        ADCON0bits.GO = 1;          // start conversion 

        while (ADCON0bits.nDONE)    // wait until done 

            ; 

 

        // test for low Vdd 

        if (ADRES > (int)(0.6/MINVDD*255))  // if measured 0.6 V > threshold 

            WARN = 1;                       //   light warning LED 

             

        // display high nybble for 2.048 ms 

        while (!TMR0_2)         // wait for TMR0<2> to go high 

            ; 

        set7seg(ADRES >> 4);    // output high nybble of result 

        TENS_EN = 1;            // enable "tens" digit  

        while (TMR0_2)          // wait for TMR0<2> to go low 

            ; 

                         

        // display low nybble for 2.048 ms 

        while (!TMR0_2)         // wait for TMR0<2> to go high 

            ; 

        set7seg(ADRES & 0x0F);  // output low nybble of result  

        ONES_EN = 1;            // enable ones digit 

        while (TMR0_2)          // wait for TMR0<2> to go low 

            ; 

    }       

} 

 

 

CCS PCB 

The initialisation code is much the same as in the previous example, except that we must now select the 0.6 

V reference as the ADC input channel, instead of AN2: 

    // configure ADC: 

    setup_adc(ADC_CLOCK_INTERNAL);  // clock = INTOSC/4, turn ADC on       

    setup_adc_ports(NO_ANALOGS);    // no analog inputs -> RB0-2 digital  

    set_adc_channel(3);             // select 0.6 V reference  

                                    // -> 0.6 V reference ready for sampling 

 

 

The main sample and display loop is reused from the previous example, but, again, we need to insert some 

code to check that VDD is above the minimum allowed value. 

The minimum allowable VDD can be defined as: 

#define MINVDD  3.5             // minimum Vdd (Volts) 

 

and the ADC result tested, in a similar way to how it was initially written using XC8, above: 

        // test for low Vdd 

        if (adc_res > 0.6/MINVDD*255)       // if measured 0.6 V > threshold 

            output_high(WARN);              //   light warning LED 

 

 

Just as in the XC8 example, the use of the floating-point expression ‘0.6/MINVDD*255’ in the comparison 

causes the compiler to incorporate floating-point routines, making the generated code significantly larger 
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than it needs to be – 258 words of program memory
3
, compared with only 135 words for the previous 

hexadecimal output example. 

In the same way as was done with XC8, the unnecessary use of floating-point code can be avoided by casting 

the expression as an integer: 

        if (adc_res > (int)(0.6/MINVDD*255))    // if measured 0.6 V > threshold 

            output_high(WARN);                  //   light warning LED 

 

Without the floating-point code, the size of the generated program is reduced to only 145 words of program 

memory. 

Program listing 

As in the XC8 version, the only change to the program setup (device configuration, function prototypes etc.) 

from the previous example is the addition of the following constant definition: 

/***** CONSTANTS *****/ 

#define MINVDD  3.5                 // minimum Vdd (Volts) 

 

And again, most of the rest of the source code is the same as in the previous example, but it is worth listing 

the main program code, to see the new ADC configuration and how the comparison code fits in: 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    unsigned int8   adc_res;        // result of ADC conversion 

     

    //*** Initialisation 

     

    // configure ports 

    setup_comparator(NC_NC_NC_NC);  // disable comps -> RB0-1, RC0-1 digital 

    setup_vref(FALSE);              // disable CVref -> RC2 usable 

 

    // configure ADC: 

    setup_adc(ADC_CLOCK_INTERNAL);  // clock = INTOSC/4, turn ADC on       

    setup_adc_ports(NO_ANALOGS);    // no analog inputs -> RB0-2 digital  

    set_adc_channel(3);             // select 0.6 V reference  

                                    // -> 0.6 V reference ready for sampling 

     

    // configure Timer0                             

    setup_timer_0(RTCC_INTERNAL|RTCC_DIV_256); // timer mode, prescale = 256 

                                               // -> bit 2 cycles every 2.048 ms 

                                        

    //*** Main loop 

    while (TRUE) 

    { 

        // sample 0.6 V reference 

        adc_res = read_adc(); 

         

        // test for low Vdd 

        if (adc_res > (int)(0.6/MINVDD*255))    // if measured 0.6 V > threshold 

            output_high(WARN);                  //   light warning LED 

             

        // display high nybble for 2.048 ms 

        while (!TMR0_2)           // wait for TMR0<2> to go high 

            ; 

        set7seg(adc_res >> 4);    // output high nybble of result 

        output_high(TENS_EN);     // enable "tens" digit  

                                                      

3
 using CCS PCB v4.073 
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        while (TMR0_2)            // wait for TMR0<2> to go low 

            ; 

                         

        // display low nybble for 2.048 ms 

        while (!TMR0_2)           // wait for TMR0<2> to go high 

            ; 

        set7seg(adc_res & 0x0F);  // output low nybble of result  

        output_high(ONES_EN);     // enable ones digit 

        while (TMR0_2)            // wait for TMR0<2> to go low 

            ; 

    }       

} 

 

Comparisons 

Here is the resource usage comparison for the “VDD measure” example, including the floating-point and 

integer arithmetic versions of the C programs: 

ADC_Vdd-measure 

The C source code continues to be significantly shorter than the assembly language version source, and the 

optimised code generated by the CCS compiler is still more than 50% larger than the assembly version.  The 

real story here, however, is how very inefficient the floating-point versions are, in comparison with integer 

arithmetic, showing that floating-point operations should be avoided wherever possible. 

Decimal Output 

The light meter presented earlier would be more useful if the light level was represented as a decimal value, 

instead of hexadecimal.  Although we could add a third digit, so that the ADC output between 0 and 255 can 

be displayed directly in decimal, it would be more meaningful to most people if the result was scaled to a 2-

digit result, with the full range being 0 – 99. 

The circuit from the hexadecimal output example (shown again on the next page) can be re-used for this.  If 

you are using the Gooligum baseline training board, you should set it up the same way as in that example. 

 

This example was implemented in assembly language in baseline assembler lesson 11, where the main focus 

of the lesson was on integer arithmetic, including multi-byte addition and subtraction, and 8-bit 

multiplication.  Since the C compiler takes care of the implementing arithmetic operations, we don’t need to 

be concerned with those details here. 

 

To scale the ADC output from 0 – 255 to 0 – 99, it should be multiplied by 99/255.  That can be done easily 

in C, but it is more difficult to do in assembler.  In the assembler example, the ADC result was multiplied by 

Assembler / Compiler Arithmetic 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM integer 104 90 1 

XC8 (Free mode) float 72 508 20 

XC8 (Free mode) integer 72 165 2 

CCS PCB float 67 258 15 

CCS PCB integer 67 145 9 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../Baseline/11%20-%20Int%20arithmetic%20+%20arrays/PIC_Base_A_11.pdf
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100/256, which is much easier to implement and is only “out” by 0.6%; not really significant, given that the 

ADC is only accurate to within 0.8%, in any case. 

So that the C examples are comparable to the assembler version, we will use the scaling factor of 100/256 

here, as well. 

XC8 

Most of the XC8 program code can be re-used from the hexadecimal output example. 

After sampling the analog input, we need to scale the ADC result to 0 – 99, and this scaled result is then 

referenced twice; once for each digit.  So it makes sense to store the scaled result in a variable, which we can 

declare as: 

    uint8_t     adc_dec;            // scaled ADC output (0-99) 

 

because this value will always be small enough (≤ 99) to represent using 8 bits. 

 

To scale the ADC result, we could use: 

        // scale result to 0-99 

        adc_dec = ADRES * 100/256; 

 

However, the XC8 compiler generates smaller code if this is written as: 

        adc_dec = (unsigned)ADRES * 100/256; 

 

That is, the 8-bit ADC result in ADRES is cast as an unsigned integer. 

 

C compilers usually promote smaller integral types (such as ‘char’) to type ‘int’ when they are included in 

integer arithmetic calculations.  In fact, this behaviour is required by the ANSI C standard. 

The reason for this “integral promotion” is clear, when we consider how this expression might be evaluated.  

If the compiler calculates ‘ADRES * 100’ first, it is likely to evaluate to a value greater than 255, which 

would overflow an 8-bit calculation, leading to incorrect results.  Using 16-bit integers to perform these 

intermediate calculations avoids such problems. 
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However, C compilers will generally avoid integral promotion in situations where they can conclude that the 

result will be the same if promotion doesn’t occur.   

In this case, casting ADRESH as an unsigned integer allows the compiler to optimise its code generation, 

because it can avoid promoting the ADC result to a signed integer and using signed multiplication and 

division routines; unsigned arithmetic is simpler and therefore requires less code to implement. 

Note though that you can’t simply assume that a particular change, like this, will make your code smaller – it 

depends on the specific compiler and its optimisation settings.  Sometimes you need to try a number of 

combinations of type declarations and casting, if you want to generate the smallest possible code. 

 

We then need to extract each digit of the scaled result for display.  As we saw in lesson 5, this can be done 

using the integer division (/) and modulus (%) operators. 

This is best shown in context, within the complete sample and display loop: 

    //*** Main loop 

    for (;;) 

    { 

        // sample input 

        ADCON0bits.GO = 1;              // start conversion 

        while (ADCON0bits.nDONE)        // wait until done 

            ; 

         

        // scale result to 0-99 

        adc_dec = (unsigned)ADRES * 100/256; 

 

        // display tens digit for 2.048 ms 

        while (!TMR0_2)                 // wait for TMR0<2> to go high 

            ; 

        set7seg((unsigned)adc_dec/10);  // output tens digit of result 

        TENS_EN = 1;                    // enable tens digit display 

        while (TMR0_2)                  // wait for TMR0<2> to go low 

            ; 

                         

        // display ones digit for 2.048 ms 

        while (!TMR0_2)                 // wait for TMR0<2> to go high 

            ; 

        set7seg((unsigned)adc_dec%10);  // output ones digit of result  

        ONES_EN = 1;                    // enable ones digit display 

        while (TMR0_2)                  // wait for TMR0<2> to go low 

            ; 

    }       

 

Again, the adc_dec variable has been cast as an unsigned integer in each expression, to optimise code 

generation. 

 

Finally, because only the decimal digits (0-9) need to be displayed, the additional hexadecimal digits (A-F) 

can be removed from the lookup tables in the digit display function: 

/***** Display digit on 7-segment display *****/ 

void set7seg(uint8_t digit) 

{ 

    // pattern table for 7 segment display on port B 

    const uint8_t pat7segB[10] = { 

        // RB4 = E, RB1:0 = FG 

        0b010010,   // 0 

        0b000000,   // 1 

        0b010001,   // 2 

../5%20-%207-segment%20displays/PIC_Base_C_5.pdf
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        0b000001,   // 3 

        0b000011,   // 4 

        0b000011,   // 5 

        0b010011,   // 6 

        0b000000,   // 7 

        0b010011,   // 8 

        0b000011    // 9     

    };  

 

    // pattern table for 7 segment display on port C 

    const uint8_t pat7segC[10] = { 

        // RC4:1 = CDBA 

        0b011110,   // 0 

        0b010100,   // 1 

        0b001110,   // 2 

        0b011110,   // 3 

        0b010100,   // 4 

        0b011010,   // 5 

        0b011010,   // 6 

        0b010110,   // 7 

        0b011110,   // 8 

        0b011110    // 9 

    }; 

     

    // disable displays 

    PORTB = 0;                  // clear all digit enable lines on PORTB 

    PORTC = 0;                  //  and PORTC 

     

    // output digit pattern 

    PORTB = pat7segB[digit];    // lookup and output port B and C patterns 

    PORTC = pat7segC[digit]; 

} 

 

 

CCS PCB 

In the CCS version of the hexadecimal example, the result of the ADC conversion was stored in a variable: 

    adc_res = read_adc(); 

 

Instead of scaling this value and storing the result in another variable, it makes more sense to sample the 

analog input and scale the result in a single operation, such as: 

    adc_dec = read_adc()*100/256; 

 

where the variable, ‘adc_dec’, has been declared in the same way as ‘adc_res’ had been: 

    unsigned int8   adc_dec;        // scaled ADC output (0-99) 

 

However, you will find that this doesn’t work!  This code, as written, always sets ‘adc_dec’ equal to zero. 

This happens because the CCS compiler does not perform automatic integral promotion, in the same way 

that the XC8 compiler does.  The ‘read_adc()’ function returns an 8-bit result, and the expression 

‘read_adc()*100/256’ is evaluated using 8-bit arithmetic operations.  Any 8-bit quantity divided by 256 

(equivalent to right-shifting it eight times) will always be equal to zero, which is the result we see here. 

You might expect that this problem could be overcome by defining ‘adc_dec’ as a 16-bit ‘int16’ or 

‘long’ type, but unfortunately that doesn’t affect how the expression ‘read_adc()*100/256’ is evaluated; 

it is still performed using 8-bit arithmetic, regardless of the type of variable it is assigned to. 
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The answer is to cast the result of the ‘read_adc()’ function as a 16-bit type: 

        adc_dec = (int16)read_adc()*100/256; 

 

This generates the correct result. 

This type of problem can be quite difficult to find.  You need to be careful in case intermediate values in 

integer expressions overflow – especially when using the CCS compiler, which, unlike the XC8 compiler, 

does not automatically promote small integers into larger types. 

 

As in the XC8 version, the digits of the scaled result can be extracted using the integer division (/) and 

modulus (%) operators. 

Again, this is best shown in context, within the complete sample and display loop: 

    // Main loop 

    while (TRUE) 

    { 

        // sample input and scale to 0-99 

        adc_dec = (int16)read_adc()*100/256; 

 

        // display tens digit for 2.048 ms 

        while (!TMR0_2)             // wait for TMR0<2> to go high 

            ; 

        set7seg(adc_dec/10);        // output tens digit of result 

        output_high(TENS_EN);       // enable tens digit display  

        while (TMR0_2)              // wait for TMR0<2> to go low 

            ; 

                         

        // display ones digit for 2.048 ms 

        while (!TMR0_2)             // wait for TMR0<2> to go high 

            ; 

        set7seg(adc_dec%10);        // output ones digit of result  

        output_high(ONES_EN);       // enable ones digit display 

        while (TMR0_2)              // wait for TMR0<2> to go low 

            ; 

    }       

 

 

And finally, the additional hexadecimal digits (A-F) can be removed from the lookup tables in the digit 

display function: 

/***** Display digit on 7-segment display *****/ 

void set7seg(unsigned int8 digit) 

{ 

    // pattern table for 7 segment display on port B 

    const int8 pat7segB[10] = { 

        // RB4 = E, RB1:0 = FG 

        0b010010,   // 0 

        0b000000,   // 1 

        0b010001,   // 2 

        0b000001,   // 3 

        0b000011,   // 4 

        0b000011,   // 5 

        0b010011,   // 6 

        0b000000,   // 7 

        0b010011,   // 8 

        0b000011    // 9     

    };  
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    // pattern table for 7 segment display on port C 

    const int8 pat7segC[10] = { 

        // RC4:1 = CDBA 

        0b011110,   // 0 

        0b010100,   // 1 

        0b001110,   // 2 

        0b011110,   // 3 

        0b010100,   // 4 

        0b011010,   // 5 

        0b011010,   // 6 

        0b010110,   // 7 

        0b011110,   // 8 

        0b011110    // 9 

    }; 

    // disable displays 

    output_b(0);                    // clear all digit enable lines on PORTB 

    output_c(0);                    //  and PORTC 

     

    // output digit pattern 

    output_b(pat7segB[digit]);      // lookup and output port B and C patterns 

    output_c(pat7segC[digit]);         

} 

 

 

Comparisons 

Here is the resource usage for the “ADC demo with decimal output” assembler and C examples: 

ADC_dec-out 

In this example, where integer arithmetic is involved, the pros and cons of assembler versus C become very 

apparent.  The assembly source is around twice as long as the C versions, reflecting the need to explicitly 

code the arithmetic operations in assembler.  On the other hand, the assembler version generates significantly 

smaller code – only 56% the size of the optimised CCS version.  It is also clear that the XC8 compiler, when 

running in ‘Free mode’, generates very inefficient code in this example. 

Using an Array to Implement a Moving Average 

A problem with the decimal-output example above (and the previous hexadecimal-output example) is that 

that output can become unreadable in flickering light, such as that produced by fluorescent lamps.  These 

flicker at 50 or 60 Hz – too fast for the human eye to notice, but not too quickly for our simple light meter, 

which samples and displays the changing light level 244 times per second. 

As we saw in baseline assembler lesson 11, this problem can be effectively overcome by smoothing, or 

filtering, the raw results before displaying them.  Although more advanced (and efficient and effective) 

filtering algorithms exist, one that is easy to implement is the simple moving average (or box filter), which 

averages the last N samples (where N is a fixed number, referred to as the window size), giving the same 

weight to each sample. 

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 115 103 7 

XC8 (Free mode) 58 423 8 

CCS PCB 51 185 15 

../../Baseline/11%20-%20Int%20arithmetic%20+%20arrays/PIC_Base_A_11.pdf
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To implement this filter, we need to store the last N samples, in an array of size N.  Every time a new light 

level is sampled, the array is updated, with the oldest sample value being overwritten with the new one.  

Note that is it not necessary to calculate the sum of values in the array every time it is updated; we can 

instead maintain a running total by subtracting the oldest value and adding the new value to it. 

Since the data memory in the PIC16F506 is divided into four banks of 16 registers (plus three shared 

registers), the largest array that can be allocated as a single object is 16 bytes.  That is, we can only easily 

store the last 16 samples.  Since the input is sampled every 4 ms, our filter’s window is 16 × 4 ms = 64 ms.  

This is more than enough to smooth out a 50 Hz flicker, since a 50 Hz signal has a period of only 20 ms. 

XC8 

To start with, we need to declare the sample array: 

#define NSAMPLES    16              // size of sample array 

 

uint8_t smp_buf[NSAMPLES];          // array of samples for moving average 

 

Defining the constant, ‘NSAMPLES’, toward the start of the program, makes it easier to change the number of 

samples from 16 later, if desired. 

The sample array has to be cleared before it can be used, so that the running total is correct (if the running 

total is initially zero, the array elements must initially sum to zero; this is easiest to ensure if they are all 

initially equal to zero).  But there is no need to include explicit code to clear the array.  All we need to do is 

to make it a global variable, by declaring it outside any function, including main(). 

 

By default, XC8 adds runtime code which, among other things, clears all uninitialized global and static 

variables, including arrays. 

 

You can check that this option 

is selected in MPLAB 8 by 

looking at the “Linker” tab in 

the project’s build options 

(Project → Build Options… → 

Project), as shown on the right.  

 

Or, if you are using MPLAB X, you will find the equivalent option within the “Linker” category of the 

project properties (File → Project Properties, or click on the Project Properties button on the left side of the 

project dashboard), as shown below: 
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Whichever version of MPLAB you are using, if the “Clear bss” linker option is selected, the compiler-

provided runtime code will clear all the variables. 

 

In addition to the ‘adc_dec’ variable from the last example, we will need variables to store the running total 

and to keep track of the current sample (used as an index into the sample array): 

    uint16_t    sum = 0;            // running total of ADC samples 

    uint8_t     adc_dec;            // scaled average (0-99) 

    uint8_t     s;                  // index into sample array 

 

The running total (sum) is declared as an unsigned16-bit integer because it needs to be able to hold values up 

to 16 × 255 = 4080, which is too large for an 8-bit variable. 

Note that it is zeroed as part of the variable declaration; this saves a line of code later. 

 

The body of the sample and display loop has to be placed within a “for” loop (using ‘s’ as the loop 

counter), so that each array element is accessed in turn: 

        for (s = 0; s < NSAMPLES; s++) 

        { 

            // sample input 

            ... 

            // calculate moving average 

            ... 

            // display digits 

        } 

 

Within the loop, after sampling the input, we update the running total and calculate the average, as follows: 

            // update running total 

            sum += ADRES - smp_buf[s];  // add new value and subtract old 

            smp_buf[s] = ADRES;         // update buffer with new value 

             

            // calculate average and scale to 0-99 

            adc_dec = sum / NSAMPLES * 100/256; 

 

Complete program 

Here is the complete source code for the XC8 version of the “ADC demo with averaged decimal output” 

program, showing where these code fragments fit in: 

/************************************************************************ 

*   Description:    Lesson 7, example 5                                 * 

*                                                                       * 

*   Displays smoothed ADC output in decimal on 2x7-segment LED displays * 

*                                                                       * 

*   Continuously samples analog input, averages last 16 samples,        * 

*   scales result to 0 - 99 and displays as 2 x decimal digits          * 

*   on multiplexed 7-seg displays                                       * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       AN2             = voltage to be measured (e.g. pot or LDR)      * 

*       RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode)        * 

*       RC5             = tens digit enable (active high)               * 

*       RB5             = ones digit enable                             * 

*                                                                       * 

************************************************************************/ 
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#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog, 4 MHz int clock 

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & IOSCFS_OFF & OSC_IntRC_RB4EN); 

 

// Pin assignments 

#define TENS_EN     PORTCbits.RC5   // tens digit enable 

#define ONES_EN     PORTBbits.RB5   // ones digit enable 

 

 

/***** CONSTANTS *****/ 

#define NSAMPLES    16              // size of sample array 

 

/***** PROTOTYPES *****/ 

void set7seg(uint8_t digit);        // display digit on 7-segment display 

 

/***** MACROS *****/ 

#define TMR0_2  (TMR0 & 1<<2)       // access to TMR0<2> 

 

 

/***** GLOBAL VARIABLES *****/ 

uint8_t smp_buf[NSAMPLES];          // array of samples for moving average 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    uint16_t    sum = 0;            // running total of ADC samples 

    uint8_t     adc_dec;            // scaled average (0-99) 

    uint8_t     s;                  // index into sample array 

  

    //*** Initialisation 

     

    // configure ports 

    TRISB = 0;                      // configure PORTB and PORTC as all outputs 

    TRISC = 0; 

    CM1CON0 = 0;                    // disable comparator 1 -> RB0, RB1 digital 

    CM2CON0 = 0;                    // disable comparator 2 -> RC0, RC1 digital 

    VRCON = 0;                      // disable CVref -> RC2 usable 

     

    // configure ADC     

    ADCON0bits.ADCS = 0b11;         // clock = INTOSC/4   

    ADCON0bits.ANS  = 0b01;         // AN2 (only) analog 

    ADCON0bits.CHS  = 0b10;         // select channel AN2  

    ADCON0bits.ADON = 1;            // turn ADC on 

                                    // -> AN2 ready for sampling 

                                     

    // configure timer 

    OPTION = 0b11010111;            // configure Timer0: 

             //--0-----                 timer mode (T0CS = 0) -> RC5 usable 

             //----0---                 prescaler assigned to Timer0 (PSA = 0) 

             //-----111                 prescale = 256 (PS = 111) 

             //                         -> increment every 256 us 

             //                            (TMR0<2> cycles every 2.048 ms)  

     

 

    //*** Main loop 

    for (;;) 
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    { 

        for (s = 0; s < NSAMPLES; s++) 

        { 

            // sample input 

            ADCON0bits.GO = 1;              // start conversion 

            while (ADCON0bits.nDONE)        // wait until done 

                ; 

         

            // update running total 

            sum += ADRES - smp_buf[s];      // add new value and subtract old 

            smp_buf[s] = ADRES;             // update buffer with new value 

             

            // calculate average and scale to 0-99 

            adc_dec = sum / NSAMPLES * 100/256; 

 

            // display tens digit for 2.048 ms 

            while (!TMR0_2)                 // wait for TMR0<2> to go high 

                ; 

            set7seg((unsigned)adc_dec/10);  // output tens digit of result 

            TENS_EN = 1;                    // enable tens digit display 

            while (TMR0_2)                  // wait for TMR0<2> to go low 

                ; 

                         

            // display ones digit for 2.048 ms 

            while (!TMR0_2)                 // wait for TMR0<2> to go high 

                ; 

            set7seg((unsigned)adc_dec%10);  // output ones digit of result  

            ONES_EN = 1;                    // enable ones digit display 

            while (TMR0_2)                  // wait for TMR0<2> to go low 

                ; 

        } 

    }       

} 

 

/***** FUNCTIONS *****/ 

 

/***** Display digit on 7-segment display *****/ 

void set7seg(uint8_t digit) 

{ 

    // pattern table for 7 segment display on port B 

    const uint8_t pat7segB[10] = { 

        // RB4 = E, RB1:0 = FG 

        0b010010,   // 0 

        0b000000,   // 1 

        0b010001,   // 2 

        0b000001,   // 3 

        0b000011,   // 4 

        0b000011,   // 5 

        0b010011,   // 6 

        0b000000,   // 7 

        0b010011,   // 8 

        0b000011    // 9     

    };  

 

    // pattern table for 7 segment display on port C 

    const uint8_t pat7segC[10] = { 

        // RC4:1 = CDBA 

        0b011110,   // 0 

        0b010100,   // 1 

        0b001110,   // 2 

        0b011110,   // 3 
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        0b010100,   // 4 

        0b011010,   // 5 

        0b011010,   // 6 

        0b010110,   // 7 

        0b011110,   // 8 

        0b011110    // 9 

    }; 

     

    // disable displays 

    PORTB = 0;                  // clear all digit enable lines on PORTB 

    PORTC = 0;                  //  and PORTC 

     

    // output digit pattern 

    PORTB = pat7segB[digit];    // lookup and output port B and C patterns 

    PORTC = pat7segC[digit]; 

} 

 

CCS PCB 

By default, the CCS PCB compiler will only place variables (and arrays) in bank 0. 

To instruct the compiler to use the other register banks, place a ‘#device *=8’ directive near the start of the 

program: 

#device *=8                         // allow variable placement in banks 1-3 

 

Once this has been done, variables and arrays can be declared as usual, with the compiler automatically 

handling their placement. 

We can then declare the sample buffer array as: 

int8  smp_buf[NSAMPLES];            // array of samples for moving average 

 

Unlike XC8, the CCS PCB compiler does not automatically clear uninitialized global variables, so it does 

not matter whether this array is made global or declared within main().  Regardless of where it is declared, 

we need to include a routine, as part of the program initialisation code, to clear the sample array: 

    int8    s;                      // index into sample array 

 

    // clear sample buffer 

    for (s = 0; s < NSAMPLES; s++) 

        smp_buf[s] = 0; 

 

 

We also need to declare the variables needed for the moving average calculation: 

    int8    adc_res;                // result of ADC conversion 

    int16   sum = 0;                // running total of ADC samples 

    int8    adc_dec;                // scaled average (0-99) 

 

Note that ‘sum’ has to be declared as an ‘int16’ (or ‘long’), as this needs to be a 16-bit value.  The other 

variables could be declared as ‘char’ or ‘int’, because CCS PCB defines both to be 8-bit types. 

As we did in the XC8 example, we need to place the body of the sample and display loop within a “for” 

loop, to retrieve and update each array element in turn: 

    for (s = 0; s < NSAMPLES; s++) 

    { 

        // sample ADC, calculate moving average, scale and display 

    } 
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In theory, it should be possible to update the running total and then calculate and scale the moving average as 

follows: 

        // update running total 

        sum += (int16)adc_res - smp_buf[s]; // add new value and subtract old 

        smp_buf[s] = adc_res;               // update buffer with new value 

             

        // calculate average and scale to 0-99 

        adc_dec = sum / NSAMPLES * 100/256; 

 

Unfortunately, this does not work!  The array is not written to correctly – apparently due to a bug in 

version 4.073 (and earlier) of the CCS PCB compiler. 

Until CCS releases, and makes freely available, a version of the PCB compiler which corrects this problem, 

we need to find another way to implement our 16-byte sample buffer. 

 

Luckily, the PCB compiler provides two built-in functions, intended to allow efficient access to registers 

outside bank 0: ‘read_bank()’ and ‘write_bank()’. 

They are most useful in applications where an array would otherwise be used, such as implementing a buffer. 

But before using these bank-access functions, we must ensure that the compiler will only use bank 0 by 

removing the ‘#device *=8’ directive, so that there is no risk of overwriting registers used by the compiler. 

 

Assuming that we will use bank 1 for the sample buffer, we first have to clear it: 

// clear sample buffer 

    for (s = 0; s < NSAMPLES; s++) 

        write_bank(1,s,0);    

 

The function ‘write_bank(1,s,0)’ writes the value ‘0’ to the register at address offset ‘s’ in bank 1, 

where address offset = 0 is the start of the bank (address 0x30 for bank 1). 

 

The code to update the running total then becomes: 

        // update running total 

        sum += (int16)adc_res - read_bank(1,s); // add new val and subtract old 

        write_bank(1,s,adc_res);                // update buffer with new value 

 

The function ‘read_bank(1,s)’ returns the value in the register at address offset ‘s’ in bank 1. 

As you can see, the ‘read_bank()’ and ‘write_bank()’ functions can be substituted quite easily for array 

reads and writes. 

 

Complete program 

Here is the complete source code for the CCS version of the “ADC demo with averaged decimal output” 

program, using the direct bank-access functions, showing where these code fragments fit within the program: 

/************************************************************************ 

*   Description:    Lesson 7, example 5b                                * 

*                                                                       * 

*   Displays smoothed ADC output in decimal on 2x7-seg LED displays     * 

*                                                                       * 

*   Continuously samples analog input, averages last 16 samples,        * 

*   scales result to 0 - 99 and displays as 2 x decimal digits          * 

*   on multiplexed 7-segment displays.                                  * 
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*   Uses bank read and write functions to implement sample buffer       * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       AN2             = voltage to be measured (e.g. pot or LDR)      * 

*       RB0-1,RB4,RC1-4 = 7-segment display bus (common cathode)        * 

*       RC5             = tens digit enable (active high)               * 

*       RB5             = ones digit enable                             * 

*                                                                       * 

************************************************************************/ 

 

#include <16F506.h> 

 

 

/***** CONFIGURATION *****/ 

// Config: ext reset, no code protect, no watchdog, 4 MHz int clock 

#fuses MCLR,NOPROTECT,NOWDT,INTRC_IO,IOSC4 

 

// Pin assignments 

#define TENS_EN     PIN_C5          // tens digit enable 

#define ONES_EN     PIN_B5          // ones digit enable 

 

 

/***** CONSTANTS *****/ 

#define NSAMPLES    16              // size of sample buffer 

 

 

/***** PROTOTYPES *****/ 

void set7seg(unsigned int8 digit);      // display digit on 7-segment display 

 

 

/***** MACROS *****/ 

#define TMR0_2  (get_timer0() & 1<<2)   // access to TMR0<2> 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    int8    adc_res;                // result of ADC conversion 

    int16   sum = 0;                // running total of ADC samples 

    int8    adc_dec;                // scaled average (0-99) 

    int8    s;                      // index into sample buffer 

     

    //*** Initialisation 

     

    // configure ports 

    setup_comparator(NC_NC_NC_NC);  // disable comps -> RB0-1, RC0-1 digital 

    setup_vref(FALSE);              // disable CVref -> RC2 usable 

                                     

    // configure ADC      

    setup_adc(ADC_CLOCK_INTERNAL);  // clock = INTOSC/4, turn ADC on 

    setup_adc_ports(AN2);           // AN2 (only) analog 

    set_adc_channel(2);             // select channel AN2 

                                    // -> AN2 ready for sampling  

     

    // configure Timer0                             

    setup_timer_0(RTCC_INTERNAL|RTCC_DIV_256); // timer mode, prescale = 256 

                                               // -> bit 2 cycles every 2.048 ms 

     

    // clear sample buffer 
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    for (s = 0; s < NSAMPLES; s++) 

        write_bank(1,s,0);    

     

         

    //*** Main loop 

    while (TRUE) 

    { 

        for (s = 0; s < NSAMPLES; s++) 

        { 

            // sample input 

            adc_res = read_adc(); 

         

            // update running total 

            sum += (int16)adc_res - read_bank(1,s); // add new, subtract old 

            write_bank(1,s,adc_res);                // update buffer with new 

             

            // calculate average and scale to 0-99 

            adc_dec = sum / NSAMPLES * 100/256; 

 

            // display tens digit for 2.048 ms 

            while (!TMR0_2)             // wait for TMR0<2> to go high 

                ; 

            set7seg(adc_dec/10);        // output tens digit of result 

            output_high(TENS_EN);       // enable tens digit display  

            while (TMR0_2)              // wait for TMR0<2> to go low 

                ; 

                         

            // display ones digit for 2.048 ms 

            while (!TMR0_2)             // wait for TMR0<2> to go high 

                ; 

            set7seg(adc_dec%10);        // output ones digit of result 

            output_high(ONES_EN);       // enable ones digit display 

            while (TMR0_2)              // wait for TMR0<2> to go low 

                ; 

        } 

    }       

} 

 

 

/***** FUNCTIONS *****/ 

 

/***** Display digit on 7-segment display *****/ 

void set7seg(unsigned int8 digit) 

{ 

    // pattern table for 7 segment display on port B 

    const int8 pat7segB[10] = { 

        // RB4 = E, RB1:0 = FG 

        0b010010,   // 0 

        0b000000,   // 1 

        0b010001,   // 2 

        0b000001,   // 3 

        0b000011,   // 4 

        0b000011,   // 5 

        0b010011,   // 6 

        0b000000,   // 7 

        0b010011,   // 8 

        0b000011    // 9     

    };  

 

    // pattern table for 7 segment display on port C 

    const int8 pat7segC[10] = { 
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        // RC4:1 = CDBA 

        0b011110,   // 0 

        0b010100,   // 1 

        0b001110,   // 2 

        0b011110,   // 3 

        0b010100,   // 4 

        0b011010,   // 5 

        0b011010,   // 6 

        0b010110,   // 7 

        0b011110,   // 8 

        0b011110    // 9 

    }; 

     

    // disable displays 

    output_b(0);                    // clear all digit enable lines on PORTB 

    output_c(0);                    //  and PORTC 

     

    // output digit pattern 

    output_b(pat7segB[digit]);      // lookup and output port B and C patterns 

    output_c(pat7segC[digit]);         

} 

 

Comparisons 

Here is the resource usage for the “ADC demo with averaged decimal output” assembler and C examples: 

ADC_avg 

In this example, the differences between C and assembly are even more pronounced.  The assembly source is 

more than twice as long as the XC8 and CCS versions, while the assembled version is only around half the 

size of the optimised code generated by the CCS PCB compiler. 

But it’s also clear that, given the problems with compiler bugs and limitations encountered when 

implementing this example in C, we are hitting the limits of what can be achieved using C compilers on 

these small baseline devices – something that was not apparent when developing the assembly version. 

 
 

Summary 

The examples in this lesson demonstrate that it is possible to effectively perform analog to digital conversion 

on baseline PICs, such as the PIC16F506, using either of the XC8 or CCS C compilers.  But we have also 

seen that, although all these compilers make it possible to implement buffers in memory outside bank 0, only 

the XC8 compiler is able to effectively work directly with “large” (16 byte) arrays. 

As expected, source code written for the CCS compiler is consistently the shortest, due to the use of its built-

in functions.  However, the differences between the CCS and XC8 compilers are dwarfed by that between 

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 150 136 26 

XC8 (Free mode) 65 502 27 

CCS PCB 61 257 35 
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assembler and C source, especially for more sophisticated programs, particularly when arithmetic 

expressions, which can be written succinctly in C, are heavily used: 

Source code (lines) 

But again, both C compilers generate code which is significantly larger than the corresponding hand-written 

assembler versions; the most complex programs being around twice the size of the assembler version, even 

for the CCS PCB compiler, with “optimised” code generation: 

Program memory (words) 

Data memory (bytes) 

 

There is no doubt that it is much easier to express complex routines in C than assembler, which is reflected in 

the C code, for all the compilers, being significantly shorter source than the corresponding assembler source 

code.  

On the other hand, it certainly appears that, in the last example, when implementing a “large” sample buffer, 

we were starting to reach the limit of what can be achieved, with either the CCS or XC8 compilers, on a 

device as small as the PIC16F506.  The CCS PCB compilers had a problem with its implementation of 

banked array access, suggesting that the baseline PIC architecture just isn’t well suited to the use of C for 

this type of application.  Simple LED flashing and responding to key presses is fine, but when it comes to a 

moderately sophisticated application, involving analog to digital conversion, with simple digital filtering and 

scaling, while driving a multiplexed 7-segment display, we appear to have pushed the C compilers nearly as 

far as they will go.  It seems that, to get the most from these baseline PICs, to reach their full potential, we 

need to use assembler.  Or you could pay for the full (optimising) version of XC8, which did not require any 

workarounds to implement the moving average example, but, with optimisation disabled, generated code 

which used more than half the memory available on the 16F506. 

 

Assembler / Compiler ADC_hex_out Vdd_measure ADC_dec_out ADC_avg 

Microchip MPASM 96 104 115 150 

XC8 (Free mode) 68 72 58 65 

CCS PCB 63 67 51 61 

Assembler / Compiler ADC_hex_out Vdd_measure ADC_dec_out ADC_avg 

Microchip MPASM 86 90 103 136 

XC8 (Free mode) 161 165 423 502 

CCS PCB 135 145 185 257 

Assembler / Compiler ADC_hex_out Vdd_measure ADC_dec_out ADC_avg 

Microchip MPASM 1 1 7 26 

XC8 (Free mode) 2 2 8 27 

CCS PCB 8 9 15 35 
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For anything beyond the simplest applications, instead of trying to fit the solution into the baseline 

architecture, it often makes more sense to spend a little extra on the microcontroller in order to simplify the 

programming problem, by moving up to Microchip’s “Mid-Range” PIC architecture. 

 

These larger, more flexible microcontrollers are covered in the “Mid-Range PIC Architecture and Assembly 

Language” tutorial series, which introduces the mid-range PIC architecture, starting with the PIC12F629.  

We’ll go back to flashing LEDs and responding to pushbutton switches, but we’ll see how it can be done, 

using assembler, on a midrange device. 

This is then followed up in the “Programming Mid-range PICs in C” tutorial series, where we cover the same 

ground again, using C. 

 

../../Midrange
../../Midrange
../../Midrange%20C
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Introduction to PIC Programming 

Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 1: Basic Digital Output 

 

 

The Baseline PIC Assembler tutorial series introduced the baseline (12-bit) PIC architecture, using devices 

including the 8-pin digital-only PIC12F509 and 14-pin analog-capable PIC16F506.  The series culminated 

in the development of a simple light meter with smoothed 2-digit decimal output on 7-segment LED 

displays.  However, it was apparent that the limitations of the baseline architecture, such as the lack of 

interrupts, a maximum of 16 contiguous bytes of banked data memory, and the availability of only a single 

8-bit timer, make it difficult to develop applications significantly more complex than this.  The baseline 

architecture’s limitations became especially evident when implementing the same examples in C, in the 

Baseline PIC C Programming tutorial series. 

The mid-range (14-bit) PIC architecture overcomes many of these limitations, offering more memory, 

larger contiguous blocks of data memory, with simpler and less restricted memory access, more timers, 

greater flexibility in many areas, additional assembler instructions, a much greater range of peripherals, 

and support for interrupts – significant, because interrupts allow a different (better) approach to many 

programming problems, as we will see in later lessons. 

This tutorial series introduces the mid-range architecture.  Assembly language is used, as that is the best 

way to gain a thorough understanding of the PIC core and peripherals (languages like C or BASIC hide 

many of the implementation details, which can make life much easier for the programmer – but the aim 

here is to gain a good understanding of the underlying hardware). 

These lessons assume some familiarity with the content covered in the Baseline PIC Assembler series.  

Although there is some repetition of material, wherever a topic has been covered in the baseline tutorials, 

it is described more briefly here, along with a reference to the baseline lesson where the topic was 

introduced.  This approach is practical because the mid-range architecture builds on the baseline 

architecture we are already familiar with; most of the concepts, and nearly all the assembler instructions, 

are the same. 

 

This lesson introduces one of the simplest of the mid-range PICs – the PIC12F629.  It then goes on to 

describe basic digital output by lighting and flashing LEDs, as covered in lessons 1 and 2 of the baseline 

assembler tutorial series.  

In summary, this lesson covers: 

 Introduction to the PIC12F629 

 Simple digital output to LEDs 

 Using loops to create delays 

 Using shadow registers to avoid the ‘read-modify-write’ problem 

../../Baseline
../../Baseline%20C
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
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Getting Started 

These tutorials assume that you are using a Microchip PICkit 2or PICkit 3 programmer and either the 

Gooligum Baseline and Mid-range PIC Training and Development Board or Microchip’s Low Pin Count 

Demo Board, with Microchip’s MPLAB 8 or MPLAB X integrated development environment.  But it is of 

course possible to adapt these instructions to a different programmers and/or development boards. 

See lesson 0 and baseline lesson 1 for more details 

As mentioned, we’re going to start with one of the simplest of the mid-range PICs – the 8-pin PIC12F629.  

It is roughly equivalent to the PIC12F509, introduced in baseline lesson 3, but in addition to simple digital 

I/O, it also includes an analog comparator, a 16-bit timer, and a 128-byte EEPROM.  However, it does not 

include an analog-to-digital converter, nor does it include any advanced peripherals or interfaces.  That 

makes it a good chip to start with; we’ll look at the additional features of more advanced mid-range PICs 

in later lessons. 

In summary, for this lesson you should ideally have: 

 A PC running Windows (XP, Vista or 7), with a spare USB port 

 Microchip’s MPLAB 8 IDE software 

 A Microchip PICkit 2 or PICkit 3 PIC programmer 

 The Gooligum mid-range training board 

 A PIC12F629-I/P microcontroller (supplied with the Gooligum training board) 

Introducing the PIC12F629 

When working with any microcontroller, you should always have on hand the latest version of the 

manufacturer’s data sheet, which, for the 12F629, can be downloaded from www.microchip.com. 

The data sheet for the 12F629 also covers the 12F675, which is essentially the same device, with the 

addition of an analog-to-digital converter (ADC). 

The features of various 8-pin PICs are summarised in the following table: 

Device 

Memory (words or bytes) Timers Analog 
Clock rate 

(max MHz) 
Program Data EEPROM 8-bit 16-bit 

Comp-

arators 

ADC 

inputs 

12F508 512 25 0 1 0 0 0 4 

12F509 1024 41 0 1 0 0 0 4 

12F510 1024 38 0 1 0 1 3 8 

12F519 1024 41 64 1 0 0 0 8 

12F609 1024 64 0 1 1 1 0 20 

12F615 1024 64 0 2 1 1 4 20 

12F629 1024 64 128 1 1 1 0 20 

12F675 1024 64 128 1 1 1 4 20 

12F683 2048 128 256 2 1 1 4 20 

12F1501 1024 64 0 2 1 1 4 20 

12F1822 2048 128 256 2 1 1 4 32 

12F1840 4096 256 256 2 1 1 4 32 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../PIC_Intro_0.pdf
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
http://www.microchip.com/
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The 12F629 has only a little more data memory than the 12F509, but it is arranged differently, as shown in 

the following register map: 

 

The 12F509’s register map, 

and the concept of banked 

register access, was described 

in baseline lesson 3. 

A few differences are 

immediately apparent: 

In the mid-range PICs, each 

bank consists of 128 registers, 

compared with only 32 

registers in the baseline 

architecture. 

The first 32 addresses in each 

register bank are used for 

special function registers 

(SFRs); the remaining 96 

addresses in each bank are 

available for general-purpose 

registers (GPRs), allowing 

much larger contiguous 

blocks of data memory to be 

created. 

This means that, although the 

12F629 has less data memory 

than the 16F506 (64 bytes 

compared with 72 bytes), the 

larger address space of the 

mid-range architecture means 

that the 12F629’s 64 bytes are 

mapped into a single bank, 

not spread across four banks, 

as they would be in the 

baseline architecture. 

Note that the GPRs are 

mapped into both banks, 

meaning that all data memory 

in the 12F629 is shared, not 

banked. 

Another significant difference 

from the baseline architecture 

is that most SFRs appear in 

only in one bank or the other.  

This means that, when 

accessing SFRs on mid-range 

PICs, it is very important to 

ensure that the correct bank 

is selected. 

PIC12F629 Registers 

Address Bank 0 Address Bank 1 

00h INDF 80h INDF 

01h TMR0 81h OPTION_REG 

02h PCL 82h PCL 

03h STATUS 83h STATUS 

04h FSR 84h FSR 

05h GPIO 85h TRISIO 

06h 
 

86h 
 

09h 89h 

0Ah PCLATH 8Ah PCLATH 

0Bh INTCON 8Bh INTCON 

0Ch PIR1 8Ch PIE1 

0Dh  8Dh  

0Eh TMR1L 8Eh PCON 

0Fh TMR1H 8Fh  

10h T1CON 90h OSCCAL 

11h 

 

91h 
 

 94h 

 95h WPU 

 96h IOC 

 97h 
 

18h 98h 

19h CMCON 99h VRCON 

1Ah 

 

9Ah EEDATA 

 9Bh EEADR 

 9Ch EECON1 

 9Dh EECON2 

 9Eh 
 

1Fh 9Fh 

20h 

General 

Purpose 

Registers 

A0h 

Map to Bank 0 
20h – 5Fh 

  

5Fh DFh 

60h 
 

E0h 
 

7Fh FFh 

../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
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As described in baseline lesson 3, the banksel assembler directive will reliably set the bank selection bits 

for the specified register address.  Some SFRs are grouped, so that once the correct bank is selected for 

one of them, you can be sure that the bank selection will not need to be changed before accessing other 

registers in the group.  But if you are ever in doubt, use banksel.  And remember that just because two 

registers happen to be in the same bank in the 12F629, it may not be guaranteed to be true in other mid-

range PICs. 

Bank selection is controlled by the RP0 bit in the STATUS register: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS IRP RP1 RP0 TO   PD   Z DC C 

 

If RP0 = 0, bank 0 is selected; if RP0 = 1, bank 1 is selected. 

The RP1 and IRP bits are unused on the 12F629; they are used in mid-range devices, such as the 16F690, 

which have four register banks.  In devices with four banks, RP0 and RP1 are used in combination to 

select the bank for direct register access, while IRP is used select the bank for indirect register access (see 

lesson 14) – necessary because FSR, being 8-bits wide, can only point to one of 256 registers, but a four-

bank device has 512 register addresses (128 addresses in each bank). 

This is much more convenient than the bank selection scheme used in the baseline architecture, where bits 

in the FSR register were used, which meant that indirect register access could not be done separately from 

direct register access – a limitation which makes it very difficult for C compilers to implement banked 

array access on baseline devices, as we saw in baseline C lesson 7.  The mid-range architecture has no 

such limitation. 

The remaining bits in the STATUS register, TO  , PD  , Z, DC and C, are equivalent to their counterparts 

in the baseline architecture. 

The TRIS (called TRISIO on the 12F629) and OPTION registers are no longer accessed through special 

instructions, but appear in the register map and are directly accessible, in the same way as any other 

register.  Importantly, this means that these registers are now readable, as well as writable, making it 

possible to update individual bits. 

Note that the OPTION register is called OPTION_REG on mid-range PICs, because “option” is a 

reserved word in MPASM. 

The working register, ‘W’ (equivalent to the ‘accumulator’ in some other microprocessors), is not mapped 

into memory, and so does not appear in the register map. 

PIC12F629 Input/Output 

Like the 12F509, the 12F629 provides six I/O pins in an eight-pin package: 

 

VDD is the positive 

power supply. 

VSS is the 

“negative” supply, 

or ground.  All of 

the input and 

output levels are 

measured relative 

to VSS. 

1 

2 

3 

4 

8 

7 

6 

5 

P
IC

1
2

F
6

2
9
 

VDD VSS 

GP5/T1CKI/OSC1/CLKI

N 

GP4/ T1G  /OSC2/CLKOUT 

GP3/ MCLR   

GP0/C1IN+ 

GP1/C1IN- 

GP2/T0CKI/INT/COUT 

../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
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In most circuits, there is only a single ground reference, at 0 V, and VSS will be connected to ground. 

The power supply voltage (VDD, relative to VSS) can range from 2.0 V to 5.5 V, although at least 3.0 V is 

needed if the clock rate is greater than 4 MHz, and at least 4.5 V is needed to run the PIC at more than 10 

MHz. 

A bypass capacitor, typically 100 nF and preferably ceramic, should be placed between VDD and VSS, as 

close to the chip as practical, to provide transient power as the current drawn by the PIC changes, and to 

limit the effect of noise on the power rails.  You may find that you can “get away” without using a bypass 

capacitor, particularly in a small battery-powered circuit.  But figuring out why your PIC keeps randomly 

resetting itself is hard, while 100 nF capacitors are cheap, so include them in your designs! 

 

The remaining pins, GP0 to GP5, are the I/O pins.  They are used for digital input and output, except for 

GP3, which can only be an input.  The other pins – GP0, GP1, GP2, GP4 and GP5 – can be 

individually set to be inputs or outputs. 

Note however that each I/O pin has one or more functions that can be assigned to it, such as a comparator 

output, or a counter input.  As we will see later, in some cases these alternate functions need to be disabled 

before a pin can be used for digital I/O. 

Taken together, the six I/O pins comprise the general-purpose I/O port, or GPIO port. 

 

If a pin is configured as an output, the output level is set by the corresponding bit in the GPIO register: 

Setting a bit to ‘1’ outputs a ‘high’ on the corresponding pin; setting it to ‘0’ outputs a ‘low’. 

If a pin is configured as an input, the input level is represented by the corresponding bit in the GPIO 

register.  If the input on a pin is high, the corresponding bit reads as ‘1’; if the input pin is low, the 

corresponding bit reads as ‘0’. 

 

The TRISIO register controls whether a pin is set as an input or output: 

To configure a pin as an input, set the corresponding bit in the TRISIO register to ‘1’.  In the input state, 

the PIC’s output drivers are effectively disconnected from the pin.   

To configure a pin as an output, clear the corresponding TRISIO bit to ‘0’. 

By default, each pin is an ‘input’; the TRISIO register is set to all ‘1’s when the PIC is powered on. 

Note that TRISIO<3> is greyed-out.  Clearing this bit will have no effect because, as mentioned above, 

the GP3 pin is always an input. 

When configured as an output, each I/O pin on the 12F629 can source or sink up to 25 mA – enough to 

directly drive an LED, without needing an external transistor. 

In total, the GPIO port can source or sink up to 125 mA. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

GPIO   GP5 GP4 GP3 GP2 GP1 GP0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TRISIO   TRISIO5 TRISIO4  TRISIO2 TRISIO1 TRISIO0 
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Example 1: Turning on an LED 

We’ll start the same way that we did in baseline lesson 1, by simply lighting a single LED, connected to 

one of the 12F629’s digital I/O pins. 

This might appear to be a trivial task, but if you can do something as simple as lighting an LED, you will 

have proven that you have a functioning circuit, that your PIC code is correct, that you have properly set 

up an appropriate development environment, and that you can use it effectively to assemble your code and 

load it into the PIC.  When you have achieved all that, you have a firm base to build on. 

The complete circuit looks like this: 

As you can see, besides the PIC, there isn’t 

very much needed at all. 

 

The power supply should be at least 3 V to 

properly light the LED.  A 5 V supply is 

assumed in these lessons, reflecting the default 

voltage provided by the PICkit 2 and PICkit 3 

programmers. 

 

A 330 Ω resistor, in series with the LED, is 

shown here, because that is the value used on 

the Gooligum training board.  But you can 

choose any value for this resistor, as long as it 

limits the LED current to no more than 25 mA 

– the maximum rated current for each pin.  

 

The pushbutton acts as a reset switch. 

Pin 4 can be configured as either a digital input (GP3) or as an external reset (“master clear”, MCLR  ), 

which, if pulled low, will reset the processor. 

In this example, we’ll configure the PIC for external reset.  When the pushbutton is pressed, pin 4 will be 

pulled low, resetting the device.  The PICkit 2 and PICkit 3 are also able to pull the reset line low, 

allowing MPLAB to control MCLR   – which is useful for starting and stopping your program. 

Of course, when the pushbutton isn’t pressed, we want the PIC to run our program, and for that to happen, 

if external reset is enabled, the MCLR  input must be held high.  This is what the 10 kΩ pull-up resistor is 

for; it holds MCLR   high while the switch is open
1
. 

The pushbutton is connected to MCLR   via a 1 kΩ resistor.  As explained in baseline lesson 4, resistors 

like this can be used to avoid damage in case an input pin is inadvertently programmed as an output.  Such 

damage is impossible in this case because, as mentioned above, GP3 can only ever be an input.  The most 

important reason for the resistor between pin 4 and the pushbutton is to allow the PIC to be safely and 

successfully programmed by the PICkit 2 or PICkit 3, using the ICSP programming protocol, when pin 4 

is used as the ‘VPP’ input.  During ICSP programming, a high voltage (around 12 V) is applied to VPP, to 

place the PIC into programming mode.  The 1 kΩ resistor is necessary to protect the PICkit 2 or PICkit 3, 

in case the pushbutton is pressed during programming, grounding the VPP (12 V) signal. 

                                                      

1
 This external pull-up resistor wasn’t needed in the baseline PIC examples, because the baseline PICs, and indeed 

most mid-range PICs, include an internal weak pull-up (see lesson 3) on MCLR   which is automatically enabled 

whenever the device is configured for external reset. 

../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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If you are using the Gooligum training board, plug your PIC12F629 into the top section of the 14-pin IC 

socket – the section marked ‘12F’
2
.  Close jumpers JP3 and JP12 to bring the 10 kΩ resistor into the 

circuit and to connect the LED to GP1, and ensure that every other jumper is disconnected.  

If you have the Microchip Low Pin Count Demo Board, refer back to baseline lesson 1 to see how to build 

this circuit, either by adding an LED and resistor to the prototyping area or making a connection from 

GP1 to one of the LEDs on the board via the 14-pin header. 

Plug your PICkit 2 or PICkit 3 programmer into the ICSP connector on the training or demo board, with 

the arrow on the board aligned with the arrow on the PICkit, and plug the PICkit into a USB port on your 

PC.  The PICkit 2 or PICkit 3 can supply enough power for this circuit, so there is no need to connect an 

external power supply. 

 

With this simple circuit in place, and connected to your PC via a PICkit 2 or PICkit 3 programmer, it’s 

time to move on to programming! 

 

The baseline tutorial series explained how to use the MPLAB 8 or MPLAB X environment to create a new 

assembler project.  If you are not familiar with either version of MPLAB, you should follow the 

instructions in baseline lesson 1, but selecting the 12F629 in the project wizard, instead of the 12F509. 

If you choose to use a Microchip-supplied code template, you should choose ‘12F629TMPO.ASM’ in the 

‘…\MPASM Suite\Template\Object’ (for MPLAB 8) or ‘…\mpasmx\templates\Object’ (for MPLAB X) 

directory.  But since this template provides a framework for a number of features, including interrupts, 

which are not covered in this lesson, it is probably best not to include a copy of the template code, but to 

instead start with an empty file. 

 

If you are using MPLAB 8, after finishing the project wizard, you can create a new (empty) file and add it 

to your project by selecting the “Project → Add New File to Project…” menu item (also available under 

the “File” menu, or by right-clicking in the project window), browsing to the project directory, typing a 

name (ending in ‘.asm’) for the new file, and then clicking “Save”. 

Or, if you are using MPLAB X, there are a number of ways to create a new source file and add it to your 

project, but a simple way is to right-click “Source Files” in the project tree, and select “New → ASM 

File...”.  Enter a name for your new file, select ‘.asm’ as the extension, then click on “Finish”. 

 

To begin writing your program, double-click the assembler source file in the project window.  A text 

editor window will open; it will either be blank, or showing the Microchip-supplied template code (if you 

created your file from a copy of it), in which case you will need to edit the template code, deleting some 

parts and changing others, to make it similar to the code presented below. 

The MPLAB text editor is aware of PIC assembler (MPASM) syntax and will colour-code text, depending 

on whether it’s a comment, assembler directive, PIC instruction, program label, etc. 

 

As we did in the baseline tutorial series, we’ll begin each program with a block of comments, giving the 

name of the program, modification date and version, who wrote it, and a general description of what it 

does.  The template code includes a “Files required” section.  This is useful in larger projects, where your 

code may rely on other modules; you can list any dependencies here.  We’ll also document what processor 

                                                      

2
 Note that, although the PIC12F629 comes in an 8-pin package, it will not work in the 8-pin ‘10F’ socket.  You 

must install it in the ‘12F’ section of the 14-pin socket. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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the code is written for, and how each pin is used – and anything else which will help anyone working on 

this code that needs to understand what the program does, and how. 

MPASM comments begin with a ‘;’.  They can start anywhere on a line.  Anything after a ‘;’ is ignored 

by the assembler. 

For example: 

;************************************************************************ 

;                                                                       * 

;   Filename:      MA_L1-Turn_on_LED.asm                                * 

;   Date:          1/5/12                                               * 

;   File Version:  1.2                                                  * 

;                                                                       * 

;   Author:        David Meiklejohn                                     * 

;   Company:       Gooligum Electronics                                 * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Architecture:  Mid-range PIC                                        * 

;   Processor:     12F629                                               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: none                                                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 1, example 1                                 * 

;                                                                       * 

;   Turns on LED.  LED remains on until power is removed.               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

 

Next we need to tell MPLAB what processor we’re using: 

    list        p=12F629       

    #include    <p12F629.inc> 

 

The first line tells the assembler which processor to assemble for.  It’s not strictly necessary, as it is set in 

MPLAB (configured when you selected the device in the project wizard).  MPLAB displays the processor 

it’s configured for at the bottom of the IDE window; see the screen shot above.  Nevertheless, you should 

always use the list directive at the start of your assembler source file, in case you have accidentally 

selected the wrong processor in MPLAB.  If there is a mismatch between the list directive and 

MPLAB’s setting, MPASM will warn you and you can correct the problem. 

The next line uses the #include directive which causes an include file (p12F629.inc, located in the 

‘…\MPASM Suite’ directory) to be read by the assembler.  This file sets up aliases, or labels, for all the 

features of the 12F629, so that we can refer to registers etc. by name (e.g. ‘GPIO’) instead of numbers, as 

was explained in baseline lesson 6. 

So, to correctly specify which processor (such as 12F629) is to be used, you need to select that processor 

when you set up the project in MPLAB and include appropriate list and include directives in the 

assembler source. 

../../Baseline/6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
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Next the processor is configured: 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

                _PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

[this directive must be written as a single line in the assembler source code] 

Mid-range PICs have one or more “configuration words” (sometimes referred to as fuses), mapped outside 

the user program memory space, which define a number of aspects of the processor’s configuration.  Like 

the baseline PICs, the 12F629 has a single configuration word. 

The __CONFIG directive is used to define the value(s) to the loaded into the configuration word(s).  It is 

usually used with labels (defined in the processor’s include file) representing values which are intended to 

be ANDed together to set or clear the configuration bits corresponding to the options being selected. We’ll 

examine these in greater detail in later lessons, but briefly the options being selected here are: 

 _MCLRE_ON 

Enables the external reset, or “master clear” ( MCLR  ) on pin 4. 

As mentioned above, if external reset is enabled, pulling this pin low will reset the processor. 

Or, if external reset is disabled, the pin can be used as an input: GP3. 

Unless you need to use every pin for I/O, it’s a good idea to enable external reset by including 

‘_MCLRE_ON’ in the __CONFIG directive. 

 _CP_OFF 

Turns off program memory code protection. 

When your code is in production and you’re selling PIC-based products, you may want to prevent 

others (such as competitors) from accessing your code.  If you specify _CP_ON, the program 

memory will be protected, meaning that if someone tries to use a PIC programmer to read it, all 

they will see are zeros. 

 _CPD_OFF 

Turns off data memory code protection. 

The 12F629 includes “EEPROM” (more correctly, “flash”) data memory, which is separate to the 

register file address space, and is accessed indirectly through special function registers.  This 

memory is non-volatile; it retains its contents when the PIC is powered off.  EEPROM data may 

be considered to be an integral part of the program, and worthy of protection.  If you specify 

_CPD_ON, the EEPROM memory will be protected; its contents cannot be accessed by an external 

PIC programmer.  Or the EEPROM may be used to hold data, such as system configuration or 

logged data, which the user should be able to access, even if the program code is protected. 

To provide this flexibility, program and data (EEPROM) memory are protected independently. 

 _BODEN_OFF 

Disables brown-out detection. 

The PIC’s operation can become unreliable if the supply voltage drops too low, which can happen 

during a brown-out, when the supply voltage sags, but does not fall quickly to zero.  The 12F629 

has brown-out detect circuitry, which will reset the PIC in a brown-out situation, if _BODEN_ON is 

selected.  But if your power supply is not likely to suffer from brown-outs, you can leave this 

feature disabled. 

 _WDT_OFF 

Disables the watchdog timer. 

As we saw in baseline lesson 7, the watchdog timer provides a means of automatically restarting a 

crashed program, or to regularly wake the device from sleep.  Although the watchdog timer is 

very useful in a production environment, it can be a nuisance when prototyping, so it is best left 

disabled to begin with. 

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
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 _PWRTE_ON 

Enables the power-up timer. 

When a power supply is first turned on, it can take a while for the supply voltage to stabilise, 

during which time the PIC’s operation may be unreliable.  If the power-up timer is enabled, the 

PIC is held in reset (it does not begin running the user program) for some time, nominally 72 ms, 

after the supply voltage reaches a minimum level. 

For reliable operation, you should leave this option enabled, unless you are using an external 

supervisor circuit, which monitors system voltages and controls the PIC’s external reset. 

 _INTRC_OSC_NOCLKOUT 

Selects the internal RC oscillator as the clock source, with no clock output. 

PICs can be clocked in a number of ways, as we saw for the 12F509 in baseline lesson 7 and the 

16F506 in baseline lesson 8.  The 12F629 supports the same clock options as the 16F506, 

although without the ability to select the frequency of the internal ‘RC’ oscillator, which on the 

12F629 always runs at a nominal 4 MHz.  It is not as accurate or stable as an external crystal, but 

has the advantage of not needing any external components and leaves all of the PIC’s pins free for 

I/O, unless the instruction clock (one quarter of the processor clock rate, i.e.  1 MHz, or 1 µs per 

instruction, given a 4 MHz processor clock) is output on CLKOUT. 

To turn on an LED, we don’t need accurate timing.  And there is no need to make the clock signal 

available externally, so the _INTRC_OSC_NOCLKOUT option is appropriate for this application. 

 

If you have based your project on the Microchip-supplied template code, you will see that the next 

sections in the template relate to defining variables and initialising the EEPROM with data.  Since we do 

not need to use variables or the EEPROM in this example, you can safely delete these sections. 

 

The next section of the template code refers to the oscillator calibration value: 

;----------------------------------------------------------------------------- 

; OSCILLATOR CALIBRATION VALUE 

;----------------------------------------------------------------------------- 

 

OSC       CODE    0x03FF 

 

The CODE directive is used to introduce a section of program code. 

The 0x03FF after CODE is an address in hexadecimal (signified in MPASM by the ‘0x’ prefix).  Program 

memory on the 12F629 extends from 0000h to 03FFh.  This CODE directive is telling the linker to place 

the section of code that follows it at 0x3FF – the very top of the 12F629’s program memory. 

However, in this case, there is no code following this first CODE directive.  Instead, this is simply a marker 

to remind us that the oscillator calibration value is held, as an instruction, at the top of program memory. 

Like the 12F509, the speed of the internal RC oscillator in the 12F629 can be varied over a small range by 

changing the value of the OSCCAL register, to compensate for variability in the manufacturing process.  

Microchip tests every 12F629 in the factory, and calculates the value which, if loaded into OSCCAL, will 

make the oscillator run as close as possible to 4 MHz.  This calibration value is inserted into the 

instruction placed at the top of the program memory (0x3FF), which is: 

retlw k 

 

where ‘k’ is the calibration value inserted in the factory. 

A value like this, which is embedded in an instruction, is referred to as a literal.   

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
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As explained in baseline lesson 3, the ‘retlw’ instruction is used to exit a subroutine, returning a value in 

the W register to the code which called the subroutine – “return with literal in W”. 

This is different from the scheme used in the baseline architecture, where the instruction at the top of 

program memory, which loads the calibration value into W, is the first instruction executed when the PIC 

is reset, and program execution “wraps around” at the start of memory. 

Instead, in the mid-range architecture, the reset vector, where program execution begins, is always at the 

start of memory: address 0000h. 

On a PIC12F629, the user program, beginning at 0000h, can choose to call the calibration “subroutine” 

(consisting of a single ‘retlw’ instruction, as above) at the end of program memory, to “look up” the 

correct oscillator calibration for this device.  Or, if the internal RC oscillator is not being used, or if exact 

timing is not important, the calibration instruction can simply be ignored. 

 

In the baseline examples, we used the ‘res’ directive in a construct like this: 

RESET   CODE    0x3FF           ; processor reset vector 

        res     1               ; holds internal RC cal value, as a movlw k 

 

to reserve the program memory used by the calibration instruction, ensuring that it could not be 

overwritten by the user program.  This is not necessary when using the default, Microchip-supplied linker 

script for the 12F629, because that script (unlike the ones that Microchip supply for the baseline PICs) 

declares the memory used by the calibration instruction to be “protected”, so that it will not be 

overwritten. 

Therefore, there is no need to include a CODE directive, like either of those above, in our program.  It is 

only useful for documentation, but that is not really necessary, since we can adequately comment the code 

which loads OSCCAL – see below.  But of course, how you choose to comment your code is very much a 

matter of personal style. 

 

The next sections in the Microchip-supplied template consist of code used to implement an interrupt 

service routine (ISR) (to be introduced in lesson 6) and some code to jump around the ISR.  Since we are 

not using interrupts in this example, these sections can be deleted. 

 

Since we are using the internal RC oscillator, we should start the program by calibrating it: 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

Because program execution begins at address 0x0000, this address is specified in the CODE directive, 

placing this code section at the start of program memory, so that it will be executed whenever the PIC is 

powered on or reset.  Another way to say this is that the program counter, which points to the next 

instruction to be executed, is initialised to 0x0000 when then PIC is reset. 

This code section is labelled ‘RESET’ here, but you can use any label you want, as long as it’s not a 

reserved word and is not the name of any other code section in your program. 

Next the oscillator calibration value is retrieved, by using the ‘call’ instruction (“call subroutine”) to call 

the calibration instruction at the end of program memory, which returns with the factory calibration value 

in W, as described above.  Note again that this scheme is different from that used in the baseline devices. 

The calibration value can then be written to the OSCCAL register, but before doing so, the bank selection 

bits must be configured to allow it to be accessed.  As mentioned above, this is an important difference 
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between the baseline and mid-range architectures.  On mid-range devices, such as the 12F629, you must 

ensure that the correct bank is selected when accessing special function registers.  The best way to ensure 

this, avoiding errors and making your code more portable, is to use the ‘banksel’ directive, as shown in 

the code above, and as explained in baseline lesson 3. 

Finally, the ‘movwf’ instruction – “move W to file register” – is used to copy (“move”, in Microchip-

speak) the factory calibration value, held in W, into the OSCCAL register. 

 

At this point, all the preliminaries are out of the way.  The processor has been specified, the configuration 

set, and the oscillator calibration value updated. 

 

Next it is usual to initialise special function registers, to configure the PIC’s ports and peripherals 

appropriately. 

In this case, we need to configure the GP1 pin as an output: 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO 

        movwf   TRISIO 

 

Recall that, to configure a pin as an output, the corresponding bit in the TRISIO register must be cleared; 

by default the TRIS bits are set to ‘1’, meaning that all pins are configured as inputs at power-up. 

The first instruction, ‘movlw’ – “move literal to W” – loads a value into W. 

We could have written this instruction as: 

        movlw   b’111101’       ; configure GP1 (only) as an output 

 

Note that to specify a binary number in MPASM, the syntax b’binary digits’ is used, as shown. 

This binary value, when loaded into TRISIO, will configure GP1 as an output, leaving the remaining pins 

configured as inputs. 

However, it is often clearer to make use of expressions containing symbols defined in the processor 

include file, such as ‘GP1’, instead of writing binary constants.  For example, the expression ‘~(1<<GP1)’ 

is equivalent to the binary constant b’11111101’ (only six bits of this value need be specified in the 

instruction above, because the top two bits of TRISIO are unused).  Another advantage of using symbols 

is that mistyping a symbol is likely to be picked up by the assembler, while mistyping a binary constant is 

likely to be missed, making the use of symbols less error-prone. 

Having loaded the correct value into W, the ‘movwf’ instruction is used to write it to TRISIO.  And, of 

course, banksel is used to select the bank containing TRISIO, before it is accessed. 

To make GP1 output a ‘high’, we have to set bit 1 of GPIO to ‘1’. 

This could be done by: 

        banksel GPIO 

        movlw   1<<GP1          ; set GP1 high 

        movwf   GPIO 

 

using the ‘movlw’ and ‘movwf’ instructions we have already seen. 

Note:  The tris instruction is not used to write to the TRIS registers on mid-range devices. 

The TRIS registers are accessed using general instructions, such as movwf. 
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The remaining bits in GPIO are cleared, but since the other pins are all inputs, it doesn’t matter, in this 

example, what their corresponding GPIO bits are set to. 

However, in many cases you will want to set or clear a single bit, while leaving the other bits in a register 

unchanged.  This can be done with the bit set and clear instructions: 

‘bsf f,b’ sets bit ‘b’ in register ‘f’ to ‘1’ – “bit set file register”. 

‘bcf f,b’ clears bit ‘b’ in register ‘f’ to ‘0’ – “bit clear file register”. 

 

These instructions, and any like them, which operate by reading a register, modifying its contents, and 

then writing the changed value back to the register, can create problems when used with port registers, 

such as GPIO.  This is referred to as the read-modify-write problem, and is explained in more detail in 

baseline lesson 2.  It can happen because,  in the mid-range and baseline architectures, whenever an 

instruction reads a port register, the external pins are read, not the internal “output latch” which had been 

written to.   This means that, if an output is slow to change because of a capacitive load, or is being held 

low or high by an excessive external load, the value read may not match the value written to it.  And that 

can lead to unexpected results, when using instructions such as ‘bsf’ and ‘bcf’. 

However, in this simple example, it is very unlikely that there will be any problem with simply turning on 

a single output, since we are not making any fast changes (and hence capacitive loading is not an issue), 

we are not changing multiple pins in the same port using sequential instructions (not giving a pin time to 

change, before being read by the next instruction) and there is no significant load on the pin.  So it is safe 

to use: 

        banksel GPIO 

        bsf     GPIO,GP1        ; set GP1 high 

 

 

If we leave it there, when the program gets to the end of this code, it will continue executing whatever 

instructions happen to be in the rest of the program memory; not what we want!  So we need to get the 

PIC to just sit doing nothing, with the LED still turned on, until it is powered off. 

What we need is an “infinite loop”, where the program does nothing but loop back on itself, indefinitely.  

Such a loop could be written as: 

here    goto    here 

 

‘here’ is a label representing the address of the goto instruction. 

‘goto’ is an unconditional branch instruction.  It tells the PIC to go to a specified program address. 

This code will simply go back to itself, always.  It’s an infinite, do-nothing, loop. 

 

A shorthand way of writing the same thing, that doesn’t need a unique label, is: 

        goto    $               ; loop forever 

 

‘$’ is an assembler symbol meaning the current program address. 

So this line will always loop back on itself. 

 

Finally, at the end of your program source, you must include an ‘END’ directive. 
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If you put together all the pieces of code presented above, and assemble it, the assembler will give you a 

couple of messages like: 

Message[302] C:\...\MA_L1-TURN_ON_LED.ASM 49 : Register in operand not in bank 

0.  Ensure that bank bits are correct. 

 

These messages are generated whenever your code references a register which is not in bank 0, to remind 

you that you should be taking care to set the bank selection bits correctly.  Since we have been taking care 

to ensure that the bank selection bits are correct, it can be annoying to see these messages – particularly in 

a larger program, where there will be many more of them.  And worse, having a large number of 

unnecessary messages can make it easy to miss more important messages and warnings. 

Luckily, messages and warnings can be disabled, using the ‘errorlevel’ directive: 

    errorlevel  -302            ; no warnings about registers not in bank 0 

 

This should be placed toward the beginning of your program. 

 

Complete program 

Putting together all the above, here’s our complete assembler source for turning on an LED: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 1, example 1                                 * 

;                                                                       * 

;   Turns on LED.  LED remains on until power is removed.               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629       

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no warnings about registers not in bank 0 

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 
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        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO 

        movwf   TRISIO 

 

;***** Main code         

        ; turn on LED 

        banksel GPIO 

        bsf     GPIO,GP1        ; set GP1 high 

 

        ; loop forever   

        goto    $                

 

 

        END 

 

 

Now that you have the complete assembler source, you can build the application, which involves 

assembling the source files to create object files, and then linking the object files to build the executable 

code.  Normally this is transparent; MPLAB does both steps for you in a single operation.  It is really only 

important to know that assemble and link steps are separate operations when working with projects that 

consist of multiple source files or libraries of pre-assembled routines. 

 

The build process is shown in detail in baseline lesson 1, but, briefly, to build a project in MPLAB 8, 

select the “Project  Make” menu item, press F10, or click on the “Make” toolbar button:  

“Make” will assemble any source files which need assembling (i.e. ones 

which have changed since the last time the project was built), then link them 

together. 

 

If you are using MPLAB X, you should first ensure that your project is the “main” project – it should be 

highlighted in bold in the Projects window.  If not, right-click it and select “Set as Main Project”. 

To build the project, right-click it in the Projects window and select “Build”, or select the “Run → Build 

Main Project” menu item, or simply click on the “Build Main Project” button (looks like a hammer) in the 

toolbar: 

This will assemble any source files which have changed since the 

project was last built, and link them. 

 

 

The final step is to load (program) the final assembled and linked code into the PIC.   This process is also 

shown in more detail in baseline lesson 1. 

If you are using a PICkit 2 or PICkit 3 programmer, the PIC12F629 can be programmed from within 

MPLAB 8 or MPLAB X. 

 

In MPLAB 8, select PICkit 2 or PICkit 3 from the “Programmer  Select Programmer” submenu. 

If you are using a PICkit 3, you may see messages telling you that new firmware must be downloaded, or 

warning you that the voltage may be too high – just click ‘OK’ on these.  You also need to tell your PICkit 

3 to provide power.  Open the PICkit 3 Settings window by selecting the “Programmer → Settings” menu 

item and then in the “Power” tab, select “Power target circuit from PICkit 3”. 
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After you select your programmer, an additional toolbar will appear. 

 

For the PICkit 2, it looks like:  

 

For the PICkit 3, we have:  

 

The first icon (on the left) is used to initiate programming.  When you click on it, you should see messages 

telling you that the PIC is being programmed and verified. 

Your PIC should now be programmed! 

 

If you are using a PICkit 3, the LED on GP1 should immediately light. 

If you have a PICkit 2, you won’t see anything yet.  That is because, by default, the PICkit 2 holds the 

MCLR  line low after programming.  Since we have used the _MCLRE_ON option, enabling external reset, 

the PIC is held in reset and the program will not run.  If the external reset was disabled, the LED would 

have lit as soon as the PIC was programmed. 

To allow the program to run, click on the  icon. 

The LED should now light up! 

 

If you are using MPLAB X, you must first ensure that your PICkit 2 or PICkit 3 is selected as the 

hardware (programmer) tool in the project properties window, which you can open by right-clicking your 

project in the Projects window and selecting “Properties”, or simply click on the “Project Properties” 

button on the left side of the Project Dashboard. 

While in the project properties window, if you have a PICkit 3, you should ensure that the “Power target 

circuit from PICkit3” option, under the PICkit 3’s “Power” category, is selected. 

To program the PIC and run your program (in a single operation): 

 Right-click your project in the Projects window, and select “Run”, or 

 Select the “Run → Run Main Project” menu item, or 

 Press ‘F6’, or 

 Click on the “Make and Program Device” button in the toolbar:  

Whichever of these you choose, you should see output messages ending in: 

Running target... 

The LED on GP1 should now light. 

 

Being able to build, program and run in a single step, by simply pressing ‘F6’ or clicking on the “Make 

and Program Device” button is very useful, but what if you don’t want to automatically run your code, 

immediately after programming? 

If you want to avoid running your code, click on the “Hold in Reset” toolbar button ( ) before 

programming.  You can now program your PIC as above. 

Your code won’t run until you click the reset toolbar button again, which now looks like and is now 

tagged as “Release from Reset”. 
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Example 2: Flashing an LED (50% duty cycle) 

Having lit a single LED, the next step is to make it flash. 

Although it is often preferable to make use of timer-driven interrupt routines (as we will see in lesson 6) to 

do something like flashing an LED in the “background”, the simplest approach is to simply light the LED, 

wait for some time by using a fixed delay, toggle the LED, wait again, and then repeat. 

Or, if the LED is going to be on half the time (on for the same period that it is off, for a 50% duty cycle), 

we can simply continue to repeatedly toggle the LED, following a single fixed delay, as expressed in the 

following pseudo-code: 

start with LED off 

repeat 

 delay 500 ms 

 toggle LED 

done 

 

Note that the 500 ms delay gives a total flash period of 1 s, meaning that the LED is flashing at 1 Hz. 

But first, you’ll need to create a new project.  It makes sense to base it on the project and code you created 

in example 1; one method for doing this is given in baseline lesson 2. 

The configuration sections of the code (specifying the device and its configuration) remain the same, but 

of course you should update the comments to reflect this new project. 

If you want really accurate timing, you’d use a crystal or external clock source, but the internal RC 

oscillator is good enough for simple LED flashing.  Nevertheless, to make the LED flash timing as 

accurate as possible, it’s important to include the oscillator calibration code at the start of your program. 

To generate the delay, we need to make the PIC “do nothing” for some amount of time, and, as explained 

in more detail in baseline lesson 2, this is means implementing delay loops. 

A loop needs a loop counter: a variable which is incremented or decremented on every pass through the 

loop. 

Variables are defined by reserving data memory (or general purpose registers), using the ‘UDATA’ and 

‘res’ directives.  For example: 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

However, if you include these directives in your program for the PIC12F629, you will find that, although 

the code compiles ok, the build fails in the link phase, with an error like: 

Error - section '.udata' can not fit the section.  

 

What’s going on? 

Baseline lesson 3 explained that, on many baseline PICs, some registers are banked, being mapped into 

only one of the PIC’s banks of data memory, while another set of registers (usually much smaller) are 

shared, or unbanked, being mapped into every bank.  This is also true for mid-range PICs. 

The ‘UDATA’ directive declares a section of banked data memory. 

If you do not specify a label for a UDATA section, MPASM will name it ‘.udata’. 

Recall that the 12F629 does not have any banked data memory; it is all shared.  So this error message is 

telling us that the linker cannot find space for our UDATA section, because there is no banked memory to 

put it into. 
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Therefore, on the 12F629 (or any mid-range PIC without banked GPRs), all variables must be defined 

using ‘UDATA_SHR’, which declares a section of shared data memory, instead of ‘UDATA’. 

For example: 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

This will declare two single-byte variables, ‘dc1’ and ‘dc2’, in shared memory. 

And note that, since the variables are held in shared memory, there is no need to use banksel before 

accessing them. 

 

Here’s an example of a simple “do nothing” delay loop: 

        movlw   .N 

        movwf   dc1  ; dc1 = 10 = number of loop iterations 

dly1    nop 

        decfsz  dc1,f 

        goto    dly1 

The first two instructions initialise the loop counter variable ‘dc1’ to the decimal value “N”.  Since the 

mid-range PICs are 8-bit devices, “N” has to be between 0 and 255. 

Note that numbers in MPASM are specified as being decimal constants by prefixing them with a ‘.’, or 

using the syntax d‘decimal digits’.  If you don’t do this, the assembler will use the default radix 

(hexadecimal), and you may not be using the number you think you are!  Although it’s possible to set the 

default radix to decimal, you’ll run into problems if you rely on a particular default radix being set, and 

then later copy and paste your code into another project, with a different default radix, giving different 

results.  It’s much safer to simply prefix all decimal numbers with ‘.’. 

The ‘decfsz’ instruction performs the work of implementing the loop – “decrement file register, skip if 

zero”.  First, it decrements the contents of the specified register, and either writes the result back to the file 

register (if ‘,f’ is specified as the destination) or to W, (if ‘,w’ is specified as the destination).  If the 

result is not yet zero, the next instruction is executed, which will normally be a ‘goto’ which jumps back 

to the start of the loop.  But if the result is zero, the next instruction is skipped, exiting the loop. 

Mid-range PICs also have an ‘incfsz’ instruction, equivalent to ‘decfsz’, except that it increments a file 

register instead of decrementing it.  It’s used in loops where you want to count up from an initial value, 

instead of down. 

For a ‘decfsz’ loop, the number of loop iterations is equal to the initial value of the loop counter (“N” in 

the example above), assuming it is greater than zero. 

The ‘nop’ instruction – “no operation” – was included to pad out the example delay loop, to make the 

delay longer.  It does nothing but take some time to execute. 

How much time depends on the clock rate.  Instructions are executed at one quarter the rate of the 

processor clock.  In this case, the PIC is using the internal RC clock, running at a nominal 4 MHz.  The 

instructions are clocked at ¼ of this rate: 1 MHz.   So in this example, each instruction cycle is 1 µs. 

Most mid-range PIC instructions, including ‘nop’, execute in a single cycle.  The exceptions are those 

which jump to another location, such as ‘goto’, which take two cycles to execute. 

This means that another useful “do nothing” instruction is ‘goto $+1’.  Since ‘$’ stands for the current 

address, ‘$+1’ is the address of the next instruction.  Hence, ‘goto $+1’ jumps to the following 

instruction – apparently useless behaviour.  But like all ‘goto’ instructions, it executes in two cycles.  So 

‘goto $+1’ provides a two cycle delay in a single instruction – equivalent to two ‘nop’s, but using less 

program memory. 
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The ‘decfsz’ instruction normally executes in a single cycle.  But if the result is zero, and the next 

instruction is skipped, an extra cycle is added, making it a two-cycle instruction. 

To calculate the total time taken by the loop, add the execution time of each instruction in the loop: 

        nop    1 

        decfsz  dc1,f  1 (except when result is zero) 

        goto    dly1  2 
 

That’s a total of 4 cycles, except the last time through the loop, when the decfsz takes an extra cycle and 

the goto is not executed (saving 2 cycles), meaning the last loop iteration is 1 cycle shorter.  And there 

are two instructions before the loop starts, adding 2 cycles. 

Therefore the total delay time = (N × 4  1 + 2) cycles = (N × 4 + 1) µs 

If there was no ‘nop’, the delay would be (N × 3 + 1) µs. 

 

It may seem that, because 255 is the highest 8-bit number, the maximum number of iterations (N) should 

be 255.  But not quite.  If the loop counter is initially 0, then the first time through the loop, the ‘decfsz’ 

instruction will decrement it to 255, which is non-zero, and the loop continues – another 255 times.  

Therefore the maximum number of iterations is in fact 256, with the loop counter initially 0. 

So for the longest possible single loop delay, we can do something like: 

        clrf    dc1             ; loop 256 times 

dly1    nop 

        decfsz  dc1,f 

        goto    dly1 

 

The two “move” instructions have been replaced with a single ‘clrf’ instruction , which clears (to 0) the 

specified register – “clear file register”. 

This uses 1 cycle less, so the total time taken is 256 × 4 = 1024 µs  1 ms. 

 

That’s still well short of the 0.5 s needed, so we need to wrap (or nest) this loop inside another, using 

separate counters for the inner and outer loops, as shown: 

        movlw   .N              ; loop (outer) N times 

        movwf   dc2 

        clrf    dc1             ; loop (inner) 256 times 

dly1    nop                     ; inner loop = 256 x 4 – 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

        decfsz  dc2,f 

        goto    dly1 

 

The loop counter ‘dc2’ is being used to control how many times the inner loop is executed. 

Note that there is no need to clear the inner loop counter (dc1) on each iteration of the outer loop, because 

every time the inner loop completes, dc1 = 0. 

The total time taken for each iteration of the outer loop is 1023 cycles for the inner loop, plus 1 cycle for 

the ‘decfsz  dc2,f’ and 2 cycles for the ‘goto’ at the end, except for the final iteration, which, as 

we’ve seen, takes 1 cycle less.  The three setup instructions at the start add 3 cycles, so the total delay 

(assuming N > 0) is: 

delay time = (N × (1023 + 3)  1 + 3) cycles = (N × 1026 + 2) µs. 
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The maximum delay would be with 256 outer loop iterations, giving 262,658 µs.  We need a bit less than 

double that.  We could duplicate all the delay code, but it takes fewer lines of code if we only duplicate the 

inner loop, as shown: 

        ; delay 500 ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

The two inner loops of 1023 cycles each, plus the 3 cycles for the outer loop control instructions (decfsz 

and goto) make a total of 2049 µs.  Dividing this into the required 500,000 gives 244.02.  This is very 

close to a whole number, so an outer loop count of 244 will give a good result. 

The total execution time for this delay code is 499.958 ms – within 0.01% of the desired result! 

Since the internal RC oscillator has a precision of only around ±2%, there is no point trying to make this 

delay any more accurate.  But in some cases, to generate a given delay, you will need to add or remove 

‘nop’ or ‘goto $+1’ instructions while adjusting the number of loop iterations.  With a little 

experimentation, it is generally possible to get quite close to the delay you need. 

For delays longer than about 0.5 s, you’ll need to add more levels of nesting – with enough levels you 

generate delays which last for years! 

 

Next we need to be able to toggle, or flip the GP1 output from low to high and back again. 

As we saw in baseline lesson 2, to flip a single bit, you can exclusive-or it with 1. 

For example, to toggle GP1, we could write: 

        movlw   1<<GP1          ; bit mask to flip only GP1 

        xorwf   GPIO,f          ; flip bits in GPIO 

 

The ‘xorwf’ instruction exclusive-ors the W register with the specified register – “exclusive-or W with 

file register”, and writes the result either to the specified file register (GPIO in this case) or to W, 

depending on whether ‘,f’ or ‘,w’ is given as the instruction destination. 

 

However, as mentioned earlier, there is a danger in using instructions, such as ‘xorwf’, which read from a 

register, modify the contents and then write the new value back to the register, to operate directly on port 

registers, because the value read from a port pin will not always be the same as that written to it. 

To avoid these potential read-modify-write problems, it is better to use a shadow register, which holds a 

copy of the value the port register is supposed to have, operating on that shadow copy and then copying 

the updated value to the port register in a single operation. 

For example, if we define a variable to use as a shadow register: 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

we can use it in a loop to flash the LED, as follows: 

        clrf    sGPIO           ; start with shadow GPIO zeroed 
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flash   ; toggle LED 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   1<<GP1          ; flip bit corresponding to GP1 

        movwf   sGPIO           ;   in shadow register       

        banksel GPIO            ; and write to GPIO 

        movwf   GPIO 

           

        ; delay 500 ms (delay code goes here) 

 

        goto    flash           ; repeat forever 

 

The ‘movf’ instruction – “move file register to destination” – is used to read a register. 

With ‘,w’ as the destination, ‘movf’ copies the contents of the specified register to W. 

With ‘,f’ as the destination, ‘movf’ copies the contents of the specified register to itself.  That would 

seem to be pointless; why copy a register back to itself?  The answer is that the ‘movf’ instruction affects 

the Z (zero) status flag, so copying a register to itself is a way to test whether the value in the register is 

zero. 

The ‘xorlw’ instruction exclusive-ors the given literal (constant) value with the W register, placing the 

result in W – “exclusive-or literal to W”. 

Complete program 

Putting together all the above pieces, here’s the complete program for flashing an LED: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 1, example 2                                 * 

;                                                                       * 

;   Flashes an LED at approx 1 Hz.                                      * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;   Uses inline 500 ms delay routine                                    * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629       

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no warnings about registers not in bank 0 

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

dc1     res 1                   ; delay loop counters 

dc2     res 1 
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;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO 

        movwf   TRISIO 

         

        clrf    sGPIO           ; start with shadow GPIO zeroed 

 

;***** Main loop 

main_loop    

        ; toggle LED 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   1<<GP1          ; toggle bit corresponding to GP1 

        movwf   sGPIO           ;   in shadow register 

        banksel GPIO            ; and write to GPIO 

        movwf   GPIO 

           

        ; delay 500 ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

 

If you follow the programming procedure described earlier, you should now have an LED flashing at 

something very close to 1 Hz. 

 

Conclusion 

There has been a lot of theory in this lesson, but we now have a solid base to build on. 

By flashing an LED, you have shown that you have a working development environment and that you can 

create projects, modify your code, load (program) your code into your PIC, and make it run. 
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We’ve seen how to toggle a pin, and how to use shadow registers can be used to avoid potentially 

problematic “read-modify-write” operations on a port. 

We also saw how to use decrement instructions with conditional tests to implement loops, and how to use 

loops to create delays of any length. 

 

In the next lesson we’ll see how to make the code more modular, so that useful code such as the 500 ms 

delay developed here can be easily re-used within a program, or in other programs. 

 

../2%20-%20Modular%20code/PIC_Mid_A_2.pdf
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Introduction to PIC Programming 

Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 2: Introducing Modular Code 

 

 

In lesson 1, we developed a delay routine, which was used in flashing an LED. 

This lesson revisits the material introduced in baseline lesson 3, which explored ways in which useful 

pieces of code, such as delay routines, could be effectively re-used within a program, or in other programs. 

This modular approach to programming is usually more efficient, because only one copy of a routine is 

held in memory, and is less likely to introduce errors, because code changes (for example, in the way a 

delay is implemented) have to be changed in only one place.  And, having solved a problem once, you can 

more easily draw upon your library of existing routines, to include that code into a new program. 

You’ll save yourself a lot of time if you learn to write re-usable, modular code, which is why it’s being 

covered in such an early lesson. 

In summary, this lesson covers: 

 Subroutines 

 Relocatable code 

 External modules 

 Banking and paging 

Subroutines 

The 500 ms delay routine developed in lesson 1 was placed inline, within the main loop.  If you wished to 

re-use it in another part of the program, you would need to repeat the whole routine, wasting program 

memory and making the source code longer than it needs to be.  You would have to be careful, when 

copying and pasting code, to change all of the references to address labels, to avoid your code 

inadvertently jumping back from the copy to the original routine.  And if you wished to change the way 

the routine was implemented, you would have to find and update every instance of it in the program. 

The usual way to use the same routine in a number of places in a program is to place it into a subroutine.  

If we implemented the 500 ms delay as a subroutine, the main loop of the “flash an LED” program would 

look something like: 

flash   movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   1<<GP1          ; flip bit corresponding to GP1 

        banksel GPIO            ; write to GPIO 

        movwf   GPIO 

        movwf   sGPIO           ;   and update shadow copy       

           

        call    delay500        ; delay 500ms 

 

        goto    flash           ; repeat forever 

../1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
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The ‘call’ instruction is similar to ‘goto’, in that it jumps to another program address.  But first, it 

copies (or pushes) the address of the next instruction onto the stack.  The stack is a set of registers, used to 

hold the return addresses of subroutines.  When a subroutine is finished, the return address is copied 

(popped) from the stack to the program counter, and program execution continues with the instruction 

following the subroutine call. 

Note that the mid-range architecture does not suffer from the ‘call’ address limitation, discussed in 

baseline lesson 3.  Subroutine entry points can be placed anywhere in program memory on mid-range 

PICs; there is no reason to use jump tables, as we did for the baseline devices. 

The mid-range PICs have eight stack registers, compared with only two in the baseline architecture.  This 

gives us much more freedom to call subroutines from within other subroutines, making it easier to write 

larger, more complex programs in a modular way. 

In the baseline architecture, the only instruction way to return from a subroutine is to use the ‘retlw’ 

instruction, which returns with a literal in W. 

Mid-range PICs, on the other hand, provide a ‘return’ instruction – “return from subroutine”, which, as 

the name suggests, simply returns from a subroutine, without affecting W. 

Here then is the 500 ms delay routine, implemented as a subroutine: 

delay500                        ; delay 500 ms 

        movlw   .244            ; outer loop: 244x(1023+1023+3)-1+3+4 

        movwf   dc2             ;   = 499,962 cycles 

        clrf    dc1  

dly1    nop                     ; inner loop 1 = 256x4-1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

        return 

 

Example 1: Flash an LED (using delay subroutine with parameter passing) 

In lesson 1, we used the fixed 500 ms delay routine to flash the LED in this simple circuit (below, with the 

reset switch and pull-up omitted for clarity) at 1 Hz, with a 50% duty cycle.  

But what if we wanted to flash the LED at 1 Hz, with a 20% 

duty cycle?  That is, the LED would be repeatedly turned on 

for 200 ms, and then off for 800 ms. 

You may think that would mean writing two delay routines: 

one 200 ms and one 800 ms. 

But a better, more flexible, approach is to write a single 

routine, capable of generating a range of delays.  The requested 

delay would be passed as a parameter to the delay subroutine. 

If you had a number of parameters to pass (for example, a 

‘multiply’ subroutine would have to be given the two numbers 

to multiply), you’d need to place the parameters in general 

purpose registers, accessed by both the calling program and the 

subroutine.  But if there is only one parameter to pass, it’s 

often convenient to simply place it in W. 

../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
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Ideally, we would pass the required delay, in milliseconds, to the routine.  But since the mid-range PICs 

are 8-bit devices, the largest value that can be passed in the W register is 255, which is not enough to 

specify an 800 ms delay. 

If the delay routine produces a delay which is some multiple of 10 ms, it could be used for any delay from 

10 ms to 2.55 s, which is quite useful – you’ll find that you commonly want delays in this range. 

To implement a W × 10 ms delay, we need an inner routine which creates a 10 ms (or close enough) 

delay, and an outer loop which counts the specified number of those 10 ms loops. 

We can count multiples of 10 ms, using a third loop counter, as in the following subroutine: 

delay10                      

        movwf   dc3             ; delay = 1+Wx(3+10009+3)-1+4 = W x 10.015ms 

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

         

        return 

 

This routine can then be called, from the main loop, to generate the 200 ms and 800 ms delays we need, as 

follows: 

main_loop 

        ; turn on LED 

        banksel GPIO            

        movlw   1<<GP1          ; set GP1 

        movwf   GPIO  

        ; delay 0.2 s 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        call    delay10          

        ; turn off LED 

        clrf    GPIO            ; (clearing GPIO clears GP1) 

        ; delay 0.8 s 

        movlw   .80             ; delay 80 x 10ms = 800ms 

        call    delay10   

           

        ; repeat forever        

        goto    main_loop 

 

 

Note that this code does not use a shadow register.  It’s no longer necessary, because the GP1 bit is being 

set by writing a whole byte to GPIO, and is cleared by clearing the whole of GPIO in a single operation.  

It’s not being flipped; there’s no dependency on its previous value.  At no time does the GPIO register 

have to be read.  It’s only ever being written to.  So the “read-modify-write” problem does not apply.   

It’s important to understand this point, but if you’re ever in doubt about whether the “read-modify-write” 

problem may apply, it’s best to play safe and use a shadow register. 

We can get away with this approach in this example because GP1 is the only I/O pin being used.  If any 

of the other pins were being used as outputs, we would have to preserve their value by using instructions 

which read and modify GPIO, in which case a shadow register should be used instead. 
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You could, if you wish, include a ‘banksel GPIO’ directive before each instruction which writes to 

GPIO, but since GPIO is the only banked register accessed within the flash loop, it is ok to select the 

correct bank at the beginning of the loop. 

Complete program 

Here is the complete program for flashing the LED with a 20% duty cycle: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 2, example 1                                 * 

;                                                                       * 

;   Flashes an LED at approx 1 Hz, with 20% duty cycle                  * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;   Uses W x 10 ms delay subroutine                                     * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629       

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no warnings about registers not in bank 0 

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

dc3     res 1 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO 

        movwf   TRISIO 
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;***** Main loop 

main_loop 

        ; turn on LED 

        banksel GPIO            

        movlw   1<<GP1          ; set GP1 

        movwf   GPIO  

        ; delay 0.2 s 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        call    delay10          

        ; turn off LED 

        clrf    GPIO            ; (clearing GPIO clears GP1) 

        ; delay 0.8 s 

        movlw   .80             ; delay 80 x 10ms = 800ms 

        call    delay10   

           

        ; repeat forever        

        goto    main_loop 

 

 

;***** SUBROUTINES ****************************************************** 

 

;***** Variable delay: 10 ms to 2.55 s 

; 

;  Delay = W x 10 ms 

; 

delay10                      

        movwf   dc3             ; delay = 1+Wx(3+10009+3)-1+4 = W x 10.015ms 

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

         

        return 

         

 

        END 

 

Relocatable Modules 

If you wanted to re-use a subroutine in another program, you could simply copy the subroutine source 

code into the new program. 

There are, however, a few potential problems with this approach: 

 Address labels, such as ‘dly1’, may already be in use in the new program. 

 You need to know which variables and macros are needed by the subroutine, and remember to 

copy their definitions to the new program. 

 Variable names, constants and macro definitions have the same problem as address labels – they 

may already be used in new program, in which case you’d need to identify and rename all 

references to them. 

 The subroutine may need a particular include file; this will need to be identified and included in 

the new program. 
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These namespace clashes and other problems can be avoided by keeping the subroutine code, along with 

the variable, constants, macros etc. that it relies on, in a separate source file, where it is assembled into an 

object file, called an object module. 

The object modules – one for the main code, plus one for each module, are then linked together to create 

the final executable code, which is output as a .hex file to be programmed into the PIC. 

Banking and Paging 

As explained in baseline lesson 3, program memory on baseline PICs is divided into multiple pages, each 

512 words long, because the goto instruction can only specify a 9-bit address.  In the baseline 

architecture, page selection bits in the STATUS register make it possible to jump to a program memory 

location outside the current page. 

In mid-range PICs, the longer 14-bit opcodes allow both the goto and call instructions to specify an 11-

bit address, or a range of 2048 locations.  But since the mid-range PICs can have up to 8192 words of 

program memory, a paging scheme is still needed to make all of this memory accessible.  Thus, in the 

mid-range architecture, the page size is 2048 (or 2k) words, and there can be up to four pages. 

The paging scheme is different to that in the baseline architecture. 

In the mid-range architecture, the current page is selected by bits 3 and 4 of the PCLATH register, which 

are copied to bits 11 and 12 of the program counter (PC) whenever a goto or call instruction is 

executed. 

The lower bits of PCLATH are used when a computed goto operation is performed, as we will see when 

table reads are introduced in lesson 12. 

Baseline lesson 3 showed how the ‘pagesel’ directive can, and should, be used to correctly set the page 

selection bits, when jumping to an address which may be in a different page.  This is just as true for the 

mid-range architecture as it is for baseline PICs; although the paging mechanism is different, ‘pagesel’ 

is used in the same way. 

 

Page selection is relevant to a discussion of modular code, because the linker may load an object module 

anywhere in memory; that is why these modules, and this programming style, are described as being 

relocatable.  This means that, when calling a subroutine in another module, you will not know if the 

subroutine is in the current page. 

This is also true if you use multiple CODE sections within a single source file; unless you place the code 

sections at a specific address (which is not recommended, since it makes it more difficult for the linker to 

fit the sections into memory pages), you cannot know where each section will be placed in memory. 

Therefore, you should use pagesel whenever jumping to or calling a routine in a different code section 

or module.  And note that, after returning from a call to a module, the page selection bits will still be set 

for whatever page that module is in, not necessarily the current page.  So it is a good idea to place a 

‘pagesel $’ directive (“select page for current address”) after each call to a subroutine in another 

module, to ensure that the current page is selected after returning from the subroutine. 

You do not, however, need to use pagesel before every goto or call, or after every call. Remember 

that, provided you use the default linker scripts, a single code section is guaranteed to be wholly contained 

within a single page.  Once you know that you’ve selected the correct page, subsequent gotos or calls to 

the same section will work correctly.  But be careful! 

If in doubt, using pagesel before every goto and call is a safe approach that will always work. 

 

When assembling code for a device, such as the PIC12F629, which has only a single page of program 

memory, the pagesel directive will not generate any object code, so there is no penalty for using it on 

../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
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PICs where page selection is not an issue.  The assembler will, however, warn you that pagesel isn’t 

needed on these devices.  If you find these messages annoying, you can turn them off with: 

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

If you use pagesel, even on devices with only a single page of program memory, your code will be more 

portable, so it is best to always use it, regardless of which mid-range or baseline PIC you are using. 

 

Similarly, when variables are defined in a relocatable module, or if you declare multiple UDATA sections 

within a single source file, you will not know which bank of data memory they are located in. 

Therefore, when accessing variables defined in another module or data section, you should use the 

‘banksel’ directive to correctly set the bank selection bits.  Although the data memory bank selection 

mechanism in the mid-range architecture (described in lesson 1) differs from that in the baseline PICs 

(described in baseline lesson 3), ‘banksel’ is used in the same way. 

Note that, in the mid-range architecture, where most of the special function registers are banked, the bank 

selection bits may have to be changed to allow access to a banked SFR.  This means that, after having 

accessed a banked SFR, you may need to select a different bank to access a banked variable.  This is 

different from the baseline architecture where, having selected the bank containing the variables your 

routine is using, you can access SFRs without having to worry about bank selections.  On mid-range PICs, 

you will not know if a particular set of variables (defined in a UDATA section) are in the same bank as any 

banked SFRs your routine is accessing, so you must use banksel when switching between banked SFR 

and register access. 

To summarise: 

 The first time you access a variable declared in a UDATA section, use banksel. 

 To access subsequent variables in the same UDATA section, you don’t need to use banksel. 

(unless you had selected another bank between variable accesses) 

 Following a call to a subroutine or external module, which may have selected a different bank, use 

banksel for the first variable accessed after the call. 

 Whenever you access a banked special function register, use banksel. 

 After accessing a banked special function register, use banksel when you subsequently access a 

variable declared in a UDATA section 

 There is never any need to use banksel to access variables in a UDATA_SHR section. 

 When accessing non-banked special function registers, such as STATUS, there is no need to use 

banksel. 

Creating a Relocatable Module 

Converting an existing subroutine, such as the ‘delay10’ routine, into a standalone, relocatable module is 

easy.  All you need to do is to declare any symbols (address labels or variables) that need to be accessible 

from other modules, using the GLOBAL directive. 

For example: 

    #include    <p12F629.inc>   ; any midrange device will do 

 

    GLOBAL      delay10 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

dc1     res 1                   ; delay loop counters 

../1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
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dc2     res 1 

dc3     res 1 

 

 

;***** SUBROUTINES ****************************************************** 

        CODE 

 

;***** Variable delay: 10 ms to 2.55 s 

; 

;  Delay = W x 10 ms 

; 

delay10                         

        movwf   dc3             ; delay = 1+Wx(3+10009+3)-1+4 = W x 10.015 ms 

                      

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

 

        return 

 

        END 

 

This is the subroutine from example 1, with a CODE directive at the beginning of it, and a UDATA_SHR 

directive to reserve data memory for the subroutine’s variables.   For most mid-range PICs, with banked 

memory available, it would be more appropriate to use UDATA, to conserve the more valuable shared 

registers, but since this module is intended to be used with a 12F629, we have to use shared memory.  It 

would make sense to have two versions of this module in your library: one where banked memory is 

available and one (this version) where it is not. 

Toward the start, a GLOBAL directive has been added, declaring that the ‘delay10’ label is to be made 

available (exported) to other modules, so that they can call this subroutine. 

You should also add a ‘#include’ directive, to define any “standard” symbols used in the code, such as 

the instruction destinations ‘w’ and ‘f’.  This delay routine will work on any mid-range PIC; it’s not 

specific to any, so you can use the include file for any of the mid-range PICs, such as the 12F629.  Note 

that there is no list directive; this avoids the processor mismatch errors that would be reported if you 

specify more than one processor in the modules comprising a single project.  You will, however, still see 

warnings about “Processor-header file mismatch” if your device is different to the processor that the 

include file is intended for; you can generally ignore these warnings, but, if in doubt, change the 

‘#include’ directive in the module to match the processor you are building the code for. 

Of course it’s also important to add a block of comments at the start; they should describe what this 

module is for, how it is used, any effects (including side effects) it has, and any assumptions that have 

been made.  In this case, it is assumed that the processor is clocked at exactly 4 MHz. 

Calling Relocatable Modules 

Having created an external relocatable module (i.e. one in a separate file), we need to declare, in the main 

(or calling) file any labels we want to use from the external module, so that the linker knows that these 

labels are defined in another module.  That’s done with the EXTERN directive. 

For example: 

    EXTERN      delay10         ; W x 10ms delay 
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After having been declared as external, it is then possible to call a subroutine or access a variable in an 

external module (using pagesel or banksel first!) in the usual way. 

To summarise: 

 The GLOBAL and EXTERN directives work as a pair. 

 GLOBAL is used in the file that defines a module, to export a symbol for use by other modules. 

 EXTERN is used when calling external modules.  It declares that a symbol has been defined 

elsewhere. 

 

Example 2: Flashing an LED (using an external module) 

As we did in lesson 1, we can use the circuit from example 1 to flash an LED at 1 Hz, with a 50% duty 

cycle – but this time using an external delay module. 

The source code for the modular version of the ‘delay10’ routine was given above.  You will need to save 

this as a separate file, called something like ‘delay10.asm’. 

A few methods for creating a multiple-file project were described in detail in baseline lesson 3, but, 

briefly, you need to add the file containing your ‘delay10’ module to your project, which can be done by 

right-clicking in “Source Files” in the project tree, and then selecting “Add Files” (in MPLAB 8) or “Add 

Existing Item…” (in MPLAB X) from the context menu. 

The main program can be created by copying the “Flash an LED” example from lesson 1, changing the 

code to call the ‘delay10’ routine (after declaring it to be external), and adding the ‘delay10.asm’ file to 

your project.  You should also update the comments, to state that this external module is required. 

Complete program 

Here is the main program for flashing an LED with the modifications described above, using the external 

‘delay10’ module: 

;************************************************************************ 

;                                                                       * 

;   Filename:       MA_L2-Flash_LED-50p-mod.asm                         * 

;   Date:           2/5/12                                              * 

;   File Version:   1.2                                                 * 

;                                                                       * 

;   Author:         David Meiklejohn                                    * 

;   Company:        Gooligum Electronics                                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Architecture:   Midrange PIC                                        * 

;   Processor:      12F629                                              * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: delay10-shr.asm     (provides W x 10ms delay,       * 

;                                        shared memory version)         * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 2, example 2                                 * 

;                                                                       * 

;   Demonstrates how to call external modules                           * 

;                                                                       * 

;   Flashes an LED at approx 1 Hz.                                      * 

;   LED continues to flash until power is removed.                      * 

../1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
../1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
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;                                                                       * 

;   Uses W x 10 ms delay module                                         * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629       

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

     

    EXTERN      delay10         ; W x 10ms delay 

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res     1               ; shadow copy of GPIO 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO 

        movwf   TRISIO 

         

        clrf    sGPIO           ; start with shadow GPIO zeroed 

 

 

;***** Main loop 

main_loop    

        ; toggle LED 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   1<<GP1          ; toggle bit corresponding to GP1 

        movwf   sGPIO           ;   in shadow register 

        banksel GPIO            ; and write to GPIO 

        movwf   GPIO       
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        ; delay 500 ms -> 1 Hz flashing at 50% duty cycle 

        movlw   .50 

        pagesel delay10         ; delay 50 x 10 ms = 500 ms 

        call    delay10 

 

        ; repeat forever 

        pagesel main_loop 

        goto    main_loop            

 

 

        END 

 

 

Conclusion 

Again, this has been a lot theory – and we’re still only flashing an LED! 

The intent of this lesson was to give you an understanding of the mid-range PIC memory architecture, 

including its limitations (banking and paging) and how to work around them, to avoid potential problems 

as your programs grow.  We’ve also seen how to create re-usable code modules, which should help you to 

avoid wasting time “reinventing the wheel” for each new project in future.  In fact, we’ll continue to use 

the delay module in later lessons. 

 

In the next lesson we’ll look at reading and responding to switches, such as pushbuttons.  And since real 

switches “bounce”, which can be a problem for microcontroller applications, we’ll look at ways to 

“debounce” them. 

 

../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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Introduction to PIC Programming 

Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 3: Reading Switches 

 

 

The first lesson introduced simple digital output, by turning on or flashing an LED.  That’s more useful than 

you may think, since, with some circuit changes (such as adding transistors and relays), it can be readily 

adapted to turning on and off almost any electrical device. 

Most systems, however, need to interact with their environment in some way; to respond to user commands 

or varying inputs.  The simplest form of input is an on/off switch.  This lesson revisits the material covered 

in baseline lesson 4, showing how to read a simple pushbutton switch – techniques which are applicable to 

any digital (strictly on/off or high/low) input. 

This lesson covers: 

 Reading digital inputs 

 Conditional branching 

 Using internal pull-ups 

 Software approaches to switch debouncing 

Example 1: Reading a Digital Input 

One of the simplest ways to generate a digital input signal is to use a basic pushbutton switch. 

The Gooligum training board provides pushbutton switches connected to pins GP2 and GP3, while the 

Microchip Low Pin Count demo board only has a pushbutton connected to GP3, as in the circuit (from 

lesson 1) shown below, so we’ll use it again in this lesson. 

 

As before, we’ll use the LED on GP1 as an 

indicator. 

 

If you’re using the Gooligum training board, you 

should close jumpers JP3 and JP12, to bring the 10 

kΩ resistor into the circuit and to connect the LED 

to GP1. 

 

The 10 kΩ resistor is a pull-up resistor, holding 

GP3 high while the switch is open. 

When the switch is pressed, the pin is pulled to 

ground through the 1 kΩ resistor.   

../1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
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Given the high impedance of the PIC’s inputs (very little current flows into them), these external resistors are 

sufficient to pull the input voltage to a valid logic high when the pushbutton is up, and a valid logic low 

when it is pressed.  For a more detailed analysis, see baseline lesson 4. 

Interference from MCLR   

There is a potential problem with using a pushbutton on GP3 because that pin is also used for MCLR  and, as 

we saw in baseline lesson 1, MPLAB provides for control of the MCLR  line through the “Release from 

Reset” and “Hold in Reset” menu items (MPLAB 8 only) and toolbar buttons (MPLAB 8 and MPLAB X). 

 

That’s not a problem if you’re using a PICkit 3, because when the PICkit 3 is used a programmer
1
, its 

MCLR  output is disconnected (“tri-stated”) immediately after programming, meaning that the PICkit 3 won’t 

affect the PIC’s MCLR  / GP3 input. 

 

It’s different with the PICkit 2 where, by default, the PICkit 2 continues to assert control over the MCLR  line 

and, because of the 1 kΩ isolation resistor, the 10 kΩ pull-up resistor and the pushbutton cannot overcome 

the PICkit 2’s control of that line. 

If you are using MPLAB 8, this problem can be overcome by 

changing the PICkit 2 programming settings, to tri-state the 

PICkit 2’s MCLR  output (effectively disconnecting it) when it is 

not being used to hold the PIC in reset. 

To do this, select the PICkit 2 as a programmer (using the 

“Programmer → Select Programmer” submenu) and then use 

the “Programmer → Settings” menu item to display the PICkit 2 

Settings dialog window, shown on the right.  Select ‘3-State on 

“Release from Reset”’ in the Settings tab and then click “OK”. 

After using the PICkit 2 to program your device, it will hold 

MCLR   low, holding the GP3 input low, overriding the pull-up 

resistor. 

When you now click on the on the  button in the programming toolbar, or select the “Programmer  

Release from Reset” menu item, the PICkit 2 will release control of MCLR  , allowing GP3 to be driven high 

or low by the pull-up resistor and pushbutton. 

 

MPLAB X also allows you to prevent the PICkit 2 asserting control over MCLR  , in much the same way. 

                                                      

1
 as opposed to being used as a debugger; see lesson 0 

When the PICkit 2 is used as a programmer with MPLAB, it will, by default, assert control of the 

MCLR   line, overriding any pushbutton switch on the PIC’s MCLR  / GP3 input. 

../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../PIC_Intro_0.pdf
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To do this, open the Project Properties window, by selecting the “File → Project Properties” menu item, or 

right-clicking the project name in the Projects window and selecting “Properties”, or simply clicking on the 

“Project Properties” button to the left of the Dashboard. 

If you click on “PICkit 2”, you will see the settings shown below: 

 

Select “3-State on ‘Release from Reset’”, and then click “OK”. 

Now, when you build and run your project, the PICkit 2’s MCLR  output will be tri-stated, making it possible 

for you to use a pushbutton on GP3. 

Reading the Switch 

We’ll start with a short program that simply turns the LED on when the pushbutton is pressed. 

Of course, that’s a waste of a microcontroller.  To get the same effect, you could leave the 

PIC out and build the circuit shown on the right!  But, this simple example avoids having to 

deal with the problem of switch contact bounce, which we’ll look at later. 

 

In general, to read a pin, we need to: 

 Configure the pin as an input 

 Read or test the bit corresponding to the pin 

Recall, from lesson 1, that the pins on the 12F629 are digital inputs or outputs.  They can be turned on or off, 

but nothing in between.  Similarly, they can read only a voltage as being “high” or “low”.  The data sheet 

defines input voltage ranges where the pin is guaranteed to read as “high” or “low”.  For voltages between 

these ranges, the pin might read as either; the input behaviour for intermediate voltages is undefined. 

As you might expect, a “high” input voltage reads as a ‘1’, and a “low” reads as a ‘0’. 

 

Normally, to configure a pin as an input, you would set the corresponding TRISIO bit to ‘1’. 

This circuit uses GP3, which, because it shares a pin with MCLR  , can only ever be an input – regardless of 

the contents of TRISIO.  However, when using GP3 as an input, you may as well set bit 3 of TRISIO, to 

make your code clearer. 

 

An instruction such as ‘movf  GPIO,w’ will read the bit corresponding to GP3.  The problem with that is 

that it reads all the pins in GPIO, not just GP3.  If you want to act only on a single bit, you need to separate 

it from the rest, which can be done with logical masking and shift instructions, but there’s a much easier way 

– use the bit test instructions. 

../1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
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There are two: 

‘btfsc f,b’ tests bit ‘b’ in register ‘f’.  If it is ‘0’, the following instruction is skipped – “bit test file 

register, skip if clear”. 

‘btfss f,b’ tests bit ‘b’ in register ‘f’.  If it is ‘1’, the following instruction is skipped – “bit test file 

register, skip if set”. 

Their use is illustrated in the following code: 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO          ; (GP3 is an input) 

        movwf   TRISIO 

        banksel GPIO     

        clrf    GPIO         ; start with GPIO clear (GP1 low)     

         

;***** Main loop 

main_loop 

        ; turn on LED only if button pressed 

        btfss   GPIO,GP3        ; if button pressed (GP3 low) 

        bsf     GPIO,GP1        ;   turn on LED 

        btfsc   GPIO,GP3        ; if button up (GP3 high) 

        bcf     GPIO,GP1        ;   turn off LED 

 

        ; repeat forever 

        goto    main_loop 

 

Note that the logic seems to be inverse; the LED is turned on if GP3 is clear, yet the ‘btfss’ instruction 

tests for the GP3 bit being set.  Since the bit test instructions skip the next instruction if the bit test condition 

is met, the instruction following a bit test is executed only if the condition is not met.  Often, following a bit 

test instruction, you’ll place a ‘goto’ or ‘call’ to jump to a block of code that is to be executed if the bit 

test condition is not met.  In this case, there is no need, as the LED can be turned on or off with single bit set 

or clear instructions. 

However, as discussed in lesson 1, directly setting or clearing individual bits in an I/O port can lead to 

unintended effects, due the potential for read-modify-write problems – you may find that bits other than the 

designated one are also being changed.  This unwanted effect often occurs when sequential bit set/clear 

instructions are performed on the same port.  Trouble can often be avoided by separating sequential ‘bsf’ 

and ‘bcf’ instructions with a ‘nop’. 

Although unlikely to be necessary in this case, since the bit set/clear instructions are not sequential, a shadow 

register could be used as follows: 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO          ; (GP3 is an input) 

        movwf   TRISIO 

 

        banksel GPIO     

        clrf    GPIO         ; start with GPIO clear (LED off) 

        clrf    sGPIO           ; update shadow copy 

 

;***** Main loop 

main_loop 

        ; turn on LED only if button pressed 

        btfss   GPIO,GP3        ; if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;   turn on LED 

        btfsc   GPIO,GP3        ; if button up (GP3 high) 

        bcf     sGPIO,GP1       ;  turn off LED 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

../1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Mid-range PIC Assembler, Lesson 3: Reading Switches Page 5 

        ; repeat forever 

        goto    main_loop 

 

It’s possible to optimise this a little.  There is no need to test for button up as well as button down; it will be 

either one or the other, so we can instead write a value to the shadow register, assuming the button is up (or 

down), and then test just once, updating the shadow if the button is found to be down (or up). 

The main loop then becomes: 

main_loop 

        ; turn on LED only if button pressed 

        clrf    sGPIO           ; assume button up -> LED off 

        banksel GPIO  

        btfss   GPIO,GP3        ; if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    main_loop 

 

It’s also not really necessary to initialise GPIO at the start; whatever state it is in when the program starts, it 

will be updated the first time the loop completes, a few µs later – much too fast to see.  If setting the initial 

values of output pins correctly is important, to avoid power-on glitches that may affect circuits connected to 

them, the correct values should be written to the port registers before configuring the pins as outputs, i.e. 

initialise GPIO before TRISIO.  But when dealing with human perception, it’s not important. 

If you didn’t use a shadow register, but tried to take the same approach – assuming a state (e.g. “button up”), 

setting GPIO, then reading the button and changing GPIO accordingly – it would mean that the LED would 

be flickering on and off, albeit too fast to see.  Using a shadow register is a neat solution that avoids this 

problem, as well as any read-modify-write concerns, since the physical register (GPIO) is only ever updated 

with the correctly determined value. 

Complete program 

Here is the complete program for turning on the LED when the pushbutton is pressed, using the optimised 

shadow register code above: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 3, example 1b                                * 

;                                                                       * 

;   Demonstrates reading a switch                                       * 

;   (using shadow register to update port)                              * 

;                                                                       * 

;   Turns on LED when pushbutton on GP3 is pressed                      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = LED                                                       * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629       

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no warnings about registers not in bank 0 
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;***** CONFIGURATION 

                ; int reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res     1               ; shadow copy of GPIO 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO          ; (GP3 is an input) 

        movwf   TRISIO 

  

         

;***** Main loop 

main_loop 

        ; turn on LED only if button pressed 

        clrf    sGPIO           ; assume button up -> LED off 

        banksel GPIO  

        btfss   GPIO,GP3        ; if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    main_loop 

 

 

        END 

 

Example 2: Debouncing 

In most applications, you want your code to respond to transitions; some action should be triggered when a 

button is pressed or a switch is toggled.  This presents a problem when interacting with real, physical 

switches, because their contacts bounce.  When most switches change, the contacts in the switch will make 

and break a number of times before settling into the new position.  This contact bounce is generally too fast 

for the human eye to see, but microcontrollers are fast enough to react to each of these rapid, unwanted 

transitions. 

A similar problem can be caused by electromagnetic interference (EMI).  Unwanted spikes may appear on an 

input line, due to electromagnetic noise, especially (but not only) when switches or sensors are some distance 
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from the microcontroller.  But any solution which deals effectively with contact bounce will generally also 

remove or ignore input spikes caused by EMI. 

Dealing with these problems is called switch debouncing. 

 

To illustrate the problem, suppose that you wish to toggle the LED on GP1, once, each time the button on 

GP3 is pressed. 

In pseudo-code, this could be expressed as: 

do forever 

 wait for button press 

 toggle LED 

 wait for button release 

end 

 

Note that it is necessary to wait for the button to be released before restarting the loop, so that the LED 

should only toggle once per button press.  If we didn’t wait for the button to be released before continuing, 

the LED would continue to toggle as long as the button was held down; not the desired behaviour. 

 

Here is some code which implements this: 

main_loop 

        ; wait for button press 

wait_dn btfsc   GPIO,GP3        ; wait until GP3 low 

        goto    wait_dn 

 

        ; toggle LED 

        movf    sGPIO,w 

        xorlw   1<<GP1          ; toggle bit corresponding to GP1 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

 

        ; wait for button release 

wait_up btfss   GPIO,GP3        ; wait until GP3 high 

        goto    wait_up         

 

        ; repeat forever 

        goto    main_loop 

 

If you build this into a complete program
2
 and test it, you will find that it is difficult to reliably change the 

LED when you press the button; sometimes it will change, other times not.  This is due to contact bounce. 

 

In baseline lesson 4 we saw that switch debouncing is in effect 

a filtering problem and that it can be addressed by using 

appropriate hardware. 

One solution is to use an RC low-pass filter coupled to a 

Schmitt trigger buffer, as shown on the right. 

 

                                                      

2
 You’d need to add processor configuration, reset vector, initialisation code etc., and declare the sGPIO variable, as 

we’ve done before.  The complete source code is provided with these tutorials.   

../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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However, one of the reasons to use microcontrollers is that they allow you to solve what would otherwise be 

a hardware problem, in software.  In particular, it is possible to use software routines to debounce a switch 

input, without any need for external filtering hardware. 

If the software can ignore input transitions due to contact bounce or EMI, while detecting and responding to 

genuine switch changes, no external debounce circuitry is needed.  As with the hardware approach, the 

problem is essentially one of filtering; we need to ignore any transitions too short to be ‘real’. 

Debouncing using delays 

The easiest approach to software debouncing is to estimate the maximum time the switch could possibly take 

to settle, and then simply wait at least that long, after detecting the first transition.  If the wait time, or delay, 

is longer than the maximum possible settling time, you can be sure that, by the time the delay completes, the 

switch will have finished bouncing. 

It’s simply a matter of adding a suitable debounce delay, after each transition is detected, as in the following 

pseudo-code: 

do forever 

 wait for button press 

 toggle LED 

delay debounce_time 

 wait for button release 

delay debounce_time 

end 

 

Note that the LED is toggled immediately after the button press is detected.  There’s no need to wait for 

debouncing.  By acting on the button press as soon as it is detected, the user will experience as fast a 

response as possible. 

The necessary minimum delay time depends on the characteristics of the switch.  For example, the switch 

tested in baseline lesson 4 was seen to settle in around 250 µs.  Repeated testing showed no settling time 

greater than 1 ms, but it’s difficult to be sure of that, and perhaps a different switch, say that used in 

production hardware, rather than the prototype, may behave differently.  So it’s best to err on the safe side, 

and choose the longest delay we can get away with.  People don’t notice delays of 20 ms or less (flicker is 

only barely perceptible at 50 Hz, corresponding to a 20 ms delay), so a good choice is probably 20 ms. 

As you can see, choosing a suitable debounce delay is not an exact science! 

 

We can simply add delays, using the W × 10 ms delay module developed in lesson 2, to the main loop of the 

“Toggle an LED” code (presented above), as follows: 

main_loop 

        ; wait for button press 

        banksel GPIO 

wait_dn btfsc   GPIO,GP3        ; wait until GP3 low 

        goto    wait_dn 

 

        ; toggle LED 

        movf    sGPIO,w 

        xorlw   1<<GP1          ; toggle bit corresponding to GP1 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

 

        ; delay to debounce button press 

        movlw   .2                 

        pagesel delay10 

        call    delay10         ; delay 2 x 10 ms = 20 ms 

        pagesel $ 

../2%20-%20Modular%20code/PIC_Mid_A_2.pdf
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        ; wait for button release         

        banksel GPIO            

wait_up btfss   GPIO,3          ; wait until GP3 high 

        goto    wait_up         

 

        ; delay to debounce button press 

        movlw   .2                 

        pagesel delay10 

        call    delay10         ; delay 2 x 10 ms = 20 ms 

        pagesel $ 

         

        ; repeat forever 

        goto    main_loop 

 

Note the extra ‘banksel’ directives; these have been added in case the ‘delay10’ routine changes the 

current bank selection.  That’s not strictly necessary in this case, because we know that this version of the 

‘delay10’ routine does not affect the current bank selection (it only uses shared registers).  But in general 

it’s safer to assume that, when you call a subroutine, it may change both the bank and page selection bits 

(hence the ‘pagesel $’ directive following each call to the delay routine – it ensures that the subsequent 

‘goto’ instructions in the routine will work correctly). 

If you build and test this code, you should find that the LED now reliably changes state every time you press 

the button. 

Debouncing using a counting algorithm 

There are a couple of problems with using a fixed length delay for debouncing. 

Firstly, the need to be “better safe than sorry” means making the delay as long as possible, and probably 

slowing the response to switch changes more than is really necessary, potentially affecting the feel of the 

device you’re designing. 

More importantly, the delay approach cannot differentiate between a glitch and the start of a switch change.  

As discussed, spurious transitions can be caused be EMI, or electrical noise – or a momentary change in 

pressure while a button is held down. 

A commonly used approach, which avoids these problems, is to regularly read (or sample) the input, and 

only accept that the switch is in a new state, when the input has remained in that state for some number of 

times in a row.  If the new state isn’t maintained for enough consecutive times, it’s considered to be a glitch 

or a bounce, and is ignored. 

For example, you could sample the input every 1 ms, and only accept a new state if it is seen 10 times in a 

row; i.e. high or low for a continuous 10 ms. 

To do this, set a counter to zero when the first transition is seen.  Then, for each sample period (say every 1 

ms), check to see if the input is still in the desired state and, if it is, increment the counter before checking 

again.  If the input has changed state, that means the switch is still bouncing (or there was a glitch), so the 

counter is set back to zero and the process restarts.  The process finishes when the final count is reached, 

indicating that the switch has settled into the new state. 

The algorithm can be expressed in pseudo-code as: 

count = 0 

while count < max_samples 

 delay sample_time 

 if input = required_state 

  count = count + 1 

 else 

  count = 0 

end 

 



© Gooligum Electronics 2012  www.gooligum.com.au 

Mid-range PIC Assembler, Lesson 3: Reading Switches Page 10 

Here is the modified “toggle an LED” main loop, illustrating the use of this counting debounce algorithm: 

main_loop 

        ; wait for button press  

db_dn   clrf    db_cnt          ; wait until button pressed (GP3 low) 

        clrf    dc1             ; debounce by counting: 

dn_dly  incfsz  dc1,f           ;   delay 256x3 = 768 us. 

        goto    dn_dly 

        btfsc   GPIO,GP3        ;   if button up (GP3 high), 

        goto    db_dn           ;       restart count 

        incf    db_cnt,f        ;   else increment count 

        movlw   .13             ;   max count = 10ms/768us = 13 

        xorwf   db_cnt,w        ;   repeat until max count reached 

        btfss   STATUS,Z 

        goto    dn_dly 

 

        ; toggle LED 

        movf    sGPIO,w 

        xorlw   1<<GP1          ; toggle LED on GP1 

        movwf   sGPIO           ;   using shadow register 

        movwf   GPIO 

 

        ; wait for button release 

db_up   clrf    db_cnt          ; wait until button released (GP3 high) 

        clrf    dc1             ; debounce by counting: 

up_dly  incfsz  dc1,f           ;   delay 256x3 = 768 us. 

        goto    up_dly 

        btfss   GPIO,GP3        ;   if button down (GP3 low), 

        goto    db_up           ;       restart count 

        incf    db_cnt,f        ;   else increment count 

        movlw   .13             ;   max count = 10ms/768us = 13 

        xorwf   db_cnt,w        ;   repeat until max count reached 

        btfss   STATUS,Z 

        goto    up_dly 

 

        ; repeat forever   

        goto    main_loop             

 

There are two debounce routines here; one for the button press, the other for button release.  The program 

first waits for a pushbutton press, debounces the press, then toggles the LED before waiting for the 

pushbutton to be released, and then debouncing the release. 

The only difference between the two debounce routines is the input test: ‘btfsc GPIO,3’ when testing for 

button up, versus ‘btfss GPIO,3’ to test for button down.  

Note that, in each of the debounce routines, a short loop is used to generate a 768 µs delay, so the input is 

being sampled every 768 µs or so, instead of the 1 ms sample time mentioned above – simply because it’s 

much easier to generate a 768 µs delay than a 1 ms delay.  The principle is the same; instead of sampling the 

input 10 times, 1 ms apart, the routine samples 13 times, 768 µs apart.  Either way, the routine is checking 

that the switch is remaining in the same state (continuously on or off) for approximately 10 ms. 

 

The code above demonstrates one method for counting up to a given value (13 in this case): 

The count is zeroed at the start of the routine. 

It is incremented within the loop, using the ‘incf’ instruction – “increment file register”.  As with many 

other instructions, the incremented result can be written back to the register, by specifying ‘,f’ as the 

destination, or to W, by specifying ‘,w’ – but normally you would use it as shown, with ‘,f’, so that the 

count in the register is incremented.  The mid-range PICs also provide a ‘decf’ instruction – “decrement file 

register”, which is similar to ‘incf’, except that it performs a decrement instead of increment. 
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We’ve seen the ‘xorwf’ instruction before, but not used in quite this way.  The result of exclusive-oring any 

binary number with itself is zero.  If any dissimilar binary numbers are exclusive-ored, the result will be non-

zero.  Thus, XOR can be used to test for equality, which is how it is being used here.  First, the maximum 

count value is loaded into W, and then this max count value in W is xor’d with the loop count.  If the loop 

counter has reached the maximum value, the result of the XOR will be zero.  We do not care what the result 

of the XOR actually is, only whether it is zero or not.  And to avoid overwriting the loop counter with the 

result, ‘,w’ is specified as the destination of the ‘xorwf’ instruction – writing the result to W, effectively 

discarding it. 

To check whether the result of the XOR was zero (which will be true if the count has reached the maximum 

value), we use the ‘btfss’ instruction to test the zero flag bit, Z, in the STATUS register. 

 

Alternatively, each debounce routine could have been coded by initialising the loop counter to the maximum 

value at the start of the loop, and using ‘decfsz’ at the end of the loop, as follows: 

        ; wait for button press, debounce by counting: 

db_dn   movlw   .13             ; max count = 10ms/768us = 13 

        movwf   db_cnt         

        clrf    dc1              

dn_dly  incfsz  dc1,f           ; delay 256x3 = 768 us. 

        goto    dn_dly 

        btfsc   GPIO,GP3        ; if button up (GP3 high), 

        goto    db_dn           ;   restart count 

        decfsz  db_cnt,f        ; else repeat until max count reached 

        goto    dn_dly 

 

That’s two instructions shorter, and at least as clear, so it’s a better way to code this routine. 

 

Nevertheless it’s worth knowing how to count up to a given value, using XOR to test for equality, because 

sometimes it simply makes more sense to count up than down. 

 

Example 3: Internal Pull-ups 

The use of pull-up resistors is so common that most modern PICs make them available internally, on at least 

some of the pins. 

The availability of internal pull-ups makes it 

possible to do without with the external pull-up 

resistor, as shown in the circuit on the right. 

Unfortunately, there is no internal pull-up on the 

12F629’s GP3 pin, so to demonstrate their use we 

need to use a different input pin, which is why the 

switch is connected to GP2 here. 

The Gooligum training board already has a 

pushbutton switch connected to GP2 as shown, but 

you should ensure that jumper JP7 is not closed, so 

that there is no external pull-up in place. 

If you are using the Microchip demo board, you 

will need to supply your own pushbutton and 

connect it between GP2 (pin 9 of the 14-pin 

header) and ground (pin 14 on the header). 

http://www.gooligum.com/devboards/base-mid/base-mid.html


© Gooligum Electronics 2012  www.gooligum.com.au 

Mid-range PIC Assembler, Lesson 3: Reading Switches Page 12 

Strictly speaking, the internal pull-ups are not simple resistors.  Microchip refers to them as “weak pull-ups”; 

they provide a small current (typically 250 µA) which is enough to hold a disconnected, or floating, input 

high, but not enough to strongly resist any external signal trying to drive the input low.   

 

We’ve seen that, on baseline PICs, internal pull-ups are only available on a few pins, and they are either all 

enabled or all disabled. 

This is different in the mid-range architecture: pull-ups are available for every pin on the 12F629 (except 

GP3), and they can be selected individually. 

Nevertheless, the internal weak pull-ups are globally controlled, as a group, by the GPPU   bit in the 

OPTION register: 

By default (after a power-on or reset), GPPU   = 1 and all the internal pull-ups are disabled. 

To globally enable internal pull-ups, clear GPPU  . 

 

Note that, in the mid-range architecture, the OPTION register is accessed as a normal, memory-mapped 

register, called OPTION_REG, as mentioned in lesson 1. 

 

Each weak pull-up is individually controlled by a bit in the WPU register: 

If WPU<n> = 1, the weak pull-up on the corresponding GPIO pin, GPn, is enabled. 

If WPU<n> = 0, the corresponding weak pull-up is disabled. 

However, if a pin is configured as an output, the internal pull-up is automatically disabled for that pin. 

To enable the pull-up on GP2, we must first clear GPPU  to globally enable weak pull-ups: 

        bcf     OPTION_REG,NOT_GPPU     ; enable global pull-ups 

 

One advantage of the mid-range architecture is that, because the OPTION register can be accessed directly, it 

is possible to clear or set individual bits, such as GPPU  , leaving the other bits unchanged.  On the baseline 

PICs, we had to load the whole OPTION register in a single operation, which is much less convenient. 

 

Then, having globally enabled weak pull-ups, we need to specifically enable the pull-up on GP2, by setting 

WPU<2>. 

You could do that by: 

        bsf     WPU,GP2         ; enable pull-up on GP2 

     

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OPTION_REG GPPU   INTEDG T0CS T0SE PSA PS2 PS1 PS0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

WPU - - WPU5 WPU4 - WPU2 WPU1 WPU0 

Note:  The option instruction is not used to write to the OPTION register on mid-range devices. 

The OPTION register is accessed as OPTION_REG, using general instructions, such as bsf. 
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By default (after a power-on reset), every bit of WPU is set, so there is not really any need to explicitly set 

WPU<2> like this.  But it’s good practice to disable the weak pull-ups on the unused input pins (unused 

inputs should not be left floating, to avoid large current consumption and ESD damage to the PIC, and are 

often tied to ground; if pull-ups were enabled on grounded inputs, current will flow through them, leading to 

unnecessary power consumption).  Therefore, all the remaining bits in WPU should be cleared. 

This could be done by: 

        clrf    WPU             ; disable all pull-ups 

        bsf     WPU,GP2         ; except on GP2 

   

or: 

        movlw   1<<GP2          ; enable pull-up on GP2 only 

        movwf   WPU 

 

The second form is better if you need to enable pull-ups on more than one input. 

 

Complete program 

Here’s the complete “Toggle an LED” program, illustrating how to read and debounce a simple switch on a 

pin held high by an internal pull-up: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 3, example 3                                 * 

;                                                                       * 

;   Demonstrates use of internal pullups plus debouncing                * 

;                                                                       * 

;   Toggles LED when pushbutton is pressed then released,               * 

;   using a counting algorithm to debounce switch                       * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = LED                                                       * 

;       GP2 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629       

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no warnings about registers not in bank 0 

     

 

;***** CONFIGURATION 

                ; int reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

db_cnt  res 1                   ; debounce counter 

dc1     res 1                   ; delay counter 
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;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO          ; (GP2 is an input) 

        movwf   TRISIO 

        banksel OPTION_REG      ; enable global pull-ups 

        bcf     OPTION_REG,NOT_GPPU  

        movlw   1<<GP2          ; enable pull-up on GP2 only 

        banksel WPU 

        movwf   WPU 

        banksel GPIO            ; start with LED off    

        clrf    GPIO 

        clrf    sGPIO           ;   update shadow 

              

;***** Main loop 

main_loop 

        ; wait for button press, debounce by counting: 

db_dn   movlw   .13             ; max count = 10ms/768us = 13 

        movwf   db_cnt         

        clrf    dc1              

dn_dly  incfsz  dc1,f           ; delay 256x3 = 768 us. 

        goto    dn_dly 

        btfsc   GPIO,GP2        ; if button up (GP2 high), 

        goto    db_dn           ;   restart count 

        decfsz  db_cnt,f        ; else repeat until max count reached 

        goto    dn_dly  

 

        ; toggle LED on GP1 

        movf    sGPIO,w 

        xorlw   1<<GP1          ; toggle LED on GP1 

        movwf   sGPIO           ;   using shadow register 

        movwf   GPIO 

 

        ; wait for button release, debounce by counting: 

db_up   movlw   .13             ; max count = 10ms/768us = 13 

        movwf   db_cnt         

        clrf    dc1              

up_dly  incfsz  dc1,f           ; delay 256x3 = 768 us. 

        goto    up_dly 

        btfss   GPIO,GP2        ; if button down (GP2 low), 

        goto    db_up           ;   restart count 

        decfsz  db_cnt,f        ; else repeat until max count reached 

        goto    up_dly 

 

        ; repeat forever 

        goto    main_loop 

 

 

        END 
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Conclusion 

After working through this lesson, you should be able to write programs which read and respond to simple 

switches or other digital inputs, and be able to effectively debounce switch or other noisy inputs. 

 

But that’s enough on reading switches for now.  There’s plenty more to explore, of course, such as reading 

keypads and debouncing multiple switch inputs – topics to explore later. 

 

In the next lesson we’ll look at the PIC12F629’s 8-bit timer module, Timer0. 

 

 

 

../4%20-%20Timer%200/PIC_Mid_A_4.pdf
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Introduction to PIC Programming 

Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 4: Using Timer0 

 

 

The lessons until now have covered the essentials of mid-range PIC microcontroller operation: controlling 

digital outputs, timed via programmed delays, with program flow responding to digital inputs.  That’s 

enough to allow you to perform a great many tasks.  But PICs (and most other microcontrollers) offer a 

number of additional features that make many tasks much easier.  Possibly the most useful of all are timers; 

so useful that at least one is included in every current 8-bit PIC. 

A timer is simply a counter, which increments automatically.  It can be driven by the processor’s instruction 

clock, in which case it is referred to as a timer, incrementing at some predefined, steady rate.  Or it can be 

driven by an external signal, where it acts as a counter, counting transitions on an input pin.  Either way, the 

timer continues to count, independently, while the PIC performs other tasks. 

And that is why timers are so very useful.  Most programs need to perform a number of concurrent tasks; 

even something as simple as monitoring a switch while flashing an LED.  The execution path taken within a 

program will generally depend on real-world inputs.  So it is very difficult in practice to use programmed 

delay loops, as in lesson 1, to accurately measure elapsed time.  But a timer will keep counting, steadily, 

while your program responds to inputs, performs calculations, or whatever. 

As we’ll see in lesson 6, timers are commonly used to drive interrupts (routines which interrupt the normal 

program flow) to allow regularly timed “background” tasks to run.  However, before moving on to timer-

based interrupts, it’s important to understand how timers operate.  And, as this lesson will demonstrate, 

timers can be very useful, even when not used with interrupts. 

This lesson revisits the material in baseline lesson 5, covering: 

 Introduction to the Timer0 module 

 Creating delays with Timer0 

 Debouncing via Timer0 

 Using Timer0 counter mode with an external clock 

(demonstrating the use of a crystal oscillator as a time reference) 

 

Timer0 Module 

Mid-range PICs can have up to three timers; the simplest of these is referred to as Timer0.  The visible part is 

a single 8-bit register, TMR0, which holds the current value of the timer.  It is readable and writeable.  If you 

write a value to it, the timer is reset to that value and then starts incrementing from there. 

When it has reached 255, it rolls over to 0, sets an “overflow flag” (the T0IF bit in the INTCON register, 

triggering an interrupt if Timer0 interrupts are enabled) to indicate that the rollover happened, and then 

continues to increment. 

../1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
../6%20-%20Interrupts/PIC_Mid_A_6.pdf
../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
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Note that this is different from the Timer0 module in the baseline architecture, which does not have an 

overflow flag. 

The configuration of Timer0 is set by a number of bits in the OPTION register: 

 

The clock source is selected by the T0CS bit: 

T0CS = 0 selects timer mode, where TMR0 is incremented at a fixed rate by the instruction clock. 

T0CS = 1 selects counter mode, where TMR0 is incremented by an external signal, on the T0CKI pin.  On 

the PIC12F629, this is physically the same pin as GP2. 

T0CKI is a Schmitt Trigger input, meaning that it can be driven by and will respond cleanly to a smoothly 

varying input voltage (e.g. a sine wave), even with a low level of superimposed noise; it doesn’t have to be a 

sharply defined TTL-level signal, as required by the GP inputs. 

In counter mode, the T0SE bit selects whether Timer0 responds to rising or falling signals (“edges”) on 

T0CKI.  Clearing T0SE to ‘0’ selects the rising edge; setting T0SE to ‘1’ selects the falling edge. 

Prescaler 

By default, the timer increments by one for every instruction cycle (in timer mode) or transition on T0CKI 

(in counter mode).  If timer mode is selected, and the processor is clocked at 4 MHz, the timer will increment 

at the instruction cycle rate of 1 MHz.  That is, TMR0 will increment every 1 µs.  Thus, with a 4 MHz clock, 

the maximum period that Timer0 can measure directly, by default, is 255 µs. 

To measure longer periods, we need to use the prescaler. 

The prescaler sits between the clock source and the timer.  It is used to reduce the clock rate seen by the 

timer, by dividing it by a power of two: 2, 4, 8, 16, 32, 64, 128 or 256. 

To use the prescaler with Timer0, clear the PSA bit to ‘0’
1
. 

When assigned to Timer0, the prescale ratio is set by the PS<2:0> bits, as shown in the following table: 

If PSA = 0 (assigning the prescaler to Timer0) and PS<2:0> = ‘111’ 

(selecting a ratio of 1:256), TMR0 will increment every 256 instruction 

cycles in timer mode.  Given a 1 MHz instruction cycle rate, the timer 

would increment every 256 µs. 

Thus, when using the prescaler with a 4 MHz processor clock, the 

maximum period that Timer0 can measure directly is 255 × 256 µs = 

65.28ms. 

Note that the prescaler can also be used in counter mode, in which case 

it divides the external signal on T0CKI by the prescale ratio. 

 

If you don’t want to use the prescaler with Timer0, for a 1:1 “prescale 

ratio”, set PSA to ‘1’. 

 

                                                      

1
 If PSA = 1, the prescaler is assigned to the watchdog timer – a topic covered in lesson 7. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OPTION_REG GPPU   INTEDG T0CS T0SE PSA PS2 PS1 PS0 

PS<2:0> 

bit value 

Timer0 

prescale ratio 

000 1 : 2 

001 1 : 4 

010 1 : 8 

011 1 : 16 

100 1 : 32 

101 1 : 64 

110 1 : 128 

111 1 : 256 

../7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
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Timer Mode 

The examples in this section demonstrate the use of Timer0 in timer mode, to: 

 Measure elapsed time  

 Perform a regular task while responding to user input 

 Debounce a switch 

For each of these, we’ll use the circuit shown on the 

right, which adds an LED to the circuit used in 

lesson 3.  A second LED has been added to GP2, 

although any of the unused pins would have been 

suitable. 

If you have the Gooligum training board, connect 

jumpers JP3, JP12 and JP13 to enable the pull-up 

resistor on GP3 and the LEDs on GP1 and GP2. 

If you are using Microchip’s Low Pin Count Demo 

Board, you will need to connect LEDs to GP1 and 

GP2, as described in baseline lesson 1. 

Example 1: Reaction Timer 

To illustrate how Timer0 can be used to measure elapsed time, we’ll implement a very simple reaction time 

“game”: wait a couple of seconds then light an LED to indicate ‘start’. If the button is pressed within a 

predefined time (say 200 ms) light the other LED to indicate ‘success’.  If the user is too slow, leave the 

‘success’ LED unlit.  Either way, delay another second before turning off the LEDs and restarting. 

We’ll use the LED on GP2 as the ‘start’ signal and the LED on GP1 to indicate ‘success’. 

The program flow can be illustrated in pseudo-code as: 

do forever 

 clear both LEDs 

 delay 2 sec 

 indicate start 

clear timer 

 wait up to 1 sec for button press 

 if button pressed and elapsed time < 200 ms 

  indicate success 

 delay 1 sec 

end 

 

A problem is immediately apparent: even with maximum prescaling, Timer0 can only measure up to 65 ms.  

To overcome this, we need to extend the range of the timer by adding a counter variable, which is 

incremented when the timer overflows.  That means monitoring the value in TMR0 and incrementing the 

counter variable when TMR0 reaches a certain value. 

There are many enhancements we could add, to make this a better game.  For example, success/fail 

could be indicated by a bi-colour red/green LED.  The delay prior to the ‘start’ indication should 

be random, so that it’s difficult to cheat by predicting when it’s going to turn on.  The difficulty 

level could be made adjustable, and the measured reaction time in milliseconds could be displayed, 

using 7-segment displays.  You can probably think of more – but the intent of here is to keep it as 

simple as possible, while providing a real-world example of using Timer0 to measure elapsed time. 

../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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This example utilises the (nominally) 4 MHz internal RC clock, giving an instruction cycle time of 

(approximately) 1 µs.  Using the prescaler, with a ratio of 1:32, means that the timer increments every 32 µs.  

If we clear TMR0 and then wait until TMR0 = 250, 8 ms (250 × 32 µs) will have elapsed.  If we then reset 

TMR0 and increment a counter variable, we’ve implemented a counter which increments every 8 ms.  Since 

25 × 8 ms = 200 ms, when the counter reaches 25, 200 ms will have elapsed; any counter value > 25 means 

that the allowed time has been exceeded.  And since 125 × 8 ms = 1 s, when the counter reaches 125, one 

second will have elapsed and we can stop waiting for the button press. 

The following code sets Timer0 to timer mode (internal clock, freeing GP2 to be used as an output), with the 

prescaler assigned to Timer0, with a 1:32 prescale ratio: 

        movlw   b'11000100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)  

        banksel OPTION_REG      ;   -> increment TMR0 every 32 us 

        movwf   OPTION_REG 

 

This code is setting bits 6 and 7 of OPTION_REG, even though these bits ( GPPU  and INTEDG) are not 

related to Timer0.  In the baseline architecture, there is no choice but to load the whole of the OPTION 

register at once, but for mid-range PICs it is possible to use bit set/clear instructions to modify individual bits 

in OPTION_REG, or to use logical masking operations to update only some bit fields, leaving other bits 

unchanged. 

For example, to preserve the contents of OPTION_REG<6:7>, you could write: 

        banksel OPTION_REG 

        movf    OPTION_REG,w    ; operate on OPTION_REG 

        andlw   b’11000000’     ;   while preserving bits 6-7 

        iorlw   b’00000100’ 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)  

        movwf   OPTION_REG      ;   -> increment TMR0 every 32 us 

 

The ‘andlw’ and ‘iorlw’ instructions respectively perform “logical and” and “inclusive-or” operations on 

the W register with the given literal (constant) value, placing the result in W – “and literal with W” and 

“inclusive-or literal with W”. 

However, given that, by default (after a power-on reset), every bit in OPTION_REG is set to ‘1’, there is no 

real need to go to the trouble to use masks to preserve bits 6 and 7; we know that they were already set to ‘1’.  

Nevertheless, in some cases you will want to update only part of a register, so it’s worth taking the time to 

understand how these masking operations work.  There will be more examples in later lessons. 

 

Assuming a 4 MHz clock, such as the internal RC oscillator, TMR0 will begin incrementing every 32 µs. 

To generate an 8 ms delay, we can clear TMR0 and then wait until it reaches 250, as follows: 

        banksel TMR0            ; clear Timer0 

        clrf    TMR0             

w_tmr0  movf    TMR0,w          ; wait for 8 ms  

        xorlw   .250            ;  (250 ticks x 32 us/tick = 8 ms) 

        btfss   STATUS,Z 

        goto    w_tmr0 

 

Note that XOR is used to test for equality (TMR0 = 250), as we did in lesson 3. 

In itself, that’s an elegant way to create a delay; it’s much shorter and simpler than “busy loops”, such as the 

delay routines from lessons 1 and 2.  But the real advantage of using a timer is that it keeps ticking over, at 

the same rate, while other instructions are executed.  That means that additional instructions can be inserted 

../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
../1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
../2%20-%20Modular%20code/PIC_Mid_A_2.pdf
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into this “timer wait” loop, without affecting the timing – within reason; if this extra code takes too long to 

run, the timer may increment more than once before it is checked at the end of the loop, and the loop may not 

finish when intended. 

However long the additional code is, it takes some time to run, so the timer increment will not be detected 

immediately.  This means that the overall delay will be a little longer than intended.  For that reason (and 

others), it is usually better to use timer-driven interrupts for tasks like this, as we will see in lesson 6. 

That’s not a problem in this example, where exact timing is not important, so with 32 instruction cycles per 

timer increment, it’s safe to insert a short piece of code to check whether the pushbutton has been checked. 

For example: 

        banksel TMR0            ; clear Timer0 

        clrf    TMR0             

w_tmr0                          ;   repeat for 8 ms: 

        banksel GPIO 

        btfss   GPIO,GP3        ;     if button pressed (GP3 low) 

        goto    wait_end        ;       finish delay loop immediately  

        banksel TMR0 

        movf    TMR0,w          ;      

        xorlw   .250            ;   (250 ticks x 32 us/tick = 8 ms) 

        btfss   STATUS,Z         

        goto    w_tmr0 

wait_end  

 

This timer loop code can then be embedded into an outer loop which increments a variable used to count the 

number of 8 ms periods, as follows: 

        clrf    cnt_8ms         ; clear timer (8 ms counter) 

wait1s                          ; repeat for 1 sec: 

        banksel TMR0             

        clrf    TMR0            ;   clear Timer0         

w_tmr0                          ;   repeat for 8 ms: 

        banksel GPIO 

        btfss   GPIO,3          ;     if button pressed (GP3 low) 

        goto    wait1s_end      ;       finish delay loop immediately  

        banksel TMR0 

        movf    TMR0,w          ;      

        xorlw   .250            ;   (250 ticks x 32 us/tick = 8 ms) 

        btfss   STATUS,Z         

        goto    w_tmr0 

        incf    cnt_8ms,f       ;   increment 8 ms counter 

        movlw   .125            ; (125 x 8 ms = 1 sec)  

        xorwf   cnt_8ms,w 

        btfss   STATUS,Z 

        goto    wait1s 

wait1s_end       

 

The test at the end of the outer loop (cnt_8ms = 125) ensures that the loop completes when 1 s has elapsed, 

in case the button has not been pressed. 

Finally, we need to check whether the user has pressed the button quickly enough (if at all).  That means 

comparing the elapsed time, as measured by the 8 ms counter, with some threshold value – in this case 25, 

corresponding to a reaction time of 200 ms.  The user has been successful if the 8 ms count is less than 25. 

The easiest way to compare the magnitude of two values (is one larger or smaller than the other?) is to 

subtract them, and see if a borrow results. 

If A ≥ B, A − B is positive or zero and no borrow is needed. 

If A < B, A − B is negative, requiring a borrow. 

../6%20-%20Interrupts/PIC_Mid_A_6.pdf
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Mid-range PICs have two subtraction instructions: 

‘subwf f,d’ – “subtract W from file register”, where ‘f’ is the register and, ‘d’ is the destination; 

‘,f’ to write the result back to the register: f = f – W 

‘,w’ to place the result in W:  W = f – W 

and: 

‘sublw k’ – “subtract W from literal”, where ‘k’ is the literal value to subtract W from; 

the result is placed in W: W = k - W 

 

Note that there is no instruction which subtracts a literal from W.  Or is there? 

Recall that the expression ‘W – k’ is equivalent to ‘W + (−k)’, i.e. adding a negative value is equivalent to 

subtracting a positive value. 

We saw in baseline lesson 11 that when negative values are represented in two’s complement format, the 

normal binary integer addition and subtraction operations continue to work, in a consistent way, with both 

positive and negative numbers. 

The ‘addlw’ instruction is used to add a literal to W. 

The ‘-’ operator is used by the MPASM assembler to specify a two’s complement value, so to subtract a 

literal from W, we can simply write: 

‘addlw –k’, which performs the operation: W = W - k 

 

Whichever way the subtraction is performed, the result is reflected in the Z (zero) and C (carry) bits in the 

STATUS register: 

The Z bit is set if and only if the result is zero (so subtraction is another way to test for equality). 

Although the C bit is called “carry”, in a subtraction it acts as a “not borrow”.  That is, it is set to ‘1’ only if a 

borrow did not occur. 

The table at the right shows the possible status flag 

outcomes from the subtraction A − B: 

 

 

 

We can make use of this to test whether the elapsed time is less than 200 ms (cnt_8ms < 25) as follows: 

        movlw   .25             ; if time < 200 ms (25 x 8 ms) 

        subwf   cnt_8ms,w       ; (cnt_8ms < 25) 

        banksel GPIO 

        btfss   STATUS,C 

        bsf     GPIO,GP1        ;   turn on success LED 

 

The subtraction performed here is cnt_8ms − 25, so C = 0 only if cnt_8ms < 25 (see the table above). 

If C = 1, the elapsed time must be greater than the allowed 200 ms, and the instruction to turn on the success 

LED is skipped. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS IRP RP1 RP0 TO   PD   Z DC C 

 Z C 

A > B 0 1 

A = B 1 1 

A < B 0 0 

../../Baseline/11%20-%20Int%20arithmetic%20+%20arrays/PIC_Base_A_11%20-%20Integer%20Arithmetic%20and%20Arrays.doc
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Note that the ‘banksel GPIO’ directive is placed above the ‘btfss’ instruction.  This is important.  If we 

had instead written this as: 

        btfss   STATUS,C 

        banksel GPIO 

        bsf     GPIO,GP1        ;   turn on success LED 

 

the instruction generated by banksel
2
 is skipped if C is set, instead of the bcf instruction. 

That is not at all what was intended; keep in mind that the ‘banksel’ directive generates instructions which 

are inserted into your code, so sometimes (as in this example) you need to be careful where you place it, to 

avoid unexpected side-effects. 

Note also that there is never any need to use banksel before accessing the STATUS register, because it is 

mapped into the same address in every bank. 

 

Alternatively, we could use the sublw instruction to perform the comparison: 

btn_dn  movf    cnt_8ms,w       ; if time < 200 ms (25 x 8 ms) 

        sublw   .24             ; (cnt_8ms <= 24) 

        banksel GPIO 

        btfsc   STATUS,C 

        bsf     GPIO,GP1        ;   turn on success LED 

 

Note that the sense of the subtraction performed here (24 – cnt_8ms) is reversed from the one above.  

According to the truth table on the previous page, we now have to test for C = 1 instead of C = 0 and the 

comparison becomes ‘≤’ instead of ‘<’, meaning that the comparison has to be with 24 instead of 25. 

 

Or, we could even use addlw for the subtraction (comparison): 

        movf    cnt_8ms,w       ; if time < 200 ms (25 x 8 ms) 

        addlw   -.25            ; (cnt_8ms < 25) 

        banksel GPIO 

        btfss   STATUS,C 

        bsf     GPIO,GP1        ;   turn on success LED 

 

Complete program 

Here’s the complete code for the reaction timer, using the ‘subwf’-based comparison routine: 

;************************************************************************ 

;   Description:    Lesson 4, example 1a                                *     

;                   Reaction Timer game.                                * 

;                                                                       * 

;   Demonstrates use of timer0 to time real-world events                * 

;                                                                       * 

;   User must attempt to press button within 200 ms of "start" LED      * 

;   lighting.  If and only if successful, "success" LED is lit.         * 

;                                                                       * 

;       Starts with both LEDs unlit.                                    * 

;       2 sec delay before lighting "start"                             * 

;       Waits up to 1 sec for button press                              * 

;       (only) on button press, lights "success"                        * 

;       1 sec delay before repeating from start                         * 

;                                                                       * 

;   (version using subwf instruction in comparison routine)             * 

                                                      

2
 On mid-range PICs with four register banks, banksel generates two instructions; only the first will be skipped. 
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;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = success LED                                               * 

;       GP2 = start LED                                                 * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

    EXTERN      delay10         ; W x 10 ms delay 

 

 

;***** CONFIGURATION 

                ; int reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

cnt_8ms res 1                   ; counter: increments every 8 ms 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port  

        movlw   ~(1<<GP1|1<<GP2)    ; configure GP1 and GP2 (only) as outputs  

        banksel TRISIO     

        movwf   TRISIO 

         

        ; configure timer            

        movlw   b'11000100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)  

        banksel OPTION_REG      ;   -> increment TMR0 every 32 us 

        movwf   OPTION_REG 

 

 

;***** Main loop 

main_loop 

        ; turn off both LEDs 

        banksel GPIO             

        clrf    GPIO 
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        ; delay 2 sec 

        movlw   .200            ; 200 x 10 ms = 2 sec 

        pagesel delay10          

        call    delay10         

        pagesel $ 

         

        ; indicate start 

        banksel GPIO 

        bsf     GPIO,GP2        ; turn on start LED  

                

        ; wait up to 1 sec for button press 

        clrf    cnt_8ms         ; clear timer (8 ms counter) 

wait1s                          ; repeat for 1 sec: 

        banksel TMR0             

        clrf    TMR0            ;   clear Timer0         

w_tmr0                          ;   repeat for 8 ms: 

        banksel GPIO 

        btfss   GPIO,3          ;     if button pressed (GP3 low) 

        goto    wait1s_end      ;       finish delay loop immediately  

        banksel TMR0 

        movf    TMR0,w          ;      

        xorlw   .250            ;   (250 ticks x 32 us/tick = 8 ms) 

        btfss   STATUS,Z         

        goto    w_tmr0 

        incf    cnt_8ms,f       ;   increment 8 ms counter 

        movlw   .125            ; (125 x 8 ms = 1 sec)  

        xorwf   cnt_8ms,w 

        btfss   STATUS,Z 

        goto    wait1s 

wait1s_end         

 

        ; indicate success if elapsed time < 200 ms      

        movlw   .25             ; if time < 200 ms (25 x 8 ms) 

        subwf   cnt_8ms,w       ; (cnt_8ms < 25) 

        banksel GPIO 

        btfss   STATUS,C 

        bsf     GPIO,GP1        ;   turn on success LED 

         

        ; delay 1 sec 

        movlw   .100            ; 100 x 10 ms = 1 sec 

        pagesel delay10 

        call    delay10        

        pagesel $ 

 

        ; repeat forever 

        goto    main_loop            

 

        END 

Example 2: Flash LED while responding to input 

As discussed above, timers can be used to maintain the accurate timing of regular (“background”) events, 

while performing other actions in response to input signals.  To illustrate this, we’ll flash the LED on GP2 at 

1 Hz (similar to the second example in lesson 1), while lighting the LED on GP1 whenever the pushbutton 

on GP3 is pressed (as was done in lesson 3). 

We’ll see in lesson 6 that timer-driven interrupts are ideally suited to performing regular 

background tasks.  This example is only included here for completeness; it’s not how you would 

implement this, on a mid-range PIC, in practice. 

../1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
../6%20-%20Interrupts/PIC_Mid_A_6%20-%20Interrupts.docx
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When creating an application which performs a number of tasks, it is best, if practical, to implement and test 

each of those tasks separately.  In other words, build the application a piece at a time, adding each new part 

to base that is known to be working.  So we’ll start by simply flashing the LED. 

The delay needs to written in such a way that button scanning code can be added within it later.  Calling a 

delay subroutine, as was done in lesson 2, wouldn’t be appropriate; if the button press was only checked at 

the start and/or end of the delay, the button would seem unresponsive (a 0.5 sec delay is very noticeable). 

Since the maximum delay that Timer0 can produce directly from a 1 MHz instruction clock is 65 ms, we 

have to extend the timer by adding a counter variable, as was done in example 1. 

To produce a given delay, various combinations of prescaler value, maximum timer count and number of 

repetitions will be possible.  But noting that 125 × 125 × 32 µs = 500 ms, a delay of exactly 500 ms can be 

generated by: 

 Using a 4 MHz processor clock, giving a 1 MHz instruction clock and a 1 µs instruction cycle 

 Assigning a 1:32 prescaler to the instruction clock, incrementing Timer0 every 32 µs 

 Resetting Timer0 to zero, as soon as it reaches 125 (i.e. every 125 × 32 µs = 4 ms) 

 Repeating 125 times, creating a delay of 125 × 4 ms = 500 ms. 

 

The following code implements the above steps: 

;***** Initialisation 

start 

        ; configure port  

        banksel GPIO 

        clrf    GPIO                ; start with all LEDs off 

        clrf    sGPIO               ;   update shadow 

        movlw   ~(1<<GP1|1<<GP2)    ; configure GP1 and GP2 (only) as outputs  

        banksel TRISIO              ; (GP3 is an input) 

        movwf   TRISIO 

 

        ; configure timer            

        movlw   b'11000100'         ; configure Timer0: 

                ; --0-----              timer mode (T0CS = 0) 

                ; ----0---              prescaler assigned to Timer0 (PSA = 0) 

                ; -----100             prescale = 32 (PS = 100)  

        banksel OPTION_REG          ;   -> increment TMR0 every 32 us 

        movwf   OPTION_REG 

 

 

;***** Main loop 

main_loop     

        ; delay 500 ms 

        movlw   .125            ; repeat 125 times (125 x 4 ms = 500 ms)   

        movwf   dly_cnt          

dly500   

        banksel TMR0            ;   clear timer0   

        clrf    TMR0 

w_tmr0  movf    TMR0,w          ;   wait for 4 ms 

        xorlw   .125            ;     (125 ticks x 32 us/tick = 4 ms) 

        btfss   STATUS,Z 

        goto    w_tmr0 

        decfsz  dly_cnt,f       ; end 500 ms delay loop 

        goto    dly500 

 

        ; toggle flashing LED        

        movf    sGPIO,w 

../2%20-%20Modular%20code/PIC_Mid_A_2.pdf
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        xorlw   1<<GP2          ; toggle LED on GP2 

        movwf   sGPIO           ;   using shadow register 

        banksel GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    main_loop            

 

Note that, strictly speaking, the ‘banksel’ directives within the main loop are not needed, because the only 

registers accessed within the loop, TMR0 and GPIO, are in the same bank.  Nevertheless, it’s good practice 

to include these directives, as shown, in case you later insert some code which changes the bank selection.  

That’s not difficult to deal with, but it’s easy to miss a situation where banksel is needed, ending up with a 

difficult-to-find bug.  If you use banksel liberally, even when not strictly needed, your code will be a little 

longer, but much more easily maintained. 

 

Here’s the code developed in lesson 3, for turning on an LED when the pushbutton is pressed: 

        clrf    sGPIO           ; assume button up -> LED off 

        btfss   GPIO,GP3        ; if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

 

It’s quite straightforward to place some code similar to this (replacing the clrf with a bcf instruction, to 

avoid affecting any other bits in the shadow register) within the timer wait loop – since the timer increments 

every 32 instructions, there are plenty of cycles available to accommodate these additional instructions, 

without risk that the “TMR0 = 125” condition will be skipped (see discussion in example 1). 

Here’s how: 

w_tmr0                          ;   repeat for 4 ms: 

        banksel GPIO            ;     check and respond to button press       

        bcf     sGPIO,GP1       ;       assume button up -> indicator LED off 

        btfss   GPIO,GP3        ;       if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;         turn on indicator LED 

        movf    sGPIO,w         ;     update port (copy shadow to GPIO) 

        movwf   GPIO 

        banksel TMR0 

        movf    TMR0,w      

        xorlw   .125            ;   (125 ticks x 32 us/tick = 4 ms)             

        btfss   STATUS,Z 

        goto    w_tmr0 

 

Complete program 

Here’s the complete code for the flash + pushbutton demo. 

Note that, because GPIO is being updated from the shadow copy, every “spin” of the timer wait loop, there 

is no need to update GPIO when the LED on GP2 is toggled; the change will be picked up next time 

through the loop. 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 4 example 2                                  * 

;                                                                       * 

;   Demonstrates use of Timer0 to maintain timing of background tasks   * 

;   while performing other actions in response to changing inputs       * 

;                                                                       * 

../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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;   One LED simply flashes at 1 Hz (50% duty cycle).                    * 

;   The other LED is only lit when the pushbutton is pressed            * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = "button pressed" indicator LED                            * 

;       GP2 = flashing LED                                              * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no "register not in bank 0" warnings  

 

 

;***** CONFIGURATION 

                ; int reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

dly_cnt res 1                   ; delay counter 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port  

        banksel GPIO 

        clrf    GPIO                ; start with all LEDs off 

        clrf    sGPIO               ;   update shadow 

        movlw   ~(1<<GP1)           ; configure GP1 (only) as output 

        banksel TRISIO              ; (GP3 is an input) 

        movwf   TRISIO 

 

        ; configure timer            

        movlw   b'11000100'         ; configure Timer0: 

                ; --0-----              timer mode (T0CS = 0) 

                ; ----0---              prescaler assigned to Timer0 (PSA = 0) 

                ; -----100             prescale = 32 (PS = 100)  

        banksel OPTION_REG          ;   -> increment TMR0 every 32 us 

        movwf   OPTION_REG 

 

 

;***** Main loop 
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main_loop     

        ; delay 500 ms while responding to button press 

        movlw   .125            ; repeat 125 times (125 x 4 ms = 500 ms)   

        movwf   dly_cnt          

dly500   

        banksel TMR0            ;   clear timer0   

        clrf    TMR0 

w_tmr0                          ;   repeat for 4 ms: 

        banksel GPIO            ;     check and respond to button press       

        bcf     sGPIO,GP1       ;       assume button up -> indicator LED off 

        btfss   GPIO,GP3        ;       if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;         turn on indicator LED 

        movf    sGPIO,w         ;     update port (copy shadow to GPIO) 

        movwf   GPIO 

        banksel TMR0 

        movf    TMR0,w      

        xorlw   .125            ;   (125 ticks x 32 us/tick = 4 ms)             

        btfss   STATUS,Z 

        goto    w_tmr0 

        decfsz  dly_cnt,f       ; end 500 ms delay loop 

        goto    dly500 

 

        ; toggle flashing LED        

        movf    sGPIO,w 

        xorlw   1<<GP2          ; toggle LED on GP2 

        movwf   sGPIO           ;   using shadow register 

        banksel GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    main_loop 

 

 

        END 

 

Example 3: Switch debouncing 

Lesson 3 explored the topic of switch bounce, and described a counting algorithm to address it, which was 

expressed as: 

count = 0 

while count < max_samples 

 delay sample_time 

 if input = required_state 

  count = count + 1 

 else 

  count = 0 

end 

 

The switch is deemed to have changed when it has been continuously in the new state for some minimum 

period, for example 10 ms.  This is determined by continuing to increment a count while checking the state 

of the switch.  “Continuing to increment a count” while something else occurs, such as checking a switch, is 

exactly what a timer does.  Since a timer increments automatically, using a timer can simplify the logic, as 

follows: 

reset timer 

while timer < debounce time 

 if input ≠ required_state 

  reset timer 

end 

../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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On completion, the input will have been in the required state (changed) for the minimum debounce time. 

Assuming a 1 MHz instruction clock and a 1:64 prescaler, a 10 ms debounce time will be reached when the 

timer reaches 10 ms ÷ 64 µs = 156.3; taking the next highest integer gives 157. 

The following code demonstrates how Timer0 can be used to debounce a “button down” event: 

        banksel TMR0 

wait_dn clrf    TMR0            ; reset timer 

chk_dn  btfsc   GPIO,GP3        ; check for button press (GP3 low) 

        goto    wait_dn         ;   continue to reset timer until button down 

        movf    TMR0,w          ; has 10 ms debounce time elapsed? 

        xorlw   .157            ;   (157 = 10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_dn 

 

That’s shorter than the equivalent routine presented in lesson 3, and it avoids the need to use two data 

registers as counters.  But – it uses Timer0.  Although mid-range PICs have more than one timer, they are 

still a scarce resource.  You must be careful, as you build a library of routines that use Timer0, that if you use 

more than one routine which uses Timer0 in a single program, that the way they use or setup Timer0 doesn’t 

clash.  As we’ll see in lesson 6, it can be better to use a regular timer-driven interrupt for switch debouncing, 

allowing a single timer (driving the interrupt) to be used for a number of tasks. 

But if you’re not using Timer0 for anything else, using it for switch debouncing is perfectly reasonable. 

Complete program 

The following program is equivalent to that presented in lesson 3: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 4, example 3                                 * 

;                                                                       * 

;   Demonstrates use of Timer0 to implement debounce counting algorithm * 

;                                                                       * 

;   Toggles LED when pushbutton is pressed then released                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = LED                                                       * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no "register not in bank 0" warnings  

 

 

;***** CONFIGURATION 

                ; int reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start  

        ; configure port  

        banksel GPIO 

        clrf    GPIO                ; start with all LEDs off 

        clrf    sGPIO               ;   update shadow 

        movlw   ~(1<<GP1|1<<GP2)    ; configure GP1 and GP2 (only) as outputs  

        banksel TRISIO              ; (GP3 is an input) 

        movwf   TRISIO 

         

        ; configure timer            

        movlw   b'11000101'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----101          prescale = 64 (PS = 101)  

        banksel OPTION_REG      ;   -> increment TMR0 every 64 us 

        movwf   OPTION_REG 

 

;***** Main loop 

main_loop 

        ; wait for button press, debounce using timer0: 

        banksel TMR0 

wait_dn clrf    TMR0            ; reset timer 

chk_dn  btfsc   GPIO,GP3        ; check for button press (GP3 low) 

        goto    wait_dn         ;   continue to reset timer until button down 

        movf    TMR0,w          ; has 10 ms debounce time elapsed? 

        xorlw   .157            ;   (157 = 10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_dn 

 

        ; toggle LED on GP1 

        banksel GPIO 

        movf    sGPIO,w 

        xorlw   1<<GP1          ; toggle shadow register 

        movwf   sGPIO  

        movwf   GPIO            ; write to port   

 

        ; wait for button release, debounce using timer0: 

        banksel TMR0 

wait_up clrf    TMR0            ; reset timer 

chk_up  btfss   GPIO,GP3        ; check for button release (GP3 high) 

        goto    wait_up         ;   continue to reset timer until button up 

        movf    TMR0,w          ; has 10 ms debounce time elapsed? 

        xorlw   .157            ;   (157 = 10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_up 

 

        ; repeat forever 

        goto    main_loop         

 

        END 
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Counter Mode 

As mentioned above, Timer0 can also be used to count transitions (rising or falling) on the T0CKI input. 

This is useful in a number of ways, such as performing an action after some number of events, or measuring 

the frequency of an input signal, for example from a sensor triggered by the rotation of an axle.  The 

frequency in Hertz of the signal is simply the number of transitions counted in one second. 

However, it’s not really practical to build a frequency counter, using only the techniques (and 

microcontrollers) we’ve covered so far!   

To illustrate the use of Timer0 as a counter, we’ll go back to LED flashing, but driving the counter with a 

crystal-based external clock, providing a much more accurate time base. 

The circuit used for this is shown below (with the reset switch and pull-up omitted for clarity). 

An oscillator based on a 

32.768 kHz “watch 

crystal” and a CMOS 

inverter was presented in 

baseline lesson 5.  It is 

used again here to generate 

a 32.768 kHz clock signal, 

which drives the 12F629’s 

T0CKI input, via an 

inverting buffer. 

The Gooligum training 

board already has this 

oscillator circuit in place 

(in the upper right of the 

board) – close jumper JP22 

to connect the 32 kHz 

clock signal to T0CKI.  

And, as before, close 

jumpers JP3 and JP12 to enable the external MCLR  pull-up resistor (not shown here) and the LED on GP1. 

If you have Microchip’s Low Pin Count Demo Board, you will need to build the oscillator circuit separately 

and connect it to the 14-pin header on the demo board (GP2/T0CKI is brought out as pin 9 on the header, 

while power and ground are pins 13 and 14), as shown in baseline lesson 5.   

 

We’ll use this clock input to generate the timing needed to flash the LED on GP1 at almost exactly 1 Hz (the 

accuracy being set by the accuracy of the crystal oscillator, which can be expected to be much better than 

that of the PIC’s internal RC oscillator). 

 

Those familiar with binary numbers will have noticed that 32768 = 2
15

, making it very straightforward to 

divide the 32768 Hz input down to 1 Hz. 

Since 32768 = 128 × 256, if we apply a 1:128 prescale ratio to the 32768 Hz signal on T0CKI, TMR0 will be 

incremented 256 times per second.   The most significant bit of TMR0 (TMR0<7>) will therefore be cycling 

at a rate of exactly 1 Hz; it will be ‘0’ for 0.5 s, followed by ‘1’ for 0.5 s. 

So if we clock TMR0 with the 32768 Hz signal on T0CKI, prescaled by 128, the task is simply to light the 

LED (GP1 high) when TMR0<7> = 1, and turn off the LED (GP1 low) when TMR0<7> = 0. 

 

../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
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To configure Timer0 for counter mode (external clock on T0CKI) with a 1:128 prescale ratio, set the T0CS 

bit to ‘1’, PSA to ‘0’ and PS<2:0> to ‘110’: 

        movlw   b'11110110'     ; configure Timer0: 

                ; --1-----          counter mode (T0CS = 1) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----110          prescale = 128 (PS = 110)  

        banksel OPTION_REG      ;   -> increment at 256 Hz with 32.768 kHz input 

        movwf   OPTION_REG 

 

Note that the value of T0SE bit is irrelevant; we don’t care if the counter increments on the rising or falling 

edge of the signal on T0CKI – only the frequency is important.  Either edge will do. 

 

Next we need to continually set GP1 high whenever TMR0<7> = 1, and low whenever TMR0<7> = 0. 

In other words, continually update GP1 with the current value or TMR0<7>. 

Unfortunately, there is no simple “copy a single bit” instruction in mid-range PIC assembler! 

If you’re not using a shadow register for GPIO, the following “direct approach” is effective, if a little 

inelegant: 

loop    ; transfer TMR0<7> to GP1 

        banksel TMR0 

        btfsc   TMR0,7          ; if TMR0<7>=1 

        bsf     GPIO,GP1        ;   set GP1 

        btfss   TMR0,7          ; if TMR0<7>=0 

        bcf     GPIO,GP1        ;   clear GP1 

 

        ; repeat forever 

        goto    loop            

 

As we saw in lesson 3, if you are using a shadow register (generally a good idea…), this can be implemented 

as: 

loop    ; transfer TMR0<7> to GP1 

        clrf    sGPIO           ; assume TMR0<7>=0 -> LED off 

        banksel TMR0 

        btfsc   TMR0,7          ; if TMR0<7>=1 

        bsf     sGPIO,GP1       ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        banksel GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    loop          

 

But since this is actually an instruction longer, it’s only really simpler if you were going to use a shadow 

register anyway. 

And note that the use of a single ‘banksel’ directive at the start of the first routine
3
, but two ‘banksel’s in 

the second.  This is because, in a real program, where a shadow register is being used, it is likely to be 

updated a number of times before being copied to GPIO at the end of the loop; additional code within the 

loop may alter the bank selection. 

                                                      

3
 We can get away with this because TMR0 and GPIO are in the same bank, and it’s very unlikely that we’d want to 

insert additional code into this small routine in future – so having selected the correct bank for TMR0, we can safely 

access GPIO within the same routine. 

../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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Another approach is to use the PIC’s rotate instructions.  These instructions move every bit in a register to 

the left or right, as illustrated: 

‘rlf f,d’ – “rotate left file register through carry” 

 

 

‘rrf f,d’ – “rotate right file register through carry” 

 

 

In both cases, the bit being rotated out of bit 7 (for rlf) or bit 0 (for rrf) is copied into the carry bit in the 

STATUS register, and the previous value of carry is rotated into bit 0 (for rlf) or bit 7 (for rrf). 

As usual, ‘f’ is the register being rotated, and ‘d’ is the destination: ‘,f’ to write the result back to the 

register, or ‘,w’ to place the result in W. 

 

The ability to place the result in W is useful, since it means that we can “left rotate” TMR0, to copy the 

current value from TMR0<7> into C, without affecting the value in TMR0. 

In the mid-range architecture, only the special-function and general purpose registers can be rotated; there 

are no instructions for rotating W.  That’s a pity, since such an instruction would be useful here. 

Instead, we must rotate the bit copied from TMR0<7> into bit 0 of a temporary register, then another rotate 

to move the copied bit into bit 1, and then copy the result to GPIO, as follows: 

        rlf     TMR0,w          ; copy TMR0<7> to C 

        clrf    temp 

        rlf     temp,f          ; rotate C into temp 

        rlf     temp,w          ; rotate once more into W (-> W<1> = TMR0<7>) 

        movwf   GPIO            ; update GPIO with result (-> GP1 = TMR0<7>) 

 

Note that ‘temp’ is cleared before being used.  That’s not strictly necessary in this example; since the only 

output is GP1, it doesn’t matter what the other bits in GPIO are set to. 

Of course, if any other bits in GPIO were being used as outputs, you couldn’t use this method, since this 

code will clear every bit other than GP1!  In that case, you’re better off using the bit test and set/clear 

instructions, which are generally the most practical way to “copy a bit”.  But it’s worth remembering that the 

rotate instructions are also available, and using them may lead to shorter code. 

Complete program 

Here’s the complete “flash an LED at 1 Hz using a crystal oscillator” program, using the “copy a bit via 

rotation” method: 

;************************************************************************ 

;   Description:    Lesson 4, example 4b                                * 

;                                                                       * 

;   Demonstrates use of Timer0 in counter mode                          * 

;                                                                       * 

;   LED flashes at 1 Hz (50% duty cycle),                               * 

;   with timing derived from 32.768 kHz input on T0CKI                  * 

;                                                                       * 

;   Uses rotate instructions to copy MSB from Timer0 to GP1             * 

;************************************************************************ 

;   Pin assignments:                                                    * 

;       GP1   = flashing LED                                            * 

;       T0CKI = 32.768 kHz signal                                       * 

;************************************************************************ 

register bits 

C 7 6 5 4 3 2 1 0 

register bits 

C 7 6 5 4 3 2 1 0 
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    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no "register not in bank 0" warnings  

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

temp    res 1                   ; temp register used for rotates 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start  

        ; configure port  

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO         

        movwf   TRISIO 

         

        ; configure timer            

        movlw   b'11110110'     ; configure Timer0: 

                ; --1-----          counter mode (T0CS = 1) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----110          prescale = 128 (PS = 110)  

        banksel OPTION_REG      ;   -> increment at 256 Hz with 32.768 kHz input 

        movwf   OPTION_REG 

 

 

;***** Main loop 

main_loop 

        ; TMR0<7> cycles at 1 Hz, so continually copy to LED (GP1) 

        banksel TMR0 

        rlf     TMR0,w          ; copy TMR0<7> to C 

        clrf    temp 

        rlf     temp,f          ; rotate C into temp 

        rlf     temp,w          ; rotate once more into W (-> W<1> = TMR0<7>) 

        movwf   GPIO            ; update GPIO with result (-> GP1 = TMR0<7>) 

 

        ; repeat forever 

        goto    main_loop            

 

 

        END 
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Conclusion 

Hopefully the examples in this lesson have given you an idea of the flexibility and usefulness of the Timer0 

peripheral. 

With it, we were able to: 

 Time an event 

 Perform a periodic action while responding to input 

 Debounce a switch 

 Count external pulses 

 

However, as mentioned a few times now, one of the most useful applications of timers is to drive interrupts, 

which are arguably the most significant enhancement in the mid-range architecture, and the topic of lesson 6. 

 

But first, in the next lesson we’ll take a quick look at some of the features of the MPASM assembler, which 

can make your code easier to maintain. 

 

 

../6%20-%20Interrupts/PIC_Mid_A_6.pdf
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Introduction to PIC Programming 

Mid-range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 5: Assembler Directives and Macros 

 

 

As the programs presented in these tutorials become longer, it’s time to look at some of the facilities that 

MPASM (the Microchip PIC assembler) provides to simplify the process of writing and maintaining code. 

This lesson repeats the material from baseline lesson 6, updated for the 12F629.  If you have read that lesson, 

you can skip this one; MPASM provides the same features for baseline and mid-range PICs. 

This lesson covers: 

 Arithmetic and bitwise operators 

 Text substitution with #define 

 Defining constants with equ or constant 

 Conditional assembly using if / else / endif, ifdef and ifndef 

 Outputting warning and error messages 

 Assembler macros 

Each of these topics is illustrated by making use of it in code from previous lessons in this series. 

Arithmetic Operators 

MPASM supports the following arithmetic operators: 

negate  - 

multiply * 

divide  / 

modulus % 

add  + 

subtract  - 

Precedence is in the traditional order, as above. 

For example, 2 + 3 * 4 = 2 + 12 = 14. 

To change the order of precedence, use parentheses: ( and ). 

For example, (2 + 3) * 4 = 5 * 4 = 20. 

Note:  These calculations take place during the assembly process, before any code is generated.  

They are used to calculate constant values which will be included in the code to be assembled.  

They do not generate any PIC instructions. 

../../Baseline/6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
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These arithmetic operators are useful in showing how a value has been derived, making it easier to 

understand the code and to make changes. 

For example, consider this code from lesson 1: 

        ; delay 500 ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

Where does the value of 244 come from?  It is the number of outer loop iterations needed to make 500 ms. 

To make this clearer, we could change the comments to: 

        ; delay 500 ms 

        movlw   .244            ; outer loop: #iterations =  

        movwf   dc2             ;  500ms/(1023+1023+3)us/loop = 244 

 

Or, instead of writing the constant ‘244’ directly, write it as an expression: 

        ; delay 500 ms 

        movlw   .500000/(.1023+.1023+.3) ; number of outer loop iterations 

        movwf   dc2                      ; for 500 ms delay 

 

 

If you’re using mainly decimal values in your expressions, as here, you may wish to change the default radix 

to decimal, to avoid having to add a ‘.’ before each decimal value.  As discussed in lesson 1, that’s not 

necessarily a good idea; if your code assumes that some particular default radix has been set, you need to be 

very careful if you copy that code into another program, which may have a different default radix.  But, if 

you’re prepared to take the risk, add the ‘radix’ directive near the start of the program.  For example: 

        radix   dec 

 

The valid radix values are ‘hex’ for hexadecimal (base 16), ‘dec’ for decimal (base 10) and ‘oct’ for octal 

(base 8).  The default radix is hex. 

With the default radix set to decimal, this code fragment can be written as: 

        ; delay 500 ms 

        movlw   500000/(1023+1023+3) ; # outer loop iterations for 500 ms 

        movwf   dc2 

 

Defining Constants 

Programs often contain numeric values which may need to be tuned or changed later, particularly during 

development.  When a change needs to be made, finding these values in the code can be difficult.  And 

making changes may be error-prone if the same value (or another value derived from the value being 

changed) occurs more than once in the code. 

To make the code more maintainable, each constant value should be defined only once, near the start of the 

program, where it is easy to find and change. 

../1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
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A good example is the reaction timer developed in lesson 4, where “success” was defined as pressing a 

pushbutton less than 200 ms after a LED was lit.  But what if, during testing, we found that 200 ms is 

unrealistically short?  Or too long? 

To change this maximum reaction time, you’d need to find and then modify this fragment of code: 

        ; indicate success if elapsed time < 200 ms      

        movlw   .25             ; if time < 200 ms (25 x 8 ms) 

        subwf   cnt_8ms,w       ; (cnt_8ms < 25) 

        banksel GPIO 

        btfss   STATUS,C 

        bsf     GPIO,GP1        ;   turn on success LED 

 

To make this easier to maintain, we could define the maximum reaction time as a constant, at the start of the 

program. 

This can be done using the ‘equ’ (short for “equate”) directive, as follows: 

MAXRT   equ     .200            ; Maximum reaction time in ms 

 

Alternatively, you could use the ‘constant’ directive: 

constant MAXRT=.200         ; Maximum reaction time in ms 

 

The two directives are equivalent.  Which you choose to use is simply a matter of style. 

‘equ’ is more commonly found in assemblers, and perhaps because it is more familiar, most people use it. 

Personally, I prefer to use ‘constant’, mainly because I like to think of any symbol placed on the left hand 

edge (column 1) of the assembler source as being a label for a program or data register address, and I prefer 

to differentiate between address labels and constants to be used in expressions.  But it’s purely your choice. 

 

However you define this constant, it can be referred to later in your code, for example: 

        ; check elapsed time        

        movlw   MAXRT/8         ; if time < max reaction time (8 ms/count) 

        subwf   cnt_8ms,w 

        banksel GPIO 

        btfss   STATUS,C 

        bsf     GPIO,GP1        ;   turn on success LED 

 

Note how constants can be usefully included in arithmetic expressions.  In this way, the constant can be 

defined simply in terms of real-world quantities (e.g. ms), making it readily apparent how to change it to a 

new value (e.g. 300 ms), while arithmetic expressions are used to convert that into a quantity that matches 

the program’s logic.  And if that logic changes later (say, counting by 16 ms instead of 8 ms increments), 

then only the arithmetic expression needs to change; the constant can remain defined in the same way. 

And of course, since lesson 1, we’ve been using constants defined in the processor include file, such as 

‘GP1’, in instructions such as: 

        bsf     GPIO,GP1        ;   turn on success LED 

 

Text Substitution 

As discussed above, the ability to define numeric constants is very useful.  It is also very useful to be able to 

define “text constants”, where a text string is substituted into the assembler source code. 

Text substitution is commonly used to refer to I/O pins by a descriptive label.  This makes your code more 

readable, and easier to update if pin assignments change later. 

../4%20-%20Timer%200/PIC_Mid_A_4.pdf
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Why would pin assignments change?  Whether you design your own printed circuit boards, or layout your 

circuit on prototyping board, swapping pins around can often simplify the physical circuit layout.  That’s one 

of the great advantages of designing with microcontrollers; as you layout your design, you can go back and 

modify the code to simplify that layout, perhaps repeating that process a number of times. 

For example, consider again the reaction timer from lesson 4.  The I/O pins were assigned as follows: 

;   Pin assignments:                                                    * 

;       GP1 = success LED                                               * 

;       GP2 = start LED                                                 * 

;       GP3 = pushbutton                                                * 

 

These assignments are completely arbitrary; the LEDs could be on any pin other than GP3 (which is input 

only), while the pushbutton could be on any unused pin. 

 

One way of defining these pins would be to use numeric constants: 

    constant nSTART=2               ; Start LED 

    constant nSUCCESS=1             ; Success LED 

constant nBUTTON=3              ; pushbutton 

 

(The ‘n’ prefix used here indicates that these are numeric constants; this is simply a convention, and you can 

choose whatever naming style works for you.) 

 

They would then be referenced in the code, as follows: 

        bsf     GPIO,nSTART         ; turn on start LED 

 

w_tmr0  btfss   GPIO,nBUTTON        ; check for button press (low) 

 

        bsf     GPIO,nSUCCESS       ;   turn on success LED 

 

 

A significant problem with this approach is that larger PICs (i.e. most of them!) have more than one port.  

Instead of GPIO, larger PICs have ports named PORTA, PORTB, PORTC and so on.  What if you moved 

an input or output from PORTA to PORTC?  The above approach, using numeric constants, wouldn’t work, 

because you’d have to go through your code and change all the PORTA references to PORTC. 

This problem can be solved using text substitution, using the ‘#define’ directive, as follows: 

; pin assignments 

    #define START       GPIO,2      ; LEDs 

#define SUCCESS     GPIO,1 

 

#define BUTTON      GPIO,3      ; pushbutton 

 

These definitions are then referenced later in the code, as shown: 

        bsf     START               ; turn on start LED 

 

w_tmr0  btfss   BUTTON              ; check for button press (low) 

 

        bsf     SUCCESS             ;   turn on success LED 

 

Note that there are no longer any references to GPIO in the main body of the code.  If you later move this 

code to a PIC with more ports, you only need to update the definitions at the start.  Of course, you also need 

to modify the corresponding port initialisation code, such loading the TRIS registers, normally located at the 

start of the program, or in an “init” subroutine. 
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Bitwise Operators 

We’ve seen that operations on binary values are fundamental to PIC microcontrollers: setting and clearing 

individual bits, flipping bits, testing the status of bits and rotating the bits in registers.  It is common to have 

to specify individual bits, or combinations of bits, when loading values into registers, such as TRISIO or 

OPTION_REG, or using directives such as ‘__CONFIG’. 

To facilitate operations on bits, MPASM provides the following bitwise operators: 

compliment  ~ 

 left shift  << 

 right shift  >> 

 bitwise AND  & 

 bitwise exclusive OR ^ 

 bitwise inclusive OR | 

Precedence is in the order listed above. 

As with arithmetic operators, parentheses are used to change the order of precedence: ‘(’ and ‘)’. 

We’ve seen an example of the bitwise AND operator in every program so far: 

__CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & 

                _WDT_OFF & _PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

These symbols are defined in the ‘p12F629.inc’ include file as follows: 

;----- CONFIG Options -------------------------------------------------- 

_LP_OSC              EQU  H'3FF8'    ; LP oscillator 

_XT_OSC              EQU  H'3FF9'    ; XT oscillator 

_HS_OSC              EQU  H'3FFA'    ; HS oscillator 

_EC_OSC              EQU  H'3FFB'    ; EC 

_INTRC_OSC_NOCLKOUT  EQU  H'3FFC'    ; INTOSC oscillator: I/O on GP4 

_INTRC_OSC_CLKOUT    EQU  H'3FFD'    ; INTOSC oscillator: CLKOUT on GP4 

_EXTRC_OSC_NOCLKOUT  EQU  H'3FFE'    ; RC oscillator: I/O on GP4 

_EXTRC_OSC_CLKOUT    EQU  H'3FFF'    ; RC oscillator: CLKOUT on GP4 

_WDT_OFF             EQU  H'3FF7'    ; WDT disabled 

_WDT_ON              EQU  H'3FFF'    ; WDT enabled 

_PWRTE_ON            EQU  H'3FEF'    ; PWRT enabled 

_PWRTE_OFF           EQU  H'3FFF'    ; PWRT disabled 

_MCLRE_OFF           EQU  H'3FDF'    ; GP3/MCLR pin function is digital I/O 

_MCLRE_ON            EQU  H'3FFF'    ; GP3/MCLR pin function is MCLR 

_BODEN_OFF           EQU  H'3FBF'    ; BOD disabled 

_BODEN_ON            EQU  H'3FFF'    ; BOD enabled 

_CP_ON               EQU  H'3F7F'    ; Program Memory code protection enabled 

_CP_OFF              EQU  H'3FFF'    ; Program Memory code protection disabled 

_CPD_ON              EQU  H'3EFF'    ; Data memory code protection enabled 

_CPD_OFF             EQU  H'3FFF'    ; Data memory code protection disabled 

 

The ‘equ’ directive is described above; you can see that these are simply symbols for numeric constants. 

In binary, the values in the ‘__CONFIG’ directive above are: 

_MCLRE_OFF H'3FDF' = 11 1111 1101 1111 

_CP_OFF  H'3FFF' = 11 1111 1111 1111 

_CPD_OFF H'3FFF' = 11 1111 1111 1111 

_BODEN_OFF H'3FBF' = 11 1111 1011 1111 

_WDT_OFF    H'3FF7' = 11 1111 1111 0111 

_PWRTE_ON H'3FEF' = 11 1111 1110 1111 

_INTRC_OSC_NOCLKOUT  H'3FFC' = 11 1111 1111 1100 

           ----------------- 

ANDing these together gives:           11 1111 1000 0100 
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So the directive above is equivalent to: 

__CONFIG    b'11111110000100' 

 

For each of these configuration bit symbols, where a bit in the definition is ‘0’, it has the effect of setting the 

corresponding bit in the configuration word to ‘0’, because a ‘0’ ANDed with ‘0’ or ‘1’ always equals ‘0’. 

 

The 14-bit configuration word in the PIC12F629 is as shown: 

Bit 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 

BG1 BG0 - - - CPD   CP   BODEN MCLRE PRWTE   WDTE FOSC2 FOSC1 FOSC0 

 

Most of these configuration options were described briefly in lesson 1.  Recapping: 

CPD  disables data memory code protection.  Clearing CPD  prevents the contents of the EEPROM from 

being read externally (your PIC program can still read the EEPROM, whatever CPD  is set to). 

CP  disables program memory code protection.   Clearing CP  protects your program code from being read 

by PIC programmers. 

BODEN enables brown-out detection, resetting the PIC if the supply voltage drops below a preset level, to 

increase system reliability. 

MCLRE enables the external processor reset, or “master clear” ( MCLR  ), on pin 4.  Clearing it allows GP3 

to be used as an input. 

PWRTE  disables the power-up timer, which holds the device in reset for approximately 72 ms after power is 

first applied, or after the supply voltage recovers following a brown-out, to allow the power supply to 

stabilise. 

The BG bits are used to calibrate the “bandgap” voltage, used as an internal reference for brown-out 

detection and power-on reset (when power is first applied, the PIC is not released from reset until a 

sufficiently high supply voltage, related to the bandgap reference, is reached).  These BG<1:0> bits are 

programmed in the factory and are normally preserved when the PIC is programmed. 

WDTE enables the watchdog timer, which is used to reset the processor if it crashes, as we’ll see in a later 

lesson.  Clearing WDTE to disables the watchdog timer. 

The FOSC bits set the clock, or oscillator, configuration; FOSC<2:0> = 100 specifies the internal RC 

oscillator with no clock output.  The other oscillator configurations will be described in a later lesson. 

 

Given this, to configure the PIC12F629 for internal reset (GP3 as an input), no code or data protection, no 

watchdog timer, no brownout detection, with the power-up timer enabled and using the internal RC oscillator 

with no clock output, the lower nine bits of the configuration word must be set to: 110000100. 

That’s the same pattern of bits as produced by the __CONFIG directive, above (the value of bits 9 to 11 is 

irrelevant, as they are not used, and bits 12 and 13 are factory-set), showing that deriving the individual bit 

settings from the data sheet gives the same result as using the symbols in the Microchip-provided include file 

– as it should!  But using the symbols is simpler, and safer; it’s easy to mistype a long binary value, leading 

to a difficult-to-debug processor configuration error.  If you mistype a symbol, the assembler will tell you, 

making it easy to correct the mistake. 

 

As discussed in lesson 1, it is also useful to be able to use symbols instead of binary numbers when setting 

bits in special-function registers, such as TRISIO or OPTION_REG. 
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The bits in the OPTION register are defined in the ‘p12F629.inc’ include file as follows: 

;----- OPTION_REG Bits ----------------------------------------------------- 

PSA              EQU  H'0003' 

T0SE             EQU  H'0004' 

T0CS             EQU  H'0005' 

INTEDG           EQU  H'0006' 

NOT_GPPU         EQU  H'0007' 

PS0              EQU  H'0000' 

PS1              EQU  H'0001' 

PS2              EQU  H'0002' 

 

These are different to the symbol definitions used for the configuration bits, as they define a bit position, not 

a pattern. 

It tells us, for example, that T0CS is bit 5.  Having these symbols defined make it possible to write, for 

example: 

    bsf     OPTION_REG,T0CS     ; select counter mode: TOCS=1 

 

Using symbols in this way makes the code clearer, and it is harder to make a mistake, as mistyping a symbol 

is likely to be picked up by the assembler, while mistyping a numeric constant (such as writing “bsf  

OPTION_REG,4” when the intention was to set bit 5, or T0CS) is more likely to be missed. 

 

Typically a number of bits in a single register need to be configured at the same time.  To do this in a single 

instruction, using symbols, it is possible to use the bitwise operators to build expressions referencing a 

number of symbols; something we have been doing to load the TRISIO register, since lesson 1. 

For example, the “flash led while responding to pushbutton” code from lesson 4 included: 

        movlw   ~(1<<GP1|1<<GP2)    ; configure GP1 and GP2 as outputs  

        banksel TRISIO              ; (GP3 is an input) 

        movwf   TRISIO 

 

This makes use of the compliment, left-shift and inclusive-OR operators to build an expression equivalent to 

the binary constant ‘11111001’, which is loaded into TRISIO. 

 

Sometimes it makes sense to leave a bit field, such as PS<2:0> in OPTION_REG, expressed as a binary 

constant, while using symbols to set or clear other, individual, bits in the register. 

For example, the crystal-based LED flasher code from lesson 4 included: 

        movlw   b'11110110'     ; configure Timer0: 

                ; --1-----          counter mode (T0CS = 1) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----110          prescale = 128 (PS = 110)  

        banksel OPTION_REG      ;   -> increment at 256 Hz with 32.768 kHz input 

        movwf   OPTION_REG 

 

This can be rewritten as: 

        movlw   1<<T0CS|0<<PSA|b'110'  

                                ; counter mode (T0CS = 1) 

                                ; prescaler assigned to Timer0 (PSA = 0) 

                                ; prescale = 128 (PS = 110) 

        banksel OPTION_REG      ; -> increment at 256 Hz with 32.768 kHz input 

        movwf   OPTION_REG 

 

Including ‘0<<PSA’ in the expression does nothing, since a zero left-shifted any number of times is still zero, 

and ORing zero into any expression has no effect.  But it makes it explicit that we are clearing PSA. 
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Since we don’t care what the GPPU  , INTEDG and T0SE bits are set to, they are not included in the 

expression. 

Macros 

We saw in lesson 2 that, if we wish to reuse the same piece of code a number of times in a program, it often 

makes sense to place that code into a subroutine and to call the subroutine from the main program. 

But that’s not always appropriate, or even possible.  The subroutine call and return is an overhead that takes 

some time; only four instruction cycles, but in timing-critical pieces of code, it may not be justifiable.  And 

although mid-range PICs have an eight-level deep stack (compared with only two levels in the baseline 

architecture), you must still be careful when nesting subroutine calls, or else the stack will overflow and your 

subroutine won’t return to the right place.  It may not be worth using up a stack level, just to avoid repeating 

a short piece of code. 

Another problem with subroutines is that, as we saw in lesson 2, to pass parameters to them, you need to load 

the parameters into registers – an overhead that leads to longer code, perhaps negating the space-saving 

advantage of using a subroutine, for small pieces of code.  And loading parameters into registers, before 

calling a subroutine, isn’t very readable.  It would be nicer to be able to simply list the parameters on a single 

line, as part of the subroutine call. 

Macros address these problems, and are often appropriate where a subroutine is not.  A macro is a sequence 

of instructions that is inserted (or expanded) into the source code by the assembler, prior to assembly.   

Here’s a simple example.  Lesson 2 introduced a ‘delay10’ subroutine, which took as a parameter in W a 

number of multiples of 10 ms to delay.  So to delay for 200 ms, we had: 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        call    delay10 

 

This was used in a program which flashed an LED with a 20% duty cycle: on for 200 ms, then off for 800 

ms.  Rewritten a little from the code presented in lesson 2, the main loop looks like this: 

main_loop 

        bsf     FLASH           ; turn on LED         

        movlw   .20             ; stay on for 200 ms 

        pagesel delay10         ;   (delay 20 x 10 ms) 

        call    delay10         

        bcf     FLASH           ; turn off LED 

        movlw   .80             ; stay off for 800 ms 

        call    delay10         ;   (delay 80 x 10 ms) 

        pagesel $               ; repeat forever 

        goto    main_loop        

 

 

It would be nice to be able to simply write something like ‘DelayMS 200’ for a 200 ms delay.  We can do 

that by defining a macro, as follows: 

DelayMS MACRO   ms                  ; delay time in ms 

        movlw   ms/.10              ; divide by 10 to pass to delay10 routine 

        pagesel delay10 

        call    delay10 

        pagesel $ 

        ENDM 

Note:  The purpose of a macro is to make the source code more compact; unlike a subroutine, it 

does not make the resultant object code any smaller.  The instructions within a macro are 

expanded into the source code, every time the macro is called. 
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This defines a macro called ‘DelayMS’, which takes a single parameter: ‘ms’, the delay time in milliseconds.  

Parameters are referred to within the macro in the same way as any other symbol, and can be used in 

expressions, as shown. 

A macro definition consists of a label (the macro’s name), the ‘MACRO’ directive, and a comma-separated list 

of symbols, or arguments, used to pass parameters to the macro, all on one line. 

It is followed by a sequence of instructions and/or assembler directives, finishing with the ‘ENDM’ directive. 

When the source code is assembled, the macro’s instruction sequence is inserted into the code, with the 

arguments replaced by the parameters that were passed to the macro. 

That may sound complex, but using a macro is easy.  Having defined the ‘DelayMS’ macro, as above, it can 

be called from the main loop, as follows: 

main_loop 

        bsf     FLASH               ; turn on LED  

        DelayMS .200                ; stay on for 200ms 

        bcf     FLASH               ; turn off LED 

        DelayMS .800                ; stay off for 800ms 

        goto    main_loop           ; repeat forever 

 

This ‘DelayMS’ macro is a wrapper, making the ‘delay10’ subroutine easier to use. 

Note that the pagesel directives have been included as part of the macro, first to select the correct page for 

the ‘delay10’ subroutine, and then to select the current page again after the subroutine call.  That makes the 

macro transparent to use; there is no need for pagesel directives before or after calling it. 

As a more complex example, consider the debounce code presented in lesson 4: 

wait_dn clrf    TMR0            ; reset timer 

chk_dn  btfsc   GPIO,GP3        ; check for button press (GP3 low) 

        goto    wait_dn         ;   continue to reset timer until button down 

        movf    TMR0,w          ; has 10 ms debounce time elapsed? 

        xorlw   .157            ;   (157 = 10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_dn 

 

If you had a number of buttons to debounce in your application, you would want to use code very similar to 

this, multiple times.  But since there is no way of passing a reference to the pin to debounce (such as 

‘GPIO,GP3’) as a parameter to a subroutine, you would need to use a macro to achieve this. 

For example, a debounce macro could be defined as follows: 

; Debounce switch on given input port,pin 

; Waits for switch to be 'high' continuously for 10 ms 

; 

; Uses: TMR0  Assumes: TMR0 running at 256 us/tick 

; 

DbnceHi MACRO  port,pin 

    local      start,wait,DEBOUNCE 

    variable   DEBOUNCE=.10*.1000/.256  ; debounce count = 10ms/(256us/tick) 

 

        pagesel $              ; select current page for gotos 

        banksel TMR0           ;   and correct bank for TMR0 and port 

start   clrf    TMR0           ; button down so reset timer (counts "up" time) 

wait    btfss   port,pin       ; wait for switch to go high (=1) 

        goto    start  

        movf    TMR0,w         ; has switch has been up continuously for 

        xorlw   DEBOUNCE       ;   debounce time? 

        btfss   STATUS,Z       ; if not, keep checking that it is still up 

        goto    wait 

        ENDM 
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There are a few things to note about this macro definition, starting with the comments.  As with subroutines, 

you’ll eventually build up a library of useful macros, which you might keep together in an include file, such 

as ‘stdmacros.inc’ (which you would reference using the #include directive, instead of copying the macros 

into your code.)  When documenting a macro, it’s important to note any resources (such as timers) used by 

the macro, and any initialisation that has to have been done before the macro is called. 

The macro is called ‘DbnceHi’ instead of ‘DbnceUp’ because it’s waiting for a pin to be consistently high.  

For some switches, that will correspond to “up”, but not in every case.  Using terms such as “high” instead of 

“up” is more general, and thus more reusable. 

The ‘local’ directive declares symbols (address labels and variables) which are only used within the macro.  

If you call a macro more than once, you must declare any address labels within the macro as “local”, or else 

the assembler will complain that you have used the same label more than once.  Declaring macro labels as 

local also means that you don’t need to worry about whether those labels are used within the main body of 

code.  A good example is ‘start’ in the definition above.  There is a good chance that there will be a 

‘start’ label in the main program, but that doesn’t matter, as the scope of a label declared to be “local” is 

limited to the macro it is defined in. 

The ‘variable’ directive is very similar to the ‘constant’ directive, introduced earlier.  The only 

difference is that the symbol it defines can be updated later.  Unlike a constant, the value of a variable can be 

changed after it has been defined.  Other than that, they can be used interchangeably. 

In this case, the symbol ‘DEBOUNCE’ is being defined as a variable, but is used as a constant.  It is never 

updated, being used to make it easy to change the debounce period from 10 ms if required, without having to 

find the relevant instruction within the body of the macro (and note the way that an arithmetic expression has 

been used, to make it easy to see how to set the debounce to some other number of milliseconds). 

So why define ‘DEBOUNCE’ as a variable, instead of a constant?  If it was defined as a constant, there would 

potentially be a conflict if there was another constant called ‘DEBOUNCE’ defined somewhere else in the 

program.  But surely declaring it to be “local” would avoid that problem?  Unfortunately, the ‘local’ 

directive only applies to labels and variables, not constants.  And that’s why ‘DEBOUNCE’ is declared as a 

“local variable”.  Its scope is limited to the macro and will not affect anything outside it.  You can’t do that 

with constants. 

Finally, note that the macro begins with a ‘pagesel $’ directive.  That is placed there because we cannot 

assume that the page selection bits are set to the current page when the macro is called.  If the current page 

was not selected, the ‘goto’ commands within the macro body would fail; they would jump to a different 

page.  That illustrates another difference between macros and subroutines: when a subroutine is called, the 

page the subroutine is on must have been selected (or else it couldn’t have been called successfully), so any 

‘goto’ commands within the subroutine will work.  You can’t safely make that assumption for macros.  

Similarly a ‘banksel TMR0’ is included, since we cannot be sure that, when the macro is called, the correct 

bank for accessing TMR0 has been selected.  Note also that, because TMR0 and all of the port registers are 

in bank 0 for every mid-range PIC, this will also select the correct bank for whichever port is being used. 

Complete program 

The following program demonstrates how this “debounce” macro is used in practice. 

It is based on the “toggle an LED” program included in lesson 4, but the press of the pushbutton is not 

debounced, only the release.  It is not normally necessary to debounce both actions – although you may have 

to think about it a little to see why! 

Using the macro doesn’t make the code any shorter, but the main loop is much simpler: 

;************************************************************************ 

;   Description:    Lesson 5, example 4                                 * 

;                   Toggles LED when button is pressed                  * 

;                                                                       * 

;   Demonstrates use of macro defining Timer0-based debounce routine    * 

;************************************************************************ 
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;   Pin assignments:                                                    * 

;       GP1 = LED                                                       * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

 

;***** CONFIGURATION 

                ; int reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

; pin assignments 

    constant    nLED=1              ; indicator LED on GP1 

    #define     BUTTON  GPIO,3      ; pushbutton on GP3 

     

 

;***** MACROS 

; Debounce switch on given input port,pin 

; Waits for switch to be 'high' continuously for 10 ms 

; 

; Uses: TMR0  Assumes: TMR0 running at 256 us/tick 

; 

DbnceHi MACRO   port,pin 

    local       start,wait,DEBOUNCE 

    variable    DEBOUNCE=.10*.1000/.256 ; switch debounce count = 

10ms/(256us/tick) 

 

        pagesel $               ; select current page for gotos 

        banksel TMR0            ;  and correct bank for TMR0 and port 

start   clrf    TMR0            ; button down so reset timer (counts "up" time) 

wait    btfss   port,pin        ; wait for switch to go high (=1) 

        goto    start  

        movf    TMR0,w          ; has switch has been up continuously for 

        xorlw   DEBOUNCE        ;   debounce time? 

        btfss   STATUS,Z        ; if not, keep checking that it is still up 

        goto    wait 

        ENDM 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 
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;***** Initialisation 

start  

        ; configure port  

        banksel GPIO 

        clrf    GPIO                ; start with all LEDs off 

        clrf    sGPIO               ;   update shadow 

        movlw   ~(1<<nLED)          ; configure LED pin (only) as output  

        banksel TRISIO              ; (GP3 is an input) 

        movwf   TRISIO 

         

        ; configure timer (for DbnceHi macro)            

        movlw   b'11000111'         ; configure Timer0: 

                ; --0-----              timer mode (T0CS = 0) 

                ; ----0---              prescaler assigned to Timer0 (PSA = 0) 

                ; -----111              prescale = 256 (PS = 111)  

        banksel OPTION_REG          ;   -> increment TMR0 every 256 us 

        movwf   OPTION_REG 

 

 

;***** Main loop 

main_loop 

        ; wait for button press 

        banksel GPIO 

wait_dn btfsc   BUTTON          ; wait until button low 

        goto    wait_dn  

 

        ; toggle LED 

        movf    sGPIO,w           

        xorlw   1<<nLED         ; toggle shadow register 

        movwf   sGPIO            

        movwf   GPIO            ; write to port   

 

        ; wait for button release 

        DbnceHi BUTTON          ; wait until button high (debounced) 

 

        ; repeat forever 

        goto    main_loop          

 

        END 

 

Conditional Assembly 

We’ve seen how the processor include files, such as ‘p12F629.inc’, define a number of symbols that allow 

you to refer to registers and flags by name, instead of numeric value. 

While looking at the ‘p12F629.inc’ file, you may have noticed these lines: 

    IFNDEF __12F629 

        MESSG "Processor-header file mismatch.  Verify selected processor." 

    ENDIF 

 

This is an example of conditional assembly, where the actions performed by the assembler (outputting 

messages and generating code) depend on whether specific conditions are met. 

When the processor is specified by the ‘list p=’ directive, or selected in MPLAB, a symbol specifying the 

processor is defined; for the PIC12F629, the symbol is ‘__12F629’.  This is useful because the assembler 

can be made to perform different actions depending on which processor symbol has been defined. 

In this case, the idea is to check that the correct processor include file is being used.  If you include the 

include file for the wrong processor, you’ll almost certainly have problems.  This code checks for that. 
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The ‘IFNDEF’ directive instructs the assembler to assemble the block of code following it if the specified 

symbol has not been defined. 

The ‘ENDIF’ directive marks the end of the block of conditionally-assembled code. 

In this case, everything between ‘IFNDEF’ and ‘ENDIF’ is assembled if the symbol ‘__12F629’ has not been 

defined.  And that will only be true if a processor other than the PIC12F629 has been selected. 

The ‘MESSG’ directive tells the assembler to print the specified message in the MPLAB output window.  This 

message is only informational; it’s useful for providing information about the assembly process or for issuing 

warnings that do not necessarily mean that assembly has to stop. 

So, this code tests that the correct processor has been selected and, if not, warns the user about the mismatch. 

 

Similar to ‘IFNDEF’, there is also an ‘IFDEF’ directive which instructs the assembler to assemble a block of 

code only if the specified symbol has been defined. 

 

A common use of ‘IFDEF’ is when debugging, perhaps to disable parts of the program while it is being 

debugged.  Or you might want to use a different processor configuration, say with code protection and 

brownout detection enabled.  For example: 

    #define     DEBUG 

 

    IFDEF DEBUG 

                    ; int reset, no code or data protect, no brownout detect, 

                    ; no watchdog, power-up timer, 4Mhz int clock 

        __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

                    _PWRTE_ON & _INTRC_OSC_NOCLKOUT 

    ELSE 

                    ; int reset, code and data protect on, brownout detect, 

                    ; no watchdog, power-up timer, 4Mhz int clock 

        __CONFIG    _MCLRE_OFF & _CP_ON & _CPD_ON & _BODEN_ON & _WDT_OFF & 

                    _PWRTE_ON & _INTRC_OSC_NOCLKOUT   

    ENDIF   

 

If the ‘DEBUG’ symbol has been defined (it doesn’t have to be set equal to anything, just defined), the first 

__CONFIG directive is assembled, turning off code protection and the watchdog timer. 

The ‘ELSE’ directive marks the beginning of an alternative block of code, to be assembled if the previous 

conditional block was not selected for assembly. 

That is, if the ‘DEBUG’ symbol has not been defined, the second __CONFIG directive is assembled, turning on 

code protection and the watchdog timer. 

When you have finished debugging, you can either comment out the ‘#define DEBUG’ directive, or change 

‘DEBUG’ to another symbol, such as ‘RELEASE’.  The debugging code will now no longer be assembled. 

 

In many cases, simply testing whether a symbol exists is not enough.  You may want the assembler to 

assemble different sections of code and/or issue different messages, depending on the value of a symbol, or 

of an expression containing perhaps a number of symbols. 

As an example, suppose your code is used to support a number of hardware configurations, or revisions.  At 

some point the printed circuit board may have been revised, requiring different pin assignments.  In that case, 

you could use a block of code similar to: 

    constant    REV='A'             ; hardware revision 

 

; pin assignments 
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    IF REV=='A'                         ; pin assignments for REV A: 

        constant    nLED=1              ;   indicator LED on GP1 

        #define     BUTTON  GPIO,3      ;   pushbutton on GP3 

    ENDIF 

    IF REV=='B'                         ; pin assignments for REV B: 

        constant    nLED=0              ;   indicator LED on GP0 

        #define     BUTTON  GPIO,2      ;   pushbutton on GP2 

    ENDIF 

    IF REV!='A' && REV!='B' 

        ERROR "Revision must be 'A' or 'B'" 

    ENDIF 

 

This code allows for two hardware revisions, selected by setting the constant ‘REV’ equal to ‘A’ or ‘B’. 

If you have the Gooligum training board, it’s easy to try this out: connect jumpers JP7 and JP3 to enable 

pull-up resistors on GP2 and GP3, and jumpers JP11 and JP12 to enable LEDs on GP0 and GP1. 

 

The ‘IF expr’ directive instructs the assembler to assemble the following block of code if the expression 

expr is true.  Normally a logical expression (such as a test for equality) is used with the ‘IF’ directive, but 

arithmetic expressions can also be used, in which case an expression that evaluates to zero is considered to 

be logically false, while any non-zero value is considered to be logically true. 

MPASM supports the following logical operators: 

not (logical compliment) ! 

 greater than or equal to  >= 

 greater than   > 

 less than   < 

 less than or equal to  <= 

 equal to    == 

 not equal to   != 

 logical AND   && 

 logical OR   || 

Precedence is in the order listed above. 

And as you would expect, parentheses are used to change the order of precedence: ‘(’ and ‘)’. 

Note that the test for equality is two equals signs; ‘==’, not ‘=’.  

 

In the code above, setting ‘REV’ to ‘A’ means that the first pair of #define directives will be executed, while 

setting ‘REV’ to ‘B’ executes the second pair. 

But what if ‘REV’ was set to something other than ‘A’ or ‘B’?  Then neither set of pin assignments would be 

selected and the symbols ‘LED’ and ‘BUTTON’ would be left undefined.  The rest of the code would not 

assemble correctly, so it is best to check for that error condition. 

This error condition can be tested for, using the more complex logical expression: 

REV!='A' && REV!='B' 

 

Incidentally, this can be rewritten equivalently
1
 as: 

!(REV=='A' || REV=='B') 

                                                      

1
 This equivalence is known as De Morgan’s theorem. 

http://www.gooligum.com/devboards/base-mid/base-mid.html


© Gooligum Electronics 2013  www.gooligum.com.au 

Mid-range PIC Assembler, Lesson 5: Assembler Directives and Macros Page 15 

You can of course use whichever form seems clearest to you. 

 

The ‘ERROR’ directive does essentially the same thing as ‘MESSG’, but instead of printing the specified 

message and continuing, ‘ERROR’ will make the progress bar that appears during assembly turn red, and the 

assembly process will halt. 

 

The ‘IF’ directive is also very useful for checking that macros have been called correctly, particularly for 

macros which may be reused in other programs. 

For example, consider the delay macro defined earlier: 

DelayMS MACRO   ms                  ; delay time in ms 

        movlw   ms/.10              ; divide by 10 to pass to delay10 routine 

        pagesel delay10 

        call    delay10 

        pagesel $ 

        ENDM 

 

The maximum delay allowed is 2.55 s, because all registers, including W, are 8-bit and so can only hold 

numbers up to 255.  If you try calling ‘DelayMS’ with an argument greater than 2550, the assembler will 

warn you about “Argument out of range”, but it will carry on anyway, using the least significant 8 bits of 

‘ms/.10’.  That’s not a desirable behaviour.  It would be better if the assembler reported an error and halted, 

if the macro is called with an argument that is out of range. 

That can be done as follows: 

DelayMS MACRO   ms                  ; delay time in ms 

    IF ms>.2550 

        ERROR "Maximum delay time is 2550 ms" 

    ENDIF 

        movlw   ms/.10              ; divide by 10 to pass to delay10 routine 

        pagesel delay10 

        call    delay10 

        pagesel $ 

        ENDM 

 

By testing that parameters are within allowed ranges in this way, you can make your code more robust. 

Conclusion 

MPASM offers many more advanced facilities that can make your life as a PIC assembler programmer 

easier, but that’s enough for now. 

The features we’ve seen in this lesson will help make your code easier to understand and maintain, and make 

you more productive, by: 

 using arithmetic expressions to make it clear how numeric constants are derived 

 using constants and text substitution, so make your code more readable and so that future 

configuration changes can be made in a single place 

 using symbols and bitwise operators instead of cryptic binary constants 

 creating macros to make your code shorter, more readable, and easier to re-use 

Other MPASM directives will be introduced in future lessons, as appropriate. 

 

So far we’ve been tracking the material covered in the baseline lessons quite closely, but in the next lesson 

we’ll introduce one of the most significant features not found in the baseline architecture – interrupts. 

../../Baseline
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Introduction to PIC Programming 

Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 6: Introduction to Interrupts 

 

 

The lessons up until now have re-visited topics covered in the baseline assembler tutorial series, adapting the 

material to mid-range PICs, and introducing specific features of the mid-range architecture (not found in 

baseline PICs) where relevant.  The most significant of these features, not present in the baseline 

architecture, is support for interrupts.  As we will see in this lesson, interrupts make it much easier to 

implement regular “background” tasks (such as refreshing a multiplexed display – see for example baseline 

lesson 8) and allow programs to respond in a timely manner to external events, without having to sit in a 

busy-wait, or polling loop.  Both of these applications of interrupts are demonstrated in this lesson.  

In summary, this lesson covers: 

 Introduction to interrupts on the mid-range PIC architecture 

 Interrupt service routines (including saving and restoring processor context) 

 Timer-driven interrupts 

 Debouncing single switches with timer-driven interrupts 

 External interrupts on the INT pin 

Interrupts 

An interrupt is a means of interrupting the main program flow in response to an event, so that the event can 

be dealt with, or serviced.  The event (referred to an interrupt source) can be internal to the PIC, such as a 

timer overflowing, or external, such as a change on an input pin. 

When the interrupt is triggered, program execution immediately jumps to an interrupt service routine (ISR), 

which, in the mid-range PIC architecture, is always located at address 0004h.  The ISR must save the current 

processor state, or context (i.e. the contents of any registers which the ISR will modify, such as W and 

STATUS), service the interrupt, and then restore the context before returning to the main program.  In this 

way, the main program will never “notice” that the interrupt has happened – the interrupt will be completely 

transparent, except for whatever action the interrupt service routine was intended to perform. 

Some examples will make this clearer!  But first, some more details… 

 

Each interrupt source can be enabled or disabled, independently. 

The enable bits for the interrupt sources covered in this lesson are located in the INTCON register: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 

 

../../Baseline
../../Baseline/8%20-%207-segment%20displays/PIC_Base_A_8.pdf
../../Baseline/8%20-%207-segment%20displays/PIC_Base_A_8.pdf
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To enable an interrupt source, that source’s interrupt enable bit must be set: 

T0IE enables the Timer0 interrupt, while INTE enables interrupts triggered by the external INT pin. 

 

Interrupts are controlled overall by the global interrupt enable bit, GIE: 

If GIE = 0, all interrupts are disabled. 

If GIE = 1, interrupts can occur, depending on which interrupt sources are enabled. 

 

For an interrupt to occur, that interrupt’s enable bit must be set, in addition to GIE being set. 

For example, to enable Timer0 interrupts, you could use: 

        movlw   1<<GIE|1<<T0IE    ; enable interrupt on Timer0 overflow 

        movwf   INTCON 

 

Or, if you were setting up a number of interrupt sources and didn’t want to allow interrupts to happen 

straight away, you might write something like: 

        bsf     INTCON,T0IE       ; enable Timer0 interrupt source 

 

        ...                       ; (initialise some other things) 

 

        bsf     INTCON,GIE        ; enable interrupts 

 

Context Saving 

When an interrupt occurs, the current instruction completes executing, the address of the next instruction (the 

return address) is pushed onto the stack, the GIE bit is cleared to prevent any more interrupts from occurring 

while this interrupt is being serviced, and execution jumps to the instruction at address 0004h. 

At this point, the only the program counter (PC) has been saved.  Every other register holds whatever value 

it did when the interrupt was triggered. 

As mentioned above, the ISR should be transparent to the main program.  If the ISR modifies the contents of 

any register that the main program would “expect” to remain constant, that register should be saved at the 

start of the ISR, and restored to its original value returning to the main program, so that the main program 

will never “know” that an interrupt has occurred.   

The Microchip-supplied template, ‘…\MPASM Suite\Template\Object\12F629TMPO.ASM’, includes the 

following code which you can use as the framework of your interrupt service routine: 

;------------------------------------------------------------------------------ 

; INTERRUPT SERVICE ROUTINE 

;------------------------------------------------------------------------------ 

 

INT_VECTOR    CODE    0x0004  ; interrupt vector location 

        MOVWF   W_TEMP        ; save off current W register contents 

        MOVF    STATUS,w      ; move status register into W register 

        MOVWF   STATUS_TEMP   ; save off contents of STATUS register 

 

; isr code can go here or be located as a call subroutine elsewhere 

 

        MOVF    STATUS_TEMP,w ; retrieve copy of STATUS register 

        MOVWF   STATUS        ; restore pre-isr STATUS register contents 

        SWAPF   W_TEMP,f 

        SWAPF   W_TEMP,w      ; restore pre-isr W register contents 

        RETFIE                ; return from interrupt 
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This code uses two variables, declared in the template code as: 

INT_VAR     UDATA_SHR   0x20    

W_TEMP      RES     1             ; variable used for context saving  

STATUS_TEMP RES     1             ; variable used for context saving 

 

to save the contents of the W and STATUS registers. 

Note that these variables are placed in shared memory
1
.  Of course, on the PIC12F629, this is the only type 

of data memory available; it is all shared.  But even on devices with banked as well as shared memory, it is 

necessary to use shared memory for context saving (at least for W and STATUS), because you cannot know 

which bank is selected when the interrupt is triggered.  If you select a specific bank by changing the bank 

selection bits (RP0 and RP1) in STATUS, you will lose the original value of these bits unless you save the 

contents of STATUS first.  The only way to do that, without losing the current bank selection, is to copy 

STATUS to shared memory, before any bank selection is done.  And since the only way to save the 

STATUS register is to copy it to W first, the current contents of W must be saved first. 

 

The instructions to save the contents of W and STATUS are straightforward: 

        movwf   W_TEMP        ; save off current W register contents 

        movf    STATUS,w      ; move status register into W register 

        movwf   STATUS_TEMP   ; save off contents of STATUS register 

 

After this, any other registers you wish to save (such as PCLATH) can be copied to variables in the same 

way – and these variables can be in banked memory, because the bank selection bits (in STATUS) have 

been saved. 

For example: 

        movwf   W_TEMP        ; save W and STATUS 

        movf    STATUS,w      ; to variables in shared memory 

        movwf   STATUS_TEMP 

        movf    PCLATH,w      ; save PLCATH 

        banksel PCLATH_TEMP   ; to variable (can be in banked memory) 

        movwf   PCLATH_TEMP 

 

 

To restore the context (W, STATUS and any other registers you choose to save, such as PCLATH) at the 

end of the interrupt routine, you might think that these instructions could simply be reversed: 

        banksel PCLATH_TEMP   ; restore PCLATH 

        movf    PCLATH_TEMP,w 

        movwf   PCLATH 

        movf    STATUS_TEMP,w ; restore STATUS 

        movwf   STATUS 

        movf    W_TEMP,w      ; restore W (NO!!! This clobbers Z flag!!!) 

 

Unfortunately, this approach won’t work! 

The final movf instruction, used above to restore the W register, has a side effect: it affects the Z flag (part of 

the STATUS register), depending on the value being copied.  This means that, whatever value Z had before 

the interrupt was triggered may be lost.  Z will be set or cleared depending on the value in the W, instead of 

retaining the value it held when the interrupt was triggered.  That’s almost certain to interfere with the main 

code – something we must avoid. 

                                                      

1
 The template code explicitly specifies the address (0x20) for this shared memory section.  This is unnecessary; the 

linker can be relied on to place any data section declared by ‘UDATA_SHR’ correctly, within shared memory.  
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To restore W without affecting the Z flag, the template code employs a “trick”: 

The ‘swapf’ instruction – “swap nybbles in file register” – is typically used where data is encoded in the 

two 4-bit nybbles (or “nibbles”) comprising an 8-bit byte, as we saw when discussing binary-coded decimal 

(BCD) in baseline lesson 8.  The contents of bits 0-3 of the specified register are swapped with bits 4-7. 

If the swap operation is repeated, the nybbles end up back in their original order, leaving the data unchanged. 

As with most instructions which operate on a register, the result of the swap operation can be written either 

back to the register, or to W.  This makes it possible to use two successive swapf instructions to copy the 

original contents of a register to W, as in the ISR template code: 

        swapf   W_TEMP,f      ; restore pre-isr W register contents 

        swapf   W_TEMP,w 

 

Why use this strange construct, instead of a simple ‘movf’? 

The answer is that the swapf instruction does not affect any STATUS flags, while movf does.  That means 

that it can be used to restore W without affecting STATUS, making the interrupt service routine truly 

transparent. 

 

The final instruction in the ISR template is ‘retfie’ – “return from interrupt and enable interrupts”. 

The retfie instruction pops the program counter off the stack, returning execution to the main program.  It 

also sets the GIE bit, allowing interrupts to occur again. 

Interrupt Flags 

Given that a number of different interrupt sources may be enabled, your interrupt service routine must be 

able to determine which source triggered the interrupt, so that it can respond to that event. 

Interrupt flags are used for this – when an interrupt event (such as a timer overflow) occurs, the 

corresponding interrupt flag is set, to indicate which event has occurred. 

The flags for the interrupt sources covered in this lesson are also located in the INTCON register: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 

 

T0IF indicates that Timer0 has overflowed, while INTF indicates that an external interrupt signal has been 

detected on the INT pin. 

 

If an interrupt flag has been set, and the corresponding interrupt source is enabled, and the global interrupt 

enable (GIE) bit is also set, an interrupt will occur. 

Whenever you service an interrupt,  you must always clear its interrupt flag. 

Note that, whenever an event occurs, the interrupt flag for that event will be set, regardless of whether that 

interrupt source has been enabled. 

For example, you can poll the T0IF flag to check to see if Timer0 has overflowed, without having to use 

interrupts. 

Whenever any interrupt event is serviced, the interrupt flag corresponding to that event must be 

cleared, or else the interrupt will be re-triggered immediately after interrupts are re-enabled, when 

the ISR exits. 

../../Baseline/8%20-%207-segment%20displays/PIC_Base_A_8.pdf
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Timer0 Interrupts 

Timer0 can be used to regularly generate interrupts, which can be used to drive “background” tasks, such as: 

 Generating a regular output; 

for example flashing an LED 

 Monitoring and debouncing inputs 

Meanwhile, a “main program” can continue to 

perform other “foreground” tasks. 

 

We’ll use the circuit from lesson 4, shown on the 

right, to illustrate these techniques. 

If you have the Gooligum training board, close 

jumpers JP3, JP12 and JP13 to enable the pull-up 

resistor on GP3 and the LEDs on GP1 and GP2. 

 

Example 1a: Flashing an LED 

To begin, we’ll simply flash an LED, without attempting to make it flash at exactly 1 Hz. 

We saw in lesson 4 that, given a 1 MHz instruction clock (derived from a 4 MHz processor clock) with 

maximum prescaling (1:256), the longest period that Timer0 can generate is 256 × 256 × 1 µs = 65.5 ms. 

Therefore, if we configured the PIC to use a 4 MHz clock, and set up Timer0 in timer mode with a 1:256 

prescaler, TMR0 would overflow (rollover from 255 to 0) every 65.5 ms. 

If we then enabled Timer0 interrupts, the interrupt would be triggered on every TMR0 overflow, i.e. every 

65.5 ms.  So the interrupt service routine (ISR) would be called every 65.5 ms. 

If the ISR toggled an LED every time it was called, the LED would change state every 65.5 ms – it would 

flash with a period of 65.5 ms × 2 = 131 ms, giving a frequency of 7.6 Hz. 

Having an LED flash as 7.6 Hz is not ideal, but the flashing is visible (just), and that’s the slowest flash rate 

we can generate with the simple approach described above.  So we’ll start there. 

 

Firstly, we’ll need some variables to save the processor context during the ISR. 

It’s also a good idea, when using interrupts to modify a port, to use a shadow register to avoid potential read-

modify-write problems (described in baseline lesson 2).  It’s usually cleaner, and safer (avoiding problems) 

to have only the interrupt service routine or the main program writing directly to a port (such as GPIO), but 

not both. 

So the variable definitions we need are: 

CONTEXT     UDATA_SHR       ; variables used for context saving 

cs_W        res 1 

cs_STATUS   res 1 

 

GENVAR      UDATA_SHR       ; general variables 

sGPIO       res 1               ; shadow copy of GPIO 

 

Note that these could have been placed in a single section, but it’s good to get into habits that will still be 

appropriate for larger projects on bigger PICs; the 12F629 is a little unusual in only having a single bank of 

shared data memory.  Giving each logical group of variables its own data section gives the linker more 

flexibility when allocating memory. 

../4%20-%20Timer%200/PIC_Mid_A_4.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
../4%20-%20Timer%200/PIC_Mid_A_4.pdf
../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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Since the interrupt vector is located at address 0004h, while the reset vector (where program execution 

begins) is at address 0000h, we can’t continue to simply place our main program at 0000h; it could only be a 

maximum of four instructions long! 

So it’s normal to place the ISR at 0004h, and to place code at 0000h which does nothing more than jump to 

the start of the main program, somewhere else in memory: 

RESET   CODE    0x0000          ; processor reset vector 

        pagesel start 

        goto    start 

 

         

;***** INTERRUPT SERVICE ROUTINE 

ISR     CODE    0x0004 

        ; ISR code goes here 

        ; ... 

        ; end of ISR 

 

 

;***** MAIN PROGRAM 

MAIN    CODE         

start   ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

Note that, because the “MAIN” code segment really could be placed anywhere in memory, it is necessary to 

use a ‘pagesel’ directive, in case the main program is located on a different page. 

That won’t happen on the 12F629, which only has a single page of program memory, but it’s a good idea to 

include the ‘pagesel’ anyway, in case you ever move your code to a PIC with more memory. 

 

The main program then starts by calibrating the internal RC oscillator, as shown above, before configuring 

and initialising the port and Timer0, as we have done before: 

        ; configure port  

        banksel GPIO 

        clrf    GPIO            ; start with all LEDs off 

        clrf    sGPIO           ;   update shadow         

        movlw   ~(1<<nLED)      ; configure LED pin (only) as an output 

        banksel TRISIO          

        movwf   TRISIO 

         

        ; configure timer            

        movlw   b'11000111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)  

        banksel OPTION_REG      ;   -> increment TMR0 every 256 us 

        movwf   OPTION_REG 

 

There’s nothing new or different here – the timer is simply set up as usual. 

 

Now that everything is initialised and ready to go, the Timer0 interrupt can be enabled: 

        ; enable interrupts 

        movlw   1<<GIE|1<<T0IE  ; enable Timer0 and global interrupts 

        movwf   INTCON 

 

Note that there is no need for a ‘banksel’ before accessing INTCON, because it is mapped into every bank. 
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With Timer0 setup, and the Timer0 interrupt enabled, an interrupt will be triggered every 65.5 ms, calling the 

interrupt service routine at 0004h. 

As discussed above, the first thing the ISR must do is to save the processor context: 

ISR     CODE    0x0004 

        ; *** Save context 

        movwf   cs_W            ; save W 

        movf    STATUS,w        ; save STATUS 

        movwf   cs_STATUS 

 

 

We would then normally test specific interrupt flags, to determine the source of this particular interrupt.  But 

since only Timer0 interrupts have been enabled, we know that a Timer0 overflow must have occurred, so we 

know that this ISR only needs to handle, or service, Timer0 overflow events. 

 

The first thing we must do (or the last, of you prefer – it doesn’t matter, as long as you ensure that you do it) 

is to clear the interrupt flag corresponding to this event. 

In this case, because we know this is a Timer0 interrupt, we must clear T0IF: 

        ; *** Service Timer0 interrupt 

        ; 

        ;   TMR0 overflows every 65.5 ms 

        ; 

        ;   Flashes LED at ~7.6 Hz by toggling on each interrupt 

        ;       (every ~65.5 ms) 

        ; 

        ;   (only Timer0 interrupts are enabled) 

        ; 

        bcf     INTCON,T0IF     ; clear interrupt flag 

 

 

The interrupt routine is now free to do whatever it was intended to do; in this case, toggle an LED: 

        ; toggle LED 

        movf    sGPIO,w         ; only update shadow register 

        xorlw   1<<nLED       

        movwf   sGPIO            

 

Note that only the shadow copy of GPIO is being updated, as discussed above. 

 

Finally, the ISR must restore the processor context, before returning
2
: 

isr_end ; *** Restore context then return 

        movf    cs_STATUS,w     ; restore STATUS 

        movwf   STATUS       

        swapf   cs_W,f          ; restore W 

        swapf   cs_W,w      

        retfie   

 

As mentioned earlier, the retfie instruction sets the GIE bit, re-enabling interrupts so that the next event 

(whenever it occurs) can be serviced. 

                                                      

2
 The ‘isr_end’ label isn’t actually needed here, as it’s not referenced anywhere.  However, it helps to mark the end 

of the ISR, and it’s necessary when working with multiple interrupt sources, as we’ll see in the final example. 
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So with the ISR flipping a bit in the shadow copy of GPIO every 65.5 ms, all that remains for the main 

program to do is to continually copy the shadow register to the GPIO port, to make the changes made by the 

ISR visible (literally, in this case…): 

main_loop 

        ; continually copy shadow GPIO to port 

        movf    sGPIO,w  

        banksel GPIO 

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop       

   

Complete program 

Here is how these code fragments fit together: 

;************************************************************************ 

;   Description:    Lesson 6 example 1a                                 * 

;                                                                       * 

;   Demonstrates use of Timer0 interrupt to perform a background task   * 

;                                                                       * 

;   Flash an LED at approx 7.6 Hz (50% duty cycle).                     * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP2 = flashing LED                                              * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

; pin assignments 

    constant    nLED=2          ; flashing LED on GP2 

     

 

;***** VARIABLE DEFINITIONS 

CONTEXT     UDATA_SHR           ; variables used for context saving 

cs_W        res 1 

cs_STATUS   res 1 

 

GENVAR      UDATA_SHR           ; general variables 

sGPIO       res 1                   ; shadow copy of GPIO 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        pagesel start 

        goto    start 
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;***** INTERRUPT SERVICE ROUTINE **************************************** 

ISR     CODE    0x0004 

        ; *** Save context 

        movwf   cs_W            ; save W 

        movf    STATUS,w        ; save STATUS 

        movwf   cs_STATUS  

         

        ; *** Service Timer0 interrupt 

        ; 

        ;   TMR0 overflows every 65.5 ms 

        ; 

        ;   Flashes LED at ~7.6 Hz by toggling on each interrupt 

        ;       (every ~65.5 ms) 

        ; 

        ;   (only Timer0 interrupts are enabled) 

        ; 

        bcf     INTCON,T0IF     ; clear interrupt flag 

         

        ; toggle LED 

        movf    sGPIO,w         ; only update shadow register 

        xorlw   1<<nLED       

        movwf   sGPIO            

 

 

isr_end ; *** Restore context then return 

        movf    cs_STATUS,w     ; restore STATUS 

        movwf   STATUS       

        swapf   cs_W,f          ; restore W 

        swapf   cs_W,w      

        retfie   

         

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE         

start   ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

;***** Initialisation 

 

        ; configure port  

        banksel GPIO 

        clrf    GPIO            ; start with all LEDs off 

        clrf    sGPIO           ;   update shadow         

        movlw   ~(1<<nLED)      ; configure LED pin (only) as an output 

        banksel TRISIO          

        movwf   TRISIO 

         

        ; configure timer            

        movlw   b'11000111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)  

        banksel OPTION_REG      ;   -> increment TMR0 every 256 us 

        movwf   OPTION_REG 

         

        ; enable interrupts 

        movlw   1<<GIE|1<<T0IE  ; enable Timer0 and global interrupts 

        movwf   INTCON 
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;***** Main loop 

main_loop 

        ; continually copy shadow GPIO to port 

        movf    sGPIO,w  

        banksel GPIO 

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop            

 

 

        END 

Example 1b: Slower flashing 

The LED in the example above flashed at around 7.6 Hz, which was done by toggling it every 65.5 ms.  

That’s a little too fast. 

We saw that, with a 4 MHz processor clock, the longest possible interval between Timer0 interrupts is 65.5 

ms.  So, to flash an LED any slower than this, we can’t toggle it on every interrupt; we have to skip some of 

them.  That means counting each interrupt, and only toggling the LED when the count reaches a certain 

value. 

A simple way to implement this, if we are not concerned with exact timing, is to use an 8-bit counter, and to 

let it reach 255 before toggling the LED when it overflows to 0 (easily done using the incfsz instruction). 

If, every time an interrupt is triggered by a Timer0 overflow, the ISR increments a counter, we’re essentially 

implementing a 16-bit timer, based on Timer0, with TMR0 as the least significant eight bits, and the counter 

incremented by the ISR being the most significant eight bits. 

If the ISR increments the counter whenever Timer0 overflows (every 256 ticks of TMR0), and it toggles the 

LED whenever the counter overflows (every 256 interrupts), the LED is being toggled every N × 256 × 256 

(where N is the prescale ratio) instruction cycles. 

Assuming a 1 MHz instruction clock, LED will be toggled every N × 256 × 256 µs = N × 65.536 ms.  

To flash the LED at 1 Hz, we need to toggle it every 500 ms.  That would require N = 7.63. 

That’s not possible, but we can use N = 8 (prescale ratio of 1:8), which is close – the resulting toggle period 

is 8 × 256 × 256 µs = 524.3 ms, giving a flash rate of 0.95 Hz. 

That’s close enough for now! 

 

To implement the Timer0 overflow counter, we’ll need a variable to store it in: 

GENVAR      UDATA_SHR           ; general variables 

sGPIO       res 1                   ; shadow copy of GPIO 

cnt_t0      res 1                   ; counts timer0 overflows 

                                    ; (incremented by ISR every 2.048 ms) 

 

We then need to add instructions to the ISR to increment this counter, and toggle the LED only when it 

overflows back to zero: 

        ; toggle LED every 256 interrupts (524 ms) 

        incfsz  cnt_t0,f        ; increment interrupt count (every 2.048 ms) 

        goto    isr_end         ; if count overflow 

                                ;   (every 256 interrupts = 524 ms) 

        movf    sGPIO,w         ;   toggle LED 

        xorlw   1<<nLED         ;       using shadow register 

        movwf   sGPIO            
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And finally the configuration of Timer0 needs to be changed, to select a 1:8 prescaler: 

        ; configure timer            

        movlw   b'11000010'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----010          prescale = 8 (PS = 010)  

        banksel OPTION_REG      ;   -> increment TMR0 every 8 us 

        movwf   OPTION_REG 

 

We should also initialise the timer overflow counter variable: 

        ; initialise variables 

        clrf    cnt_t0          ; zero timer0 overflow count 

 

although it’s not strictly necessary in this example (its initial value only affects the first flash). 

 

With these changes to the code in the first example, the LED will flash at a much more sedate 0.95 Hz. 

 

Example 1c: Flashing an LED at exactly 1 Hz 

What if we needed (for some reason) to flash the LED at exactly 1 Hz, given an accurate 4 MHz processor 

clock?
3
  Of course this is a contrived example, but there are many cases where an accurate output frequency 

must be generated; an obvious example is a real-time clock. 

It’s not possible to achieve this exact timing, using the technique in the example above, where the timer is 

allowed to run freely, with an interrupt being triggered every 256 ticks.  Why?  We need to toggle the LED 

every 500 ms, which, with a 4 MHz processor clock, is 500,000 instruction cycles.  And 500,000 is not 

exactly divisible by 256 – there is no way to count to 500,000, using whole multiples of 256. 

To solve this problem, we need to make the timer overflow (triggering an interrupt) every N ticks, where N 

divides exactly into 500,000.  And, of course, since Timer0 is an 8-bit timer, N < 256, so it is not possible for 

Timer0 to count more than 256 ticks.  We also want N to be as high as possible, because if Timer0 overflows 

less often, fewer interrupts are triggered, and less time is spent servicing interrupts. 

In this case, the best result is when N = 250.  That is, we want Timer0 to overflow after every 250 ticks. 

 

To make a timer overflow after some number of ticks, you can preload it with an appropriate value.  For 

example, if you had an 8-bit timer, and you wanted it to overflow after 100 ticks, you could load it with the 

value 156 (equal to 256 – 100), and then start it counting.  Since it is starting from 156, after 100 ticks it will 

have counted to 256, and overflow back to zero.  The timer could then be reloaded with 156, and count for 

another 100 ticks, before repeating the process. 

But there are some problems with this approach – some of them specific to Timer0 on mid-range PICs: 

 Timer0 is always counting; there is no way to stop it incrementing, load a value, and then restart it
4
 

 When a value is written to TMR0, the timer increment is inhibited for the following two instruction 

cycles. 

                                                      

3
 In practice, the internal RC oscillator used in this example is only accurate to around ±2%, varying with VDD and 

temperature.  For higher accuracy, an external crystal should be used. 

4
 Timer0 can be halted by selecting counter mode, but then it will be incremented if there is an external signal on the 

T0CKI pin, so this approach is only possible if GP2/T0CKI isn’t being used; it is not a general solution. 
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The data sheet notes that “the user can work around this by writing an adjusted value to the TMR0 

register.”  In other words, if you wanted to count 100 cycles, you should preload the value 158, not 

156, because the timer does not increment for two cycles after the new value is written. 

 Preloading a value in this way only gives accurate results when the prescaler is not used. 

The prescaler is a counter, which is not directly accessible.  Whenever a value is written to TMR0, 

the prescaler is cleared.  It will then not be incremented for the next two instruction cycles. 

For example, if the prescale ratio is set to 1:8, Timer0 normally increments every eight instruction 

clocks.  So when a value is written to TMR0, ten instruction clocks (two plus the normal eight) will 

elapse before TMR0 is incremented. 

This means that, if you were using a 1:8 prescaler, and you preloaded a value to 156 to TMR0, the 

timer will overflow after 802 instruction cycles, not the 800 cycles (8 × 100) that you probably 

intended.  Increasing the preloaded value to compensate for these extra two instruction cycles 

doesn’t help – a value of 157 will cause an overflow after 794 cycles (8 × 99 + 2), not 800. 

To accurately compensate for the timer being inhibited after TMR0 is written, the prescaler should 

not be used. 

 Some time will have elapsed between the timer overflow and the instruction where you load the new 

value into the timer. 

This is especially true when the timer is being updated within an interrupt service routine; there is 

some latency between the timer overflow event and the ISR being called (two instruction cycles on a 

mid-range PIC), and then the ISR must save the processor context, and potentially determine the 

source of the interrupt, before loading a new value into the timer. 

It’s possible to account for this latency, by adjusting the value to be loaded into the timer, but only if 

there is no other interrupt source which may delay the timer interrupt from being triggered.  If 

another interrupt is being serviced when the timer overflows, some unknown amount of time will 

elapse before the timer interrupt begins – it would be very difficult to allow for that. 

 

Luckily, it is not difficult to avoid all these problems! 

To use Timer0 to provide a precise time-base to drive an interrupt: 

 Do not use the prescaler (assign it to the watchdog timer). 

 Do not load a fixed start value into the timer. 

Instead, add an offset to the current timer value, making the timer “skip forward” by an appropriate 

amount, shortening the timer cycle from 256 counts to whatever period you require. 

 Adjust the offset to allow for the fact that the timer is inhibited for two cycles after it is written, and 

that the timer increments once (if no prescaler is used) during the add instruction. 

This means that the offset to be added must be 3 cycles larger than you may expect, to achieve a 

given timer period. 

 

For example, to make Timer0 overflow after 250 cycles, instead of the usual 256 cycles, with no prescaler, 

you would use: 

        movlw   .256-.250+.3    ; add value to Timer0 

        banksel TMR0            ;   for overflow after 250 counts 

        addwf   TMR0,f 

 

This needs to be done after every Timer0 overflow (i.e. within the interrupt service routine), so that the 

interrupt is triggered precisely every 250 instruction cycles. 
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Recall that, with a 4 MHz processor clock, TMR0 will increment every 1 µs. 

If we adjust TMR0 in the ISR as shown above, the interrupt will be triggered every 250 µs. 

Toggling the LED every 500 ms means toggling after every 500 ms ÷ 250 µs = 2000 interrupts. 

This means that the ISR must be able to count to 2000, so that it can toggle the LED after 2000 interrupts.  

And since a single 8-bit variable can only hold a count up to 255, we need more than a single 8-bit variable, 

so that we can count up to 2000. 

This could be done by using two registers to implement a single 16-bit variable (see baseline lesson 11). 

However, a more useful approach in this case is to recognise that, if we count 40 interrupts, exactly 10 ms 

will have elapsed, since 10 ms = 40 × 250 µs.  This makes it easy to schedule an operation (such as polling 

inputs, as we’ll see later) every 10 ms – often a convenient time base. 

We can then use a second variable to count 10 ms periods.  After every 50 × 10 ms, 500 ms has elapsed, and 

the LED should be toggled. 

So to count in units of 10 ms, we need two variables: 

cnt_t0      res 1               ; counts timer0 interrupts 

                                ;   (decremented by ISR every 250 us) 

cnt_10ms    res 1               ; counts 10 ms periods 

                                ;   (decremented by ISR every 10 ms) 

 

We use the first to count for 40 interrupts, to generate a 10 ms time base: 

        decfsz  cnt_t0,f        ; decrement interrupt count 

        goto    isr_end         ; when count = 0 (every 40 interrupts = 10 ms) 

        movlw   .40             ;   reload count 

        movwf   cnt_t0 

 

Note again that it’s often easiest to use decfsz to count a fixed number of iterations (40, in this case). 

Then we can count for 50 of these 10 ms periods, in the same way: 

        decfsz  cnt_10ms,f      ; decrement 10 ms period count 

        goto    isr_end         ; when count = 0 (every 50 times = 500 ms) 

        movlw   .50             ;   reload count 

        movwf   cnt_10ms 

 

After 50 × 10 ms = 500 ms, we can toggle the LED, as we did before: 

        movf    sGPIO,w         ;   toggle LED 

        xorlw   1<<nLED         ;       using shadow register 

        movwf   sGPIO            

 

 

Of course, in the initialisation part of the main program, we need to configure Timer0 with no prescaler: 

        movlw   b'11001000'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----1---          no prescaling (PSA = 1) 

                                ;   (prescaler assigned to WDT) 

        banksel OPTION_REG      ;   -> increment TMR0 every 1 us 

        movwf   OPTION_REG 

 

And we should initialise the variables used above: 

        movlw   .40             ; timer0 overflow count = 40 

        movwf   cnt_t0 

        movlw   .50             ; 10 ms period count = 50 

        movwf   cnt_10ms 

../../Baseline/11%20-%20Int%20arithmetic%20+%20arrays
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With these modifications in place, the LED will now flash with a frequency of exactly 1 Hz, assuming that 

the processor clock is exactly 4 MHz (which, since we are using the internal RC oscillator, will not be the 

case; it’s not that accurate.  Nevertheless, the LED flashes every 4,000,000 processor cycles, precisely). 

 

Complete program 

Here is how the code fragments above fit together: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 6 example 1c                                 * 

;                                                                       * 

;   Demonstrates use of Timer0 interrupt to perform a background task   * 

;                                                                       * 

;   Flash an LED at exactly 1 Hz (50% duty cycle).                      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP2 = flashing LED                                              * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

; pin assignments 

    constant    nLED=2          ; flashing LED on GP2 

     

 

;***** VARIABLE DEFINITIONS 

CONTEXT     UDATA_SHR           ; variables used for context saving 

cs_W        res 1 

cs_STATUS   res 1 

 

GENVAR      UDATA_SHR           ; general variables 

sGPIO       res 1                   ; shadow copy of GPIO 

cnt_t0      res 1                   ; counts timer0 interrupts 

                                    ;   (decremented by ISR every 250 us) 

cnt_10ms    res 1                   ; counts 10 ms periods 

                                    ;   (decremented by ISR every 10 ms) 

                                 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        pagesel start 

        goto    start 

 

         

;***** INTERRUPT SERVICE ROUTINE **************************************** 
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ISR     CODE    0x0004 

        ; *** Save context 

        movwf   cs_W            ; save W 

        movf    STATUS,w        ; save STATUS 

        movwf   cs_STATUS  

         

        ; *** Service Timer0 interrupt 

        ; 

        ;   TMR0 overflows every 250 us 

        ; 

        ;   Flashes LED at 1 Hz by toggling on every 2000th interrupt 

        ;       (every 500 ms) 

        ; 

        ;   (only Timer0 interrupts are enabled) 

        ; 

        movlw   .256-.250+.3    ; add value to Timer0 

        banksel TMR0            ;   for overflow after 250 counts 

        addwf   TMR0,f 

        bcf     INTCON,T0IF     ; clear interrupt flag 

         

        ; count for 10 ms (40 interrupts x 250 us) 

        decfsz  cnt_t0,f        ; decrement interrupt count 

        goto    isr_end         ; when count = 0 (every 40 interrupts = 10 ms) 

        movlw   .40             ;   reload count 

        movwf   cnt_t0 

         

        ; toggle LED every 500 ms 

        decfsz  cnt_10ms,f      ; decrement 10 ms period count 

        goto    isr_end         ; when count = 0 (every 50 times = 500 ms) 

        movlw   .50             ;   reload count 

        movwf   cnt_10ms 

         

        movf    sGPIO,w         ;   toggle LED 

        xorlw   1<<nLED         ;       using shadow register 

        movwf   sGPIO            

 

 

isr_end ; *** Restore context then return 

        movf    cs_STATUS,w     ; restore STATUS 

        movwf   STATUS       

        swapf   cs_W,f          ; restore W 

        swapf   cs_W,w      

        retfie   

         

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE         

start   ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

;***** Initialisation 

 

        ; configure port  

        banksel GPIO 

        clrf    GPIO            ; start with all LEDs off 

        clrf    sGPIO           ;   update shadow         

        movlw   ~(1<<nLED)      ; configure LED pin (only) as an output 

        banksel TRISIO          

        movwf   TRISIO 
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        ; configure timer            

        movlw   b'11001000'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----1---          no prescaling (PSA = 1) 

                                ;   (prescaler assigned to WDT) 

        banksel OPTION_REG      ;   -> increment TMR0 every 1 us 

        movwf   OPTION_REG 

 

        ; initialise variables 

        movlw   .40             ; timer0 overflow count = 40 

        movwf   cnt_t0 

        movlw   .50             ; 10 ms period count = 50 

        movwf   cnt_10ms 

         

        ; enable interrupts 

        movlw   1<<GIE|1<<T0IE  ; enable Timer0 and global interrupts 

        movwf   INTCON 

 

 

;***** Main loop 

main_loop 

        ; continually copy shadow GPIO to port 

        movf    sGPIO,w  

        banksel GPIO 

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

Example 2: Flash LED while responding to input 

Now that we have a timer-driven interrupt flashing the LED on GP2 at 1 Hz, that flashing will continue 

independently, “on its own”, regardless of whatever the main program code is doing.
5
 

This is the main reason for using a timer interrupt to drive a background process like this; once the process is 

set up, you do not need to worry about maintaining it in the main code.  It may seem complex to set up the 

interrupt code, but, once done, it makes your main code much easier to write. 

To illustrate this, we can re-implement example 2 from lesson 4, where we the LED on GP1 is lit whenever 

the pushbutton is pressed, while the LED on GP2 continues to flash steadily at 1 Hz. 

In lesson 4, we used this simple piece of code to read the pushbutton and light the LED on GP1 only when it 

is pressed: 

        banksel GPIO            ;     check and respond to button press       

        bcf     sGPIO,GP1       ;       assume button up -> indicator LED off 

        btfss   GPIO,GP3        ;       if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;         turn on indicator LED 

 

        movf    sGPIO,w         ;     update port (copy shadow to GPIO) 

        movwf   GPIO 

 

 

                                                      

5
 Assuming of course that the main program continues to regularly copy the shadow register to GPIO, and does not 

disable the Timer0 interrupt, nor change the configuration of Timer0. 

../4%20-%20Timer%200/PIC_Mid_A_4.pdf
../4%20-%20Timer%200/PIC_Mid_A_4.pdf
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In the main loop in example 1, above, we are doing nothing but copy the shadow register to GPIO: 

main_loop 

        ; continually copy shadow GPIO to port 

        movf    sGPIO,w  

        banksel GPIO 

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop     

        

 

All we need do, then, is to insert the pushbutton-handling code into the main loop: 

main_loop     

        ; check and respond to button press   

        banksel GPIO 

        bcf     sGPIO,nB_LED    ; assume button up -> LED off 

        btfss   GPIO,nBUTTON    ; if button pressed (low) 

        bsf     sGPIO,nB_LED    ;   turn on indicator LED 

 

        ; continually copy shadow GPIO to port 

        movf    sGPIO,w  

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop       

 

 

And of course you could add any other code to the main loop, in the same way.  There is no need to be 

“aware” of the interrupt-driven process; it runs quite independently. 

 

Note that symbols have been used here, which were defined as: 

    constant    nB_LED=1            ; “button pressed” indicator LED on GP1 

    constant    nF_LED=2            ; flashing LED on GP2 

    constant    nBUTTON=3           ; pushbutton on GP3 

 

The only other change that has to be made to the code in example 1 is to configure both of the LED pins as 

outputs: 

        movlw   ~(1<<nB_LED|1<<nF_LED)    ; configure LED pins as outputs 

        banksel TRISIO          

        movwf   TRISIO 

 

No changes are needed within the interrupt service routine. 

Complete program 

Although the changes to the code in example 1 are minor, here is how they fit together: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 6 example 2                                  * 

;                                                                       * 

;   Demonstrates use of Timer0 interrupt to perform a background task   * 

;   while performing other actions in repsonse to changing inputs       * 

;                                                                       * 

;   One LED simply flashes at 1 Hz (50% duty cycle).                    * 

;   The other LED is only lit when the pushbutton is pressed.           * 
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;************************************************************************ 

;   Pin assignments:                                                    * 

;       GP1 = "button pressed" indicator LED                            * 

;       GP2 = flashing LED                                              * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

 

;***** CONFIGURATION 

                ; int reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

; pin assignments 

    constant    nB_LED=1            ; "button pressed" indicator LED on GP1 

    constant    nF_LED=2            ; flashing LED on GP2 

    constant    nBUTTON=3           ; pushbutton on GP3 

     

 

;***** VARIABLE DEFINITIONS 

CONTEXT     UDATA_SHR       ; variables used for context saving 

cs_W        res 1 

cs_STATUS   res 1 

 

GENVAR      UDATA_SHR       ; general variables 

sGPIO       res 1               ; shadow copy of GPIO 

cnt_t0      res 1               ; counts timer0 interrupts 

                                ;   (decremented by ISR every 250 us) 

cnt_10ms    res 1               ; counts 10 ms periods 

                                ;   (decremented by ISR every 10 ms) 

                                 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        pagesel start 

        goto    start 

 

         

;***** INTERRUPT SERVICE ROUTINE **************************************** 

ISR     CODE    0x0004 

        ; *** Save context 

        movwf   cs_W            ; save W 

        movf    STATUS,w        ; save STATUS 

        movwf   cs_STATUS  

         

        ; *** Service Timer0 interrupt 

        ; 

        ;   TMR0 overflows every 250 us 

        ; 

        ;   Flashes LED at 1 Hz by toggling on every 2000th interrupt 

        ;       (every 500 ms) 

        ; 

        ;   (only Timer0 interrupts are enabled) 
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        ; 

        movlw   .256-.250+.3    ; add value to Timer0 

        banksel TMR0            ;   for overflow after 250 counts 

        addwf   TMR0,f 

        bcf     INTCON,T0IF     ; clear interrupt flag 

         

        ; count for 10 ms (40 interrupts x 250 us) 

        decfsz  cnt_t0,f        ; decrement interrupt count 

        goto    isr_end         ; when count = 0 (every 40 interrupts = 10 ms) 

        movlw   .40             ;   reload count 

        movwf   cnt_t0 

         

        ; toggle LED every 500 ms 

        decfsz  cnt_10ms,f      ; decrement 10 ms period count 

        goto    isr_end         ; when count = 0 (every 50 times = 500 ms) 

        movlw   .50             ;   reload count 

        movwf   cnt_10ms 

         

        movf    sGPIO,w         ;   toggle LED 

        xorlw   1<<nF_LED       ;       using shadow register 

        movwf   sGPIO            

 

 

isr_end ; *** Restore context then return 

        movf    cs_STATUS,w     ; restore STATUS 

        movwf   STATUS       

        swapf   cs_W,f          ; restore W 

        swapf   cs_W,w      

        retfie   

         

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE         

start   ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

;***** Initialisation 

 

        ; configure port  

        banksel GPIO 

        clrf    GPIO                    ; start with all LEDs off 

        clrf    sGPIO                   ;   update shadow         

        movlw   ~(1<<nB_LED|1<<nF_LED)  ; configure LED pins as outputs 

        banksel TRISIO          

        movwf   TRISIO 

         

        ; configure timer            

        movlw   b'11001000'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----1---          no prescaling (PSA = 1) 

                                ;   (prescaler assigned to WDT) 

        banksel OPTION_REG      ;   -> increment TMR0 every 1 us 

        movwf   OPTION_REG 

 

        ; initialise variables 

        movlw   .40             ; timer0 overflow count = 40 

        movwf   cnt_t0 

        movlw   .50             ; 10 ms period count = 50 

        movwf   cnt_10ms 
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        ; enable interrupts 

        movlw   1<<GIE|1<<T0IE  ; enable Timer0 and global interrupts 

        movwf   INTCON 

 

 

;***** Main loop 

main_loop     

        ; check and respond to button press   

        banksel GPIO 

        bcf     sGPIO,nB_LED    ; assume button up -> LED off 

        btfss   GPIO,nBUTTON    ; if button pressed (low) 

        bsf     sGPIO,nB_LED    ;   turn on indicator LED 

 

        ; continually copy shadow GPIO to port 

        movf    sGPIO,w  

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

Example 3: Switch debouncing 

Lesson 3 explored the topic of switch bounce, and described a counting algorithm to address it, which was 

expressed as: 

count = 0 

while count < max_samples 

 delay sample_time 

 if input = required_state 

  count = count + 1 

 else 

  count = 0 

end 

 

The change in switch state is only accepted when the new state has been continually seen for at least some 

minimum period, for example 20 ms.  This debounce period is measured by incrementing a count while 

sampling the state of the switch, at a steady rate, such as every 1 ms. 

“Continually … sampling … at a steady rate” sounds like the type of task that could be performed by a 

regular timer interrupt, and indeed it is common to use interrupts to continually sample and debounce inputs. 

Although a number of debouncing algorithms exist, offering varying levels of sophistication, the counting 

algorithm presented above is effective and is easy to implement in an interrupt service routine. 

But when this algorithm was implemented before, in lessons 3 and 4, separate routines were used to wait for 

and debounce “button up” and “button down” (low → high and high → low transitions).  That approach isn’t 

appropriate in an ISR, since it has to run independently of the main program; it can’t know what type of 

transition the main program is waiting for.  If we want to detect and debounce both types of transitions, the 

ISR needs to look for any change in state, and debounce it.  And then it needs to have some way of reporting 

the fact that an input transition (change in switch state) has occurred, in case the main program chooses to act 

on it. 

You could have the ISR respond to and act upon switch changes, but this isn’t normally done unless the 

event has to be responded to very quickly; it is generally best to keep the interrupt handling code short, so 

that the ISR finishes quickly, in case another, perhaps more important, interrupt is pending. 

../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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Normally, this type of signalling from the ISR to the main program is done via a flag which is set by the ISR 

to indicate that an event has occurred.  The main program then polls this flag and responds to the event when 

it is ready to do so. 

In this case, we would need a ‘switch state has changed’ flag. 

We also need a flag, or variable, to hold the “debounced”, or most recently accepted state of the switch input.  

The ISR can then periodically compare the current “raw” switch input with the saved “debounced” input, to 

determine whether the switch state has changed. 

 

To demonstrate this approach, we’ll re-implement example 2 from lesson 3, where the LED on GP1 is 

toggled each time the pushbutton on GP3 is pressed. 

 

We can re-use and modify the framework from the examples above, where we flashed an LED at 1 Hz. 

In those examples, the ISR was triggered every 250 µs, which in turn counted interrupts, to create a 10 ms 

time base. 

However, for sampling a switch input, 250 µs is a little too short (the more often you sample an input, the 

more time overall is spent in the ISR, leaving less time for the main program), while 10 ms is too long.  

Many switches stop bouncing within 20 ms, so if you sample every 10 ms, and have a debounce period of 20 

ms, you’ll be basing the decision that the switch is stable on only two samples – and two samples in a row 

might be a “fluke”; it’s not enough to be sure that the bouncing (or glitches due to EMI) has finished. 

Typically a sample rate between 1 ms and 5 ms is recommended; we’ll use 2 ms here. 

So the timing section of the ISR becomes: 

        ; *** Service Timer0 interrupt 

        ; 

        ;   TMR0 overflows every 250 clocks = 250 us 

        ; 

        movlw   .256-.250+.3    ; add value to Timer0 

        banksel TMR0            ;   for overflow after 250 counts 

        addwf   TMR0,f 

        bcf     INTCON,T0IF     ; clear interrupt flag 

         

        ; count interrupts to generate 2 ms tick 

        decfsz  cnt_t0,f        ; decrement interrupt count 

        goto    isr_end         ; when count = 0  

        movlw   .2000/.250      ;   reload count for next 2 ms period 

        movwf   cnt_t0          ;   (2ms / 250 us/interrupt) 

 

 

We also need some variables, discussed above, for the debounce algorithm: 

PB_dbstate  res 1              ; bit 3 = debounced pushbutton state 

                               ;   (0 = pressed, 1 = released) 

PB_change   res 1              ; bit 3 = flag indicating pushbutton state change 

                               ;   (1 = new debounced state) 

cnt_db      res 1              ; debounce counter 

 

Note that, because only a single bit is needed to represent the switch state, or to flag that the switch has 

changed, we can choose to use any of the bits within these variables. 

It’s most convenient (the coding is simplified) if we use bit 3 of the PB_dbstate variable to represent the 

debounced state of the switch on GP3.  This implies that this technique could be extended to debounce other 

switches at the same time, although in practice, another technique, based on “vertical counters” is more 

commonly used when debouncing multiple switches.  We’ll look at it in a later lesson. 
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Of course these variables should be initialised in the main program: 

        movlw   1<<nBUTTON      ; initial pushbutton state = released 

        movwf   PB_dbstate       

        clrf    cnt_db          ; debounce counter = 0  

        clrf    PB_change       ; pushbutton change flag = 0 

 

 

It is a good idea to define the debounce period as a constant, to make it easier to adapt the code for switches 

with different characteristics: 

    constant    MAX_DB_CNT=.20/.2  ; maximum debounce count =  

                                   ;   debounce period / sample rate 

                                   ;   (20 ms debounce period / 2 ms per sample) 

 

(of course it would be cleaner still to define the debounce period and sample rate as constants, and to derive 

the maximum debounce count and sample timing from them – but in a short program like this it’s not 

difficult to see how these things relate to each other, especially if it is documented in comments, as above) 

 

Now for the debounce routine, run every 2 ms as part of the interrupt service routine. 

First, we need to determine whether the pushbutton has changed (pressed or released) since it was last 

debounced. 

To do so, we need to compare GPIO<3> with PB_dbstate<3>, and this means some logic operations: 

        ; has raw state changed? 

        banksel GPIO 

        movlw   1<<nBUTTON      ; load raw button state (only) to W 

        andwf   GPIO,w        

        xorwf   PB_dbstate,w    ; XOR with last debounced state 

        btfss   STATUS,Z        ;   (result of XOR is zero if same, 

        goto    state_change    ;    so Z flag is clear if state has changed) 

 

Note the use of the ‘andwf’ instruction – “and W with file register”, which ANDs the contents of W with 

the specified register and writes the results to either the register or W. 

It is used here to apply a mask to GPIO, so that only GPIO<3> (the only bit we are interested in) is 

transferred to W.  Using AND to mask bits in this way was explained in baseline lesson 8. 

As we’ve seen before, XOR can be used to test for equality.  Note however that, if we were using any other 

bits in PB_dbstate, we’d have to mask them out before doing the comparison. 

 

Having determined whether the pushbutton’s raw state has changed, we need to deal with both possibilities. 

If the pushbutton is still in the last debounced state, all we need to do is reset the debounce counter: 

        ; raw pushbutton state has not changed 

        clrf    cnt_db          ; reset debounce count 

        goto    debounce_end    ; and exit 

 

Otherwise, the pushbutton’s state has changed.  We need to see whether the change is stable, by counting the 

number of successive times we’ve seen it in this new state: 

state_change 

        ; raw pushbutton state has changed 

        incf    cnt_db,f            ; increment count 

 

../../Baseline/8%20-%207-segment%20displays/PIC_Base_A_8.pdf
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And then we need to check whether the maximum count has been reached, to determine whether the switch 

really has changed state (and has finished bouncing): 

        movlw   MAX_DB_CNT          ; has max count been reached yet? 

        xorwf   cnt_db,w 

        btfss   STATUS,Z            ; if not, 

        goto    debounce_end        ;   exit 

 

If so, we have a new debounced state, so we can update the variables and flags to reflect this: 

        ; accept state as changed 

        movlw   1<<nBUTTON          ; toggle debounced state 

        xorwf   PB_dbstate,f 

        clrf    cnt_db              ; reset debounce count 

        bsf     PB_change,nBUTTON   ; set pushbutton changed flag 

                                     

 

The main program can then poll this PB_change flag, to see whether the button has changed state: 

        ; check for debounced button press 

        btfss   PB_change,nBUTTON   ; has button state changed? 

        goto    pb_press_end 

 

If the button has changed state, we need to refer to the PB_dbstate variable, to see whether it the new 

state is “up” or “down” (pressed); we only want to toggle the LED when the button is pressed, not when it is 

released: 

        btfsc   PB_dbstate,nBUTTON  ; is button pressed (low)? 

        goto    pb_press_end 

 

When we know that the button has been pressed, we can toggle the LED, using the shadow copy of GPIO, as 

we’ve done before: 

        ; handle button press 

        movlw   1<<nB_LED           ; toggle indicator LED 

        xorwf   sGPIO,f             ;   using shadow register 

 

And finally, now that we’ve detected and responded to the button press, we need to clear the state change 

flag, to be ready for the next change: 

        bcf     PB_change,nBUTTON   ; clear button change flag 

 

 

And that’s all. 

It’s relatively complex, compared with the equivalent code we saw in lessons 3 and 4, but most of that 

complexity is “hidden” in the ISR; the code in the main program loop is quite simple, making it easier to do 

more within the main program, without having to poll and debounce switches – something that the ISR can 

take care of in the background.  This interrupt-based approach also has the advantage that switch changes are 

detected quickly, while the main program does not have to respond to them immediately. 

Complete program 

Here is the complete “toggle an LED on pushbutton press” program: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 6 example 3                                  * 

;                                                                       * 

;   Demonstrates use of Timer0 interrupt to implement                   * 

;   counting debounce algorithm                                         * 

../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
../4%20-%20Timer%200/PIC_Mid_A_4.pdf
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;   Toggles LED when pushbutton is pressed (high -> low transition)     * 

;                                                                       * 

;************************************************************************ 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;       GP3 = pushbutton (active low)                                   * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

     

 

;***** CONFIGURATION 

                ; int reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

; pin assignments 

    constant    nB_LED=1            ; "button pressed" indicator LED on GP1 

    constant    nBUTTON=3           ; pushbutton on GP3  

 

 

;***** CONSTANTS 

    constant    MAX_DB_CNT=.20/.2   ; max debounce count 

                                    ;   = debounce period / sample rate 

                                    ;   (20 ms / 2 ms per sample) 

                                         

 

;***** VARIABLE DEFINITIONS 

CONTEXT     UDATA_SHR       ; variables used for context saving 

cs_W        res 1 

cs_STATUS   res 1 

 

GENVAR      UDATA_SHR       ; general variables 

sGPIO       res 1               ; shadow copy of GPIO 

cnt_t0      res 1               ; counts timer0 interrupts 

                                ;   (decremented by ISR every 250 us) 

PB_dbstate  res 1               ; bit 3 = debounced pushbutton state 

                                ;   (0 = pressed, 1 = released) 

PB_change   res 1               ; bit 3 = flag indicating pushbutton state 

change 

                                ;   (1 = new debounced state) 

cnt_db      res 1               ; debounce counter 

                                 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        pagesel start 

        goto    start 

 

         

;***** INTERRUPT SERVICE ROUTINE **************************************** 

ISR     CODE    0x0004 

        ; *** Save context 

        movwf   cs_W            ; save W 

        movf    STATUS,w        ; save STATUS 

        movwf   cs_STATUS  
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        ; *** Service Timer0 interrupt 

        ; 

        ;   TMR0 overflows every 250 us 

        ; 

        ;   Debounces pushbutton: 

        ;     samples every 2 ms (every 8th interrupt) 

        ;     -> PB_dbstate<3> = debounced state 

        ;        PB_change<3>  = change flag (1 = new debounced state) 

        ; 

        ;   (only Timer0 interrupts are enabled) 

        ; 

        movlw   .256-.250+.3    ; add value to Timer0 

        banksel TMR0            ;   for overflow after 250 counts 

        addwf   TMR0,f 

        bcf     INTCON,T0IF     ; clear interrupt flag 

         

        ; count interrupts to generate 2 ms tick 

        decfsz  cnt_t0,f        ; decrement interrupt count 

        goto    isr_end         ; when count = 0  

        movlw   .2000/.250      ;   reload count for next 2 ms period 

        movwf   cnt_t0          ;   (2ms / 250us/interrupt) 

         

        ; Debounce pushbutton (every 2 ms) 

        ;   use counting algorithm: accept change in state 

        ;   only if new state is seen a number of times in succession 

         

        ; has raw state changed? 

        banksel GPIO 

        movlw   1<<nBUTTON      ; load raw button state (only) to W 

        andwf   GPIO,w        

        xorwf   PB_dbstate,w    ; XOR with last debounced state 

        btfss   STATUS,Z        ;   (result of XOR is zero if same, 

        goto    state_change    ;    so Z flag is clear if state has changed) 

         

        ; raw pushbutton state has not changed 

        clrf    cnt_db          ; reset debounce count 

        goto    debounce_end    ; and exit 

         

state_change 

        ; raw pushbutton state has changed 

        incf    cnt_db,f            ; increment count 

        movlw   MAX_DB_CNT          ; has max count been reached yet? 

        xorwf   cnt_db,w 

        btfss   STATUS,Z            ; if not, 

        goto    debounce_end        ;   exit 

         

        ; accept new state as changed 

        movlw   1<<nBUTTON          ; toggle debounced state 

        xorwf   PB_dbstate,f 

        clrf    cnt_db              ; reset debounce count 

        bsf     PB_change,nBUTTON   ; set pushbutton changed flag 

                                    ; (polled and cleared in main loop) 

debounce_end                              

 

         

isr_end ; *** Restore context then return 

        movf    cs_STATUS,w     ; restore STATUS 

        movwf   STATUS       

        swapf   cs_W,f          ; restore W 

        swapf   cs_W,w      

        retfie   
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;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE         

start   ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

;***** Initialisation 

 

        ; configure port  

        banksel GPIO 

        clrf    GPIO            ; start with all LEDs off 

        clrf    sGPIO           ;   update shadow         

        movlw   ~(1<<nB_LED)    ; configure LED pin as output 

        banksel TRISIO          

        movwf   TRISIO 

         

        ; configure timer            

        movlw   b'11001000'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----1---          no prescaling (PSA = 1) 

                                ;   (prescaler assigned to WDT) 

        banksel OPTION_REG      ;   -> increment TMR0 every 1 us 

        movwf   OPTION_REG 

 

        ; initialise variables 

        movlw   .2000/.250      ; timer0 overflow count = 2ms / 250us/overflow 

        movwf   cnt_t0          ;   (-> 2 ms per switch sample) 

        movlw   1<<nBUTTON      ; initial pushbutton state = released 

        movwf   PB_dbstate      

        clrf    cnt_db          ; debounce counter = 0  

        clrf    PB_change       ; pushbutton change flag = 0 

         

        ; enable interrupts 

        movlw   1<<GIE|1<<T0IE  ; enable Timer0 and global interrupts 

        movwf   INTCON 

 

 

;***** Main loop 

main_loop     

        ; check for debounced button press 

        btfss   PB_change,nBUTTON   ; has button state changed? 

        goto    pb_press_end 

        btfsc   PB_dbstate,nBUTTON  ; is button pressed (low)? 

        goto    pb_press_end 

         

        ; handle button press 

        movlw   1<<nB_LED           ; toggle indicator LED 

        xorwf   sGPIO,f             ;   using shadow register 

        bcf     PB_change,nBUTTON   ; clear button change flag 

pb_press_end 

 

        ; continually copy shadow GPIO to port 

        banksel GPIO 

        movf    sGPIO,w  

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop            

 

        END 
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Example 4: Switch debouncing while flashing an LED 

Given that the previous example on switch debouncing was built on the framework of the earlier LED 

flashing examples, it’s not difficult to add the LED flashing code back into the interrupt service routine, 

demonstrating how a single timer-driven interrupt can be used to schedule multiple concurrent tasks. 

Firstly, as before, we need a counter, so that we can count up to 500 ms: 

cnt_2ms     res 1               ; counts 2 ms periods 

                                ;   (decremented by ISR every 2 ms) 

 

Note that this counter is intended to count periods of 2 ms each; this is the same as the switch sample period 

from the previous example.  That’s not a coincidence!  It makes sense to make use of common time bases if 

possible, to avoid adding unnecessary code.  And this is why a sample period of 2 ms was chosen in the last 

example, instead of 1 ms – to generate a 500 ms delay by counting 1 ms periods, we’d need to count to 500, 

and that’s not possible with a single 8-bit variable.  By using a time base of 2 ms, we not only have an 

appropriate period for sampling the switch, but we only need a single 8-bit counter to generate a 500 ms 

delay, since 2 ms × 250 = 500 ms, and we can count to 250 with an 8-bit variable. 

We should of course initialise this counter, in the main program, before it is used: 

        movlw   .500/.2         ; 2 ms period count = 500ms / 2ms 

        movwf   cnt_2ms         ;   (-> toggle LED every 500 ms) 

 

 

Then, either before or after the debounce routine in the ISR (it doesn’t matter, since they both need to run 

every 2 ms), we need some code to count 2 ms periods, to create a 500 ms delay: 

        ; toggle LED every 500 ms 

        decfsz  cnt_2ms,f       ; decrement 2 ms period count 

        goto    toggle_end      ; when count = 0  

        movlw   .500/.2         ;   reload count for next 500 ms period 

        movwf   cnt_2ms         ;   (500ms / 2ms/tick) 

 

And finally, when 500 ms has elapsed, we toggle the LED, using the shadow copy of GPIO, as before: 

        movf    sGPIO,w         ;   toggle LED 

        xorlw   1<<nF_LED       ;       using shadow register 

        movwf   sGPIO        

 

Complete interrupt service routine 

Most of the code is the same as the previous example, except for the counter variable definition and 

initialisation, shown above.  But here is the new interrupt service routine, so that you can see how the LED 

toggling code fits in after the debounce routine: 

;***** INTERRUPT SERVICE ROUTINE **************************************** 

ISR     CODE    0x0004 

        ; *** Save context 

        movwf   cs_W            ; save W 

        movf    STATUS,w        ; save STATUS 

        movwf   cs_STATUS  

         

        ; *** Service Timer0 interrupt 

        ; 

        ;   TMR0 overflows every 250 clocks = 250 us 

        ; 

        ;   Debounces pushbutton: 

        ;     samples every 2 ms (every 8th interrupt) 

        ;     -> PB_dbstate<3> = debounced state 

        ;        PB_change<3>  = change flag (1 = new debounced state)         
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        ; 

        ;   Flashes LED at 1 Hz by toggling every 500 ms  

        ;       (every 250th 2 ms period) 

        ; 

        ;   (only Timer0 interrupts are enabled) 

        ; 

        movlw   .256-.250+.3    ; add value to Timer0 

        banksel TMR0            ;   for overflow after 250 counts 

        addwf   TMR0,f 

        bcf     INTCON,T0IF     ; clear interrupt flag 

         

        ; count interrupts to generate 2 ms tick 

        decfsz  cnt_t0,f        ; decrement interrupt count 

        goto    isr_end         ; when count = 0  

        movlw   .2000/.250      ;   reload count for next 2 ms period 

        movwf   cnt_t0          ;   (2ms / 250us/interrupt) 

         

        ; Debounce pushbutton (every 2 ms) 

        ;   use counting algorithm: accept change in state 

        ;   only if new state is seen a number of times in succession 

         

        ; has raw state changed? 

        banksel GPIO 

        movlw   1<<nBUTTON      ; load raw button state (only) to W 

        andwf   GPIO,w        

        xorwf   PB_dbstate,w    ; XOR with last debounced state 

        btfss   STATUS,Z        ;   (result of XOR is zero if same, 

        goto    state_change    ;    so Z flag is clear if state has changed) 

         

        ; raw pushbutton state has not changed 

        clrf    cnt_db          ; reset debounce count 

        goto    debounce_end    ; and exit 

         

state_change 

        ; raw pushbutton state has changed 

        incf    cnt_db,f            ; increment count 

        movlw   MAX_DB_CNT          ; has max count been reached yet? 

        xorwf   cnt_db,w 

        btfss   STATUS,Z            ; if not, 

        goto    debounce_end        ;   exit 

         

        ; accept new state as changed 

        movlw   1<<nBUTTON          ; toggle debounced state 

        xorwf   PB_dbstate,f 

        clrf    cnt_db              ; reset debounce count 

        bsf     PB_change,nBUTTON   ; set pushbutton changed flag 

                                    ; (polled and cleared in main loop) 

debounce_end 

 

        ; toggle LED every 500 ms 

        decfsz  cnt_2ms,f       ; decrement 2 ms period count 

        goto    toggle_end      ; when count = 0  

        movlw   .500/.2         ;   reload count for next 500 ms period 

        movwf   cnt_2ms         ;   (500ms / 2ms/tick) 

         

        movf    sGPIO,w         ;   toggle LED 

        xorlw   1<<nF_LED       ;       using shadow register 

        movwf   sGPIO            

toggle_end 
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isr_end ; *** Restore context then return 

        movf    cs_STATUS,w     ; restore STATUS 

        movwf   STATUS       

        swapf   cs_W,f          ; restore W 

        swapf   cs_W,w      

        retfie     

 

 

External Interrupts 

Although polling input pins for changes is effective in many cases, especially in user interfaces, where the 

human user won’t notice a delay of a few milliseconds before a button press is responded to, some situations 

require a more immediate response. 

For a very fast response to a digital signal, the external interrupt pin, INT (which shares its pin with GP2) 

can be used.  This pin is edge-triggered, meaning that an interrupt will be triggered (if enabled) by a rising or 

falling transition of the input signal. 

 

Example 5: Using a pushbutton to trigger an external interrupt 

To demonstrate how to use external 

interrupts, we can use a pushbutton to drive 

the external interrupt pin, and toggle an 

LED whenever the external interrupt is 

trigged (i.e. whenever the pushbutton is 

pressed). 

 

The circuit for this (with the reset switch 

and its pull-up resistor omitted for clarity) 

is shown on the right. 

It’s quite straightforward, but note the 

capacitor connected across the switch.  

This is used, in conjunction with the two 

resistors, to debounce the pushbutton. 

 

 

The component values do not have to be exactly as shown.  As a guide, the RC time constants should be 

roughly on the order of the debounce period.  The capacitor charges though the 10 kΩ and 1 kΩ resistors, 

with a time constant of 11 kΩ × 1 µF = 11 ms. 

It discharges, when the button is pressed, with a time constant of 1 kΩ × 1 µF = 1 ms.  These figures are in 

line with a debounce period of 10 ms or so, but any values similar to these will be ok. 

 

To implement this circuit with the Gooligum training board, close jumpers JP3, JP7 and JP12 to enable the 

10 kΩ pull-up resistors on MCLR   and GP2 and the LED on GP1. 

You also need to add a 1 µF capacitor (supplied with the board) between GP2 and ground.  You can do via 

pins 13 (‘GP/RA/RB2’) and 16 (‘GND’) on the 16-pin expansion header.  There should be no need to use the 

solderless breadboard – simply plug the capacitor directly into these header pins. 

 

http://www.gooligum.com/devboards/base-mid/base-mid.html
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If you are using Microchip’s Low 

Pin Count Demo Board, you can 

build this circuit on a solderless 

breadboard with a pushbutton 

switch, resistors and capacitor 

(which you will have to supply 

yourself), connected to the 14-pin 

header on the demo board, as 

shown on the left. 

In this picture, a link has been 

added, from pin 8 to pin 11 on the 

header, so that the LED labelled 

‘DS2’ on the demo board lights up 

when GP1 goes high. 

 

 

When hardware debouncing was discussed in baseline lesson 4, it was pointed out that this type of simple 

RC filter is only effective when driving a Schmitt trigger input.  Luckily, the 12F629’s INT input is a Schmitt 

trigger type, so this simple form of hardware debouncing is quite adequate. 

Of course, the switch debouncing could be done in software, but it is difficult to do for an edge-triggered 

interrupt, while retaining a fast response (e.g. a short glitch will trigger the interrupt, but should really be 

ignored – this simple circuit will effectively filter out such glitches). 

 

As mentioned above, the external interrupt can be triggered on either the rising or falling edge of the signal 

on the INT pin. 

The type of edge is selected by the INTEDG bit in the OPTION register: 

INTEDG = 0 selects interrupt on falling edge. 

INTEDG = 1 selects interrupt on rising edge. 

 

In this example, since we want the LED to toggle as soon as the pushbutton is pressed (which in this circuit 

creates a high → low transition on INT), we need to select the falling edge: 

        ; configure external interrupt 

        banksel OPTION_REG 

        bcf     OPTION_REG,INTEDG   ; trigger on falling edge 

 

We then need to enable the external interrupt, by setting the INTE bit (as well as GIE, as always): 

        ; enable interrupts  

        movlw   1<<GIE|1<<INTE      ; enable external and global interrupts 

        movwf   INTCON 

 

 

Finally, within the ISR, we need to service the external interrupt. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OPTION_REG GPPU   INTEDG T0CS T0SE PSA PS2 PS1 PS0 

../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
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Since the INT pin is the only interrupt source enabled, it is safe to assume that every interrupt is externally 

triggered, so all we need to do is clear the INTF interrupt flag (recall that the interrupt flag for any interrupt 

source has to be cleared, when that interrupt has been serviced), and toggle the LED: 

        bcf     INTCON,INTF         ; clear interrupt flag 

 

        ; toggle LED 

        movlw   1<<nB_LED           ; toggle indicator LED 

        xorwf   sGPIO,f             ;   using shadow register 

 

The shadow register is then copied to GPIO in the main loop, as in the earlier examples. 

 

Complete program 

Here is how these code fragments fit together with code from the previous examples: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 6 example 5                                  * 

;                                                                       * 

;   Demonstrates use of external interrupt (INT pin)                    * 

;                                                                       * 

;   Toggles LED when pushbutton on INT is pressed                       * 

;    (high -> low transition)                                           * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;       INT = pushbutton (active low)                                   * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

     

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

; pin assignments 

    constant    nB_LED=1        ; "button pressed" indicator LED on GP1 

 

 

;***** VARIABLE DEFINITIONS 

CONTEXT     UDATA_SHR           ; variables used for context saving 

cs_W        res 1 

cs_STATUS   res 1 

 

GENVAR      UDATA_SHR           ; general variables 

sGPIO       res 1                   ; shadow copy of GPIO 

                                 

 

;***** RESET VECTOR ***************************************************** 
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RESET   CODE    0x0000          ; processor reset vector 

        pagesel start 

        goto    start 

 

         

;***** INTERRUPT SERVICE ROUTINE **************************************** 

ISR     CODE    0x0004 

        ; *** Save context 

        movwf   cs_W                ; save W 

        movf    STATUS,w            ; save STATUS 

        movwf   cs_STATUS  

         

        ; *** Service external interrupt 

        ; 

        ;   Triggered on high -> low transition on INT pin 

        ;   caused by externally debounced pushbutton press 

        ; 

        ;   Toggles LED on every high -> low transition 

        ; 

        ;   (only external interrupts are enabled)        

        ; 

        bcf     INTCON,INTF         ; clear interrupt flag 

         

        ; toggle LED 

        movlw   1<<nB_LED           ; toggle indicator LED 

        xorwf   sGPIO,f             ;   using shadow register 

 

         

isr_end ; *** Restore context then return 

        movf    cs_STATUS,w         ; restore STATUS 

        movwf   STATUS       

        swapf   cs_W,f              ; restore W 

        swapf   cs_W,w      

        retfie   

         

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE         

start   ; calibrate internal RC oscillator 

        call    0x03FF              ; retrieve factory calibration value  

        banksel OSCCAL              ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL              ;   then update OSCCAL 

 

;***** Initialisation 

 

        ; configure port  

        banksel GPIO 

        clrf    GPIO                ; start with all LEDs off 

        clrf    sGPIO               ;   update shadow         

        movlw   ~(1<<nB_LED)        ; configure LED pin (only) as an output 

        banksel TRISIO          

        movwf   TRISIO 

 

        ; configure external interrupt 

        banksel OPTION_REG 

        bcf     OPTION_REG,INTEDG   ; trigger on falling edge (INTEDG = 0) 

         

        ; enable interrupts  

        movlw   1<<GIE|1<<INTE      ; enable external and global interrupts 

        movwf   INTCON 
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;***** Main loop 

main_loop 

        ; continually copy shadow GPIO to port 

        movf    sGPIO,w  

        banksel GPIO 

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop             

 

 

        END 

 

Example 6: Multiple interrupt sources 

So far we’ve only used a single interrupt source, but it is common for more than one source to be active; for 

example, one or more timers scheduling background tasks, while servicing events such as external interrupts. 

To demonstrate this, we can combine 

the two interrupt sources used in this 

lesson, with a Timer0 interrupt 

flashing one LED, while the external 

interrupt is used to toggle another 

LED. 

This means adding an LED to the 

circuit in the previous example, as 

shown on the right. 

If you have the Gooligum training 

board, leave it set up as in the last 

example, but close jumper JP11 to 

enable the LED on GP0. 

 

We’ll flash the LED on GP0 at 1 Hz, 

and toggle the LED on GP1 whenever 

the pushbutton is pressed. 

 

In the main program, having configured Timer0 and selected the appropriate edge (falling) for the external 

interrupt, we need to enable both interrupt sources (as well as global interrupts): 

        ; enable interrupts  

        movlw   1<<GIE|1<<T0IE|1<<INTE  ; enable external, Timer0  

        movwf   INTCON                  ;   and global interrupts 

 

 

The interrupt service routine must include code to service both types of interrupt, but first we need to 

determine which source has triggered this interrupt – and that can be done by testing the various interrupt 

flags, as follows: 

        ; *** Identify interrupt source 

        btfsc   INTCON,INTF     ; external 

        goto    ext_int 

        btfsc   INTCON,T0IF     ; Timer0 

        goto    t0_int 

        goto    isr_end         ; none of the above, so exit 

http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
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The order is important, because it is possible that more than one interrupt source has triggered – that is, more 

than one of these flags may be set.  That’s possible because more than one interrupt-triggering event, such as 

a timer overflow or an external signal, may have occurred while interrupts were disabled (for example, while 

another interrupt was being serviced). 

So, if some interrupt sources (such as external events) are more important than others (such as timer 

overflows), you should structure your ISR so that the highest-priority interrupt sources are serviced first. 

Note that the last instruction, ‘goto isr_end’, should never be executed.  It is there to handle the case 

where an interrupt is triggered by a source that you haven’t written a handler for.  If your hardware has a 

means of logging or informing the user of an error condition, you could use that capability here.  Or it might 

be safest to reset your hardware, because clearly something has gone wrong!  In this example, we just ignore 

the problem by immediately exiting the ISR.  If you’re sure that nothing can ever go wrong, you could leave 

out this “catch all” goto. 

 

The individual interrupt handlers are the same as before, except that they must finish with an instruction that 

skips to the end of the ISR, so that the other handlers are not executed. 

For example: 

ext_int ; *** Service external interrupt 

        ; 

        ;   Triggered on high -> low transition on INT pin 

        ;   caused by externally debounced pushbutton press 

        ; 

        ;   Toggles LED on every high -> low transition 

        ; 

        bcf     INTCON,INTF         ; clear interrupt flag 

         

        ; toggle LED 

        movlw   1<<nB_LED           ; toggle indicator LED 

        xorwf   sGPIO,f             ;   using shadow register 

        goto    isr_end 

 

Of course, the handler immediately preceding the end of the ISR doesn’t need this ‘goto isr_end’ 

instruction, since it is at the end of the ISR anyway, but it’s a good idea to include it regardless, because it 

makes it easier to add more interrupt handlers later, without having to remember to add this ‘goto’. 

Complete program 

Here is the complete “toggle LED via external interrupt while flashing LED via timer interrupt” program, so 

that you can see how it all fits together: 

;************************************************************************ 

;   Description:    Lesson 6 example 6                                  * 

;                                                                       * 

;   Demonstrates handling of multiple interrupt sources                 * 

;                                                                       * 

;   Toggles an LED when pushbutton on INT is pressed                    * 

;   (high -> low transition triggering external interrupt)              * 

;   while another LED flashes at 1 Hz (driven by Timer0 interrupt)      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP0 = flashing LED                                              * 

;       GP1 = "button pressed" indicator LED                            * 

;       INT = pushbutton (active low)                                   * 

;                                                                       * 

;************************************************************************ 
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    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

     

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

; pin assignments 

    constant    nF_LED=0            ; flashing LED on GP0 

    constant    nB_LED=1            ; "button pressed" indicator LED on GP1 

 

 

;***** VARIABLE DEFINITIONS 

CONTEXT     UDATA_SHR       ; variables used for context saving 

cs_W        res 1 

cs_STATUS   res 1 

 

GENVAR      UDATA_SHR       ; general variables 

sGPIO       res 1               ; shadow copy of GPIO 

cnt_t0      res 1               ; counts timer0 interrupts 

                                ;   (decremented by ISR every 250 us) 

cnt_5ms   res 1             ; counts 5 ms periods 

                                ;   (decremented by ISR every 5 ms) 

                                 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        pagesel start 

        goto    start 

 

         

;***** INTERRUPT SERVICE ROUTINE **************************************** 

ISR     CODE    0x0004 

        ; *** Save context 

        movwf   cs_W            ; save W 

        movf    STATUS,w        ; save STATUS 

        movwf   cs_STATUS  

         

        ; *** Identify interrupt source 

        btfsc   INTCON,INTF     ; external 

        goto    ext_int 

        btfsc   INTCON,T0IF     ; Timer0 

        goto    t0_int 

        goto    isr_end         ; none of the above, so exit 

         

         

ext_int ; *** Service external interrupt 

        ; 

        ;   Triggered on high -> low transition on INT pin 

        ;   caused by externally debounced pushbutton press 

        ; 

        ;   Toggles LED on every high -> low transition 

        ; 

        bcf     INTCON,INTF         ; clear interrupt flag 
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        ; toggle LED 

        movlw   1<<nB_LED           ; toggle indicator LED 

        xorwf   sGPIO,f             ;   using shadow register 

        goto    isr_end 

 

 

t0_int  ; *** Service Timer0 interrupt 

        ; 

        ;   TMR0 overflows every 250 clocks = 250 us 

        ; 

        ;   Flashes LED at 1 Hz by toggling every 500 ms  

        ;       (every 250th 2 ms period) 

        ; 

        movlw   .256-.250+.3    ; add value to Timer0 

        banksel TMR0            ;   for overflow after 250 counts 

        addwf   TMR0,f 

        bcf     INTCON,T0IF     ; clear interrupt flag 

         

        ; count interrupts to generate 5 ms tick 

        decfsz  cnt_t0,f        ; decrement interrupt count 

        goto    isr_end         ; when count = 0  

        movlw   .5000/.250      ;   reload count for next 5 ms period 

        movwf   cnt_t0          ;   (5ms / 250us/interrupt)  

         

        ; toggle flashing LED every 500 ms 

        decfsz  cnt_5ms,f       ; decrement 5 ms tick count 

        goto    flash_end       ; when count = 0  

        movlw   .500/.5         ;   reload count for next 500 ms period 

        movwf   cnt_5ms         ;   (500ms / 2ms/tick) 

         

        movf    sGPIO,w         ;   toggle LED 

        xorlw   1<<nF_LED       ;       using shadow register 

        movwf   sGPIO            

flash_end 

        goto    isr_end 

              

         

isr_end ; *** Restore context then return 

        movf    cs_STATUS,w     ; restore STATUS 

        movwf   STATUS       

        swapf   cs_W,f          ; restore W 

        swapf   cs_W,w      

        retfie   

 

         

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE         

start   ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

;***** Initialisation 

 

        ; configure port  

        banksel GPIO 

        clrf    GPIO                    ; start with all LEDs off 

        clrf    sGPIO                   ;   update shadow         

        movlw   ~(1<<nB_LED|1<<nF_LED)  ; configure LED pins as outputs 

        banksel TRISIO          

        movwf   TRISIO 
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        ; configure timer            

        movlw   b'11001000'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----1---          no prescaling (PSA = 1) 

                                ;   (prescaler assigned to WDT) 

        banksel OPTION_REG      ;   -> increment TMR0 every 1 us 

        movwf   OPTION_REG 

         

        ; initialise variables 

        movlw   .5000/.250      ; timer0 overflow count = 5ms / 250us/overflow 

        movwf   cnt_t0          ;   (-> 5 ms per tick) 

        movlw   .500/.5         ; 5 ms tick count = 500ms / 5ms 

        movwf   cnt_5ms         ;   (-> toggle LED every 500 ms) 

         

        ; configure external interrupt 

        banksel OPTION_REG 

        bcf     OPTION_REG,INTEDG   ; trigger on falling edge (INTEDG = 0) 

         

        ; enable interrupts  

        movlw   1<<GIE|1<<T0IE|1<<INTE  ; enable external, Timer0  

        movwf   INTCON                  ;   and global interrupts 

 

 

;***** Main loop 

main_loop 

        ; continually copy shadow GPIO to port 

        movf    sGPIO,w  

        banksel GPIO 

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

 

 

Conclusion 

Although this lesson has barely scratched the surface of what can be done with interrupts on mid-range PICs, 

we’ve seen, especially in examples 4 and 6, how interrupts make it possible to maintain background tasks 

(such as flashing an LED), while responding to and processing events (such as detecting and debouncing key 

presses), in a way that would be much more difficult to achieve if interrupts were not available. 

We’ll see more examples as topics are introduced in future lessons. 

 

The next interrupt source we’ll look at is “interrupt on change”, which is commonly used to wake the PIC 

from sleep mode.  It is covered in the next lesson, along with the watchdog timer. 

 

../7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
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Introduction to PIC Programming 

Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 7: Interrupt-on-change, Sleep Mode and the Watchdog Timer 

 

 

One of the most useful features of modern microcontrollers (including PICs) is their ability to enter a power-

saving “sleep” mode, where power drain may be less than a microwatt, facilitating the design of low-

powered devices without traditional on-off switches – the device can turn itself “off”.  For example, the 

Gooligum Christmas Star, based on a PIC12F683, runs on a pair of N-cell batteries, but will remain “shut 

off”, with no significant battery drain, for a year or more, coming to life as soon as a pushbutton is pressed. 

The latter feature relies on the PIC’s “interrupt-on-change” facility, which is often used to wake the device 

from sleep.  As we shall see, it can also (as the name suggests) be used to trigger an interrupt in response to a 

changing input; similar to the external interrupt facility introduced in lesson 6. 

Another facility usually found in modern microcontrollers (including PICs) is a “watchdog timer”, intended 

to make a device more robust by providing a means of detecting situations where the program appears to be 

hung, and then resetting the processor so that the system can recover. 

But as we’ll see in this lesson, the watchdog timer can also be used to periodically wake the PIC from sleep, 

a facility which makes it possible to design devices which spend most of their time sleeping, drawing very 

little current (and hence power) on average. 

In summary, this lesson covers: 

 Interrupt-on-change 

 Sleep mode (power down) 

 Wake-up on change (power up) 

 The watchdog timer 

 Periodic wake from sleep 

Interrupt-on-change 

In lesson 6, we saw that the 12F629’s external interrupt facility can used to trigger an interrupt on each rising 

or falling transition on the INT (GP2) pin; useful when we need to respond to an external digital signal more 

quickly than using a timer interrupt to poll the input every millisecond or so, without having to tie up the 

processor with a tight polling loop.  Instead, the processor can be going about other tasks, but still be able to 

service the external event within microseconds of it occurring. 

Note that the external interrupt is triggered on either a rising or falling edge (selectable by the INTEDG bit), 

but not both. If rising edges are selected, falling edges will be ignored.  This tends to simplify code, since we 

are normally only interested in one type of transition. 

The mid-range PIC architecture only supports a single external interrupt pin.  However, the interrupt-on-

change facility can be used if you need to respond quickly to a number of digital signal sources. 

http://www.gooligum.com.au/
http://www.gooligum.com.au/kits/xmasstar/xmasstar.html
../6%20-%20Interrupts/PIC_Mid_A_6.pdf
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GP port change interrupts are enabled by setting the GPIE bit in the INTCON register: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 

 

As always, for any interrupts to occur, the global interrupt enable bit, GIE, must also be set. 

 

Every pin in the GPIO port can be enabled independently for interrupt-on-change. 

This is controlled by the IOC register: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

IOC - - IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 

 

If a bit in the IOC register is set, the corresponding GPIO pin will be enabled for interrupt-on-change. 

For example, to enable interrupt-on-change for GP2, we would set IOC2 = 1. 

 

If a pin is enabled for interrupt on change, any change in the state of that pin (since the last time the port was 

read or written) will create a mismatch condition and set the GPIF flag in the INTCON register.  If GP port 

change interrupts are also enabled (GPIE = 1 and GIE = 1), an interrupt will be triggered. 

This means that you should read or write GPIO immediately before enabling the port change interrupt, to 

end any existing mismatch condition, avoiding the interrupt being triggered the moment it is enabled.  

Similarly, in the interrupt service routine it is important to read or write GPIO, to end the mismatch before 

clearing the GPIF flag.  If you do not end the mismatch, you will not be able to clear GPIF, and the interrupt 

will re-trigger, as soon as the ISR ends. 

 

Note also that, unlike external interrupts, any change – whether a rising or falling transition – will trigger a 

port change interrupt. 

Example 1: Interrupt-on-change (single input) 

We’ll start by demonstrating how to use 

interrupt-on-change to respond to a single 

input, using the circuit from the external 

interrupt example in lesson 6 (shown on the 

right), where a pushbutton is connected to 

GP2 via a simple RC filter.  

If you have the Gooligum training board, 

close jumpers JP3, JP7 and JP12 to enable the 

10 kΩ pull-up resistors on MCLR   (not shown 

here) and GP2 and the LED on GP1. 

You must also add a 1 µF capacitor (supplied 

with the board) between GP2 and ground.  

You can do via pins 13 (‘GP/RA/RB2’) and 

16 (‘GND’) on the 16-pin expansion header.  

There should be no need to use the solderless 

breadboard – simply plug the capacitor 

directly into these header pins. 

../6%20-%20Interrupts/PIC_Mid_A_6.pdf
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As we did in that example, we’ll toggle the LED on GP1 whenever the pushbutton is pressed. 

GP2 was used because, on the 12F629, it has a Schmitt-trigger input, allowing the simple RC filter to 

provide effective hardware debouncing, as explained in baseline lesson 4. 

This is necessary because, although the switch debouncing could be implemented in software, it is difficult 

to do so while responding quickly to changes. 

 

Firstly, in our initialisation code, after configuring and initialising GPIO as usual, we need to enable 

interrupt-on-change on GP2: 

        ; configure port  

        banksel GPIO 

        clrf    GPIO                ; start with LED off 

        clrf    sGPIO               ;   update shadow         

        movlw   ~(1<<nB_LED)        ; configure LED pin (only) as an output 

        banksel TRISIO          

        movwf   TRISIO 

        banksel IOC                 ; enable interrupt-on-change 

        bsf     IOC,nBUTTON         ;   on pushbutton input 

 

(where ‘nBUTTON’ is a constant which has been set to ‘2’) 

The initial write to GPIO will have cleared any existing port mismatch condition, so it is safe to enable port 

change interrupts;: 

        ; enable interrupts  

        movlw   1<<GIE|1<<GPIE      ; enable port change and global interrupts 

        movwf   INTCON 

 

 

In the interrupt handler, we must read GPIO to clear the port mismatch condition which triggered this 

interrupt and (as for all interrupts) clear the interrupt flag: 

        banksel GPIO 

        movf    GPIO,w              ; clear mismatch condition 

        bcf     INTCON,GPIF         ; clear interrupt flag 

 

 

Since the port change interrupt is triggered by any change, the ISR will be run on both button press and 

button release.  This is different from the external interrupt example in lesson 6, where the ISR only had to 

handle button press events. 

Therefore, we must check whether the button had been pressed or released: 

        ; toggle LED only on button press 

        btfsc   GPIO,nBUTTON        ; is button down? 

        goto    isr_end 

 

If the button was pressed, we can toggle the LED on GP1, as we’ve done before: 

        movlw   1<<nB_LED           ; if so, toggle indicator LED 

        xorwf   sGPIO,f             ;   using shadow register 

 

(where ‘nB_LED’ is a constant which has been set to ‘1’) 

 

Otherwise, the code, including processor context save and restore, is essentially the same as that in the 

examples from lesson 6. 

../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
../6%20-%20Interrupts/PIC_Mid_A_6.pdf
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Complete program 

Here is how these pieces fit together, along with interrupt code framework introduced in lesson 6: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 7 example 1                                  * 

;                                                                       * 

;   Demonstrates use of interrupt-on-change interrupts                  * 

;   (without software debouncing)                                       * 

;                                                                       * 

;   Toggles LED when pushbutton is pressed (high -> low transition)     * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;       GP2 = pushbutton (externally debounced, active low)             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

     

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

; pin assignments 

    constant    nB_LED=1            ; "button pressed" indicator LED on GP1 

    constant    nBUTTON=2           ; externally debounced pushbutton on GP2 

 

 

;***** VARIABLE DEFINITIONS 

CONTEXT     UDATA_SHR       ; variables used for context saving 

cs_W        res 1 

cs_STATUS   res 1 

 

GENVAR      UDATA_SHR       ; general variables 

sGPIO       res 1               ; shadow copy of GPIO 

                                 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        pagesel start 

        goto    start 

 

         

;***** INTERRUPT SERVICE ROUTINE **************************************** 

ISR     CODE    0x0004 

        ; *** Save context 

        movwf   cs_W            ; save W 

        movf    STATUS,w        ; save STATUS 

        movwf   cs_STATUS  

         

        ; *** Service port change interrupt 

../6%20-%20Interrupts/PIC_Mid_A_6.pdf
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        ;   Triggered on any transition on IOC-enabled input pin 

        ;   caused by externally debounced pushbutton press 

        ; 

        ;   Toggles LED on every high -> low transition 

        ; 

        ;   (only port change interrupts are enabled)        

        ; 

        banksel GPIO 

        movf    GPIO,w              ; clear mismatch condition 

        bcf     INTCON,GPIF         ; clear interrupt flag 

         

        ; toggle LED only on button press 

        btfsc   GPIO,nBUTTON        ; is button down? 

        goto    isr_end 

        movlw   1<<nB_LED           ; if so, toggle indicator LED 

        xorwf   sGPIO,f             ;   using shadow register 

 

         

isr_end ; *** Restore context then return 

        movf    cs_STATUS,w     ; restore STATUS 

        movwf   STATUS       

        swapf   cs_W,f          ; restore W 

        swapf   cs_W,w      

        retfie   

         

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE         

start   ; calibrate internal RC oscillator 

        call    0x03FF              ; retrieve factory calibration value  

        banksel OSCCAL              ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL              ;   then update OSCCAL 

 

;***** Initialisation 

 

        ; configure port  

        banksel GPIO 

        clrf    GPIO                ; start with LED off 

        clrf    sGPIO               ;   update shadow         

        movlw   ~(1<<nB_LED)        ; configure LED pin (only) as an output 

        banksel TRISIO          

        movwf   TRISIO 

        banksel IOC                 ; enable interrupt-on-change 

        bsf     IOC,nBUTTON         ;   on pushbutton input 

 

        ; enable interrupts  

        movlw   1<<GIE|1<<GPIE      ; enable port change and global interrupts 

        movwf   INTCON 

 

 

;***** Main loop 

main_loop 

        ; continually copy shadow GPIO to port 

        movf    sGPIO,w  

        banksel GPIO 

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop            

 

        END 
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Example 2: Interrupt-on-change (multiple inputs) 

This example demonstrates how to handle the situation where interrupt-on-change is enabled on more than 

one input pin, using the circuit (with the reset switch and pull-up omitted for clarity) shown below: 

You can build this circuit with the Gooligum training board, using the supplied 74HC14 Schmitt-trigger 

inverter, 1 kΩ and 10 kΩ resistors, 1 µF capacitors and pushbutton switch – connecting them to signals on 

the 16-pin header: GP4 input on pin 3 (‘GP/RA/RB4’), GP2 input on pin 13 (‘GP/RA/RB2’) and ground 

and +5 V on pins15 (‘+V’) and 16 (‘GND’) – using the solderless breadboard, as illustrated below: 

You should also close JP3, JP7, JP11 and JP12 to enable the pull-up resistors on MCLR   (not shown here) 

and GP2 and the LEDs on GP0 and GP1. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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If you are using Microchip’s Low Pin Count Demo Board, you can build the circuit in a similar way, by 

making connections to the 14-pin header on that board, although of course you will have to supply your own 

components and breadboard.   

 

Each pushbutton toggles an LED: S1 controls the LED on GP1, and S2 controls the LED on GP0. 

 

Once again, both buttons are debounced using hardware, to avoid messy software debounce routines (if we 

were going to implement software debouncing, we’d be better off using a timer interrupt to poll the inputs, as 

we did in lesson 6).  For effective hardware debouncing, the simple RC filters need to be coupled with 

Schmitt-trigger inputs, and since the only available Schmitt-trigger GP input on the 12F629 is GP2, an 

external Schmitt-trigger inverter is used to drive GP4. 

Thus, the operation of S1 is inverted, with respect to S2; GP4 is driven high when S1 is pressed, while GP2 

is pulled low when S2 is pressed.  We will have to take this difference into account. 

 

The basic difficulty with having interrupt-on-change enabled for more than one input is that there are no 

flags to indicate which input changed; the GPIF flag can tell you that a port change has happened, but not 

which pin changed. 

So when a port change interrupt occurs, we need to deduce which pin(s) have changed, by reading GPIO and 

comparing it to the last recorded state.  And then, before exiting the ISR, we need to update our “last state” 

record, ready for next time. 

Hence, we need some variables to store this information: 

GENVAR      UDATA_SHR       ; general variables 

sGPIO       res 1               ; shadow copy of GPIO 

lGPIO       res 1               ; last state of GPIO (for change detection) 

cGPIO       res 1               ; current state of GPIO (used by IOC ISR) 

 

 

In the initialisation code, we need to enable interrupt-on-change for both inputs, and update the “last state” 

variable, so that everything is in sync: 

        banksel GPIO 

        movf    GPIO,w                      ; update last port state  

        movwf   lGPIO                       ;   (for change detection)  

        banksel IOC                         ; enable interrupt-on-change 

        movlw   1<<nPB1|1<<nPB2             ;   on pushbuttons 1 and 2 

        movwf   IOC 

 

 

Then, when handling the port change interrupt in the ISR, we need to determine which pins have changed.  

This can be done by XORing the current state of GPIO with the last recorded state.  Since an XOR operation 

only results in a ‘1’ where the inputs differ, this is a means of detecting which bits have changed: 

        bcf     INTCON,GPIF         ; clear interrupt flag 

         

        ; determine which pins have changed 

        banksel GPIO                ; read GPI0  

        movf    GPIO,w              ;   to clear mismatch condition 

        movwf   cGPIO               ;   and save current state 

        xorwf   lGPIO,f             ; XOR with last state to detect changes 
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Note that the result of the XOR was written back to lGPIO, which now contains ‘0’s in bit positions where 

the current state matches the last state and‘1’s where they differ.  That is, if a pin has changed, the 

corresponding bit in lGPIO will be set to ‘1’. 

 

Next we need to check each bit in lGPIO corresponding to the interrupt-on-change inputs, and toggle the 

appropriate LED if that input has changed: 

        ; toggle LED 1 only on button 1 press (active low) 

        btfss   lGPIO,nPB1          ; has button 1 changed? 

        goto    ioc_pb2             ;   check next button if not 

        btfsc   cGPIO,nPB1          ; is button down (low)? 

        goto    ioc_pb2             ;   check next button if not 

        movlw   1<<nB1_LED          ; if so, toggle LED 1 

        xorwf   sGPIO,f             ;   using shadow register 

         

ioc_pb2 ; toggle LED 2 only on button 2 press (active high) 

        btfss   lGPIO,nPB2          ; has button 2 changed? 

        goto    ioc_end             ;   finish IOC if not 

        btfss   cGPIO,nPB2          ; is button down (high)? 

        goto    ioc_end             ;   finish IOC if not 

        movlw   1<<nB2_LED          ; if so, toggle LED 2 

        xorwf   sGPIO,f             ;   using shadow register 

 

Note that the test for “button press” button 2 is opposite to that for button 1, because of the external inverter 

on the GP4 input, as discussed above. 

  

Finally, we need to record the current GPIO state, for reference as the “last state”, the next time a port 

change interrupt occurs: 

ioc_end ; update last GPIO state (for next time) 

        movf    cGPIO,w             ; copy current state of GPIO 

        movwf   lGPIO               ;   to last state 

 

Complete program 

Here is how these pieces fit into the framework used in the first example, to form the complete “interrupt-on-

change with multiple inputs” program: 

;************************************************************************ 

;   Description:    Lesson 7 example 2                                  * 

;                                                                       * 

;   Demonstrates handling of multiple interrupt-on-change interrupts    * 

;   (without software debouncing)                                       * 

;                                                                       * 

;   Toggles LED on GP0 when pushbutton on GP2 is pressed                * 

;   (high -> low transition)                                            * 

;   and LED on GP1 when pushbutton on GP4 is pressed                    * 

;   (low -> high transition)                                            * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP0 = indicator LED 1                                           * 

;       GP1 = indicator LED 2                                           * 

;       GP2 = pushbutton 1 (externally debounced, active low)           * 

;       GP4 = pushbutton 2 (externally debounced, active high)          * 

;                                                                       * 

;************************************************************************ 
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    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

     

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

; pin assignments 

    constant    nB1_LED=0         ; "button 1 pressed" indicator LED on GP0 

    constant    nB2_LED=1         ; "button 2 pressed" indicator LED on GP1 

    constant    nPB1=2            ; button 1 (ext debounce, active low) on GP2 

    constant    nPB2=4            ; button 2 (ext debounce, active high) on GP4 

     

 

;***** VARIABLE DEFINITIONS 

CONTEXT     UDATA_SHR       ; variables used for context saving 

cs_W        res 1 

cs_STATUS   res 1 

 

GENVAR      UDATA_SHR       ; general variables 

sGPIO       res 1               ; shadow copy of GPIO 

lGPIO       res 1               ; last state of GPIO (for change detection) 

cGPIO       res 1               ; current state of GPIO (used by IOC ISR) 

                                 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        pagesel start 

        goto    start 

 

         

;***** INTERRUPT SERVICE ROUTINE **************************************** 

ISR     CODE    0x0004 

        ; *** Save context 

        movwf   cs_W            ; save W 

        movf    STATUS,w        ; save STATUS 

        movwf   cs_STATUS  

         

        ; *** Service port change interrupt 

        ; 

        ;   Triggered on any transition on IOC-enabled input pins 

        ;   caused by externally debounced pushbutton press 

        ; 

        ;   Toggles LED1 on every high -> low transition of PB1 

        ;       and LED2 on every low -> high transition of PB2 

        ; 

        ;   (only port change interrupts are enabled)        

        ; 

        bcf     INTCON,GPIF         ; clear interrupt flag 

         

        ; determine which pins have changed 

        banksel GPIO                ; read GPI0  

        movf    GPIO,w              ;   to clear mismatch condition 

        movwf   cGPIO               ;   and save current state 

        xorwf   lGPIO,f             ; XOR with last state to detect changes 
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        ; toggle LED 1 only on button 1 press (active low) 

        btfss   lGPIO,nPB1          ; has button 1 changed? 

        goto    ioc_pb2             ;   check next button if not 

        btfsc   cGPIO,nPB1          ; is button down (low)? 

        goto    ioc_pb2             ;   check next button if not 

        movlw   1<<nB1_LED          ; if so, toggle LED 1 

        xorwf   sGPIO,f             ;   using shadow register 

         

ioc_pb2 ; toggle LED 2 only on button 2 press (active high) 

        btfss   lGPIO,nPB2          ; has button 2 changed? 

        goto    ioc_end             ;   finish IOC if not 

        btfss   cGPIO,nPB2          ; is button down (high)? 

        goto    ioc_end             ;   finish IOC if not 

        movlw   1<<nB2_LED          ; if so, toggle LED 2 

        xorwf   sGPIO,f             ;   using shadow register 

         

ioc_end ; update last GPIO state (for next time) 

        movf    cGPIO,w             ; copy current state of GPIO 

        movwf   lGPIO               ;   to last state 

         

         

isr_end ; *** Restore context then return 

        movf    cs_STATUS,w     ; restore STATUS 

        movwf   STATUS       

        swapf   cs_W,f          ; restore W 

        swapf   cs_W,w      

        retfie   

         

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE         

start   ; calibrate internal RC oscillator 

        call    0x03FF              ; retrieve factory calibration value  

        banksel OSCCAL              ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL              ;   then update OSCCAL 

 

;***** Initialisation 

 

        ; configure port 

        banksel GPIO 

        clrf    GPIO                        ; start with LED off 

        clrf    sGPIO                       ;   update shadow  

        movlw   ~(1<<nB1_LED|1<<nB2_LED)    ; configure LED pins as outputs 

        banksel TRISIO          

        movwf   TRISIO 

        banksel GPIO 

        movf    GPIO,w                      ; update last port state  

        movwf   lGPIO                       ;   (for change detection)  

        banksel IOC                         ; enable interrupt-on-change 

        movlw   1<<nPB1|1<<nPB2             ;   on pushbuttons 1 and 2 

        movwf   IOC 

 

        ; enable interrupts  

        movlw   1<<GIE|1<<GPIE      ; enable port change and global interrupts 

        movwf   INTCON 

 

 

;***** Main loop 

main_loop 

        ; continually copy shadow GPIO to port 

        movf    sGPIO,w  
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        banksel GPIO 

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

Sleep Mode 

As mentioned earlier, mid-range PICs are able to enter a standby, or sleep mode, to save power. 

In this mode, the PIC12F629 will typically draw less than 3 nA (down to only 1 nA when the power supply 

is reduced to 2 V), when all of the power-consuming facilities (such as the watchdog timer; see later) have 

been disabled and the output pins are not supplying any current. 

 

To demonstrate how it is used, we’ll use the circuit 

from lesson 6, shown on the right.  

It consists of a PIC12F629, LEDs on GP1 and GP2, 

and a pushbutton switch on GP3. 

If you have the Gooligum training board, close 

jumpers JP3, JP12 and JP13 to enable the pull-up 

resistor on GP3 and the LEDs on GP1 and GP2.  

Or, if you are using Microchip’s Low Pin Count 

Demo Board, you will need to connect LEDs to 

GP1 and GP2, as described in baseline lesson 1. 

To demonstrate to yourself that power consumption 

really is reduced when the PIC enters sleep mode, 

you would have to use an external power supply, 

instead of using your PICkit 2 or PICkit 3 to power 

the circuit.  You can then place a multimeter in-line 

with the power supply, to measure the supply current. 

 

The instruction for placing the PIC into standby mode is ‘sleep’ – “enter sleep mode”. 

 

To illustrate the use of the sleep instruction, consider the following fragment of code.  It turns on the LED on 

GP1, waits for the button to be pressed, and then enters sleep mode: 

        movlw   ~(1<<GP1)       ; configure LED pin as output 

        banksel TRISIO          

        movwf   TRISIO 

         

        banksel GPIO 

        bsf     GPIO,GP1        ; turn on LED 

 

waitlo  btfsc   GPIO,GP3        ; wait for button press (low) 

        goto    waitlo 

 

        sleep                   ; enter sleep mode 

 

        goto    $               ; (this instruction should never run) 

../6%20-%20Interrupts/PIC_Mid_A_6.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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Note that the final ‘goto $’ instruction (an endless loop) will never be executed, because ‘sleep’ will halt 

the processor; any instructions after ‘sleep’ will never be reached. 

 

When you run this program, the LED will turn on and then, when you press the button, nothing will appear 

to happen!  The LED stays on.  Shouldn’t it turn off?  What’s going on? 

The current supplied from a 5 V supply, before pressing the button, with the LED on, was measured
1
 to be 

8.58 mA.  After pressing the button, the measured current dropped to 7.86 mA, a fall of only 0.72 mA. 

This happens because, when the PIC goes into standby mode, it stops executing instructions, saving some 

power (0.70 mA × 5 V = 3.5 mW in this case), but the I/O ports remain in the state they were in, before the 

‘sleep’ instruction was executed. 

In this case, the fix is simple – turn off the LED before entering sleep mode, as follows: 

        movlw   ~(1<<GP1)       ; configure LED pin as output 

        banksel TRISIO          

        movwf   TRISIO 

         

        banksel GPIO 

        bsf     GPIO,GP1        ; turn on LED 

 

waitlo  btfsc   GPIO,GP3        ; wait for button press (low) 

        goto    waitlo 

 

        bcf     GPIO,GP1        ; turn off LED 

 

        sleep                   ; enter sleep mode 

 

        goto    $               ; (this instruction should never run) 

 

When this program is run, the LED will turn off when the button is pressed. 

 

The current measured
2
 with the PIC in standby and the LED off was less than 0.1 µA – too low to register on 

the multimeter used!  That was with the unused pins tied to VDD or VSS (whichever is most convenient on 

the circuit board), as floating CMOS inputs can lead to unnecessary current draw. 

For clarity, tying the unused inputs to VDD or VSS was not shown in the circuit diagram above. 

                                                      

1
 With the minimal circuit built on solderless breadboard.  If you leave the PIC in a development board, such as the 

Gooligum training board, other devices on the board may draw current, meaning that you are likely to see higher 

currents than this.  You should nevertheless see a drop in current when the PIC enters sleep mode. 

2
 Again, with the circuit built separately on a breadboard. 

Note: For low power consumption in standby mode, the I/O ports must be configured to stop 

sourcing or sinking current, before entering SLEEP mode. 

Note: To minimise power in standby mode, configure all unused pins as inputs, and tie them VDD 

or VSS through 10 kΩ resistors.  Do not connect them directly to VDD or VSS, as the PIC may be 

damaged if these pins are inadvertently configured as outputs. 
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Wake-up from sleep 

Sleep mode would not be useful if there was no way to wake up from it – there has to be a way to turn the 

device “on” when needed (perhaps in response to an event, such as a button press), after it has been turned 

“off”. 

Mid-range PICs provide a number of ways to wake from sleep mode: 

 Any device reset, such as an external reset signal on the MCLR   pin (if enabled) 

 Watchdog timer timeout (see the section on the watchdog timer, later in this lesson) 

 Any enabled interrupt source which can set its interrupt flag while in sleep mode 

Some interrupt sources cannot be used wake the device from sleep, because, in sleep mode, the PIC’s clock, 

or oscillator, is not running.  For example, the Timer0 interrupt cannot be used for wake-up from sleep, 

because TMR0 does not increment while the PIC is in sleep mode. 

However, external (INT pin) and port change interrupts can be used for wake-up on mid-range PICs, as well 

as some other interrupt sources, such as Timer1 and comparators, that we will examine in later lessons. 

In this lesson, we’ll look at how to use the port change interrupt to wake a PIC from sleep mode; the method 

for using an external interrupt is essentially the same, but is of course limited to only the INT pin. 

Example 4: Using interrupt-on-change for wake-up from sleep  

In baseline lesson 7, we saw that a “wake-up on change” facility is available in the baseline architecture on a 

handful of pins, but that it is an all or nothing affair; either all of the available pins are enabled for wake-up 

on change, or none of them are. 

The mid-range equivalent to wake-up on change is the interrupt-on-change facility introduced above.  It is 

more flexible, in that interrupt-on-change can be enabled independently on each pin.  And on the 12F629, 

interrupt-on-change is available on every pin in GPIO. 

“Interrupt-on-change” can be used to wake the device from sleep, even if interrupts are not enabled.  If port 

change interrupts are enabled (GPIE = 1), but global interrupts are disabled (GIE = 0), then the device will 

wake from sleep when an IOC-enabled input changes, but no interrupt will occur.  Program execution simply 

continues with the instruction following the sleep instruction. 

If global interrupts are enabled (GIE = 1) when the device wakes from sleep, the PIC will execute the 

instruction following sleep, and then enter the interrupt service routine. 

If you want the PIC to execute the ISR immediately after it wakes from sleep, you need to enable interrupts 

and place a nop (“do nothing”) instruction immediately following the sleep instruction. 

 

If you are using other interrupts in your program, and don’t want to execute the ISR when the PIC wakes 

from sleep, simply disable interrupts (clear GIE) before entering sleep mode. 

 

But regardless of whether interrupts are enabled or not, if GPIE = 1, the PIC will wake when the value of 

any IOC-enabled input changes while it is in sleep mode. 

It is important to clear the GPIF flag before entering sleep mode, or else the PIC will wake immediately.  

Note: in the mid-range PIC architecture, on wake-up from sleep, program execution continues with 

the instruction following sleep.  No device reset occurs (unless a reset event, such as a reset 

signal on MCLR  caused the wake-up).  This is different from the baseline architecture. 

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
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It is also important to ensure that any input which will be used to trigger a wake-up is stable before entering 

sleep mode.  Consider what would happen if interrupt-on-change was enabled in the program above.  As 

soon as the button is pressed, the LED will turn off and the PIC will enter standby mode, as intended.  But on 

the first switch bounce, the input would be seen to have changed, and the PIC would wake. 

Even if the circuit included hardware debouncing, there’s still a problem: the LED will go off and the PIC 

will enter standby as soon as the button is pressed, but when the button is subsequently released, it will be 

seen as a change, and the PIC will wake up!  To successfully use the pushbutton to turn the circuit (PIC and 

LED) “off”, it is necessary to wait for the button to be released and remain stable (debounced) before 

entering sleep mode. 

But there’s still a potential problem.  Assume that, in this example, we want to wake-up the PIC and turn the 

LED on when the button is pressed.  PICs are fast, and human fingers are slow – if, as soon as the PIC waits 

from sleep, the program immediately checks for a “turn off” button press, the button will still be down, as 

part of the button press which woke the PIC from sleep, and the LED will immediately turn off again.  To 

avoid this, we must wait for the button to be in a stable “up” state before checking that it is “down”. 

So the necessary sequence is: 

loop 

    turn on LED 

    wait for stable button high 

    wait for button low 

    turn off LED 

    wait for stable button high 

    clear GPIF 

    sleep 

    goto loop  ; repeat from the beginning 

 

 

The following code, which makes use of the debounce macro defined in lesson 5, implements this: 

;***** Initialisation 

start 

        ; configure port  

        movlw   ~(1<<nLED)      ; configure LED pin as output 

        banksel TRISIO          

        movwf   TRISIO 

         

        ; configure interrupt-on-change 

        banksel IOC             ; enable interrupt-on-change 

        bsf     IOC,nBUTTON     ;   on pushbutton input 

        bsf     INTCON,GPIE     ; enable wake-up (interrupt) on port change    

              

        ; configure Timer0 (for DbnceHi macro)           

        movlw   b'11000111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)  

        banksel OPTION_REG      ;   -> increment TMR0 every 256 us 

        movwf   OPTION_REG 

 

         

Note: You should read the input pins configured for interrupt-on-change just prior to entering 

sleep mode, and clear GPIF.  Otherwise, if the value at an IOC-enabled pin had changed since the 

last time it was read, the PIC will wake immediately upon entering sleep mode, as the input value 

would be seen to be different from that last read. 

../5%20-%20Assembler%20directives/PIC_Mid_A_5.pdf
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;***** Main loop 

main_loop 

        ; turn on LED 

        banksel GPIO             

        bsf     LED    

 

        ; wait for stable button high (in case it is still bouncing) 

        DbnceHi BUTTON           

  

        ; wait for button press                                

wait_lo btfsc   BUTTON          ; wait until button low 

        goto    wait_lo 

 

        ; go into standby (low power) mode 

        bcf     LED             ; turn off LED 

        DbnceHi BUTTON          ; wait for stable button release 

        bcf     INTCON,GPIF     ; clear port change flag 

        sleep                   ; enter sleep mode 

         

        ; repeat forever 

        goto    main_loop        

 

(the labels ‘LED’, ‘nLED’, ‘BUTTON’ and ‘nBUTTON’ are defined earlier in the program) 

This code does essentially the same thing as the “toggle an LED” programs developed in lesson 3, except 

that in this case, when the LED is off, the PIC is drawing negligible power. 

Watchdog Timer 

In the real world, computer programs sometimes “crash”; they will stop responding to input, stuck in a 

continuous loop they can’t get out of, and the only way out is to reset the processor (e.g. Ctrl-Alt-Del on 

Windows PCs – and even that sometimes won’t work, and you need to power cycle a PC to bring it back).  

Microcontrollers are not immune to this.  Their programs can become stuck because some unforseen 

sequence of inputs has occurred, or perhaps because an expected input signal never arrives.  Or, in the 

electrically noisy industrial environment in which microcontrollers are often operating, power glitches and 

EMI on signal lines can create an unstable environment, perhaps leading to a crash. 

Crashes present a special problem for equipment which is intended to be reliable, operating autonomously, in 

environments where user intervention isn’t an option. 

One of the major functions of a watchdog timer is to automatically reset the microcontroller in the event of a 

crash.  It is simply a free-running timer (running independently of any other processor function, including 

sleep) which, if allowed to overflow, will reset the PIC.  In normal operation, an instruction which clears the 

watchdog timer is regularly executed – often enough to prevent the timer ever overflowing.  This instruction 

is often placed in the “main loop” of a program, where it would normally be expected to be executed often 

enough to prevent watchdog timer overflows.  If the program crashes, the main loop presumably won’t 

complete; the watchdog timer won’t be cleared, and the PIC will be reset.  Hopefully, when the PIC restarts, 

whatever condition led to the crash will have gone away, and the PIC will resume normal operation. 

 

The instruction for clearing the watchdog timer is ‘clrwdt’ – “clear watchdog timer”. 

 

The watchdog timer has a nominal time-out period of 18 ms.  If that’s not long enough, it can be extended by 

using a prescaler. 

As we saw in lesson 4, a single prescaler is shared between Timer0 and the watchdog timer – it can be 

assigned to one or the other, but not both. 

../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
../4%20-%20Timer%200/PIC_Mid_A_4.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Mid-range PIC Assembler, Lesson 7: Interrupt-on-change, Sleep Mode and the Watchdog Timer Page 16 

It is configured using a number of bits in the OPTION register: 

To assign the prescaler to the watchdog timer, set the PSA bit to ‘1’. 

 

When assigned to the watchdog timer, the prescale ratio is set by the PS<2:0> bits, as shown in the 

following table: 

Note that the prescale ratios are one half of those 

that apply when the prescaler is assigned to Timer0. 

For example, if PSA = 1 (assigning the prescaler to 

the watchdog timer) and PS<2:0> = ‘011’ 

(selecting a ratio of 1:8), the watchdog time-out 

period will be 8 × 18 ms = 144 ms. 

With the maximum prescale ratio, the watchdog 

time-out period is 128 × 18 ms = 2.3 s. 

 

 

 

 

 

The watchdog timer is controlled by the WDTE bit in the configuration word: 

Bit 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 

BG1 BG0 - - - CPD   CP   BODEN MCLRE PWRTE   WDTE FOSC2 FOSC1 FOSC0 

 

Setting WDTE to ‘1’ enables the watchdog timer. 

To set WDTE, use the symbol ‘_WDT_ON’ instead of ‘_WDT_OFF’ in the __CONFIG directive. 

 

Since the configuration word cannot be accessed by programs running on the PIC (it can only be written to 

when the PIC is being programmed), the watchdog timer cannot be enabled or disabled at runtime.  It 

can only be configured to be ‘on’ or ‘off’ when the PIC is programmed. 

 

Example 5a: Watchdog Timer 

To show how the watchdog timer allows the PIC to recover from a crash, we’ll use a simple program which 

turns on an LED for 1.0 sec, turns it off again, and then enters an endless loop (simulating a crash). 

If the watchdog timer is disabled, the loop will never exit and the LED will remain off. 

But if the watchdog timer is enabled, with a period of 2.3 sec, the program should restart itself after 2.3 sec, 

and the LED will flash: on for 1.0 sec and off for 1.3 sec (approximately). 

 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OPTION_REG GPPU   INTEDG T0CS T0SE PSA PS2 PS1 PS0 

PS<2:0> 

bit value 

WDT 

prescale ratio 

WDT period 

(nominal) 

000 1 : 1 18 ms 

001 1 : 2 36 ms 

010 1 : 4 72 ms 

011 1 : 8 144 ms 

100 1 : 16 288 ms 

101 1 : 32 576 ms 

110 1 : 64 1.15 s 

111 1 : 128 2.30 s 
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To make it easy to test configurations with the watchdog timer on or off, you can use a construct such as: 

    #define     WATCHDOG        ; define to enable watchdog timer 

 

    IFDEF WATCHDOG 

                    ; ext reset, no code or data protect, no brownout detect, 

                    ; watchdog, power-up timer, 4 Mhz int clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_ON & 

                    _PWRTE_ON & _INTRC_OSC_NOCLKOUT 

    ELSE 

                    ; ext reset, no code or data protect, no brownout detect, 

                    ; no watchdog, power-up timer, 4 Mhz int clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

                    _PWRTE_ON & _INTRC_OSC_NOCLKOUT 

    ENDIF 

 

Note that these __CONFIG directives enable external reset (‘_MCLRE_ON’), allowing the pushbutton switch 

connected to pin 4, to reset the PIC.  That’s useful because, with this program going into an endless loop, 

having to power cycle the PIC to restart it would be annoying; pressing the button is much more convenient. 

The prescaler is set to 1:128 and assigned to the watchdog timer by: 

        movlw   1<<PSA | b'111' ; assign prescaler to WDT (PSA = 1) 

                                ; prescale = 128 (PS = 111) 

        banksel OPTION_REG      ; -> WDT timeout = 2.3 s       

        movwf   OPTION_REG 

 

The code to flash the LED once and then enter an endless loop is simple, making use of the ‘DelayMS’ 

macro introduced in lesson 5: 

        banksel GPIO            ; turn on LED 

        bsf     LED         

 

        DelayMS 1000            ; delay 1 sec 

 

        banksel GPIO            ; turn off LED 

        bcf     LED         

 

        goto    $               ; wait forever 

 

Complete program 

If you build and run this program, with ‘#define WATCHDOG’ commented out (place a ‘;’ in front of it), the 

LED will light once, and then remain off.  But if you define ‘WATCHDOG’, the LED will continue to flash: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 7, example 5a                                * 

;                                                                       * 

;   Demonstrates use of watchdog timer                                  * 

;                                                                       * 

;   Turn on LED for 1 s, turn off, then enter endless loop              * 

;   LED stays off if watchdog not enabled, flashes if WDT set to 2.3 s  * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629  

../5%20-%20Assembler%20directives/PIC_Mid_A_5.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Mid-range PIC Assembler, Lesson 7: Interrupt-on-change, Sleep Mode and the Watchdog Timer Page 18 

    #include    <p12F629.inc> 

     

    #include    <stdmacros-mid.inc>     ; DelayMS - delay in milliseconds 

                                        ;   (calls delay10)   

    EXTERN      delay10                 ; W x 10ms delay                                           

 

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

    radix       dec 

 

 

;***** CONFIGURATION 

    #define     WATCHDOG        ; define to enable watchdog timer 

 

    IFDEF WATCHDOG 

                    ; ext reset, no code or data protect, no brownout detect, 

                    ; watchdog, power-up timer, 4 Mhz int clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_ON & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

    ELSE 

                    ; ext reset, no code or data protect, no brownout detect, 

                    ; no watchdog, power-up timer, 4 Mhz int clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

    ENDIF 

 

; pin assignments 

    #define     LED     GPIO,1      ; indicator LED on GP1 

    constant    nLED=1              ;   (port bit 1) 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port  

        movlw   ~(1<<nLED)      ; configure LED pin as output 

        banksel TRISIO          

        movwf   TRISIO 

         

        ; configure watchdog timer 

        movlw   1<<PSA | b'111' ; assign prescaler to WDT (PSA = 1) 

                                ; prescale = 128 (PS = 111) 

        banksel OPTION_REG      ; -> WDT timeout = 2.3 s       

        movwf   OPTION_REG 

 

 

;***** Main code 

        banksel GPIO            ; turn on LED 

        bsf     LED         

 

        DelayMS 1000            ; delay 1 sec 
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        banksel GPIO            ; turn off LED 

        bcf     LED         

 

        goto    $               ; wait forever 

 

 

        END 

 

Example 5b: Detecting a WDT time-out reset 

When the watchdog timer times out, the PIC is reset, your program is restarted, in the same way that is was 

when power was first applied, or after an MCLR  reset. 

But you may want your program to behave differently, depending on why it was restarted.  In particular, if a 

WDT time-out reset has occurred, you may wish to reset some external equipment to a known state, or 

perhaps simply turn on an alarm indicator to show that something has gone wrong. 

Watchdog timer resets are indicated by the TO  bit in the STATUS register: 

The TO  (time-out) bit is cleared to ‘0’ by a WDT time-out reset. 

It is set to ‘1’ at power-on, or by entering sleep mode, or execution of the ‘clrwdt’ instruction. 

 

Thus, if TO  has been cleared, it means that a WDT time-out reset has occurred. 

 

To demonstrate how the TO  flag is used, the previous example can be modified, to light a second LED 

when a watchdog timer reset has occurred, but not when the PIC is first powered on, as follows: 

;***** Initialisation 

start 

        ; configure port  

        banksel GPIO                ; start with all LEDs off 

        clrf    GPIO 

        movlw   ~(1<<nLED|1<<nWDT)  ; configure LED pins as outputs 

        banksel TRISIO          

        movwf   TRISIO 

         

        ; configure watchdog timer 

        movlw   1<<PSA | b'111'     ; assign prescaler to WDT (PSA = 1) 

                                    ; prescale = 128 (PS = 111) 

        banksel OPTION_REG          ; -> WDT timeout = 2.3 s       

        movwf   OPTION_REG 

 

 

;***** Main code 

        ; test for WDT-timeout reset 

        banksel GPIO    

        btfss   STATUS,NOT_TO       ; if WDT timeout has occurred, 

        bsf     WDT                 ;   turn on "error" LED 

 

        ; flash LED   

        bsf     LED                 ; turn on "flash" LED   

        DelayMS 1000                ; delay 1 sec 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS IRP RP1 RP0 TO   PD   Z DC C 



© Gooligum Electronics 2012  www.gooligum.com.au 

Mid-range PIC Assembler, Lesson 7: Interrupt-on-change, Sleep Mode and the Watchdog Timer Page 20 

        banksel GPIO                ; turn off "flash" LED    

        bcf     LED   

 

        ; wait forever 

        goto    $ 

 

Note that, if, after the watchdog timer has reset the PIC, and the “WDT” LED has been lit, you use the reset 

button to restart the program, the “WDT” LED will remain lit.  This is because a MCLR  reset does not affect 

the TO  bit. 

 

Example 5c: Using the clrwdt instruction 

Of course, you will normally want to avoid WDT time-out resets. 

As discussed earlier, to prevent the watchdog timer timing out, simply place a ‘clrwdt’ instruction within 

the main loop. 

A watchdog timer period should be selected which is long enough to ensure that the watchdog timer never 

expires within the loop, unless something is wrong.  For example, if your main loop normally completes 

within 10 ms, but can sometimes take up to 40 ms, you would select a watchdog period of 72 ms (prescale 

ratio = 1:4) or perhaps 144 ms (prescale = 1:8) to be sure. 

 

To demonstrate that the ‘clrwdt’ instruction really does stop the watchdog expiring (if executed often 

enough), simply include it in the endless loop at the end of the code: 

loop    clrwdt                  ; clear watchdog timer 

        goto    loop            ;   repeat forever 

 

If you replace the ‘goto $’ line with this “clear watchdog timer” loop, you will find that, after flashing 

once, the LED will remain off – regardless of the watchdog timer setting. 

 

Example 6: Periodic wake from sleep 

The watchdog timer can also be used to wake the PIC from sleep mode. 

This is useful in situations where inputs do not need to be responded to instantly, but can be checked 

periodically.  To minimise power consumption, the PIC can sleep most of the time, waking up every so often 

(say, once per second), checking inputs and, if there is nothing to do, going back to sleep. 

Note that a periodic wake-up can be combined with wake-up on pin change; you may for example wish to 

periodically log the value of a sensor, but also respond immediately to button presses. 

 

If the watchdog timer expires while the PIC is in sleep mode, the device wakes from sleep, and program 

execution continues with the instruction following sleep.  No device reset occurs
3
. 

 

The sleep instruction clears the watchdog timer and prescaler.  This means that the device will sleep for 

however long the watchdog timer period is set to (unless another event wakes it before the WDT expires). 

                                                      

3
 This differs from WDT wake from sleep in the baseline architecture 
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To demonstrate how this works, we can simply convert the main code in example 5a into a loop, 

incorporating a ‘sleep’ instruction: 

main_loop 

        banksel GPIO            ; turn on LED 

        bsf     LED         

 

        DelayMS 1000            ; delay 1 sec 

 

        banksel GPIO            ; turn off LED 

        bcf     LED         

 

        sleep                   ; enter sleep mode (until WDT time-out) 

         

        goto    main_loop       ; repeat forever 

 

If you enable the watchdog timer, you’ll find that the LED turns on for 1 s, and is then off for around 2 s, 

before turning on again.  And if you measure the current drawn by the PIC, you will find that very little 

power is consumed while the LED is off, because the PIC is in sleep mode. 

 

On the other hand, if you disable the watchdog timer, the LED will turn on for 1 s, but then turn off forever, 

because, with the watchdog disabled, the PIC never wakes from sleep. 

 

Complete program 

Here is how this new main loop fits into the program presented in example 5a: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 7, example 6                                 * 

;                                                                       * 

;   Demonstrates periodic wake from sleep, using the watchdog timer     * 

;                                                                       * 

;   Turn on LED for 1 s, turn off, then sleep                           * 

;       LED stays off if watchdog not enabled,                          * 

;       flashes (1 s on, 2.3 s off) if WDT enabled                      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629  

    #include    <p12F629.inc> 

     

    #include    <stdmacros-mid.inc>     ; DelayMS - delay in milliseconds 

                                        ;   (calls delay10)   

    EXTERN      delay10                 ; W x 10ms delay                                           

 

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

    radix       dec 

 

 

;***** CONFIGURATION 

    #define     WATCHDOG        ; define to enable watchdog timer 
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    IFDEF WATCHDOG 

                    ; ext reset, no code or data protect, no brownout detect, 

                    ; watchdog, power-up timer, 4 Mhz int clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_ON & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

    ELSE 

                    ; ext reset, no code or data protect, no brownout detect, 

                    ; no watchdog, power-up timer, 4 Mhz int clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

    ENDIF 

 

; pin assignments 

    #define     LED     GPIO,1      ; indicator LED on GP1 

    constant    nLED=1              ;   (port bit 1) 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port  

        movlw   ~(1<<nLED)      ; configure LED pin as output 

        banksel TRISIO          

        movwf   TRISIO 

         

        ; configure watchdog timer 

        movlw   1<<PSA | b'111' ; assign prescaler to WDT (PSA = 1) 

                                ; prescale = 128 (PS = 111) 

        banksel OPTION_REG      ; -> WDT timeout = 2.3 s       

        movwf   OPTION_REG 

         

 

;***** Main loop 

main_loop 

        banksel GPIO            ; turn on LED 

        bsf     LED         

 

        DelayMS 1000            ; delay 1 sec 

 

        banksel GPIO            ; turn off LED 

        bcf     LED         

 

        sleep                   ; enter sleep mode (until WDT time-out) 

         

        goto    main_loop       ; repeat forever 

 

 

        END 
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Conclusion 

We’ve seen in this lesson that change on a digital input pin can be used to interrupt mid-range PICs, and that, 

with a little effort, we can determine which pin changed. 

We also saw that mid-range PICs can be put into a low-power sleep mode, and that they can be made to 

woke up by an external event (such as a pin change), or on a regular basis by the watchdog timer, which is 

also (in fact, primarily) useful for restarting the device if it gets “stuck”, following some type of error 

condition. 

 

So far in this tutorial series we’ve focussed on programming and the internal architecture of mid-range PICs, 

but in the next lesson we’ll dive into hardware, taking a look at features related to the power supply, such as 

brown-out detection and the power-up timer, and the available oscillator (clock) options. 

 

 

../8%20-%20Power%20and%20clocks/PIC_Mid_A_8.pdf
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Introduction to PIC Programming 

Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 8: Reset, Power and Clock Options 

 

 

The lessons until now have focussed on programming, but as engineers we also need to consider some of the 

“hardware” aspects of designing with mid-range PIC microcontrollers. 

PICs require an oscillator to drive the processor clock, and although we have been using the internal RC 

oscillator so far, it is not always the most appropriate choice, as we will see in this lesson.  

And of course PICs, like all electronic devices, need a reliable power supply.  Program execution should not 

commence until the power supply is stable, and it may be appropriate to hold the device in a reset state if the 

power supply sags (a brown-out), to prevent unreliable operation. 

In summary, this lesson covers: 

 Oscillator (clock) options 

 Power-on reset (POR) 

 Power-up timer (PWRT) 

 Brown-out detection (BOD) 

 

Oscillator (Clock) Options 

Every example in this tutorial series, until now, has used the PIC12F629’s 4 MHz internal RC oscillator as 

the processor clock source.  It’s often a very good option – simple to use, needing no external components, 

using none of the PIC pins, and reasonably accurate. 

However, there are situations where it is more appropriate to use some external oscillator circuitry. 

Reasons to use external oscillator circuitry include: 

 Greater accuracy and stability. 

A crystal or ceramic resonator is significantly more accurate than the internal RC oscillator, with less 

frequency drift due to temperature and voltage variations. 

 Generating a specific frequency. 

For example, as we saw in lesson 4, the signal from a 32.768 kHz crystal can be readily divided 

down to 1 Hz.   Or, to produce accurate timing for RS-232 serial data transfers, a crystal frequency 

such as 1.843200 MHz can be used, since it is an exact multiple of common bit rates, such as 38400 

or 9600 (1843200 = 48 × 38400 = 192 × 9600). 

 Synchronising with other components. 

Sometimes it simplifies design if a number of microcontrollers (or other chips) are clocked from a 

common source, so that their outputs change synchronously – although you need to be careful; clock 

../4%20-%20Timer%200/PIC_Mid_A_4.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Mid-range PIC Assembler, Lesson 8: Reset, Power and Clock Options Page 2 

signals which are subject to varying delays in a circuit will not be synchronised in practice (a 

phenomenon known as clock skew), leading to unpredictable results. 

Another approach is to make the PIC’s clock available externally, so that other components can be 

synchronised with it. 

 Lower power consumption. 

At a given supply voltage, PICs draw less current when they are clocked at a lower speed.  For 

example, the PIC12F629/675 data sheet states (parameter D015) that, with VDD = 2.0 V, supply 

current is typically 340 µA when using the internal 4MHz RC oscillator, but only 9 µA when a 32 

kHz crystal oscillator is used. 

Power consumption can be minimised by running the PIC at the slowest practical clock speed and 

power supply voltage.  And for many applications, very little speed is needed. 

 Faster operation. 

Most mid-range PICs can operate at a clock rate of up to 20 MHz, while the internal RC oscillator 

generally runs at only 4 or 8 MHz.  If you need more speed than the internal oscillator can provide, 

you need to use a crystal or other external clock source. 

 

Mid-range PICs support a number of clock, or oscillator, configurations, allowing, through appropriate 

oscillator selection, any of these goals to be met (but not necessarily all at once – low power consumption 

and high frequencies don’t mix!) 

The oscillator configuration is selected by the FOSC bits in the configuration word: 

Bit 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 

BG1 BG0 - - - CPD   CP   BODEN MCLRE PWRTE   WDTE FOSC2 FOSC1 FOSC0 

 

The PIC12F629 has three FOSC bits, allowing selection of one of eight oscillator configurations, as in the 

table below: 

FOSC<2:0> Standard MPASM symbol Oscillator configuration 

000 _LP_OSC LP oscillator 

001 _XT_OSC XT oscillator 

010 _HS_OSC HS oscillator 

011 _EC_OSC EC oscillator 

100 _INTRC_OSC_NOCLKOUT Internal RC oscillator + GP4 

101 _INTRC_OSC_CLKOUT Internal RC oscillator + CLKOUT 

110 _EXTRC_OSC_NOCLKOUT External RC oscillator + GP4 

111 _EXTRC_OSC_CLKOUT External RC oscillator + CLKOUT 

 

Internal RC oscillator 

We have become familiar with the 4 MHz internal RC oscillator, but as you can see, it is available in two 

configurations. 

In the first (the configuration we have been using), the internal RC oscillator provides a (nominal) 4 MHz 

processor clock (FOSC), which is used to drive the execution of instructions at (nominally) 1 MHz. 
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In the second configuration, ‘_INTRC_OSC_CLKOUT’, this instruction clock (FOSC/4) is output on the 

CLKOUT pin, to allow external devices to be synchronised with the PIC’s instruction clock. 

Since, on the 12F629, CLKOUT shares pin 3, GP4 cannot be used for I/O in ‘_INTRC_OSC_CLKOUT’ mode. 

To relate the signal we see back to the instruction clock rate, it’s useful to toggle a pin as quickly as possible, 

for comparison with CLKOUT, using a simple program such as: 

;************************************************************************ 

;   Description:    Lesson 8, example 1                                 * 

;                                                                       * 

;   Demonstrates CLKOUT function in Internal RC oscillator mode         * 

;                                                                       * 

;   Toggles a pin as quickly as possible (0.167 MHz)                    * 

;   for comparison with 1 MHz CLKOUT signal                             * 

;                                                                       * 

;************************************************************************ 

;   Pin assignments:                                                    * 

;       GP2    = 0.167 MHz output                                       * 

;       CLKOUT = 1 MHz clock output                                     * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629       

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no warnings about registers not in bank 0 

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock with CLKOUT 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_CLKOUT 

 

; pin assignments 

    constant    nOUT=2          ; fast-changing (0.167 MHz) output on GP2 

     

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        banksel TRISIO          ; configure all pins (except GP3 and GP4/CLKOUT) 

        clrf    TRISIO          ;   as outputs 

 

;***** Main loop 

        movlw   1<<nOUT          ; toggle output pin         

        banksel GPIO 

loop    xorwf   GPIO,f          ;   as fast as possible 

        goto    loop     

 

        END 
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The internal RC oscillator with CLKOUT configuration was selected by: 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock with CLKOUT 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_CLKOUT 

 

To toggle the GP2 pin as quickly as possible, the main loop was made as tight as possible: 

loop    xorwf   GPIO,f          ;   as fast as possible 

        goto    loop     

 

With only two instructions in the loop, GP2 is toggled every three cycles (one cycle for the xorwf 

instruction and two for the goto), i.e. every 3 µs, at a frequency of approx. 166 kHz. 

This is apparent in the following oscilloscope plot: 

The top trace is the instruction clock signal on CLKOUT, which, as you can see, has a period very close to 1 

µs, giving a frequency of 1 MHz, as expected.  The bottom trace is the signal on GP2, which changes state 

every three instruction cycles, as expected.  Also note that the transitions on GP2 are aligned with the falling 

edge of the instruction clock on CLKOUT. 

These signals are available on pins 3 (‘GP/RA/RB4’) and 13 (‘GP/RA/RB2’) of the 16-pin header on the 

Gooligum training board; the ground reference is pin 16 (‘GND’). 

External clock input 

An external oscillator can be used as the PIC’s clock source. 

This is sometimes done so that various parts of a circuit are synchronised to the same clock signal.  Or, you 

may choose to use an existing external clock signal simply because it is available and is more accurate and 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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stable than the PIC’s internal RC oscillator – assuming that you can afford to lose the use of one of the PIC’s 

pins for I/O. 

Baseline lesson 5 included a 

32.768 kHz crystal oscillator, 

as shown in the circuit on the 

right (the reset switch and 

pull-up are omitted for 

clarity).  We can use it to 

demonstrate how to use an 

external clock signal.  

To use an external oscillator 

with the PIC12F629, the ‘EC’ 

oscillator mode should be 

used, with the clock signal 

(with a frequency of up to 20 

MHz) connected to the 

CLKIN input: pin 2 on a 

PIC12F629. 

To implement this circuit 

using the Gooligum training 

board, place a shunt in 

position 4 (“EC”) of jumper 

block JP20, connecting the 32.768 kHz signal to CLKIN, and in JP3 and JP12 to enable the external MCLR  

pull-up resistor (not shown here) and the LED on GP1. 

 

Since CLKIN uses the same pin as GP5, GP5 cannot be used for I/O when the PIC is in ‘_EC_OSC’ mode. 

Note that it is also possible to use an external clock to drive CLKIN in the ‘LP’, ‘XT’ and ‘HS’ oscillator 

modes, but in those modes the OSC2 pin (pin 3 on a PIC12F629) must be left disconnected and the 

associated I/O pin (GP4) is not available for use – so it is much better to choose the ‘EC’ mode when you 

are using an external clock source.  

 

To illustrate the operation of this circuit, we can modify the crystal-driven LED flasher program developed 

in lesson 4.  In that example, the external 32.768 kHz signal was used to drive the Timer0 counter. 

Now, however, the 32.768 kHz signal is driving the processor clock, giving an instruction clock rate of 8192 

Hz.  If Timer0 is configured in timer mode with a 1:32 prescale ratio, TMR0<7> will be cycling at exactly 1 

Hz (since 8192 = 32 × 256) – as is assumed in the example from lesson 4. 

Therefore, to adapt that program for this circuit, all we need to do is to change the configuration statement to: 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, external clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _EC_OSC 

 

And also to change the initialisation code from: 

        movlw   b'11110110'     ; configure Timer0: 

                ; --1-----          counter mode (T0CS = 1) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----110          prescale = 128 (PS = 110)  

        banksel OPTION_REG      ;   -> incr at 256 Hz with 32.768 kHz input 

        movwf   OPTION_REG 

../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
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../4%20-%20Timer%200/PIC_Mid_A_4.pdf
../4%20-%20Timer%200/PIC_Mid_A_4.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Mid-range PIC Assembler, Lesson 8: Reset, Power and Clock Options Page 6 

to: 

        movlw   b'11000100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PSA = 100)         

        banksel OPTION_REG      ;   -> incr at 256 Hz with 8192 Hz inst clock  

        movwf   OPTION_REG 

 

 

Since we are no longer using the internal RC oscillator, there is no need to include the usual OSCCAL 

calibration code at the start or the program; this routine can safely be removed. 

With these changes made, the LED on GP1 should flash at almost exactly 1 Hz – to within the accuracy of 

the crystal oscillator. 

 

Complete program 

Here is the program from lesson 4, modified as described above: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 8, example 2                                 * 

;                                                                       * 

;   Demonstrates use of external clock mode                             * 

;   (using 32.768 kHz clock source)                                     * 

;                                                                       * 

;   LED flashes at 1 Hz (50% duty cycle),                               * 

;   with timing derived from 8192 Hz instruction clock                  * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1   = flashing LED                                            * 

;       CLKIN = 32.768 kHz signal                                       * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no "register not in bank 0" warnings  

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, external clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _EC_OSC 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

temp    res 1                   ; temp register used for rotates 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

 

 

;***** MAIN PROGRAM ***************************************************** 

../4%20-%20Timer%200/PIC_Mid_A_4.pdf
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;***** Initialisation 

start 

        ; configure port  

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO       

        movwf   TRISIO 

         

        ; configure timer          

        movlw   b'11000100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)         

        banksel OPTION_REG      ;   -> increment at 256 Hz with 8192 Hz inst 

clock  

        movwf   OPTION_REG 

 

 

;***** Main loop 

main_loop 

        ; TMR0<7> cycles at 1Hz, so continually copy to LED (GP1) 

        banksel TMR0 

        rlf     TMR0,w          ; copy TMR0<7> to C 

        clrf    temp 

        rlf     temp,f          ; rotate C into temp 

        rlf     temp,w          ; rotate once more into W (-> W<1> = TMR0<7>) 

        movwf   GPIO            ; update GPIO with result (-> GP1 = TMR0<7>) 

 

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

 

Crystals and ceramic resonators 

Generally, there is no need to build your own crystal oscillator; PICs include an oscillator circuit designed to 

drive crystals directly. 

 

A parallel (not serial) cut crystal, or a ceramic 

resonator, is placed between the OSC1 and OSC2 

pins, which are grounded via loading capacitors, as 

shown in the circuit diagram (with the reset switch 

and pull-up omitted for clarity) on the right. 

You should consult the crystal or resonator 

manufacturer’s data when selecting load capacitors; 

those shown here are appropriate for a crystal 

designed for a load capacitance of 12.5 pF. 

For some crystals it may be necessary to reduce the 

drive current by placing a resistor between OSC2 

and the crystal, but in most cases it is not needed, 

and the circuit shown here can be used. 
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If you are using the Gooligum training board, place shunts in position 2 (“32kHz”) of JP20
1
 and position 2 of 

JP21 (“32kHz”), connecting the 32.768 kHz crystal between OSC1 and OSC2, and close JP3 and JP12 to 

enable the external MCLR  pull-up resistor (not shown here) and the LED on GP1. 

 

The PIC12F629 offers three crystal oscillator modes: ‘XT’, ‘LP’ and ‘HS’.  They differ in the gain and 

frequency response of the drive circuitry. 

‘XT’ (“crystal”) is the mode used most commonly for crystals or ceramic resonators operating between 100 

kHz and 4 MHz. 

‘HS’ (“high speed”) mode provides higher gain and is typically used for crystals or ceramic resonators 

operating above 4 MHz, up to a maximum frequency of 20 MHz.  Because of the higher drive level, a series 

resistor is more likely to be necessary in ‘HS’ oscillator mode. 

Lower frequencies generally require lower gain.  The ‘LP’ (“low power”) mode uses less power and is 

designed to drive common 32.786 kHz “watch” crystals, as used in the external clock circuit above, although 

it can also be used with other low-frequency crystals or resonators. 

The circuit as shown here can be used to operate the PIC12F629 at 32.768 kHz, giving low power 

consumption and an 8192 Hz instruction clock rate, which, as in the external clock example, is easily divided 

to create an accurate 1 Hz signal. 

 

To flash the LED at 1 Hz, the program is exactly the same as for the external clock example above, except 

that the configuration statement must instead include the _LP_OSC option: 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _LP_OSC 

 

 

A convenient option, when you want greater 

accuracy and stability than the internal RC 

oscillator can provide, but do not need as much as 

that offered by a crystal, is to use a ceramic 

resonator. 

These are available in convenient 3-terminal 

packages which include appropriate loading 

capacitors, as shown in the circuit diagram (with 

the reset switch and pull-up omitted for clarity) on 

the right.  The resonator package incorporates the 

components within the dashed lines. 

If you have the Gooligum training board, move the 

shunts to position 3 (“4MHz”) of JP20 and position 

1 of JP21 (“4MHz”), connecting the 4.0 MHz 

resonator between OSC1 and OSC2, and leave 

JP3 and JP12 closed to enable the external MCLR  pull-up resistor (not shown here) and the LED on GP1. 

                                                      

1
 You will find, with the Gooligum training board that the LED in this 32.768 kHz crystal example will flash, even with 

no shunt installed in JP20!  This is because, when configured in _LP_OSC mode, the OSC1 input is very sensitive, and 

picks up crosstalk from the external 32.768 kHz signal on the board.  If you want to prevent this effect, you can dampen 

the external 32.768 kHz signal by loading it with a 100 Ω resistor, placed between pin 1 of the 16-pin expansion header 

and ground, via the breadboard.  The external clock example will still work with this resistor in place, and this 32.768 

kHz crystal example will only work with shunts in the “32kHz” positions of JP20 and JP21 – as we’d expect. 

http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
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To test this circuit, you can change the ‘_INTRC_OSC_NOCLKOUT’ configuration option to ‘_XT_OSC’ in one 

of the LED flashing examples from earlier lessons, since they are already written for use with a 4 MHz clock 

(we’re simply using an external resonator instead of the internal RC oscillator). 

A good choice is the “flash an LED at exactly 1 Hz” program developed in lesson 6, since it will generate an 

output of exactly 1 Hz, given a processor clock of exactly 4 MHz, and so should benefit from this more 

accurate clock source. 

 

External RC oscillator 

Finally, a low-cost, low-power option: mid-range PICs can 

use an oscillator based on an external resistor and 

capacitor, as shown (with the reset switch and pull-up 

omitted for clarity) on the right. 

To implement this circuit using the Gooligum training 

board, move the shunt to position 1 (“RC”) of JP20, 

connecting the 10 kΩ resistor and 82 nF capacitor to 

OSC1.  Remove the shunt from JP21 and leave JP3 and 

JP12 closed, enabling the external MCLR  pull-up resistor 

(not shown here) and the LED on GP1. 

 

External RC oscillators were once the only alternative to a 

crystal or resonator, but the availability of internal RC 

oscillators in modern PICs has meant that they are much 

less commonly used these days. 

However, external RC oscillators, with appropriate values of R and C, can still be useful when a very low 

clock rate is acceptable – drawing significantly less power than when the internal 4 MHz RC oscillator is 

used. 

Running the PIC slowly can also simplify some programming tasks. 

 

The external RC oscillator is a relaxation type. 

The capacitor is charged through the resistor, the voltage v at the OSC1 pin rising with time t according to 

the formula: 







 


RC

t

DD eVv 1  

The voltage increases until it reaches a threshold, typically 0.75 × VDD.  A transistor is then turned on, which 

quickly discharges the capacitor until the voltage falls to approx. 0.25 × VDD.  The capacitor then begins 

charging through the resistor again, and the cycle repeats. 

In theory, assuming upper and lower thresholds of 0.75 × VDD and 0.25 × VDD, the period of oscillation is 

equal to 1.1 × RC (in seconds, with R in Ohms and C in Farads). 

In practice, the capacitor discharge is not instantaneous (and of course it can never be), so the period is a 

little longer than this.  Microchip does not commit to a specific formula for the frequency (or period) of the 

external RC oscillator, only stating that it is a function of VDD, R, C and temperature, and in some 

documents providing some reference charts.  But for rough design guidance, you can assume the period of 

oscillation is approximately 1.2 × RC. 

 

../6%20-%20Interrupts/PIC_Mid_A_6.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
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Microchip recommends keeping R between 5 kΩ and 100 kΩ, and C above 20 pF. 

In this circuit above, R = 10 kΩ and C = 82 nF. 

Those values will give a period of approximately: 

 1.2 × 10×10
3
 × 82×10

-9
 s = 984 µs 

Hence, we can expect to generate a clock frequency of around 1 kHz. 

This circuit was tested, using the component values shown, giving the following oscilloscope traces: 

 

The top trace was recorded at the OSC1 pin, and shows the expected RC charge/discharge cycles. 

The bottom trace shows the instruction clock output at the CLKOUT pin; as expected, it is one quarter of the 

frequency of the clock input at OSC1. 

In practice, the measured frequency was 1080 Hz; reasonably close, but the lesson should be clear: don’t use 

an external RC oscillator if you want high accuracy or good stability. 

So, given a roughly 1 kHz clock, what can we do with it?  Flash an LED, of course! 

Using a similar approach to before, we can use the instruction clock (approx. 256 Hz) to increment Timer0.  

In fact, with a prescale ratio of 1:256, TMR0 will increment at approx. 1 Hz. 

TMR0<0> would then cycle at 0.5 Hz, TMR0<1> at 0.25 Hz, etc. 

 

Now consider what happens when the prescale ratio is set to 1:64.  TMR0 will increment at 4 Hz, TMR0<0> 

will cycle at 2 Hz, and TMR0<1> will cycle at 1 Hz, etc. 

Only use an external RC oscillator if the exact clock rate is unimportant. 
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And that suggests a very simple way to make the LED on GP1 flash at 1 Hz:  if we continually copy TMR0 

to GPIO, each bit of GPIO will reflect each corresponding bit of TMR0. 

In particular, GPIO<1> will always be set to the same value as TMR0<1>.  Since TMR0<1> is cycling at 1 

Hz, GPIO<1> (and hence GP1) will also cycle at 1 Hz. 

Complete program 

The following program implements the approach described above.  Note that the external RC oscillator is 

selected by using the option _EXTRC_OSC_CLKOUT in the configuration statement. 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 8, example 5                                 * 

;                                                                       * 

;   Demonstrates use of external RC oscillator (~1 kHz)                 * 

;                                                                       * 

;   LED on GP1 flashes at approx 1 Hz (50% duty cycle),                 * 

;   with timing derived from instruction clock                          * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1  = flashing LED                                             * 

;       OSC1 = R (10k) / C (82n)                                        * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302    ; no "register not in bank 0" warnings  

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, ext RC oscillator (~ 1kHz) + 

clkout 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _EXTRC_OSC_CLKOUT 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port  

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO       

        movwf   TRISIO 

         

        ; configure timer           

        movlw   b'11000101'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----101          prescale = 64 (PS = 101)         

        banksel OPTION_REG      ;   -> increment at 4 Hz with 1 kHz clock 

        movwf   OPTION_REG         
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;***** Main loop 

main_loop 

        ; TMR0<1> cycles at 1Hz, so continually copy to LED (GP1) 

        banksel TMR0 

        movf    TMR0,w          ; copy TMR0 to GPIO 

        movwf   GPIO  

 

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

The “main loop” is only three instructions long – by far the shortest “flash an LED” program we have done 

so far, illustrating how a slow clock rate can sometimes simplify some programming problems.  On the other 

hand, it is also the least accurate of the “flash an LED” programs, being only approximately 1 Hz.  But for 

many applications, the exact speed doesn’t matter; it only matters that the LED visibly flashes, not how fast. 

Power-On Reset 

When we apply power to a PIC, we expect it to start executing whatever program is loaded into it, and to do 

so reliably, every time. 

Unfortunately, it may not be that simple.  “Apply power” is not the same as “instant on”.  Real power 

supplies have a source impedance, and the circuits attached to them have some capacitance, so it takes some 

time for the power supply to ramp up to its final voltage.  And while doing so, devices in the circuit will 

begin drawing current unevenly as they come to life, meaning that the power supply may initially be 

unsteady, taking some time to settle, as the circuit reaches equilibrium. 

That can be a problem for devices, such as PICs, which have a minimum operating voltage.  For example, 

the PIC12F629 requires a power supply of at least 2.0 V when running at a clock rate of 4 MHz or less.  But 

at least 4.5 V is required for operation at frequencies above 10 MHz. 

Below these voltages, the device may operate, but not reliably.  Some parts of it may operate, while others 

fail.  For example, the analog-to-digital converter (ADC) on the PIC12F675 requires at least 2.5 V, while 

other parts of the device (which is essentially the same as a 12F629) may operate down to 2.0 V. 

And if the power supply is unstable while it ramps up, the PIC may drop in and out of operation while this 

minimum operating voltage region is crossed. 

For reliable start-up, it is necessary to hold the PIC in a reset condition until the power supply has reached a 

high enough, and stable, voltage. 

 

This was traditionally done by a simple RC circuit connected to 

the external MCLR  pin, as shown on the right. 

The capacitor is initially discharged, so MCLR  is initially low, 

and remains low as the capacitor charges through the resistor.  

Values of R and C are chosen so that MCLR  goes high after 

enough time has elapsed for the power supply to reach an 

adequate voltage and settle. 

Microchip recommends that R be at least 1 kΩ for adequate ESD 

(electrostatic discharge) protection, and below 40 kΩ to avoid 

too large a voltage drop across the resistor. 

The diode across the resistor is optional, being used to help 

discharge the capacitor more quickly when power is removed. 
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However, modern mid-range PICs have less need for these external reset components, because they include a 

power-up timer (PWRT), which, if enabled, holds the device in reset for a nominal 72 ms from the initial 

power-on reset (POR) which occurs when power-on is detected. 

To enable the power-up timer, clear the PWRTE  bit in the processor configuration word: 

Bit 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 

BG1 BG0 - - - CPD   CP   BODEN MCLRE PWRTE   WDTE FOSC2 FOSC1 FOSC0 

 

Setting PWRTE  to ‘1’ disables the power-on timer. 

To enable the power-up timer, use the symbol ‘_PWRTE_ON’ in the __CONFIG directive. 

To disable it, use ‘_PWRTE_OFF’ instead. 

 

So why would you ever want to disable the power-up timer? 

Note that the PWRT begins to operate from the moment when the PIC detects a power-on condition, and for 

that to happen (for the PIC12F629), VDD has to rise from VSS at a minimum rate of 0.05 V/ms.  If these 

conditions are not met, the power-on condition may not be detected; the power-on reset will not occur, and 

the PIC will not start properly.  In this case, you would have to use an external circuit to hold the PIC in reset 

when power is applied. 

Or, your power supply may take more than 72 ms to settle.  And note that this is a nominal value – the actual 

PWRT delay on a PIC12F629 may be as short as 28 ms.  If the power supply has not stabilised in this time, 

an external reset circuit should be used to hold the device in reset for longer. 

Or, you may be using an external supervisory circuit, such as one of Microchip’s MCP10X devices. 

If, for any of these reasons, you are using an external circuit which holds the PIC in reset during power-up, it 

may appropriate to disable the internal power-up timer, so that there is only one source of power-up delay. 

But most of the time, unless your circuit is operating in difficult power supply conditions, you can enable the 

power-up timer (as we have done so far) and, if you are using an external reset, use a 10 kΩ resistor between 

MCLR  and VDD. 

 

If you are using the LP, XT or HS clock mode (which implies that you’re probably using a crystal or 

resonator driven by the PIC’s on-board oscillator circuitry), the oscillator start-up timer (OST) is invoked to 

give the crystal or resonator time to settle, after the PWRT delay completes. 

The OST counts pulses on the OSC1 pin, and holds the device in reset for 1024 oscillator cycles.  Hence, the 

OST delay depends on the clock speed.  With a 4 MHz resonator, the OST delay is only 256 µs, while the 

delay with a 32.768 kHz crystal is 31 ms.  Note that these delay times are nominal; after all, the reason the 

OST is invoked is that it takes a while for a crystal or resonator to begin stable oscillation, so in practice the 

delay times will probably be longer than this. 

The OST is also used when the PIC wakes from sleep in LP, XT or HS clock mode, for the same reason – the 

oscillator is disabled while the device is in sleep mode, and takes a while to start and become stable. 

Note that the OST is invoked whether or not PWRT is enabled.  The only way to avoid the oscillator start-up 

delay is to use one of the EC, internal RC or external RC oscillator modes. 

For fastest processor start-up at power-on, disable the power-up timer and use an external clock, avoiding 

both the PWRT and OST delays – and hope that you have a very fast-starting and stable power supply!  But 

it’s generally best to simply accept that your program won’t start running for up to 100 ms after you turn the 

power on… 
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Brown-out Detect 

We’ve seen that the PIC should be held in reset during power-up, to avoid instability while the power supply 

is ramping up through the device’s minimum operating voltage. 

Similarly, the PIC’s operation can become unreliable if the power supply voltage falls too far during normal 

operation – a condition known as a brown-out.  It can happen when the load on the power supply varies; 

battery-powered systems can be susceptible to this, particularly when the batteries are running down, as well 

as industrial or automotive settings where large loads are switched in (think of the headlights of your car 

dimming when you use the starter motor). 

In general, it is preferable to stop program execution as long as the brown-out situation persists, instead of 

risking unreliable operation; it’s better to be able to recover cleanly after the brown-out, instead of not 

knowing what your program might do. 

Most mid-range PICs provide a brown-out detect (BOD, also called brown-out reset, or BOR) facility, 

which, if enabled, will reset the device if the supply voltage falls below the brown-out detect voltage 

(between 2.025 V and 2.175 V on the PIC12F629), and hold it in reset until the voltage rises again.  If the 

power-up timer is enabled (recommended if you are using BOD), the device will remain in reset for a further 

72 ms after the brown-out condition clears – and if another brown-out occurs during this PWRT delay, it will 

be detected and the process will repeat. 

To enable brown-out detect on the PIC12F629, set the BODEN bit in the processor configuration word: 

Bit 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 

BG1 BG0 - - - CPD   CP   BODEN MCLRE PWRTE   WDTE FOSC2 FOSC1 FOSC0 

 

Setting BODEN to ‘1’ enables brown-out detection. 

To enable BOD, use the symbol ‘_BODEN_ON’ in the __CONFIG directive. 

To disable it, use ‘_BODEN_OFF’ instead. 

Detecting a brown-out reset 

If a brown-out occurs, resetting the PIC and hence restarting your program, you may want your application 

to react to this, behaving differently to a power-on, watchdog timer, or other reset.  In particular, if your 

program has restarted because of a brown-out, you may want it to try to continue doing whatever it was 

doing before the brown-out, instead of running through the full initialisation routine.  Or you may wish to 

initialise external devices, which may also have been affected by the brown-out, and perhaps run through 

some system checks to ensure that everything is now ok.  Or you might want to simply log the fact that a 

brown-out has occurred. 

Fortunately, mid-range PICs provide flags which allow us to detect and respond differently to both power-on 

and brown-out resets. 

In the 12F629, these flags are contained in the power control register, PCON: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

PCON - - - - - - POR   BOD   

 

 

The POR  (power-on reset status) flag is cleared when a power-on reset occurs, and is set if a brown-out 

reset occurs.  It is unaffected by all other resets. 
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This means that, to use this flag to differentiate power-on from other resets, you must set POR  to ‘1’ 

whenever a power-on reset occurs.  Since all the other types of reset either set this bit or leave it unchanged, 

it will then only ever be ‘0’ when a power-on reset has occurred. 

 

Similarly, the BOD  (brown-out detect status) flag is cleared when a brown-out reset occurs, and is 

unaffected by all other resets. 

To use this flag to differentiate brown-out from other resets, you must set BOD  to ‘1’ following power-on.  

Since all the other resets leave this bit unchanged, it will only ever be ‘0’ when a brown-out has occurred. 

Since BOD  is unaffected by a power-on reset, its value is unknown when the device is first powered on.  

Therefore, the first flag you should test is POR  .  If it is clear, you can be sure that a power-on reset has 

occurred, and you can then set both POR  and BOD  , ready for testing after subsequent resets. 

 

An example may help to clarify this. 

We’ll use the circuit shown on the left, which 

you can implement with the Gooligum training 

board by closing jumpers JP3, JP11, JP12 and 

JP13 to enable the pull-up resistor on GP3 and 

the LEDs on GP0, GP1 and GP2. 

If you are using Microchip’s Low Pin Count 

Demo Board, you can connect LEDs to GP0, 

GP1 and GP2, by making connections on the 

14-pin header: ‘RA0’ to ‘RC0’, ‘RA1’ to ‘RC1’ 

and ‘RA2’ to ‘RC2’. 

 

 

 

 

The program will simply light the LED on GP0, regardless of why the PIC had been reset (or powered on). 

In addition, the LED on GP1 will be lit on power-on (and not for any other reset), and the LED on GP2 will 

indicate that a brown-out has occurred. 

The pushbutton will be used to generate an external MCLR  reset.  When this happens, only the LED on 

GP0 should light, because the reset is caused by neither power-on nor brown-out. 

 

Brownout detection has to be enabled in the device configuration: 

                ; ext reset, no code or data protect, brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_ON & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

After the usual initialisation code, the first task is to test the POR  flag to see if a power-on reset has 

occurred: 

        ; check for POR or BOD reset 

        banksel PCON 

        btfsc   PCON,NOT_POR    ; if power-on reset (NOT_POR = 0), 

        goto    chk_bod 

http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
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If this is a power-on reset, we should set the POR  and BOD  flags, to set them up for any subsequent resets 

(as discussed above), and light the POR LED: 

        bsf     PCON,NOT_POR    ;   set POR and BOD flags for next reset 

        bsf     PCON,NOT_BOD  

        bsf     sGPIO,nP_LED    ;   enable POR LED (shadow) 

 

Note the use of a shadow copy of GPIO here.  Since it is held in shared (unbanked) memory, updating the 

shadow register avoids the extra banksel directives we’d need if we were instead writing directly to GPIO.   

It also has the advantage of avoiding potential read-modify-write issues, as discussed before. 

 

Now we can reliably test for a brown-out reset: 

chk_bod btfsc   PCON,NOT_BOD    ; if brown-out detect (NOT_BOD = 0) 

        goto    main 

 

and, if one has occurred, set the BOD  flag for next time, and light the BOD LED: 

        bsf     PCON,NOT_BOD    ;   set BOD flag for next reset 

        bsf     sGPIO,nB_LED    ;   enable BOD LED (shadow) 

 

Note that, if a power-on reset had occurred, this brown-out detect code will never be executed, because the 

earlier code sets the BOD  flag, whenever a power-on reset is detected. 

 

Regardless of the reason for the reset, we light the “on” LED: 

main     

        ; enable "on" indicator LED  

        bsf     sGPIO,nO_LED        ; (using shadow register) 

 

        ; light enabled LEDs 

        movf    sGPIO,w             ; copy shadow GPIO to port 

        banksel GPIO   

        movwf   GPIO     

 

If the pushbutton is pressed, generating a MCLR  reset, only this “on” LED will be lit. 

 

Finally, we simply wait until the next reset: 

        ; wait forever   

        goto    $ 

 

 

Complete program 

Here is how these pieces fit together: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 8, example 6                                 * 

;                                                                       * 

;   Demonstrates use of brown-out detect                                * 

;   and differentiation between POR, BOD and MCLR resets                * 

;                                                                       * 

;   Turns on POR LED only if power-on reset is detected                 * 

;   Turns on BOD LED only if brown-out detect reset is detected         * 

;   Turns on indicator LED in all cases                                 * 

;   (no POR or BOD implies MCLR, as no other reset sources are active)  * 

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP0 = "on" indicator LED (always turned on)                     * 

;       GP1 = POR LED (indicates power-on reset)                        * 

;       GP2 = BOD LED (indicates brown-out detected)                    * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629       

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no warnings about registers not in bank 0 

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_ON & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

     

; pin assignments 

    constant    nO_LED=0        ; on indicator LED on GP0 (always on) 

    constant    nP_LED=1        ; POR LED on GP1 to indicate power-on reset 

    constant    nB_LED=2        ; BOD LED on GP2 to indicate brown-out 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        banksel GPIO                ; start with all LEDs off 

        clrf    GPIO 

        clrf    sGPIO               ; update shadow         

        movlw   ~(1<<nO_LED|1<<nP_LED|1<<nB_LED)    ; configure LED pins as 

outputs 

        banksel TRISIO 

        movwf   TRISIO 

         

        ; check for POR or BOD reset 

        banksel PCON 

        btfsc   PCON,NOT_POR        ; if power-on reset (NOT_POR = 0), 

        goto    chk_bod 

        bsf     PCON,NOT_POR        ;   set POR and BOD flags for next reset 

        bsf     PCON,NOT_BOD  

        bsf     sGPIO,nP_LED        ;   enable POR LED (shadow) 

chk_bod btfsc   PCON,NOT_BOD        ; if brown-out detect (NOT_BOD = 0) 
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        goto    main  

        bsf     PCON,NOT_BOD        ;   set BOD flag for next reset 

        bsf     sGPIO,nB_LED        ;   enable BOD LED (shadow) 

 

 

;***** Main code  

main     

        ; enable "on" indicator LED  

        bsf     sGPIO,nO_LED        ; (using shadow register) 

 

        ; light enabled LEDs 

        movf    sGPIO,w             ; copy shadow GPIO to port 

        banksel GPIO   

        movwf   GPIO     

           

        ; wait forever   

        goto    $                

 

 

        END 

 

 

To test this program, you will need a variable power supply. 

If you have the Gooligum training board, you can connect your power supply to Vdd and ground via pins 15 

(‘+V’) and 16 (‘GND’) on the 16-pin expansion header. 

 

You should find that if you set the supply to say 4 V and apply power, the POR LED (GP1) should light, 

along with the “on” LED (GP0) 

If you then simulate a brown-out, by lowering the voltage until both LEDs turn off (at around 2 V; by this 

time they will be very dim, since the forward voltage of most normal-brightness LEDs is around 2 V), 

without taking the voltage all the way to zero, and then raise the voltage again, the BOD LED (GP2) should 

light, indicating that the brown-out was detected.  The “on” LED should light, as always, but not POR, 

because this was a brown-out, not a power-on reset.. 

If you then turn off the power supply, and turn it back on again, the POR LED should light again, and not 

BOD, because this was a normal power-on, not a brown-out. 

Finally, if you press the pushbutton, generating a MCLR  reset, while either the POR or BOD LED is lit, all 

the LEDs will go out while the button is pressed, and then only the “on” LED will come on, indicating that 

this reset was neither a power-on nor a brown-out. 

If you are able to raise the power supply voltage very slowly from zero, you may be able to get the BOD 

LED to light, instead of POR, if the voltage rise is too slow to trigger a power-on reset. 

 

Conclusion 

In this lesson we’ve seen that mid-range PICs can be clocked in a number of ways, that there are alternatives 

to the internal RC oscillator, such as an external clock, or the PIC’s own oscillator circuitry driving a crystal, 

resonator, or a simple RC timing circuit – and we discussed some of the reasons for using those alternatives.  

We’ve also seen how the power-on reset brown-out detect features serve to simplify our circuits and make 

our designs more robust.  

 

http://www.gooligum.com/devboards/base-mid/base-mid.html
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The next lesson will focus on comparators – the single comparator in the PIC12F629, and then in the 

following lesson we will introduce the 14-pin PIC16F684, which includes a dual comparator module. 

 

../9%20-%20Comparators%201/PIC_Mid_A_9.pdf
../10%20-%2016F684%20features/PIC_Mid_A_10.pdf
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Introduction to PIC Programming 

Programming Mid-Range PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 1: Basic Digital I/O 

 

 

The Baseline PIC C Programming tutorial series demonstrated how to program baseline PICs (such as the 

12F509 and 16F506) in C, to perform the tasks covered in the Baseline PIC Assembler lessons: from 

flashing LEDs and reading switches, through to implementing a simple light meter with smoothed output on 

a multiplexed 7-segment LED display.  The baseline C programming series used the “free” CCS PCB 

compiler bundled with MPLAB
1
, and Microchip’s XC8 compiler (running in “Free mode”).  We saw in that 

series that, although these C compilers were perfectly adequate for the simplest tasks, they faltered when it 

came to the more complex applications involving arrays, reflecting the difficulty of implementing a C 

compiler for the baseline PIC architecture. 

This tutorial series revisits this material, along with other topics covered in the Mid-Range PIC Assembler 

lessons, using mid-range devices such as the 12F629 and 16F684.  It will become apparent that the mid-

range architecture is much more suitable for C programming than the baseline architecture, especially for 

applications which need to access more than one bank of data memory.  But we will also see that, although it 

is often easier to program in C, in the sense that programs are shorter and more easily expressed, assembler 

remains the most effective way to make the most of the limited resources on these small devices, even for 

mid-range PICs.  Nevertheless, we will see that C is a very practical alternative for most applications. 

Microchip’s XC8 compiler supports all mid-range PICs, and can be operated in “Free mode” (with all 

optimisations disabled) for free – making it a good choice for use in these lessons. 

 

This lesson covers basic digital I/O: flashing LEDs, responding to and debouncing switches, as covered in 

lessons 1 to 3 of the mid-range assembler tutorial series.  You may need to refer to those lessons while 

working through this one. 

In summary, this lesson covers: 

 Introduction to the Microchip XC8 compiler 

 Digital input and output 

 Programmed delays 

 Switch debouncing 

 Using internal (weak) pull-ups 

These tutorials assume a working knowledge of the C language; they do not attempt to teach C. 

                                                      

1
 CCS PCB is bundled with MPLAB 8 only, and only supports baseline PICs, so cannot be used with mid-range PICs. 

../../Baseline%20C
../../Baseline
../../Midrange
../../Midrange/1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
../../Midrange/3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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Introducing the XC8 Compiler 

Up until version 8.10, MPLAB was bundled with HI-TECH’s “PICC-Lite” compiler, which supported all the 

baseline (12-bit) PICs available at that time, including those used in this tutorial series, with no restrictions.  

It also supports a small number of the mid-range (14-bit) PICs – although, for most of the mid-range devices 

it supported, PICC-Lite limited the amount of data and program memory that could be used, to provide an 

incentive to buy the full compiler.  Microchip have since acquired HI-TECH Software, and no longer supply 

or support PICC-Lite.  As such, PICC-Lite will not be covered in these tutorials. 

 

XC8 supports the whole 8-bit PIC10/12/16/18 series in a single edition, with different licence keys unlocking 

different levels of code optimisation – “Free” (free, but no optimisation), “Standard” and “PRO” (most 

expensive and highest optimisation). 

Microchip XC compilers are also available for the PIC24, dsPIC and PIC32 families. 

 

XC8’s “Free mode” supports all 8-bit (including baseline and mid-range) PICs, with no memory restrictions.  

However, in this mode, most compiler optimisation is turned off, making the generated code around twice 

the size of that generated by PICC-Lite.  

This gives those developing for baseline and mid-range PICs easy access to a free compiler supporting a 

much wider range of devices than PICC-Lite does, without memory usage restrictions, albeit at the cost of 

much larger generated code.  And XC8 will continue to be maintained, supporting new baseline and mid-

range devices over time. 

But if you are using Windows and developing code for a supported mid-range PIC, it is quite valid to 

continue to use PICC-Lite (if you are able to locate a copy – by downloading MPLAB 8.10 from the archives 

on www.microchip.com, for example), since it will generate much more efficient code.  It can be installed 

alongside XC8.  But to repeat – PICC-Lite won’t be described in these lessons. 

 

Regardless of which version of MPLAB you are using, the XC8 installer (for Windows, Linux or Mac) has 

to be downloaded separately from www.microchip.com. 

When you run the XC8 installer, you will be asked to enter a license activation key.  Unless you have 

purchased the commercial version, you should leave this blank.  You can then choose whether to run the 

compiler in “Free mode”, or activate an evaluation license.  We’ll be using “Free mode” in these lessons, but 

it’s ok to use the evaluation license (for 60 days) if you choose to. 

 

See baseline assembler lesson 1 for more detail on installing and using MPLAB 8 or MPLAB X. 

 

Data Types 

One of the problems with implementing ANSI-standard C on microcontrollers is that there is often a need to 

work with individual bits, while the smallest data-type included in the ANSI standard is ‘char’, which is 

normally considered to be a single byte, or 8 bits.  Another problem is the length of a standard integer 

(‘int’) is not defined, being implementation-dependent.  Whether an ‘int’ is 16 or 32 bits is an issue on 

larger systems, but it makes a much more significant difference to code portability on microcontrollers.  

Similarly, the sizes of ‘float’, ‘double’, and the effect of the modifiers ‘short’ and ‘long’ is not defined 

by the standard. 

So various compilers use different sizes for the “standard” data types, and for microcontroller 

implementations it is common to add a single-bit type as well – generally specific to that compiler. 

http://www.microchip.com/
http://www.microchip.com/
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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Here are the data types and sizes supported by XC8 and, for comparison, the size of the same data types in 

CCS PCB: 

You’ll see that very few of these line up; the only point of 

agreement is that ‘char’ is 8 bits! 

XC8 defines a single ‘bit’ type, unique to XC8. 

The “standard” ‘int’ type is 16 bits in XC8, but 8 bits in CCS 

PCB. 

But by far the greatest difference is in the definition of 

‘short’: in XC8, it is a synonym for ‘int’, with ‘short’, 

‘int’ and ‘short int’ all being 16-bit quantities, whereas in 

CCS PCB, ‘short’ is a single-bit type. 

Finally, note that ‘double’ floating-point variables in XC8 

can be either 24 or 32 bits; this is set by a compiler option.  32 

bits may be a higher level of precision than is needed in most 

applications for small applications, so XC8’s ability to work 

with 24-bit floating point numbers can be useful. 

 

To make it easier to create portable code, XC8 provides the ‘stdint.h’ header file, which defines the C99 

standard types such as ‘uint8_t’ and ‘int16_t’. 

 

Example 1: Turning on an LED 

We saw in mid-range assembler lesson 1 how to turn on a single LED, and leave it on; the (very simple) 

circuit is shown below:  

The LED, with a current-limiting resistor, is 

connected to the GP1 pin of a PIC12F629. 

The pushbutton acts as a reset switch, and the 10 

kΩ pull-up resistor holds MCLR   high while the 

switch is open
2
. 

If you are using the Gooligum training board, 

plug your PIC12F629 into the top section of the 

14-pin IC socket – the section marked ‘12F’
3
.  

Close jumpers JP3 and JP12 to bring the 10 kΩ 

resistor into the circuit and to connect the LED to 

GP1, and ensure that every other jumper is 

disconnected.  

If you have the Microchip Low Pin Count Demo 

Board, refer back to baseline assembler lesson 1 

to see how to build this circuit. 

                                                      

2
 This external pull-up resistor wasn’t needed in the baseline PIC examples, because the baseline PICs, and indeed most 

mid-range PICs, include an internal weak pull-up (see example 6, later in this lesson) on MCLR   which is automatically 

enabled whenever the device is configured for external reset. 

3
 Note that, although the PIC12F629 comes in an 8-pin package, it will not work in the 8-pin ‘10F’ socket.  You must 

install it in the ‘12F’ section of the 14-pin socket. 

Type XC8 CCS PCB 

bit 1 - 

char 8 8 

short 16 1 

int 16 8 

short long 24 - 

long 32 16 

float 24 or 32 32 

double 24 or 32 - 

../../Midrange/1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
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To turn on the LED, we loaded the TRISIO register with 111101b, so that only GP1 is set as an output, and 

then set bit 1 of GPIO, setting GP1 high, turning the LED on. 

At the start of the program, the PIC’s configuration was set, and the OSCCAL register was loaded with the 

factory calibration value. 

Finally, the end of the program consisted of an infinite loop (‘goto $’), to leave the LED turned on. 

Here are the key parts of the assembler code from mid-range assembler lesson 1: 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO 

        movwf   TRISIO 

 

;***** Main code         

        ; turn on LED 

        banksel GPIO 

        bsf     GPIO,GP1        ; set GP1 high 

 

        ; loop forever   

        goto    $ 

 

XC8 implementation 

You should start by creating a new XC8 project, as we did in baseline C lesson 1. 

When you run the Project Wizard (or “New Project wizard” if you are using MPLAB X), select the 

PIC12F629 as the device, and XC8 as the compiler (“Microchip XC8 ToolSuite” in MPLAB 8, or “XC8” in 

MPLAB X). 

Create an empty ‘.c’ source file in your project folder, in the same was as in baseline C lesson 1. 

Open it in the MPLAB text editor, and you’re ready to start coding! 

 

As usual, you should include a comment block at the start of each program or module.  Most of the 

information in the comment block should be much the same, regardless of the programming language used, 

since it relates to what this application is, who wrote it, dependencies and the assumed environment, such as 

pin assignments.  However, when writing in C, it is a good idea to state which compiler has been used, since, 

as we have seen for data types, C code for microcontrollers is not necessarily easily portable. 

 

../../Midrange/1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
../../Baseline%20C/1%20-%20Basic%20digital%20output/PIC_Base_C_1.pdf
../../Baseline%20C/1%20-%20Basic%20digital%20output/PIC_Base_C_1.pdf
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So we might use something like: 

/************************************************************************ 

*                                                                       * 

*   Filename:      MC_L1-Turn_on_LED-HTC.c                              * 

*   Date:          8/6/12                                               * 

*   File Version:  1.2                                                  * 

*                                                                       * 

*   Author:        David Meiklejohn                                     * 

*   Company:       Gooligum Electronics                                 * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Architecture:  Mid-range PIC                                        * 

*   Processor:     12F629                                               * 

*   Compiler:      MPLAB XC8 v1.00 (Free mode)                          * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Files required: none                                                * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Description:    Lesson 1, example 1                                 * 

*                                                                       * 

*   Turns on LED.  LED remains on until power is removed.               * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*                                                                       * 

************************************************************************/ 

 

Note that, as we did our previous assembler code, the processor architecture and device are specified in the 

comment block.  This is important for the XC8 compiler, as there is no way to specify the device in the code; 

i.e. there is no equivalent to the MPASM ‘list p=’ or ‘processor’ directives.  Instead, the processor is 

specified in the IDE (MPLAB), or as a command-line option. 

Most of the symbols relevant to specific processors are defined in header files.  But instead of including a 

specific file, as we would do in assembler, it is normal to include a single “catch-all” file: “xc.h” (or 

“htc.h”).  This file identifies the processor being used, and then calls other header files as appropriate.  So 

our next line, which should be at the start of every XC8 program, is: 

#include <xc.h> 

 

 

The processor can be configured with a series of “configuration pragmas”, such as: 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

#pragma config MCLRE = ON, CP = OFF, CPD = OFF, BOREN = OFF, WDTE = OFF 

#pragma config PWRTE = OFF, FOSC = INTRCIO 

 

Or, you can use the ‘__CONFIG’ macro, in a very similar way to the __CONFIG directive in MPASM: 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 
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The symbols are the same in both, but note that the pragma uses ‘=’ (with optional spaces) between each 

setting, such as ‘MCLRE’, and its value, such as ‘ON’, while the macro uses ‘_’ (with no spaces)
4
.  To see 

which symbols to use for a given PIC, you need to consult the “pic_chipinfo.html” file, in the “docs” 

directory within the compiler install directory. 

 

As with most C compilers, the entry point for “user” code is a function called ‘main()’. 

So an XC8 program will look like: 

void main() 

{ 

    ;   // user code goes here 

} 

 

Declaring main() as void isn’t strictly necessary, since any value returned by main() is only relevant 

when the program is being run by an operating system which can act on that return value, but of course there 

is no operating system here.  Similarly it would be more “correct” to declare main() as taking no parameters 

(i.e. main(void)), since there is no operating system to pass any parameters to the program.  How you 

declare main() is really a question of personal style. 

At the start of our assembler programs, we’ve always loaded the OSCCAL register with the factory 

calibration value (although it is only necessary when using the internal RC oscillator).  There is no need to 

do so when using XC8; the default start-up code, which runs before main(), loads OSCCAL for us. 

XC8 makes the PIC’s special function registers, such as TRISIO, available as variables. 

To load the TRISIO register with 111101b, it is simply a matter of: 

TRISIO = 0b111101;      // configure GP1 (only) as an output 

 

Alternatively this could be expressed as: 

    TRISIO = ~(1<<1);       // configure GP1 (only) as an output 

 

 

Individual bits, such as GP1, can be accessed through bit-fields defined in the header files. 

For example, the “pic12f629.h” file header file defines a union called GPIObits, containing a structure 

with bit-field members GP0, GP1, etc. 

So, to set GP1 to ‘1’, we can write: 

    GPIObits.GP1 = 1;       // set GP1 high 

 

Baseline assembler lesson 2 explained that setting or clearing a single pin in this way is a “read-modify-

write” (“rmw”) operation, which may lead to problems. 

To avoid any potential for such rmw problems, we can load the value 000010b into GPIO (setting bit 1, and 

clearing all the other bits), with: 

    GPIO = 0b000010;        // set GP1 high 

 

That’s not likely to be necessary in this simple example, where only one pin on the GPIO port is being used 

as an output, and where it is not being changed rapidly – so for simplicity we’ll go ahead and set the pin 

individually, with “GPIObits.GP1 = 1” in this example.  Nevertheless it’s best to be aware of the potential 

for rmw issues, and later examples will illustrate ways to avoid it. 

                                                      

4
 Although the ‘__CONFIG’ macro is now (as of XC8 v1.10) considered to be a “legacy” feature, it is still supported and 

we will continue to use it in these tutorials (the examples were originally written for HI-TECH C). 

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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Finally, we need to loop forever.  There are a number of C constructs that could be used for this, but one 

that’s as good as any is: 

    for (;;) 

    {                      // loop forever 

        ; 

} 

 

Complete program 

Here is the complete code to turn on an LED on GP1: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 1, example 1                                 * 

*                                                                       * 

*   Turns on LED.  LED remains on until power is removed.               * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation   

     

    // configure port   

    TRISIO = ~(1<<1);       // configure GP1 (only) as an output 

    GPIObits.GP1 = 1;       // set GP1 high 

 

 

    //*** Main loop 

    for (;;) 

    {                       // loop forever 

        ; 

    } 

} 

 

Building the project 

Whether you use MPLAB 8 or MPLAB X, the process of compiling and linking your code (making or 

building your project) is essentially the same as for an assembler project.  

To compile the source code in MPLAB 8, select “Project → Build”, press F10, or click on the “Build” 

toolbar button.  This compiles all the source files which have changed, and links the resulting object files and 

any library functions, creating an output ‘.hex’ file, which can then be programmed into the PIC as normal 
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(see baseline assembler lesson 1).  The other Project menu item or toolbar button, “Rebuild”, is equivalent to 

the MPASM “Build All”, recompiling all your source files, regardless of whether they have changed. 

Building an XC8 project in MPLAB X is exactly the same as for a MPASM assembler project: click on the 

“Build” or “Clean and Build” toolbar button, or select the equivalent items in the “Run” menu, to compile 

and link your code.  When it builds without errors and you are ready to program your code into your PIC, 

select the “Run → Run Main Project” menu item, click on the “Make and Program Device” toolbar button, 

or simply press F6. 

Example 2: Flashing an LED (20% duty cycle) 

In mid-range assembler lesson 1, we used the same circuit as above, but made the LED flash by toggling the 

GP1 output.  The delay was created by an in-line busy-wait loop.  Mid-range assembler lesson 2 showed 

how to move the delay loop into a subroutine, and to generalise it, so that the delay is passed as a parameter 

to the routine, in W.  This was demonstrated by a program which flashed the LED at 1 Hz, with a duty cycle 

of 20%, by turning it on for 200 ms and then off for 800 ms, before repeating. 

Here is the main loop from the assembler code from that lesson: 

main_loop 

        ; turn on LED 

        banksel GPIO            

        movlw   1<<GP1          ; set GP1 

        movwf   GPIO  

        ; delay 0.2 s 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        call    delay10          

        ; turn off LED 

        clrf    GPIO            ; (clearing GPIO clears GP1) 

        ; delay 0.8 s 

        movlw   .80             ; delay 80 x 10ms = 800ms 

        call    delay10   

 

        ; repeat forever     

        goto    main_loop 

 

XC8 implementation 

We’ve seen how to turn on the LED on GP1, with: 

        GPIObits.GP1 = 1;       // set GP1 

or 

        GPIO = 0b000010;        // set GP1 (bit 1 of GPIO) 

 

And of course, to turn the LED off, it is simply: 

        GPIObits.GP1 = 0;       // clear GP1 

or 

        GPIO = 0;               // (clearing GPIO clears GP1) 

 

These statements can easily be placed within an endless loop, to repeatedly turn the LED on and off.  All we 

need to add is a delay. 

XC8 provides a built-in function, ‘_delay(n)’, which creates a delay ‘n’ instruction clock cycles long.  The 

maximum possible delay depends on which PIC you are using, but it is a little over 50,000,000 cycles. With 

a 4 MHz processor clock, corresponding to a 1 MHz instruction clock, that’s a maximum delay of a little 

over 50 seconds. 

../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Midrange/1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
../../Midrange/2%20-%20Modular%20code/PIC_Mid_A_2.pdf
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The compiler also provides two macros: ‘__delay_us()’ and ‘__delay_ms()’, which use the 

‘_delay(n)’ function create delays specified in µs and ms respectively.  To do so, they reference the 

symbol “_XTAL_FREQ”, which you must define as the processor oscillator frequency, in Hertz. 

Since our PIC12F629 is running at 4 MHz, we have: 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

Then, to generate a 200 ms delay, we can write: 

        __delay_ms(200);        // stay on for 200 ms 

 

Complete program 

Putting these delay macros into the main loop, we have: 

/************************************************************************ 

*   Description:    Lesson 1, example 2                                 * 

*                                                                       * 

*   Flashes an LED at approx 1 Hz, with 20% duty cycle                  * 

*   LED continues to flash until power is removed.                      * 

*                                                                       * 

************************************************************************* 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

 

//***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation   

     

    // configure port 

    TRISIO = 0b111101;          // configure GP1 (only) as an output 

 

 

    //*** Main loop 

    for (;;) 

    { 

        GPIO = 0b000010;        // turn on LED on GP1 (bit 1) 

         

        __delay_ms(200);        // stay on for 200 ms 

 

        GPIO = 0;               // turn off LED (clearing GPIO clears GP1) 

 

        __delay_ms(800);        // stay off for 800 ms 

 

    }                           // repeat forever 

} 
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Example 3: Flashing an LED (50% duty cycle) 

The LED flashing example in mid-range assembler lesson 1 used an XOR operation to flip the GP1 bit 

every 500 ms, creating a 1 Hz flash with a 50% duty cycle. 

The read-modify-write problem revisited 

As discussed in that lesson, any operation which reads an output (or part-output) port, modifies the value 

read, and then writes it back, can lead to unexpected results.  This is because, when a port is read, it is the 

value at the pins that is read, not necessarily the value that was written to the output latches.  And that’s a 

problem if, for example, you have written a ‘1’ to an output pin, which, because it is being externally loaded 

(or, more usually, it hasn’t finished going high yet, because of a capacitive load on the pin), it reads back as a 

‘0’.  When the operation completes, that output bit would be written back as a ‘0’, and the output pin sent 

low instead of high – not what it is supposed to be. 

This can happen with any instruction which reads the current value of a register when updating it.  That 

includes logic operations such as XOR, but also arithmetic operations (add, subtract), rotate instructions, and 

increment and decrement operations.  And crucially, it also includes the bit set and clear instructions. 

You may think that the instruction ‘bsf GPIO,1’ will only affect GP1, but in fact that instruction reads the 

whole of GPIO, sets bit 1, and then writes the whole of GPIO back again. 

Consider the sequence: 

        bsf     GPIO,1 

        bsf     GPIO,2 

 

Assuming that GP1 and GP2 are both initially low, the first instruction will attempt to raise the GP1 pin 

high.  However, the first instruction writes to GPIO at the end of the instruction cycle, while the second 

instruction reads the port pins toward the start of the following instruction cycle.  That doesn’t leave much 

time for GP1 to be pulled high, against whatever capacitance is loading the pin.  If it hasn’t gone high 

enough by the time the second ‘bsf’ instruction reads the pins, it will read as a ‘0’, and it will then be 

written back as a ‘0’ when the second ‘bsf’ writes to GPIO.  The potential result is that, instead of both 

GP1 and GP2 being set high, as you would expect, it is possible that only GP2 will be set high, while the 

GP1 pin remains low, and the GP1 bit holds a ‘0’. 

This problem is sometimes avoided by placing ‘nop’ instructions between successive read-modify-write 

operations, but as we’ve seen in the assembler lessons, a more robust solution is to use a shadow register. 

So why revisit this topic, in a lesson on C programming? 

When you use a statement like ‘GPIObits.GP1 = 1’ in XC8, the compiler translates those statements into 

corresponding bit set or clear instructions, which may lead to read-modify-write problems. 

There was no problem with using these types of statements in the examples above, where only a single pin is 

being used and there are lengthy delays between changes. 

But you should be aware that a sequence such as: 

    GPIObits.GP1 = 1; 

    GPIObits.GP2 = 1; 

 

may in fact result in GP1 being cleared and only GP2 being set high. 

To avoid such problems, shadow variables can be used in C programs, in much the same way that they are 

used in assembly language. 

Note: Any C statements which directly modify individual port bits may be subject to read-modify-

write considerations. 

../../Midrange/1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
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Here is the main code from the program presented in mid-range assembler lesson 2: 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO 

        movwf   TRISIO 

         

        clrf    sGPIO           ; start with shadow GPIO zeroed 

 

;***** Main loop 

main_loop    

        ; toggle LED 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   1<<GP1          ; toggle bit corresponding to GP1 

        movwf   sGPIO           ;   in shadow register 

        banksel GPIO            ; and write to GPIO 

        movwf   GPIO       

 

           

        ; delay 500 ms -> 1 Hz flashing at 50% duty cycle 

        movlw   .50 

        pagesel delay10         ; delay 50 x 10 ms = 500 ms 

        call    delay10 

 

        ; repeat forever 

        pagesel main_loop 

        goto    main_loop      

       

XC8 implementation 

To toggle GP1, you could use the statement: 

GPIObits.GP1 = ~GPIObits.GP1; 

 

or: 

GPIObits.GP1 = !GPIObits.GP1; 

 

 

This statement is also supported: 

    GPIObits.GP1 = GPIObits.GP1 ? 0 : 1; 

 

It works because single-bit bit-fields, such as GP1, hold either a ‘0’ or ‘1’, representing ‘false’ or ‘true’ 

respectively, and so can be used directly in a conditional expression like this. 

 

However, since these statements modify individual bits in GPIO, to avoid potential read-modify-write issues 

we’ll instead use a shadow variable, which can be declared and initialised with: 

uint8_t     sGPIO = 0;          // shadow copy of GPIO 

 

This makes it clear that the variable is an unsigned, eight-bit integer.  We could have declared this as an 

‘unsigned char’, or simply ‘char’ (because ‘char’ is unsigned by default), but you can make your code 

clearer and more portable by using the C99 standard integer types defined in the “stdint.h” header file. 

To define these standard integer types, add this line toward the start of your program: 

#include <stdint.h> 

 

../../Midrange/2%20-%20Modular%20code/PIC_Mid_A_2.pdf
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The variable declaration could be placed within the main() function, which is what you should do for any 

variable that is only accessed within main().  However, a variable such as a shadow register may need to be 

accessed by other functions.  For example, it’s quite common to place all of your initialisation code into a 

function called init(), which might initialise the shadow register variables as well as the ports, and your 

main() code may also need to access them.  It is often best to define such variables as global (or “external”) 

variables toward the start of your code, before any functions, so that they can be accessed throughout your 

program. 

But remember that, to make your code more maintainable and to minimise data memory use, you should 

declare any variable which is only used by one function, as a local variable within that function. 

We’ll see examples of that later, but in this example we’ll define sGPIO as a global variable. 

 

Flipping the shadow copy of GP1 and updating GPIO, can then be done by: 

        sGPIO ^= 1<<1;          // flip shadow bit corresponding to GP1 

        GPIO = sGPIO;           // write to GPIO 

 

Complete program 

Here is how the XC8 code to flash a LED on GP1, with a 50% duty cycle, fits together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 1, example 3                                 * 

*                                                                       * 

*   Flashes a LED at approx 1 Hz.                                       * 

*   LED continues to flash until power is removed.                      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

 

//***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

 

/***** GLOBAL VARIABLES *****/ 

uint8_t     sGPIO = 0;          // shadow copy of GPIO 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation   

     

    // configure port 

    TRISIO = ~(1<<1);           // configure GP1 (only) as an output 
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    //*** Main loop 

    for (;;) 

    { 

        // toggle LED on GP1 

        sGPIO ^= 1<<1;          // flip shadow bit corresponding to GP1 

        GPIO = sGPIO;           // write to GPIO 

 

        // delay 500 ms 

        __delay_ms(500); 

 

    }   // repeat forever 

} 

 

Comparisons 

Although this is a very small, simple application, it is instructive to compare the source code size (lines of 

code
5
) and resource utilisation (program and data memory usage) for this C version with the assembler 

version of this example from mid-range assembler lesson 2. 

Source code length is a rough indication of how difficult or time-consuming a program is to write.  We 

expect that C code is easier and quicker to write than assembly language, but that a C compiler (especially 

one with optimisation disabled, as XC8 is, when running in “Free mode”) will produce code that is bigger or 

uses memory less efficiently than hand-crafted assembly.  But is this true? 

It’s also interesting to see whether the delay function provided by the C compiler generates accurately-timed 

delays, and how its accuracy compares with our assembler version. 

MPLAB correctly reports the memory usage for assembler and XC8 projects, and the MPLAB simulator
6
 

can be used to accurately measure the time between LED flashes – ideally it would be exactly 1.000000 

seconds, and the difference from that gives us the overall timing error.  

Here is the resource usage and accuracy summary for the “Flash an LED at 50% duty cycle” programs.  The 

resource usage and accuracy of the baseline (12F509) versions of this example, from baseline assembler 

lesson 3 and baseline C lesson 2, is also given for comparison: 

Flash_LED-50p 

The assembler version called the delay routine as an external module, so it’s quite comparable with the C 

programs which make use of built-in delay functions.  Nevertheless, the assembly language source code is 

around three times as long as the C version!  This illustrates how much more compact C code can be. 

As for C being less efficient – the XC8 version is only a little larger than the assembler version, despite 

having most compiler optimisations disabled in “Free mode”.  This is largely because the built-in delay code 

(which, as we can see is highly accurate!) is optimised, but it does show that C is not necessarily inherently 

inefficient. 

                                                      

5
 ignoring whitespace, comments, and “unnecessary” lines such as the redefinition of pin names in the CCS C examples 

6
 a topic for a future tutorial? 

Assembler / 

Compiler 

Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Delay accuracy 

(timing error) 

12F629 12F509 12F629 12F509 12F629 12F509 12F629 12F509 

Microchip MPASM 27 28 29 34 4 4 0.15% 0.15% 

XC8 (Free mode) 11 11 35 36 4 4 0.0024% 0.0024% 

../../Midrange/2%20-%20Modular%20code/PIC_Mid_A_2.pdf
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Example 4: Reading Digital Inputs 

Mid-range assembler lesson 3 introduced digital 

inputs, using a pushbutton switch in the simple 

circuit shown on the right.  

It’s the same circuit as in the earlier examples 

(you can leave your board configured the same 

way as before), but now we’ll use the pushbutton 

to drive a digital input (GP3), instead of as a 

reset switch. 

 

The 10 kΩ resistor normally holds the GP3 input 

high, until the pushbutton is pressed, pulling the 

input low. 

Note: if you are using a PICkit 2 programmer, 

you must enable ‘3-State on “Release from 

Reset”’, as described in mid-range assembler 

lesson 3, to allow the pushbutton to pull GP3 

low when pressed. 

 

As an initial example, the pushbutton input was copied to the LED output, so that the LED was on, whenever 

the pushbutton is pressed. 

 

In pseudo-code, the operation is: 

do forever 

 if button down 

  turn on LED 

 else 

  turn off LED 

end 

 

 

The assembler code we used to implement this, using a shadow register, was: 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO          ; (GP3 is an input) 

        movwf   TRISIO 

         

;***** Main loop 

main_loop 

        ; turn on LED only if button pressed 

        clrf    sGPIO           ; assume button up -> LED off 

        banksel GPIO  

        btfss   GPIO,GP3        ; if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

 

        goto    main_loop       ; repeat forever 

  

../../Midrange/3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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XC8 implementation 

To copy a value from one bit to another, e.g. GP3 to GP1, using XC8, can be done as simply as: 

    GPIObits.GP1 = GPIObits.GP3;            // copy GP3 to GP1 

 

But that won’t do quite what we want; given that GP3 goes low when the button is pressed, simply copying 

GP3 to GP1 would lead to the LED being on when the button is up, and on when it is pressed – the opposite 

of the required behaviour. 

We can address that by inverting the logic: 

    GPIObits.GP1 = !GPIObits.GP3;           // copy !GP3 to GP1 

or 

    GPIObits.GP1 = GPIObits.GP3 ? 0 : 1;    // copy !GP3 to GP1 

 

 

This works well in practice, but to allow a valid comparison with the assembly source above, which uses a 

shadow register, we should not use statements which modify individual bits in GPIO.  Instead we should 

write an entire byte to GPIO at once. 

For example, we could write: 

    if (GPIObits.GP3 == 0)   // if button pressed 

        GPIO = 0b000010;     //   turn on LED 

    else 

        GPIO = 0;            // else turn off LED 

 

However, this can be written much more concisely using C’s conditional expression: 

    GPIO = GPIObits.GP3 ? 0 : 0b000010; // if GP3 high, clear GP1, else set GP1 

 

It may seem a little obscure, but this is exactly the type of situation the conditional expression is intended for. 

Complete program 

Here is the complete XC8 code to turn on a LED when a pushbutton is pressed: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 1, example 4                                 * 

*                                                                       * 

*   Demonstrates reading a switch                                       * 

*                                                                       * 

*   Turns on LED when pushbutton is pressed                             * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 
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/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation   

     

    // configure port 

    TRISIO = ~(1<<1);           // configure GP1 (only) as an output 

 

 

    //*** Main loop 

    for (;;) 

    { 

        // turn on LED only if button pressed 

        GPIO = GPIObits.GP3 ? 0 : 0b000010;     // if GP3 high, clear GP1, 

                                                // else set GP1 

    }  

} 

 

Note that the processor configuration has been changed to disable the external MCLR  reset, so that GP3 is 

available as an input. 

 

Comparisons 

Here is the resource usage summary for the “Turn on LED when pushbutton pressed” programs: 

PB_LED 

At only six lines, the C source code is amazingly succinct – thanks mainly to the use of C’s conditional 

expression (?:). 

 

Example 5: Switch Debouncing 

Mid-range assembler lesson 3 included a discussion of the switch contact bounce problem, and various 

hardware and software approaches to addressing it. 

The problem was illustrated by an example application, using the circuit from example 4 (above), where the 

LED is toggled each time the pushbutton is pressed.  If the switch is not debounced, the LED toggles on 

every contact bounce, making it difficult to control. 

 

The most sophisticated software debounce method presented in that lesson was a counting algorithm, where 

the switch is read (sampled) periodically (e.g. every 1 ms) and is only considered to have definitely changed 

state if it has been in the new state for some number of successive samples (e.g. 10), by which time it is 

considered to have settled. 

 

Assembler / Compiler 

Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

12F629 12F509 12F629 12F509 12F629 12F509 

Microchip MPASM 21 18 16 13 1 1 

XC8 (Free mode) 6 6 29 29 2 2 
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The algorithm was expressed in pseudo-code as: 

count = 0 

while count < max_samples 

 delay sample_time 

 if input = required_state 

  count = count + 1 

 else 

  count = 0 

end 

 

It was implemented in assembler as follows: 

        ; wait for button press, debounce by counting: 

db_dn   movlw   .13             ; max count = 10ms/768us = 13 

        movwf   db_cnt         

        clrf    dc1              

dn_dly  incfsz  dc1,f           ; delay 256x3 = 768 us. 

        goto    dn_dly 

        btfsc   GPIO,GP3        ; if button up (GP3 high), 

        goto    db_dn           ;   restart count 

        decfsz  db_cnt,f        ; else repeat until max count reached 

        goto    dn_dly 

 

This code waits for the button to be pressed (GP3 being pulled low), by sampling GP3 every 768 µs and 

waiting until it has been low for 13 times in succession – approximately 10 ms in total. 

XC8 implementation 

To implement the counting debounce algorithm (above) using XC8, the pseudo-code can be translated 

almost directly into C: 

        db_cnt = 0; 

        while (db_cnt < 10) 

        { 

            __delay_ms(1); 

            if (GPIObits.GP3 == 0) 

                db_cnt++; 

            else 

                db_cnt = 0; 

        } 

 

where the debounce counter variable has been declared as: 

    uint8_t     db_cnt;             // debounce counter 

 

Note that, because this variable is only used locally (other functions would never need to access it), it should 

be declared within main(). 

Whether you modify this code to make it shorter is largely a question of personal style.  Compressed C code, 

using a lot of “clever tricks” can be difficult to follow. 

But note that the while loop above is equivalent to the following for loop: 

        for (db_cnt = 0; db_cnt < 10;) 

        { 

            __delay_ms(1); 

            if (GPIObits.GP3 == 0) 

                db_cnt++; 

            else 

                db_cnt = 0; 

        } 
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That suggests restructuring the code into a traditional for loop, as follows: 

        for (db_cnt = 0; db_cnt <= 10; db_cnt++) 

        { 

            __delay_ms(1); 

            if (GPIObits.GP3 == 1) 

                db_cnt = 0; 

        } 

 

In this case, the debounce counter is incremented every time around the loop, regardless of whether it has 

been reset to zero within the loop body.  For that reason, the end of loop test has to be changed from ‘<’ to 

‘<=’, so that the number of iterations remains the same. 

Alternatively, the loop could be written as: 

        for (db_cnt = 0; db_cnt < 10;) 

        { 

            __delay_ms(1); 

            db_cnt = (GPIObits.GP3 == 0) ? db_cnt+1 : 0; 

        } 

 

However the previous version seems easier to understand. 

Complete program 

Here is the complete XC8 code to toggle an LED when a pushbutton is pressed, including the debounce 

routines for button-up and button-down: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 1, example 5                                 * 

*                                                                       * 

*   Demonstrates use of counting algorithm for debouncing               * 

*                                                                       * 

*   Toggles LED when pushbutton is pressed then released,               * 

*   using a counting algorithm to debounce switch                       * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

 

/***** GLOBAL VARIABLES *****/ 

uint8_t     sGPIO;                  // shadow copy of GPIO 
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/***** MAIN PROGRAM *****/ 

void main() 

{ 

    uint8_t     db_cnt;             // debounce counter 

 

    //*** Initialisation   

     

    // configure port 

    GPIO = 0;                       // start with LED off 

    sGPIO = 0;                      //   update shadow 

    TRISIO = ~(1<<1);               // configure GP1 (only) as an output 

 

 

    //*** Main loop 

    for (;;) 

    { 

        // wait for button press, debounce by counting: 

        for (db_cnt = 0; db_cnt <= 10; db_cnt++) 

        { 

            __delay_ms(1);          // sample every 1 ms 

            if (GPIObits.GP3 == 1)  // if button up (GP3 high) 

                db_cnt = 0;         //   restart count 

        }                           // until button down for 10 successive reads 

 

        // toggle LED on GP1 

        sGPIO ^= 0b000010;          // toggle shadow GP1 

        GPIO = sGPIO;               // write to GPIO 

 

        // wait for button release, debounce by counting: 

        for (db_cnt = 0; db_cnt <= 10; db_cnt++) 

        { 

            __delay_ms(1);          // sample every 1 ms 

            if (GPIObits.GP3 == 0)  // if button down (GP3 low) 

                db_cnt = 0;         //   restart count 

        }                           // until button up for 10 successive reads 

 

    }   // repeat forever 

} 

 

Example 6: Internal (Weak) Pull-ups 

As discussed in mid-range assembler lesson 3, 

many PICs include internal “weak pull-ups”, which 

can be used to pull floating inputs (such as an open 

switch) high.  They perform the same function as 

external pull-up resistors, pulling an input high 

when a connected switch is open, but only 

supplying a small current; not enough to present a 

problem when a closed switch grounds the input. 

This means that, on pins with a weak pull-up, it is 

possible to directly connect switches between an 

input pin and ground, as shown on the right.  

Unfortunately, there is no internal pull-up on the 

12F629’s GP3 pin, so to demonstrate their use we 

need to use a different input pin, which is why the 

switch is connected to GP2 here. 

../../Midrange/3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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The Gooligum training board already has a pushbutton switch connected to GP2 as shown, but you should 

ensure that jumper JP7 is not closed, so that there is no external pull-up in place. 

If you are using the Microchip demo board, you will need to supply your own pushbutton and connect it 

between GP2 (pin 9 of the 14-pin header) and ground (pin 14 on the header). 

 

To enable the weak pull-ups, clear the GPPU  bit in the OPTION register. 

In the example assembler program from mid-range lesson 3, this was done by: 

        bcf     OPTION_REG,NOT_GPPU     ; enable weak pull-ups (global) 

 

 

Unlike the baseline PICs, the weak pull-ups on mid-range devices individually selectable; to enable a pull-

up, the corresponding bit in the WPU register must be set. 

By default (after a power-on reset) every bit in WPU is set, so to enable a pull-up on only a single pin, the 

remaining bits in WPU must be cleared. 

This was done, in the assembler example in mid-range lesson 3, by: 

        movlw   1<<GP2          ; select pull-up on GP2 only 

        movwf   WPU 

 

XC8 implementation 

The XC8 compiler makes the individual bits in the OPTION register available as bit-fields, so to clear 

GPPU  , without affecting any of the other OPTION bits, we can simply write: 

    OPTION_REGbits.nGPPU = 0;       // enable weak pull-ups (global) 

 

Note again you should look at the header file for your PIC (“pic12f629.h” in this case) to check the name 

of the bit-field associated with the register bit you wish to access.  It is not necessarily the same as the 

symbol defined in the assembler include file – for example, the XC8 include file defines the bit-field 

‘nGPPU’, while the MPASM include file defines the symbol ‘NOT_GPPU’, both referring to the GPPU  bit. 

 

Similarly, the WPU register is accessible through a variable named ‘WPU’, so to enable the pull-up on GP2 

(and disable all the other pull-ups) can write: 

    WPU = 1<<2;                     // select pull-up on GP2 only 

 

 

With these additions, the initialisation code then becomes: 

    // configure port 

    OPTION_REGbits.nGPPU = 0;       // enable weak pull-ups (global) 

    WPU = 1<<2;                     // enable pull-up on GP2 only 

    GPIO = 0;                       // start with LED off 

    sGPIO = 0;                      //   update shadow 

    TRISIO = ~(1<<1);               // configure GP1 (only) as an output 

 

 

The rest of the program is then the same as before (example 5, above), except for testing GP2 instead of 

GP3. 

  

http://www.gooligum.com/devboards/base-mid/base-mid.html
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Comparisons 

Here is the resource usage summary for the “toggle a LED using weak pull-ups” programs: 

Toggle_LED+WPU 

Although the difference is less pronounced than in the simpler, earlier examples, the C source code continues 

to be less than half the length of the assembly version, while the (unoptimised) code generated by the XC8 

compiler continues to be more than twice the size of the hand-written assembly language version. 

Summary 

Overall, we have seen that basic digital I/O operations can be expressed succinctly using C, leading to 

significantly shorter source code than assembly language, as illustrated by the comparisons we have done in 

this lesson: the C code is typically only half, or less, as long as the corresponding assembler source code. 

It could be argued that, because the C code is significantly shorter than corresponding assembler code, with 

the program structure more readily apparent, C programs are more easily understood, faster to write, and 

simpler to debug, than assembler. 

So why use assembler?  One argument is that, because assembler is closer to the hardware, the developer 

benefits from having a greater understanding of exactly what the hardware is doing; there are no unexpected 

or undocumented side effects, no opportunities to be bitten by bugs in built-in or library functions.  But that 

argument applies more to other compilers than it does to XC8, which exposes all the PIC’s registers as 

variables, and the programmer has to directly modify the register contents in much the same way as would be 

done in assembler. 

However, C compilers usually generate code which occupies more program memory and uses more data 

memory than for corresponding hand-written assembler programs
7
. 

Since the C compilers consistently use more resources than assembler (for equivalent programs), there comes 

a point, as programs grow, that a C program will not fit into a particular PIC, while the same program would 

have fit if it had been written in assembler.  In that case, the choice is to write in assembler, or use a more 

expensive PIC.  For a one-off project, a more expensive chip probably makes sense, whereas for volume 

production, using resources efficiently by writing in assembler may be the right choice. 

 

In the next lesson we’ll see how to use XC8 to configure and access Timer0. 

 

                                                      

7
 It’s a little unfair to draw this conclusion, based on a compiler (XC8) running with optimisation disabled (in “Free 

mode”).  However, this statement remains true when the PICC-Lite compiler (sadly, no longer available), with full 

optimisation enabled, is used to implement these examples. 

Assembler / Compiler 

Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

12F629 12F509 12F629 12F509 12F629 12F509 

Microchip MPASM 47 43 40 36 3 3 

XC8 (Free mode) 23 22 97 94 3 3 

../2%20-%20Timer%200/PIC_Mid_C_2.pdf
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Introduction to PIC Programming 

Programming Mid-Range PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 2: Using Timer 0 

 

 

As we saw in the previous lesson, C can be a viable choice for programming digital I/O operations on mid-

range (14-bit) PICs, although we also saw that programs written in C can consume significantly more 

memory (a limited resource on these tiny MCUs) than equivalent programs written in assembler. 

This lesson revisits the material from mid-range assembler lesson 4 on the Timer0 module: using it to time 

events, to maintain the timing of a background task, for switch debouncing, and as a counter. 

Selected examples are re-implemented using Microchip’s XC8 compiler
1
 (running in “Free mode”), 

introduced in lesson 1. We’ll also see the C equivalents of some of the features covered in mid-range 

assembler lesson 5, including macros. 

In summary, this lesson covers: 

 Configuring Timer0 as a timer or counter 

 Accessing Timer0 

 Using Timer0 for switch debouncing 

 Using C macros 

Note that this tutorial series assumes a working knowledge of the C language; it does not attempt to teach C. 

 

Example 1: Using Timer0 as an Event Timer 

To demonstrate how Timer0 can be used to measure 

elapsed time, mid-range assembler lesson 4 included a 

“reaction timer” game, using the circuit on the right. 

To implement this circuit using the Gooligum training 

board, connect jumpers JP3, JP12 and JP13 to enable 

the pull-up resistor on GP3 and the LEDs on GP1 and 

GP2. 

If you are using Microchip’s Low Pin Count Demo 

Board, you will need to connect LEDs to GP1 and 

GP2, as described in baseline assembler lesson 1. 

 

 

                                                      

1
 Available as a free download from www.microchip.com. 

../1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
../../Midrange/4%20-%20Timer%200/PIC_Mid_A_4.pdf
../1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
../../Midrange/5%20-%20Assembler%20directives/PIC_Mid_A_5.pdf
../../Midrange/5%20-%20Assembler%20directives/PIC_Mid_A_5.pdf
../../Midrange/4%20-%20Timer%200/PIC_Mid_A_4.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
http://www.microchip.com/
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The pushbutton has to be pressed as quickly as possible after the LED on GP2, indicating ‘start’ is lit.  If the 

button is pressed within a predefined reaction time, the LED on GP1 is lit, to indicate ‘success’.  Thus, we 

need to measure the elapsed time between indicating ‘start’ and detecting a pushbutton press. 

An ideal way to do that is to use Timer0, in its timer mode (clocked by the PIC’s instruction clock, which in 

this example is 1 MHz). 

Ideally, to make a better “game”, the delay before the ‘start’ LED is lit would be random, but in this simple 

example, a fixed delay is used. 

The program flow can be illustrated in pseudo-code as: 

do forever 

 clear both LEDs 

 delay 2 sec 

 indicate start 

clear timer 

 wait up to 1 sec for button press 

 if button pressed and elapsed time < 200ms 

  indicate success 

 delay 1 sec 

end 

 

To use Timer0 to measure the elapsed time, we need to extend its range (normally limited to 65 ms) by 

adding a counter variable, which is incremented each time the timer overflows (or reaches a certain value).  

In the example in mid-range lesson 4, Timer0 is configured so that it is clocked every 32 µs, by using the 1 

MHz instruction clock with a 1:32 prescaler.  After 250 counts, 8 ms (250 × 32 µs) will have elapsed; this is 

used to increment a counter, which effectively measures time in 8 ms intervals.  When the button is pressed, 

this “8 ms counter” can then be checked, to see whether the maximum reaction time has been exceeded. 

As explained in mid-range lesson 4, to select timer mode, with a 1:32 prescaler, we must clear the T0CS and 

PSA bits, in the OPTION register, and set the PS<2:0> bits to 100.  This was done by: 

        movlw   b'11000100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)  

        banksel OPTION_REG      ;   -> increment TMR0 every 32us 

        movwf   OPTION_REG 

 

Here is the main assembler code we had used to implement the button press / timing test routine: 

        ; wait up to 1 sec for button press 

        clrf    cnt_8ms             ; clear timer (8 ms counter) 

wait1s                              ; repeat for 1 sec: 

        banksel TMR0             

        clrf    TMR0                ;   clear Timer0         

w_tmr0                              ;   repeat for 8 ms: 

        banksel GPIO 

        btfss   BUTTON              ;     if button pressed (low) 

        goto    wait1s_end          ;       finish delay loop immediately  

        banksel TMR0 

        movf    TMR0,w              ;      

        xorlw   8000/32             ;   (8 ms at 32 us/tick) 

        btfss   STATUS,Z         

        goto    w_tmr0 

        incf    cnt_8ms,f           ;   increment 8 ms counter 

        movlw   1000/8              ; (1 sec at 8 ms/count) 

        xorwf   cnt_8ms,w 

        btfss   STATUS,Z 

        goto    wait1s 

wait1s_end   

../../Midrange/4%20-%20Timer%200/PIC_Mid_A_4.pdf
file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Midrange/4%20-%20Timer%200/PIC_Mid_A_4.pdf
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        ; indicate success if elapsed time < 200 ms      

        movlw   MAXRT/8             ; if time < max reaction time (8 ms/count) 

        subwf   cnt_8ms,w 

        banksel GPIO 

        btfss   STATUS,C 

        bsf     SUCCESS             ;   turn on success LED 

 

(This code is actually taken from mid-range assembler lesson 5) 

XC8 implementation 

Loading the OPTION register in XC8 can be done by assigning a value to the variable OPTION_REG: 

    OPTION_REG = 0b11000100;        // configure Timer0: 

                 //--0-----             timer mode (T0CS = 0) 

                 //----0---             prescaler assigned to Timer0 (PSA = 0) 

                 //-----100             prescale = 32 (PS = 100) 

                 //                     -> increment every 32 us 

 

Note that this has been commented in a way which documents which bits affect each setting, with ‘-’s 

indicating “don’t care”.  For example, we could have instead used ‘OPTION_REG = 0b11010100’, since 

the value of bit 4, or T0SE, is irrelevant in timer mode. 

 

However, as we’ve seen, XC8 also makes the individual OPTION register bits available as bit-fields defined 

in the processor header files (such as “pic12f629.h”), so we can instead write this as: 

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b100;      // prescale = 32 

                                    // -> increment every 32 us 

 

Note that, although the PS bits can be accessed as the single-bit fields PS0 to PS2, they are also (much more 

conveniently) made available through a 3-bit field named PS, as used here. 

This is clear and easy to maintain, and less error-prone, because it is easy to mistype a numeric constant, and 

the compiler cannot warn you if that happens. 

On the other hand, a series of single-bit assignments like this requires more program memory than a whole-

register assignment.  It is also no longer an atomic operation, where all the bits are updated at once.  This can 

be an important consideration in some instances
2
, but it is not relevant here.  Note also that the remaining bits 

in the OPTION register are not being explicitly set or cleared; that is ok because in this example we don’t 

care what values they have. 

 

Which method you use is largely a question of personal style – and you can adapt your style as appropriate.  

It is often preferable to use symbolic bit names to specify just one or two register bits, but using binary 

constants if several bits need to be specified at once, especially where some bits need to be set and others 

cleared (as is the case here), is quite acceptable – assuming that it is clearly commented, as above.  

 

  

                                                      

2
 for example, an interrupt service routine (see lesson 3) may rely on a peripheral, such as Timer0 here, being fully 

configured.  It would be a problem if the interrupt occurred in the middle of configuration statements like this, with the 

peripheral only partially configured.  These problems can be addressed by selectively disabling and re-enabling 

interrupts; we’ll see an example of this in lesson 8. 

../../Midrange/5%20-%20Assembler%20directives/PIC_Mid_A_5.pdf
../3%20-%20Interrupts/PIC_Mid_C_3.pdf
../8%20-%20ADC%20+%20arrays/PIC_Mid_C_8.pdf
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The TMR0 register is accessed through a variable, TMR0, so to clear it, we can write: 

            TMR0 = 0;               // clear timer0 

 

and then to wait until 8 ms has elapsed: 

            while (TMR0 < 8000/32)  // wait for 8 ms (32 us/tick) 

                ; 

 

The “wait for button press or one second” routine can then the implemented as: 

        cnt_8ms = 0; 

        while (BUTTON == 1 && cnt_8ms < 1000/8) 

        { 

            TMR0 = 0;               // clear timer0 

            while (TMR0 < 8000/32)  // wait for 8 ms (32 us/tick) 

                ; 

            ++cnt_8ms;              // increment 8 ms counter 

        } 

 

where ‘BUTTON’ has been defined as a symbol for ‘GPIObits.GP3’. 

As discussed in mid-range assembler lesson 5, your code will be easier to understand and maintain if you use 

symbolic names to refer to pins.  If your design changes, you can update the definitions in one place (usually 

placed at the start of your c, or in a header file).  Of course, you may also need to modify your initialisation 

statements, such as ‘TRISIO =’.  This is a good reason to keep all your initialisation code in one easily-

found place, such as at the start of the program, or in an “init()” function. 

 

Finally, checking elapsed time is simply: 

        if (cnt_8ms < MAXRT/8)      // if time < max reaction time (8 ms/count) 

            SUCCESS = 1;            //   turn on success LED 

 

 

Complete program 

Here is the complete reaction timer program, so that you can see how the various parts fit together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 2, example 1                                 * 

*                   Reaction Timer game.                                * 

*                                                                       * 

*   User must attempt to press button within defined reaction time      * 

*   after "start" LED lights.  Success is indicated by "success" LED.   * 

*                                                                       * 

*       Starts with both LEDs unlit.                                    * 

*       2 sec delay before lighting "start"                             * 

*       Waits up to 1 sec for button press                              * 

*       (only) on button press, lights "success"                        * 

*       1 sec delay before repeating from start                         * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = success LED                                               * 

*       GP2 = start LED                                                 * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

../../Midrange/5%20-%20Assembler%20directives/PIC_Mid_A_5.pdf
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#include <xc.h> 

#include <stdint.h> 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define START   GPIObits.GP2        // LEDs 

#define SUCCESS GPIObits.GP1 

 

#define BUTTON  GPIObits.GP3        // pushbutton 

 

 

/***** CONSTANTS *****/ 

#define MAXRT   200                 // Maximum reaction time in ms 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    uint8_t     cnt_8ms;            // counter: increments every 8 ms 

 

    //*** Initialisation   

     

    // configure port 

    TRISIO = 0b111001;              // configure GP1 and GP2 as outputs 

     

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b100;      // prescale = 32 

                                    // -> increment every 32 us 

 

    //*** Main loop                                 

    for (;;) 

    { 

        // start with both LEDs off 

        GPIO = 0;                    

 

        // delay 2 sec 

        __delay_ms(2000);           // delay 2000 ms              

 

        // indicate start  

        START = 1;                  // turn on start LED 

 

        // wait up to 1 sec for button press 

        cnt_8ms = 0; 

        while (BUTTON == 1 && cnt_8ms < 1000/8) 

        { 

            TMR0 = 0;               // clear timer0 

            while (TMR0 < 8000/32)  // wait for 8 ms (32 us/tick) 

                ; 

            ++cnt_8ms;              // increment 8 ms counter 

        } 
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        // check elapsed time 

        if (cnt_8ms < MAXRT/8)      // if time < max reaction time (8 ms/count) 

            SUCCESS = 1;            //   turn on success LED 

 

        // delay 1 sec 

        __delay_ms(1000);           // delay 1000 ms      

     

    }   // repeat forever 

} 

 

Comparisons 

As we did in lesson 1, we can compare the length of the source code (ignoring comments and white space) 

versus program and data memory utilisation for this C version with the assembly version from mid-range 

lesson 5.   The stats for the baseline (PIC12F509) versions of this example, from baseline C lesson 3, are also 

given for comparison: 

Reaction_timer 

As expected, the C source code is less than half as long as the assembler source, but the generated C program 

code is significantly larger (not surprising, given that XC8 does not perform any optimisation when running 

in “Free mode”). 

 

Example 2: Background Process Timing 

As discussed in mid-range lesson 4, one of the key uses of timers is to provide regular timing for 

“background” processes, while a “foreground” process responds to user signals.  Timers are ideal for this, 

because they continue to run, at a steady rate, regardless of any processing the PIC is doing.  On mid-range 

PICs this is normally done using timer-driven interrupts, which will be covered in the next lesson.  However, 

the non-interrupt method, described in baseline C lesson 3, can still be used, and is covered here mainly for 

completeness. 

 

The example in mid-range lesson 4 used the circuit above, flashing the LED on GP2 at a steady 1 Hz, while 

lighting the LED on GP1 whenever the pushbutton is pressed. 

The 500 ms delay needed for the 1 Hz flash was derived from Timer0 as follows: 

 Using a 4 MHz processor clock, providing a 1 MHz instruction clock and a 1 µs instruction cycle 

 Assigning a 1:32 prescaler to the instruction clock, incrementing Timer0 every 32 µs 

 Resetting Timer0 to zero, as soon as it reaches 125 (i.e. every 125 × 32 µs = 4 ms) 

 Repeating 125 times, creating a delay of 125 × 4 ms = 500 ms. 

 

Assembler / Compiler 

Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

12F629 12F509 12F629 12F509 12F629 12F509 

Microchip MPASM 58 53 53 55 4 4 

XC8 (Free mode) 26 23 87 83 4 4 

../1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
../../Midrange/5%20-%20Assembler%20directives/PIC_Mid_A_5.pdf
../../Midrange/5%20-%20Assembler%20directives/PIC_Mid_A_5.pdf
../../Baseline%20C/3%20-%20Timer%200/PIC_Base_C_3.pdf
../../Midrange/4%20-%20Timer%200/PIC_Mid_A_4.pdf
../3%20-%20Interrupts/PIC_Mid_C_3.pdf
file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Baseline%20C/3%20-%20Timer%200/PIC_Base_C_3.pdf
file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Midrange/4%20-%20Timer%200/PIC_Mid_A_4.pdf
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This was implemented by the following code: 

main_loop     

        ; delay 500 ms 

        movlw   .125            ; repeat 125 times (125 x 4 ms = 500 ms)   

        movwf   dly_cnt          

dly500   

        banksel TMR0            ;   clear timer0   

        clrf    TMR0 

w_tmr0  movf    TMR0,w          ;   wait for 4 ms 

        xorlw   .125            ;     (125 ticks x 32 us/tick = 4 ms) 

        btfss   STATUS,Z 

        goto    w_tmr0 

        decfsz  dly_cnt,f       ; end 500 ms delay loop 

        goto    dly500 

 

        ; toggle flashing LED        

        movf    sGPIO,w 

        xorlw   1<<GP2          ; toggle LED on GP2 

        movwf   sGPIO           ;   using shadow register 

        banksel GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    main_loop            

     

 

And then the code which responds to the pushbutton was placed within the timer wait loop: 

w_tmr0                          ;   repeat for 4 ms: 

        banksel GPIO            ;     check and respond to button press       

        bcf     sGPIO,GP1       ;       assume button up -> indicator LED off 

        btfss   GPIO,GP3        ;       if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;         turn on indicator LED 

        movf    sGPIO,w         ;     update port (copy shadow to GPIO) 

        movwf   GPIO 

        banksel TMR0 

        movf    TMR0,w      

        xorlw   .125            ;   (125 ticks x 32 us/tick = 4 ms)             

        btfss   STATUS,Z 

        goto    w_tmr0 

 

 

The additional code doesn’t affect the timing of the background task (flashing the LED), because there are 

only a few additional instructions; they are able to be executed within the 32 µs available between each 

“tick” of Timer0. 
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XC8 implementation  

There are no new features to introduce; Timer0 is setup and accessed in the same way as in the last example. 

The assembly code above can be implemented with XC8 as: 

    for (;;)  

    { 

        // delay 500 ms while responding to button press 

        for (dc = 0; dc < 125; dc++)   // repeat 125 times (125 x 4 ms = 500 ms) 

        {   

            TMR0 = 0;                  //   clear timer0 

            while (TMR0 < 125)         //   repeat for 4 ms (125 x 32 us) 

            {                          //     check and respond to button press 

                sGPIO &= ~(1<<1);      //       assume button up -> LED off 

                if (GP3 == 0)          //       if button pressed (GP3 low) 

                    sGPIO |= 1<<1;     //         turn on LED on GP1 

                GPIO = sGPIO;          //     update port (copy shadow to GPIO) 

            } 

        } 

        // toggle flashing LED        

        sGPIO ^= 1<<2;                 // toggle LED on GP2 using shadow reg 

                 

    }   // repeat forever 

 

There is no need to update GPIO after the LED on GP2 is toggled, because GPIO is being continually 

updated from sGPIO within the inner timer wait loop. 

 

Note the syntax used to set, clear and toggle bits in the shadow GPIO variable, sGPIO: 

            sGPIO |= 1<<1;              // turn on LED on GP1 

            sGPIO &= ~(1<<1);           // turn off LED on GP1 

            sGPIO ^= 1<<2;              // toggle LED on GP2 

     

We could instead have written: 

            sGPIO |= 0b000010;          // turn on LED on GP1 

            sGPIO &= 0b111101;          // turn off LED on GP1 

            sGPIO ^= 0b000100;          // toggle LED on GP2 

 

But the left shift (‘<<’) form more clearly specifies which bit is being operated on. 

 

If we define symbols representing the port bit positions: 

#define nFLASH  2               // flashing LED on GP2 

#define nPRESS  1               // "button pressed" indicator LED on GP1 

 

we can write these statements as: 

            sGPIO |= 1<<nPRESS;         // turn on indicator LED 

            sGPIO &= ~(1<<nPRESS);      // turn off indicator LED 

            sGPIO ^= 1<<nFLASH;         // toggle flashing LED 

 

 

These symbols can also be used when configuring the port directions: 

    TRISIO = ~(1<<nFLASH|1<<nPRESS);  // configure LEDs (only) as outputs 

 

This makes the code clearer, more general, and therefore more maintainable. 
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However, this approach doesn’t work well on bigger PICs, which have more than one port.  You still need to 

keep track of which port each pin belongs to, and if you change your pin assignments later, you may well 

need to make a number of changes throughout your code. 

 

A more robust approach is to make use of bitfields within C structures. 

For example: 

struct { 

    unsigned    GP0     : 1; 

    unsigned    GP1     : 1; 

    unsigned    GP2     : 1; 

    unsigned    GP3     : 1; 

    unsigned    GP4     : 1; 

    unsigned    GP5     : 1; 

} sGPIObits; 

 

It is then possible to refer to each bit as a structure member, for example: 

        sGPIObits.GP1 = 1; 

 

and if we also defined a symbol such as: 

#define sPRESS  sGPIObits.GP1 

 

we can then write this as: 

        sPRESS = 1; 

 

That’s nice – we have “shadow bits” and we can refer to them easily by symbolic names – but there’s still a 

problem.  As well as being able to access individual bits, we also need to be able to refer to the whole 

shadow register as a single variable, to read or update all the bits at once.  After all, that’s the whole point of 

using a shadow register. 

We want to be able to change a single bit, as in: 

        sGPIObits.GP1 = 1;   // set shadow GP1 

 

and also read the whole shadow register in a single operation, as in: 

        GPIO = sGPIO;        // copy shadow register to port 

 

How can we do both? 

 

The C union construct is intended for exactly this situation, where we need to access the memory holding a 

variable in more than one way. 

We can define for example:  

union {                             // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 
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This allows us to refer to the shadow register as sGPIO.port, representing the whole port, in a single 

operation.  For example: 

        sGPIO.port = 0;      // clear shadow register 

 

        GPIO = sGPIO.port;   // update port (copy shadow to GPIO) 

 

We can also refer to the individual shadow bits as, for example: 

        sGPIO.GP1 = 1;       // set shadow GP1 

 

 

If we define symbols representing these shadow bits: 

#define sFLASH  sGPIO.GP2       // flashing LED (shadow) 

#define sPRESS  sGPIO.GP1       // "button pressed" indicator LED (shadow) 

 

we can rewrite the previous bit-manipulation statements as: 

        sPRESS = 1;             // turn on indicator LED 

        sPRESS = 0;             // turn off indicator LED 

        sFLASH = !sFLASH;       // toggle flashing LED 

 

and, very concisely: 

        sPRESS = !BUTTON;       // turn on indicator only if button pressed 

 

Besides clarity and conciseness, a big advantage of this technique is that, if (on a larger PIC) you were to 

move one of these functions (such as the flashing LED) to another port, you only need to modify the symbol 

definition and perhaps your initialisation routine.  The rest of your program could stay the same – these 

statements would still work. 

Defining the shadow register as a union incorporating a bitfield structure may seem like a lot of trouble for 

an apparently small benefit, but it’s an elegant approach that will pay off as your applications become more 

complex. 

Complete program 

Here is how this shadow register union / bitfield structure definition is used in practice: 

/************************************************************************ 

*   Description:    Lesson 2, example 2b                                * 

*                                                                       * 

*   Demonstrates use of Timer0 to maintain timing of background actions * 

*   while performing other actions in response to changing inputs       * 

*                                                                       * 

*   One LED simply flashes at 1 Hz (50% duty cycle).                    * 

*   The other LED is only lit when the pushbutton is pressed            * 

*                                                                       * 

*   Uses union / bitfield structure to represent shadow register        * 

*                                                                       * 

************************************************************************* 

*   Pin assignments:                                                    * 

*       GP1 = "button pressed" indicator LED                            * 

*       GP2 = flashing LED                                              * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 
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/***** CONFIGURATION *****/ 

// int reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define sFLASH  sGPIO.GP2       // flashing LED (shadow) 

#define sPRESS  sGPIO.GP1       // "button pressed" indicator LED (shadow) 

#define BUTTON  GPIObits.GP3    // pushbutton 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    uint8_t   dc;                   // delay counter 

 

    //*** Initialisation   

     

    // configure port 

    GPIO = 0;                       // start with all LEDs off 

    sGPIO.port = 0;                 //   update shadow 

    TRISIO = ~(1<<1|1<<2);          // configure GP1 and GP2 (only) as outputs 

     

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b100;      // prescale = 32 

                                    // -> increment every 32 us 

     

    //*** Main loop   

    for (;;)  

    { 

        // delay 500 ms while responding to button press 

        for (dc = 0; dc < 125; dc++)  // repeat 125 times (125 x 4 ms = 500 ms) 

        {   

            TMR0 = 0;                 //   clear timer0 

            while (TMR0 < 125)        //   repeat for 4 ms (125 x 32 us) 

            {                                

                sPRESS = !BUTTON;     //     turn on LED only if button pressed 

                GPIO = sGPIO.port;    //     update port (copy shadow to GPIO) 

            } 

        } 

        // toggle flashing LED        

        sFLASH = !sFLASH;             // toggle flashing LED (shadow) 

                 

    }   // repeat forever 

} 
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Comparisons 

Here is the resource usage summary for the “Flash an LED while responding to a pushbutton” programs (the 

C version defining the shadow register as a union containing a bitfield structure, as above): 

Flash+PB_LED 

The C source code is comparatively long in this example, because of the shadow register union / bitfield 

structure definition.  It’s a big part of the source code – something you wouldn’t normally bother with, for 

such a small program.  But we’ll keep doing it this way, because it’s good practice that will serve us well as 

our programs become longer, and the extra lines of variable definition won’t seem like such a big deal. 

 

Example 3: Switch debouncing 

The previous lesson demonstrated one method commonly used to debounce switches: sampling the switch 

state periodically, and only considering it to have definitely changed when it has been in the new state for 

some minimum number of successive samples. 

This “counting algorithm” was given as: 

count = 0 

while count < max_samples 

 delay sample_time 

 if input = required_state 

  count = count + 1 

 else 

  count = 0 

end 

 

 

As explained in mid-range lesson 4, this can be simplified by using a timer, since the timer increments 

automatically: 

reset timer 

while timer < debounce time 

 if input ≠ required_state 

  reset timer 

end 

 

This algorithm was implemented in assembler, to wait for and debounce a “button down” event, as follows: 

        banksel TMR0 

wait_dn clrf    TMR0            ; reset timer 

chk_dn  btfsc   GPIO,GP3        ; check for button press (GP3 low) 

        goto    wait_dn         ;   continue to reset timer until button down 

        movf    TMR0,w          ; has 10 ms debounce time elapsed? 

        xorlw   .157            ;   (157 = 10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_dn 

 

Assembler / Compiler 

Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

12F629 12F509 12F629 12F509 12F629 12F509 

Microchip MPASM 44 37 38 31 2 2 

XC8 (Free mode) 31 28 78 72 3 2 

../1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
../../Midrange/4%20-%20Timer%200/PIC_Mid_A_4.pdf
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This code assumes that Timer0 is available, and is in timer mode, with a 1 MHz instruction clock and a 1:64 

prescaler, giving 64 µs per tick. 

Although mid-range PICs have more than one timer, they remain a scarce resource, and it is likely that 

Timer0 is being used for something else, and so is not available for switch debouncing.  As we’ll see in the 

next lesson, it can be better to use a regular timer-driven interrupt for switch debouncing, allowing a single 

timer (driving the interrupt) to be used for a number of tasks. 

But if you’re not using Timer0 for anything else, using it for switch debouncing is perfectly reasonable. 

This technique was demonstrated by applying this timer-based debouncing method to the “toggle an LED on 

pushbutton press” program developed in mid-range assembler lesson 3.  

XC8 implementation 

Timer0 can be configured for timer mode, with a 1:64 prescaler, by: 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b101;      // prescale = 64 

                                    // -> increment every 64 us 

 

This is the same as for the 1:32 prescaler examples, above, except that the PS<2:0> bits are set to ‘101’ 

instead of ‘100’. 

 

The timer-based debounce algorithm, given above in pseudo-code, is readily translated into C: 

        TMR0 = 0;                   // reset timer 

        while (TMR0 < 157)          // wait at least 10 ms (157 x 64 us = 10 ms) 

            if (GPIObits.GP3 == 1)  //   if button up, 

                TMR0 = 0;           //     restart wait 

 

Using C macros 

This fragment of code is one that we might want to use a number of times, perhaps modified to debounce 

switches on inputs other than GP3, in this or other programs. 

As we saw in mid-range lesson 5, the MPASM assembler provides a macro facility, which allows a 

parameterised segment of code to be defined once and then inserted multiple times into the source code.   

Macros can also be used when programming in C. 

 

For example, we could define our debounce routine as a macro as follows: 

#define DEBOUNCE 10*1000/256    // switch debounce count = 10 ms/(256us/tick) 

 

// DbnceLo() 

// 

// Debounce switch on given input pin 

// Waits for switch input to be low continuously for DEBOUNCE*256/1000 ms 

// 

// Uses: TMR0       Assumes: TMR0 running at 256 us/tick 

// 

#define DbnceLo(PIN) TMR0 = 0;                /* reset timer              */ \ 

                     while (TMR0 < DEBOUNCE)  /* wait until debounce time */ \ 

                         if (PIN == 1)        /*   if input high,         */ \ 

                             TMR0 = 0         /*     restart wait         */ 

 

../3%20-%20Interrupts/PIC_Mid_C_3.pdf
../../Midrange/3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
../../Midrange/5%20-%20Assembler%20directives/PIC_Mid_A_5.pdf
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Note that a backslash (‘\’) is placed at the end of all but the last line, to continue the macro definition over 

multiple lines.  To make the backslashes visible to the C pre-processor, the older “/* */” style comments 

must be used, instead of the newer “//” style. 

 

This macro can then be used within your program as, for example: 

        DbnceLo(GPIObits.GP3);    // wait until button pressed (GP3 low) 

 

You can define macros toward the start of your source code, but as you build your own library of useful 

macros, you would normally keep them together in one or more header files, such as “stdmacros.h”, and 

reference them from your main program, using the #include directive. 

 

Complete program 

Here is how this timer-based debounce code (without using macros) fits into the XC8 version of the “toggle 

an LED on pushbutton press” program: 

/************************************************************************ 

*   Description:    Lesson 2, example 3a                                * 

*                                                                       * 

*   Demonstrates use of Timer0 to implement debounce counting algorithm * 

*                                                                       * 

*   Toggles LED when pushbutton is pressed then released                * 

*                                                                       * 

************************************************************************* 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

          

// Pin assignments 

#define sFLASH  sGPIO.GP1           // flashing LED (shadow) 

#define BUTTON  GPIObits.GP3        // pushbutton 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 
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/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure port 

    GPIO = 0;                       // start with LED off 

    sGPIO.port = 0;                 //   update shadow 

    TRISIO = 0b111101;              // configure GP1 (only) as an output 

     

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b101;      // prescale = 64 

                                    // -> increment every 64 us 

              

    //*** Main loop  

    for (;;) 

 { 

        // wait for button press, debounce using timer0: 

        TMR0 = 0;                   // reset timer 

        while (TMR0 < 157)          // wait at least 10 ms (157 x 64 us = 10 ms) 

            if (BUTTON == 1)        //   if button up, 

                TMR0 = 0;           //     restart wait 

         

        // toggle LED 

        sFLASH = !sFLASH;           // toggle flashing LED (shadow) 

        GPIO = sGPIO.port;          // write to GPIO 

 

        // wait for button release, debounce using timer0: 

        TMR0 = 0;                   // reset timer 

        while (TMR0 < 157)          // wait at least 10ms (157 x 64us = 10 ms) 

            if (BUTTON == 0)        //   if button down, 

                TMR0 = 0;           //     restart wait 

             

    }   // repeat forever 

} 

 

Example 4: Using Counter Mode 

Until now we’ve used Timer0 in “timer mode”, where it is clocked by the PIC’s instruction clock, which 

runs at one quarter the speed of the processor clock (i.e. 1 MHz when the 4 MHz internal RC oscillator is 

used).  As we saw in mid-range 

lesson 4, the timer can instead be 

used in “counter mode”, where it 

counts transitions (rising or falling) 

on the PIC’s T0CKI input. 

We can use the example from that 

lesson to show how Timer0 can be 

used as a counter, using C: Timer0 

is driven by an external 32.768 

kHz crystal oscillator (as shown on 

the right), providing a time base 

that can be used to flash an LED at 

a more accurate 1 Hz.  

 

../../Midrange/4%20-%20Timer%200/PIC_Mid_A_4.pdf
../../Midrange/4%20-%20Timer%200/PIC_Mid_A_4.pdf
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To configure the Gooligum training board for this example, close jumper JP22 to connect the 32 kHz clock 

signal to T0CKI, and close jumpers JP3 and JP12 to enable the external MCLR  pull-up resistor (not shown in 

this diagram, for clarity) and the LED on GP1.  If you are using Microchip’s Low Pin Count Demo Board, 

you will need to build the oscillator circuit separately, as described in baseline assembler lesson 5. 

 

If the 32.768 kHz clock input is divided (prescaled) by 128, bit 7 of TMR0 will cycle at 1 Hz. 

To configure Timer0 for counter mode (external clock on T0CKI) with a 1:128 prescale ratio, we need to set 

the T0CS bit to ‘1’, PSA to ‘0’ and PS<2:0> to ‘110’. 

This was done in mid-range assembler lesson 4 by: 

        movlw   b'11110110'     ; configure Timer0: 

                ; --1-----          counter mode (T0CS = 1) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----110          prescale = 128 (PS = 110)  

        banksel OPTION_REG      ;   -> increment at 256 Hz with 32.768 kHz input 

        movwf   OPTION_REG 

 

The value of T0SE bit is irrelevant; we don’t care if the counter increments on the rising or falling edge of 

the input clock signal – only the frequency is important.  Either edge will do. 

Bit 7 of TMR0 (which is cycling at 1 Hz) was then continually copied to GP1 (using a shadow register), as 

follows: 

loop    ; transfer TMR0<7> to GP1 

        clrf    sGPIO           ; assume TMR0<7>=0 -> LED off 

        banksel TMR0 

        btfsc   TMR0,7          ; if TMR0<7>=1 

        bsf     sGPIO,GP1       ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        banksel GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    loop          

 

XC8 implementation 

Configuring Timer0 is simply: 

    OPTION_REGbits.T0CS = 1;        // select counter mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b110;      // prescale = 128 

                                    // -> incr at 256 Hz with 32.768 kHz input 

 

 

To copy bit 7 of TMR0 to the LED (via a shadow bit), we can use the following construct: 

        sFLASH = 0;                 // assume TMR<7>=0 -> LED off        

        if (TMR0 & 1<<7)            // if TMR0<7>=1 

            sFLASH = 1;             //   turn on LED 

 

This works because the expression “1<<7” equals 10000000 binary, so the result of ANDing TMR0 with 

1<<7 will only be non-zero if TMR0<7> is set. 

Or we could write this equivalently as: 

        sFLASH = (TMR0 & 1<<7) != 0;    // sFLASH = TMR0<7> 

http://www.gooligum.com/devboards/base-mid/base-mid.html
../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
../../Midrange/4%20-%20Timer%200/PIC_Mid_A_4.pdf
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Which construct you use is, as ever, a matter of personal style; we’ll use the second version here. 

Complete program 

Here is the XC8 version of the “flash an LED using crystal-driven timer” program: 

/************************************************************************ 

*   Description:    Lesson 2, example 4                                 * 

*                                                                       * 

*   Demonstrates use of Timer0 in counter mode                          * 

*                                                                       * 

*   LED flashes at 1 Hz (50% duty cycle),                               * 

*   with timing derived from 32.768 kHz input on T0CKI                  * 

*                                                                       * 

************************************************************************* 

*   Pin assignments:                                                    * 

*       GP1   = flashing LED                                            * 

*       T0CKI = 32.768 kHz signal                                       * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define sFLASH  sGPIO.GP1           // flashing LED (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure port 

    TRISIO = ~(1<<1);               // configure GP1 (only) as an output 

     

    // configure Timer0 

    OPTION_REGbits.T0CS = 1;        // select counter mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b110;      // prescale = 128 

                                    // -> incr at 256 Hz with 32.768 kHz input 
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    //*** Main loop 

    for (;;) 

    { 

        // TMR0<7> cycles at 1 Hz, so continually copy to LED 

        sFLASH = (TMR0 & 1<<7) != 0;    // sFLASH = TMR0<7> 

         

        GPIO = sGPIO.port;              // copy shadow to GPIO 

         

    }   // repeat forever 

} 

 

 

Summary 

These examples have demonstrated that Timer0 can be effectively configured and accessed using the XC8 

compiler, with the program algorithms being able to be expressed quite succinctly in C. 

We’ve also seen that using symbolic names and macros can help make your code more maintainable, and 

how the union and bitfield structure constructs can be used to make it possible to access both a whole 

variable and its individual bits, in an elegant way. 

 

In the next lesson we’ll see how interrupts can be implemented using XC8. 

 

 

../3%20-%20Interrupts/PIC_Mid_C_3.pdf
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Introduction to PIC Programming 

Programming Mid-Range PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 3: Introduction to Interrupts 

 

 

As we saw in mid-range lesson 6, the interrupt facility available on mid-range PICs is especially useful, 

making it much easier to implement regular “background” tasks (such as refreshing a multiplexed display – 

see for example baseline C lesson 5) and allow programs to respond in a timely manner to external events, 

without having to sit in a busy-wait, or polling loop.  Both of these applications of interrupts are 

demonstrated in this lesson. 

This lesson revisits the material from mid-range lesson 6, introducing external and timer interrupts (driven 

by Timer0) and some of their applications, such as running background tasks and switch debouncing,. 

As usual, the examples are re-implemented using Microchip’s XC8 compiler
1
 (running in “Free mode”), 

introduced in lesson 1. 

In summary, this lesson covers: 

 Introduction to interrupts on the mid-range PIC architecture 

 Interrupt handling, using XC8 

 Timer-driven interrupts 

 Debouncing single switches with timer-driven interrupts 

 External interrupts on the INT pin 

 

Note that this tutorial series assumes a working knowledge of the C language; it does not attempt to teach C. 

Interrupts 

An interrupt is a means of interrupting the main program flow in response to an event, so that the event can 

be handled, or serviced.  The event (referred to an interrupt source) can be internal to the PIC, such as a 

timer overflowing, or external, such as a change on an input pin. 

When the interrupt is triggered, program execution immediately jumps to an interrupt service routine (ISR), 

which, in the mid-range PIC architecture, is always located at address 0004h (the “interrupt vector”). 

The XC8 compiler hides this detail; if a function is defined with the qualifier ‘interrupt’, the compiler 

considers it to be an interrupt service routine, and places it at the correct address, automatically.  Of course, 

this means that, on mid-range PICs, the ‘interrupt’ qualifier can only be used with one function, as there 

is only one interrupt vector in the mid-range architecture. 

                                                      

1
 Available as a free download from www.microchip.com. 

../../Midrange/6%20-%20Interrupts/PIC_Mid_A_6.pdf
../../Baseline%20C/5%20-%207-segment%20displays/PIC_Base_C_5.pdf
file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Midrange/6%20-%20Interrupts/PIC_Mid_A_6.pdf
../1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
http://www.microchip.com/
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The ISR must save the current processor state, or context (i.e. the contents of any registers which the ISR 

will modify, such as W and STATUS), service the interrupt, and then restore the context before returning to 

the main program.  In this way, the main program will never “notice” that the interrupt has happened – the 

interrupt will be completely transparent, except for whatever action the interrupt service routine was intended 

to perform. 

Again, the XC8 compiler takes care of this implementation detail, automatically adding appropriate context 

save and restore code to the ‘interrupt’ function. 

Timer0 Interrupts 

Timer0 can be used to regularly generate interrupts, 

which can drive “background” tasks, such as: 

 Generating a regular output; 

for example flashing an LED. 

 Monitoring and debouncing inputs 

Meanwhile, a “main program” can continue to 

perform other “foreground” tasks. 

The examples in this section illustrate these 

techniques, using the circuit from lesson 2, shown 

on the right.  

If you have the Gooligum training board, close 

jumpers JP3, JP12 and JP13 to enable the pull-up 

resistor on GP3 and the LEDs on GP1 and GP2. 

Example 1a: Flashing an LED 

To begin, we’ll simply flash an LED, without attempting to make it flash at exactly 1 Hz. 

We saw in mid-range lesson 4 that, given a 1 MHz instruction clock with maximum prescaling (1:256), the 

longest period that Timer0 can generate is 256 × 256 × 1 µs = 65.5 ms.  Therefore, if we configured the PIC 

to use a 4 MHz clock, and set up Timer0 in timer mode with a 1:256 prescaler, TMR0 would overflow 

(rollover from 255 to 0) every 65.5 ms. 

If we then enabled Timer0 interrupts, the interrupt would be triggered on every TMR0 overflow, i.e. every 

65.5 ms.  So the interrupt service routine (ISR) would be called every 65.5 ms. 

If the ISR toggled an LED every time it was called, the LED would change state every 65.5 ms – it would 

flash with a period of 65.5 ms × 2 = 131 ms, giving a frequency of 7.6 Hz. 

Having an LED flash as 7.6 Hz is not ideal, but the flashing is visible (just), and that’s the slowest flash rate 

we can generate with the simple approach described above.  So we’ll start there. 

 

The assembler code in mid-range lesson 6 configured the port and Timer0, before enabling the Timer0 

interrupt by setting the T0IE (Timer0 interrupt enable) and GIE (global interrupt enable) bits in the INTCON 

register: 

        ; enable interrupts 

        movlw   1<<GIE|1<<T0IE  ; enable Timer0 and global interrupts 

        movwf   INTCON 

 

The interrupt service routine began by saving the processor context, and then reset, or cleared, the Timer0 

interrupt flag (T0IF) to show that this Timer0 overflow event has been handled – if this is not done, the 

interrupt would immediately re-trigger, as soon as the ISR has exited. 

../2%20-%20Timer%200/PIC_Mid_C_2.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
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The interrupt service routine then toggled the LED, indirectly, by toggling the bit corresponding to the LED 

in a shadow register: 

        movf    sGPIO,w         ; only update shadow register 

        xorlw   1<<nLED       

        movwf   sGPIO       

      

This was done to avoid potential read-modify-write problems (described in baseline assembler lesson 2). 

Finally, the ISR restored the processor context, before exiting and returning control to the main program. 

The body of the main program then had only a single task to perform – to repeatedly copy the contents of the 

shadow register to the GPIO port, to make the changes made within the ISR visible (literally!): 

main_loop 

        ; continually copy shadow GPIO to port 

        movf    sGPIO,w  

        banksel GPIO 

        movwf   GPIO 

         

        ; repeat forever 

        goto    main_loop       

 

XC8 implementation 

As mentioned above, the XC8 compilers hide much of the complexity associated with handling interrupts, 

such as saving and restoring the processor context. 

The interrupt service routine is implemented as a function, defined with the qualifier ‘interrupt’. 

For example: 

void interrupt isr(void) 

 

Note that the interrupt function should be declared as type void, and must not take any parameters, because it 

is never explicitly called from anywhere – nothing is passed to it, and nothing is returned.  It just “happens”, 

whenever an interrupt is triggered.  The name of the interrupt function is not important; you don’t have to 

call it ‘isr’. 

Since direct parameter passing isn’t possible, any data passed between the ISR and the main program must 

be held in global variables (declared outside any function), so that both the interrupt function and main() 

(and any other functions) can access them. 

Additionally, any global variable which may be modified by the ISR must be declared as ‘volatile’, to 

warn the compiler from eliminating apparently redundant references to those variables in the main program. 

We’ll continue to use the union construct introduced in the previous lesson for the shadow copy of GPIO.  

Since it is accessed by both the ISR and the main program, it must be declared as a global variable, before 

main() or the interrupt function, and qualified as ‘volatile’: 

/***** GLOBAL VARIABLES *****/ 

volatile union {                    // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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Since we don’t need to worry about saving or restoring the processor context, the XC8 version of the ISR 

can be very simple: 

void interrupt isr(void) 

{ 

    //*** Service Timer0 interrupt 

    // 

    //  TMR0 overflows every 65.5 ms 

    // 

    //  Flashes LED at ~7.6 Hz by toggling on each interrupt 

    //      (every ~65.5 ms) 

    // 

    //  (only Timer0 interrupts are enabled) 

    //     

    INTCONbits.T0IF = 0;            // clear interrupt flag 

     

    // toggle LED 

    sF_LED = ~sF_LED;               // (via shadow register) 

} 

 

The symbol ‘sF_LED’ had been defined previously, to help make the code more maintainable: 

// Pin assignments 

#define sF_LED  sGPIO.GP2           // flashing LED (shadow) 

 

 

In the main program, we configure the port and Timer0, as we have done before: 

    // configure port 

    GPIO = 0;                       // start with all LEDs off 

    sGPIO.port = 0;                 //   update shadow 

    TRISIO = ~(1<<2);               // configure GP2 (only) as an output 

 

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b111;      // prescale = 256 

                                    // -> increment every 256 us 

 

 

Having configured the port and timer, we’re ready to enable the Timer0 interrupt, which, as we saw above, is 

done by setting the T0IE and GIE bits in the INTCON register. 

This could be done by: 

    // enable interrupts 

    INTCONbits.T0IE = 1;            // enable Timer0 interrupt 

    INTCONbits.GIE = 1;             // enable global interrupts 

 

 

However, XC8 defines a macro, ‘ei()’, which is intended to be used to enable interrupts globally, and is 

equivalent to ‘INTCONbits.GIE = 1’. 

Similarly, there is a ‘di()’ macro, used to disable all interrupts, equivalent to ‘INTCONbits.GIE = 0’. 

So, in keeping with the XC8 conventions, the Timer0 interrupt should be enabled by: 

    // enable interrupts 

    INTCONbits.T0IE = 1;            // enable Timer0 interrupt 

    ei();                           // enable global interrupts 
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Finally, we need to continually copy the shadow register to GPIO, which can be done by: 

    //*** Main loop 

    for (;;) 

    { 

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever 

 

Complete program 

Here is how these code fragments fit together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 3, example 1a                                * 

*                                                                       * 

*   Demonstrates use of Timer0 interrupt to perform a background task   * 

*                                                                       * 

*   Flash LED at approx 7.6 Hz (50% duty cycle)                         * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP2 = flashing LED                                              * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define sF_LED  sGPIO.GP2           // flashing LED (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

volatile union {                    // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 
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    // configure port 

    GPIO = 0;                       // start with all LEDs off 

    sGPIO.port = 0;                 //   update shadow 

    TRISIO = ~(1<<2);               // configure GP2 (only) as an output 

 

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b111;      // prescale = 256 

                                    // -> increment every 256 us     

 

    // enable interrupts 

    INTCONbits.T0IE = 1;            // enable Timer0 interrupt 

    ei();                           // enable global interrupts 

 

                                     

    //*** Main loop 

    for (;;) 

    { 

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever 

} 

 

 

/***** INTERRUPT SERVICE ROUTINE *****/ 

void interrupt isr(void) 

{ 

    //*** Service Timer0 interrupt 

    // 

    //  TMR0 overflows every 65.5 ms 

    // 

    //  Flashes LED at ~7.6 Hz by toggling on each interrupt 

    //      (every ~65.5 ms) 

    // 

    //  (only Timer0 interrupts are enabled) 

    //     

    INTCONbits.T0IF = 0;            // clear interrupt flag 

     

    // toggle LED 

    sF_LED = ~sF_LED;               // (via shadow register) 

} 

 

 

Example 1b: Slower flashing 

The LED in the last example flashed at around 7.6 Hz.  Since the longest possible interval between Timer0 

interrupts is 65.5 ms (with a 4 MHz processor clock), to flash the LED any slower, we can’t toggle it on 

every interrupt; we have to skip some of them.  That means counting each interrupt, and only toggling the 

LED when the count reaches a certain value. 

A simple way to implement this, if we are not concerned with exact timing, is to use an 8-bit counter, and to 

let it reach 255 before toggling the LED when it overflows to 0. 

If, every time an interrupt is triggered by a Timer0 overflow, the ISR increments a counter, we’re essentially 

implementing a 16-bit timer, based on Timer0, with TMR0 as the least significant eight bits, and the counter 

incremented by the ISR being the most significant eight bits. 
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If the ISR increments the counter whenever Timer0 overflows (every 256 ticks of TMR0), and it toggles the 

LED whenever the counter overflows (every 256 interrupts), the LED is being toggled every N × 256 × 256 

(where N is the prescale ratio) instruction cycles. 

Assuming a 1 MHz instruction clock, LED will be toggled every N × 256 × 256 µs = N × 65.536 ms.  

We can make the LED flash at close to 1 Hz by choosing N = 8 (prescale ratio of 1:8).  The resulting toggle 

period is 8 × 256 × 256 µs = 524.3 ms, giving a flash rate of 0.95 Hz – close enough! 

XC8 implementation 

To implement the Timer0 overflow counter, we’ll need a variable to store it in. 

Since this variable only needs to be used by the interrupt service routine, to be consistent with good modular 

programming practice, we should make it private to (defined within) the interrupt function: 

void interrupt isr(void) 

{ 

    static uint8_t  cnt_t0 = 0;      // counts timer0 overflows 

 

    // (body of ISR goes here) 

} 

 

Note that this variable is declared as being ‘static’; this is very important.  The counter must retain its 

value between interrupts, so that it can be incremented by successive interrupts.  To ensure that the counter 

continues to exist, preserving its value, outside the interrupt function, it must be declared as ‘static’. 

Note also that it the counter variable is initialised, as part of its definition.  You might think that, because the 

definition is within the interrupt function, that this initialisation (clearing the counter) will happen every time 

an interrupt occurs, losing the value of the counter.  But no – all static variables are initialised only once, by 

the start-up code generated by the C compiler, before the main() function starts executing. 

 

We then need to add instructions to the ISR to increment this counter, and toggle the LED only when it 

overflows back to zero: 

    // toggle LED every 256 interrupts (524 ms) 

    ++cnt_t0;                   // increment interrupt count (every 2.048 ms) 

    if (cnt_t0 == 0)            // if count overflow (every 256 interrupts), 

        sF_LED = ~sF_LED;       //   toggle LED (via shadow register) 

 

This could have been written more succinctly as: 

    // toggle LED every 256 interrupts (524 ms) 

    if (++cnt_t0 == 0)          // increment count; if overflow (every 524 ms), 

        sF_LED = ~sF_LED;       //   toggle LED (via shadow register) 

 

Whether you choose to sacrifice readability to save a line of source code is a question of personal style. 

 

Here is the complete ISR, with these changes: 

void interrupt isr(void) 

{ 

    static uint8_t  cnt_t0 = 0;      // counts timer0 overflows 

     

    //*** Service Timer0 interrupt 

    // 

    //  TMR0 overflows every 2.048 ms 

    // 

    //  Flashes LED at ~0.95 Hz by toggling on every 256th interrupt 

    //      (every ~524 ms) 
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    //  (only Timer0 interrupts are enabled) 

    // 

    INTCONbits.T0IF = 0;            // clear interrupt flag 

     

    // toggle LED every 256 interrupts (524 ms) 

    ++cnt_t0;                     // increment interrupt count (every 2.048 ms) 

    if (cnt_t0 == 0)              // if count overflow (every 256 interrupts), 

        sF_LED = ~sF_LED;         //   toggle LED (via shadow register) 

} 

 

 

And finally the configuration of Timer0 needs to be changed, to select a 1:8 prescaler: 

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b010;      // prescale = 8 

                                    // -> increment every 8 us   

 

With these changes to the code in the first example, the LED will flash at a much more sedate 0.95 Hz. 

Example 1c: Flashing an LED at exactly 1 Hz 

What if we needed (for some reason) to flash the LED at exactly 1 Hz, given an accurate 4 MHz processor 

clock?  As discussed in detail in mid-range lesson 6, there are a number of pitfalls inherent in trying to use 

Timer0 to generate a cycle-exact time base. 

But as we saw, these problems can be overcome, relatively easily. 

To use Timer0 to provide a precise time base to drive an interrupt: 

 Do not use the prescaler (assign it to the watchdog timer). 

 Do not load a fixed start value into the timer. 

Instead, add an offset to the current timer value, making the timer “skip forward” by an appropriate 

amount, shortening the timer cycle from 256 counts to whatever period you require. 

 Adjust the offset to allow for the fact that the timer is inhibited for two cycles after it is written, and 

that the timer increments once (if no prescaler is used) during the add instruction. 

This means that the offset to be added must be 3 cycles larger than you may expect, to achieve a 

given timer period. 

 

In the example in mid-range lesson 6, we used the following assembler code: 

        movlw   .256-.250+.3    ; add value to Timer0 

        banksel TMR0            ;   for overflow after 250 counts 

        addwf   TMR0,f 

 

to make Timer0 overflow after 250 cycles, instead of the usual 256 cycles (with no prescaler).  This was 

done after every Timer0 overflow (i.e. within the interrupt service routine), so that the interrupt is triggered 

precisely every 250 instruction cycles (every 250 µs, given a 4 MHz processor clock). 

 

Toggling the LED every 500 ms means toggling after every 500 ms ÷ 250 µs = 2000 interrupts. 

This means that the ISR must be able to count to 2000, so that it can toggle the LED after 2000 interrupts. 

In the assembler version, this was realised by using two 8-bit variables, one counting interrupts to create a 10 

ms time base, the other counting these 10 ms intervals to generate the 500 ms period we need. 

../../Midrange/6%20-%20Interrupts/PIC_Mid_A_6.pdf
../../Midrange/6%20-%20Interrupts/PIC_Mid_A_6.pdf
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But since we’re using C here, we may as well take advantage of its ability to easily work with larger 

quantities, and simply use a single 16-bit variable to count interrupts. 

XC8 implementation 

Since the timer overflow counter is only accessed by the interrupt service routine, it should be defined within 

the interrupt function, as was done in the last example: 

void interrupt isr(void) 

{ 

    static uint16_t  cnt_t0 = 0;    // counts timer0 overflows 

 

    // (body of ISR goes here) 

} 

 

Note again that, because this variable needs to be able to count up to 2000, it is defined as a 16-bit integer 

(uint16_t), instead of the 8-bit type (uint8_t) we used in the previous example. 

 

To make the Timer0 interrupt occur every 250 cycles, instead of the usual 256, we need to add an 

appropriate offset to TMR0, within the ISR, as follows: 

    TMR0 += 256-250+3;              // add value to Timer0 

                                    //   for overflow after 250 counts 

 

It is then a simple matter to count interrupts and toggle the LED after 500 ms (2000 counts): 

    // toggle LED every 500 ms 

    ++cnt_t0;                       // increment interrupt count (every 250 us) 

    if (cnt_t0 == 500000/250) {     // if count overflow (every 500 ms), 

        cnt_t0 = 0;                 //   reset count 

        sF_LED = ~sF_LED;           //   toggle LED (via shadow register) 

 

Finally, in the initialisation part of the main program, we need to configure Timer0 with no prescaler: 

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 1;         // no prescaler (assigned to WDT) 

                                    // -> increment every 1 us   

 

With these modifications in place, the LED will now flash with a frequency of exactly 1 Hz, assuming that 

the processor clock is exactly 4 MHz (which, since we are using the internal RC oscillator, it will not be the 

case; it’s not that accurate.  Nevertheless, the LED flashes every 4,000,000 processor cycles, precisely). 

Complete program 

Here is how the code fragments above fit together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 3, example 1c                                * 

*                                                                       * 

*   Demonstrates use of Timer0 interrupt to perform a background task   * 

*                                                                       * 

*   Flash LED at exactly 1 Hz (50% duty cycle)                          * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP2 = flashing LED                                              * 

*                                                                       * 

************************************************************************/ 
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#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define sF_LED  sGPIO.GP2           // flashing LED (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

volatile union {                    // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure port 

    GPIO = 0;                       // start with all LEDs off 

    sGPIO.port = 0;                 //   update shadow 

    TRISIO = ~(1<<2);               // configure GP2 (only) as an output 

 

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 1;         // no prescaler (assigned to WDT) 

                                    // -> increment every 1 us 

              

    // enable interrupts 

    INTCONbits.T0IE = 1;            // enable Timer0 interrupt 

    ei();                           // enable global interrupts 

                                     

                                     

    //*** Main loop 

    for (;;) 

    { 

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever 

} 

 

 

/***** INTERRUPT SERVICE ROUTINE *****/ 

void interrupt isr(void) 

{ 
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    static uint16_t  cnt_t0 = 0;    // counts timer0 overflows 

     

    //*** Service Timer0 interrupt 

    // 

    //  TMR0 overflows every 250 clocks = 250 us 

    //  Flashes LED at 1 Hz by toggling on every 2000th interrupt 

    //      (every 500 ms)    

    //  

    //   (only Timer0 interrupts are enabled) 

    // 

    TMR0 += 256-250+3;              // add value to Timer0 

                                    //   for overflow after 250 counts 

    INTCONbits.T0IF = 0;            // clear interrupt flag 

     

    // toggle LED every 500 ms 

    ++cnt_t0;                       // increment interrupt count (every 250 us) 

    if (cnt_t0 == 500000/250) {     // if count overflow (every 500 ms), 

        cnt_t0 = 0;                 //   reset count 

        sF_LED = ~sF_LED;           //   toggle LED (via shadow register) 

    } 

} 

 

Comparisons 

As we’ve done before, we can compare the length of the source code (ignoring comments and white space) 

versus program and data memory utilisation for this XC8 version with the corresponding assembly version 

(from mid-range lesson 6), to illustrate any trade-offs between programmer efficiency and resource-usage 

efficiency.  Longer source code implies more time spent by the programmer writing the code, and more time 

spent debugging or maintaining the code.  Understanding these trade-offs, and the relative value of your time 

versus device cost (having less efficient code means that you may need a bigger, more expensive, device to 

hold it), is key to whether you choose to develop in C or assembler: 

Flash_LED-50p-int-1Hz 

Once again, the C source code is less than half as long as the assembler source, while the code generated by 

XC8 (with optimisation disabled) is significantly larger than the hand-written assembly version. 

 

Example 2: Flash LED while responding to input 

Now that we have a timer-driven interrupt flashing the LED on GP2 at 1 Hz, that flashing will continue, “on 

its own”, independently of whatever the main program code is doing.  This is the main reason for using a 

timer interrupt to drive a background process like this; once the process is set up, you do not need to worry 

about maintaining it in the main code.  It may seem complex to set up the interrupt code, but, once done, it 

makes your main code much easier to write. 

To illustrate this, we can re-implement example 2 from lesson 2, where we the LED on GP1 is lit whenever 

the pushbutton is pressed, while the LED on GP2 continues to flash steadily at 1 Hz. 

 

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 64 49 5 

XC8 (Free mode) 32 85 8 

../2%20-%20Timer%200/PIC_Mid_C_2.pdf
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XC8 implementation 

Lesson 2 included this piece of code to light the LED on GP1 only when the pushbutton on GP3 is pressed: 

        sGPIO &= ~(1<<1);           // assume button up -> LED off 

        if (GP3 == 0)               // if button pressed (GP3 low) 

            sGPIO |= 1<<1;          //   turn on LED on GP1 

        GPIO = sGPIO;               // update port (copy shadow to GPIO) 

 

If we declare our sGPIO union as in example 1, and define symbols to represent the pins: 

#define sB_LED  sGPIO.GP1           // "button pressed" indicator LED (shadow) 

#define sF_LED  sGPIO.GP2           // flashing LED (shadow) 

#define BUTTON  GPIObits.GP3        // pushbutton 

 

We can rewrite this as: 

        sB_LED = 0;                 // assume button up -> indicator LED off 

        if (BUTTON == 0)            // if button pressed (low) 

            sB_LED = 1;             //  turn on indicator LED 

        GPIO = sGPIO.port;          // update port (copy shadow to GPIO) 

 

 

In the main loop in example 1, above, we are doing nothing but copying the shadow register to GPIO: 

    for (;;) 

    { 

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever 

 

        

All we need do, then, is to insert the pushbutton-handling code into the main loop: 

    for (;;) 

    { 

        // check and respond to button press 

        sB_LED = 0;             // assume button up -> indicator LED off 

        if (BUTTON == 0)        // if button pressed (low) 

            sB_LED = 1;         //  turn on indicator LED 

         

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever 

 

And of course you could add any other code to the main loop, in the same way.  There is no need to be 

“aware” of the interrupt-driven process; it runs quite independently. 

 

That’s the theory, anyway.  You might think that, as we did in lesson 2, we could write the code which 

responds to the pushbutton as: 

        sB_LED = !BUTTON;       // turn on indicator only if button pressed 

 

That’s shorter, seems more natural, and is, in theory, equivalent – but in practice it doesn’t work properly in 

this example.  This happens because the code generated by XC8
2
 to implement this statement does not work 

                                                      

2
 true for version 1.00, running in “Free mode” 

../2%20-%20Timer%200/PIC_Mid_C_2.pdf
../2%20-%20Timer%200/PIC_Mid_C_2.pdf
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correctly if it is interrupted by a routine which also modifies the sGPIO union – which of course our ISR, 

which toggles a bit within sGPIO to flash an LED, does.  This is despite sGPIO being declared as 

‘volatile’. 

So – in practice, your ISR may interfere in non-obvious ways with your other code, if they are both updating 

the same variables or structures – especially when you are using a C compiler, where it may not be apparent 

that the generated code has this susceptibility. 

But in general this isn’t an issue that you would normally need to worry about.  Just remember that it can 

happen! 

 

The only other change that has to be made to the code in example 1 is to configure both GP1 and GP2 as 

outputs: 

    TRISIO = 0b111001;              // configure GP1 and GP2 (only) as outputs 

 

No changes are needed within the interrupt service routine. 

Complete program 

Although the changes to the code in example 1 are minor, here is how they fit together: 

/************************************************************************ 

*   Description:    Lesson 3, example 2                                 * 

*                                                                       * 

*   Demonstrates use of Timer0 interrupt to perform a background task   * 

*   while performing other actions in repsonse to changing inputs       * 

*                                                                       * 

*   One LED simply flashes at 1 Hz (50% duty cycle).                    * 

*   The other LED is only lit when the pushbutton is pressed.           * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = "button pressed" indicator LED                            * 

*       GP2 = flashing LED                                              * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define sB_LED  sGPIO.GP1           // "button pressed" indicator LED (shadow) 

#define sF_LED  sGPIO.GP2           // flashing LED (shadow) 

#define BUTTON  GPIObits.GP3        // pushbutton 

 

 

/***** GLOBAL VARIABLES *****/ 

volatile union {                    // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 
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        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure port 

    GPIO = 0;                       // start with all LEDs off 

    sGPIO.port = 0;                 //   update shadow 

    TRISIO = 0b111001;              // configure GP1 and GP2 (only) as outputs 

     

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 1;         // no prescaler (assigned to WDT) 

                                    // -> increment every 1 us 

              

    // enable interrupts 

    INTCONbits.T0IE = 1;            // enable Timer0 interrupt 

    ei();                           // enable global interrupts 

                                     

                                     

    //*** Main loop 

    for (;;) 

    { 

        // check and respond to button press 

        sB_LED = 0;             // assume button up -> indicator LED off 

        if (BUTTON == 0)        // if button pressed (low) 

            sB_LED = 1;         //  turn on indicator LED 

         

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever 

} 

 

 

/***** INTERRUPT SERVICE ROUTINE *****/ 

void interrupt isr(void) 

{ 

    static uint16_t  cnt_t0 = 0;    // counts timer0 overflows 

     

    //*** Service Timer0 interrupt 

    // 

    //  TMR0 overflows every 250 clocks = 250 us 

    // 

    //  Flashes LED at 1 Hz by toggling on every 2000th interrupt 

    //      (every 500 ms)    

    //  

    //   (only Timer0 interrupts are enabled) 

    // 

    TMR0 += 256-250+3;              // add value to Timer0 

                                    //   for overflow after 250 counts 

    INTCONbits.T0IF = 0;            // clear interrupt flag 
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    // toggle LED every 500 ms 

    ++cnt_t0;                       // increment interrupt count (every 250 us) 

    if (cnt_t0 == 500000/250)       // on count overflow (every 500 ms), 

    {      

        cnt_t0 = 0;                 //   reset count 

        sF_LED = ~sF_LED;           //   toggle LED (via shadow register) 

    } 

} 

 

Example 3: Switch debouncing 

Lesson 1 demonstrated one widely-used method of addressing the problem of switch bounce, which was 

expressed in pseudo-code as: 

count = 0 

while count < max_samples 

 delay sample_time 

 if input = required_state 

  count = count + 1 

 else 

  count = 0 

end 

 

The change in switch state is only accepted when the new state has been continually seen for at least some 

minimum period, for example 20 ms.  This debounce period is measured by incrementing a count while 

sampling the state of the switch, at a steady rate, such as every 1 ms. 

 

We saw in mid-range lesson 6 that this counting algorithm can be readily implemented in an interrupt service 

routine, which regularly samples the switch and increments a counter whenever the current (or raw) state of 

the switch is different from the last accepted (or debounced) state. 

That is, if the switch is in a different state from what it used to be, maybe it has “really” changed, or maybe 

this is just a glitch, or perhaps it’s bouncing, so let’s check a few more times to be sure.  When it’s been 

stable in the new state for some time, we accept this new state as being “real”, and consider the switch to 

have been debounced. 

 

Although you could have the ISR respond to and act upon switch changes, this isn’t normally done unless the 

event has to be responded to very quickly; it is generally best to keep the interrupt handling code short, so 

that the ISR finishes quickly, in case another, perhaps more important, interrupt is pending. 

Instead, the ISR would normally use a flag to signal to the main program that an event (such as a change in 

switch state) has occurred.  The main program then polls this flag and responds to the event when it is ready 

to do so. 

In this case, we would need a ‘switch state has changed’ flag. 

We also need a flag, or variable, to hold the “debounced”, or most recently accepted state of the switch input.  

The ISR can then periodically compare the current “raw” switch input with the saved “debounced” input, to 

determine whether the switch state has changed. 

 

This approach has the advantage that switch changes are detected quickly, while the main program does not 

have to respond to them immediately. 

 

../1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
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XC8 implementation 

In the assembler example in mid-range lesson 6, the variables holding the debounced pushbutton state and 

the pushbutton changed flag were defined as: 

PB_dbstate  res 1              ; bit 3 = debounced pushbutton state 

                               ;   (0 = pressed, 1 = released) 

PB_change   res 1              ; bit 3 = flag indicating pushbutton state change 

                               ;   (1 = new debounced state) 

 

This definition allocates a whole byte for each variable, even though only a single bit is needed in each case.  

Bit 3 was used to simplify the assembler code. 

However, XC8 provides a ‘bit’ data type, so we may as well make use of it, to simplify the C code, and to 

allow the compiler to pack these variables into a single byte of data memory (or not, as it sees fit – an 

advantage of C being that we don’t have to be concerned with these implementation details
3
). 

Since these variables will be updated in the ISR and accessed in the main program, they must be defined as 

volatile global variables, along with the shadow copy of GPIO: 

/***** GLOBAL VARIABLES *****/ 

volatile union {                // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

volatile bit    PB_dbstate;     // debounced pushbutton state (1 = released) 

volatile bit    PB_change;      // pushbutton state change flag (1 = changed) 

 

There is, however, one limitation with the way that bit variables are implemented in XC8 – they cannot be 

initialised as part of their definition. 

That is, we cannot write: 

volatile bit    PB_dbstate = 1;   // debounced pushbutton state (1 = released) 

volatile bit    PB_change = 0;    // pushbutton state change flag (1 = changed) 

 

Instead, they must be initialised separately, as part of the initialisation code, before interrupts are enabled (so 

that they have the correct values when the ISR first runs): 

    // initialise variables 

    PB_dbstate = 1;                 // initial pushbutton state = released 

    PB_change = 0;                  // clear pushbutton change flag (no change) 

 

 

Since the debounce counter is only used within the ISR, it should be defined as being private to (within) the 

interrupt function, along with the timer interrupt counter: 

    static uint8_t  cnt_t0 = 0;     // counts timer0 interrupts 

    static uint8_t  cnt_db = 0;     // debounce counter 

 

                                                      

3
 This is also a disadvantage of C – by not being aware of how the C compiler builds various constructs, we may not 

realize that we’re doing things in an inefficient way. 
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Once again, these variables must be defined as being ‘static’, so that their values will be preserved 

between interrupts. 

 

It is a good idea to define the debounce period as a constant, to make it easier to adapt the code for switches 

with different characteristics: 

#define MAX_DB_CNT  20/2    // maximum debounce count =  

                            //   debounce period / sample rate 

                            //   (20 ms debounce period / 2 ms per sample) 

 

(of course it would be cleaner still to define the debounce period and sample rate as constants, and to derive 

the maximum debounce count and sample timing from them – but in a short program like this it’s not 

difficult to see how these things relate to each other, especially if it is documented in comments, as above). 

 

The debounce routine must be run at some regular interval by the ISR. 

In the example in mid-range lesson 6, an interval of 2 ms was used, so we’ll do the same here, by 

incrementing and then testing a counter whenever the Timer0 interrupt is serviced: 

    // sample switch every 2 ms  

    ++cnt_t0;                       // increment interrupt count (every 250 us) 

    if (cnt_t0 == 2000/250)         // until 2 ms has elapsed 

    { 

        // debounce code goes here 

    } 

 

 

Within the debounce routine, we must first determine whether the raw pushbutton state has changed since it 

was last debounced.  Since we are using bit variables, this can be written very simply: 

    // compare raw pushbutton with current debounced state 

    if (BUTTON == PB_dbstate)   // if raw state matches last debounced state, 

    { 

        // pushbutton has not changed state 

    } 

    else 

    { 

        // pushbutton has changed state 

    } 

 

Where previously the symbol ‘BUTTON’ had been defined as: 

// Pin assignments 

#define sB_LED  sGPIO.GP1           // indicator LED (shadow) 

#define BUTTON  GPIObits.GP3        // pushbutton 

 

 

Having determined whether the pushbutton’s raw state has changed, we need to deal with both possibilities, 

as allowed for in the if / else structure above. 

 

If the pushbutton is still in the last debounced state, all we need to do is reset the debounce counter: 

        cnt_db = 0;                 // reset debounce count 
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Otherwise, the pushbutton’s state has changed.  We need to see whether the change is stable, by counting the 

number of successive times we’ve seen it in this new state, and then check whether the maximum count has 

been reached, to determine whether the switch really has changed state (and has finished bouncing): 

        ++cnt_db;                   // increment debounce count 

        if (cnt_db == MAX_DB_CNT)   // when max count is reached 

        {                                

            // accept new state as changed 

        } 

 

If we’re accepting that the pushbutton really has changed state, we need to update the variables and flags to 

reflect this: 

            PB_dbstate = !PB_dbstate;   //   toggle debounced state 

            cnt_db = 0;                 //   reset debounce count 

            PB_change = 1;              //   set pushbutton changed flag 

 

 

The main program can then poll this PB_change flag, to see whether the button has changed state: 

    if (PB_change == 1) 

    { 

        // pushbutton has changed state 

    } 

 

But since this variable is a binary flag, the code can be more clearly written as: 

    if (PB_change) 

    { 

        // pushbutton has changed state 

    } 

 

 

If the button has changed state, we then need to refer to the PB_dbstate variable, to see whether it the new 

state is “up” or “down” (pressed); we only want to toggle the LED when the button is pressed, not when it is 

released, so we could write: 

    if (PB_change) 

    { 

        // pushbutton has changed state, so check for button press 

        if (PB_dbstate == 0) 

        { 

            // pushbutton has been pressed (low) 

        } 

    } 

 

Or, if you prefer, you can write this much more succinctly as: 

        if (PB_change && !PB_dbstate)        

        { 

            // button state has changed and is pressed (low) 

        } 

 

As ever, it’s a question of personal style. 

 

Once we’ve determined that the button has been pressed, we can toggle the LED, using the shadow copy of 

GPIO, as we’ve done before: 

            sB_LED = ~sB_LED;             // toggle LED (via shadow register) 
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And finally, now that we’ve detected and responded to the button press, we need to clear the state change 

flag, to be ready for the next change: 

            PB_change = 0;                // clear button change flag 

 

 

And that’s all. 

It’s relatively complex, compared with the equivalent code in the example in lesson 2, but most of that 

complexity is “hidden” in the ISR; the code in the main program loop is quite simple, making it easier to do 

more within the main program, without having to poll and debounce switches – something that the ISR can 

take care of in the background.   

Complete program 

Here is the complete “toggle an LED on pushbutton press” program: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 3, example 3                                 * 

*                                                                       * 

*   Demonstrates use of Timer0 interrupt to implement                   * 

*   counting debounce algorithm                                         * 

*                                                                       * 

*   Toggles LED when the pushbutton is pressed (high -> low)            * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       GP3 = pushbutton (active low)                                   * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define sB_LED  sGPIO.GP1           // indicator LED (shadow) 

#define BUTTON  GPIObits.GP3        // pushbutton 

 

 

/***** CONSTANTS *****/ 

#define MAX_DB_CNT  20/2   // max debounce count = debounce period / sample rate 

                           //   (20 ms debounce period / 2 ms per sample) 

 

 

/***** GLOBAL VARIABLES *****/ 

volatile union {                // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 
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        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

volatile bit    PB_dbstate;     // debounced pushbutton state (1 = released) 

volatile bit    PB_change;      // pushbutton state change flag (1 = changed) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure port 

    GPIO = 0;                       // start with all LEDs off 

    sGPIO.port = 0;                 //   update shadow 

    TRISIO = ~(1<<1);               // configure GP1 (only) as an output 

     

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 1;         // no prescaler (assigned to WDT) 

                                    // -> increment every 1 us 

                                     

    // initialise variables 

    PB_dbstate = 1;                 // initial pushbutton state = released 

    PB_change = 0;                  // clear pushbutton change flag (no change) 

     

    // enable interrupts 

    INTCONbits.T0IE = 1;            // enable Timer0 interrupt 

    ei();                           // enable global interrupts 

                                     

    //*** Main loop 

    for (;;) 

    { 

        // check for debounced button press 

        if (PB_change && !PB_dbstate)   // if PB state changed and pressed (low) 

        { 

            sB_LED = ~sB_LED;           //   toggle LED (via shadow register) 

            PB_change = 0;              //   clear button change flag 

        } 

         

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever 

} 

 

 

/***** INTERRUPT SERVICE ROUTINE *****/ 

void interrupt isr(void) 

{ 

    static uint8_t  cnt_t0 = 0;     // counts timer0 interrupts 

    static uint8_t  cnt_db = 0;     // debounce counter 

     

    //*** Service Timer0 interrupt 

    // 

    //  TMR0 overflows every 250 clocks = 250 us 

    // 

    //  Debounces pushbutton: 

    //    samples every 2 ms (every 8th interrupt) 
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    //    -> PB_dbstate = debounced state 

    //       PB_change  = change flag (1 = new debounced state)    

    //  

    //   (only Timer0 interrupts are enabled) 

    //    

    TMR0 += 256-250+3;              // add value to Timer0 

                                    //   for overflow after 250 counts 

    INTCONbits.T0IF = 0;            // clear interrupt flag 

     

    // Debounce pushbutton  

    //   use counting algorithm: accept change in state 

    //   only if new state is seen a number of times in succession 

     

    // sample switch every 2 ms  

    ++cnt_t0;                       // increment interrupt count (every 250 us) 

    if (cnt_t0 == 2000/250)         // until 2 ms has elapsed 

    { 

        cnt_t0 = 0;                 //   reset interrupt count 

         

        // compare raw pushbutton with current debounced state 

        if (BUTTON == PB_dbstate)   // if raw PB matches debounced state, 

            cnt_db = 0;             //   reset debounce count 

        else                        // else raw pushbutton has changed state 

        { 

            ++cnt_db;                   // increment debounce count 

            if (cnt_db == MAX_DB_CNT)   // when max count is reached 

            {                               // accept new state as changed: 

                PB_dbstate = !PB_dbstate;   //   toggle debounced state 

                cnt_db = 0;                 //   reset debounce count 

                PB_change = 1;              //   set pushbutton changed flag 

                                            //   (polled and cleared in main) 

            } 

        }    

    } 

} 

 

 

Example 4: Switch debouncing while flashing an LED 

Since the previous example on switch debouncing was built on the framework of the earlier LED flashing 

examples, it’s not difficult to add the LED flashing code back into the interrupt service routine, showing how 

a single timer-driven interrupt can be used to schedule multiple concurrent tasks. 

In the assembler example in mid-range lesson 6, a variable was used in the Timer0 interrupt service routine 

to count periods of 2 ms each (the debounce sample period), to generate a 500 ms time base, used to toggle 

the LED.  This method (building on the existing 2 ms time base) was used in order to simplify the code, with 

only one additional 8-bit variable being needed. 

XC8 implementation 

Although we could take the same approach – adding a single 8-bit variable to count 2 ms periods – the ease 

of handling 16-bit quantities in C means that there is little reason to do so.  If you were really hard pressed to 

fit your variables into the available data memory, you might consider ways to save a byte here and there, 

although in that case, you’re probably better off either using a bigger PIC or programming in assembler.  

We’ll continue to take approaches which seem comfortable and natural from a C perspective, even if they are 

not necessarily the most efficient – because the emphasis when programming in C is a little different from 

programming in assembler. 
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So, as we did for the 1 Hz flashing example above, we’ll define a static 16-bit variable, within the interrupt 

function, for the counter used to generate the 500 ms time base: 

    static uint8_t      db_t_cnt = 0;   // debounce sample timebase counter 

    static uint8_t      db_s_cnt = 0;   // debounce sample counter 

    static uint16_t     fl_t_cnt = 0;   // LED flash timebase counter 

 

Note that the counter variables from the previous example have been renamed, for clarity and consistency; 

we now have two counters, generating two independent time bases within the same timer interrupt service 

routine, so it needs to be clear which is which. 

And then, either before or after the debounce routine in the ISR, we need to add some code to increment the 

counter to generate the 500 ms time base, and flash the LED: 

    ++fl_t_cnt;                     // increment interrupt count (every 250 us) 

    if (fl_t_cnt == 500000/250)     // until 500 ms has elapsed 

    { 

        fl_t_cnt = 0;               //   reset interrupt count 

        sF_LED = ~sF_LED;           //   toggle LED (via shadow register) 

    } 

 

Complete interrupt service routine 

Most of the code is the same as the previous example, except for the counter variable definition and 

initialisation, shown above.  The main loop is unchanged.  But here is the new interrupt service routine, so 

that you can see how the LED toggling code fits in after the debounce routine: 

/***** INTERRUPT SERVICE ROUTINE *****/ 

void interrupt isr(void) 

{ 

    static uint8_t      db_t_cnt = 0;   // debounce sample timebase counter 

    static uint8_t      db_s_cnt = 0;   // debounce sample counter 

    static uint16_t     fl_t_cnt = 0;   // LED flash timebase counter 

     

    //*** Service Timer0 interrupt 

    // 

    //  TMR0 overflows every 250 clocks = 250 us 

    // 

    //  Debounces pushbutton: 

    //    samples every 2 ms (every 8th interrupt) 

    //    -> PB_dbstate = debounced state 

    //       PB_change  = change flag (1 = new debounced state)    

    //    

    //  Flashes LED at 1 Hz by toggling on every 2000th interrupt 

    //      (every 500 ms)    

    //  

    //   (only Timer0 interrupts are enabled) 

    //    

    TMR0 += 256-250+3;              // add value to Timer0 

                                    //   for overflow after 250 counts 

    INTCONbits.T0IF = 0;            // clear interrupt flag 

     

    // Debounce pushbutton  

    //   use counting algorithm: accept change in state 

    //   only if new state is seen a number of times in succession 

    // 

    // sample switch every 2 ms  

    ++db_t_cnt;                     // increment interrupt count (every 250 us) 

    if (db_t_cnt == 2000/250)       // until 2 ms has elapsed 

    { 

        db_t_cnt = 0;               //   reset interrupt count 
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        // compare raw pushbutton with current debounced state 

        if (BUTTON == PB_dbstate)   // if raw PB matches current debounce state, 

            db_s_cnt = 0;           //   reset debounce count 

        else                        // else raw pushbutton has changed state 

        { 

            ++db_s_cnt;                     // increment debounce count 

            if (db_s_cnt == MAX_DB_CNT)     // when max count is reached 

            {                               //   accept new state as changed: 

                PB_dbstate = !PB_dbstate;   //     toggle debounced state 

                db_s_cnt = 0;               //     reset debounce count 

                PB_change = 1;              //     set pushbutton changed flag 

                                            //     (polled and cleared in main) 

            } 

        }    

    } 

     

    // Flash LED (toggle every 500 ms) 

    // 

    ++fl_t_cnt;                     // increment interrupt count (every 250 us) 

    if (fl_t_cnt == 500000/250)     // until 500 ms has elapsed 

    { 

        fl_t_cnt = 0;               //   reset interrupt count 

        sF_LED = ~sF_LED;           //   toggle LED (via shadow register) 

    } 

} 

 

Comparisons 

Here is the resource usage summary for the “flash LED while toggling on pushbutton press” programs: 

Flash+Toggle_LED 

The C source code continues to be around half as long as the assembly source, while the (unoptimised) code 

generated by XC8 (running in “Free mode”) is more than twice as large as the assembly version. 

 

External Interrupts 

Although polling input pins for changes is effective in many cases, especially in user interfaces, where the 

human user won’t notice a delay of a few milliseconds before a button press is responded to, some situations 

require a more immediate response. 

For a very fast response to a digital signal, the external interrupt, INT (which shares its pin with GP2) can be 

used.  This pin is edge-triggered, meaning that an interrupt will be triggered (if enabled) by a rising or falling 

transition of the input signal. 

  

Assembler / Compiler 
Source code 

(lines) 

Program memory 

(words) 

Data memory 

(bytes) 

Microchip MPASM 98 77 8 

XC8 (Free mode) 55 154 13 
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Example 5: Using a pushbutton to trigger an external interrupt 

To show how to use external interrupts, we 

can toggle an LED whenever the external 

interrupt is trigged by a pushbutton press, 

using the circuit from mid-range lesson 6, 

shown (with the reset switch and its pull-up 

resistor omitted for clarity) on the right.  

As explained in that lesson, the capacitor 

connected across the switch is used, in 

conjunction with the two resistors, to 

debounce the pushbutton, because it is 

difficult to implement software debouncing 

for an edge-triggered interrupt, while 

retaining a fast response. 

To implement this circuit with the 

Gooligum training board, close jumpers 

JP3, JP7 and JP12 to enable the 10 kΩ pull-

up resistors on MCLR   and GP2 and the 

LED on GP1.  You also need to add a 1 µF 

capacitor (supplied with the board) between GP2 and ground.  You can do this via pins 13 (‘GP/RA/RB2’) 

and 16 (‘GND’) on the 16-pin expansion header.  There should be no need to use the solderless breadboard – 

simply plug the capacitor directly into these header pins. 

 

This simple RC filter approach can be used because the 12F629’s INT input is a Schmitt trigger type, as 

explained in baseline assembler lesson 4. 

 

The assembler code in mid-range lesson 6 configured the external interrupt, so that it would be triggered by a 

falling edge (high → low transition) on the INT pin (caused by the pushbutton being pressed), by clearing the 

INTEDG bit in the OPTION register: 

        ; configure external interrupt 

        banksel OPTION_REG 

        bcf     OPTION_REG,INTEDG   ; trigger on falling edge 

 

We then enabled the external interrupt, by setting the INTE bit in the INTCON register: 

        ; enable interrupts  

        movlw   1<<GIE|1<<INTE      ; enable external and global interrupts 

        movwf   INTCON 

 

(also setting GIE, as always, to globally enable interrupts) 

Within the ISR, the only actions which needed to be taken were to clear the INTF interrupt flag (to indicate 

that the external interrupt has been serviced) and to toggle the LED on GP1: 

        bcf     INTCON,INTF         ; clear interrupt flag 

 

        ; toggle LED 

        movlw   1<<nB_LED           ; toggle indicator LED 

        xorwf   sGPIO,f             ;   using shadow register 

 

 

The shadow register was copied to GPIO in the main loop, as in the earlier examples. 
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XC8 implementation 

Implementing these steps using XC8 is quite straightforward, being very similar to what we have done 

before. 

Firstly, to select the type of transition to trigger the external interrupt: 

    // configure external interrupt 

    OPTION_REGbits.INTEDG = 0;      // trigger on falling edge  

 

Then to enable the external interrupt: 

    // enable interrupts 

    INTCONbits.INTE = 1;            // enable external interrupt 

    ei();                           // enable global interrupts 

 

And finally to service the external interrupt: 

    INTCONbits.INTF = 0;            // clear interrupt flag 

     

    // toggle LED 

    sB_LED = ~sB_LED;               // (via shadow register) 

 

Complete program 

Here is how these code fragments (along with code from the previous examples) fit together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 3, example 5                                 * 

*                                                                       * 

*   Demonstrates use of external interrupt (INT pin)                    * 

*                                                                       * 

*   Toggles LED when pushbutton on INT is pressed                       * 

*    (high -> low transition)                                           * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       INT = pushbutton (active low)                                   * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define sB_LED  sGPIO.GP1           // indicator LED (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

volatile union {                    // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 
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        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure port 

    GPIO = 0;                       // start with all LEDs off 

    sGPIO.port = 0;                 //   update shadow 

    TRISIO = ~(1<<1);               // configure GP1 (only) as an output 

     

    // configure external interrupt 

    OPTION_REGbits.INTEDG = 0;      // trigger on falling edge  

     

    // enable interrupts 

    INTCONbits.INTE = 1;            // enable external interrupt 

    ei();                           // enable global interrupts 

 

                                     

    //*** Main loop 

    for (;;) 

    { 

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever 

} 

 

 

/***** INTERRUPT SERVICE ROUTINE *****/ 

void interrupt isr(void) 

{ 

    //*** Service external interrupt 

    // 

    //  Triggered on high -> low transition on INT pin 

    //  caused by externally debounced pushbutton press 

    //  

    //  Toggles LED on every high -> low transition 

    //   

    //  (only external interrupts are enabled) 

    //    

    INTCONbits.INTF = 0;            // clear interrupt flag 

     

    // toggle LED 

    sB_LED = ~sB_LED;               // (via shadow register) 

} 
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Example 6: Multiple interrupt sources 

So far we’ve only used a single interrupt source, but it is common for more than one source to be active; for 

example, one or more timers scheduling background tasks, while servicing events such as external interrupts. 

 

To demonstrate this, we can combine 

the two interrupt sources used in this 

lesson, with a Timer0 interrupt 

flashing one LED, while the external 

interrupt is used to toggle another 

LED. 

 

This means adding an LED to the 

circuit in the previous example, as 

shown on the right.  

If you have the Gooligum training 

board, leave it set up as in the last 

example, but also close jumper JP11 

to enable the LED on GP0. 

 

 

We’ll flash the LED on GP0 at 1 Hz, and toggle the LED on GP1 whenever the pushbutton is pressed, as 

we did in mid-range lesson 6. 

 

The program in the example in mid-range lesson 6 was put together by re-using routines from the previous 

LED flashing and external interrupt examples. 

 

Of course, both interrupt sources had to be enabled: 

        ; enable interrupts  

        movlw   1<<GIE|1<<T0IE|1<<INTE  ; enable external, Timer0  

        movwf   INTCON                  ;   and global interrupts 

 

 

And code had to be added to the interrupt service routine, checking the interrupt flags to determine which 

source had triggered the interrupt, and then branching to the appropriate service handler: 

        ; *** Identify interrupt source 

        btfsc   INTCON,INTF     ; external 

        goto    ext_int 

        btfsc   INTCON,T0IF     ; Timer0 

        goto    t0_int 

        goto    isr_end         ; none of the above, so exit 

 

 

In this way, only one interrupt source will be serviced, each time an interrupt is triggered.  If more than one 

interrupt is pending (more than one interrupt flag is set), another interrupt will triggered, immediately after 

the ISR exits, and the next interrupt source will be serviced the next time the ISR is run. 
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Since only one source was to be serviced when an interrupt was triggered, a ‘goto’ instruction was added to 

the end of each service handler, to skip to the end of the ISR: 

For example: 

ext_int ; *** Service external interrupt 

        ; 

        ;   Triggered on high -> low transition on INT pin 

        ;   caused by externally debounced pushbutton press 

        ; 

        ;   Toggles LED on every high -> low transition 

        ; 

        bcf     INTCON,INTF         ; clear interrupt flag 

         

        ; toggle LED 

        movlw   1<<nB_LED           ; toggle indicator LED 

        xorwf   sGPIO,f             ;   using shadow register 

        goto    isr_end 

 

 

XC8 implementation 

When checking for multiple interrupt sources, using C, it seems most natural to use a series of ‘if’ 

statements, each testing an interrupt flag, and executing the corresponding service handler if that interrupt 

flag is set. 

For example: 

    // Service all triggered interrupt sources 

     

    if (INTCONbits.INTF) 

    { 

        // External interrupt handler goes here 

    } 

     

    if (INTCONbits.T0IF) 

    { 

        // Timer0 interrupt handler goes here 

    } 

 

With this structure, every pending interrupt source will be serviced when an interrupt is triggered.  This is 

different from the assembly version given above, where only one source is serviced per interrupt. 

The C version is perhaps clearer and has slightly less overhead (since fewer interrupts may be triggered 

overall), but in practice the difference is negligible. 

In both approaches, the highest priority interrupt source should be serviced first – in this case we consider an 

external interrupt to more important (should be serviced more quickly) than a timer overflow, but that’s 

something only you can decide, in the context of your application. 

 

The actual interrupt handlers are the same as before, so they are easy to “plug in” to this framework. 

 

The only other addition needed is to enable all the interrupt sources: 

    // enable interrupts 

    INTCONbits.T0IE = 1;            // enable Timer0 interrupt 

    INTCONbits.INTE = 1;            // enable external interrupt 

    ei();                           // enable global interrupts 
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Complete program 

Here is the complete “toggle LED via external interrupt while flashing LED via timer interrupt” program, so 

that you can see how these pieces fit together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 3, example 6                                 * 

*                                                                       * 

*   Demonstrates handling of multiple interrupt sources                 * 

*                                                                       * 

*   Toggles an LED when pushbutton on INT is pressed                    * 

*   (high -> low transition triggering external interrupt)              * 

*   while another LED flashes at 1 Hz (driven by Timer0 interrupt)      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP0 = flashing LED                                              * 

*       GP1 = indicator LED                                             * 

*       INT = pushbutton (active low)                                   * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define sF_LED  sGPIO.GP0           // flashing LED (shadow) 

#define sB_LED  sGPIO.GP1           // "button pressed" indicator LED (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

volatile union {                    // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure port 

    GPIO = 0;                       // start with all LEDs off 

    sGPIO.port = 0;                 //   update shadow 

    TRISIO = 0b111100;              // configure GP0 and GP1 (only) as outputs 
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    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 1;         // no prescaler (assigned to WDT) 

                                    // -> increment every 1 us 

                                     

    // configure external interrupt 

    OPTION_REGbits.INTEDG = 0;      // trigger on falling edge  

     

    // enable interrupts 

    INTCONbits.T0IE = 1;            // enable Timer0 interrupt 

    INTCONbits.INTE = 1;            // enable external interrupt 

    ei();                           // enable global interrupts 

 

                                     

    //*** Main loop 

    for (;;) 

    { 

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever 

} 

 

 

/***** INTERRUPT SERVICE ROUTINE *****/ 

void interrupt isr(void) 

{ 

    static uint16_t     fl_t_cnt = 0;   // LED flash timebase counter 

     

    // Service all triggered interrupt sources 

     

    if (INTCONbits.INTF) 

    { 

        //*** Service external interrupt 

        // 

        //  Triggered on high -> low transition on INT pin 

        //  caused by externally debounced pushbutton press 

        //  

        //  Toggles LED on every high -> low transition 

        //   

        INTCONbits.INTF = 0;            // clear interrupt flag 

     

        // toggle LED 

        sB_LED = ~sB_LED;               // (via shadow register)     

    } 

     

    if (INTCONbits.T0IF) 

    { 

        //*** Service Timer0 interrupt 

        // 

        //  TMR0 overflows every 250 clocks = 250 us 

        // 

        //  Flashes LED at 1 Hz by toggling on every 2000th interrupt 

        //      (every 500 ms) 

        //    

        TMR0 += 256-250+3;              // add value to Timer0 

                                        //   for overflow after 250 counts 

        INTCONbits.T0IF = 0;            // clear interrupt flag 

         

        // Flash LED (toggle every 500 ms) 

        // 
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        ++fl_t_cnt;                     // incr interrupt count (every 250 us) 

        if (fl_t_cnt == 500000/250)     // until 500 ms has elapsed 

        { 

            fl_t_cnt = 0;               //   reset interrupt count 

            sF_LED = ~sF_LED;           //   toggle LED (via shadow register) 

        } 

    } 

} 

 

 

Summary 

These examples have demonstrated that XC8 can be used to implement interrupts, in a very straightforward 

way.  Because the compiler takes care of many of the details, such as saving and restoring processor context, 

transparently, the C source code can be quite simple and succinct. 

On the other hand, we also saw that, because the compiler hides implementation details, it may be harder to 

uncover and avoid situations where the interrupt code interferes in a non-obvious way with operations 

performed on variables or structures which are updated in both the ISR and your main code. 

In other words, there can be a price to pay for apparent simplicity… 

 

Nevertheless, interrupts are too useful for tasks such as background processes (such as flashing an LED), 

while responding to and processing events (such as detecting and debouncing key presses), to ignore – they 

need to remain an important part of our toolkit, whether we’re using C or not. 

We’ll see more examples as topics are introduced in future lessons. 

 

The next interrupt source we’ll look at is “interrupt on change”, which is commonly used to wake the PIC 

from sleep mode.  It is covered in the next lesson, along with the watchdog timer. 

 

 

 

../4%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_C_4.pdf
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Introduction to PIC Programming 

Programming Mid-Range PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 4: Interrupt-on-change, Sleep Mode and the Watchdog Timer 

 

 

This lesson revisits material from mid-range lesson 7, looking at the mid-range PIC architecture’s power-

saving sleep mode, its ability to generate interrupts and/or wake from sleep when an input changes state and 

the watchdog timer – generally used to automatically restart a crashed program, but also useful for 

periodically waking the PIC from sleep, for low-power operation. 

One again, the examples are re-implemented using Microchip’s XC8 compiler
1
 (running in “Free mode”), 

introduced in lesson 1. 

In summary, this lesson covers: 

 Interrupt-on-change 

 Sleep mode (power down) 

 Wake-up on change (power up on input change) 

 The watchdog timer 

 Periodic wake from sleep 

Interrupt-on-change 

As we saw in mid-range lesson 7, mid-range PICs provide a port change interrupt facility, which, on the 

12F629, is available on every GPIO pin. 

This feature is similar to the external interrupt 

facility covered in lesson 3, except that a port 

change interrupt will be triggered by any change 

(not just one type of transition) on any of the pins 

for which it is enabled.  This makes it more 

flexible (being available on more pins), but also 

more difficult to deal with correctly, as we shall 

see in the examples in this section. 

The first example uses the circuit on the right to 

demonstrate how to use interrupt-on-change to 

respond to a single, externally debounced input.  

If you are using the Gooligum training board, 

close jumpers JP3, JP7 and JP12 to enable the 10 

kΩ pull-up resistors on MCLR   (not shown here) 

                                                      

1
 Available as a free download from www.microchip.com. 

../../Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
../1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
../../Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
../3%20-%20Interrupts/PIC_Mid_C_3.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.microchip.com/
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and GP2 and the LED on GP1.  You can add the 1 µF capacitor (supplied with the board) between GP2 and 

ground via pins 13 (‘GP/RA/RB2’) and 16 (‘GND’) on the 16-pin expansion header.  There should be no 

need to use the solderless breadboard – simply plug the capacitor directly into these header pins. 

GP2 is used here because, on the 12F629, it has a Schmitt-trigger input, allowing the simple RC filter to 

provide effective hardware debouncing, as explained in baseline assembler lesson 4. 

 

To enable a pin for interrupt-on-change, the corresponding bit must be set in the IOC register.  This was 

done in mid-range lesson 7 by: 

        banksel IOC             ; enable interrupt-on-change 

        bsf     IOC,nBUTTON     ;   on pushbutton input 

 

(where ‘nBUTTON’ is a constant which has been set to ‘2’) 

Before actually enabling port change interrupts, it is necessary to either read or write to the port to clear any 

existing mismatch condition, to prevent any false triggering. 

The port change interrupt can then enabled by setting the GPIE bit in the INTCON register. 

This was done in assembler by: 

        ; enable interrupts  

        movlw   1<<GIE|1<<GPIE  ; enable port change and global interrupts 

        movwf   INTCON 

 

(note that global interrupts are also being enabled here, by setting the GIE bit) 

 

In the interrupt handler, we must clear the port mismatch condition which triggered this interrupt. 

In mid-range lesson 7 this was done by reading the port.  And (as for all interrupts), we must also clear the 

corresponding interrupt flag, GPIF: 

        banksel GPIO 

        movf    GPIO,w              ; clear mismatch condition 

        bcf     INTCON,GPIF         ; clear interrupt flag 

 

Since we want to toggle the LED on GP1 each time the pushbutton is pressed, but not when it is released, 

we need to check whether the switch is up or down (this is different from the situation with external 

interrupts, which are only triggered on one type of transition). 

This was implemented in assembler as: 

        ; toggle LED only on button press 

        btfsc   GPIO,nBUTTON        ; is button down? 

        goto    isr_end 

        movlw   1<<nB_LED           ; if so, toggle indicator LED 

        xorwf   sGPIO,f             ;   using shadow register 

 

(where ‘nB_LED’ is a constant which has been set to ‘1’) 

The shadow register was copied to GPIO in the main loop, as in the earlier examples. 

 

XC8 implementation 

Implementing these steps using XC8 is quite straightforward, using techniques we have seen before. 

Enabling interrupt-on-change on GP2 is simply: 

    IOCbits.IOC2 = 1;               // enable IOC on GP2 input 

../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
../../Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
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To enable the port change and global interrupts, we have: 

    // enable interrupts 

    INTCONbits.GPIE = 1;            // enable port change interrupt 

    ei();                           // enable global interrupts 

 

 

In the interrupt handler, it is best to explicitly clear the mismatch condition (by reading GPIO) at the start of 

the routine, instead of relying on this occurring as a side-effect of statements in the body of the handler, 

which may be changed later. 

This can be done by: 

    GPIO;                           // read GPIO to clear mismatch condition 

 

“GPIO” is an expression which evaluates to the value of the contents of GPIO, but does nothing with it. 

In general, the compiler’s optimiser will discard any such “do nothing” statements. 

However, GPIO is declared as a ‘volatile’ variable in the processor header file.  We’ve seen that this 

qualifier warns the compiler that the value of this variable may change at any time, to prevent the optimiser 

from eliminating apparently redundant references to it.  It also ensures that, when the variable’s name is used 

on its own in this way, the compiler will generate code which reads the variable’s memory location and 

discards the result, which is exactly what we want. 

 

We must also clear the port interrupt flag, to indicate that this interrupt has been serviced: 

    INTCONbits.GPIF = 0;            // clear interrupt flag 

 

 

Finally, we need to check the status of the pushbutton, and toggle the LED only if the button is pressed 

(meaning that GP2 is low): 

    // toggle LED only on button press 

    if (!BUTTON)                    // if button is down 

        sB_LED = ~sB_LED;           //   toggle LED (via shadow register) 

 

Complete program 

Here is how these code fragments fit into a working program: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 4, example 1                                 * 

*                                                                       * 

*   Demonstrates use of interrupt-on-change interrupts                  * 

*   (without software debouncing)                                       * 

*                                                                       * 

*   Toggles LED when pushbutton is pressed (high -> low transition)     * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       GP2 = pushbutton (externally debounced, active low)             * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 
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/***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define sB_LED  sGPIO.GP1           // indicator LED (shadow) 

#define BUTTON  GPIObits.GP2        // pushbutton 

 

 

/***** GLOBAL VARIABLES *****/ 

volatile union {                    // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure port 

    GPIO = 0;                       // start with all LEDs off 

    sGPIO.port = 0;                 //   update shadow 

    TRISIO = ~(1<<1);               // configure GP1 (only) as an output 

    IOCbits.IOC2 = 1;               // enable IOC on GP2 input 

     

    // enable interrupts 

    INTCONbits.GPIE = 1;            // enable port change interrupt 

    ei();                           // enable global interrupts 

 

                                     

    //*** Main loop 

    for (;;) 

    { 

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever 

} 

 

 

/***** INTERRUPT SERVICE ROUTINE *****/ 

void interrupt isr(void) 

{ 

    //*** Service port change interrupt 

    // 

    //  Triggered on any transition on IOC-enabled input pin 

    //  caused by externally debounced pushbutton press 

    // 

    //  Toggles LED on every high -> low transition 

    // 
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    //  (only port change interrupts are enabled)        

    //       

    GPIO;                           // read GPIO to clear mismatch condition 

    INTCONbits.GPIF = 0;            // clear interrupt flag 

     

    // toggle LED only on button press 

    if (!BUTTON)                    // if button is down 

        sB_LED = ~sB_LED;           //   toggle LED (via shadow register) 

} 

 

Example 2: Interrupt-on-change (multiple inputs) 

This example demonstrates how to handle the situation where interrupt-on-change is enabled on more than 

one input pin. 

The basic difficulty with handling this situation is that there are no flags to indicate which input has changed; 

the GPIF flag can tell you that at least one pin enabled for IOC has changed, but not which pin it was. 

So when a port change interrupt occurs, we need to deduce which pin(s) have changed, by reading GPIO and 

comparing the current state to the last recorded state.  That means that the ISR (where the port change 

interrupt is handled) needs to keep track of the state of GPIO, and update that “last state” record, every time 

a change is detected, to be ready for the next time. 

 

We’ll use the circuit from the corresponding example in mid-range lesson 7, shown (with the reset switch 

and pull-up omitted for clarity) below: 

If you have the Gooligum training board, you can use the additional components supplied with your board to 

build this circuit on the solderless breadboard, connecting them to signals on the 16-pin header: GP4 input 

on pin 3 (‘GP/RA/RB4’), GP2 input on pin 13 (‘GP/RA/RB2’) and ground and +5 V on pins15 (‘+V’) and 

16 (‘GND’) – see the illustration in mid-range lesson 7.  You should also close JP3, JP7, JP11 and JP12 to 

enable the pull-up resistors on MCLR   (not shown here) and GP2 and the LEDs on GP0 and GP1. 

 

Each pushbutton toggles an LED: S1 controls the LED on GP1, and S2 controls the LED on GP0. 

To simplify the software, both buttons are externally debounced, and since the only Schmitt-trigger GP input 

on the 12F629 is GP2, an external Schmitt-trigger inverter is used to drive GP4. 

../../Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
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Thus, the operation of S1 is inverted with respect to S2; the software will have to take this difference into 

account. 

XC8 implementation 

As in the last example, to make the code more maintainable, it is good practice to define symbols represent 

the pins being used: 

// Pin assignments 

#define sB1_LED sGPIO.GP0   // "button 1 pressed" indicator LED (shadow) 

#define sB2_LED sGPIO.GP1   // "button 2 pressed" indicator LED (shadow) 

#define nPB1    2           // pushbutton 1 (ext debounce, active low) on GP2 

#define nPB2    4           // pushbutton 2 (ext debounce, active high) on GP4 

 

Note that the pushbutton pins have been defined as numeric constants, representing pin numbers, because it 

simplifies the change detection code (see below). 

 

Given that we must keep track of the “last state” of GPIO, to compare with the current state when a port 

change is detected, and that this state will need to be initialised in the main code, but accessed and updated in 

the ISR, we need to declare it as a volatile global variable (along with the shadow copy of GPIO, which is 

also accessed in both the ISR and the main code): 

/***** GLOBAL VARIABLES *****/ 

volatile union {                    // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

volatile uint8_t    lGPIO;          // last state of GPIO (for change detection) 

 

 

In the initialisation code, we need to initialise and configure the port, before updating the “last state” 

variable, so that everything is in sync: 

    // configure port 

    GPIO = 0;               // start with all LEDs off 

    sGPIO.port = 0;         //   update shadow 

    TRISIO = 0b111100;      // configure GP0 and GP1 (only) as outputs 

    lGPIO = GPIO;           // update last port state (for pin change detection) 

 

Why bother reading GPIO, when we just cleared it? 

Why not just write: 

    GPIO = 0;                   // start with all LEDs off 

    sGPIO = 0;                  //   update shadow 

    lGPIO = 0;                  //   and last state (NOTE: THIS WILL NOT WORK!) 

    TRISIO = 0b111100;      // configure GP0 and GP1 (only) as outputs 

 

This approach will not, in general, work, because the value read from an input pin depends on the external 

signal applied to the pin; if an input pin is being held high externally, clearing the port register (GPIO) won’t 

have any effect – it will still read as a ‘1’. 
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So the only way to be sure of the current state of GPIO is to read it. 

Having done so, we can enable interrupt-on-change for both inputs, with: 

    IOC = 1<<nPB1|1<<nPB2;  // enable interrupt-on-change on pushbuttons 1 and 2 

 

A useful side-effect of reading GPIO is that it clears any existing IOC mismatch condition, so we can now 

safely go ahead and enable the port change interrupt: 

    // enable interrupts 

    INTCONbits.GPIE = 1;        // enable port change interrupt 

    ei();                       // enable global interrupts 

 

 

As usual, the main loop does nothing more than continually update GPIO from the shadow register: 

    //*** Main loop 

    for (;;) 

    { 

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever  

 

 

Meanwhile, the ISR updates the shadow copy of GPIO, whenever a port change occurs (triggering an 

interrupt). 

 

Within the ISR, it is best to take a “snapshot” of the current state of GPIO, and use this to determine which 

pins have changed, instead of referring back continually to GPIO itself, in case an input changes while the 

interrupt handler is running (leading to inconsistent results). 

So we declare a variable within the ISR function, so hold this current state: 

void interrupt isr(void) 

{ 

    uint8_t     cGPIO;      // current state of GPIO (used by IOC handler) 

 

    // IOC handler goes here… 

} 

 

When servicing the port change interrupt, we begin by clearing the interrupt flag, as usual: 

    INTCONbits.GPIF = 0;            // clear interrupt flag 

 

There is no need to explicitly clear the IOC mismatch here, because GPIO is read in the very next statement: 

    cGPIO = GPIO;                   // save current GPIO state 

 

 

Next we need to determine which pin(s) have changed, by comparing the current state of GPIO with the last 

recorded state. 

This can be done by XORing the current and last states.  Since an XOR results in a ‘1’ only where the inputs 

differ, the result will be all ‘0’s, except for those bits corresponding to any pins which have changed. 

We could write this as: 

    changes = lGPIO ^ cGPIO     // XOR current with last state to detect changes 
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but there is actually no need to introduce another variable; the only time we need to reference the last state 

(lGPIO) is here, to deduce which pins have changed, and, having done so, there is no need to refer back to 

lGPIO again, until it is updated at the end of the ISR. 

So, to save data memory, it is possible to write the XOR result back to lGPIO with: 

    lGPIO ^= cGPIO;             // XOR with last state to detect changes  

 

The lGPIO variable will now contain ‘1’s only in bit positions where the current state differs from the last 

state, corresponding to pins that have changed. 

We can then use this to check whether each pushbutton input has changed, for example: 

    if (lGPIO & 1<<nPB1)            // if button 1 changed 

    { 

        // handle button 1 input change… 

    } 

 

But since we only want to toggle the LED when the pushbutton has pressed, we must check not only that the 

pushbutton input has changed, but that the button is down, which we can do with nested if statements: 

    // toggle LED 1 only on button 1 press (active low) 

    if (lGPIO & 1<<nPB1)            // if button 1 changed 

        if (!(cGPIO & 1<<nPB1))     //  and if button 1 is down (low) 

        { 

            sB1_LED = ~sB1_LED;     //   toggle LED 1 (via shadow register) 

        } 

 

Alternatively, this can be written as a single if statement, using a logical AND expression: 

    // toggle LED 1 only on button 1 press (active low) 

    if ((lGPIO & 1<<nPB1)           // if button 1 changed 

        && (!(cGPIO & 1<<nPB1)))    //  and button 1 is down (low) 

        {          

            sB1_LED = ~sB1_LED;     //   toggle LED 1 (via shadow register) 

        } 

 

Either form is acceptable; both generate the same (efficient) code, so which you use only a question of 

personal programming style. 

Looking at these logical expressions, you may conclude that it would also be possible to replace the logical 

AND (‘&&’) with a bitwise AND (‘&’) and condense the expression to: 

    if (lGPIO & cGPIO & 1<<nPB1)    // if button 1 changed and down 

    { 

        sGPIO ^= 1<<nB1_LED;        //   toggle LED 1 using shadow register 

    } 

 

However, although this works, in terms of program logic (the expressions are, after all, logically the same), it 

is less clear and generates less efficient code.  This is a case where writing more obscure code is counter-

productive – it’s simply a bad idea.   

 

We can then write a very similar construct for the second pushbutton, but with the logic for testing “button 

down” inverted because this signal is active high, not low: 

    // toggle LED 2 only on button 2 press (active high) 

    if ((lGPIO & 1<<nPB2)           // if button 2 changed 

        && (cGPIO & 1<<nPB2))       //  and button 2 is down (high) 

        {          

            sB2_LED = ~sB2_LED;     //   toggle LED 2 (via shadow register) 

        }     
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Finally, before exiting the interrupt handler, we must save the current state of GPIO as the new “last state”, 

so that the next input change can be properly detected: 

    // update last GPIO state (for next time) 

    lGPIO = cGPIO;                  // new "last state" = current 

 

Complete program 

Here is how these code fragments fit together, to form the complete “interrupt-on-change with multiple 

inputs” example program: 

/************************************************************************ 

*   Description:    Lesson 4, example 2                                 * 

*                                                                       * 

*   Demonstrates handling of multiple interrupt-on-change interrupts    * 

*   (without software debouncing)                                       * 

*                                                                       * 

*   Toggles LED on GP0 when pushbutton on GP2 is pressed                * 

*   (high -> low transition)                                            * 

*   and LED on GP1 when pushbutton on GP4 is pressed                    * 

*   (low -> high transition)                                            * 

*                                                                       * 

************************************************************************* 

*   Pin assignments:                                                    * 

*       GP0 = indicator LED 1                                           * 

*       GP1 = indicator LED 2                                           * 

*       GP2 = pushbutton 1 (externally debounced, active low)           * 

*       GP4 = pushbutton 2 (externally debounced, active high)          * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define sB1_LED sGPIO.GP0   // "button 1 pressed" indicator LED (shadow) 

#define sB2_LED sGPIO.GP1   // "button 2 pressed" indicator LED (shadow) 

#define nPB1    2           // pushbutton 1 (ext debounce, active low) on GP2 

#define nPB2    4           // pushbutton 2 (ext debounce, active high) on GP4 

 

 

/***** GLOBAL VARIABLES *****/ 

volatile union {                    // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 
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volatile uint8_t    lGPIO;          // last state of GPIO (for change detection) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure port 

    GPIO = 0;               // start with all LEDs off 

    sGPIO.port = 0;         //   update shadow 

    TRISIO = 0b111100;      // configure GP0 and GP1 (only) as outputs 

    lGPIO = GPIO;           // update last port state (for pin change detection) 

    IOC = 1<<nPB1|1<<nPB2;  // enable interrupt-on-change on pushbuttons 1 and 2 

     

    // enable interrupts 

    INTCONbits.GPIE = 1;        // enable port change interrupt 

    ei();                       // enable global interrupts 

 

                                     

    //*** Main loop 

    for (;;) 

    { 

        // continually copy shadow GPIO to port 

        GPIO = sGPIO.port;  

             

    }   // repeat forever 

} 

 

 

/***** INTERRUPT SERVICE ROUTINE *****/ 

void interrupt isr(void) 

{ 

    uint8_t     cGPIO;      // current state of GPIO (used by IOC handler) 

     

    //*** Service port change interrupt 

    // 

    //  Triggered on any transition on IOC-enabled input pin 

    //  caused by externally debounced pushbutton press 

    // 

    //  Toggles LED1 on every high -> low transition of PB1 

    //      and LED2 on every low -> high transition of PB2 

    // 

    //  (only port change interrupts are enabled)        

    //    

    INTCONbits.GPIF = 0;            // clear interrupt flag 

     

    // determine which pins have changed 

    cGPIO = GPIO;                   // save current GPIO state 

                                    //   (GPIO read clears mismatch condition) 

    lGPIO ^= cGPIO;                 // XOR with last state to detect changes 

     

    // toggle LED 1 only on button 1 press (active low) 

    if ((lGPIO & 1<<nPB1)           // if button 1 changed 

        && (!(cGPIO & 1<<nPB1)))    //  and button 1 is down (low) 

        {          

            sB1_LED = ~sB1_LED;     //   toggle LED 1 (via shadow register) 

        } 

         

    // toggle LED 2 only on button 2 press (active high) 

    if ((lGPIO & 1<<nPB2)           // if button 2 changed 
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        && (cGPIO & 1<<nPB2))       //  and button 2 is down (high) 

        {          

            sB2_LED = ~sB2_LED;     //   toggle LED 2 (via shadow register) 

        }     

     

    // update last GPIO state (for next time) 

    lGPIO = cGPIO;                  // new "last state" = current 

} 

 

Sleep Mode 

As explained in mid-range lesson 7, the mid-range PICs can be placed into a power-saving standby, or sleep 

mode, using the assembler instruction ‘sleep’. 

In this mode, the PIC12F629 will typically draw only a few nanoamps (or less), when all of the power-

consuming facilities have been disabled and the output pins are not supplying any current. 

 

This was demonstrated using the circuit on the right. 

To implement it using the Gooligum training board, 

close jumpers JP3, JP12 and JP13 to enable the pull-

up resistor on GP3 and the LEDs on GP1 and GP2. 

 

To demonstrate to yourself that power consumption 

really is reduced when the PIC enters sleep mode, 

you would have to use an external power supply, 

instead of using your PICkit 2 or PICkit 3 to power 

the circuit.  You can then place a multimeter in-line 

with the power supply, to measure the supply 

current. 

 

The LED on GP1 is initially turned on, and then when the pushbutton is pressed, the LED is turned off 

(reducing power consumption) before placing the PIC permanently into sleep mode (effectively shutting it 

down). 

 

The following assembler code was used: 

        ; turn on LED 

        banksel GPIO 

        bsf     LED        

  

        ; wait for button press 

wait_lo btfsc   BUTTON          ; wait until button low 

        goto    wait_lo 

 

        ; go into standby mode 

        sleep                   ; enter sleep mode 

 

        goto    $               ; (this instruction should never run) 

 

(where ‘BUTTON’ and ‘LED’ are symbols representing GP3 and GP1 respectively) 

 

../../Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
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XC8 implementation 

To place the PIC into sleep mode, XC8 provides a ‘SLEEP()’ macro. 

It is defined in the “pic.h” header file (called from the “xc.h” file we’ve included at the start of each 

program), as: 

#define SLEEP()  asm("sleep") 

 

‘asm()’ is a XC8 statement which embeds a single assembler instruction, in-line, in the C source code.  But 

since ‘SLEEP()’ is provided as a standard macro, it makes sense to use it, instead of the ‘asm()’ statement. 

Complete program 

The following program shows how the XC8 ‘SLEEP()’ macro is used: 

/************************************************************************ 

*   Description:    Lesson 4, example 3                                 * 

*                                                                       * 

*   Demonstrates sleep mode                                             * 

*                                                                       * 

*   Turn on LED, wait for button pressed, turn off LED, then sleep      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*       GP3 = pushbutton (active low)                                   * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_OFF & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define LED     GPIObits.GP1    // indicator LED on GP1 

#define nLED    1               //   (port bit 1) 

#define BUTTON  GPIObits.GP3    // pushbutton on GP3 (active low) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //***** Initialisation 

     

    // configure port     

    TRISIO = ~(1<<nLED);        // configure LED pin (only) as output 

 

 

    //***** Main code  

      

    // turn on LED     

    LED = 1;                   

     

    // wait for button press 

    while (BUTTON == 1)         // wait until button low 

        ; 
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    // go into standby (low power) mode 

    LED = 0;                    // turn off LED 

    SLEEP();                    // enter sleep mode 

 

    for (;;)                    // (this loop should never execute) 

        ; 

} 

 

Wake-up from sleep 

As discussed in mid-range lesson 7, mid-range PICs can be woken from sleep mode in a number of ways: 

 Any device reset, such as an external reset signal on the MCLR   pin (if enabled) 

 Watchdog timer timeout (see the section on the watchdog timer, later in this lesson) 

 Any enabled interrupt source which can set its interrupt flag while in sleep mode 

Since the PIC’s oscillator (clock) does not run in sleep mode, interrupt sources which require the clock to 

function, such as Timer0, cannot be used wake the device from sleep.  However, external (INT pin) and port 

change interrupts (and others that we will see in later lessons) can be used to wake up a mid-range PIC. 

The following example looks at how to use the port change interrupt to wake a PIC from sleep mode; the 

method for using an external interrupt is essentially the same, but is of course limited to the INT pin. 

Example 4: Using interrupt-on-change for wake-up from sleep  

In baseline assembler lesson 7, we saw that the baseline architecture includes a “wake-up on change” feature.  

Its mid-range equivalent is the interrupt-on-change facility, introduced above. 

“Interrupt-on-change” can be used to wake the device from sleep, even if interrupts are not enabled.  If port 

change interrupts are enabled (GPIE = 1), but global interrupts are disabled (GIE = 0), then the device will 

wake from sleep when an IOC-enabled input changes, but no interrupt will occur.  Program execution simply 

continues with the instruction following the sleep instruction, or, if using XC8, the statement following the 

‘SLEEP()’ macro. 

If port change interrupts are enabled (GPIE = 1) and global interrupts are enabled (GIE = 1), if an IOC-

enabled input changes while the PIC is in sleep mode, the device will wake from sleep, execute the 

instruction following sleep, and then enter the interrupt service routine. 

If you want the PIC to execute the ISR immediately after it wakes from sleep, you need to enable interrupts 

and place a nop (“do nothing” – available in XC8 as a ‘NOP()’ macro) instruction immediately following 

the sleep instruction. 

If you are using other interrupts (such as Timer0) in your program, but don’t want to have to deal with 

executing the ISR as the device wakes from sleep, simply disable interrupts (clear GIE – which can be done 

in XC8 with the ‘di()’ macro) before entering sleep mode. 

 

In any case, if GPIE = 1, the PIC will wake if the value of any IOC-enabled input changes while it is in sleep 

mode. 

It is important to clear the GPIF flag before entering sleep mode, or else the PIC will wake immediately.  

Note: You should read the input pins configured for interrupt-on-change just prior to entering 

sleep mode, and clear GPIF.  Otherwise, if the value at an IOC-enabled pin had changed since the 

last time it was read, the PIC will wake immediately upon entering sleep mode, as the input value 

would be seen to be different from that last read. 

../../Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
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It is also important to ensure that any input which will be used to trigger a wake-up is stable before entering 

sleep mode. 

This means that any switch used as a “soft” on/off switch must be debounced both as soon as the PIC has 

been restarted (in case the switch is still bouncing) and prior to entering sleep mode (in case a bounce causes 

the PIC to wake). 

 

In this example, we want to wake-up the PIC and turn on an LED when the button is pressed, and then turn 

off the LED and place the PIC into sleep mode when the button is pressed again. 

The necessary sequence is: 

do 

    turn on LED 

    wait for stable button high 

    wait for button low 

    turn off LED 

    wait for stable button high 

    clear GPIF 

    sleep 

forever     // repeat from the beginning 

 

XC8 implementation 

The following code, which uses the debounce macro defined in lesson 2, implements the sequence of steps 

given above: 

    /*** Initialisation ***/ 

     

    // configure port 

    TRISIO = ~(1<<nLED);        // configure LED pin (only) as output 

 

    // configure Timer0 (for DbnceHi() macro) 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b111;      // prescale = 256 

                                    // -> increment every 256 us 

                                     

    // configure interrupt-on-change 

    IOC |= 1<<nBUTTON;          // enable IOC on pushbutton input 

    INTCONbits.GPIE = 1;        // enable wake-up (interrupt) on port change 

 

     

    /*** Main loop ***/ 

    for (;;) 

    { 

        // turn on LED 

        LED = 1;                     

     

        // wait for stable button high 

        // (in case it is still bouncing after wakeup) 

        DbnceHi(BUTTON);             

     

        // wait for button press 

        while (BUTTON == 1)         // wait until button low 

            ; 

 

        // go into standby (low power) mode 

        LED = 0;                    // turn off LED 

        DbnceHi(BUTTON);            // wait for stable button release 

../2%20-%20Timer%200/PIC_Mid_C_2.pdf
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        INTCONbits.GPIF = 0;        // clear port change interrupt flag 

        SLEEP();                    // enter sleep mode 

    } 

} 

 

(the labels ‘LED’, ‘nLED’, ‘BUTTON’ and ‘nBUTTON’ are defined earlier in the program, as usual) 

This code does essentially the same thing as the “toggle an LED” programs developed in lessons 1 and 2, 

except that in this case, when the LED is off, the PIC is drawing negligible power. 

Watchdog Timer 

As described in mid-range lesson 7, the watchdog timer is free-running counter which, if enabled, operates 

independently of the program running on the PIC.  It is typically used to avoid program crashes, where your 

application enters a state it will never return from, such as a loop waiting for a condition that will never 

occur.  If the watchdog timer overflows, the PIC is reset, restarting your program – hopefully allowing it to 

recover and operate normally. 

To avoid this “WDT reset” from occurring, your program must periodically reset, or clear, the watchdog 

timer before it overflows. 

This watchdog time-out period on the mid-range PICs is nominally 18 ms, but can be extended to a 

maximum of 2.3 seconds by assigning the prescaler to the watchdog timer (in which case the prescaler is no 

longer available for use with Timer0). 

The watchdog timer can also be used to regularly wake the PIC from sleep mode, perhaps to sample and log 

an environmental input (say a temperature sensor), for low power operation. 

Example 5a: Enabling the watchdog timer and detecting WDT resets 

To illustrate how the watchdog timer allows the PIC to recover from a crash, we’ll use a simple program 

which turns on an LED for 1.0 s, turns it off again, and then enters an endless loop (simulating a crash). 

If the watchdog timer is disabled, the loop will never exit and the LED will remain off.  But if the watchdog 

timer is enabled, with a period of 2.3 s, the program should restart itself after 2.3s, and the LED will flash: on 

for 1.0 s and off for 1.3 s (approximately). 

We saw in mid-range lesson 7 that the watchdog timer is controlled by the WDTE bit in the processor 

configuration word: setting WDTE to ‘1’ enables the watchdog timer. 

Since the configuration word cannot be accessed by programs running on the PIC (it can only be written to 

when the PIC is being programmed), the watchdog timer cannot be enabled or disabled at runtime.  It 

can only be configured to be ‘on’ or ‘off’ when the PIC is programmed. 

The assembler examples in that lesson included the following construct, to make it easy to select whether the 

watchdog timer is enabled or disabled when the code is built: 

    #define     WATCHDOG        ; define to enable watchdog timer 

 

    IFDEF WATCHDOG 

                    ; ext reset, no code or data protect, no brownout detect, 

                    ; watchdog, power-up timer, 4Mhz int clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_ON & 

                    _PWRTE_ON & _INTRC_OSC_NOCLKOUT 

    ELSE 

                    ; ext reset, no code or data protect, no brownout detect, 

                    ; no watchdog, power-up timer, 4Mhz int clock 

        __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

                    _PWRTE_ON & _INTRC_OSC_NOCLKOUT 

    ENDIF 

 

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_1.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_2.pdf
../../Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Mid-range PIC C, Lesson 4: Interrupt-on-change, Sleep Mode and the Watchdog Timer Page 16 

To set the watchdog time-out period to the maximum of 2.3 seconds, the prescaler was assigned to the 

watchdog timer, with a prescale ratio of 1:128 (18 ms × 128 = 2.3 s), by: 

        movlw   1<<PSA | b'111' ; assign prescaler to WDT (PSA = 1) 

                                ; prescale = 128 (PS = 111) 

        banksel OPTION_REG      ; -> WDT timeout = 2.3 s       

        movwf   OPTION_REG 

 

 

If you want your program to behave differently when restarted by a watchdog time-out, test the TO   flag in 

the STATUS register: it is cleared to ‘0’ only when a WDT reset has occurred. 

 

The example in mid-range lesson 7 used this approach to turn on an “error” LED, to indicate if a restart was 

due to a WDT reset: 

;***** Initialisation 

        ; configure port  

        movlw   ~(1<<nF_LED|1<<nW_LED)  ; configure LED pins as outputs 

        banksel TRISIO          

        movwf   TRISIO 

        ; configure watchdog timer prescaler 

        movlw   1<<PSA | b'111' ; assign prescaler to WDT (PSA = 1) 

                                ; prescale = 128 (PS = 111) 

        banksel OPTION_REG      ; -> WDT timeout = 2.3 s       

        movwf   OPTION_REG 

 

;***** Main code 

        banksel GPIO    

        btfss   STATUS,NOT_TO   ; if WDT timeout has occurred, 

        bsf     GPIO,nW_LED     ;   turn on "WDT" LED 

 

        bsf     GPIO,nF_LED     ; turn on "flashing" LED      

 

        DelayMS 1000            ; delay 1s 

 

        banksel GPIO            ; turn off "flashing" LED    

        bcf     GPIO,nF_LED   

 

        goto    $               ; wait forever 

 

XC8 implementation 

Since the watchdog timer is controlled by a configuration bit, the only change we need to make to enable it is 

to use a different __CONFIG() statement, with the symbol ‘WDTE_ON’ replacing ‘WDTE_OFF’. 

A construct very similar to that in the assembler example can be used to select between processor 

configurations: 

#ifdef WATCHDOG 

    // ext reset, no code or data protect, no brownout detect, 

    // watchdog, power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF &   

         WDTE_ON & PWRTE_OFF & FOSC_INTRCIO); 

#else 

    // ext reset, no code or data protect, no brownout detect, 

    // no watchdog, power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF &   

         WDTE_OFF & PWRTE_OFF & FOSC_INTRCIO); 

#endif    

file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
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Assigning the prescaler to the watchdog timer and selecting a prescale ratio of 128:1 is done by: 

    OPTION_REGbits.PSA = 1;             // assign prescaler to WDT 

    OPTION_REGbits.PS = 0b111;          // prescale = 128 

                                        // -> WDT timeout = 2.3 s 

 

 

To check for a WDT timeout reset, the TO   flag can be tested directly, using: 

    if (!STATUSbits.nTO)        // if WDT timeout has occurred, 

        W_LED = 1;              //   turn on "error" LED 

 

Note that the test condition is inverted, using ‘!’, since this flag is “active” when clear. 

Complete program 

Here is the complete program, showing how the above code fragments are used: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 4, example 5a                                * 

*                                                                       * 

*   Demonstrates watchdog timer                                         * 

*       plus differentiation of WDT time-out from POR reset             * 

*                                                                       * 

*   Turn on LED for 1s, turn off, then enter endless loop               * 

*   If WDT enabled, processor resets after 2.3s                         * 

*   Turns on WDT LED to indicate WDT reset                              * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = flashing LED                                              * 

*       GP2 = WDT-reset indicator LED                                   * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay() 

 

 

/***** CONFIGURATION *****/ 

#define     WATCHDOG            // define to enable watchdog timer 

 

#ifdef WATCHDOG 

    // ext reset, no code or data protect, no brownout detect, 

    // watchdog, power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF &   

         WDTE_ON & PWRTE_OFF & FOSC_INTRCIO); 

#else 

    // ext reset, no code or data protect, no brownout detect, 

    // no watchdog, power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF &   

         WDTE_OFF & PWRTE_OFF & FOSC_INTRCIO); 

#endif    

 

// Pin assignments 

#define F_LED   GPIObits.GP1    // "flashing" LED on GP1 

#define nF_LED  1               //   (port bit 1) 

#define W_LED   GPIObits.GP2    // WDT LED to indicate WDT time-out reset 

#define nW_LED  2               //   (port bit 2) 
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/***** MAIN PROGRAM *****/ 

void main() 

{ 

    /*** Initialisation ***/ 

     

    // configure port 

    TRISIO = ~(1<<nF_LED|1<<nW_LED);    // configure LED pins as outputs 

     

    // configure watchdog timer 

    OPTION_REGbits.PSA = 1;             // assign prescaler to WDT 

    OPTION_REGbits.PS = 0b111;          // prescale = 128 

                                        // -> WDT timeout = 2.3 s 

 

     

    /*** Main code ***/ 

     

    // test for WDT-timeout reset 

    if (!STATUSbits.nTO)        // if WDT timeout has occurred, 

        W_LED = 1;              //   turn on "error" LED 

 

    // flash LED 

    F_LED = 1;                  // turn on "flash" LED 

    __delay_ms(1000);           // delay 1 sec 

    F_LED = 0;                  // turn off "flash" LED  

     

    // wait forever 

    for (;;)                     

        ; 

} 

 

Example 5b: Clearing the watchdog timer 

Normally, you will want to prevent watchdog timer overflows; a WDT reset should only happen when 

something has gone wrong. 

To avoid WDT resets, the watchdog timer has to be regularly cleared.  This is typically done by inserting a 

‘clrwdt’ instruction within the program’s “main loop”, and within any subroutine which may, in normal 

operation, not complete within the watchdog timer period. 

To demonstrate the effect of clearing the watchdog timer, a ‘clrwdt’ instruction was added into the endless 

loop in the example in mid-range lesson 7: 

;***** Main code 

        banksel GPIO            ; turn on LED 

        bsf     GPIO,LED         

 

        DelayMS 1000            ; delay 1 sec 

 

        banksel GPIO            ; turn off LED 

        bcf     GPIO,LED         

 

loop    clrwdt                  ; clear watchdog timer 

        goto    loop            ;   repeat forever 

 

 

With the ‘clrwdt’ instruction in place, the watchdog timer never overflows, so the PIC is never restarted by 

a WDT reset, and the LED remains turned off (until the power is cycled), whether the watchdog timer is 

enabled or not. 

file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
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XC8 implementation 

XC8 provides a ‘CLRWDT()’ macro, defined in the “pic.h” header file as: 

#define CLRWDT() asm("clrwdt") 

 

That is, the ‘CLRWDT()’ macro simply inserts a ‘clrwdt’ instruction into the code. 

Using this macro, the assembler code above can be implemented with XC8 as follows: 

    LED = 1;                    // turn on LED 

     

    __delay_ms(1000);           // delay 1 sec 

    

    LED = 0;                    // turn off LED  

     

    for (;;)                    // repeatedly clear watchdog timer forever 

        CLRWDT(); 

 

Example 6: Periodic wake from sleep 

As explained in mid-range lesson 7, the watchdog timer is can also be used to periodically wake the PIC 

from sleep mode, typically to read some inputs, take some action and then return to sleep mode, saving 

power.  This can be combined with wake-up on pin change, allowing immediate response to some inputs, 

such as a button press, while periodically checking others. 

To illustrate this, the example in mid-range lesson 7 converted the main code in the first watchdog timer 

example into a loop, incorporating the ‘sleep’ instruction: 

main_loop 

        banksel GPIO            ; turn on LED 

        bsf     LED         

 

        DelayMS 1000            ; delay 1 sec 

 

        banksel GPIO            ; turn off LED 

        bcf     LED         

 

        sleep                   ; enter sleep mode (until WDT time-out) 

         

        goto    main_loop       ; repeat forever 

 

With the watchdog timer enabled, with a period of 2.3 s, the LED is on for 1 s, and then off for 1.3 s, as in 

the earlier example.  But this time the PIC is in sleep mode while the LED is off, conserving power. 

XC8 implementation 

In a similar way, we can convert the main code in example 5, above, into a loop – dropping the WDT 

timeout test, and adding a SLEEP() macro: 

    for (;;) 

    { 

        LED = 1;                    // turn on LED 

     

        __delay_ms(1000);           // delay 1 sec 

    

        LED = 0;                    // turn off LED  

     

        SLEEP();                    // enter sleep mode (until WDT time-out) 

    } 

 

file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Midrange/7%20-%20IOC,%20Sleep,%20WDT/PIC_Mid_A_7.pdf
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Complete program 

Here is how this new main loop fits into the code: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 4, example 6                                 * 

*                                                                       * 

*   Demonstrates periodic wake from sleep, using the watchdog timer     * 

*                                                                       * 

*   Turn on LED for 1s, turn off, then sleep                            * 

*       LED stays off if watchdog not enabled,                          * 

*       flashes (1s on, 2.3s off) if WDT enabled                        * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1 = indicator LED                                             * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

#define _XTAL_FREQ  4000000     // oscillator frequency for _delay_ms() 

 

 

/***** CONFIGURATION *****/ 

#define     WATCHDOG            // define to enable watchdog timer 

 

#ifdef WATCHDOG 

    // ext reset, no code or data protect, no brownout detect, 

    // watchdog, power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF &   

         WDTE_ON & PWRTE_OFF & FOSC_INTRCIO); 

#else 

    // ext reset, no code or data protect, no brownout detect, 

    // no watchdog, power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF &   

         WDTE_OFF & PWRTE_OFF & FOSC_INTRCIO); 

#endif    

 

// Pin assignments 

#define LED     GPIObits.GP1    // indicator LED on GP1 

#define n_LED   1               //   (port bit 1) 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    /*** Initialisation ***/ 

     

    // configure port 

    TRISIO = ~(1<<n_LED);           // configure LED pin (only) as output 

     

    // configure watchdog timer 

    OPTION_REGbits.PSA = 1;             // assign prescaler to WDT 

    OPTION_REGbits.PS = 0b111;          // prescale = 128 

                                        // -> WDT timeout = 2.3 s 

 

     

    /*** Main loop ***/ 

    for (;;) 
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    { 

        LED = 1;                    // turn on LED 

     

        __delay_ms(1000);           // delay 1 sec 

    

        LED = 0;                    // turn off LED  

     

        SLEEP();                    // enter sleep mode (until WDT time-out) 

    }   

} 

 

 

Summary 

We have seen in this lesson that the interrupt-on-change, sleep mode, wake-up on change, and watchdog 

timer features of the mid-range PIC architecture can be configured and used effectively in C programs, using 

the XC8 compiler.   

 

The next lesson revisits material from mid-range assembler lesson 8, briefly covering some of the hardware-

related features of the 12F629 (and most other mid-range PICs), such as brown-out detection and the 

available oscillator (clock) options. 

 

 

../5%20-%20Power%20and%20clocks/PIC_Mid_C_5.pdf
../../Midrange/8%20-%20Power%20and%20clocks/PIC_Mid_A_8.pdf
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Introduction to PIC Programming 

Programming Mid-Range PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 5: Reset, Power and Clock Options 

 

 

Mid-range assembler lesson 8 looked at some of the more “hardware-related” aspects of the mid-range PIC 

architecture, including clock sources, the power-on reset conditions needed to successfully power-up a mid-

range PIC, and brown-out resets and detection.  This lesson covers the same topics, re-implementing the 

examples using Microchip’s XC8 compiler
1
 (running in “Free mode”), as usual. 

However, there is no to repeat all of the theory here, so you may wish to refer back to mid-range lesson 8 for 

more detail. 

In summary, this lesson covers: 

 Oscillator (clock) options 

 Power-on reset (POR) 

 Power-up timer (PWRT) 

 Brown-out detection (BOD) 

 

Oscillator (Clock) Options 

Although it is often appropriate to use the internal RC oscillator as the processor clock source, there are some 

situations where it is more appropriate to use some external clock circuitry, for reasons such as: 

 Greater accuracy and stability. 

A crystal or ceramic resonator is significantly more accurate than the internal RC oscillator, with less 

frequency drift due to temperature and voltage variations. 

 Generating a specific frequency. 

For example, as we saw in lesson 2, the signal from a 32.768 kHz crystal can be readily divided 

down to 1 Hz.   Or, to produce accurate timing for RS-232 serial data transfers, a crystal frequency 

such as 1.843200 MHz can be used, since it is an exact multiple of common bit rates, such as 38400 

or 9600 (1843200 = 48 × 38400 = 192 × 9600). 

 Synchronising with other components. 

Clocking a number of devices from a common source, so that their outputs change synchronously, 

may simplify your design – although you need to be careful; clock signals which are subject to 

varying delays in different parts of your circuit will not be properly synchronised (a phenomenon 

known as clock skew), leading to unpredictable results. 

                                                      

1
 Available as a free download from www.microchip.com. 

../../Midrange/8%20-%20Power%20and%20clocks/PIC_Mid_A_8.pdf
../../Midrange/8%20-%20Power%20and%20clocks/PIC_Mid_A_8.pdf
../2%20-%20Timer%200/PIC_Mid_C_2.pdf
http://www.microchip.com/
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Another approach is to make the PIC’s clock available externally, so that other components can be 

synchronised with it. 

 Lower power consumption. 

At a given supply voltage, PICs draw less current when they are clocked at a lower speed.  Power 

consumption can be minimised by running the PIC at the slowest practical clock speed and power 

supply voltage.  And for many applications, a high clock rate is unnecessary. 

 Faster operation. 

Most mid-range PICs can operate at a clock rate of up to 20 MHz, while the internal RC oscillator 

generally runs at only 4 or 8 MHz.  If you need more speed than the internal oscillator can provide, 

you need to use a crystal or other external clock source. 

 

Mid-range PICs support a number of clock, or oscillator, configurations, allowing, through appropriate 

oscillator selection, any of these goals to be met (but not necessarily all at once – low power consumption 

and high frequencies don’t mix!) 

The following table summarises the oscillator configuration options available for the PIC12F629, and the 

corresponding MPASM and XC8 symbols: 

FOSC<2:0> MPASM symbol XC8 symbol Oscillator configuration 

000 _LP_OSC FOSC_LP LP oscillator 

001 _XT_OSC FOSC_XT XT oscillator 

010 _HS_OSC FOSC_HS HS oscillator 

011 _EC_OSC FOSC_EC EC oscillator 

100 _INTRC_OSC_NOCLKOUT FOSC_INTRCIO Internal RC oscillator + GP4 

101 _INTRC_OSC_CLKOUT FOSC_INTRCCLK Internal RC oscillator + CLKOUT 

110 _EXTRC_OSC_NOCLKOUT FOSC_EXTRCIO External RC oscillator + GP4 

111 _EXTRC_OSC_CLKOUT FOSC_EXTRCCLK External RC oscillator + CLKOUT 

 

Internal RC oscillator 

Until now we’ve been using the ‘FOSC_INTRCIO’ configuration, where the internal RC oscillator provides a 

(nominally) 4 MHz processor clock (FOSC), driving the execution of instructions at approximately 1 MHz, 

and every pin is available for I/O. 

In the ‘FOSC_INTRCCLK’ configuration, the instruction clock (FOSC/4) is output on the CLKOUT pin, to 

allow external devices to be synchronised with the PIC’s internal RC clock. 

Since, on the 12F629, CLKOUT shares pin 3, GP4 cannot be used for I/O in ‘FOSC_INTRCCLK’ mode. 

You can use an oscilloscope to look at the signal on CLKOUT in ‘FOSC_INTRCCLK’ mode, but to verify that 

this signal is indeed the instruction clock, it’s useful to toggle another pin as quickly as possible, for 

comparison with CLKOUT, using a simple program such as: 

/************************************************************************ 

*   Description:    Lesson 5, example 1                                 * 

*                                                                       * 

*   Demonstrates CLKOUT function in Internal RC oscillator mode         * 

*                                                                       * 

*   Toggles a pin as quickly as possible                                *   

*   for comparison with 1 MHz CLKOUT signal                             * 
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************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP2    = fast-changing output                                   * 

*       CLKOUT = 1 MHz clock output                                     * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, 4 Mhz int clock with CLKOUT 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCCLK); 

 

// Pin assignments 

#define OUT     GP2         // fast-changing output 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    /*** Initialisation ***/ 

     

    // configure port 

    TRISIO = 0;             // configure all pins (except GP3 and GP4/CLKOUT) 

                            //   as outputs 

     

    /*** Main loop ***/ 

    for (;;)   

    {               

        OUT = ~OUT;         // toggle output pin as fast as possible 

    } 

} 

 

 

The internal RC oscillator with CLKOUT configuration was selected by: 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, 4 Mhz int clock with CLKOUT 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCCLK); 

 

 

To toggle the GP2 pin as quickly as possible, the main loop was made as tight as possible: 

    for (;;)   

    {               

        OUT = !OUT;         // toggle output pin as fast as possible 

    } 

 

The XC8 compiler, running in “Free mode”, generates code which toggles GP2 every five cycles, i.e. every 

5 µs, giving an output frequency of 100 kHz. 

 

This is not as fast as we were able to toggle the pin in the example in mid-range lesson 8 – demonstrating 

that for best results in time-critical code, it may be necessary to use assembler. 

../../Midrange/8%20-%20Power%20and%20clocks/PIC_Mid_A_8.pdf
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This is apparent in the following oscilloscope plot: 

 

The top trace is the instruction clock signal on CLKOUT, which, as you can see, has a period very close to 1 

µs, giving a frequency of 1 MHz, as expected. 

The bottom trace is the signal on GP2, which changes state every five instruction cycles, also as expected.  

Note that the transitions on GP2 are aligned with the falling edge of the instruction clock on CLKOUT. 

These signals are available on pins 3 (‘GP/RA/RB4’) and 13 (‘GP/RA/RB2’) of the 16-pin header on the 

Gooligum training board; the ground reference is pin 16 (‘GND’). 

 

 

 

 

External clock input 

An external oscillator can be used as the PIC’s clock source. 

This is sometimes done so that the timing of various parts of a circuit is synchronised to the same clock 

signal.  Or, your circuit may have an existing clock signal available, and it may make sense to use it if it is 

more accurate and/or stable than the PIC’s internal RC oscillator – assuming you can afford the loss of one 

of the PIC’s I/O pins. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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To demonstrate the use of an 

external clock signal, we’ll 

use a 32.768 kHz crystal 

oscillator, such as the one 

from baseline assembler 

lesson 5, as shown in the 

circuit on the right.  

To use an external oscillator 

with the PIC12F629, the ‘EC’ 

oscillator mode should be 

used, with the clock signal 

(with a frequency of up to 20 

MHz) connected to the 

CLKIN input: pin 2 on a 

PIC12F629. 

To implement this circuit 

using the Gooligum training 

board, place a shunt in 

position 4 (“EC”) of jumper 

block JP20, connecting the 

32.768 kHz signal to CLKIN, 

and in JP3 and JP12 to enable 

the external MCLR  pull-up resistor (not shown here) and the LED on GP1. 

Since CLKIN uses the same pin as GP5, GP5 cannot be used for I/O when the PIC is in ‘FOSC_EC’ mode. 

 

To illustrate the operation of this circuit, we can modify the crystal-driven LED flasher program developed 

in lesson 2.  In that example, the external 32.768 kHz signal was used to drive the Timer0 counter. 

Now, however, the 32.768 kHz signal is driving the processor clock, giving an instruction clock rate of 8192 

Hz.  If Timer0 is configured in timer mode with a 1:32 prescale ratio, TMR0<7> will cycle at exactly 1 Hz 

(since 8192 = 32 × 256) – as is assumed in the example from lesson 2. 

 

Therefore, to adapt that program for this circuit, all we need to do is to change the configuration statement to: 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, external clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_EC); 

 

 

and change the initialisation code from: 

    // configure Timer0 

    OPTION_REGbits.T0CS = 1;        // select counter mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b110;      // prescale = 128 

                                    // -> incr at 256 Hz with 32.768 kHz input 

to: 

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b100;      // prescale = 32 

                                    // -> incr at 256 Hz with 8192 Hz inst clock 

../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
../../Baseline/5%20-%20Timer%200/PIC_Base_A_5.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
../2%20-%20Timer%200/PIC_Mid_C_2.pdf
file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Midrange%20C/2%20-%20Timer%200/PIC_Mid_C_2.pdf
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With these changes made, the LED on GP1 should flash at almost exactly 1 Hz – to within the accuracy of 

the crystal oscillator. 

Complete program 

Here is the program from lesson 2, modified as described above: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 5, example 2                                 * 

*                                                                       * 

*   Demonstrates use of external clock mode                             * 

*   (using 32.768 kHz clock source)                                     * 

*                                                                       * 

*   LED flashes at 1 Hz (50% duty cycle),                               * 

*   with timing derived from 8192 Hz instruction clock                  * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

;       GP1   = flashing LED                                            * 

;       CLKIN = 32.768 kHz signal                                       * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, external clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_EC); 

          

// Pin assignments 

#define sFLASH  sGPIO.GP1           // flashing LED (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    /*** Initialisation ***/ 

     

    // configure port 

    TRISIO = ~(1<<1);               // configure GP1 (only) as an output 

     

    // configure Timer0 

file:///C:/Work/Gooligum/Tutorials/Base_mid%20dev%20board/Midrange%20C/2%20-%20Timer%200/PIC_Mid_C_2.pdf
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    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b100;      // prescale = 32 

                                    // -> incr at 256 Hz with 8192 Hz inst clock 

                 

    /*** Main loop ***/ 

    for (;;) 

    { 

        // TMR0<7> cycles at 1 Hz, so continually copy to LED 

        sFLASH = (TMR0 & 1<<7) != 0;    // sFLASH = TMR0<7> 

         

        GPIO = sGPIO.port;              // copy shadow to GPIO 

    }    

} 

 

Crystals and ceramic resonators 

Generally, there is no need to build your own crystal oscillator; PICs include an oscillator circuit designed to 

drive crystals directly. 

A parallel (not serial) cut crystal, or a ceramic 

resonator, is placed between the OSC1 and OSC2 

pins, which are grounded via loading capacitors, as 

shown in the circuit diagram on the right. 

You should consult the crystal or resonator 

manufacturer’s data when selecting load crystals; 

those shown here are appropriate for a crystal 

designed for a load capacitance of 12.5 pF. 

For some crystals it may be necessary to reduce the 

drive current by placing a resistor between OSC2 

and the crystal, but in most cases it is not needed, 

and the circuit shown here (with the reset switch and 

pull-up omitted for clarity) can be used. 

If you are using the Gooligum training board, place 

shunts in position 2 (“32kHz”) of JP20
2
 and position 

2 of JP21 (“32kHz”), connecting the 32.768 kHz crystal between OSC1 and OSC2, and close JP3 and JP12 

to enable the external MCLR  pull-up resistor (not shown here) and the LED on GP1. 

  

The PIC12F629 offers three crystal oscillator modes: ‘XT’, ‘LP’ and ‘HS’.  They differ in the gain and 

frequency response of the drive circuitry. 

‘XT’ (“crystal”) is the mode most commonly used for crystals or ceramic resonators operating between 100 

kHz and 4 MHz. 

                                                      

2
 You will find, with the Gooligum training board that the LED in this 32.768 kHz crystal example will flash, even with 

no shunt installed in JP20!  This is because, when configured in _LP_OSC mode, the OSC1 input is very sensitive, and 

picks up crosstalk from the external 32.768 kHz signal on the board.  If you want to prevent this effect, you can dampen 

the external 32.768 kHz signal by loading it with a 100 Ω resistor, placed between pin 1 of the 16-pin expansion header 

and ground, via the breadboard.  The external clock example will still work with this resistor in place, and this 32.768 

kHz crystal example will only work with shunts in the “32kHz” positions of JP20 and JP21 – as we’d expect. 

http://www.gooligum.com/devboards/base-mid/base-mid.html
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‘HS’ (“high speed”) mode provides higher gain and is typically used for crystals or ceramic resonators 

operating above 4 MHz, up to a maximum frequency (on the 12F629) of 20 MHz.  The higher drive level 

means that a series resistor is more likely to be necessary in ‘HS’ oscillator mode. 

Lower frequencies generally require lower gain.  The ‘LP’ (“low power”) mode uses less power and is 

designed to drive common 32.786 kHz “watch” crystals, although it can also be used with other low-

frequency crystals or resonators. 

 

The circuit shown above can be used to operate the PIC12F629 at 32.768 kHz, giving low power 

consumption and an 8192 Hz instruction clock, which, as we have seen, is easily divided to create an 

accurate 1 Hz signal. 

 

To flash the LED at 1 Hz, the program is exactly the same as for the external clock example above, except 

that the configuration statement must instead include the FOSC_LP option: 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, LP oscillator 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_LP); 

 

 

 

Another option, when you want greater accuracy and stability than the internal RC oscillator can provide, but 

do not need as much as that offered by a crystal, is to use a ceramic resonator. 

 

These are available in convenient 3-terminal 

packages which include appropriate loading 

capacitors, as shown in the circuit diagram (with 

the reset switch and pull-up omitted for clarity) on 

the right.  The resonator package incorporates the 

components within the dashed lines. 

If you have the Gooligum training board, move the 

shunts to position 3 (“4MHz”) of JP20 and position 

1 of JP21 (“4MHz”), connecting the 4.0 MHz 

resonator between OSC1 and OSC2, and leave 

JP3 and JP12 closed to enable the external MCLR  

pull-up resistor (not shown here) and the LED on 

GP1. 

 

 

To test this circuit, you can change the ‘FOSC_INTRCIO’ configuration option to ‘FOSC_XT’ in the 

__CONFIG() macro in any program from the examples in any of the earlier lessons, since they all used a 4 

MHz clock. 

 

A good choice is the “flash an LED at exactly 1 Hz” program developed in lesson 3, since it will generate an 

output of exactly 1 Hz, given a processor clock of exactly 4 MHz, and so should benefit from the more 

accurate clock source. 

  

http://www.gooligum.com/devboards/base-mid/base-mid.html
../3%20-%20Interrupts/PIC_Mid_C_3.pdf
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External RC oscillator 

Finally, a low-cost, low-power option: mid-range PICs can 

use an oscillator based on an external resistor and 

capacitor, as shown (with the reset switch and pull-up 

omitted for clarity) on the right. 

To implement this circuit using the Gooligum training 

board, move the shunt to position 1 (“RC”) of JP20, 

connecting the 10 kΩ resistor and 82 nF capacitor to 

OSC1.  Remove the shunt from JP21 and leave JP3 and 

JP12 closed, enabling the external MCLR  pull-up resistor 

(not shown here) and the LED on GP1. 

 

External RC oscillators, with appropriate values of R and 

C, can be useful when a very low clock rate is acceptable – 

drawing significantly less power than when the internal 4 

MHz RC oscillator is used. 

Running the PIC slowly can also simplify some programming tasks, needing fewer, shorter delays. 

 

Microchip does not commit to a specific formula for the frequency (or period) of the external RC oscillator, 

only stating that it is a function of VDD, R, C and temperature, and in some documents providing some 

reference charts.  But for rough design guidance, you can assume the period of oscillation is approximately 

1.2 × RC. 

Microchip recommends keeping R between 5 kΩ and 100 kΩ, and C above 20 pF. 

 

In the circuit above, R = 10 kΩ and C = 82 nF. 

Those values will give a period of approximately 1.2 × 10×10
3
 × 82×10

-9
 s = 984 µs 

Hence, we can expect to generate a clock frequency of around 1 kHz. 

 

So, given a roughly 1 kHz clock, what can we do with it? 

Flash an LED, of course! 

Using a similar approach to before, we can use the instruction clock (approx. 256 Hz) to increment Timer0.  

In fact, with a prescale ratio of 1:256, TMR0 will increment at approx. 1 Hz. 

TMR0<0> would then cycle at 0.5 Hz, TMR0<1> at 0.25 Hz, etc. 

Now consider what happens when the prescale ratio is set to 1:64.  TMR0 will increment at 4 Hz, TMR0<0> 

will cycle at 2 Hz, and TMR0<1> will cycle at 1 Hz, etc. 

And that suggests a very simple way to make the LED on GP1 flash at 1 Hz: 

If we continually copy TMR0 to GPIO, each bit of GPIO will reflect each corresponding bit of TMR0. 

In particular, GPIO<1> will always be set to the same value as TMR0<1>.  Since TMR0<1> is cycling at 1 

Hz, GPIO<1> (and hence GP1) will also cycle at 1 Hz. 

  

Only use an external RC oscillator if the exact clock rate is unimportant. 

http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
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Complete program 

The following program implements the approach described above.  Note that the external RC oscillator is 

selected by using the option ‘RCCLK’ in the configuration statement. 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 5, example 5                                 * 

*                                                                       * 

*   Demonstrates use of external RC oscillator (~1 kHz)                 * 

*                                                                       * 

*   LED on GP1 flashes at approx 1 Hz (50% duty cycle),                 * 

*   with timing derived from ~256 Hz instruction clock                  * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP1  = flashing LED                                             * 

*       OSC1 = R (10k) / C (82n)                                        * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no brownout detect, no watchdog, 

// power-up timer enabled, ext RC oscillator (~ 1kHz) + clkout 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF &  

         PWRTE_OFF & FOSC_EXTRCCLK); 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    /*** Initialisation ***/ 

     

    // configure port 

    TRISIO = ~(1<<1);               // configure GP1 (only) as an output 

 

    // configure Timer0 

    OPTION_REGbits.T0CS = 0;        // select timer mode 

    OPTION_REGbits.PSA = 0;         // assign prescaler to Timer0 

    OPTION_REGbits.PS = 0b101;      // prescale = 64 

                                    //  -> incr at 4 Hz with 256 Hz inst clock 

                 

    /*** Main loop ***/ 

    for (;;) 

    { 

        // TMR0<1> cycles at 1 Hz, so continually copy to LED (GP1) 

        GPIO = TMR0;                // copy TMR0 to GPIO 

    }  

} 

 

 

The “main loop” is only a single assignment statement – by far the shortest “flash an LED” program we have 

done, demonstrating that slowing the clock rate can simplify certain programming problems.  On the other 

hand, it is also the least accurate of the “flash an LED” programs, being only approximately 1 Hz.  But for 

many applications, the exact speed doesn’t matter; it only matters that the LED visibly flashes, not how fast. 

 



© Gooligum Electronics 2012  www.gooligum.com.au 

Mid-range PIC C, Lesson 5: Reset, Power and Clock Options Page 11 

Power-On Reset 

As explained in greater detail in mid-range lesson 8, to reliably start program execution on a mid-range (or 

any) PIC, it is necessary to hold the device in a reset condition until the power supply has reached a 

consistently high enough voltage. 

This was traditionally done by a simple RC circuit attached to the external MCLR  pin.  However, there is 

often no need to use external reset components with modern mid-range PICs, because they include a power-

up timer (PWRT), which, if enabled, holds the device in reset for a nominal 72 ms from the initial power-on 

reset (POR) which occurs when power-on is detected. 

 

The power-up timer is controlled by the PWRTE  bit in the processor configuration word; setting PWRTE  to 

‘1’ disables the power-on timer. 

To enable it using XC8, include the symbol ‘PWRTE_ON’ in the __CONFIG() macro. 

To disable it, use ‘PWRTE_OFF’ instead. 

 

You may need to disable the power-up timer if your power supply takes more than 72 ms to settle.  You 

should then use an external RC reset circuit, or an external supervisory circuit, such as one of Microchip’s 

MCP10X devices, to hold the device in reset for longer.  If so, it may appropriate to disable the internal 

power-up timer, so that there is only one source of power-up delay. 

But most of the time, unless your circuit is operating in difficult power supply conditions, you can enable the 

power-up timer (as we have done so far) and, if you are using an external reset, use a 10 kΩ resistor between 

MCLR  and VDD. 

 

If you are using the LP, XT or HS clock mode (which implies that you’re probably using a crystal or 

resonator driven by the PIC’s on-board oscillator circuitry), the oscillator start-up timer (OST) is invoked to 

give the crystal or resonator time to settle, after the PWRT delay completes.  The OST counts pulses on the 

OSC1 pin, and holds the device in reset until it has counted 1024 oscillator cycles. 

The OST is also used when the PIC wakes from sleep in LP, XT or HS clock mode, for the same reason – the 

oscillator is disabled while the device is in sleep mode, and takes a while to start and become stable. 

Note that the OST is invoked whether or not PWRT is enabled.  The only way to avoid the oscillator start-up 

delay is to use one of the EC, internal RC or external RC oscillator modes. 

 

For fastest processor start-up at power-on, disable the power-up timer and use an external clock, avoiding 

both the PWRT and OST delays – and hope that you have a very fast-starting and stable power supply!  But 

it’s generally best to simply accept that your program won’t start running for up to 100 ms after you turn the 

power on… 

 

Brown-out Detect 

Mid-range lesson 8 also explained that the PIC’s operation can become unreliable if the power supply 

voltage falls too far during normal operation – a condition known as a brown-out.  In general, it is preferable 

to stop program execution while the brown-out situation persists, instead of risking unreliable operation; it’s 

better to be able to recover cleanly after the brown-out, instead of not knowing what your program might do. 

Most mid-range PICs provide a brown-out detect (BOD, also called brown-out reset, or BOR) facility, 

which, if enabled, will reset the device if the supply voltage falls below the brown-out detect voltage 

../../Midrange/8%20-%20Power%20and%20clocks/PIC_Mid_A_8.pdf
../../Midrange/8%20-%20Power%20and%20clocks/PIC_Mid_A_8.pdf
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(between 2.025 V and 2.175 V on the PIC12F629), and hold it in reset until the voltage rises again.  If the 

power-up timer is enabled (recommended if you are using BOD), the device will remain in reset for a further 

72 ms after the brown-out condition clears – and if another brown-out occurs during this PWRT delay, it will 

be detected and the process will repeat. 

 

Brown-out detection on the PIC12F629 is controlled by the BODEN bit in the processor configuration word; 

setting BODEN to ‘1’ enables brown-out detection. 

To enable BOD (or BOR) using XC8, use the symbol ‘BOREN_ON’ in the __CONFIG() macro. 

To disable it, use ‘BOREN_OFF’ instead. 

 

Detecting a brown-out reset 

If a brown-out occurs, resetting the PIC and hence restarting your program, you may want your application 

to react to this, behaving differently to a power-on, watchdog timer, or other reset.  For example, if your 

program has restarted because of a brown-out, you may want it to try to continue doing whatever it was 

doing before the brown-out, instead of running through the full initialisation routine. 

Fortunately, mid-range PICs provide flags which allow us to detect and respond differently to both power-on 

and brown-out resets. 

In the 12F629, these flags are contained in the power control register, PCON. 

The POR  (power-on reset status) flag is cleared when a power-on reset occurs, and is set if a brown-out 

reset occurs.  It is unaffected by all other resets. 

This means that, to use this flag to differentiate power-on from other resets, you must set POR  to ‘1’ 

whenever a power-on reset occurs.  Since all the other types of reset either set this bit or leave it unchanged, 

it will then only ever be ‘0’ when a power-on reset has occurred. 

Similarly, the BOD  (brown-out detect status) flag is cleared when a brown-out reset occurs, and is 

unaffected by all other resets. 

So to use this flag to differentiate brown-out from other resets, you must set BOD  to ‘1’ following power-

on.  Since all the other resets leave this bit unchanged, it will only ever be ‘0’ when a brown-out has 

occurred. 

Since BOD  is unaffected by a power-on reset, its value is unknown when the device is first powered on.  

Therefore, the first flag you should test is POR  .  If it is clear, you can be sure that a power-on reset has 

occurred, and you can then set both POR  and 

BOD  , ready for testing after subsequent resets. 

 

An example may help to clarify this. 

We’ll use the circuit shown on the right, which 

you can implement with the Gooligum training 

board by closing jumpers JP3, JP11, JP12 and 

JP13 to enable the pull-up resistor on GP3 and 

the LEDs on GP0, GP1 and GP2. 

If you are using Microchip’s Low Pin Count 

Demo Board, you can connect LEDs to GP0, 

GP1 and GP2, by making connections on the 

14-pin header: ‘RA0’ to ‘RC0’, ‘RA1’ to ‘RC1’ 

and ‘RA2’ to ‘RC2’. 

http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
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The program will simply light the LED on GP0, regardless of why the PIC had been reset (or powered on). 

In addition, the LED on GP1 will be lit on power-on (and not for any other reset), and the LED on GP2 will 

indicate that a brown-out has occurred. 

The pushbutton will be used to generate an external MCLR  reset.  When this happens, only the LED on 

GP0 should light, because the reset is caused by neither power-on nor brown-out. 

 

After enabling brownout detection in the device configuration: 

// ext reset, no code protect, brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_ON & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

 

After  initialising TRISIO and clearing GPIO (so that all LEDs are initially off), the first task is to test the 

POR  flag to see if a power-on reset has occurred.  If so, we should set the POR  and BOD  flags, to set 

them up for any subsequent resets (as discussed above), and light the POR LED: 

    if (!PCONbits.nPOR)         // if power-on reset (/POR = 0), 

    { 

        PCONbits.nPOR = 1;      //   set POR and BOD flags for next reset 

        PCONbits.nBOD = 1; 

        sP_LED = 1;             //   enable POR LED (shadow) 

    } 

 

A shadow copy of GPIO is used to avoid potential read-modify-write problems, as we have done before. 

 

Now we can reliably test for a brown-out reset, and, if one has occurred, set the BOD  flag for next time, and 

light the BOD LED: 

    if (!PCONbits.nBOD)         // if brown-out detect (/BOD = 0) 

    { 

        PCONbits.nBOD = 1;      //   set BOD flag for next reset 

        sB_LED = 1;             //   enable BOD LED (shadow)    

    } 

 

Note that, if a power-on reset had occurred, this brown-out detect code will never be executed, because the 

earlier code sets the BOD  flag, whenever a power-on reset is detected. 

 

Finally, regardless of the reason for the reset, we light the “on” LED and copy the shadow register to the 

port: 

    // enable "on" indicator LED  

    sO_LED = 1;                 // (via shadow register) 

 

    // light enabled LEDs 

    GPIO = sGPIO.port;          // copy shadow GPIO to port 

 

If the pushbutton is pressed, generating a MCLR  reset, only this “on” LED will be lit. 

 

Finally, we simply wait until the next reset: 

    for (;;)                    // wait forever 

        ; 

../1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
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Complete program 

Here is how these pieces fit together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 5, example 6                                 * 

*                                                                       * 

*   Demonstrates use of brown-out detect                                * 

*   and differentiation between POR, BOD and MCLR resets                * 

*                                                                       * 

*   Turns on POR LED only if power-on reset is detected                 * 

*   Turns on BOD LED only if brown-out detect reset is detected         * 

*   Turns on indicator LED in all cases                                 * 

*   (no POR or BOD implies MCLR, as no other reset sources are active)  * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP0 = "on" indicator LED (always turned on)                     * 

*       GP1 = POR LED (indicates power-on reset)                        * 

*       GP2 = BOD LED (indicates brown-out detected)                    * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, brownout detect, no watchdog, 

// power-up timer enabled, int RC clock 

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_ON & WDTE_OFF &  

         PWRTE_OFF & FOSC_INTRCIO); 

 

// Pin assignments 

#define sO_LED  sGPIO.GP0   // "on" indicator LED - always on (shadow) 

#define sP_LED  sGPIO.GP1   // POR LED to indicate power-on reset (shadow) 

#define sB_LED  sGPIO.GP2   // BOD LED to indicate brown-out (shadow) 

 

 

/***** GLOBAL VARIABLES *****/ 

union {                             // shadow copy of GPIO 

    uint8_t         port; 

    struct { 

        unsigned    GP0     : 1; 

        unsigned    GP1     : 1; 

        unsigned    GP2     : 1; 

        unsigned    GP3     : 1; 

        unsigned    GP4     : 1; 

        unsigned    GP5     : 1; 

    }; 

} sGPIO; 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    /*** Initialisation ***/ 

     

    // configure port 

    GPIO = 0;                   // start with all LEDs off 



© Gooligum Electronics 2012  www.gooligum.com.au 

Mid-range PIC C, Lesson 5: Reset, Power and Clock Options Page 15 

    sGPIO.port = 0;             //   update shadow     

    TRISIO = 0b111000;          // configure GP0, GP1 and GP2 as outputs 

     

    // check for POR or BOD reset 

    if (!PCONbits.nPOR)         // if power-on reset (/POR = 0), 

    { 

        PCONbits.nPOR = 1;      //   set POR and BOD flags for next reset 

        PCONbits.nBOD = 1; 

        sP_LED = 1;             //   enable POR LED (shadow) 

    } 

    if (!PCONbits.nBOD)         // if brown-out detect (/BOD = 0) 

    { 

        PCONbits.nBOD = 1;      //   set BOD flag for next reset 

        sB_LED = 1;             //   enable BOD LED (shadow)    

    }      

     

     

    /*** Main code ***/ 

     

    // enable "on" indicator LED  

    sO_LED = 1;                 // (via shadow register) 

 

    // light enabled LEDs 

    GPIO = sGPIO.port;          // copy shadow GPIO to port 

 

    // wait forever 

    for (;;)                     

        ; 

} 

 

 

To test this program, you will need a variable power supply. 

If you have the Gooligum training board, you can connect your power supply to Vdd and ground via pins 15 

(‘+V’) and 16 (‘GND’) on the 16-pin expansion header. 

 

You should find that if you set the supply to say 4 V and apply power, the POR LED (GP1) should light, 

along with the “on” LED (GP0) 

If you then simulate a brown-out, by lowering the voltage until both LEDs turn off (at around 2 V; by this 

time they will be very dim, since the forward voltage of most normal-brightness LEDs is around 2 V), 

without taking the voltage all the way to zero, and then raise the voltage again, the BOD LED (GP2) should 

light, indicating that the brown-out was detected.  The “on” LED should light, as always, but not POR, 

because this was a brown-out, not a power-on reset.. 

If you then turn off the power supply, and turn it back on again, the POR LED should light again, and not 

BOD, because this was a normal power-on, not a brown-out. 

Finally, if you press the pushbutton, generating a MCLR  reset, while either the POR or BOD LED is lit, all 

the LEDs will go out while the button is pressed, and then only the “on” LED will come on, indicating that 

this reset was neither a power-on nor a brown-out. 

 

http://www.gooligum.com/devboards/base-mid/base-mid.html
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Summary 

Most of the examples in this lesson did not require any new programming techniques; the first few being 

minor adaptations of programs from earlier lessons, with different processor configuration options, to select 

the oscillator mode being demonstrated. 

However, the final example demonstrated that power-on and brown-out resets can be detected and responded 

to effectively, using the XC8 compiler – the detection code being simple and elegant, compared with the 

assembler version. 

 

 

The next lesson will revisit material from mid-range assembler lessons 9 and 11, focussing on comparators – 

the single comparator in the PIC12F629, and the dual comparator module in the PIC16F684. 

 

 

../6%20-%20Comparators/PIC_Mid_C_6.pdf
../../Midrange/9%20-%20Comparators%201/PIC_Mid_A_9.pdf
../../Midrange/11%20-%20Comparators%202/PIC_Mid_A_11.pdf
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Migrating to Enhanced Mid-Range PICs 

Enhanced Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 1: Basic Digital I/O 

 

 

This series of lessons introduces the enhanced mid-range PIC architecture, using assembly language, and 

follows on from the Mid-range PIC Assembler tutorial series.  It assumes that you are familiar with the 

content of at least the free mid-range lessons (1-8). 

Although the mid-range architecture was a step up from the baseline architecture, it still has a number of 

limitations that we’ve had to work around, such as the read-modify-write problem and the need to address 

data memory in contiguous blocks of no more than 96 bytes. 

The enhanced mid-range (12F1xxx and 16F1xxx) PIC architecture overcomes these limitations and more, 

removing the need to use shadow registers, extending the maximum code and data memory sizes, making 

this memory more easily addressable, interrupts easier to use, the stack larger and its contents accessible, 

and includes a number of useful additional assembly language instructions, as we’ll see. 

 

This lesson introduces one of the simplest of the enhanced mid-range PICs – the PIC12F1501.  It then 

goes on to describe basic digital I/O output, as covered in lessons 1 to 3 of the mid-range assembler 

tutorial series.  

In summary, this lesson covers: 

 Introduction to the  PIC12F1501 

 Simple digital input and output 

 Selecting the internal oscillator frequency 

 Using internal (weak) pull-ups 

 Banking and paging 

Getting Started 

As before, these tutorials assume that you are using either the Gooligum Baseline and Mid-range PIC 

Training and Development Board or Microchip’s Low Pin Count Demo Board
1
, with Microchip’s 

MPLAB 8 or MPLAB X integrated development environment. 

You will also need a programmer, such as Microchip’s PICkit 3, which is compatible the enhanced mid-

range PICs. 

                                                      

1
 it is of course possible to adapt these lessons to different development boards 

Note: the PICkit 2 programmer, which was used in the baseline and mid-range tutorials, is not 

supported in MPLAB for use with enhanced mid-range PICs. 

../../Midrange
../../Midrange/1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
../../Midrange/3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html


© Gooligum Electronics 2013  www.gooligum.com.au 

Migrating to Enhanced Mid-Range PIC Assembler, Lesson 1: Basic Digital I/O Page 2 

Introducing the PIC12F1501 

The 12F1501 is in some ways the simplest of the enhanced mid-range PICs
2
. 

It is roughly equivalent to the 12F675, which in turn is essentially the same as the 12F629 introduced in 

mid-range lesson 1, with the addition of an analog-to-digital converter (ADC) – as can be seen in the 

following table, which summarises some of the basic features of various 8-pin PICs: 

However, the 12F1501 also includes a number of peripherals which the 12F675 does not, such as a digital-

to-analog converter (DAC), pulse-width modulation (PWM) outputs, a configurable logic cell (used to 

implement simple logic functions in hardware) and a numerically controlled oscillator. 

And although the 12F1501 does not include any EEPROM memory, it has the ability to write into its 

program (Flash) memory, 128 bytes of which is “high-endurance” Flash which can be re-written at least 

100,000 times – making it a viable alternative to true EEPROM memory in many situations. 

We’ll explore these additional features in later lessons. 

 

As explained in mid-range lesson 1, the data memory in mid-

range PICs consists of up to four banks, with 128 addresses in 

each bank.  The first 32 addresses can hold special function 

registers (SFRs), used for core functionality and to access 

peripherals such as timers.  The remaining 96 addresses in 

each bank are available for general-purpose registers (GPRs), 

used for temporary data storage such as program variables.  

Some of these SFRs and GPRs are mapped into every bank, so 

that they can be accessed regardless of which bank is currently 

selected. 

 

In the enhanced mid-range PIC architecture, this scheme is 

greatly expanded, with every enhanced mid-range device 

having 32 banks of 128 addresses each. 

Each bank (other than bank 31, as we’ll see later) is laid out 

the same way, as illustrated on the right. 

                                                      

2
 which is why we’re starting this series with the PIC12F1501… 

Device 

Memory (words or bytes) Timers Analog 
Clock rate 

(max MHz) 
Program Data EEPROM 8-bit 16-bit 

Comp-

arators 

ADC 

inputs 

12F508 512 25 0 1 0 0 0 4 

12F629 1024 64 128 1 1 1 0 20 

12F675 1024 64 128 1 1 1 4 20 

12F683 2048 128 256 2 1 1 4 20 

12F1501 1024 64 0 2 1 1 4 20 

12F1822 2048 128 256 2 1 1 4 32 

12F1840 4096 256 256 2 1 1 4 32 

Standard bank layout 

Offset Register Type 

00h 
Core  

Registers 
 

0Bh 

0Ch 
Special Function 

Registers 
 

1Fh 

20h 

General Purpose 

RAM 
 

6Fh 

70h 
Common 

RAM 
 

7Fh 

../../Midrange/1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
../../Midrange/1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf


© Gooligum Electronics 2013  www.gooligum.com.au 

Migrating to Enhanced Mid-Range PIC Assembler, Lesson 1: Basic Digital I/O Page 3 

The first 12 addresses of every bank provide access to the 

“core registers”, as shown on the right. 

There is only one set of core registers, but they appear in the 

same locations within each bank – meaning that they can be 

accessed in the same way, whichever bank is selected. 

You’ll recognise some of these: STATUS, PCL, PCLATH 

and INTCON are all carried over from the mid-range 

architecture, where they were also mapped into every bank, 

and operate the same way as before. 

One difference however is that STATUS no longer contains 

any bank selection bits.  Now that we have 32 (= 2
5
) banks, 

we need five bits to specify which back is selected.  These bits 

are now held in a dedicated bank selection register: BSR. 

WREG is our old friend W, the working register, now 

mapped into data memory.  This means that any instruction 

which accesses data memory can now work directly on W. 

For example, it is now possible to rotate W directly 

(something that hadn’t been possible before), with, for 

example: 

        rlf     WREG,w 

 

will rotate the value in W left (through carry)
3
, writing the result back into W. 

The remaining core registers (INDF0, INDF1, FSR0L, FSR0H, FSR1L and FSR1H) are used for 

indirect addressing, in a similar, but greatly enhanced, way to the mid-range architecture’s INDF and FSR 

registers, as described in mid-range lesson 14. 

In fact, indirect addressing is one of the most significant enhancements in the enhanced mid-range 

architecture.  The new indirect addressing scheme allows for both data and program memory to be read 

and written.  And it allows for general purpose RAM to be accessed linearly, making it easy to implement 

arrays and other large structures, without being constrained by bank boundaries.  We’ll look in detail at 

how it works in a later lesson. 

The last 16 addresses of each bank are used for “common RAM” – this is equivalent to the “shared” data 

memory we’re familiar with from baseline and mid-range PICs
4
.  It contains 16 GPRs which are all 

mapped into the same location in every bank – avoiding the need for bank selection instructions when 

accessing data in stored in common RAM. 

Of course we often need more than 16 bytes of data memory, whether for variables, buffers or whatever – 

which is why the enhanced mid-range architecture also provides “general purpose RAM”, consisting of up 

to 80 GPRs in each of banks 0 to 30.  These registers are banked – each only appears in a single bank.  

This means that enhanced mid-range PICs can have up to 80 × 31 = 2480 bytes of general purpose RAM. 

The 12F1501, however, has only 48 bytes of general purpose RAM, all in bank 0, which along with the 16 

bytes of common RAM (mapped into every bank) give it a total of 64 bytes of data memory. 

                                                      

3
 see baseline lesson 11 for an explanation of the rlf instruction 

4
 introduced in baseline lesson 3 

Core Registers 

Offset Register Name 

00h INDF0 

01h INDF1 

02h PCL 

03h STATUS 

04h FSR0L 

05h FSR0H 

06h FSR1L 

07h FSR1H 

08h BSR 

09h WREG 

0Ah PCLATH 

0Bh INTCON 

../../Baseline/11%20-%20Int%20arithmetic%20+%20arrays/PIC_Base_A_11.pdf
../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
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The remaining 20 addresses in banks 0 to 30 hold the special function registers used to access the device’s 

ports and peripherals.  With 20 × 31 = 620 addresses available for SFRs, the enhanced mid-range 

architecture has enough space in its register map to support a much wider range of advanced peripherals 

than was possible in mid-range PICs. 

But since the 12F1501 is a relatively basic device, it doesn’t need hundreds of SFRs.  Many of its 32 

banks are empty, other than the core registers and common RAM, which are mapped into every bank. 

It doesn’t make sense to list them all here – you should refer to the PIC12F1501 data sheet for that – but 

here are the first four banks, where most of the commonly-used SFRs are located: 

Many of these will be familiar from the mid-range PICs – or at least similar enough that you can guess 

what they are for (such as three PIR registers, compared with one on the PIC16F684, and three ADCON 

PIC12F1501 Special Function Registers (banks 0 – 3) 

 Bank 0  Bank 1  Bank 2  Bank 3 

000h 
Core Registers 

080h 
Core Registers 

100h 
Core Registers 

180h 
Core Registers 

00Bh 08Bh 10Bh 18Bh 

00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 

00Dh  08Dh  10Dh  18Dh  

00Eh  08Eh  10Eh  18Eh  

00Fh  08Fh  10Fh  18Fh  

010h  090h  110h  190h  

011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 

012h PIR2 092h PIE2 112h CM1CON1 192h PMADRH 

013h PIR3 093h PIE3 113h  193h PMDATL 

014h  094h  114h  194h PMDATH 

015h TMR0 095h OPTION_REG 115h CMOUT 195h PMCON1 

016h TMR1L 096h PCON 116h BORCON 196h PMCON2 

017h TMR1H 097h WDTCON 117h FVRCON 197h VREGCON 

018h T1CON 098h  118h DACCON0 198h  

019h TMR2 099h OSCCON 119h DACCON1 199h  

01Ah PR2 09Ah OSCSTAT 11Ah  19Ah  

01Bh T2CON 09Bh ADRESL 11Bh  19Bh  

01Ch  09Ch ADRESH 11Ch  19Ch  

01Dh  09Dh ADCON0 11Dh APFCON 19Dh  

01Eh  09Eh ADCON1 11Eh  19Eh  

01Fh  09Fh ADCON2 11Fh  19Fh  

020h General 
Purpose RAM 

0A0h 

 

120h 

 

1A0h 

 
04Fh    

050h 
 

   

06Fh 0EFh 16Fh 1EFh 

070h 
Common RAM 

0F0h 
Common RAM 

170h 
Common RAM 

1F0h 
Common RAM 

07Fh 0FFh 17Fh 1FFh 
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registers instead of two).  Others are associated with new functionality or peripherals, which we’ll look at 

in future lessons, instead of going into detail now. 

 

Finally, bank 31 provides enhanced functionality related to interrupts and the hardware stack. 

We’ll look at some of these features in more detail in later lessons, but briefly – we saw in mid-range 

lesson 6 that, to avoid interfering with the main program, the interrupt service routine must save and 

restore the processor context (the content of registers such as W and STATUS).  Enhanced mid-range 

devices do this for us, with most of the core registers being automatically saved into bank 31 when an 

interrupt occurs, and then automatically restored when the interrupt exits. 

The stack is now 16 registers deep (compared with 8 in mid-range PICs), and although it’s not something 

you need to do often (if ever) the stack contents can now be accessed via a set of registers in bank 31. 

 

As mentioned above, bank selection in the enhanced mid-range architecture is done by writing into bank 

number into the bank selection register, BSR.  Bank selection is something that is done so often that a 

dedicated instruction is now provided specifically for this:  

‘movlb k’ loads the literal value ‘k’ into the bank selection register – “move literal to BSR” 

Thus, to select bank 2, you could write: 

        movlb   2       ; select bank 2 

 

This makes it possible to select any bank with a single instruction, in a single instruction clock cycle, 

without affecting W or any STATUS flags.  That’s a step forward from the mid-range architecture, which 

needs two bit set or clear instructions on four-bank devices such as the PIC16F887. 

But as explained in baseline lesson 3, it is better to use the banksel assembler directive, which will 

generate the appropriate movlb instruction to select the bank corresponding to the specified register 

address.  As in the mid-range architecture, some SFRs are grouped, so that once the correct bank is 

selected for one of them, you can be sure that the bank selection will not need to be changed before 

accessing other registers in the group.  But if you are ever in doubt, use banksel.   

PIC12F1501 Input / Output 

Like the 12F629, the 12F1501 provides six I/O pins in an eight-pin package: 

 

VDD is the positive power supply and VSS 

is the “negative” supply, or ground. 

 

VDD (relative to VSS) on the PIC12F1501 

can range from 2.3 V to 5.5 V, although 

at least 2.5 V is needed if the clock rate is 

greater than 16 MHz
5
. 

 

 

                                                      

5
 A low-power variant, the PIC12LF1501, is also available, where VDD can range from 1.8 V to 3.6 V, with at least 

2.5 V needed for clock rates above 16 MHz. 
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../../Midrange/6%20-%20Interrupts/PIC_Mid_A_6.pdf
../../Midrange/6%20-%20Interrupts/PIC_Mid_A_6.pdf
../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
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The remaining pins, RA0 to RA5, are the I/O pins.  Just like the baseline and mid-range 8-pin PICs, they 

are used for digital input and output, except for RA3, which can only be used as an input.  The other pins 

can be individually set to be inputs or outputs. 

Each of these I/O pins has more functions that can be assigned to it – too many to show on the diagram 

above.  As we’ll see in a later lesson, some of these functions can be selectively mapped to alternate pins.  

And as usual, some functions may need to be disabled before a pin can be used for digital I/O. 

Taken together, the six I/O pins comprise the general-purpose I/O port, or GPIO port, which is referred to 

as PORTA on the 12F1501. 

As in the midrange architecture, there is a TRIS register (TRISA) associated with the port which controls 

whether each pin is set as an input or output: 

It works the same way as the TRIS registers we’ve seen before, with a ‘1’ configuring the corresponding 

pin as an input, and a ‘0’ configuring it as an output.  And as usual, every pin is configured as an input by 

default; TRISA is set to all ‘1’s when the device is powered on. 

 

As you’d expect, there is also a “PORTA” register which provides access to the port pins: 

If a pin in configured as an output, setting the corresponding PORTA bit to ‘1’ outputs a ‘high’ on that 

pin; clearing it to ‘0’ outputs a ‘low’. 

Reading the PORTA register reads the voltage present on each pin, assuming that the pins being read are 

configured for digital I/O
6
.   If the voltage on a pin is high, the corresponding bit reads as ‘1’; if the input 

pin is low, the corresponding bit reads as ‘0’. 

This behaviour is the same as in the baseline and mid-range PIC architectures.  If you attempt to output a 

‘high’ on a pin by writing a ‘1’ to the corresponding port bit, but the external circuit holds that pin low, 

that pin will read as ‘0’ – not what you might have expected. 

As was explained in baseline lesson 2, this behaviour can lead to what are known as read-modify-write 

problems, where instructions which are intended to modify only specific pins actually read the entire port, 

including pins which may not reflect the value that had been output to them, and then write the new value 

(with some bits possibly incorrect) back to the port. 

To work around this potential problem, we have been using shadow registers, to keep track of what we 

have output to the port pins, and to operate on that copy, periodically writing it out to the port. 

                                                      

6
 that is, any functionality on a pin which interferes with digital I/O operation, such as being configured as an analog 

input (see for example baseline lesson 10), has been disabled 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TRISA   TRISA5 TRISA4  TRISA2 TRISA1 TRISA0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

PORTA   RA5 RA4 RA3 RA2 RA1 RA0 

Note: the port registers represent the actual voltages present on each digital I/O pin, including 

pins configured as digital outputs 

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
../../Baseline/10%20-%20ADC/PIC_Base_A_10.pdf
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To avoid read-modify-write problems, the enhanced mid-range architecture makes available an “output 

data latch” register, associated with each port: 

Writing to LATA has the same effect as writing to PORTA: if a pin in configured as an output, setting the 

corresponding LATA bit to ‘1’ outputs a ‘high’ on that pin; clearing it to ‘0’ outputs a ‘low’. 

However – reading LATA returns the value that was last written to LATA.  It does not read the voltages on 

the pins (whether input or output) themselves. 

This means that in the enhanced mid-range architecture, there is no need to use shadow registers, as 

long as you follow these rules: 

 if you are writing an entire byte to a port, you can write to either PORTA or LATA 

 if you are modifying individual port pins, you should operate on LATA 

 if you are reading digital input pins, you must read PORTA 

To keep it simpler, you won’t run into any problems if you always access LATA to write to or modify 

output pins, and PORTA to read digital input pins. 

Example 1: Turning on an LED 

We’ll start the same way that we did in mid-range lesson 1, by simply lighting a single LED, connected to 

one of the 12F1501’s digital I/O pins. 

And we’ll use the same circuit as before: 

In the same way as the 8-pin baseline and mid-

range PICs, pin 4 can be configured as either a 

digital input (RA3) or as an external reset 

(“master clear”, MCLR  ), which, if pulled low, 

will reset the processor. 

In this example, we’ll configure the PIC for 

external reset, allowing either the pushbutton 

or PICkit 3 to pull MCLR  low, resetting the 

device. 

 

If you are using the Gooligum training board, 

plug the PIC12F1501 into the top section of 

the 14-pin IC socket – the section marked 

‘12F’.  Close jumpers JP3 and JP12 to bring 

the 10 kΩ resistor into the circuit and to 

connect the LED to RA1, and ensure that 

every other jumper is disconnected.  

With this simple circuit in place, and connected to your PC via a suitable programmer, such as a PICkit 3, 

it’s time to move on to programming! 

As usual, after the comment block at the start of the program, we #include the processor include file: 

#include "p12F1501.inc" 

 

Note that the ‘list p=’ directive, specifying the processor, is not included in the templates provided with 

MPLAB X and is no longer recommended for normal use, so we will no longer use it in these tutorials. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

LATA   LATA5 LATA4  LATA2 LATA1 LATA0 

../../Midrange/1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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Next the processor is configured: 

;***** CONFIGURATION 

            ; ext reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 

            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_ON & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

[each __CONFIG directive must be written as a single line in the assembler source code] 

The 12F1501 has too many configuration options to fit into a single 14-bit word, so it has two 

configuration words, each defined via a __CONFIG directive as we’ve done before, but with an additional 

parameter, ‘_CONFIG1’ or ‘_CONFIG2’ specifying which configuration word is being defined, as shown. 

We’ve seen many of these configuration options before, and those we haven’t we’ll examine in greater 

detail in later lessons, but briefly the options being selected here are: 

 _MCLRE_ON 

Enables the external reset, or “master clear” ( MCLR  ) on pin 4. 

 _FOSC_INTOSC 

Selects the internal RC oscillator as the clock source 

 _CLKOUTEN_OFF 

Disables the clock out function on pin 3 

 _WDTE_OFF 

Disables the watchdog timer. 

 _BOREN_ON 

Enables brown-out reset. 

 _PWRTE_OFF 

Disables the power-up timer. 

 _CP_OFF 

Turns off program memory code protection. 

 _WRT_OFF 

Disables flash memory write protection. 

 _STVREN_ON 

Enables stack overflow/underflow resets.  With this enabled, the processor will reset if you cause 

a stack overflow by (for example) nesting subroutine calls too deeply, or an underflow by (for 

example) mistakenly executing a return instruction outside a subroutine. 

 _BORV_LO 

Selects the low brown-out reset voltage option 

 _LPBOR_OFF 

Disables the low-power brown-out reset facility. 

 _LVP_OFF 

Disables low-voltage programming. 

To program the device, a high voltage (around 12 V) must be applied to the VPP pin, as was the 

case with the baseline and mid-range PICs we’ve examined.  Low-voltage programming mode 

avoids the need for this high voltage, but we don’t need it because the PICkit 3 can operate in the 

“normal” high-voltage programming mode. 



© Gooligum Electronics 2013  www.gooligum.com.au 

Migrating to Enhanced Mid-Range PIC Assembler, Lesson 1: Basic Digital I/O Page 9 

Note that, like the PIC16F684, there is no need to load a value to calibrate the internal RC oscillator in the 

12F1501 – nor is there any facility for doing so. 

 

As in the mid-range architecture, the reset vector, where program execution begins, is always at the start 

of memory: address 0000h. 

So we should start our main code section with: 

;***** RESET VECTOR ***************************************************** 

RES_VECT  CODE    0x0000        ; processor reset vector 

 

Note that the section is labelled ‘RES_VECT’, instead of ‘RESET’, which we’d used in the mid-range 

lessons.  This is necessary because the enhanced mid-range architecture includes a new instruction, 

‘reset’, which as you might expect performs a software reset operation, allowing your program to restart 

itself cleanly. 

 

Next we configure the RA1 pin as an output, as we’ve done many times before: 

        ; configure port 

        movlw   ~(1<<RA1)       ; configure RA1 (only) as an output 

        banksel TRISA 

        movwf   TRISA 

 

 

To make RA1 output a ‘high’, we have to set bit 1 of PORTA to ‘1’, which we could do with: 

        ; turn on LED 

        banksel PORTA 

        movlw   1<<RA1          ; set RA1 high 

        movwf   PORTA 

 

because there is no risk of running into read-modify-write problems when writing an entire byte, updating 

the port register in a single operation, like this. 

However, it is better to get into the habit of writing to LATA to modify output pins. 

In particular, by using LATA, we can safely use instructions such as bsf, which operate by reading the 

register, modifying one or more bits (setting a single bit in this case), and then writing the result back to 

the port, i.e. a read-modify-write operation. 

So on an enhanced mid-range device, we can safely use: 

        ; turn on LED 

        banksel LATA 

        bsf     LATA,RA1        ; set RA1 high 

 

 

Finally, we need an “infinite loop”, to stop the program running off into the rest of (uninitialised) program 

memory: 

        ; loop forever   

        goto    $                

 

 

        END 

         

And of course an ‘END’ directive has to go at the end of the source code. 
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If you assemble these pieces of, the assembler will give you a couple of messages like: 

Message[302] C:\...\EA_L1-TURN_ON_LED.ASM 64 : Register in operand not in bank 

0.  Ensure that bank bits are correct. 

Message[303] C:\...\EA_L1-TURN_ON_LED.ASM 70 : Program word too large.  

Truncated to core size. (F9C4) 

 

We’ve seen the [302] message, warning that the code references a register which is not in bank 0, 

previously in the mid-range assembler lessons. 

The [303] message is new.  It’s generated because the processor configuration constants are defined in the 

‘p12f1501.inc’ include file as 16-bit values, while the 12F1501’s configuration words are only 14 bits 

wide.  16 bit into 14 don’t go, so the assembler has to truncate the config values to 14 bits by dropping the 

top two bits. 

We don’t need to see these warnings, so it’s ok to disable them, using ‘errorlevel’ directives: 

  errorlevel  -302          ; no warnings about registers not in bank 0 

  errorlevel  -303          ; no warnings about program word too large 

 

These should be placed toward the beginning of your program, as usual. 

 

Complete program 

Putting together all the above, here’s our complete assembler source for turning on an LED: 

;************************************************************************ 

;                                                                       * 

;   Description:    Migration lesson 1, example 1                       * 

;                                                                       * 

;   Turns on LED.  LED remains on until power is removed.               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RA1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

#include "p12F1501.inc" 

 

  errorlevel  -302          ; no warnings about registers not in bank 0 

  errorlevel  -303          ; no warnings about program word too large 

 

 

;***** CONFIGURATION 

            ; ext reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 

            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_ON & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

 

;***** RESET VECTOR ***************************************************** 

RES_VECT  CODE    0x0000        ; processor reset vector 

 

 

;***** MAIN PROGRAM ***************************************************** 
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;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<RA1)       ; configure RA1 (only) as an output 

        banksel TRISA 

        movwf   TRISA 

 

;***** Main code         

        ; turn on LED 

        banksel LATA 

        bsf     LATA,RA1        ; set RA1 high 

 

        ; loop forever   

        goto    $                

 

 

        END 

 

 

Example 2: Flashing an LED (50% duty cycle) 

Having lit a single LED, the next step is to make it flash (as always…). 

Although it usually makes more sense to use a timer (see for example mid-range lesson 4, or, using 

interrupts, mid-range lesson 6) to time a process such as flashing an LED, you might occasionally want to 

use delay loops, as we did in mid-range lesson 1, where we toggled an LED every 500 ms. 

 

That lesson included a routine which used a couple of nested loops to do nothing but loop around wasting 

time for approximately 500,000 instruction cycles, as follows: 

        ; delay 500 ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

This code assumes a 4 MHz processor clock, which implies a 1 MHz instruction clock, or 1 µs per 

instruction cycle.  500,000 instruction cycles would then equate to 500 ms. 

 

The PIC12F629 used in that lesson has an internal RC oscillator which can only provide a fixed 4 MHz 

processor. 

However, the 12F1501’s internal RC oscillators can be configured (like those of the 16F684 – see mid-

range lesson 10), via the OSCCON register, to provide a range of processor clock frequencies: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OSCCON – IRCF3 IRCF2 IRCF1 IRCF0 – SCS1 SCS0 

 

../../Midrange/4%20-%20Timer%200/PIC_Mid_A_4.pdf
../../Midrange/6%20-%20Interrupts/PIC_Mid_A_6.pdf
../../Midrange/1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
../../Midrange/10%20-%2016F684%20features/PIC_Mid_A_10.pdf
../../Midrange/10%20-%2016F684%20features/PIC_Mid_A_10.pdf
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The IRCF bits are used to select the internal 

oscillator frequency, as follows: 

The 12F1501 actually has two internal RC 

oscillators: an uncalibrated low frequency 

oscillator, ‘LFINTOSC’, running at 

approximately 31 kHz, and a high 

frequency oscillator, ‘HFINTOSC’, which 

is factory-calibrated to run at 16 MHz. 

This 16 MHz oscillator (twice the 

frequency of the 16F684’s high frequency 

internal oscillator) is used as the clock 

source in the remaining “HF” modes, 

divided by a postscaler to generate 

frequencies down as low as 31.25 kHz, as 

shown in the table on the left
7
. 

Unlike the mid-range PICs we’ve looked 

at, the default frequency is 500 kHz, 

instead of the usual 4 MHz. 

 

The internal clock source (LFINTOSC or HFINTOSC, as above) is selected whenever the SCS1 bit is set, 

regardless of the processor configuration words. 

Otherwise, if SCS<1:0> = 00, the clock source is selected by the oscillator selection bits in the 

configuration words. 

 

Since the default processor clock frequency is now 500 kHz, if we want to use the previous delay loop 

code we would have to load the IRCF bits with ‘1101’ to select a 4 MHz processor clock. 

But why choose 4 MHz?  Just because that’s what we had to use on the 12F629?  It makes more sense to 

select an oscillator frequency which will make it easier to implement our delay code. 

The slower the processor runs, the fewer instruction cycles are needed to generate a given delay, which 

implies that slowing the clock will simplify the delay code. 

Unfortunately, even with a 31 kHz clock, we’d still need two delay loops (one nested within the other), 

unless the loop is padded out with a lot of ‘nop’ or ‘goto $+1’ instructions. 

However, if we select a 1 MHz processor clock (for an instruction cycle time of 4 µs), the following code 

will generate a delay of approximately 500 ms: 

        ; delay 500 ms 

        movlw   .163            ; outer loop: 163 x (767 + 3) + 3 

        movwf   dc2             ;   = 125,513 cycles = 502.1 ms @ 4 us/cycle   

        clrf    dc1             ; inner loop: 256 x 3 - 1 

dly1    decfsz  dc1,f           ;   = 767 cycles 

        goto    dly1 

        decfsz  dc2,f 

        goto    dly1 

 

That’s only 7 instructions, compared with 11 in the 12F629 version – 36% shorter. 

 

                                                      

7
 Not all possible IRCF values are shown here; those omitted duplicate some of the available processor frequencies. 

IRCF<3:0> Oscillator Frequency 

000x LF 31 kHz (approx) 

001x HF 31.25 kHz 

0100 HF 62.5 kHz 

0101 HF 125 kHz 

0110 HF 250 kHz 

0111 HF 500 kHz (default) 

1011 HF 1 MHz 

1100 HF 2 MHz 

1101 HF 4 MHz  

1110 HF 8 MHz 

1111 HF 16 MHz 
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Of course, we now have to select the oscillator frequency, as part of the initialisation routine: 

        ; configure oscillator 

        movlw   b'01011010'     ; configure internal oscillator: 

                ; -1011---          1 MHz (IRCF = 1011) 

                ; ------1-          select internal clock (SCS = 1x) 

        banksel OSCCON          ;   -> 4 us / instruction cycle 

        movwf   OSCCON 

 

But we would have had to do that anyway, if we’d wanted to select the “traditional” 4 MHz processor 

clock.  And even if you choose to use the default 500 kHz clock, it’s good practice to explicitly initialise 

the oscillator in any program, such as this one, which assumes a specific processor frequency – your code 

will be more likely to work (or at least you’ll see more easily what has to be changed) if you later move it 

to another processor. 

 

We also need to reserve data memory for the loop counter variables, dc1 and dc2. 

We had to use shared data memory in the 12F629 version, because all data memory on the 12F629 is 

unbanked.  But on the 12F1501 we have a choice: these variables could be placed in either the (banked) 

general purpose RAM or the (unbanked) common RAM. 

We only need one byte for each of these two variables, so there would be no problem with placing them in 

common RAM – and we wouldn’t need to use a banksel directive before accessing them.  But with only 

16 bytes of common RAM available, even in the largest enhanced mid-range PIC devices, it’s a scarce and 

therefore valuable resource.  It’s good to get into the habit of using common RAM only when you have a 

compelling reason to. 

So we’ll use a UDATA directive to declare our variables in the more-plentiful banked data memory: 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

And then use banksel before accessing these variables. 

 

Finally, the 12F629 version used a shadow port register to avoid potential read-modify-write problems, 

but, as we’ve seen, we won’t have any such problem with enhanced mid-range PICs if we modify output 

pins by operating on the associated LAT registers: 

        ; toggle LED 

        banksel LATA 

        movlw   1<<RA1          ; toggle LATA bit corresponding to RA1 

        xorwf   LATA,f       

 

Complete program 

The rest of the program is pretty much the same as the 12F629 version from mid-range lesson 1; here’s 

how it fits together: 

;************************************************************************ 

;   Description:    Migration lesson 1, example 2                       * 

;                                                                       * 

;   Flashes an LED at approx 1 Hz.                                      * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;   Uses inline 500 ms delay routine                                    * 

;                                                                       * 

../../Midrange/1%20-%20Basic%20digital%20output/PIC_Mid_A_1.pdf
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;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RA1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

#include "p12F1501.inc" 

 

  errorlevel  -302          ; no warnings about registers not in bank 0 

  errorlevel  -303          ; no warnings about program word too large 

 

 

;***** CONFIGURATION 

            ; ext reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 

            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_ON & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

 

;***** RESET VECTOR ***************************************************** 

RES_VECT  CODE    0x0000        ; processor reset vector 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<RA1)       ; configure RA1 (only) as an output 

        banksel TRISA 

        movwf   TRISA 

 

        ; configure oscillator 

        movlw   b'01011010'     ; configure internal oscillator: 

                ; -1011---          1 MHz (IRCF = 1011) 

                ; ------1-          select internal clock (SCS = 1x) 

        banksel OSCCON          ;   -> 4 us / instruction cycle 

        movwf   OSCCON 

         

 

;***** Main loop 

main_loop    

        ; toggle LED 

        banksel LATA 

        movlw   1<<RA1          ; toggle LATA bit corresponding to RA1 

        xorwf   LATA,f       

           

        ; delay 500 ms 

        banksel dc1             ; outer loop: 163 x (767 + 3) + 3 

        movlw   .163            ;   = 125,513 cycles 

        movwf   dc2             ;   = 502.1 ms @ 4 us/cycle 
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        clrf    dc1             ; inner loop: 256 x 3 - 1 

dly1    decfsz  dc1,f           ;   = 767 cycles 

        goto    dly1 

        decfsz  dc2,f 

        goto    dly1 

 

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

 

Subroutines and Modules 

Subroutines, whether part of the main source code or called as an external module, operate the same way 

in the enhanced mid-range architecture as was described in mid-range lesson 2. 

In particular, paged access to program memory works the same way as in mid-range PICs, with the lower 

11 bits of the program memory address being specified in the goto or call instruction opcode (giving a 

page size of 2048 words), while the upper bits are copied from the PCLATH register.  The only difference 

is that, in the enhanced mid-range architecture, four bits of PCLATH (bits 3 to 6) are used to extend the 

address to 15 bits, making it possible to access up to 32k words of program memory, compared with 13-bit 

(8k word) addresses in mid-range devices. 

Thus, although program memory can now be up to four times larger, the paging mechanism is essentially 

the same – and the pagesel directive should still be used to specify the page to jump to, as usual. 

 

In mid-range lesson 2, we developed a ‘delay10’ subroutine, which, assuming a 4 MHz processor clock, 

generates a delay of approximately W × 10 ms.  However, with the default processor frequency (derived 

from an internal RC oscillator) on enhanced mid-range devices being 500 kHz, it makes sense to re-

implement this subroutine for an assumed 500 kHz clock. 

For example: 

;***** Variable delay: 10 ms to 2.55 s 

; 

;  Delay = W x 10 ms 

; 

delay10                         ; delay = 2+Wx(223+1023+4)-1+4 

        banksel dc1             ;   = W x 1250 + 5 cycles 

        movwf   dc2             ;   = W x 10.0 ms @ 8 us/cycle 

dly3    movlw   .74             ; inner loop 1: 2 + 74 x 3 - 1 

        movwf   dc1             ;   = 223 cycles 

dly1    decfsz  dc1,f            

        goto    dly1                          

dly2    nop                     ; inner loop: 256 x 4 - 1 

        decfsz  dc1,f           ;   = 1023 cycles 

        goto    dly2   

        nop 

        decfsz  dc2,f           ; end outer loop 

        goto    dly3 

         

        return 

 

Otherwise, the examples from mid-range lesson 2 need only a few changes, of types we’ve already seen 

(such as processor configuration, oscillator initialisation, use of LAT registers instead of shadow 

../../Midrange/2%20-%20Modular%20code/PIC_Mid_A_2.pdf
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variables) to work with the 12F1501 – so there would be little point in repeating them here.  They are 

however available, as examples 3 and 4, in the source code provided with this lesson. 

 

Digital Inputs 

As mentioned earlier, the port registers (such as PORTA) operate the same way in the enhanced mid-

range architecture as they do in mid-range devices, as described in mid-range lesson 3. 

If a pin is configured as a digital input, reading the corresponding bit in that pin’s port register tells us 

whether the voltage present on that pin is ‘high’ or ‘low’.  To read the state of a digital input pin, read the 

corresponding port bit, as always. 

The only difference is that, as we’ve seen, to modify an output pin you should update the corresponding 

data latch register.  But reading the latch won’t tell you anything about input pins; it will only tell you 

what the output pins are trying to output. 

So, once again, we just need to remember, on the PIC12F1501: 

 to read the current state of pins configured as a digital inputs, read PORTA 

 to initialise or modify pins configured as digital outputs, write to or update LATA 

 

Other than the use of LATA, the examples from mid-range lesson 3 do not need many changes to work 

with the 12F1501 – and of course there is no need to repeat topics such as switch debouncing techniques, 

which are the same across architectures.  So we’ll only look briefly at a couple of examples of using 

digital inputs, to illustrate the few differences that apply to enhanced mid-range PICs. 

 

Example 5: Reading a Pushbutton Switch 

The first example in mid-range lesson 3 simply turned on the LED on RA1 on whenever the pushbutton 

on RA3 was pressed. 

The solution is fairly simple: test the bit in PORTA corresponding to RA3 to read the switch, and if the 

RA3 bit is clear (indicating a button press), set the RA1 bit in the LATA register.  Otherwise, the button is 

not pressed, so clear RA1 in LATA. 

Here is the main loop, implementing this logic: 

main_loop 

        ; turn on LED only if button pressed 

        banksel PORTA 

        btfsc   PORTA,RA3       ; if button pressed (RA3 low) 

        goto    btn_up 

        banksel LATA 

        bsf     LATA,RA1        ;   turn on LED 

        goto    btn_end 

btn_up   

        banksel LATA            ; else 

        bcf     LATA,RA1        ;   turn off LED 

btn_end 

 

        ; repeat forever 

        goto    main_loop        

 

The important point here is that we are reading (testing) PORTA, but only writing to LATA – avoiding the 

need to use a shadow port register. 

../../Midrange/3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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Although it’s not really necessary in this example to initialise the output pin state before entering the main 

loop, it’s good practice to ensure that outputs will be in a desired initial state when they are first enabled. 

So our initialisation code becomes: 

        ; configure port 

        banksel LATA            ; start with all output pins low  

        clrf    LATA                    

        movlw   ~(1<<RA1)       ; configure RA1 (only) as an output 

        banksel TRISA           ; (RA3 is an input) 

        movwf   TRISA 

 

 

Note that it would be equally valid to write to PORTA here; we’re clearing the entire port, not modifying 

individual bits, so read-modify-write is not a consideration here.  But by sticking to the rule “always write 

to the latch”, it makes it easy to always get it right – there is no need to think about whether read-modify-

write considerations might apply or not. 

 

Complete program 

Here is the complete 12F1501 version of the turning on the LED when the pushbutton is pressed program: 

;************************************************************************ 

;                                                                       * 

;   Description:    Migration lesson 1, example 5                       * 

;                                                                       * 

;   Demonstrates reading a switch                                       * 

;                                                                       * 

;   Turns on LED when pushbutton is pressed                             * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RA1 = LED                                                       * 

;       RA3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

#include "p12F1501.inc" 

     

  errorlevel  -302          ; no warnings about registers not in bank 0 

  errorlevel  -303          ; no warnings about program word too large 

 

 

;***** CONFIGURATION 

            ; int reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 

            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_OFF & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

 

;***** RESET VECTOR ***************************************************** 

RES_VECT  CODE    0x0000        ; processor reset vector 

 

 

;***** MAIN PROGRAM ***************************************************** 
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;***** Initialisation 

start 

        ; configure port 

        banksel LATA            ; start with all output pins low  

        clrf    LATA                    

        movlw   ~(1<<RA1)       ; configure RA1 (only) as an output 

        banksel TRISA           ; (RA3 is an input) 

        movwf   TRISA 

 

 

         

;***** Main loop 

main_loop 

        ; turn on LED only if button pressed 

        banksel PORTA 

        btfsc   PORTA,RA3       ; if button pressed (RA3 low) 

        goto    btn_up 

        banksel LATA 

        bsf     LATA,RA1        ;   turn on LED 

        goto    btn_end 

btn_up   

        banksel LATA            ; else 

        bcf     LATA,RA1        ;   turn off LED 

btn_end 

 

        ; repeat forever 

        goto    main_loop        

 

 

        END 

 

 

Example 6: Internal Pull-ups 

The PIC12F1501 makes weak pull-ups available for use with digital inputs, in much the same way as we 

saw in mid-range lesson 3 for the 12F629. 

In the pull-up example in that lesson, we toggled an LED each time a pushbutton switch was pressed. 

 

The 12F1501 provides individually-selectable 

pull-ups on every pin. 

This means that, unlike the example in mid-

range lesson 3, we can continue to use RA3 as 

our pushbutton input, as shown in the circuit 

on the right. 

 

If you are using the Gooligum training board, 

simply remove jumper JP3 to disconnect the 

external pull-up resistor from the pushbutton 

on RA3. 
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As in the mid-range architecture, the internal weak pull-ups are controlled as a group by a global enable 

bit, now known as WPUEN  , in the OPTION register: 

By default (after a power-on or reset), WPUEN   = 1 and all the internal pull-ups are disabled. 

To globally enable internal pull-ups, clear WPUEN  . 

 

Each weak pull-up is then individually controlled by a bit in the WPUA register: 

If WPUA<n> = 1, the weak pull-up on the corresponding PORTA pin, RAn, is enabled. 

If WPUA<n> = 0, the corresponding weak pull-up is disabled. 

However, if a pin is configured as an output, the internal pull-up is automatically disabled for that pin. 

 

To enable the pull-up on RA3, we must first clear WPUEN  to globally enable weak pull-ups: 

        banksel OPTION_REG          ; enable global pull-ups 

        bcf     OPTION_REG,NOT_WPUEN 

 

 

Then, having globally enabled weak pull-ups, we need to enable the individual pull-up on RA3, by setting 

WPUA<3>. 

You could do that by: 

        bsf     WPUA,WPUA3          ; enable pull-up on RA3 

     

As in mid-range PICs, every bit of WPUA is set by default, so there is no real need to explicitly set 

WPUA<3> like this.  But it’s good practice to disable the weak pull-ups on the unused input pins. 

Therefore, all the remaining bits in WPUA should be cleared. 

This could be done by: 

        clrf    WPUA                ; disable all pull-ups 

        bsf     WPUA,WPUA3          ; except on RA3 

   

or: 

        movlw   1<<WPUA3            ; enable pull-up on RA3 only 

        movwf   WPUA 

 

The second form is better if you need to enable pull-ups on more than one input. 

Alternatively, you can express this as: 

        movlw   1<<RA3              ; enable pull-up on RA3 only 

        movwf   WPUA 

 

because the ‘p12F1501.inc’ processor include file defines both ‘WPUA3’ and ‘RA3’ as constants 

representing the value ‘3’.  Using ‘RA3’ can make it clearer that you’re configuring pin RA3. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OPTION_REG WPUEN   INTEDG TMR0CS TMR0SE PSA PS2 PS1 PS0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

WPUA - - WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 
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The pull-up example in mid-range lesson 3 used a counting algorithm to debounce the switch. 

We could re-use the code from that example, but because it was written for a PIC12F629 running at its 

default 4 MHz processor clock, we’d have to configure our PIC12F1501 to also run at 4 MHz.  That’s a 

reasonable approach, but it would be better to continue to use the enhanced mid-range architecture’s 

default 500 kHz processor clock – which means changing the delays in the debouncing code, in line with 

the lower clock rate, as follows: 

        ; wait for button release, debounce by counting: 

db_up   movlw   .10             ; max count = 10ms/992us = 10 

        banksel db_cnt 

        movwf   db_cnt  

up_dly  movlw   .41             ; delay 41x3+1 = 124 cycles = 992 us. 

        movwf   dc1              

up_dly2 decfsz  dc1,f            

        goto    up_dly2 

        banksel PORTA 

        btfss   PORTA,RA3       ; if button down (RA3 low), 

        goto    db_up           ;   restart count 

        banksel db_cnt 

        decfsz  db_cnt,f        ; else repeat until max count reached 

        goto    up_dly 

 

 

Complete program 

Here’s the complete “Toggle an LED” program, illustrating how to read and debounce a simple switch on 

a digital input pin held high by an internal pull-up: 

;************************************************************************ 

;                                                                       * 

;   Description:    Migration lesson 1, example 6                       * 

;                                                                       * 

;   Demonstrates use of internal pullups plus debouncing                * 

;                                                                       * 

;   Toggles LED when pushbutton is pressed then released,               * 

;   using a counting algorithm to debounce switch                       * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RA1 = LED                                                       * 

;       RA3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

#include "p12F1501.inc" 

     

  errorlevel  -302          ; no warnings about registers not in bank 0 

  errorlevel  -303          ; no warnings about program word too large 

 

 

;***** CONFIGURATION 

            ; int reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 

            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_OFF & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

../../Midrange/3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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;***** VARIABLE DEFINITIONS 

        UDATA 

db_cnt  res 1                   ; debounce counter 

dc1     res 1                   ; delay counter 

 

 

;***** RESET VECTOR ***************************************************** 

RES_VECT  CODE    0x0000        ; processor reset vector 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        banksel LATA                ; start with LED off  

        clrf    LATA                    

        movlw   ~(1<<RA1)           ; configure RA1 (only) as an output 

        banksel TRISA               ; (RA3 is an input) 

        movwf   TRISA 

        banksel OPTION_REG          ; enable global pull-ups 

        bcf     OPTION_REG,NOT_WPUEN 

        movlw   1<<RA3              ; enable pull-up on RA3 only 

        banksel WPUA 

        movwf   WPUA 

 

        ; configure oscillator 

        movlw   b'00111010'     ; configure internal oscillator: 

                ; -0111---          500 kHz (IRCF = 0111) 

                ; ------1-          select internal clock (SCS = 1x) 

        banksel OSCCON          ;   -> 8 us / instruction cycle 

        movwf   OSCCON 

 

              

;***** Main loop 

main_loop 

        ; wait for button press 

        banksel PORTA 

wait_dn btfsc   PORTA,RA3       ; wait until RA3 low 

        goto    wait_dn    

 

        ; toggle LED 

        banksel LATA 

        movlw   1<<RA1          ; toggle LATA bit corresponding to RA1 

        xorwf   LATA,f   

 

        ; wait for button release, debounce by counting: 

db_up   movlw   .10             ; max count = 10ms/992us = 10 

        banksel db_cnt 

        movwf   db_cnt  

up_dly  movlw   .41             ; delay 41x3+1 = 124 cycles = 992 us. 

        movwf   dc1              

up_dly2 decfsz  dc1,f            

        goto    up_dly2 

        banksel PORTA 

        btfss   PORTA,RA3       ; if button down (RA3 low), 

        goto    db_up           ;   restart count 

        banksel db_cnt 

        decfsz  db_cnt,f        ; else repeat until max count reached 

        goto    up_dly 
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        ; repeat forever 

        goto    main_loop 

 

 

        END 

 

 

Conclusion 

This lesson has shown that enhanced mid-range PICs are essentially similar to the mid-range devices 

we’re familiar with, but are certainly “enhanced” in a number of useful ways. 

In particular, we’ve seen that the enhanced mid-range architecture: 

 supports a larger data memory address space, via a new bank selection register 

 supports a larger program memory address space, through an extended program counter 

 provides data latch registers which avoid potential read-modify-write issues when modifying 

output pins 

 has a default processor clock frequency, when using the internal RC oscillator, of 500 kHz instead 

of 4 MHz (although on the 12F1501 this is configurable) 

Otherwise the instruction set is much the same as before (with a few new instructions added) and facilities 

such as internal weak pull-ups are largely unchanged, but may be more flexible than before (weak pull-ups 

being available on every pin on the 12F1501, compared with not being available on GP3 on the 12F629). 

 

Another facility that is largely unchanged in enhanced mid-range devices is the 8-bit Timer0 module, 

which we will take a brief look at in the next lesson, before introducing the enhanced mid-range 

architecture’s interrupt-handling capability – in particular its ability to automatically save and restore the 

processor context. 
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Migrating to the Enhanced Mid-Range PIC Architecture 

Programming Enhanced Mid-Range PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 1: Basic Digital I/O 

 

 

This series of lessons introduces the enhanced mid-range PIC architecture, using C, and follows on from 

the mid-range PIC C tutorial series.  It assumes that you are familiar with the content of at least the free 

mid-range C lessons (1-5). 

Although the mid-range architecture was a step up from the baseline architecture, it still has a number of 

limitations that we’ve had to work around, such as the read-modify-write problem and the need to address 

data memory in contiguous blocks of no more than 96 bytes. 

The enhanced mid-range (12F1xxx and 16F1xxx) PIC architecture overcomes these limitations and more, 

removing the need to use shadow registers, extending the maximum code and data memory sizes, and 

including architectural enhancements which make the code generated by the compiler more efficient
1
. 

 

This lesson introduces one of the simplest of the enhanced mid-range PICs – the PIC12F1501.  It then 

goes on to describe basic digital I/O output, as was covered in mid-range C lesson 1.  

In summary, this lesson covers: 

 Introduction to the  PIC12F1501 

 Simple digital input and output 

 Selecting the internal oscillator frequency 

 Using internal (weak) pull-ups 

Getting Started 

As before, these tutorials assume that you are using either the Gooligum Baseline and Mid-range PIC 

Training and Development Board or Microchip’s Low Pin Count Demo Board
2
, with Microchip’s 

MPLAB 8 or MPLAB X integrated development environment. 

You will also need a programmer, such as Microchip’s PICkit 3, which is compatible the enhanced mid-

range PICs. 

                                                      

1
 if you’re interested in the detail of the enhanced mid-range PIC architecture and how it compares with “ordinary” 

mid-range PICs, see enhanced mid-range assembler migration lesson 1 

2
 it is of course possible to adapt these lessons to different development boards 

Note: the PICkit 2 programmer, which was used in the baseline and mid-range tutorials, is not 

supported in MPLAB for use with enhanced mid-range PICs. 

../../Midrange%20C
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Introducing the PIC12F1501 

The 12F1501 is in some ways the simplest of the enhanced mid-range PICs
3
. 

It is roughly equivalent to the 12F675, which in turn is essentially the same as the 12F629 introduced in 

mid-range assembler lesson 1, with the addition of an analog-to-digital converter (ADC) – as can be seen 

in the following table, which summarises some of the basic features of various 8-pin PICs: 

However, the 12F1501 also includes a number of peripherals which the 12F675 does not, such as a digital-

to-analog converter (DAC), pulse-width modulation (PWM) outputs, a configurable logic cell (used to 

implement simple logic functions in hardware) and a numerically controlled oscillator. 

And although the 12F1501 does not include any EEPROM memory, it has the ability to write into its 

program (Flash) memory, 128 bytes of which is “high-endurance” Flash which can be re-written at least 

100,000 times – making it a viable alternative to true EEPROM memory in many situations. 

We’ll explore these additional features in later lessons. 

 

Like all 12F PICs, the 12F1501 provides six I/O pins in an eight-pin package. 

VDD is the positive power supply and VSS is 

the “negative” supply, or ground. 

VDD (relative to VSS) on the PIC12F1501 

can range from 2.3 V to 5.5 V, although at 

least 2.5 V is needed if the clock rate is 

greater than 16 MHz
4
. 

 

The remaining pins, RA0 to RA5, are the 

I/O pins.  Just like the baseline and mid-

range 8-pin PICs, they are used for digital 

input and output, except for RA3, which can 

only be used as an input.  The other pins can 

be individually set to be inputs or outputs. 

                                                      

3
 which is why we’re starting this series with the PIC12F1501… 

4
 A low-power variant, the PIC12LF1501, is also available, where VDD can range from 1.8 V to 3.6 V, with at least 

2.5 V needed for clock rates above 16 MHz. 

Device 

Memory (words or bytes) Timers Analog 
Clock rate 

(max MHz) 
Program Data EEPROM 8-bit 16-bit 

Comp-

arators 

ADC 

inputs 

12F508 512 25 0 1 0 0 0 4 

12F629 1024 64 128 1 1 1 0 20 

12F675 1024 64 128 1 1 1 4 20 

12F683 2048 128 256 2 1 1 4 20 

12F1501 1024 64 0 2 1 1 4 20 

12F1822 2048 128 256 2 1 1 4 32 

12F1840 4096 256 256 2 1 1 4 32 

1 

2 

3 

4 

8 

7 

6 

5 

P
IC

1
2

F
1
5
0
1
 

VDD VSS 

RA5 

RA4 

RA3/ MCLR   

RA0 

RA1 

RA2 
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Each of these I/O pins has more functions that can be assigned to it – too many to show on the diagram 

above.  As we’ll see in a later lesson, some of these functions can be selectively mapped to alternate pins.  

And as usual, some functions may need to be disabled before a pin can be used for digital I/O. 

Taken together, the six I/O pins comprise the general-purpose I/O port, or GPIO port, which is referred to 

as PORTA on the 12F1501. 

 

As in the midrange architecture, there is a TRIS register (TRISA) associated with the port which controls 

whether each pin is set as an input or output: 

It works the same way as the TRIS registers we’ve seen before, with a ‘1’ configuring the corresponding 

pin as an input, and a ‘0’ configuring it as an output.  And as usual, every pin is configured as an input by 

default; TRISA is set to all ‘1’s when the device is powered on. 

 

As you’d expect, there is also a “PORTA” register which provides access to the port pins: 

If a pin in configured as an output, setting the corresponding PORTA bit to ‘1’ outputs a ‘high’ on that 

pin; clearing it to ‘0’ outputs a ‘low’. 

Reading the PORTA register reads the voltage present on each pin, assuming that the pins being read are 

configured for digital I/O
5
.   If the voltage on a pin is high, the corresponding bit reads as ‘1’; if the input 

pin is low, the corresponding bit reads as ‘0’. 

This behaviour is the same as in the baseline and mid-range PIC architectures.  If you attempt to output a 

‘high’ on a pin by writing a ‘1’ to the corresponding port bit, but the external circuit holds that pin low, 

that pin will read as ‘0’ – not what you might have expected. 

 

As was explained in baseline lesson 2, this behaviour can lead to what are known as read-modify-write 

problems, where instructions which are intended to modify only specific pins actually read the entire port, 

including pins which may not reflect the value that had been output to them, and then write the new value 

(with some bits possibly incorrect) back to the port. 

To work around this potential problem, we have been using shadow registers, to keep track of what we 

have output to the port pins, and to operate on that copy, periodically writing it out to the port. 

 

                                                      

5
 that is, any functionality on a pin which interferes with digital I/O operation, such as being configured as an analog 

input (see for example baseline lesson 10), has been disabled 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TRISA   TRISA5 TRISA4  TRISA2 TRISA1 TRISA0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

PORTA   RA5 RA4 RA3 RA2 RA1 RA0 

Note: the port registers represent the actual voltages present on each digital I/O pin, including 

pins configured as digital outputs 

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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To avoid read-modify-write problems, the enhanced mid-range architecture makes available an “output 

data latch” register, associated with each port: 

Writing to LATA has the same effect as writing to PORTA: if a pin in configured as an output, setting the 

corresponding LATA bit to ‘1’ outputs a ‘high’ on that pin; clearing it to ‘0’ outputs a ‘low’. 

However – reading LATA returns the value that was last written to LATA.  It does not read the voltages on 

the pins (whether input or output) themselves. 

This means that in the enhanced mid-range architecture, there is no need to use shadow registers, as 

long as you follow these rules: 

 if you are writing an entire byte to a port, you can write to either PORTA or LATA 

 if you are modifying individual port pins, you should operate on LATA 

 if you are reading digital input pins, you must read PORTA 

To keep it simpler, you won’t run into any problems if you always access LATA to write to or modify 

output pins, and PORTA to read digital input pins. 

Example 1: Turning on an LED 

We’ll start the same way that we did in mid-range C lesson 1, by simply lighting a single LED, connected 

to one of the 12F1501’s digital I/O pins. 

And we’ll use the same circuit as before: 

In the same way as the 8-pin baseline and mid-

range PICs, pin 4 can be configured as either a 

digital input (RA3) or as an external reset 

(“master clear”, MCLR  ), which, if pulled low, 

will reset the processor. 

In this example, we’ll configure the PIC for 

external reset, allowing either the pushbutton 

or PICkit 3 to pull MCLR  low, resetting the 

device. 

 

If you are using the Gooligum training board, 

plug the PIC12F1501 into the top section of 

the 14-pin IC socket – the section marked 

‘12F’.  Close jumpers JP3 and JP12 to bring 

the 10 kΩ resistor into the circuit and to 

connect the LED to RA1, and ensure that 

every other jumper is disconnected.  

With this simple circuit in place, and connected to your PC via a suitable programmer, such as a PICkit 3, 

it’s time to move on to programming! 

 

As usual, after the comment block at the start of the program, we begin with: 

#include <xc.h> 

 

 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

LATA   LATA5 LATA4  LATA2 LATA1 LATA0 

../../Midrange%20C/1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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Next the processor is configured: 

/***** CONFIGURATION *****/ 

//  ext reset, internal oscillator (no clock out), no watchdog timer 

#pragma config MCLRE = ON, FOSC = INTOSC, CLKOUTEN = OFF, WDTE = OFF 

//  brownout resets enabled, low brownout voltage, no low-power brownout reset 

#pragma config BOREN = ON, BORV = LO, LPBOR = OFF 

// no power-up timer, no code protect, no write protection 

#pragma config PWRTE = OFF, CP = OFF, WRT = OFF 

//   stack resets on, high-voltage programming 

#pragma config STVREN = ON, LVP = OFF 

 

 

We’ve seen many of these configuration options before, and those we haven’t we’ll examine in greater 

detail in later lessons, but briefly the options being selected here are: 

 MCLRE = ON 

Enables the external reset, or “master clear” ( MCLR  ) on pin 4. 

 FOSC = INTOSC 

Selects the internal RC oscillator as the clock source 

 CLKOUTEN = OFF 

Disables the clock out function on pin 3 

 WDTE = OFF 

Disables the watchdog timer. 

 BOREN = ON 

Enables brown-out reset. 

 BORV = LO 

Selects the low brown-out reset voltage option 

 LPBOR = OFF 

Disables the low-power brown-out reset facility. 

 PWRTE = OFF 

Disables the power-up timer. 

 CP = OFF 

Turns off program memory code protection. 

 WRT = OFF 

Disables flash memory write protection. 

 STVREN = ON 

Enables stack overflow/underflow resets. 

The stack is managed by the C compiler and should not be something that you usually have to be 

concerned about.  If a stack overflow or underflow does occur, it means that something has gone 

wrong and your program probably isn’t working properly.  If this option is enabled, the PIC will 

reset itself if a stack overflow or underflow occurs – hopefully allowing your program to recover. 

 LVP = OFF 

Disables low-voltage programming. 

To program the device, a high voltage (around 12 V) must be applied to the VPP pin, as was the 

case with the baseline and mid-range PICs we’ve examined.  Low-voltage programming mode 

avoids the need for this high voltage, but we don’t need it because the PICkit 3 can operate in the 

“normal” high-voltage programming mode. 
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Within the main program, we start by configuring the RA1 pin as an output, as we’ve done many times 

before: 

    TRISA = ~(1<<1);        // configure RA1 (only) as an output 

 

 

To make RA1 output a ‘high’, we have to set bit 1 of PORTA to ‘1’, which we could do with: 

    PORTA = 0b000010;       // set RA1 high 

 

because there is no risk of running into read-modify-write problems when writing an entire byte, updating 

the port register in a single operation, like this. 

However, it is better to get into the habit of writing to LATA to modify output pins. 

In particular, by using LATA, we can safely modify individual bits without having to be concerned about 

whether it might be a read-modify-write operation. 

So on an enhanced mid-range device, we can safely use: 

    LATAbits.LATA1 = 1;     // set RA1 high 

 

 

Finally, we need an “infinite loop”, to stop the program running off into the rest of (uninitialised) program 

memory: 

    for (;;) 

    {                       // loop forever 

        ; 

    } 

         

 

Complete program 

Putting together all the above, here’s our complete assembler source for turning on an LED: 

/************************************************************************ 

*                                                                       * 

*   Description:    Migration lesson 1, example 1                       * 

*                                                                       * 

*   Turns on LED.  LED remains on until power is removed.               * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       RA1 = indicator LED                                             * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

//  ext reset, internal oscillator (no clock out), no watchdog timer 

#pragma config MCLRE = ON, FOSC = INTOSC, CLKOUTEN = OFF, WDTE = OFF 

//  brownout resets enabled, low brownout voltage, no low-power brownout reset 

#pragma config BOREN = ON, BORV = LO, LPBOR = OFF 

//  no power-up timer, no code protect, no write protection 

#pragma config PWRTE = OFF, CP = OFF, WRT = OFF 

//  stack resets on, high-voltage programming 

#pragma config STVREN = ON, LVP = OFF 
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/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation   

     

    // configure port   

    TRISA = ~(1<<1);        // configure RA1 (only) as an output 

     

    LATAbits.LATA1 = 1;     // set RA1 high 

 

 

    //*** Main loop 

    for (;;) 

    {                       // loop forever 

        ; 

    } 

} 

 

 

 

 

 

 

Example 2: Flashing an LED (50% duty cycle) 

Having lit a single LED, the next step is to make it flash (as always…). 

 

Although it usually makes more sense to use a timer (see for example mid-range C lesson 2, or, using 

interrupts, mid-range C lesson 3) to time a process such as flashing an LED, you might occasionally want 

to use in-line delays, as we did in mid-range C lesson 1, where we toggled an LED every 500 ms. 

 

Recall that the XC8 compiler provides two macros: ‘__delay_us()’ and ‘__delay_ms()’, which use 

the ‘_delay(n)’ function create delays specified in µs and ms respectively and that to do so, they 

reference the symbol “_XTAL_FREQ”, which must be defined as the processor oscillator frequency, in 

Hertz. 

 

The PIC12F629 used in the early mid-range C lessons has an internal RC oscillator which can only 

provide a fixed 4 MHz processor. 

However, the 12F1501’s internal RC oscillators can be configured (like those of the 16F684 – see mid-

range lesson 10), via the OSCCON register, to provide a range of processor clock frequencies: 

 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OSCCON – IRCF3 IRCF2 IRCF1 IRCF0 – SCS1 SCS0 

 

  

../../Midrange%20C/2%20-%20Timer%200/PIC_Mid_C_2.pdf
../../Midrange%20C/3%20-%20Interrupts/PIC_Mid_C_3.pdf
../../Midrange%20C/1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
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The IRCF bits are used to select the internal 

oscillator frequency, as follows: 

The 12F1501 actually has two internal RC 

oscillators: an uncalibrated low frequency 

oscillator, ‘LFINTOSC’, running at 

approximately 31 kHz, and a high 

frequency oscillator, ‘HFINTOSC’, which 

is factory-calibrated to run at 16 MHz. 

This 16 MHz oscillator (twice the 

frequency of the 16F684’s high frequency 

internal oscillator) is used as the clock 

source in the remaining “HF” modes, 

divided by a postscaler to generate 

frequencies down as low as 31.25 kHz, as 

shown in the table on the left
6
. 

Unlike the mid-range PICs we’ve looked 

at, the default frequency is 500 kHz, 

instead of the usual 4 MHz. 

 

The internal clock source (LFINTOSC or HFINTOSC, as above) is selected whenever the SCS1 bit is set, 

regardless of the processor configuration words. 

Otherwise, if SCS<1:0> = 00, the clock source is selected by the oscillator selection bits in the 

configuration words. 

 

The processor clock frequency isn’t really important in this example – any of these (even 31 kHz) is fast 

enough to flash an LED. 

But it’s important to be aware of what frequency the processor is running at, so that you can correctly 

define the “_XTAL_FREQ” symbol.  And although we are using the default 500 kHz clock, it’s good 

practice to explicitly initialise the oscillator in any program, such as this one, which assumes a specific 

processor frequency – your code will be more likely to work (or at least you’ll see more easily what has to 

be changed) if you later move it to another processor. 

So we should include in our initialisation routine: 

    // configure oscillator 

    OSCCONbits.SCS1 = 1;        // select internal clock  

    OSCCONbits.IRCF = 0b0111;   // internal oscillator = 500 kHz 

 

 

Finally, the 12F629 version used a shadow port register to avoid potential read-modify-write problems, 

but, as we’ve seen, we won’t have any such problem with enhanced mid-range PICs if we modify output 

pins by operating on the associated LAT registers: 

        // toggle LED on RA1 

        LATAbits.LATA1 = ~LATAbits.LATA1;       

 

 

                                                      

6
 Not all possible IRCF values are shown here; those omitted duplicate some of the available processor frequencies. 

IRCF<3:0> Oscillator Frequency 

000x LF 31 kHz (approx) 

001x HF 31.25 kHz 

0100 HF 62.5 kHz 

0101 HF 125 kHz 

0110 HF 250 kHz 

0111 HF 500 kHz (default) 

1011 HF 1 MHz 

1100 HF 2 MHz 

1101 HF 4 MHz  

1110 HF 8 MHz 

1111 HF 16 MHz 
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Complete program 

The rest of the program is pretty much the same as the 12F629 version from mid-range C lesson 1; here’s 

how it fits together: 

/************************************************************************ 

*                                                                       * 

*   Description:    Migration lesson 1, example 2                       * 

*                                                                       * 

*   Flashes an LED at approx 1 Hz.                                      * 

*   LED continues to flash until power is removed.                      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       RA1 = flashing LED                                              * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

//  ext reset, internal oscillator (no clock out), no watchdog timer 

#pragma config MCLRE = ON, FOSC = INTOSC, CLKOUTEN = OFF, WDTE = OFF 

//  brownout resets enabled, low brownout voltage, no low-power brownout reset 

#pragma config BOREN = ON, BORV = LO, LPBOR = OFF 

//  no power-up timer, no code protect, no write protection 

#pragma config PWRTE = OFF, CP = OFF, WRT = OFF 

//  stack resets on, high-voltage programming 

#pragma config STVREN = ON, LVP = OFF 

 

#define _XTAL_FREQ  500000      // oscillator frequency for _delay() 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

 

    // configure port 

    LATA = 0;                   // start with all output pins low (LED off) 

    TRISA = ~(1<<1);            // configure RA1 (only) as an output 

 

    // configure oscillator 

    OSCCONbits.SCS1 = 1;        // select internal clock 

    OSCCONbits.IRCF = 0b0111;   // internal oscillator = 500 kHz 

 

 

    //*** Main loop 

    for (;;) 

    { 

        // toggle LED on RA1 

        LATAbits.LATA1 = ~LATAbits.LATA1; 

 

        // delay 500 ms 

        __delay_ms(500); 

 

    }   // repeat forever 

} 

 

 

../../Midrange%20C/1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
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Digital Inputs 

As mentioned earlier, the port registers (such as PORTA) operate the same way in the enhanced mid-

range architecture as they do in mid-range devices, as described in mid-range assembler lesson 3. 

If a pin is configured as a digital input, reading the corresponding bit in that pin’s port register tells us 

whether the voltage present on that pin is ‘high’ or ‘low’.  To read the state of a digital input pin, read the 

corresponding port bit, as always. 

The only difference is that, as we’ve seen, to modify an output pin you should update the corresponding 

data latch register.  But reading the latch won’t tell you anything about input pins; it will only tell you 

what the output pins are trying to output. 

So, once again, we just need to remember, on the PIC12F1501: 

 to read the current state of pins configured as a digital inputs, read PORTA 

 to initialise or modify pins configured as digital outputs, write to or update LATA 

 

Other than the use of LATA, the digital input examples from mid-range C lesson 1 do not need many 

changes to work with the 12F1501 – and of course there is no need to repeat topics such as switch 

debouncing techniques, which are the same across architectures.  So we’ll only look briefly at a couple of 

examples of using digital inputs, to illustrate the few differences that apply to enhanced mid-range PICs. 

 

Example 3: Reading a Pushbutton Switch 

The first digital input example in mid-range C lesson 1 simply turned on the LED on RA1 on whenever 

the pushbutton on RA3 was pressed. 

The solution is fairly simple: test the bit in PORTA corresponding to RA3 to read the switch, and if the 

RA3 bit is clear (indicating a button press), set the RA1 bit in the LATA register.  Otherwise, the button is 

not pressed, so clear RA1 in LATA. 

 

We can copy the state of the RA3 input (inverted because the switch is active low) to the RA1 output 

simply and directly with: 

        LATAbits.LATA1 = ~PORTAbits.RA3;   // copy ~RA3 input to RA1 output      

 

The important point here is that we are reading (testing) PORTA, but only writing to LATA – avoiding the 

need to use a shadow port register. 

 

Although it’s not really necessary in this example to initialise the output pin state before entering the main 

loop, it’s good practice to ensure that outputs will be in a desired initial state when they are first enabled. 

So our initialisation code becomes: 

    // configure port 

    LATA = 0;               // start with all output pins low (LED off)     

    TRISA = ~(1<<1);        // configure RA1 (only) as an output 

 

Note that it would be equally valid to write to PORTA here; we’re clearing the entire port, not modifying 

individual bits, so read-modify-write is not a consideration here.  But by sticking to the rule “always write 

to the latch”, it makes it easy to always get it right – there is no need to think about whether read-modify-

write considerations might apply or not. 

 

../../Midrange/3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
../../Midrange%20C/1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
../../Midrange%20C/1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
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Complete program 

Here is the complete 12F1501 version of the turning on the LED when the pushbutton is pressed program: 

/************************************************************************ 

*                                                                       * 

*   Description:    Migration lesson 1, example 3                       * 

*                                                                       * 

*   Demonstrates reading a switch                                       * 

*                                                                       * 

*   Turns on LED when pushbutton is pressed                             * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       RA1 = LED                                                       * 

*       RA3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

//  int reset, internal oscillator (no clock out), no watchdog timer 

#pragma config MCLRE = OFF, FOSC = INTOSC, CLKOUTEN = OFF, WDTE = OFF 

//  brownout resets enabled, low brownout voltage, no low-power brownout reset 

#pragma config BOREN = ON, BORV = LO, LPBOR = OFF 

//  no power-up timer, no code protect, no write protection 

#pragma config PWRTE = OFF, CP = OFF, WRT = OFF 

//  stack resets on, high-voltage programming 

#pragma config STVREN = ON, LVP = OFF 

             

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

 

    // configure port 

    LATA = 0;               // start with all output pins low (LED off)     

    TRISA = ~(1<<1);        // configure RA1 (only) as an output 

 

 

    //*** Main loop 

    for (;;) 

    { 

        // turn on LED only if button pressed 

        LATAbits.LATA1 = ~PORTAbits.RA3;         

    }   

} 

 

 

Example 4: Internal Pull-ups 

The PIC12F1501 makes weak pull-ups available for use with digital inputs, in much the same way as we 

saw in mid-range C lesson 1 for the 12F629. 

In the pull-up example in that lesson, we toggled an LED each time a pushbutton switch was pressed. 

../../Midrange%20C/1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
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The 12F1501 provides individually-

selectable pull-ups on every pin. 

This means that, unlike the example in 

mid-range C lesson 1, we can continue 

to use RA3 as our pushbutton input, as 

shown in the circuit on the right. 

 

 

If you are using the Gooligum training 

board, simply remove jumper JP3 to 

disconnect the external pull-up resistor 

from the pushbutton on RA3. 

 

 

 

 

As in the mid-range architecture, the internal weak pull-ups are controlled as a group by a global enable 

bit, now known as WPUEN  , in the OPTION register: 

By default (after a power-on or reset), WPUEN   = 1 and all the internal pull-ups are disabled. 

To globally enable internal pull-ups, clear WPUEN  . 

 

Each weak pull-up is then individually controlled by a bit in the WPUA register: 

If WPUA<n> = 1, the weak pull-up on the corresponding PORTA pin, RAn, is enabled. 

If WPUA<n> = 0, the corresponding weak pull-up is disabled. 

However, if a pin is configured as an output, the internal pull-up is automatically disabled for that pin. 

 

To enable the pull-up on RA3, we must first clear WPUEN  to globally enable weak pull-ups: 

    OPTION_REGbits.nWPUEN = 0;      // enable weak pull-ups (global) 

 

As always you should look at the header file for your PIC (“pic12f1501.h” in this case) to check the 

name of the bit-field (‘nWPUEN’) associated with the register bit ( WPUEN  ) you wish to access. 

 

Then, having globally enabled weak pull-ups, we need to enable the individual pull-up on RA3, by setting 

WPUA<3>. 

You could do that by: 

    WPUAbits.WPUA3 = 1;             // enable pull-up on RA3 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OPTION_REG WPUEN   INTEDG TMR0CS TMR0SE PSA PS2 PS1 PS0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

WPUA - - WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 

../../Midrange%20C/1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
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As in mid-range PICs, every bit of WPUA is set by default, so there is no real need to explicitly set 

WPUA<3> like this.  But it’s good practice to disable the weak pull-ups on the unused input pins. 

Therefore, all the remaining bits in WPUA should be cleared. 

This could be done by: 

    WPUA = 1<<3;                    // enable pull-up on RA3 only 

 

   

The pull-up example in mid-range C lesson 1 used a counting algorithm to debounce the switch, which we 

can re-use here. 

 

Complete program 

Here’s the complete “Toggle an LED” program, slightly modified from that in mid-range C lesson 1 and 

including the changes shown above, illustrating how to read and debounce a simple switch on a digital 

input pin held high by an internal pull-up: 

/************************************************************************ 

*                                                                       * 

*   Description:    Migration lesson 1, example 4                       * 

*                                                                       * 

*   Demonstrates use of internal pullups plus debouncing                * 

*                                                                       * 

*   Toggles LED when pushbutton is pressed then released,               * 

*   using a counting algorithm to debounce switch                       * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       RA1 = LED                                                       * 

*       RA3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

 

/***** CONFIGURATION *****/ 

//  int reset, internal oscillator (no clock out), no watchdog timer 

#pragma config MCLRE = OFF, FOSC = INTOSC, CLKOUTEN = OFF, WDTE = OFF 

//  brownout resets enabled, low brownout voltage, no low-power brownout reset 

#pragma config BOREN = ON, BORV = LO, LPBOR = OFF 

//  no power-up timer, no code protect, no write protection 

#pragma config PWRTE = OFF, CP = OFF, WRT = OFF 

//  stack resets on, high-voltage programming 

#pragma config STVREN = ON, LVP = OFF 

  

#define _XTAL_FREQ  500000        // oscillator frequency for _delay()  

             

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    uint8_t     db_cnt;           // debounce counter 

     

    //*** Initialisation 

 

../../Midrange%20C/1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
../../Midrange%20C/1%20-%20Basic%20digital%20IO/PIC_Mid_C_1.pdf
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    // configure port 

    LATA = 0;                     // start with all output pins low (LED off)     

    TRISA = ~(1<<1);              // configure RA1 (only) as an output 

    OPTION_REGbits.nWPUEN = 0;    // enable weak pull-ups (global) 

    WPUA = 1<<3;                  // enable pull-up on RA3 only 

 

    // configure oscillator 

    OSCCONbits.SCS1 = 1;          // select internal clock 

    OSCCONbits.IRCF = 0b0111;     // internal oscillator = 500 kHz 

 

 

    //*** Main loop 

    for (;;) 

    { 

        // wait for button press 

        while (PORTAbits.RA3 == 1)  // wait until RA3 low 

            ; 

 

        // toggle LED on RA1 

        LATAbits.LATA1 = ~LATAbits.LATA1; 

 

        // wait for button release, debounce by counting: 

        for (db_cnt = 0; db_cnt <= 10; db_cnt++) 

        { 

            __delay_ms(1);          // sample every 1 ms 

            if (PORTAbits.RA3 == 0) // if button down (RA3 low) 

                db_cnt = 0;         //   restart count 

        }                           // until button up for 10 successive reads 

    }  

} 

 

 

Conclusion 

This lesson has shown that enhanced mid-range PICs are essentially similar to the mid-range devices 

we’re familiar with, but are certainly “enhanced” in a number of useful ways. 

In particular, we’ve seen that the enhanced mid-range architecture: 

 provides data latch registers which avoid potential read-modify-write issues when modifying 

output pins 

 has a default processor clock frequency, when using the internal RC oscillator, of 500 kHz instead 

of 4 MHz (although on the 12F1501 this is configurable) 

Otherwise the facilities such as internal weak pull-ups are largely unchanged, but may be more flexible 

than before (weak pull-ups being available on every pin on the 12F1501, compared with not being 

available on GP3 on the 12F629). 

 

Another facility that is largely unchanged in enhanced mid-range devices is the 8-bit Timer0 module, 

which we will take a brief look at in the next lesson. 
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Introduction to PIC Programming 

Enhanced Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 1: Light an LED 

 

 

This series of lessons introduces the enhanced mid-range PIC architecture, using assembly language. 

It starts by simply making an LED, connected to one of the output pins of a PIC, light up. 

The apparently straightforward task of lighting an LED – never mind flashing it or anything else
1
 – relies 

on: 

 Having a functioning circuit in a workable prototyping environment 

 Being able to use a development environment; to go from text to assembled PIC code 

 Being able to correctly use a PIC programmer to load the code into the PIC chip 

 Correctly configuring the PIC 

 Writing code that will set the correct pin to output a high or low (depending on the circuit) 

If you can get an LED to light up, then you know that you have a development, programming and 

prototyping environment that works, and enough understanding of the PIC architecture and instructions to 

get started.  It’s a firm base to build on. 

In summary, this lesson covers: 

 Introduction to the enhanced mid-range PIC architecture, using the  PIC12F1501 

 Simple control of digital output pins 

 Using MPLAB X to create assembly language projects 

 Using a PICkit 3 programmer with MPLAB X 

Getting Started 

For some background on PICs in general and details of the recommended development environment, see 

lesson 0.  Briefly, these tutorials assume that you are using a Microchip PICkit 3 programmer and either 

the Gooligum Baseline and Mid-range PIC Training and Development Board or Microchip’s Low Pin 

Count (LPC) Demo Board, with Microchip’s MPLAB X integrated development environment.  But it is of 

course possible to adapt these instructions to different programmers and/or development boards. 

The four LEDs on the LPC demo board don’t work (directly) with 8-pin PICs, such as the 12F1501.  So to 

complete this lesson, using an LPC demo board, you need to either add an additional LED and resistor to 

the prototyping area on your board, or use some solid core hook-up wire to patch one of the LEDs to the 

appropriate PIC pin, as described later. 

                                                      

1
 We’ll get to the traditional first exercise in microcontroller programming of flashing an LED in lesson 2… 

../../PIC_Intro_0.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../2%20-%20Flash%20an%20LED/PIC_Enh_A_2.pdf
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This is one reason the Gooligum training board was developed to accompany these tutorials – if you have 

the Gooligum board, you can simply plug in your 8-pin 12F PIC, and go. 

We’re going to start with the simplest enhanced mid-range PIC – the PIC12F1501. 

Of course, “simplest” is a relative term.  The enhanced mid-range architecture is certainly more complex 

than the earlier baseline PIC architecture, introduced in the Baseline PIC Assembler tutorial series.  Those 

lessons were able to start with a very simple PIC indeed (the 10F200), which made it possible to introduce 

only a few basic topics at first, without needing to say “ignore this for now; we’ll explain later”.  More 

advanced topics were introduced by moving up to more advanced baseline and then eventually mid-range 

PICs through the Mid-range PIC Assembler tutorial series – building on what came before.  

This tutorial series doesn’t refer back to those earlier lessons – it’s a fresh start.  Unfortunately that does 

make it harder to ignore some of the complexities of the enhanced mid-range architecture, although we’ll 

keep it as simple as possible to begin with.  If you do want to start learning with simpler PICs, you should 

consider working through the baseline and mid-range tutorial series. 

But to repeat – the earlier lessons are not a prerequisite for these enhanced mid-range lessons. 

In summary, for this lesson you should ideally have: 

 A PC running Windows 7 or 8, with a spare USB port 

 Microchip’s MPLAB X IDE software 

 A Microchip PICkit 3 PIC programmer 

 The Gooligum mid-range training board 

 A PIC12F1501-I/P microcontroller (supplied with the Gooligum training board) 

Introducing the PIC12F1501 

When working with any microcontroller, you should always have on hand the latest version of the 

manufacturer’s data sheet.  You should download the download the current data sheet for the 12F1501 

from www.microchip.com. 

The features of various 8-pin PICs are summarised in the following table: 

We’ll look at the various features mentioned in the table, such as timers, analog inputs, and EEPROM 

memory, in later lessons.  But even without knowing what these things are, you can see that the 12F1501 

has fewer features than other enhanced mid-range PICs, such as the 12F1822 or 12F1840, while being 

roughly comparable to the 12F675 and 12F683 mid-range devices, and significantly more capable than the 

baseline 12F508. 

Device 

Memory (words or bytes) Timers Analog 
Clock rate 

(max MHz) 
Program Data EEPROM 8-bit 16-bit 

Comp-

arators 

ADC 

inputs 

12F508 512 25 0 1 0 0 0 4 

12F629 1024 64 128 1 1 1 0 20 

12F675 1024 64 128 1 1 1 4 20 

12F683 2048 128 256 2 1 1 4 20 

12F1501 1024 64 0 2 1 1 4 20 

12F1822 2048 128 256 2 1 1 4 32 

12F1840 4096 256 256 2 1 1 4 32 

../../Baseline
../../Midrange
../../Baseline
../../Midrange
http://www.microchip.com/
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The 12F family are all 8-pin devices, with six pins available for I/O (input and output). 

They share a common pin-out, as shown below. 

VDD is the positive power supply. 

VSS is the “negative” supply, or ground.  All 

of the input and output levels are measured 

relative to VSS.  In most circuits, there is only 

a single ground reference, considered to be at 

0 V (zero volts), and VSS will be connected to 

ground. 

The power supply voltage on the PIC12F1501 

can range from 2.3 V to 5.5 V
2
. 

This wide range means that the PIC’s power 

supply can be very simple.  Depending on the 

circuit, you may need no more than a pair of 

1.5 V batteries. 

Normally you’d place a capacitor, typically 100 nF and ceramic, between VDD and VSS, close to the chip, 

to smooth transient changes to the power supply voltage caused by changing loads (e.g. motors, or 

something as simple as an LED turning on) or noise in the circuit. 

The remaining pins, RA0 to RA5, are the I/O pins.  They are used for digital input and output, except for 

RA3, which can only be an input.  The other pins – RA0, RA1, RA2, RA4 and RA5 – can be individually 

set to be inputs or outputs. 

PIC12F1501 Internals 

8-bit PICs use a so-called Harvard architecture, where program and data memory is entirely separate. 

In the 12F1501, program memory extends from 0000h to 

03FFh (hexadecimal).  Each of these 1024 addresses can hold 

a separate 14-bit word – usually a program instruction. 

User code starts by executing the instruction at 0000h, and 

then proceeds sequentially from there – unless of course your 

program includes loops, branches or subroutines, which any 

real program will! 

 

The data memory, also known as the register file, in enhanced 

mid-range PICs is banked; it is divided into 32 banks, with 

128 addresses in each bank.  Each address may be empty, or it 

may hold an 8-bit register used to control the PIC or a byte of 

general purpose memory where your program can store data. 

 

Each bank (other than bank 31, as we’ll see later) is laid out 

the same way, as illustrated on the right. 

 

                                                      

2
 A low-power variant, the PIC12LF1501, is also available, where VDD can range from 1.8 V to 3.6 V, with at least 

2.5 V needed for clock rates above 16 MHz in both variants. 

Standard bank layout 

Offset Register Type 

00h 
Core  

Registers 
 

0Bh 

0Ch 
Special Function 

Registers 
 

1Fh 

20h 

General Purpose 

RAM 
 

6Fh 

70h 
Common 

RAM 
 

7Fh 

1 

2 

3 

4 

8 

7 

6 

5 

P
IC

1
2

F
1
5
0
1
 

VDD VSS 

RA5 

RA4 

RA3/ MCLR   

RA0 

RA1 

RA2 
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Core Registers 

The first 12 addresses of every bank provide access to the 

“core registers”, as shown on the right. 

There is only one set of core registers, but they appear in the 

same locations within each bank – meaning that they can be 

accessed in the same way, regardless of which bank is 

selected. 

That’s useful, because these are the registers that most directly 

affect the device’s basic operation – you’ll need to access 

some of them very often, so it’s very helpful to have them 

always available. 

 

Instead of attempting to explain what each of these registers is 

used for, we’ll leave most of those explanations until later, 

when the topics they relate to are introduced. 

But a couple are worth mentioning now. 

 

The working register (W and WREG) 

8-bit PICs use a “working register”, usually referred to as ‘W’, which is central to their operation.  It’s the 

equivalent of the ‘accumulator’ in some other microprocessors.  For example, to copy data from one 

register to another, you have to copy it into W first, and then copy from W to the destination.  Or, to add 

two numbers, one of them has to be in W.  W is used a lot! 

Many PIC instructions implicitly access or operate on W. 

For example, to load the value ‘5’ into W, you would use: 

        movlw   5 

 

‘movlw’ is our first PIC assembler instruction.  It loads the W register with an 8-bit value (between 0 and 

255), which may represent a number, character, or something else. 

Microchip calls a value like this, which is embedded in an instruction, a literal.  They also refer to a load 

or store operation as a ‘move’ (even though nothing is moved; the source never changes). 

So, ‘movlw’ means “move literal to W”. 

 

If you wanted to write that value into (for example) the BSR register, you would use: 

        movwf   BSR    

            

The ‘movwf’ instruction copies (Microchip would say “moves”) the contents of the W register into the 

specified register – “move W to register file”. 

 

The WREG register provides access to W, for those occasional situations where it would be useful to be 

able to explicitly operate on W. 

We’ll see some examples of using WREG in later lessons, but most of the time you’ll use instructions 

such as “movlw” or “movwf” to access W directly; it’s rare to have to access it via the WREG register.   

 

Core Registers 

Offset Register Name 

00h INDF0 

01h INDF1 

02h PCL 

03h STATUS 

04h FSR0L 

05h FSR0H 

06h FSR1L 

07h FSR1H 

08h BSR 

09h WREG 

0Ah PCLATH 

0Bh INTCON 
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Banking and the bank select register (BSR) 

At the lowest level, PIC instructions consist of bits.  In the enhanced mid-range PIC architecture, each 

instruction word is fourteen bits wide. 

Some of these bits designate which instruction it is; this set of bits is called the opcode. 

For example, the opcode for movlw is 110000. 

The remaining bits in each 14-bit instruction word are used to specify whatever value is associated with 

that instruction, such as a literal value or a register address.  In the case of movlw, the opcode is six bits 

long, leaving the other eight bits to hold the literal value that will be moved into W.  Thus, the 14-bit 

instruction word for ‘movlw 1’ is 110000 00000001 in binary, the first six bits meaning ‘movlw’ and the 

last eight bits being the binary for ‘1’. 

 

In the enhanced mid-range architecture, only seven bits are allocated to register addressing. 

For example, the opcode for movwf is 0000001, which is seven bits long, and the remaining seven bits 

specify which register is to be acted on (the register that the contents of W will be copied into). 

Seven bits is enough to allow up to 128 registers, numbered from 0 to 127 (or 00h to 7Fh in hexadecimal), 

to be addressed.  This 7-bit register addressing limitation is why each register bank consists of only 128 

addresses.  So to allow for more than a total of 128 registers, or data memory addresses, the data memory 

has to be divided into multiple banks – 32 of them in the enhanced mid-range architecture. 

This scheme provides for 32 × 128 = 4096 data memory addresses. 

To specify which of these 4096 possible addresses (000h – FFFh) an instruction will access, we need two 

things: the address offset (00h – 7Fh) within the bank, and which bank (0 – 31 or 00h – 1Fh) to access. 

As we’ve seen, the offset is specified as a 7-bit field within the instruction opcode.  But how to specify the 

bank to access, if it’s not part of the instruction?  That’s where the bank select register, BSR, comes in. 

As you might guess, BSR holds a 5-bit number (0 – 31) specifying the currently selected bank. 

When an instruction accesses a register, the 7-bit offset is taken from the instruction opcode, while the 

bank number is taken from BSR.  Or putting it another way, BSR provides the most significant five bits 

of the 12-bit data memory address, with the instruction opcode providing the lower 7 bits of the address. 

 

When you’re accessing a core register, banking isn’t a problem.  The core registers appear in every bank, 

always at the same offset, so it doesn’t matter which bank is selected when you go to access them. 

But as we’ll see in the next section, the special function registers are different in each bank, making it 

necessary to select the correct bank before attempting to access any of them. 

 

For example, the TRISA register, which we’ll introduce later in this lesson, is at data memory address 

08Ch, which is another way of saying that it’s at address offset 0Ch in bank 1. 

Suppose we want to write the binary value ‘111101’ into TRISA (you’ll why, in the example later). 

To access TRISA, we must first select bank 1, by writing the value ‘1’ into BSR. 

We can do this with: 

        movlw   1               ; select bank 1: 

        movwf   BSR             ;   write '1' to BSR 

 

(note that comments in PIC assembly language begin with a ‘;’) 
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Alternatively (and better), we could use an enhanced mid-range PIC instruction, ‘movlb’, which writes a 

literal value directly into the bank select register – “move literal to BSR” 

For example: 

        movlb   1       ; select bank 1 

 

 

We’re then free to access TRISA: 

        movlw   b'111101'       ; write binary '111101' 

        movwf   TRISA           ;   to TRISA   

  

(note the “b'111101'”  syntax, used to specify a binary value) 

 

By the way, it should be obvious why BSR has to available, at the same location, in every bank.  If BSR 

only appeared in one bank, you’d have to select that bank before you could update BSR – but to select a 

bank, you need to update BSR…  Having BSR available in every bank avoids this “Catch 22” situation. 

 

The banksel directive 

Of course, it’s a bit painful, and potentially quite error-prone, to have to figure out which bank each 

register is in, and load the appropriate value into BSR, before you can access that register. 

But luckily the assembler provides a directive, banksel, which automates the process. 

To use it, you simply specify which register you wish to access, and the assembler then generates the 

correct bank selection code for us. 

For example, our fragment of code to load ‘111101’ into TRISA becomes: 

        banksel TRISA           ; select the bank containing TRISA 

        movlw   b'111101'       ; write binary '111101' 

        movwf   TRISA           ;   to TRISA   

 

Special Function Registers 

The next 20 addresses in banks 0 to 30 hold the special function registers (SFRs) used to access and 

control the device’s features, including ports (basic digital input and output pins) and peripherals such as 

timers, comparators, analog-to-digital converters and pulse-width modulated (PWM) outputs – topics 

we’ll look at in later lessons. 

With 20 × 31 = 620 addresses available for SFRs, the enhanced mid-range architecture has enough 

potential register locations to support a wide range of advanced peripherals, such as USB, which require a 

large number of registers to configure, control and access them. 

But since the 12F1501 is a relatively basic device, compared with other enhanced mid-range PICs, it 

doesn’t need hundreds of special function registers.  Many of its 32 banks do not contain any SFRs.  

Others contain only a few. 

Nevertheless, the 12F1501 does have dozens of special function registers, scattered across several banks. 

It doesn’t make sense to list them all here – you should refer to the PIC12F1501 data sheet for that – but 

the table on the next page shows the content of the first four banks, where most of the commonly-used 

SFRs, including those references in this lesson, are located. 
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General Purpose RAM 

The next 80 addresses in banks 0 to 30 are available for “general purpose RAM” 

Also known a “general purpose registers”, or GPRs, these data memory locations are available for use by 

your program to store its variables and other data
3
.   

These registers are banked – you need to select the appropriate bank (by writing the bank number into 

BSR, via movlb or banksel, in the same way as for SFRs) before accessing general purpose RAM. 

                                                      

3
 Note however that their contents are lost whenever the device loses power. 

PIC12F1501 Special Function Registers (banks 0 – 3) 

 Bank 0  Bank 1  Bank 2  Bank 3 

000h 
Core Registers 

080h 
Core Registers 

100h 
Core Registers 

180h 
Core Registers 

00Bh 08Bh 10Bh 18Bh 

00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 

00Dh  08Dh  10Dh  18Dh  

00Eh  08Eh  10Eh  18Eh  

00Fh  08Fh  10Fh  18Fh  

010h  090h  110h  190h  

011h PIR1 091h PIE1 111h CM1CON0 191h PMADRL 

012h PIR2 092h PIE2 112h CM1CON1 192h PMADRH 

013h PIR3 093h PIE3 113h  193h PMDATL 

014h  094h  114h  194h PMDATH 

015h TMR0 095h OPTION_REG 115h CMOUT 195h PMCON1 

016h TMR1L 096h PCON 116h BORCON 196h PMCON2 

017h TMR1H 097h WDTCON 117h FVRCON 197h VREGCON 

018h T1CON 098h  118h DACCON0 198h  

019h TMR2 099h OSCCON 119h DACCON1 199h  

01Ah PR2 09Ah OSCSTAT 11Ah  19Ah  

01Bh T2CON 09Bh ADRESL 11Bh  19Bh  

01Ch  09Ch ADRESH 11Ch  19Ch  

01Dh  09Dh ADCON0 11Dh APFCON 19Dh  

01Eh  09Eh ADCON1 11Eh  19Eh  

01Fh  09Fh ADCON2 11Fh  19Fh  

020h General 
Purpose RAM 

0A0h 

 

120h 

 

1A0h 

 
04Fh    

050h 
 

   

06Fh 0EFh 16Fh 1EFh 

070h 
Common RAM 

0F0h 
Common RAM 

170h 
Common RAM 

1F0h 
Common RAM 

07Fh 0FFh 17Fh 1FFh 
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This means that enhanced mid-range PICs can have up to 80 × 31 = 2480 bytes of general purpose RAM. 

The 12F1501, however, has only 48 bytes of general purpose RAM, all in bank 0, as shown in the diagram 

on the previous page. 

So, although the enhanced mid-range architecture allows for us to 2480 bytes of general purpose RAM, 

most devices will have less than that amount. 

Common RAM 

The last 16 addresses of each bank are used for “common RAM”. 

Every enhanced mid-range PIC device has exactly 16 bytes of common RAM – no more, and no less. 

It is equivalent to general purpose RAM, except it is mapped into the same location in every bank. 

This makes it very useful for the storage of commonly-accessed variables, allowing you to reduce your 

code size by avoiding the need for bank selection instructions when accessing those variables.  But with 

only 16 bytes available, you should try to use it sparingly. 

 

So overall the 12F1501 has only 48 bytes of general purpose RAM, all in bank 0, along with 16 bytes of 

common RAM (mapped into every bank) giving it a total of 64 bytes of data memory. 

 

Finally, bank 31 contains registers related to interrupts and the hardware stack – topics that, once again, 

we’ll look at in future lessons. 

 

PIC12F1501 Input and Output 

As mentioned above, the 12F1501 has six I/O pins: RA0, RA1, RA2, RA4 and RA5, which can be used 

for digital input and output, plus RA3, which is input-only. 

Taken together, the six I/O pins comprise the general-purpose I/O port, or GPIO port, which is referred to 

as PORTA on the 12F1501. 

 

The PORTA register provides access to the port pins: 

If a pin in configured as an output, setting the corresponding PORTA bit to ‘1’ outputs a high voltage
4
 on 

the corresponding pin; clearing it to ‘0’ outputs a low voltage
5
. 

Reading the PORTA register reads the voltage present on each pin.  If the voltage on a pin is high
6
, the 

corresponding bit reads as ‘1’; if the input voltage is low
7
, the corresponding bit reads as ‘0’. 

 

                                                      

4
 a ‘high’ output will be within 0.7 V of the supply voltage (VDD), for small pin currents (< 3.5 mA with VDD = 5 V) 

5
 a ‘low’ output is less than 0.6 V, for small pin currents (< 8 mA with VDD = 5 V) 

6
 the threshold level depends on the power supply, but a ‘high’ input is any voltage above 2.0 V, given a 5 V supply 

7
 a ‘low’ input is anything below 0.8 V, given a 5 V supply – see the data sheet for details of each of these levels 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

PORTA   RA5 RA4 RA3 RA2 RA1 RA0 
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The TRISA register controls whether a pin is configured as an input or output: 

To configure a pin as an input, set the corresponding bit in the TRISA register to ‘1’.  To make it an 

output, clear the corresponding TRISA bit to ‘0’. 

Why is it called ‘TRIS’?  Each pin (except RA3) can be configured as one of three states: high-impedance 

input, output high, or output low.  In the input state, the PIC’s output drivers are effectively disconnected 

from the pin.  Another name for an output than can be disconnected is ‘tri-state’ – hence, TRIS. 

Note that bit 3 of TRISA is greyed-out.  Clearing this bit will have no effect, as RA3 is always an input. 

The default state for each pin is ‘input’; TRIS is set to all ‘1’s when the PIC is powered on or reset. 

 

It’s important to understand that, regardless of whether a pin a configured as an input or an output, 

PORTA reflects the actual voltage present on that pin. 

If you attempt to output a ‘high’ on an output pin by writing a ‘1’ to the corresponding port bit, but the 

external circuit holds that pin low, that pin will read as ‘0’ – not what you might have expected. 

This behaviour can lead to what are known as read-modify-write problems, where instructions which are 

intended to modify only specific pins actually read the entire port, including pins which may not reflect 

the value that had been output to them, and then write the new value (with some bits possibly incorrect) 

back to the port. 

To avoid the potential for read-modify-write problems, the enhanced mid-range architecture makes 

available an “output data latch” register, associated with each port: 

Writing to LATA has the same effect as writing to PORTA: if a pin in configured as an output, setting the 

corresponding LATA bit to ‘1’ outputs a ‘high’ on that pin; clearing it to ‘0’ outputs a ‘low’. 

However – reading LATA returns the value that was last written to LATA.  It does not read the voltages on 

the pins (whether input or output) themselves. 

 

This means that you can avoid read-modify-write problems by following these rules: 

 if you are writing an entire byte to a port, you can write to either PORTA or LATA 

 if you are modifying individual port pins, you should operate on LATA 

 if you are reading digital input pins, you must read PORTA 

To keep it simpler, you won’t run into any problems if you always access LATA to write to or modify 

output pins, and PORTA to read digital input pins. 

This should become clearer as we work through examples. 

 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TRISA   TRISA5 TRISA4  TRISA2 TRISA1 TRISA0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

LATA   LATA5 LATA4  LATA2 LATA1 LATA0 

Note: the port registers represent the actual voltages present on each digital I/O pin, including 

pins configured as digital outputs 
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When configured as an output, each I/O pin on the 12F1501 can source or sink (i.e. current into or out of 

the pin) up to 25 mA – enough to directly drive an LED.  

PICs are tough devices, and you may get away with exceeding these limits – but if you ignore the absolute 

maximum ratings specified in the data sheet, you’re on your own.  Maybe your circuit will work, maybe 

not.  Or maybe it will work for a short time, before failing.  It’s better to follow the data sheet… 

Example Circuit 

We now have enough background information to design a circuit to light an LED. 

We’ll need a regulated power supply, let’s assume 5 V, connected to VDD and VSS.  And remember that 

we should add a bypass capacitor, preferably a 100 nF (or larger) ceramic, across it. 

We’ll also need an LED of course, and a resistor to limit the current. 

Although the PIC12F1501 can supply up to 25 mA from a single pin, 10 mA is more than enough to 

adequately light most LEDs.  With a 5 V supply and assuming a red or green LED with a forward voltage 

of around 2 V, the voltage drop across the resistor will be around 3 V. 

Applying Ohm’s law, R = V / I = 3 V ÷ 10 mA = 300 Ω.  Since precision isn’t needed here (we only need 

“about” 10 mA), it’s ok to choose the next highest “standard” E12 resistor value, which is 330 Ω.  It 

means that the LED will draw less than 10 mA, but that’s a good thing, because, if we’re going to use a 

PICkit 3 to power the circuit, we need to limit overall current consumption to 30 mA, because that is the 

maximum current the PICkit 3 can supply. 

Finally, we need to connect the LED to one of the PIC’s pins. 

We can’t choose RA3, because it’s input-only. 

If you’re using the Gooligum training board, you could 

choose any of the other pins, but if you use the Microchip 

LPC Demo Board to implement the circuit, it’s not a good 

idea to use RA0, because it’s connected to a trimpot on the 

LPC demo board, which would divert current from the LED.  

So, we’ll use RA1, giving the circuit shown on the right. 

Simple, isn’t it?   Modern microcontrollers really do have 

minimal requirements. 

Of course, some connections are also needed for the ICSP 

(programmer) signals.  These will be provided by your 

development board, unless you are building the circuit 

yourself.  But the circuit as shown here is all that is needed for 

the PIC to run, and light the LED. 

Gooligum training and development board instructions 

If you have the Gooligum training board, you can use it to implement this circuit.   

Plug the PIC12F1501 into the top section of the 14-pin IC socket – the section marked ‘12F’
8
. 

Connect a shunt across the jumper (JP12) on the LED labelled ‘RA1’, and ensure that every other jumper 

is disconnected.  

Plug your PICkit 3 programmer into the ICSP connector on the training board, with the arrow on the board 

aligned with the arrow on the PICkit, and plug the PICkit into a USB port on your PC. 

                                                      

8
 Note that, although the PIC12F1501 comes in an 8-pin package, it will not work in the 8-pin ‘10F’ socket.  You 

must install it in the ‘12F’ section of the 14-pin socket. 
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The PICkit 3 can supply enough power for this circuit, so there is no need to connect an external power 

supply. 

Microchip Low Pin Count Demo Board instructions 

If you are using Microchip’s LPC Demo Board, you’ll need to 

take some additional steps.  

Although the board provides four LEDs, they cannot be used 

directly with a 12F1501 (or any 8-pin PIC), because those LEDs 

are connected to DIP socket pins which are only used with 14-

pin and 20-pin devices. 

However, the circuit can be readily built by adding an LED, a 

330 Ω resistor and a piece of wire to the LPC Demo Board, as 

illustrated on the right. 

In the pictured board, a green LED is wired to RA1 and a red 

LED to RA2; we’ll use both LEDs in later lessons.  Jumper 

blocks have been added so that these LEDs can be easily 

disconnected from the PIC, to facilitate prototyping other 

circuits.  These jumpers are wired in series with each LED. 

 

 

If you prefer not to 

solder components onto 

your demo board, you can use the LEDs on the board, labelled 

‘DS1’ to ‘DS4’, by making connections on the 14-pin header on 

the right of the demo board, as shown on the left.  This header 

makes available all the 12F1501’s pins, RA0 – RA5, as well as 

power (+5 V) and ground.  It also brings out the additional pins, 

labelled ‘RC0’ to ‘RC5’, available on 14-pin PIC devices. 

The LEDs are connected to the pins labelled ‘RC0’ to ‘RC3’ on 

the IC socket, via 470 Ω resistors (and jumpers, if you choose to 

install them).  ‘DS1’ connects to pin ‘RC0’, ‘DS2’ to ‘RC1’, and 

so on. 

So, to connect LED ‘DS2’ to pin RA1, simply connect the pin 

labelled ‘RA1’ to the pin labelled ‘RC1’, which can be done by 

plugging a short piece of solid-core hook-up wire between pins 8 

and 11 on the 14-pin header. 

Similarly, to connect LED ‘DS3’ to pin RA2, simply connect 

header pins 9 and 12. 

 

That’s certainly much easier than soldering, so why bother adding LEDs to the demo board?  The only 

real advantage is that, when using 14-pin and 20-pin PICs later, you may find it useful to have LEDs 

available on RA1 and RA2, while leaving RC0 – RC3 available to use, independently.  In any case, it is 

useful to leave the 14-pin header free for use as an expansion connector, to allow you to build more 

complex circuits, such as those found in the later tutorial lessons. 

 

Time to move on to programming! 
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Development Environment 

You’ll need Microchip’s MPLAB Integrated Development Environment (MPLAB IDE), which you can 

download from www.microchip.com. 

As discussed in lesson 0, MPLAB comes in two varieties: the older, Windows-only MPLAB 8, and the 

newer multi-platform MPLAB X.  Although MPLAB 8 remains a stable and usable environment, it has 

been effectively retired by Microchip and will not continue to be updated. 

Therefore, this tutorial series assumes that you will be using MPLAB X. 

Installation 

You should download the MPLAB X IDE installer for your platform (Windows, Linux or Mac) from the 

MPLAB X download page at www.microchip.com, and then run it. 

There are no installation options (other than being able to choose the installation directory).  It’s an “all or 

nothing” installer, including the MPASM assembler and support for all of Microchip’s PIC MCUs and 

development tools. 

When the installation completes, you are prompted to download and one (or more) of Microchip’s “XC” 

series of C compilers: 

Even if you want to use C in addition to assembly language, there is no problem with downloading and 

installing the compilers separately, later.  So you can leave this box unchecked for now, and then click 

‘Finish’ to finish the installation. 

 

Creating a New Project 

When you first run MPLAB X, you will see the “Learn & Discover” tab, on the Start Page. 

To start a new project, you should run the New Project wizard, by clicking on ‘Create New Project’. 

 

http://www.microchip.com/
../../PIC_Intro_0.pdf
http://www.microchip.com/
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In the first step, you need to specify the project category.  Choose ‘Standalone Project’: 

Next, select the PIC family and device. 

In our case, we need ‘Mid-Range 8-bit MCUs’ as the family, and ‘PIC12F1501’ as the device: 

The third step allows you to optionally select a debug header. 

This is a device used to facilitate hardware debugging (see explanation in lesson 0), especially for PICs 

(such as the 12F1501) which do not include internal hardware to support debugging.  If you are just 

starting out, you are unlikely to have one of these debug headers, and you don’t need one for these 

tutorials.  So, you should not select a header.  Just click ‘Next’. 

 

../../PIC_Intro_0.pdf


© Gooligum Electronics 2013  www.gooligum.com.au 

Enhanced Mid-Range PIC Assembler, Lesson 1: Light an LED Page 14 

The next step is to select the tool you will use to program your PIC. 

First, you should plug in the programmer (e.g. PICkit 3) you intend to use.  If it is properly connected to 

your PC, with a functioning device driver
9
, it will appear in the list of hardware tools, and you should 

select it, as shown: 

In this case, a PICkit 3 is connected to the PC. 

If you have more than one programmer plugged in (including more than one of the same type, such as two 

PICkit 3s), they will all appear in this list, and you should select the specific one you intend to use for this 

project – you may need to check the serial number.  Of course, you probably only have one programmer, 

so your selection will be easy. 

After selecting the hardware tool, you select the compiler (or, in our case, assembler) you wish to use:  

To specify that we will be programming in assembler, select the ‘mpasm’ option. 

                                                      

9
 There is no need to install a special device driver for the PICkit 3; it works “out of the box”. 
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Finally, you need to specify your project’s location, and give it a name:  

For example, in the environment used to develop these tutorials, all the files related to this lesson, 

including schematics and documentation, are placed in a folder named ‘1 - Light an LED’, which is the 

“Project Location” given above. 

 

By default, MPLAB X then creates a separate folder for the PIC source code and other files related to this 

project, in a subfolder that has the same name as the project, with a ‘.X’ on the end.  If you wish, you can 

remove the ‘.X’ extension from the project folder, before you click on ‘Finish’. 

If you select “Use project location as the project folder”, this behaviour changes – the project files are then 

placed in the “Project Location” folder, instead of being in a separate folder.  This isn’t recommended, 

which is why that box is left unchecked above.  But if you prefer not to have a separate folder for the 

MPLAB files, you can select this option. 

 

Note the warning about project name and folder path length.  To avoid possible problems, it’s best to use 

shorter names and paths, when using Windows, although in this case it’s actually ok. 

 

Since this is the only project we’re working on, it doesn’t make much difference whether you select “Set 

as main project”; this is something that is more useful when you are working with multiple projects. 
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After you click “Finish”, your workspace should look something like this: 

The panel in the top left allows you to see and access the various files that comprise your project – we’ll 

add a source code file (which will appear under “Source Files” in the next step. 

The panel in the bottom left shows your project’s configuration and status, such as which device you’re 

using (12F1501), the selected programmer (shown here as “Debug Tool”) and the amount of PIC program 

(“Flash”) and data (“RAM”) memory our program is using – 0% for now, because we haven’t created a 

program yet! 

The largest panel, in the upper right, is where you edit your source code. 

Below it is a panel where you’ll see the status of processes such as assembling your program and 

programming the PIC. 

Note that MPLAB X has many, many features that we won’t be exploring in these tutorials.  These lessons 

are about PIC programming, not using MPLAB X.  So it’s worth taking some time to explore the training 

resources available from the “Learn & Discover” tab shown above. 
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There are a couple of ways to create a new source file and add it to the project. 

You could select the “File → New File…” menu item, press Ctrl+N, or click on the “New File” button in 

the toolbar: 

This will open the New File window: 

Microchip provide a number of templates to base your source file on. 

We’re creating an MPASM assembler project, so navigate to “MPASM assembler”, within the “Microchip 

Embedded” category, then select “pic_8b_simple.asm”, as shown. 
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The “8b” refers to 8-bit PICs.  Since we’re starting with a simple example, the “simple 8-bit asm file” is 

the best choice for now.  But when you begin working on more advanced programs, you may find that the 

“pic_8b_general.asm” option is a better choice. 

After you click ‘Next’, you have the option of naming your file: 

The “Folder” field allows you to place your file in a different directory, not necessarily within the project 

folder.  You wouldn’t normally do that, so it’s ok to leave it blank, as shown here. 

 

The second way to create a new assembler source file is to right-click ‘Source Files’ in the project tree, 

and select “New → pic_8b_simple.asm…”: 
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Either way, your source file should now appear under ‘Source Files’ in the project tree, and you should be 

able to see the source code in the editor window, as shown: 

If you don’t see the source code, you may need to click on the tab at the top of the editor pane, or double-

click the source file name in the project tree. 

Now you can finally start working on your code! 

Program Code 

As we’ll see in lesson 3, a large program can consist of a number of source files, each containing various 

modules or definitions, or, in a simple example such as this one, you may have only a single source file. 

Regardless of whether a source file stands on its own or is part of a larger program, it is usual to begin it 

with a block of comments, providing essential information about the source file such as what it’s called, 

the last modification date and current version (and sometimes a history of previous versions, what has 

changed in this version, and who changed it), who wrote it, and a general description of what the program 

or module does. 

It can also be useful to include a “Files required” section.  This is helpful in larger projects, where your 

code may rely on other files or modules; you can list any dependencies here. 

It is also a good idea to include information on what processor this code is written for; useful if you move 

it to a different PIC later.  You should also document what each pin is used for.  It’s common, when 

working on a project, to change the pin assignments – often to simplify the circuit layout.  Clearly 

documenting the pin assignments helps to avoid making mistakes when they are changed! 
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As mentioned earlier, MPASM comments begin with a ‘;’.  They can start anywhere on a line.  Anything 

after a ‘;’ is ignored by the assembler. 

The following comment block illustrates the sort of information you should include at the start of each 

source file:   

;************************************************************************ 

;                                                                       * 

;   Filename:      EA_L1_1-Turn_on_LED.asm                              * 

;   Date:          15/9/13                                              * 

;   File Version:  0.1                                                  * 

;                                                                       * 

;   Author:        David Meiklejohn                                     * 

;   Company:       Gooligum Electronics                                 * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Architecture:  Enhanced Mid-range PIC                               * 

;   Processor:     12F1501                                              * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: none                                                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 1, example 1                                 * 

;                                                                       * 

;   Turns on LED.  LED remains on until power is removed.               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RA1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

Note that the file version is ‘0.1’.  I don’t call anything ‘version 1.0’ until it works; when I first start 

development I use ‘0.1’.  You can use whatever scheme makes sense to you, as long as you’re consistent. 

 

You can type these comments into the start of the source code in the editor pane – or, better, copy and 

paste them from the source file provided with this lesson. 

 

The first line of the “pic_8b_simple.asm” file states: 

; TODO INSERT CONFIG CODE HERE USING CONFIG BITS GENERATOR 

 

This is reminding us that our program should start with processor configuration code. 

The 12F1501 has a number of options that are selected by setting various bits in a pair of “configuration 

words”, sometimes known as “fuses”, which sit outside the normal address space. 

The __CONFIG assembler directive is used to specify these configuration bits. 

We could look up the configuration bits in the data sheet and type in the appropriate __CONFIG directives 

ourselves – and in fact, when you’re creating a new program, based on one that you’ve worked on before 

(as you’ll often do), it’s quite normal to directly edit the __CONFIG directives. 

But as this comment suggests, MPLAB X includes a generator which can create these directives for us. 
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To use it, select the “Window → PIC Memory Views → Configuration Bits” menu item. 

You will see the processor configuration options in the “Configuration Bits” window under the editor 

pane: 

 

As you can see, there are quite a few options, but you only need to change three (shown in red, above): 

FOSC = INTOSC 

WDTE = OFF 

LVP = OFF 

When you have made these selections, click on the ‘Generate Source Code to Output’ button. 

 

The generated source code will appear in the “Config Bits Source” tab in the “Output” window: 

You can then copy and paste (using the usual select and right-click method) this into your source code in 

the editor window, replacing the “INSERT CONFIG CODE HERE” comment. 

 

The first line of this generated code is: 

#include "p12F1501.inc" 

 

The ‘#include’ directive causes an include file (‘p12F1501.inc’, located in the ‘mpasmx’ folder within 

the MPASM install directory
10

) to be read by the assembler.  This file sets up aliases for all the features of 

                                                      

10
 If you are using Windows, this will typically be ‘C:\Program Files\Microchip\MPLABX\mpasmx’ 



© Gooligum Electronics 2013  www.gooligum.com.au 

Enhanced Mid-Range PIC Assembler, Lesson 1: Light an LED Page 22 

the processor, so that we can refer to registers etc. by name (e.g. ‘PORTA’) instead of numbers.  Lesson 6 

explains how this is done; for now we’ll simply used these pre-defined names, or labels. 

If the filename specified in the ‘#include’ directive contains spaces, it must be enclosed in quotes (as 

shown) or in angle brackets (<>). 

 

Next in the generated code is: 

; CONFIG1 

; __config 0xFFE4 

 __CONFIG _CONFIG1, _FOSC_INTOSC & _WDTE_OFF & _PWRTE_OFF & _MCLRE_ON & 

_CP_OFF & _BOREN_ON & _CLKOUTEN_OFF 

; CONFIG2 

; __config 0xDFFF 

 __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

These directives specify the processor configuration. 

[note that each __CONFIG directive must be written as a single line in the assembler source code, not split 

across multiple lines as the first directive here appears to be] 

The 12F1501 has too many configuration options to fit into a single 14-bit word, so it has two 

configuration words, each defined via a __CONFIG directive with a parameter, ‘_CONFIG1’ or 

‘_CONFIG2’ specifying which configuration word is being defined, as shown. 

 

We’ll examine these in greater detail in later lessons, but briefly the options being set here are: 

 _FOSC_INTOSC 

This selects the internal RC oscillator as the clock source. 

Every processor needs a clock – a regular source of cycles, used to trigger processor operations 

such as fetching the next program instruction. 

Most modern PICs, including the 12F1501, include an internal ‘RC’ oscillator, which can be used 

as the simplest possible clock source, since it’s all on the chip!  It’s built from passive components 

– resistors and capacitors – hence the name RC. 

The internal RC oscillator on the 12F1501 runs at approximately 16 MHz and by default this is 

divided down to 500 kHz.  Program instructions are processed at one quarter this speed: 125 kHz, 

or 8 µs per instruction. 

Alternatively, the 12F1501 can use a (possibly more accurate) external clock signal, via the 

CLKIN pin.  This shares its physical pin with RA5, so if you’re using an external clock, you can’t 

use the RA5 pin for I/O. 

To turn on an LED, we don’t need accurate timing, so we’ll use the internal RC oscillator. 

 _CLKOUTEN_OFF 

Regardless of whether the internal RC oscillator or an external clock signal is used as the 

processor clock (FOSC) source, the instruction clock (FOSC/4) can optionally be output on the 

CLKOUT pin, to allow other devices to be synchronised with the PIC’s operation.  CLKOUT 

shares its pin with RA4, so if you’re using the clock out facility, you can’t use RA4 for I/O. 

We don’t need to use CLKOUT, so we will leave this feature disabled. 

 _MCLRE_ON 

Enables external reset, or “master clear” ( MCLR  ) on pin 4. 

If external reset is enabled, pulling this pin low will reset the processor.  Or, if external reset is 

disabled, the pin can be used as an input: RA3.  That’s why, on the circuit diagram, pin 4 is 
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labelled “RA3/ MCLR  ”; it can be either an input pin or an external reset, depending on the setting 

of this configuration bit. 

The Gooligum training board includes a pushbutton which will pull pin 4 low when pressed, 

resetting the PIC if external reset is enabled.  The PICkit 3 is also able to pull the reset line low, 

allowing MPLAB to control MCLR  (if enabled) – useful for starting and stopping your program. 

So unless you need to use every pin for I/O, it’s a good idea to enable external reset by including 

‘_MCLRE_ON’ in the __CONFIG directive. 

 _CP_OFF 

Turns off code protection.  

When your code is in production and you’re selling PIC-based products, you may not want 

competitors stealing your code.  If you specify _CP_ON instead, your code will be protected, 

meaning that if someone tries to use a PIC programmer to read it, all they will see are zeros. 

Since we’re not designing anything for sale, we’ll make our lives easier by leaving code 

protection turned off. 

 _WDTE_OFF 

Disables the watchdog timer. 

This is a way of automatically restarting a crashed program; if the program is running properly, it 

continually resets the watchdog timer.  If the timer is allowed to expire, the program isn’t doing 

what it should, so the chip is reset and the crashed program restarted – see lesson 8. 

The watchdog timer is very useful in production systems, but a nuisance when prototyping, so 

we’ll leave it disabled. 

 _BOREN_ON 

Enables brown-out resets. 

The PIC’s operation can become unreliable if the supply voltage drops too low, which can happen 

during a brown-out, when the supply voltage sags, but does not fall quickly to zero.  The 12F1501 

has brown-out detect circuitry, which will reset the PIC in a brown-out situation, if _BOREN_ON is 

selected. 

Although your power supply is not likely to suffer from brown-outs, it doesn’t hurt to leave this 

option enabled – just in case. 

 _BORV_LO 

Selects the low brown-out reset voltage option 

This option selects the voltage level at which the brown-out reset (if enabled) will be tripped. 

 _LPBOR_OFF 

Disables low-power brown-out resets. 

The 12F1501 also has a lower-power brown-out reset facility; we can leave it disabled. 

 _PWRTE_OFF 

Disables the power-up timer. 

When a power supply is first turned on, it can take a while for the supply voltage to stabilise, 

during which time the PIC’s operation may be unreliable.  If the power-up timer is enabled, the 

PIC is held in reset (it does not begin running the user program) for some time, nominally 64 ms, 

after the supply voltage reaches a minimum level. 

However, since we have enabled the brown-out reset facility, which will prevent the device from 

starting until the supply voltage is high enough, we don’t need to also enable the power-up timer. 
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 _WRT_OFF 

Disables flash memory write protection. 

Many newer PIC devices, including the 12F1501, are capable of writing to their flash (program) 

memory.  This is useful in a number of situations, including boot loaders, which allow program 

firmware to be updated easily in the field, or to store data long term (flash memory being non-

volatile). 

Of course, you don’t want your program to be overwritten by mistake!  To prevent that from 

happening, you may wish to write-protect all or some of the flash memory. 

Nevertheless, it’s safe in this example to leave flash write protection disabled. 

 _STVREN_ON 

Enables stack overflow/underflow resets. 

As we’ll see in lesson 3, the stack is a special set of registers used when calling subroutines. 

Although we won’t be using the stack in this example, it doesn’t hurt to leave this feature enabled. 

 _LVP_OFF 

Disables low-voltage programming. 

Normally, to program the device, a high voltage (around 12 V) must be applied to the VPP pin.  

Low-voltage programming mode avoids the need for this high voltage, but we don’t need it 

because the PICkit 3 can operate in the traditional high-voltage programming mode. 

 

The comments in the generated configuration code aren’t very useful; unless you remember what all of 

these symbols mean, it’s hard to know how the device is being configured. 

So we’ll add comments and rearrange the configuration code to make it more readable: 

;***** CONFIGURATION 

            ; ext reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 

            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_ON & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

 

Next, in the “pic_8b_simple.asm” template code, we have: 

RES_VECT  CODE    0x0000            ; processor reset vector 

    GOTO    START                   ; go to beginning of program 

 

The CODE directive is used to introduce a section of program code. 

The 0x0000 after CODE is an address in hexadecimal (signified in MPASM by the ‘0x’ prefix). 

As mentioned earlier, when the 12F1501 is powered on or reset, it begins the program instruction at 

address 0x0000.  This is referred to as the processor reset vector – it’s where the program starts running. 

This CODE directive is telling the linker, which decides where to locate each code section in program 

memory, to place this section of code at 0x0000. 

In other words, this is the section of code that will run whenever the program starts. 

 

So the first instruction to be executed will be ‘GOTO START’. 
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‘goto’ is an unconditional branch instruction
11

.  It tells the PIC to go to a specified program address. 

 

Why begin the program by immediately jumping somewhere else? 

There is a clue in the following comment in the template code: 

; TODO ADD INTERRUPTS HERE IF USED 

 

An interrupt is a means of interrupting the main program flow in response to an event, such as a change 

on an input pin, can be responded to immediately. 

As we’ll see in lesson 7, when the interrupt is triggered, program execution jumps to an interrupt service 

routine (ISR), which, in the enhanced mid-range PIC architecture, is always located at address 0004h. 

This means that the ISR, or at least its entry point, must be located at address 0004h.  But our main 

program code starts at address 0000h.  Unless the main code is only four bytes long, it’s going to run into 

the address where we have to place the ISR – unless the main program is located somewhere else in 

memory, where it won’t conflict with the ISR, in which case, when the PIC starts running, the first thing 

to do is to jump to where the main program is.  Hence the ‘GOTO START’ instruction. 

 

We won’t be using interrupts in this example, so we can remove this comment about interrupts, and also 

remove the ‘GOTO START’, because, with no interrupts, there is no ISR to jump around. 

 

The next piece of the template code represents the start of the main program code: 

MAIN_PROG CODE                      ; let linker place main program 

 

START 

 

Using the CODE directive like this, without specifying a section address (such as 0x0000), allows the linker 

to place this section wherever it best fits into program memory. 

That’s fine, but since we’re not using interrupts and therefore don’t have an ISR sitting at 0x0004, our 

main program code might as well continue on directly from the reset vector at 0x0000 – there is no need to 

create a separate code segment to hold the main program. 

So we can remove this CODE directive. 

It doesn’t hurt to keep the ‘START’ label though – it helps to show where the program starts, and, being no 

more than a label, doesn’t use any memory. 

   

The template code finishes with a “do nothing” loop: 

    GOTO $                          ; loop forever 

 

    END 

 

Programs running on small microcontrollers, such as enhanced mid-range PICs, have nowhere to go if 

they “finish” – it’s not like a PC with an operating system that the program can return control to.  If a PIC 

program is allowed to run past its “end”, it will attempt to execute whichever “instructions” happen to be 

                                                      

11
 PIC assembler instructions are not case-sensitive – ‘goto’ and ‘GOTO’ are both acceptable, although lowercase 

has traditionally be used for instructions, so we’ll use lowercase in these tutorials.  Labels, such as ‘START’ may or 

may not be (depending on the assembler configuration) case sensitive, so it’s best be consistent then using them – if 

you use the label ‘START’, don’t ever refer to it, or any other label, as ‘start’ or ‘Start’. 
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in the (uninitialised, non-programmed) remainder of the program memory.  Whatever the “program” is 

doing at that point, it’s not under your control and not behaviour that you want. 

So, programs running on small microcontrollers, where there is no operating system, are almost always 

designed to never finish running.  Instead, the usual structure is to have some initialisation code which 

runs when the program starts, often some interrupt services routines which will be run when interrupts are 

triggered, and a main loop, which repeats the same processes “forever” – that is, until the power is cut off 

or the device is reset. 

 

This fragment of code isn’t really a “main loop”.  Instead we have a one-line “endless” or “infinite” loop, 

an instruction that does nothing other than continually looping back onto itself, to stop the program from 

running past this point into uninitialised program memory. 

Such a loop could be written as: 

here    goto    here 

 

‘here’ is a label representing the address of the goto instruction. 

A shorthand way of writing the same thing, that doesn’t need a unique label, is: 

        goto    $               ; loop forever 

 

‘$’ is an assembler symbol meaning the current program address. 

So this line will endlessly loop back on itself. 

 

 

‘END’ is an assembler directive, marking the end of the program source.  The assembler will ignore any 

text after the ‘END’ directive – so it really should go right at the end of the program! 

 

Of course, we need to replace these example instructions with our own.  This is where we place the code 

to turn on the LED! 

Turning on the LED 

To turn on the LED on RA1, we need to do two things: 

 Configure RA1 as an output 

 Set RA1 to output a high voltage 

We could leave the other pins configured as inputs, or set them to output a low.  Since, in this circuit, they 

are not connected to anything, it doesn’t really matter.  But for the sake of this exercise, we’ll configure 

them as inputs. 

When an enhanced mid-range PIC is powered on, all pins are configured by default as inputs, and the 

content of the port register, PORTA, is undefined. 

 

To configure only RA1 as an output, we have to clear bit 1 of the TRISA register, leaving all the other bits 

in TRISA set. This is done by: 

        movlw   b'111101'       ; configure RA1 (only) as an output 

        banksel TRISA 

        movwf   TRISA 

 

Note again that to specify a binary number in MPASM, the syntax b‘binary digits’ is used, as shown. 
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To make RA1 output a ‘high’, we have to set bit 1 of PORTA to ‘1’, which we could do with: 

        movlw   b'000010'       ; set RA1 high 

        banksel PORTA 

        movwf   PORTA 

 

Although there is no risk of running into read-modify-write problems when updating the port register in a 

single write operation like this, to avoid potential problems in other situations it is better to get into the 

habit of only ever writing to LATA to modify output pins: 

        movlw   b'000010'       ; set RA1 high 

        banksel LATA 

        movwf   LATA 

 

 

Finally, as explained earlier, if we leave it there, when the program gets to the end of this code, it will 

attempt to execute whatever happens to be in the remainder of the program memory.  We need to get the 

PIC to just sit doing nothing, indefinitely, with the LED still turned on, until it is powered off – which 

means finishing with an endless loop, as above: 

        goto    $               ; loop forever 

 

         

And of course an ‘END’ directive has to go at the end of the source code. 

 

Once again, this little program has a structure common to most PIC programs: an initialisation section, 

where the I/O pins and other facilities are configured and initialised, followed by a “main loop”, which 

repeats forever.  Although we’ll add to it in future lessons, we’ll always keep this basic structure of 

initialisation code followed by a main loop. 

 

Complete program 

Putting together all the above, and adding a few more comments, here’s the complete assembler source for 

turning on an LED, for the PIC12F1501: 

;************************************************************************ 

;   Description:    Lesson 1, example 1                                 * 

;                                                                       * 

;   Turns on LED.  LED remains on until power is removed.               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RA1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

#include "p12F1501.inc" 

 

 

;***** CONFIGURATION 

            ; ext reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 

            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_ON & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 
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;***** RESET VECTOR ***************************************************** 

RES_VECT  CODE    0x0000        ; processor reset vector 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   b'111101'       ; configure RA1 (only) as an output 

        banksel TRISA 

        movwf   TRISA 

 

;***** Main code 

        ; turn on LED 

        movlw   b'000010'       ; set RA1 high 

        banksel LATA 

        movwf   LATA 

 

        ; loop forever 

        goto    $ 

 

 

        END 

 

 

That’s it!  Not a lot of code, really… 

 

Building the Application and Programming the PIC 

Now that we have the complete assembler source, we can build the final application code and program it 

into the PIC. 

This is done in two steps: 

 Build the project 

 Use a programmer to load the program code into the PIC 

The first step, building the project, involves assembling the source files
12

 to create object files, and linking 

these object files, to build the executable code.  Normally this is transparent; MPLAB does all of this for 

you in a single operation.  The fact that, behind the scenes, there are multiple steps only becomes 

important when you start working with projects that consist of multiple source files or libraries of pre-

assembled routines. 

A PIC programmer, such as the PICkit 3, is then used to upload the executable code into the PIC.  

Although a separate application is sometimes used for this “programming” process, it’s convenient when 

developing code to do the programming step from within MPLAB, which is what we’ll look at here. 

Building the project 

Before you build your project using MPLAB X, you should first ensure that it is the “main” project.  It 

should be highlighted in bold in the Projects window. 

                                                      

12
 Although there is only one source file in this simple example, larger projects often consist of multiple files, as 

mentioned earlier; we’ll see an example in lesson 3. 
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To set the project you want to work on (and build) as the main project, you should right-click it and select 

“Set as Main Project”.  If you happen to have more than one project in your project window, you can by 

removing any project you are not actively working on (to reduce the chance of confusion) from the 

Projects window, by right-clicking it and selecting “Close”. 

To build the project, right-click it in the Projects window and select “Build”, or select the “Run → Build 

Main Project” menu item, or simply click on the “Build Main Project” button (looks like a hammer) in the 

toolbar:  

This will assemble any source files which have changed since the project was last built, and link them. 

An alternative is “Clean and Build”, which removes any assembled (object) files and then re-assembles all 

files, regardless of whether they have been changed.  This action is available by right-clicking the project 

in the Projects window, or under the “Run” menu, or by clicking on the “Clean and Build Main Project” 

button (looks like a hammer with a brush) in the toolbar. 

 

When you build the project, you’ll see messages in the Output window, showing your source files being 

assembled and linked.  Toward the end, you should see: 

BUILD SUCCESSFUL (total time: 2s) 

(of course, your total time will probably be different…) 

If, instead, you see an error message, you’ll need to check your code and your project configuration. 
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You are, however, likely to see some warning messages, similar to: 

Message[302] C:\...\EA_L1-TURN_ON_LED.ASM 55 : Register in operand not in bank 

0.  Ensure that bank bits are correct. 

Message[303] C:\...\EA_L1-TURN_ON_LED.ASM 67 : Program word too large.  

Truncated to core size. (FFE4) 

 

The [302] messages are generated whenever your code references a register which is not in bank 0, to 

remind you that you should be taking care to set the bank selection bits correctly.  Since we have been 

using the banksel directive to ensure that the correct bank is selected, it can be annoying to see these 

messages – particularly in a larger program, where there will be many more of them.  And worse, having a 

large number of unnecessary messages can make it easy to miss more important messages and warnings. 

Luckily, messages and warnings can be disabled, using the ‘errorlevel’ directive: 

    errorlevel  -302            ; no warnings about registers not in bank 0 

 

The [303] messages are generated because the processor configuration constants are defined in the 

‘p12f1501.inc’ include file as 16-bit values, while the 12F1501’s configuration words are only 14 bits 

wide.  16 bit into 14 don’t go, so the assembler has to truncate the config values to 14 bits by dropping the 

top two bits. 

We don’t need to see these warnings either, so it’s ok to disable them also: 

    errorlevel  -303            ; no warnings about program word too large 

 

 

These directives should be placed toward the beginning of your program, before the __CONFIG directives, 

as follows: 

#include "p12F1501.inc" 

 

  errorlevel  -302          ; no warnings about registers not in bank 0 

  errorlevel  -303          ; no warnings about program word too large 

 

 

;***** CONFIGURATION 

            ; ext reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 

            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_ON & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

 

If you now build the project again, you should no longer see any [302] or [303] messages. 

 

Programming the PIC 

The final step is to upload the executable code into the PIC. 

First, ensure that you have connected your PICkit 3 programmer to your Gooligum training board or 

Microchip LPC Demo Board, with the PIC correctly installed in the appropriate IC socket
13

, and that the 

programmer is plugged into your PC.  

                                                      

13
 Or, in general, that the PIC you wish to program is connected to whichever programmer or debugger you are using, 

whether it’s in a demo/development/training board, a production board, or a standalone programmer. 
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If you have been following this lesson, you will have specified the programmer when you created your 

project (in step 4 of the wizard). 

The project dashboard, in the panel in the bottom right of the workspace, shows the currently-selected 

programmer under “Debug Tool”. 

If you want to change this tool selection, you can right-click your project in the Projects window and 

select “Properties”, or simply click on the “Project Properties” button on the left side of the project 

dashboard, as shown:  
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This will open the project properties window, where you can verify or change your hardware tool 

(programmer) selection: 

After closing the project properties window, you can now program the PIC. 

You can do this by right-clicking your project in the Projects window, and select “Make and Program 

Device”.  This will repeat the project build, which we did earlier, but because nothing has changed (we 

have not edited the code), the “make” command will decide that there is nothing to do, and the assembler 

will not run. 

Instead, in the “Build, Load” tab in the Output pane you should see output like: 

BUILD SUCCESSFUL (total time: 1s) 

Loading code from C:/Work/Gooligum/Tutorials/Series 2/Web/Enhanced/1 - Light an LED/EA_L1-

Turn_on_LED.X/dist/default/production/EA_L1-Turn_on_LED.X.production.hex... 

Loading symbols from C:/Work/Gooligum/Tutorials/Series 2/Web/Enhanced/1 - Light an LED/EA_L1-

Turn_on_LED.X/dist/default/production/EA_L1-Turn_on_LED.X.production.cof... 

Loading completed 

Connecting to programmer... 

Programming target... 

(the total time is smaller than before, because no assembly had to be done). 

A “PICkit 3” tab will also appear in the Output pane, where you can see what the PICkit 3 is doing. 

Your PICkit 3 may need to have new firmware downloaded into it, to allow it to program enhanced mid-

range devices, in which case you will see messages like: 

Downloading Firmware... 

Downloading RS… 

Downloading AP... 

AP download complete 

Programming download... 

Firmware Suite Version.....01.29.33 

Firmware type..............Enhanced Midrange 
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You may also see a voltage caution warning, as shown below: 

 

Since we are using a 5 V device, you can click ‘OK’.  And feel free to click “Do not show this message 

again”, to avoid seeing this caution every time you program your PIC. 

You may now see an error message in the PICkit 3 output tab, stating: 

Target device was not found. You must connect to a target device to use PICkit 3. 

This happens if the PIC is unpowered, so we need to tell the PICkit 3 to supply power. 

Open the project properties window (as on the previous page), select ‘PICkit 3’ in the categories tree, and 

choose ‘Power’ option in the drop-down option categories list:  

Select “Power target circuit from PICkit3”, as shown.  You can leave the voltage set to 5.0 V, and then 

click ‘OK’. 
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If you now perform “Make and Program Device” again, the programming should be successful and you 

should see, in the build output tab, messages ending in: 

Programming completed 

 

Note that this action combines making (or building) the project, with programming the PIC. 

In fact, there is no straightforward way with MPLAB X to simply program the PIC without building your 

project as well. 

This makes sense, because you will almost always want to program your PIC with the latest code.  If you 

make a change in the editor, you want to program that change into the PIC.  With MPLAB X, you can be 

sure that whatever code you see in your editor window is what will be programmed into the PIC. 

But most times, you’ll want to go a step further, and run your program, after uploading it into the PIC, to 

see if it works.  For that reason, MPLAB X makes it very easy to build your code, program it into your 

PIC, and then run it, all in a single operation. 

There are a few ways to do this: 

 Right-click your project in the Projects window, and select “Run”, or 

 Select the “Run → Run Main Project” menu item, or 

 Press ‘F6’, or 

 Click on the “Make and Program Device” button in the toolbar:  

Whichever of these you choose, you should see output messages ending in: 

Running target... 

The LED on RA1 should now light. 

 

Being able to build, program and run in a single step, by simply pressing ‘F6’ or clicking on the “Make 

and Program Device” button is very useful, but what if you don’t want to automatically run your code, 

immediately after programming? 

If you want to avoid running your code, click on the “Hold in Reset” toolbar button ( ) before 

programming.  You can now program your PIC as above. 

Your code won’t run until you click the reset toolbar button again, which now looks like and is now 

tagged as “Release from Reset”. 

 

Summary 

The sections above, on building your project and programming the PIC, have made using MPLAB X seem 

much more complicated than it really is. 

Certainly, there are a lot of options and ways of doing things, but in practice it’s very simple. 

Most of the time, you will be working with a single project, and only one hardware tool, such as a 

programmer or debugger, which you will have selected when you first ran the New Project wizard. 

 

In that case (and most times, it will be), just press ‘F6’ or click on to build, program and run your 

code – all in a single, easy step. 

That’s all there is to it.  Use the New Project wizard to create your project, add a template file to base your 

code on, use the editor to edit your code, and then press ‘F6’.  
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Conclusion 

For such a simple task as lighting an LED, this has been a very long lesson! 

In summary, we: 

 Provided an overview of the enhanced mid-range PIC architecture 

  Introduced the PIC12F1501 

 Showed how to configure and use the PIC’s output pins 

 Implemented an example circuit using two development boards: 

o Gooligum training and development board 

o Microchip Low Pin Count Demo Board 

 Looked at Microchip’s assembly template code and saw: 

o some PIC assembler directives 

o some PIC configuration options 

o our first couple of PIC instructions 

 Modified it to create our (very simple!) PIC program 

 Introduced the MPLAB X integrated development environment 

 Showed how to use MPLAB X to: 

o Create a new project, based on a template 

o Modify that template code 

o Build the program 

o Program the PIC, using a PICkit 3 

o Run the program 

 

That does seem to be a lot of theory, to accomplish so little. 

Nevertheless, after all this, you have a solid base to build on.  You have a working development 

environment.  You can create projects, modify your code, load (program) your code into your PIC, and 

make it run. 

 

Congratulations!  You’ve taken your first step in PIC development! 

That first step is the hardest.  From this point, we build on what’s come before. 

 

In the next lesson, we’ll make the LED flash… 

 

../2%20-%20Flash%20an%20LED/PIC_Enh_A_2.pdf
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Introduction to PIC Programming 

Enhanced Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 2: Flash an LED 

 

 

In lesson 1 we lit a single LED connected to one of the pins of a PIC12F1501. 

Now we’ll make it flash. 

In doing this, we will learn about: 

 Selecting the internal oscillator frequency 

 Using loops to create delays 

 Variables 

 Using exclusive-or (xor) to flip bits 

 

The development environments and microcontrollers used for this lesson are the same as those in lesson 1. 

Again, it is assumed that you are using a Microchip PICkit 3 programmer and either the Gooligum Baseline 

and Mid-range PIC Training and Development Board or Microchip’s Low Pin Count (LPC) Demo Board, 

with Microchip’s MPLAB X integrated development environment.  But it is of course possible to adapt these 

instructions to a different programmers and/or development boards. 

Example Circuit 

Here’s the circuit from lesson 1 again: 

 

If you have the Gooligum training board, simply plug the 

PIC12F1501 into the top section of the 14-pin IC socket – the 

section marked ‘12F’. 

Connect a shunt across the jumper (JP12) on the LED labelled 

‘RA1’, and ensure that every other jumper is disconnected.  

. 

 

If you are using Microchip’s Low Pin Count Demo Board, refer 

back to lesson 1 to see how to build this circuit, by soldering a 

resistor, LED (and optional isolating jumper) to the demo board, 

or by making connections on the demo board’s 14-pin header. 

 

../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf


© Gooligum Electronics 2013  www.gooligum.com.au 

Enhanced Mid-Range PIC Assembler, Lesson 2: Flash an LED Page 2 

Creating a new project in MPLAB X 

It is a good idea, where practical, to base a new software project on work you’ve done before.  In this case, it 

makes sense to build on the program from lesson 1 – we just have to add extra instructions to flash the LED. 

To create a new project in MPLAB X, based on an existing project, you first need to go into MPLAB X and 

open your existing project. 

If you were recently working on the project you want to copy (such as the project from lesson 1), it is 

probably already visible in the Projects window.  If it’s not, it may appear under the “File  Open Recent 

Project” menu list.  Or you can use the “File  Open Project” menu item, or click on the “Open Project…” 

toolbar button and browse to your project folder, select it, and click ‘Open Project’: 

You should now right-click the project name (‘EA_L1_1-Turn_on_LED’ in this example) in the Projects 

window, and select “Copy…”. 

The “Copy Project” dialog then gives you a chance to give your copied project a new name, such as 

‘EA_L2_1-Flash_LED’.  You can also specify (and create, if you wish) a new folder for the project location, 

by browsing to it: 

 

When you are satisfied with your new project name and location, click ‘Copy’. 

Your new project should now appear in the Projects window. 

You can close your old project by right-clicking it and selecting “Close”, so that only your new project is 

visible. 

../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
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If you expand your new project, you’ll see that source file from the old project has been copied into the new 

project, with its original name: 

To rename the source file, to something more appropriate for this project, right-click it and select 

“Rename…”: 

 

Type in the new name, such as ‘EA_L2_1-Flash_LED’ and then click ‘OK’. 

Note that there is no need to type the ‘.ASM’ suffix – the Rename dialog will keep the existing file 

extension. 

 

You now have a new project, with a new name in a new location, with a renamed source file, copied from 

your old project. 
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If you double-click your new source file, you’ll see a copy of your code from lesson 1 in an editor window: 

Flashing the LED 

You can now use the editor to update your code from lesson 1. 

We’ll need to add some code to make the LED flash, but first the comments should be updated to reflect the 

new project.  For example: 

;************************************************************************ 

;                                                                       * 

;   Filename:      EA_L2_1-Flash_LED.asm                                * 

;   Date:          17/11/13                                             * 

;   File Version:  0.1                                                  * 

;                                                                       * 

;   Author:        David Meiklejohn                                     * 

;   Company:       Gooligum Electronics                                 * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Architecture:  Enhanced Mid-range PIC                               * 

;   Processor:     12F1501                                              * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: none                                                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 2, example 1                                 * 

;                                                                       * 

;   Flashes an LED at approx 1 Hz.                                      * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RA1 = flashing LED                                              * 

;                                                                       * 

;************************************************************************ 

../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
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We’re using the same PIC device as before, and it will be configured the same way, so we can leave the 

processor include and configuration sections unchanged.  There is also no need to change the reset vector 

section. 

So we still have, unchanged from lesson 1: 

#include "p12F1501.inc" 

 

  errorlevel  -302          ; no warnings about registers not in bank 0 

  errorlevel  -303          ; no warnings about program word too large 

 

 

;***** CONFIGURATION 

            ; ext reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 

            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_ON & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

 

;***** RESET VECTOR ***************************************************** 

RES_VECT  CODE    0x0000        ; processor reset vector 

 

 

Again, we need to set up the PIC so that only RA1 is configured as an output, so we can leave the 

initialisation code from lesson 1 intact: 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   b'111101'       ; configure RA1 (only) as an output 

        banksel TRISA 

        movwf   TRISA 

 

 

In lesson 1, we made RA1 high, and left it that way.  To make it flash, we need to set it high, then low, and 

then repeat. 

You may think that you could achieve this with something like: 

flash 

        banksel LATA 

        movlw   b'000010'       ; set RA1 high 

        movwf   LATA 

        movlw   b'000000'       ; set RA1 low 

        movwf   LATA 

        goto    flash           ; repeat forever 

 

 

If you try this code, you’ll find that the LED appears to remain on continuously.  In fact, it’s flashing too fast 

for the eye to see. 

The PIC has been configured to use its internal RC oscillator, which by default provides a 500 kHz processor 

clock.  Each instruction executes in four processor clock cycles, which, given a 500 kHz processor clock, is  

8 µs – except instructions which branch to another location, such as ‘goto’, which require two instruction 

cycles, or 16 µs. 

../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
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Thus, by default, this loop takes a total of 56 µs, so the LED flashes at 1/(56 µs) = 17.9 kHz.  That’s much 

too fast to see! 

Again, that’s at the default processor clock speed of 500 kHz. 

However, the PIC12F1501’s internal RC oscillators can be configured, via the OSCCON register, to provide 

a range of processor clock frequencies: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OSCCON – IRCF3 IRCF2 IRCF1 IRCF0 – SCS1 SCS0 

 

 

The IRCF bits are used to select the internal 

oscillator frequency, as follows: 

The 12F1501 actually has two internal RC 

oscillators: an uncalibrated low frequency 

oscillator, ‘LFINTOSC’, running at 

approximately 31 kHz, and a high frequency 

oscillator, ‘HFINTOSC’, which is factory-

calibrated to run at 16 MHz. 

This 16 MHz oscillator is used as the clock 

source in the remaining “HF” modes, divided 

by a postscaler to generate frequencies down 

as low as 31.25 kHz, as shown in the table on 

the left
1
. 

The internal clock source (LFINTOSC or 

HFINTOSC, as above) is selected whenever 

the SCS1 bit is set, regardless of the 

processor configuration words. 

Otherwise, if SCS<1:0> = 00, the clock 

source is selected by the oscillator selection 

bits in the configuration words. 

 

However, even if we select the lowest possible calibrated processor frequency of 31.25 kHz, for a processor 

cycle time of 32 µs (giving an execution time of 4 × 32 µs = 128 µs for most instructions), the loop will 

complete in 896 µs, and the LED will flash at 1.17 kHz – still too fast to see. 

So to slow it down to a more sedate (and visible!) 1 Hz, we have to add a delay. 

 

But before looking at delays, we can make a small improvement to the code. 

To flip, or toggle, a single bit – to change it from 0 to 1 or from 1 to 0, you can exclusive-or it with 1. 

That is: 

0 XOR 1 = 1 

1 XOR 1 = 0 

                                                      

1
 Not all possible IRCF values are shown here; those omitted duplicate some of the available processor frequencies. 

IRCF<3:0> Oscillator Frequency 

000x LF 31 kHz (approx) 

001x HF 31.25 kHz 

0100 HF 62.5 kHz 

0101 HF 125 kHz 

0110 HF 250 kHz 

0111 HF 500 kHz (default) 

1011 HF 1 MHz 

1100 HF 2 MHz 

1101 HF 4 MHz  

1110 HF 8 MHz 

1111 HF 16 MHz 
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So to repeatedly toggle RA1, we can read the current state of LATA, exclusive-or the bit corresponding to 

RA1, then write it back to LATA, as follows: 

        movlw   b'000010'       ; bit mask to toggle RA1 only 

        banksel LATA 

flash   xorwf   LATA,f          ; toggle RA1 using mask in W 

        goto    flash           ; repeat forever 

 

 

The ‘xorwf’ instruction exclusive-ors the W register with the specified register – “exclusive-or W with file 

register”, and writes the result either to the specified file register (LATA in this case) or to W. 

Many of the PIC instructions, like xorwf, are able to place the result of an operation (e.g. add, subtract, or in 

this case XOR) into either a file register or W.   This is referred to as the instruction destination.  A ‘,f’ at 

the end indicates that the result should be written back to the file register; to place the result in W, use ‘,w’ 

instead. 

This single instruction – ‘xorwf LATA,f’ – is doing a lot of work.  It reads LATA, performs the XOR 

operation, and then writes the result back to LATA. 

 

Note that in this example there is no need to set RA1 to an initial state; whether it’s high or low to start with, 

it will be successively flipped.  But usually you will want to ensure that the output pins are in a known state 

before the main loop begins. 

For example, if we wanted to begin with the LED off, we would clear the bit in LATA corresponding to 

RA1.  We don’t have any other output pins, but it doesn’t hurt to clear the whole of LATA, in case the LED 

is moved to another pin or other LEDs added later. 

In that case you would include in your initialisation code something like: 

        banksel LATA 

        movlw   b'000000'       ; start with all output pins low 

        movwf   LATA            ;   (LED off) 

 

Or alternatively: 

        banksel LATA            ; start with all output pins low 

        clrf    LATA            ;   (LED off) 

 

The ‘clrf’ instruction clears (to 0) the specified register – “clear file register”. 

 

It’s usually best to initialise the output pins before they are configured as outputs, so that they do not, even 

for an instant, output an incorrect level when the program starts running. 

So our initialisation code becomes: 

;***** Initialisation 

start 

        ; configure port 

        banksel LATA            ; start with all output pins low 

        clrf    LATA            ;   (LED off) 

        movlw   b'111101'       ; configure RA1 (only) as an output 

        banksel TRISA 

        movwf   TRISA 
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Delay Loops 

To make the flashing visible, we need to slow it down, and that means getting the PIC to “do nothing” 

between LED changes. 

The enhanced mid-range PICs do have a “do nothing” instruction: ‘nop’ – “no operation”.  All it does is to 

take some time to execute. 

As explained above, how much time depends on the clock rate.  Instructions are executed at one quarter the 

rate of the processor clock.  If the processor clock is running at 500 kHz, the instructions will be clocked at 

¼ of this rate: 125 kHz.   Each instruction cycle is then 8 µs. 

Most enhanced mid-range PIC instructions, including ‘nop’, execute in a single instruction cycle.  The 

exceptions are those which jump to another location (such as ‘goto’) or if an instruction is conditionally 

skipped (we’ll see an example of this soon).  So, at the default clock speed, a single ‘nop’ provides an 8 µs 

delay – not very long! 

Another “do nothing” instruction is ‘goto $+1’.  Since ‘$’ stands for the current address, ‘$+1’ is the 

address of the next instruction.  Hence, ‘goto $+1’ jumps to the following instruction – apparently useless 

behaviour.  But all ‘goto’ instructions executes in two instruction cycles.  So ‘goto $+1’ is equivalent to 

two ‘nop’s, but using less program memory. 

 

To flash at 1 Hz, the PIC should light the LED, wait for 0.5 s, turn off the LED, wait for another 0.5 s, and 

then repeat. 

Our code changes the state of the LED once each time around the loop, so we need to add a delay of 0.5 s 

within the loop.  That’s 500,000 µs, or, given a 500 kHz processor clock, 62,500 instruction cycles.  Clearly 

we can’t do that with ‘nop’s or ‘goto’s alone! 

The answer, of course, is to use loops to execute instructions enough times to build up a useful delay.  But 

we can’t just use a ‘goto’, or else it would loop forever and the delay would never finish.  So we have to 

loop some finite number of times, and for that we need to be able to count the number of times through the 

loop (incrementing or decrementing a loop counter variable) and test when the loop is complete. 

And that means that we need to define at least one variable, to hold the look counter. 

 

To define variables, we have to allocate (or reserve) data memory to store them in. 

For example: 

;***** VARIABLE DEFINITIONS 

TEMP_VAR    UDATA 

temp1       RES     1             ;example variable definitions 

temp2       RES     2 

 

The UDATA directive tells the linker that this is the start of a section of uninitialised data.  This is data 

memory space that is simply set aside for use later.  The linker will place it somewhere in general purpose 

RAM.  The label, such as ‘TEMP_VAR’ here, is only needed if there is more than one UDATA section. 

The RES directive is used to reserve a number of memory locations.  Each location in data memory is eight 

bits, or one byte, wide, so in this case, one byte is being reserved for a variable called ‘temp1’ and two bytes 

for ‘temp2’.  Thus, ‘temp1’ is an 8-bit variable and ‘temp2’ is a 16-bit variable.  What type of data, such as 

an unsigned integer between 0 and 255, or a character, is stored in each variable is up to your program.  The 

variable definitions only allocate space for them. 

The address of each variable is assigned when the code is linked (after assembly), and the program can refer 

to the variable by name (i.e. temp1), without having to know what its address in data memory is. 
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Here’s an example of a simple “do nothing” delay loop: 

        movlw   .10 

        movwf   dc1  ; dc1 = 10 = number of loop iterations 

dly1    nop 

        decfsz  dc1,f 

        goto    dly1 

 

The first two instructions write the decimal value “10” to a loop counter variable called ‘dc1’. 

The ‘decfsz’ instruction performs the work of implementing the loop – “decrement file register, skip if 

zero”.  First, it decrements the contents of the specified register, writes the result back to the register (as 

specified by the ‘,f’ destination), then tests whether the result was zero.  If it’s not yet zero, the next 

instruction is executed, which will normally be a ‘goto’ which jumps back to the start of the loop.  But if the 

result of the decrement is zero, the next instruction is skipped; since this is typically a ‘goto’, skipping it 

means exiting the loop. 

The ‘decfsz’ instruction normally executes in a single instruction cycle.  But if the result is zero, and the 

next instruction is skipped, an extra cycle is added, making it a two-cycle instruction. 

There is also an ‘incfsz’ instruction, which is equivalent to ‘decfsz’, except that it increments instead of 

decrementing.  It’s used if you want to count up instead of down.  For a loop with a fixed number of 

iterations, counting down is more intuitive than counting up, so ‘decfsz’ is more commonly used for this. 

 

In the code above, the loop counter, ‘dc1’, starts at 10.  At the end of the first loop, it is decremented to 9, 

which is non-zero, so the ‘goto’ instruction is not skipped, and the loop repeats from the ‘dly1’ label.  This 

process continues – 8,7,6,5,4,3,2 and on the 10
th
 iteration through the loop, dc1 = 1.  This time, dc1 is 

decremented to zero, and the “skip if zero” comes into play.  The ‘goto’ is skipped, and execution continues 

after the loop. 

You can see that the number of loop iterations is equal to the initial value of the loop counter (10 in this 

example).  Call that initial number N.  The loop executes N times. 

To calculate the total time taken by the loop, add the execution time of each instruction in the loop: 

        nop    1 

        decfsz  dc1,f  1 (except when result is zero) 

        goto    dly1  2 
 

That’s a total of 4 cycles, except the last time through the loop, when the decfsz takes an extra cycle and 

the goto is not executed (saving 2 cycles), meaning the last loop iteration is 1 cycle shorter.  And there are 

two instructions before the loop starts, adding 2 cycles. 

Therefore the total delay time = (N × 4  1 + 2) instruction cycles = (N × 4 + 1) × 8 µs
2
. 

If there was no ‘nop’, the delay would be (N × 3 + 1) cycles; if two ‘nop’s, then it would be (N × 5 +1) 

cycles, etc. 

                                                      

2
 assuming a 500 kHz processor clock, for all the time calculations in this section 

Note that to specify a decimal value in MPASM, you prefix it with a ‘.’.  If you don’t include the ‘.’, 

the assembler will use the default radix (hexadecimal), and you won’t be using the number you 

think you are!  Although it’s possible to set the default radix to decimal, you’ll run into problems if 

you rely on a particular default radix and then later copy and paste your code into another project, 

with a different default radix, giving different results.  It’s much safer, and clearer, to simply prefix 

all hexadecimal numbers with ‘0x’ and all decimal numbers with ‘.’. 
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It may seem that, because 255 is the highest 8-bit number, the maximum number of iterations (N) should be 

255.  But not quite.  If the loop counter is initially 0, then the first time through the loop, the ‘decfsz’ 

instruction will decrement it, and if an 8-bit counter is decremented from 0, the result is 255, which is non-

zero, and the loop continues – another 255 times.  Therefore the maximum number of iterations is in fact 

256, with the loop counter initially 0. 

So for the longest possible single loop delay, we can write something like: 

        clrf    dc1             ; loop 256 times 

dly1    nop 

        decfsz  dc1,f 

        goto    dly1 

 

The two “move” instructions have been replaced with a single ‘clrf’, using 1 cycle less, so the total time 

taken is 256 × 4 = 1024 cycles  8 ms. 

That’s still well short of the 0.5 s needed, so we need to wrap (or nest) this loop inside another, using 

separate counters for the inner and outer loops, as shown: 

        movlw   .61             ; loop (outer) 61 times 

        movwf   dc2 

        clrf    dc1             ; loop (inner) 256 times 

dly1    nop                     ; inner loop = 256 x 4 – 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

        decfsz  dc2,f 

        goto    dly1 

 

The loop counter ‘dc2’ is being used to control how many times the inner loop is executed. 

Note that there is no need to clear the inner loop counter (dc1) on each iteration of the outer loop, because 

every time the inner loop completes, dc1 = 0. 

The total time taken for each iteration of the outer loop is 1023 cycles for the inner loop, plus 1 cycle for the 

‘decfsz  dc2,f’ and 2 cycles for the ‘goto’ at the end, except for the final iteration, which, as we’ve 

seen, takes 1 cycle less.  The three setup instructions at the start add 3 cycles, so if the number of outer loop 

iterations is N: 

Total delay time = (N × (1023 + 3)  1 + 3) cycles = (N × 1026 + 2) × 8 µs. 

The maximum delay would be with N = 256, giving 2.101 sec, which is more than we need. 

With N = 60, the delay time = 492.5 ms.  Or if N = 61, the delay time = 500.7 ms.  Either way the delay is 

around 2% out. 

Can we do better if we remove the ‘nop’? 

The delay code would then be: 

        movlw   .81             ; loop (outer) 81 times 

        movwf   dc2 

        clrf    dc1             ; loop (inner) 256 times 

dly1    decfsz  dc1,f           ; inner loop = 256 x 3 – 1 = 767 cycles 

        goto    dly1 

        decfsz  dc2,f 

        goto    dly1 

 

The delay time then = (N × (767 + 3) – 1 + 3) cycles = (N × 770 + 2) × 8 µs. 

With N = 81 the delay time = 499.0 ms. 
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We could try to fine-tune this further, by adding ‘nop’s to the inner loop and adjusting the number of outer 

loop iterations.  For even finer control, you can add ‘nop’s to the outer loop, immediately before the 

‘decfsz  dc2,f’ instruction.  With a bit of fiddling, once you get some nested loops close to the delay you 

need, adding or removing ‘nop’ or ‘goto $+1’ instructions can generally get you quite close to the delay 

you need. 

However, it is pointless to aim for high precision (< 1%) when using the internal RC oscillator.  When using 

a crystal, it makes more sense to count every last cycle accurately, as we’ll see in lesson 7. 

The code above, providing a delay of 499 ms, is within 0.2% of the desired 500 ms, so there is no point 

trying for more accuracy than that in this example. 

 

For longer delays, you can select a slower processor clock speed, and/or add more levels of nesting to your 

delay loops – with enough levels you can count for years! 

 

Of course, before we can use the delay loop counters, dc1 and dc2, we have to allocate data memory for 

them: 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

As they are 8-bit variables (a single 8-bit register each), we reserve one byte of data memory for each. 

Note that, because they will be placed in general purpose RAM, which is banked, it is necessary to use 

banksel before accessing them.  But there is no need to use banksel every time; it must be used the first 

time a group of variables is accessed, but not subsequently – unless another bank has been selected. 

We know that both variables will be in the same bank, since they are declared as part of the same data 

section.  If you select the bank for one variable in a data section, then it will also be the correct bank for 

every other variable in that section, so we only need to use banksel once.  You only need another banksel 

if you access a special function register (potentially changing the bank selection) between variable accesses, 

or if you access a variable in a different data section. 

To avoid the need for banking, you could instead place the variables in common RAM.   As explained in 

lesson 1, not all RAM is banked: “common RAM” is mapped into every bank, meaning that data stored in 

common RAM can be accessed without having to change the bank selection. 

The UDATA_SHR directive is used to declare a section of common RAM, or shared data memory. 

It’s used in the same way as UDATA; the only difference is that memory reserved in a UDATA_SHR section 

won’t be banked. 

Since only 16 bytes of common RAM is available, it should be used sparingly.  However, it can make sense 

to allocate it for variables that are likely to be used often. 

Although we only have a couple of variables in this example, it’s good to get into the habit of using common 

RAM only when you have a compelling reason to.  So we’ll generally continue to use the UDATA directive to 

declare our variables in the more-plentiful banked data memory. 

To summarise: 

 The first time you access a variable declared in a UDATA section, use banksel. 

 To access subsequent variables in the same UDATA section, you don’t need to use banksel. 

(unless you had selected another bank between variable accesses) 

 To access variables in a UDATA_SHR section, there is never any need to use banksel. 

../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
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Finally, we should select the oscillator frequency, as part of the initialisation routine: 

        ; configure oscillator 

        movlw   b'00111010'     ; configure internal oscillator: 

                ; -0111---          500 kHz (IRCF = 0111) 

                ; ------1-          select internal clock (SCS = 1x) 

        banksel OSCCON          ;   -> 8 us / instruction cycle 

        movwf   OSCCON 

 

Although we are use the default 500 kHz clock, it’s good practice to explicitly initialise the oscillator in any 

program, such as this one, which assumes a specific processor frequency – your code will be more likely to 

work (or at least you’ll see more easily what has to be changed) if you later move it to another processor. 

And note the way that this has been commented: the line with ‘-0111---’ makes it clear that only bits 3-6 

are relevant to selecting the internal oscillator frequency, and the line with ‘------1-’ shows that only bit 2 

is needed to select the internal oscillator as the clock source. 

 

Complete program 

Putting together all these pieces, here’s the complete LED flashing program: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 2, example 1                                 * 

;                                                                       * 

;   Flashes an LED at approx 1 Hz.                                      * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RA1 = flashing LED                                              * 

;                                                                       * 

;************************************************************************ 

 

#include "p12F1501.inc" 

 

  errorlevel  -302          ; no warnings about registers not in bank 0 

  errorlevel  -303          ; no warnings about program word too large 

 

 

;***** CONFIGURATION 

            ; ext reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 

            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_ON & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

 

;***** RESET VECTOR ***************************************************** 

RES_VECT  CODE    0x0000        ; processor reset vector 
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;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        banksel LATA            ; start with all output pins low 

        clrf    LATA            ;   (LED off) 

        movlw   b'111101'       ; configure RA1 (only) as an output 

        banksel TRISA 

        movwf   TRISA 

 

        ; configure oscillator 

        movlw   b'00111010'     ; configure internal oscillator: 

                ; -0111---          500 kHz (IRCF = 0111) 

                ; ------1-          select internal clock (SCS = 1x) 

        banksel OSCCON          ;   -> 8 us / instruction cycle 

        movwf   OSCCON 

 

 

;***** Main loop 

main_loop 

        ; toggle LED 

        banksel LATA 

        movlw   b'000010'       ; toggle LATA bit corresponding to RA1 

        xorwf   LATA,f 

 

        ; delay 500 ms 

        banksel dc1             ; outer loop: 81 x (767 + 3) + 3 

        movlw   .81             ;   = 62,373 cycles 

        movwf   dc2             ;   = 499.0 ms @ 8 us/cycle 

        clrf    dc1             ; inner loop: 256 x 3 - 1 

dly1    decfsz  dc1,f           ;   = 767 cycles 

        goto    dly1 

        decfsz  dc2,f 

        goto    dly1 

 

        ; repeat forever 

        goto    main_loop 

 

 

        END      

           

 

If you follow the programming procedure described in lesson 1, you should now see your LED flashing at 

something very close to 1 Hz. 

Conclusion 

It’s taken two lessons and dozens of pages to get here, but we finally have a flashing LED! 

In this lesson, we built on the first, showing how to base a new project on an existing one, modifying it and 

adding whatever additional features the new project needs. 

We saw how to toggle a pin and select the processor clock speed. 

We also saw how to define variables and to use decrement instructions with conditional tests to implement 

loops, and how to use loops to create delays of any length. 

In the next lesson we’ll see how to make our programs more modular, so that useful pieces of code such as 

the 500 ms delay developed here can be easily re-used. 

../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
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Introduction to PIC Programming 

Enhanced Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 3: Introducing Modular Code 

 

 

Lesson 2 introduced delay loops, which we used in flashing an LED. 

Delay loops are an example of useful pieces of code that could be re-used in other applications; you don’t 

want to have to re-invent the wheel (or delay loop!) every time.  Or, in a larger application, you may need to 

use delays in several parts of the program.  It would be wasteful to have to include multiple copies of the 

same code in the one program.  And if you wanted to make a change to your delay code, it would be not only 

more convenient, but less likely to introduce errors, if you only have to change it in one place. 

Code that is made up of pieces that can be easily re-used, either within the same program, or in other 

programs, is called modular.  You’ll save yourself a lot of time if you learn to write re-usable, modular code, 

which is why it’s being covered in such an early lesson, even though these techniques are most useful in 

larger programs. 

In this lesson, we will learn about: 

 Subroutines 

 Paging 

 Relocatable code 

 External modules 

 

We’ll continue to assume that you’re using either the Gooligum Baseline and Mid-Range PIC Training and 

Development Board or Microchip’s Low Pin Count (LPC) Demo Board, with Microchip’s MPLAB X 

integrated development environment – see lesson 1 for details. 

 

Subroutines 

The 500 ms delay routine developed in lesson 2 was placed inline, within the main loop. 

If you wished to re-use it in another part of the program, you would need to repeat the whole routine, wasting 

program memory and making the source code longer than it needs to be. 

You would also have to take care and ensure that you change all of the references to address labels within the 

routine, when copying and pasting code, to avoid your code inadvertently jumping back from the copy to the 

original routine.  And if you wished to change the way the routine was implemented, you would have to find 

and update every instance of it in the program. 

The usual way to use the same routine in a number of locations in a program is to place it into a subroutine. 

 

../2%20-%20Flash%20an%20LED/PIC_Enh_A_2.pdf
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If we implemented the 500 ms delay as a subroutine, the main loop of the “flash an LED” program would 

look something like: 

main_loop 

        ; toggle LED 

        banksel LATA 

        movlw   b'000010'       ; toggle LATA bit corresponding to RA1 

        xorwf   LATA,f 

 

        ; delay 500 ms           

        call    delay500        ; delay 500ms 

 

        ; repeat forever 

        goto    main_loop 

 

 

The ‘call’ instruction – “call subroutine” – is similar to ‘goto’, in that it jumps to another program address.  

But first, it copies (or pushes) the address of the next instruction onto the stack. 

The stack is a set of registers, used to hold the return addresses of subroutines.  When a subroutine is 

finished, the return address is copied (popped) from the stack to the program counter, and program 

execution continues with the instruction following the subroutine call. 

The enhanced mid-range PICs have 16 stack registers, so a maximum of 16 return addresses can be stored.  

This means that you can call a subroutine from within another subroutine, which in turn calls yet another 

subroutine (and so on), but you can’t nest the subroutine calls any deeper than 16 levels.  However, for the 

sort of programs you’ll want to write on an 8-bit PIC, you’ll find this isn’t usually a problem.  If it is, then 

it’s probably time to move up to a 16- or 32-bit device… 

The instruction to return from a subroutine is ‘return’ – “return from subroutine”, which, as the name 

suggests, simply finishes the subroutine by returning to the calling code. 

Here then is our 500 ms delay routine, written as a subroutine: 

delay500                        ; delay 500ms 

        banksel dc1             ; outer loop: 81 x (767 + 3) + 3 

        movlw   .81             ;   = 62,373 cycles 

        movwf   dc2             ;   = 499.0 ms @ 8 us/cycle 

        clrf    dc1             ; inner loop: 256 x 3 - 1 

dly1    decfsz  dc1,f           ;   = 767 cycles 

        goto    dly1 

        decfsz  dc2,f 

        goto    dly1 

 

        return 

 

 

Parameter Passing with W 

A re-usable 500 ms delay routine is all very well, but it’s only useful if you need a delay of 500 ms.  What if 

you want a 200 ms delay – write another routine?  Have multiple delay subroutines, one for each delay 

length?  It’s more useful to have a single routine that can provide a range of delays.  The requested delay 

time would be passed as a parameter to the delay subroutine. 

If you had a number of parameters to pass (for example, a ‘multiply’ subroutine would have to be given the 

two numbers to multiply), you’d need to place the parameters in general purpose RAM, accessed by both the 

calling program and the subroutine.  But if there is only one parameter to pass, it’s often convenient to 

simply place it in W. 
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For example, in the delay routine above, we could simply remove the ‘movlw   .81’ line, and instead pass 

this number (81) as a parameter: 

        movlw   .81             

        call    delay           ; delay 81 x 6.16ms = 500ms 

 

But passing a value of ‘81’ to specify a delay of 500 ms is a little obscure.  It would be better if the delay 

subroutine worked in multiples of an easier-to-use duration than 6.16 ms. 

Ideally, we’d pass the number of milliseconds wanted, directly, i.e. pass a parameter of ‘500’ for a 500 ms 

delay.  But that won’t work.  The enhanced mid-range PICs are 8-bit devices; the largest value you can pass 

in any single register, including W, is 255. 

If the delay routine produces a delay which is some multiple of 10 ms, it could be used for any delay from 10 

ms to 2.55 s, which is quite useful – you’ll find that you commonly want delays in this range. 

To implement a W × 10 ms delay, we need an inner loop which creates a 10 ms (or close enough) delay, and 

an outer loop which counts the specified number of those 10 ms loops. 

For example: 

delay10                         ; delay = 2+Wx(223+1023+4)-1+4 

        banksel dc1             ;   = W x 1250 + 5 cycles 

        movwf   dc2             ;   = W x 10.0 ms @ 8 us/cycle 

dly3    movlw   .74             ; inner loop 1: 2 + 74 x 3 - 1 

        movwf   dc1             ;   = 223 cycles 

dly1    decfsz  dc1,f            

        goto    dly1                          

dly2    nop                     ; inner loop: 256 x 4 - 1 

        decfsz  dc1,f           ;   = 1023 cycles 

        goto    dly2   

        nop 

        decfsz  dc2,f           ; end outer loop 

        goto    dly3 

         

        return 

 

Example 1: Flash an LED (using delay subroutine with parameter passing) 

To illustrate where subroutines and parameter passing are useful, suppose that, instead of the LED being on 

half the time (a 50% duty cycle), we want the LED to flash briefly, for say 200 ms, once per second (a 20% 

duty cycle). 

That would require a delay of 200 ms while the LED is on, 

followed by a delay of 800 ms while it is off. 

 

We’ll demonstrate this with the circuit used in the first two 

lessons, as shown on the right. 

If you have the Gooligum training board, simply plug the 

PIC12F1501 into the top section of the 14-pin IC socket – the 

section marked ‘12F’.  And as before, place a shunt in jumper 

JP12, to enable the LED on RA1. 

If you have the Microchip Low Pin Count Demo board, refer 

back to lesson 1 to see how to build this circuit, either by 

soldering a resistor and to the demo board, or by making 

connections on the demo board’s 14-pin header. 

../1%20-%20Light%20an%20LED/PIC_Enh_A_1.pdf
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The program will be much the same as that in lesson 2, with the processor configuration and initialisation 

sections unchanged. 

Using the ‘delay10’ subroutine presented above, the main loop becomes: 

main_loop 

        ; turn on LED 

        banksel LATA 

        bsf     LATA,RA1        ; RA1 -> high 

         

        ; delay 0.2 s 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        call    delay10     

              

        ; turn off LED 

        banksel LATA 

        bcf     LATA,RA1        ; RA1 -> low 

         

        ; delay 0.8 s 

        movlw   .80             ; delay 80 x 10 ms = 800 ms 

        call    delay10   

           

        ; repeat forever        

        goto    main_loop      

 

 

Complete program 

Here is the complete program to flash an LED at 1 Hz with a 20% duty cycle, illustrating how the above 

pieces fit together. 

You’ll see that the subroutine has been placed into a “SUBROUTINES” section toward the end, and clearly 

documented – if you’re using subroutines in your code, it’s good to be able to easily find them and see what 

they do, in case you’ve forgotten, or if you want to re-use a subroutine in another program: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 3, example 1                                 * 

;                                                                       * 

;   Flashes an LED at approx 1 Hz, with 20% duty cycle                  * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;   Uses W x 10 ms delay subroutine                                     * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RA1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

#include "p12F1501.inc" 

 

  errorlevel  -302          ; no warnings about registers not in bank 0 

  errorlevel  -303          ; no warnings about program word too large 

 

 

;***** CONFIGURATION 

            ; ext reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 
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            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_ON & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

 

;***** RESET VECTOR ***************************************************** 

RES_VECT  CODE    0x0000        ; processor reset vector 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<RA1)       ; configure RA1 (only) as an output 

        banksel TRISA 

        movwf   TRISA 

 

        ; configure oscillator 

        movlw   b'00111010'     ; configure internal oscillator: 

                ; -0111---          500 kHz (IRCF = 0111) 

                ; ------1-          select internal clock (SCS = 1x) 

        banksel OSCCON          ;   -> 8 us / instruction cycle 

        movwf   OSCCON 

  

         

;***** Main loop 

main_loop 

        ; turn on LED 

        banksel LATA 

        bsf     LATA,RA1        ; RA1 -> high 

         

        ; delay 0.2 s 

        movlw   .20             ; delay 20 x 10 ms = 200 ms 

        call    delay10     

              

        ; turn off LED 

        banksel LATA 

        bcf     LATA,RA1        ; RA1 -> low 

         

        ; delay 0.8 s 

        movlw   .80             ; delay 80 x 10 ms = 800 ms 

        call    delay10   

           

        ; repeat forever        

        goto    main_loop 

 

 

;***** SUBROUTINES ****************************************************** 

 

;***** Variable delay: 10 ms to 2.55 s 

; 

;  Delay = W x 10 ms 

; 
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delay10                         ; delay = 2+Wx(223+1023+4)-1+4 

        banksel dc1             ;   = W x 1250 + 5 cycles 

        movwf   dc2             ;   = W x 10.0 ms @ 8 us/cycle 

dly3    movlw   .74             ; inner loop 1: 2 + 74 x 3 - 1 

        movwf   dc1             ;   = 223 cycles 

dly1    decfsz  dc1,f            

        goto    dly1                          

dly2    nop                     ; inner loop: 256 x 4 - 1 

        decfsz  dc1,f           ;   = 1023 cycles 

        goto    dly2   

        nop 

        decfsz  dc2,f           ; end outer loop 

        goto    dly3 

         

        return 

         

 

        END        

 

 

Relocatable Modules 

If you wanted to take a subroutine you had written as part of one program, and re-use it in another, you could 

simply copy and paste the source code into the new program. 

There are a few potential problems with this approach: 

 Address labels, such as ‘dly1’, may already be in use in the new program or in other pieces of code 

that you’re copying. 

 You need to know which variables are needed by the subroutine, and remember to copy their 

definitions to the new program. 

 Variable names have the same problem as address labels – they may already be used in new 

program, in which case you’d need to identify and rename all references to them. 

 The subroutine may need a particular include file; this will need to be identified and included in the 

new program. 

These namespace clashes and other problems can be avoided by keeping the subroutine code in a separate 

source file, where it is assembled into an object file, called an object module. 

The main code is assembled into a separate object file.  These object files – one for the main code, plus one 

for each module, are then linked together to create the final executable code, which is output as a .hex file to 

be programmed into the PIC. This assembly/link (or build) process sounds complicated, but MPLAB takes 

care of the details, as we’ll see later. 

 

To be relocatable, a module must have its own data sections, to keep its variables separate from the rest of 

the program’s variables.  The linker can place these data sections anywhere in data memory – perhaps in a 

different bank from your other variables. 

When you are using more than one data section, which will usually be the case if you are using relocatable 

modules, you must ensure that you set the bank selection bits correctly when accessing variables. 

 

A relocatable module must also have its own code sections, which the linker can place anywhere in memory 

(hence the term ‘relocatable’).  This presents a potential problem, as we’ll see in the next section on paging. 
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Paging 

As we saw in lesson 1, enhanced mid-range PIC instructions are 14 bits wide and consist of an opcode, 

designating the instruction, with the remaining bits specifying the a value, such as a register address. 

The opcode for goto is 101, while that for call is 100.  Each is three bits, leaving eleven bits to specify the 

address to jump to. 

Eleven bits are enough to specify any value from 0 to 2047.  That’s 2048, or 2k, addresses in all. 

This is called a page of program memory. 

 

The program memory on the 12F1501 is 1024 words, which is half a page.  Since the goto instruction can 

directly specify any of these 1024 addresses, it can be used to jump anywhere in the 12F1501’s memory. 

That’s fine for the 12F1501, but it’s a problem for a larger device such as the 16F1824 with 4096 (4k) words 

or 16F1518 with 16k words.  In fact, the enhanced mid-range PIC architecture provides for up to 32k words 

of program memory.  How can a goto or call instruction, which can only directly specify an address 

within a single 2k page, access this larger program memory space? 

 

The solution is to use the PCLATH register to select which page is to be accessed. 

The program counter (PC) holds the full 15-bit address of the next instruction to be executed. 

Whenever a goto or call instruction is executed, the lower 11 bits of the program counter (PC<10:0>) are 

taken from the instruction word, but the upper bits (PC<14:11>) are copied from bits 3 to 6 of the PCLATH 

register
1
. 

If you don’t update PCLATH before you try to goto or call an address in a different page, you will instead 

jump to the corresponding address in the current page – not the location you were trying to access, and your 

program will almost certainly fail. 

 

To make this easy to do, the assembler provides a ‘pagesel’ directive, which instructs the assembler and 

linker to generate code to select the correct page for the given program address
2
. 

 

Page selection is relevant to a discussion of modular code, because the linker may load an object module 

anywhere in memory; that is why these modules, and this programming style, are described as being 

relocatable.  This means that, when calling a subroutine in another module, you will not know if the 

subroutine is in the current page. 

This is also true if you use multiple CODE sections within a single source file; unless you place the code 

sections at a specific address (which is not recommended, since it makes it more difficult for the linker to fit 

the sections into memory pages), you cannot know where each section will be placed in memory. 

Therefore, you should use pagesel whenever jumping to or calling a routine in a different code section or 

module.  And note that, after returning from a call to a module, the page selection bits will still be set for 

whatever page that module is in, not necessarily the current page.  So it is a good idea to place a ‘pagesel 

$’ directive (“select page for current address”) after each call to a subroutine in another module, to ensure 

that the current page is selected after returning from the subroutine. 

                                                      

1
 The lower bits of PCLATH are used when a “computed goto” or “computed function call” operation is performed, as 

we will see in future lessons. 

2
 It is somewhat similar to the banksel directive used to select the appropriate bank before accessing data memory. 
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You do not, however, need to use pagesel before every goto or call, or after every call.  Each CODE 

section is guaranteed to be wholly contained within a single page
3
.  Once you know that you’ve selected the 

correct page, subsequent gotos or calls to the same section will work correctly.  But be careful! 

If in doubt, using pagesel before every goto and call is a safe approach that will always work. 

When assembling code for a device, such as the PIC12F1501, which has only a single page of program 

memory, the pagesel directive will not generate any object code, so there is no penalty for using it on PICs 

where page selection is not an issue.  The assembler will, however, warn you that pagesel isn’t needed on 

these devices.  If you find these messages annoying, you can turn them off with: 

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

If you use pagesel, even on devices with only a single page of program memory, your code will be more 

portable, so it is best to always use it, regardless of which enhanced mid-range PIC you are using. 

Creating a Relocatable Module 

Converting an existing subroutine, such as the ‘delay10’ routine, into a standalone, relocatable module is 

easy.  All you need to do is to declare any symbols (address labels or variables) that need to be accessible 

from other modules, using the GLOBAL directive.  For example: 

#include "p12F1501.inc"     ; any enhanced mid-range device will do 

 

  GLOBAL      delay10 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

 

;***** SUBROUTINES ****************************************************** 

        CODE 

 

;***** Variable delay: 10 ms to 2.55 s 

; 

;  Delay = W x 10 ms 

; 

delay10                         ; delay = 2+Wx(223+1023+4)-1+4 

        banksel dc1             ;   = W x 1250 + 5 cycles 

        movwf   dc2             ;   = W x 10.0 ms @ 8 us/cycle 

dly3    movlw   .74             ; inner loop 1: 2 + 74 x 3 - 1 

        movwf   dc1             ;   = 223 cycles 

dly1    decfsz  dc1,f            

        goto    dly1                          

dly2    nop                     ; inner loop: 256 x 4 - 1 

        decfsz  dc1,f           ;   = 1023 cycles 

        goto    dly2   

        nop 

        decfsz  dc2,f           ; end outer loop 

        goto    dly3 

         

        return 

 

        END 

                                                      

3
 unless you are an advanced PIC developer and create your own linker scripts… 
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This is the subroutine from example 1, with a CODE directive at the beginning of it, and a UDATA directive to 

reserve data memory for the subroutine’s variables. 

Toward the start, a GLOBAL directive has been added, declaring that the ‘delay10’ label is to be made 

available (exported) to other modules, so that they can call this subroutine. 

You should also add a ‘#include’ directive, to define any “standard” symbols used in the code, such as the 

instruction destinations ‘w’ and ‘f’.  This delay routine will work on any enhanced mid-range PIC; it’s not 

specific to any, so you can use the include file for any of the mid-range PICs, such as the 12F1501.  You 

will, however, see warnings about “Processor-header file mismatch” if your device is different to the 

processor that the include file is intended for; you can generally ignore these warnings, but, if in doubt, 

change the ‘#include’ directive in the module to match the processor you are building the code for. 

Of course it’s also important to add a block of comments at the start; they should describe what this module 

is for, how it is used, any effects (including side effects) it has, and any assumptions that have been made.  In 

this case, it is assumed that the processor is clocked at the default 500 kHz, so that assumption should be 

documented in the comment block. 

Calling Relocatable Modules 

Having created an external relocatable module (i.e. one in a separate file), we need to declare, in the main (or 

calling) file any labels we want to use from the external module, so that the linker knows that these labels are 

defined in another module.  That’s done with the EXTERN directive. 

For example: 

    EXTERN      delay10         ; W x 10ms delay 

 

 

After having been declared as external, it is then possible to call a subroutine or access a variable in an 

external module (using pagesel or banksel first!) in the usual way. 

To summarise: 

 The GLOBAL and EXTERN directives work as a pair. 

 GLOBAL is used in the file that defines a module, to export a symbol for use by other modules. 

 EXTERN is used when calling external modules.  It declares that a symbol has been defined 

elsewhere. 

 

Example 2: Flashing an LED (using an external module) 

As we did in lesson 2, we can use the circuit from example 1 above to flash an LED at 1 Hz, with a 50% duty 

cycle – but this time using an external delay module. We’ll then call this external module from the main 

program. 

We’ll setup a project with the following files: 

 delay10-enh.asm   - containing the W × 10 ms delay module, as above 

 EA_L3_2-Flash_LED-50p-mod.asm - the main code (calling the delay routine) 

(or whatever names you choose) 

Creating a multiple-file project, using MPLAB X 

To create the multiple-file project, open an existing project and then copy it with a new name, such as 

“EA_L3_2-Flash_LED-50p-mod”, in the same way as you did when creating new project in lesson 2. 
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Rename the source file to “EA_L3_2-Flash_LED-50p-mod.asm” (for example), in the same way as was 

done in lesson 2 – right-click it in the Projects window and select “Rename…”. 

Next we need to copy this file, creating a new file which will contain our delay module. 

There are a few ways to do this, but the 

easiest is probably to right-click the source 

file in the Projects window and select 

“Copy”. 

Right-click “Source Files” in the project 

tree, and select “Paste”. 

A new .asm file (a copy of the original) 

should appear in the project tree. 

You can now right-click this new file, and 

rename it to “delay10-enh.asm”. 

Your project should look like the one 

shown on the right.  

 

 

 

Another way to do this is to double-click the original source file (the one you want to copy), opening an 

editor window.  If you now activate the editor window, by clicking anywhere in it, you can use the “File → 

Save As…” menu item to save the file as “delay10.asm”.  

The only problem is that this new source file hasn’t appeared in the Projects window; MPLAB X doesn’t yet 

know that the new file is part of the project.  So, we need to add it.  

To add an existing file (or files) such as one that you have copied, or the example source code files provided 

with these tutorials, to a project, you can right-click on “Source Files” in the Projects window, and then 

select “Add Existing Item…”.  You will be presented with the window shown below:  

 As you can see, it gives you the option to specify whether the file has a relative path (appropriate for most 

“user” files) or absolute path (for most “system” files).  If you’re unsure, just select “Auto” and let MPLAB 

decide. 

 

If you want to create a new file from scratch, instead of using an existing one, you can use the “File  New 

File…” menu item, in the same way as we did in lesson 1. 
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However you created them, now that you have a project which includes the two source files, we can consider 

their content… 

We’ve already seen the code for the “delay10” module, presented above, but here it is again with 

comments, as the complete “delay10-enh.asm” file: 

;************************************************************************ 

;   Architecture:   Enhanced Mid-range PIC                              * 

;   Processor:      any                                                 * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: none                                                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Variable Delay : N x 10 ms (10 ms - 2.55 s)         * 

;                                                                       * 

;       N passed as parameter in W reg                                  * 

;       exact delay = W x 10.0 ms + 40 us                               * 

;                                                                       * 

;   Affects: W, STATUS, BSR                                             * 

;   Assumes: 500 kHz clock                                              * 

;                                                                       * 

;************************************************************************ 

 

#include "p12F1501.inc"     ; any enhanced mid-range device will do 

 

  GLOBAL      delay10 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

 

;***** SUBROUTINES ****************************************************** 

        CODE 

 

;***** Variable delay: 10 ms to 2.55 s 

; 

;  Delay = W x 10 ms 

; 

delay10                         ; delay = 2+Wx(223+1023+4)-1+4 

        banksel dc1             ;   = W x 1250 + 5 cycles 

        movwf   dc2             ;   = W x 10.0 ms @ 8 us/cycle 

dly3    movlw   .74             ; inner loop 1: 2 + 74 x 3 - 1 

        movwf   dc1             ;   = 223 cycles 

dly1    decfsz  dc1,f            

        goto    dly1                          

dly2    nop                     ; inner loop: 256 x 4 - 1 

        decfsz  dc1,f           ;   = 1023 cycles 

        goto    dly2   

        nop 

        decfsz  dc2,f           ; end outer loop 

        goto    dly3 

         

        return 

 

        END 
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We now need to modify the main (or calling) file by changing the code to call the extrenal ‘delay10’ 

module, as shown: 

;************************************************************************ 

;                                                                       * 

;   Architecture:  Enhanced Mid-range PIC                               * 

;   Processor:     12F1501                                              * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: delay10-enh.asm     (provides W x 10 ms delay)      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 3, example 2                                 * 

;                                                                       * 

;   Demonstrates how to call external modules                           * 

;                                                                       * 

;   Flashes an LED at approx 1 Hz.                                      * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;   Uses W x 10 ms delay module                                         * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       RA1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

#include "p12F1501.inc" 

     

  errorlevel  -302          ; no warnings about registers not in bank 0 

  errorlevel  -303          ; no warnings about program word too large 

  errorlevel  -312          ; no "page or bank selection not needed" messages 

     

  EXTERN      delay10       ; W x 10ms delay 

 

 

;***** CONFIGURATION 

            ; ext reset, internal oscillator (no clock out), no watchdog,  

            ;   brownout resets on, no power-up timer, no code protect 

            ; no write protection, stack resets on, low brownout voltage, 

            ;   no low-power brownout reset, high-voltage programming 

  __CONFIG _CONFIG1, _MCLRE_ON & _FOSC_INTOSC & _CLKOUTEN_OFF & _WDTE_OFF & 

_BOREN_ON & _PWRTE_OFF & _CP_OFF 

  __CONFIG _CONFIG2, _WRT_OFF & _STVREN_ON & _BORV_LO & _LPBOR_OFF & _LVP_OFF 

 

 

;***** RESET VECTOR ***************************************************** 

RES_VECT  CODE    0x0000        ; processor reset vector 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<RA1)       ; configure RA1 (only) as an output 

        banksel TRISA 

        movwf   TRISA 
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        ; configure oscillator 

        movlw   b'00111010'     ; configure internal oscillator: 

                ; -0111---          500 kHz (IRCF = 0111) 

                ; ------1-          select internal clock (SCS = 1x) 

        banksel OSCCON          ;   -> 8 us / instruction cycle 

        movwf   OSCCON 

 

 

;***** Main loop 

main_loop    

        ; toggle LED 

        banksel LATA 

        movlw   1<<RA1          ; toggle LATA bit corresponding to RA1 

        xorwf   LATA,f       

           

        ; delay 500 ms -> 1 Hz flashing at 50% duty cycle 

        movlw   .50 

        pagesel delay10         ; delay 50 x 10 ms = 500 ms 

        call    delay10 

 

        ; repeat forever 

        pagesel main_loop 

        goto    main_loop            

 

 

        END 

 

 

The inline delay routine has been replaced with a call our external delay module, and the variables used by 

the delay routine removed.  And toward the start of the program, an EXTERN directive has been added, to 

declare that the ‘delay10’ label is a reference to another module. 

We’ve also added pagesel directives to ensure that the code would work correctly if moved to a device 

with more than one page of program memory.  And, because the pagesel directives aren’t actually required 

on a PIC12F1501 (which only has one page of program memory), we’ve added the “errorlevel  -312” 

directive to avoid generating warnings about page selection not being needed. 

Also note that we’ve documented, in the comments block at the start of the source code, the fact that this 

program relies on an external module, what that module does, and what file it is defined in. 

The Build Process (Revisited) 

In a multiple-file project, when you select “Run → Clean and Build” or click 

on the “Clean and Build” toolbar button, the assembler will assemble all the 

source files, producing a new ‘.o’ object file for each.  The linker then 

combines these ‘.o’ files to build a single ‘.hex’ file, containing an image of 

the executable code to be programmed into the PIC. 

If, however, you’ve been developing a multi-file project, and you’ve already built it, and then go back and 

alter just one of the source files, there’s no need to re-assemble all the other source files, if they haven’t 

changed.   

That’s what the “Run → Build” menu item or the “Build” toolbar button 

does, as was discussed briefly in lesson 1.  Like “Clean and Build”, it builds 

your project, but only assembles source files which have a newer date stamp 

than the corresponding object file.  This is what you normally want, to save 

unnecessary assembly time (not that it makes much difference with such a 

small project!). 
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After you build (or make) the project, you’ll see a number of new files in various folders within the project 

directory.  In addition to your ‘.asm’ source files and the ‘.o’ object files and the ‘.hex’ output file we’ve 

already discussed, you’ll find ‘.lst’ files corresponding to each of the source files, and a ‘.map’ file 

corresponding to the project name. 

There is no need to describe these in detail, but they are worth looking at if you are curious about the build 

process.  And they can be valuable to refer to if you when debugging, as they show exactly what the 

assembler and linker are doing. 

The ‘.lst’ list files show the output of the assembler; you can see the opcodes corresponding to each 

instruction.  They also show the value of every label.  But you’ll see that, for the list files belonging to the 

source files (e.g. “delay10-enh.lst”), they contain a large number of question marks.  For example: 

0000                  00049 delay10                         ; delay = 2+Wx(223+1023+4)-1+4 

0000   002?           00050         banksel dc1             ;   = W x 1250 + 5 cycles 

0001   00??           00051         movwf   dc2             ;   = W x 10.0 ms @ 8 us/cycle 

0002   304A           00052 dly3    movlw   .74             ; inner loop 1: 2 + 74 x 3 - 1 

0003   00??           00053         movwf   dc1             ;   = 223 cycles 

0004   0B??           00054 dly1    decfsz  dc1,f            

0005   2???           00055         goto    dly1                          

0006   0000           00056 dly2    nop                     ; inner loop: 256 x 4 - 1 

0007   0B??           00057         decfsz  dc1,f           ;   = 1023 cycles 

0008   2???           00058         goto    dly2   

0009   0000           00059         nop 

000A   0B??           00060         decfsz  dc2,f           ; end outer loop 

000B   2???           00061         goto    dly3 

                      00062          

000C   0008           00063         return 

 

Many of the instruction opcodes are only partially complete.  The question marks can’t be filled in, until the 

locations of all the data and program labels, such as ‘dc1’ and ‘dly1’, are known. 

Assigning locations to the various objects is the linker’s job, and you can see the choices it has made by 

looking at the project’s ‘.map’ map file.  It shows where each section will be placed, and what the final data 

and program addresses are.  For example (reformatted a little here): 

                                                      Section Info 

                                     Section       Type    Address   Location Size(Bytes) 

                                    ---------  ---------  ---------  ---------  --------- 

                                     RES_VECT       code   0x000000    program   0x000018 

                                       .cinit    romdata   0x00000c    program   0x000004 

                                        .code       code   0x00000e    program   0x00001a 

.config_8007_BUILD/DEFAULT/PRODUCTION/EA_L3_2       code   0x008007    program   0x000002 

.config_8008_BUILD/DEFAULT/PRODUCTION/EA_L3_2       code   0x008008    program   0x000002 

                                       .udata      udata   0x000020       data   0x000002 

 

                              Program Memory Usage  

                               Start         End       

                           ---------   ---------       

                            0x000000    0x00001a       

                            0x008007    0x008008       

            29 out of 1031 program addresses used, program memory utilization is 2% 

 

                      Symbols - Sorted by Name 

             Name    Address   Location    Storage File                      

        ---------  ---------  ---------  --------- ---------                 

          delay10   0x00000e    program     extern C:\...\delay10-enh.asm 

             dly1   0x000012    program     static C:\...\delay10-enh.asm 

             dly2   0x000014    program     static C:\...\delay10-enh.asm 

             dly3   0x000010    program     static C:\...\delay10-enh.asm 

        main_loop   0x000006    program     static C:\...\EA_L3_2-Flash_LED-50p-mod.asm 

            start   0x000000    program     static C:\...\EA_L3_2-Flash_LED-50p-mod.asm 

              dc1   0x000020       data     static C:\...\delay10-enh.asm 

              dc2   0x000021       data     static C:\...\delay10-enh.asm 

 

These addresses are used when the linker creates the ‘.hex’ file, containing the final assembled code, with 

fully resolved addresses, that will be loaded into the PIC. 
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Conclusion 

Again, this has been a lot theory – and we’re still only flashing an LED! 

The intent of this lesson was to give you an understanding of enhanced mid-range PIC program memory, 

including its limitations (paging) and how to work around them, to avoid potential problems as your 

programs grow. 

We’ve also seen how to use subroutines and create and call re-usable code modules, which should help you 

to avoid wasting time “reinventing the wheel” for each new project in future.  In fact, we’ll continue to use 

the delay module in later lessons. 

 

In addition to providing an output (such as a blinking LED), real PIC applications usually involve responding 

to the environment, or at least to user input. 

So, in the next lesson we’ll look at reading and responding to switches, such as pushbuttons. 

And since real switches “bounce”, and that can be a problem for microcontroller applications, we’ll look at 

ways to “debounce” them. 
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Introduction to PIC Programming 

Programming Enhanced Mid-Range PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 1: Light an LED 

 

 

This series of tutorial lessons introduces the features of enhanced mid-range PICs, using C. 

Although assembly language is commonly used when programming small microcontrollers, it is less 

appropriate for complex applications on larger MCUs; it can become unwieldy and difficult to maintain as 

programs grow longer.  A number of higher-level languages are used in embedded systems development, 

including BASIC, Forth and even Pascal.  But the most commonly used “high level” language is C. 

C is often considered to be inappropriate for very small MCUs, such as baseline PICs (see the baseline 

assembler and C tutorial series).  However, the enhanced mid-range PIC architecture is much less 

restrictive and is well suited to C programming, as this tutorial series will demonstrate. 

Microchip’s XC8 compiler supports all enhanced mid-range PICs, and can be operated in “Free mode” 

(with most optimisations disabled) for free – making it a good choice for use in these lessons. 

 

This lesson starts by simply making an LED, connected to one of the output pins of a PIC, light up.  This 

apparently straightforward task – not even flashing the LED at first
1
 – relies on: 

 Having a functioning circuit in a workable prototyping environment 

 Being able to use a development environment; to go from text to compiled C code 

 Being able to correctly use a PIC programmer to load the code into the PIC chip 

 Correctly configuring the PIC 

 Writing code that will make the correct pin output a high or low 

If you can get an LED to light up, then you know that you have a development environment that works, 

and enough understanding of your PIC device to get started.  It’s a firm base to build on. 

In summary, this lesson covers: 

 Introduction to the Microchip XC8 compiler 

 Introduction to the enhanced mid-range PIC architecture, using the PIC12F1501 

 Simple control of digital output pins 

 Using MPLAB X and XC8 to create C projects 

 Using a PICkit 3 programmer with MPLAB X 

These tutorials assume a working knowledge of the C language; they do not attempt to teach C. 

                                                      

1
 We’ll get to the traditional first exercise in microcontroller programming of flashing an LED in lesson 2… 

../../Baseline
../../Baseline
../../Baseline%20C
../2%20-%20Flash%20an%20LED/PIC_Enh_C_2.pdf


© Gooligum Electronics 2013  www.gooligum.com.au 

Enhanced Mid-Range PIC C, Lesson 1: Light an LED Page 2 

Getting Started 

For some background on PICs in general and details of the recommended development environment, see 

lesson 0.  Briefly, these tutorials assume that you are using a Microchip PICkit 3 programmer and either 

the Gooligum Baseline and Mid-range PIC Training and Development Board or Microchip’s Low Pin 

Count (LPC) Demo Board, with Microchip’s MPLAB X integrated development environment.  But it is of 

course possible to adapt these instructions to different programmers and/or development boards. 

The four LEDs on the LPC demo board don’t work (directly) with 8-pin PICs, such as the 12F1501.  So to 

complete this lesson, using an LPC demo board, you need to either add an additional LED and resistor to 

the prototyping area on your board, or use some solid core hook-up wire to patch one of the LEDs to the 

appropriate PIC pin, as described later. 

This is one reason the Gooligum training board was developed to accompany these tutorials – if you have 

the Gooligum board, you can simply plug in your 8-pin 12F PIC, and go. 

 

We’re going to start with the simplest enhanced mid-range PIC – the PIC12F1501. 

Of course, “simplest” is a relative term.  The enhanced mid-range architecture is certainly more complex 

than the earlier baseline PIC architecture, introduced in the baseline PIC assembler and C tutorial series.  

Those lessons were able to start with a very simple PIC indeed (the 10F200), which made it possible to 

introduce only a few basic topics at first, without needing to say “ignore this for now; we’ll explain later”.  

More advanced topics were introduced by moving up to more advanced baseline and then eventually mid-

range PICs through the mid-range PIC assembler and C tutorial series – building on what came before.  

This tutorial series doesn’t refer back to those earlier lessons – it’s a fresh start.  Unfortunately that does 

make it harder to ignore some of the complexities of the enhanced mid-range architecture, although we’ll 

keep it as simple as possible to begin with.  If you do want to start learning with simpler PICs, you should 

consider working through the baseline and mid-range tutorial series. 

Luckily for C programmers, much of the complexity of the enhanced mid-range PIC architecture is hidden 

by the C compiler.  When programming in C, we don’t need to be aware of how the PIC’s memory is 

arranged, or what many of the “core registers”, which affect the device’s basic operation, do.  Of course, it 

can be very useful to understand these lower-level details of the PIC’s operation, and if you want to gain 

that more detailed understanding you should refer to the enhanced mid-range assembler tutorial series.  

But these lessons, using C, do not assume that you have completed the corresponding assembler lessons. 

To repeat – the earlier lessons are not a prerequisite for these enhanced mid-range C lessons. 

 

In summary, for this lesson you should ideally have: 

 A PC running Windows 7 or 8, with a spare USB port 

 Microchip’s MPLAB X IDE software and XC8 C compiler 

 A Microchip PICkit 3 PIC programmer 

 The Gooligum mid-range training board 

 A PIC12F1501-I/P microcontroller (supplied with the Gooligum training board) 

 

Introducing the PIC12F1501 

When working with any microcontroller, you should always have on hand the latest version of the 

manufacturer’s data sheet.  You should download the download the current data sheet for the 12F1501 

from www.microchip.com. 

../../PIC_Intro_0.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../Baseline
../../Baseline%20C
../../Midrange
../../Midrange%20C
../../Baseline%20C
../../Midrange%20C
../../Enhanced
http://www.microchip.com/
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The features of various 8-pin PICs are summarised in the following table: 

Program memory is, as you might expect, where your program is stored.  It’s non-volatile – it keeps its 

contents, even when power is removed.  Data memory consists of 8-bit bytes where your program stores 

its data – but it’s volatile; the contents of data memory are lost when the device loses power. 

We’ll look at the various other features mentioned in the table, such as timers, analog inputs, and 

EEPROM memory, in later lessons.  But even without knowing what these things are, you can see that the 

12F1501 has fewer features than other enhanced mid-range PICs, such as the 12F1822 or 12F1840, while 

being roughly comparable to the 12F675 and 12F683 mid-range devices, and significantly more capable 

than the baseline 12F508. 

 

The 12F family are all 8-pin devices, with six pins available for I/O (input and output). 

They share a common pin-out, as shown below. 

VDD is the positive power supply. 

VSS is the “negative” supply, or ground.  All 

of the input and output levels are measured 

relative to VSS.  In most circuits, there is only 

a single ground reference, considered to be at 

0 V (zero volts), and VSS will be connected to 

ground. 

The power supply voltage on the PIC12F1501 

can range from 2.3 V to 5.5 V
2
. 

This wide range means that the PIC’s power 

supply can be very simple.  Depending on the 

circuit, you may need no more than a pair of 

1.5 V batteries. 

Normally you’d place a capacitor, typically 100 nF and ceramic, between VDD and VSS, close to the chip, 

to smooth transient changes to the power supply voltage caused by changing loads (e.g. motors, or 

something as simple as an LED turning on) or noise in the circuit. 

                                                      

2
 A low-power variant, the PIC12LF1501, is also available, where VDD can range from 1.8 V to 3.6 V, with at least 

2.5 V needed for clock rates above 16 MHz in both variants. 

Device 

Memory (words or bytes) Timers Analog 
Clock rate 

(max MHz) 
Program Data EEPROM 8-bit 16-bit 

Comp-

arators 

ADC 

inputs 

12F508 512 25 0 1 0 0 0 4 

12F629 1024 64 128 1 1 1 0 20 

12F675 1024 64 128 1 1 1 4 20 

12F683 2048 128 256 2 1 1 4 20 

12F1501 1024 64 0 2 1 1 4 20 

12F1822 2048 128 256 2 1 1 4 32 

12F1840 4096 256 256 2 1 1 4 32 

1 

2 

3 

4 

8 

7 

6 

5 

P
IC

1
2

F
1
5
0
1
 

VDD VSS 

RA5 

RA4 

RA3/ MCLR   

RA0 

RA1 

RA2 
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The remaining pins, RA0 to RA5, are the I/O pins.  They are used for digital input and output, except for 

RA3, which can only be an input.  The other pins – RA0, RA1, RA2, RA4 and RA5 – can be individually 

set to be inputs or outputs. 

PIC12F1501 Input and Output 

As mentioned above, the 12F1501 has six I/O pins: RA0, RA1, RA2, RA4 and RA5, which can be used 

for digital input and output, plus RA3, which is input-only. 

Taken together, the six I/O pins comprise the general-purpose I/O port, or GPIO port, which is referred to 

as PORTA on the 12F1501. 

 

The PIC’s features, such as its I/O ports, are controlled and accessed via 8-bit registers.  For details of 

how they are arranged, see the enhanced mid-range assembler tutorial series.  But to program PICs in C, 

we only need to know what the registers are named – and of course how to use them, which often means 

knowing what the various bits comprising a register are used for. 

 

The PORTA register provides access to the port pins: 

If a pin in configured as an output, setting the corresponding PORTA bit to ‘1’ outputs a high voltage
3
 on 

the corresponding pin; clearing it to ‘0’ outputs a low voltage
4
. 

Reading the PORTA register reads the voltage present on each pin.  If the voltage on a pin is high
5
, the 

corresponding bit reads as ‘1’; if the input voltage is low
6
, the corresponding bit reads as ‘0’. 

 

The TRISA register controls whether a pin is configured as an input or output: 

To configure a pin as an input, set the corresponding bit in the TRISA register to ‘1’.  To make it an 

output, clear the corresponding TRISA bit to ‘0’. 

Why is it called ‘TRIS’?  Each pin (except RA3) can be configured as one of three states: high-impedance 

input, output high, or output low.  In the input state, the PIC’s output drivers are effectively disconnected 

from the pin.  Another name for an output than can be disconnected is ‘tri-state’ – hence, TRIS. 

Note that bit 3 of TRISA is greyed-out.  Clearing this bit will have no effect, as RA3 is always an input. 

The default state for each pin is ‘input’; TRIS is set to all ‘1’s when the PIC is powered on or reset. 

 

                                                      

3
 a ‘high’ output will be within 0.7 V of the supply voltage (VDD), for small pin currents (< 3.5 mA with VDD = 5 V) 

4
 a ‘low’ output is less than 0.6 V, for small pin currents (< 8 mA with VDD = 5 V) 

5
 the threshold level depends on the power supply, but a ‘high’ input is any voltage above 2.0 V, given a 5 V supply 

6
 a ‘low’ input is anything below 0.8 V, given a 5 V supply – see the data sheet for details of each of these levels 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

PORTA   RA5 RA4 RA3 RA2 RA1 RA0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TRISA   TRISA5 TRISA4  TRISA2 TRISA1 TRISA0 

../../Enhanced
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It’s important to understand that, regardless of whether a pin a configured as an input or an output, 

PORTA reflects the actual voltage present on that pin. 

If you attempt to output a ‘high’ on an output pin by writing a ‘1’ to the corresponding port bit, but the 

external circuit holds that pin low, that pin will read as ‘0’ – not what you might have expected. 

This behaviour can lead to what are known as read-modify-write problems, where instructions which are 

intended to modify only specific pins actually read the entire port, including pins which may not reflect 

the value that had been output to them, and then write the new value (with some bits possibly incorrect) 

back to the port. 

To avoid the potential for read-modify-write problems, the enhanced mid-range architecture makes 

available an “output data latch” register, associated with each port: 

Writing to LATA has the same effect as writing to PORTA: if a pin in configured as an output, setting the 

corresponding LATA bit to ‘1’ outputs a ‘high’ on that pin; clearing it to ‘0’ outputs a ‘low’. 

However – reading LATA returns the value that was last written to LATA.  It does not read the voltages on 

the pins (whether input or output) themselves. 

 

This means that you can avoid read-modify-write problems by following these rules: 

 if you are writing an entire byte to a port, you can write to either PORTA or LATA 

 if you are modifying individual port pins, you should operate on LATA 

 if you are reading digital input pins, you must read PORTA 

To keep it simpler, you won’t run into any problems if you always access LATA to write to or modify 

output pins, and PORTA to read digital input pins. 

This should become clearer later as we work through the examples. 

 

When configured as an output, each I/O pin on the 12F1501 can source or sink (i.e. current into or out of 

the pin) up to 25 mA – enough to directly drive an LED.  

PICs are tough devices, and you may get away with exceeding these limits – but if you ignore the absolute 

maximum ratings specified in the data sheet, you’re on your own.  Maybe your circuit will work, maybe 

not.  Or maybe it will work for a short time, before failing.  It’s better to follow the data sheet… 

Introducing the XC8 Compiler 

XC8 is a descendant of a complier originally created by a company called HI-TECH Software, which has 

since been acquired by Microchip. 

XC8 supports the whole 8-bit PIC10/12/16/18 series in a single edition, with different licence keys 

unlocking different levels of code optimisation – “Free” (free, but very little optimisation), “Standard” and 

“PRO” (most expensive and highest optimisation). 

Microchip XC compilers are also available for the PIC24, dsPIC and PIC32 families. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

LATA   LATA5 LATA4  LATA2 LATA1 LATA0 

Note: the port registers represent the actual voltages present on each digital I/O pin, including 

pins configured as digital outputs 
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XC8’s “Free mode” supports all 8-bit (including baseline, mid-range and enhanced mid-range) PICs, with 

no memory restrictions.  However, in this mode, most compiler optimisation is turned off, making the 

generated code around twice the size of that generated by the “PRO” version.  

Installation 

Before installing XC8, you should install the MPLAB X IDE (if you have not already done so). 

Download the MPLAB X IDE installer for your platform (Windows, Linux or Mac) from the MPLAB X 

download page at www.microchip.com, and then run it. 

There are no installation options (other than being able to choose the installation directory).  It’s an “all or 

nothing” installer, including the MPASM assembler and support for all of Microchip’s PIC MCUs and 

development tools. 

When the installation completes, you are prompted to download and one (or more) of Microchip’s “XC” 

series of C compilers: 

Check the box to indicate that you wish to download an XC compiler, then click ‘Finish’ to finish the 

MPLAB X installation. 

Your browser will now open to the XC compiler download page at www.microchip.com
7
, where you can 

download the XC8 installer for your platform (Windows, Linux or OS X). 

When you run the XC8 installer, after accepting the license agreement, you will be presented with various 

options such as whether you are installing a network license server (no) or if you want to configure a 

network client (no), and settings concerning compatibility with the older C18 compiler (we don’t need 

them), but it’s ok to accept the defaults and click ‘Next’ all the way through the installation. 

At the end of the installation you are given the opportunity to purchase a license, get an evaluation license, 

or enter a license key, but you should just click ‘Next’ to use the compiler in “Free mode”. 

                                                      

7
 if you had already installed MPLAB X, and only want to install XC8 at this time, you will need to go to 

www.microchip.com and find this page yourself… 

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/
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Data Types 

One of the problems with implementing ANSI-standard C on microcontrollers is that there is often a need 

to work with individual bits, while the smallest data-type included in the ANSI standard is ‘char’, which 

is normally considered to be a single byte, or 8 bits.  Another problem is the length of a standard integer 

(‘int’) is not defined, being implementation-dependent.  Whether an ‘int’ is 16 or 32 bits is an issue on 

larger systems, but it makes a much more significant difference to code portability on microcontrollers.  

Similarly, the sizes of ‘float’, ‘double’, and the effect of the modifiers ‘short’ and ‘long’ is not 

defined by the standard. 

So various compilers use different sizes for the “standard” data types, and for microcontroller 

implementations it is common to add a single-bit type as well – generally specific to that compiler. 

Here are the data types and sizes supported by XC8 and, for comparison, the size of the same data types in 

CCS PCB
8
: 

You’ll see that very few of these line up; the only point of 

agreement is that ‘char’ is 8 bits! 

XC8 defines a single ‘bit’ type, unique to XC8. 

The “standard” ‘int’ type is 16 bits in XC8, but 8 bits in 

CCS PCB. 

But by far the greatest difference is in the definition of 

‘short’: in XC8, it is a synonym for ‘int’, with ‘short’, 

‘int’ and ‘short int’ all being 16-bit quantities, whereas 

in CCS PCB, ‘short’ is a single-bit type. 

Finally, note that ‘double’ floating-point variables in XC8 

can be either 24 or 32 bits; this is set by a compiler option.  

32 bits may be a higher level of precision than is needed in 

most applications for small applications, so XC8’s ability to 

work with 24-bit floating point numbers can be useful. 

 

To make it easier to create portable code, XC8 provides the ‘stdint.h’ header file, which defines the 

C99 standard types such as ‘uint8_t’ and ‘int16_t’. 

 

To show how to use MPLAB X and XC8 to develop PIC programs, it’s best to work through an example.   

Example Circuit 

We now have enough background information to design a circuit to light an LED. 

We’ll need a regulated power supply, let’s assume 5 V, connected to VDD and VSS.  And remember that 

we should add a bypass capacitor, preferably a 100 nF (or larger) ceramic, across it. 

We’ll also need an LED of course, and a resistor to limit the current. 

Although the PIC12F1501 can supply up to 25 mA from a single pin, 10 mA is more than enough to 

adequately light most LEDs.  With a 5 V supply and assuming a red or green LED with a forward voltage 

of around 2 V, the voltage drop across the resistor will be around 3 V. 

Applying Ohm’s law, R = V / I = 3 V ÷ 10 mA = 300 Ω.  Since precision isn’t needed here (we only need 

“about” 10 mA), it’s ok to choose the next highest “standard” E12 resistor value, which is 330 Ω.  It 

                                                      

8
 a compiler used in the baseline C  tutorial series 

Type XC8 CCS PCB 

bit 1 - 

char 8 8 

short 16 1 

int 16 8 

short long 24 - 

long 32 16 

float 24 or 32 32 

double 24 or 32 - 

../../Baseline%20C
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means that the LED will draw less than 10 mA, but that’s a good thing, because, if we’re going to use a 

PICkit 3 to power the circuit, we need to limit overall current consumption to 30 mA, because that is the 

maximum current the PICkit 3 can supply. 

Finally, we need to connect the LED to one of the PIC’s pins. 

We can’t choose RA3, because it’s input-only. 

If you’re using the Gooligum training board, you could 

choose any of the other pins, but if you use the Microchip 

LPC Demo Board to implement the circuit, it’s not a good 

idea to use RA0, because it’s connected to a trimpot on the 

LPC demo board, which would divert current from the LED.  

So, we’ll use RA1, giving the circuit shown on the right. 

Simple, isn’t it?   Modern microcontrollers really do have 

minimal requirements. 

Of course, some connections are also needed for the ICSP 

(programmer) signals.  These will be provided by your 

development board, unless you are building the circuit 

yourself.  But the circuit as shown here is all that is needed for 

the PIC to run, and light the LED. 

Gooligum training and development board instructions 

If you have the Gooligum training board, you can use it to implement this circuit.   

Plug the PIC12F1501 into the top section of the 14-pin IC socket – the section marked ‘12F’
9
. 

Connect a shunt across the jumper (JP12) on the LED labelled ‘RA1’, and ensure that every other jumper 

is disconnected.  

Plug your PICkit 3 programmer into the ICSP connector on the training board, with the arrow on the board 

aligned with the arrow on the PICkit, and plug the PICkit into a USB port on your PC. 

The PICkit 3 can supply enough power for this circuit, so there is no need to connect an external power 

supply. 

Microchip Low Pin Count Demo Board instructions 

If you are using Microchip’s LPC Demo Board, you’ll need to take 

some additional steps.  

Although the board provides four LEDs, they cannot be used directly 

with a 12F1501 (or any 8-pin PIC), because those LEDs are connected 

to DIP socket pins which are only used with 14-pin and 20-pin devices. 

However, the circuit can be readily built by adding an LED, a 330 Ω 

resistor and a piece of wire to the LPC Demo Board, as illustrated on 

the right. 

In the pictured board, a green LED is wired to RA1 and a red LED to 

RA2; we’ll use both LEDs in later lessons.  Jumper blocks have been 

added so that these LEDs can be easily disconnected from the PIC, to 

facilitate prototyping other circuits.  These jumpers are wired in series 

with each LED. 

                                                      

9
 Note that, although the PIC12F1501 comes in an 8-pin package, it will not work in the 8-pin ‘10F’ socket.  You 

must install it in the ‘12F’ section of the 14-pin socket. 
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If you prefer not to solder components onto your demo board, you can 

use the LEDs on the board, labelled ‘DS1’ to ‘DS4’, by making 

connections on the 14-pin header on the right of the demo board, as 

shown on the left.  This header makes available all the 12F1501’s 

pins, RA0 – RA5, as well as power (+5 V) and ground.  It also brings 

out the additional pins, labelled ‘RC0’ to ‘RC5’, available on 14-pin 

PIC devices. 

The LEDs are connected to the pins labelled ‘RC0’ to ‘RC3’ on the 

IC socket, via 470 Ω resistors (and jumpers, if you choose to install 

them).  ‘DS1’ connects to pin ‘RC0’, ‘DS2’ to ‘RC1’, and so on. 

So, to connect LED ‘DS2’ to pin RA1, simply connect the pin 

labelled ‘RA1’ to the pin labelled ‘RC1’, which can be done by 

plugging a short piece of solid-core hook-up wire between pins 8 and 

11 on the 14-pin header. 

Similarly, to connect LED ‘DS3’ to pin RA2, simply connect header 

pins 9 and 12. 

 

That’s certainly much easier than soldering, so why bother adding LEDs to the demo board?  The only 

real advantage is that, when using 14-pin and 20-pin PICs later, you may find it useful to have LEDs 

available on RA1 and RA2, while leaving RC0 – RC3 available to use, independently.  In any case, it is 

useful to leave the 14-pin header free for use as an expansion connector, to allow you to build more 

complex circuits, such as those found in the later tutorial lessons. 

 

Creating a New Project in MPLAB X 

When you first run MPLAB X, you will see the “Learn & Discover” tab, on the Start Page. 

To start a new project, you should run the New Project wizard, by clicking on ‘Create New Project’. 

In the first step, you need to specify the project category.  Choose ‘Standalone Project’: 
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Next, select the PIC family and device. 

In our case, we need ‘Mid-Range 8-bit MCUs’ as the family, and ‘PIC12F1501’ as the device: 

The third step allows you to optionally select a debug header. 

This is a device used to facilitate hardware debugging (see explanation in lesson 0), especially for PICs 

(such as the 12F1501) which do not include internal hardware to support debugging.  If you are just 

starting out, you are unlikely to have one of these debug headers, and you don’t need one for these 

tutorials.  So, you should not select a header.  Just click ‘Next’. 

The next step is to select the tool you will use to program your PIC. 

First, you should plug in the programmer (e.g. PICkit 3) you intend to use.  If it is properly connected to 

your PC, with a functioning device driver
10

, it will appear in the list of hardware tools, and you should 

select it, as shown: 

                                                      

10
 There is no need to install a special device driver for the PICkit 3; it works “out of the box”. 

../../PIC_Intro_0.pdf
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In this case, a PICkit 3 is connected to the PC. 

If you have more than one programmer plugged in (including more than one of the same type, such as two 

PICkit 3s), they will all appear in this list, and you should select the specific one you intend to use for this 

project – you may need to check the serial number.  Of course, you probably only have one programmer, 

so your selection will be easy. 

After selecting the hardware tool, you select the compiler you wish to use:  

Select “XC8” (taking care to select the version you wish to use, if you have more than one XC8 complier 

installed) to specify that this is an XC8 project. 
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Finally, you need to specify your project’s location, and give it a name:  

For example, in the environment used to develop these tutorials, all the files related to this lesson, 

including schematics and documentation, are placed in a folder named ‘1 – Basic digital output’, which is 

the “Project Location” shown above. 

 

By default, MPLAB X then creates a separate folder for the PIC source code and other files related to this 

project, in a subfolder that has the same name as the project, with a ‘.X’ on the end.  If you wish, you can 

remove the ‘.X’ extension from the project folder, before you click on ‘Finish’. 

If you select “Use project location as the project folder”, this behaviour changes – the project files are then 

placed in the “Project Location” folder, instead of being in a separate folder.  This isn’t recommended, 

which is why that box is left unchecked above.  But if you prefer not to have a separate folder for the 

MPLAB files, you can select this option. 

 

Note the warning about project name and folder path length.  To avoid possible problems, it’s best to use 

shorter names and paths, when using Windows, although in this case it’s actually ok. 

 

Since this is the only project we’re working on, it doesn’t make much difference whether you select “Set 

as main project”; this is something that is more useful when you are working with multiple projects. 
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After you click “Finish”, your workspace should look something like this: 

The panel in the top left allows you to see and access the various files that comprise your project – we’ll 

add a source code file (which will appear under “Source Files” in the next step. 

The panel in the bottom left shows your project’s configuration and status, such as which device you’re 

using (12F1501), the selected programmer (shown here as “Debug Tool”) and the amount of PIC program 

(“Flash”) and data (“RAM”) memory our program is using – 0% for now, because we haven’t created a 

program yet! 

The largest panel, in the upper right, is where you edit your source code. 

Below it is a panel where you’ll see the status of processes such as compiling your program and 

programming the PIC. 

Note that MPLAB X has many, many features that we won’t be exploring in these tutorials.  These lessons 

are about PIC programming, not using MPLAB X.  So it’s worth taking some time to explore the training 

resources available from the “Learn & Discover” tab shown above. 
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There are a couple of ways to create a new source file and add it to the project. 

You could select the “File → New File…” menu item, press Ctrl+N, or click on the “New File” button in 

the toolbar: 

This will open the New File window: 

Microchip provide a number of templates to base your source file on. 

We’re creating an XC8 complier project, so navigate to “XC8 compiler”, within the “Microchip 

Embedded” category, then select “main.c”, as shown. 
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After you click ‘Next’, you have the option of naming your file: 

The “Folder” field allows you to place your file in a different directory, not necessarily within the project 

folder.  You wouldn’t normally do that, so it’s ok to leave it blank, as shown here. 

Your source file should now appear under ‘Source Files’ in the project tree, and you should be able to see 

the source code in the editor window, as shown:  
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If you don’t see the source code, you may need to click on the tab at the top of the editor pane, or double-

click the source file name in the project tree. 

Now you can finally start working on your code! 

XC8 Source Code 

A large program can consist of a number of source files, each containing various modules or definitions, 

or, in a simple example such as this one, you may have only a single source file. 

Regardless of whether a source file stands on its own or is part of a larger program, it is usual to begin it 

with a block of comments, providing essential information about the source file such as what it’s called, 

the last modification date and current version (and sometimes a history of previous versions, what has 

changed in this version, and who changed it), who wrote it, and a general description of what the program 

or module does. 

It can also be useful to include a “Files required” section.  This is helpful in larger projects, where your 

code may rely on other files or modules; you can list any dependencies here. 

It is also a good idea to include information on what processor this code is written for; useful if you move 

it to a different PIC later.  You should also document what each pin is used for.  It’s common, when 

working on a project, to change the pin assignments – often to simplify the circuit layout.  Clearly 

documenting the pin assignments helps to avoid making mistakes when they are changed! And when 

writing in C, it is a good idea to state which compiler has been used because, as we have seen for data 

types, C code for microcontrollers is not necessarily easily portable. 

 

So we might use something like: 

/************************************************************************ 

*                                                                       * 

*   Filename:      EC_L1_1-Turn_on_LED.c                                * 

*   Date:          13/11/13                                             * 

*   File Version:  0.1                                                  * 

*                                                                       * 

*   Author:        David Meiklejohn                                     * 

*   Company:       Gooligum Electronics                                 * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Architecture:  Enhanced Mid-range PIC                               * 

*   Processor:     12F1501                                              * 

*   Compiler:      MPLAB XC8 v1.21 (Free mode)                          * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Files required: none                                                * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Description:    Lesson 1, example 1                                 * 

*                                                                       * 

*   Turns on LED.  LED remains on until power is removed.               * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       RA1 = indicator LED                                             * 

*                                                                       * 

************************************************************************/ 
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Note that the file version is ‘0.1’.  I don’t call anything ‘version 1.0’ until it works; when I first start 

development I use ‘0.1’.  You can use whatever scheme makes sense to you, as long as you’re consistent. 

You can type these comments into the start of the source code in the editor pane – or, better, copy and 

paste them from the source file provided with this lesson. 

 

Most of the symbols relevant to specific processors, which allow us to access registers such as PORTA, 

are defined in header files.  In XC8 this is done by including a single “catch-all” file: “xc.h”.  This file 

identifies the processor being used, and then includes processor-specific header files as appropriate. 

So our next line, which is already in place in the template file and should be at the start of every XC8 

program, is: 

#include <xc.h> 

 

 

Next, we need to configure the processor. 

The 12F1501 has a number of options that are selected by setting various bits in a pair of “configuration 

words”, sometimes known as “fuses”, which sit outside the normal address space. 

Configuration pragmas (“#pragma config” directives) are used to specify these configuration bits. 

We could look up the configuration bits in the data sheet and type in the appropriate configuration 

pragmas ourselves – and in fact, when you’re creating a new program, based on one that you’ve worked 

on before (as you’ll often do), it’s quite normal to directly edit the #pragma config directives. 

However, MPLAB X includes a generator which can create these directives for us. 

To use it, select the “Window → PIC Memory Views → Configuration Bits” menu item. 

You will see the processor configuration options in the “Configuration Bits” window under the editor 

pane: 

 

As you can see, there are quite a few options, but you only need to change three (shown in red, above): 

FOSC = INTOSC 

WDTE = OFF 

LVP = OFF 

 

When you have made these selections, click on the ‘Generate Source Code to Output’ button. 
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The generated source code will appear in the “Config Bits Source” tab in the “Output” window: 

You can then copy and paste (using the usual select and right-click method) the #pragma directives into 

your source code in the editor window, immediately after the #include <xc.h> directive – which, as 

you can see is also part of this configuration bits output – you don’t need to include it twice! 

 

We’ll examine these in greater detail in later lessons, but briefly the options being set here are: 

 FOSC = INTOSC 

This selects the internal RC oscillator as the clock source. 

Every processor needs a clock – a regular source of cycles, used to trigger processor operations 

such as fetching the next program instruction. 

Most modern PICs, including the 12F1501, include an internal ‘RC’ oscillator, which can be used 

as the simplest possible clock source, since it’s all on the chip!  It’s built from passive components 

– resistors and capacitors – hence the name RC. 

The internal RC oscillator on the 12F1501 runs at approximately 16 MHz and by default this is 

divided down to 500 kHz.  Program instructions are processed at one quarter this speed: 125 kHz, 

or 8 µs per instruction. 

Alternatively, the 12F1501 can use a (possibly more accurate) external clock signal, via the 

CLKIN pin.  This shares its physical pin with RA5, so if you’re using an external clock, you can’t 

use the RA5 pin for I/O. 

To turn on an LED, we don’t need accurate timing, so we’ll use the internal RC oscillator. 

 WDTE = OFF 

Disables the watchdog timer. 

This is a way of automatically restarting a crashed program; if the program is running properly, it 

continually resets the watchdog timer.  If the timer is allowed to expire, the program isn’t doing 

what it should, so the chip is reset and the crashed program restarted – see lesson 5. 

The watchdog timer is very useful in production systems, but a nuisance when prototyping, so 

we’ll leave it disabled. 
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 PWRTE = OFF 

Disables the power-up timer. 

When a power supply is first turned on, it can take a while for the supply voltage to stabilise, 

during which time the PIC’s operation may be unreliable.  If the power-up timer is enabled, the 

PIC is held in reset (it does not begin running the user program) for some time, nominally 64 ms, 

after the supply voltage reaches a minimum level. 

However, since we have enabled the brown-out reset facility, which will prevent the device from 

starting until the supply voltage is high enough, we don’t need to also enable the power-up timer. 

 MCLRE = ON 

Enables external reset, or “master clear” ( MCLR  ) on pin 4. 

If external reset is enabled, pulling this pin low will reset the processor.  Or, if external reset is 

disabled, the pin can be used as an input: RA3.  That’s why, on the circuit diagram, pin 4 is 

labelled “RA3/ MCLR  ”; it can be either an input pin or an external reset, depending on the setting 

of this configuration bit. 

The Gooligum training board includes a pushbutton which will pull pin 4 low when pressed, 

resetting the PIC if external reset is enabled.  The PICkit 3 is also able to pull the reset line low, 

allowing MPLAB to control MCLR  (if enabled) – useful for starting and stopping your program. 

So unless you need to use every pin for I/O, it’s a good idea to enable external reset. 

 CP = OFF 

Turns off code protection.  

When your code is in production and you’re selling PIC-based products, you may not want 

competitors stealing your code.  If you specify “CP = ON” instead, your code will be protected, 

meaning that if someone tries to use a PIC programmer to read it, all they will see are zeros. 

Since we’re not designing anything for sale, we’ll make our lives easier by leaving code 

protection turned off. 

 BOREN = ON 

Enables brown-out resets. 

The PIC’s operation can become unreliable if the supply voltage drops too low, which can happen 

during a brown-out, when the supply voltage sags, but does not fall quickly to zero.  The 12F1501 

has brown-out detect circuitry, which will reset the PIC in a brown-out situation, if brown-out 

resets are enabled. 

Although your power supply is not likely to suffer from brown-outs, it doesn’t hurt to have this 

option enabled – just in case. 

 CLKOUTEN = OFF 

Regardless of whether the internal RC oscillator or an external clock signal is used as the 

processor clock (FOSC) source, the instruction clock (FOSC/4) can optionally be output on the 

CLKOUT pin, to allow other devices to be synchronised with the PIC’s operation.  CLKOUT 

shares its pin with RA4, so if you’re using the clock out facility, you can’t use RA4 for I/O. 

We don’t need to use CLKOUT, so we will leave this feature disabled. 

 WRT = OFF 

Disables flash memory write protection. 

Many newer PIC devices, including the 12F1501, are capable of writing to their flash (program) 

memory.  This is useful in a number of situations, including boot loaders, which allow program 

firmware to be updated easily in the field, or to store data long term (flash memory being non-

volatile). 
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Of course, you don’t want your program to be overwritten by mistake!  To prevent that from 

happening, you may wish to write-protect all or some of the flash memory. 

Nevertheless, it’s safe in this example to leave flash write protection disabled. 

 STVREN = ON 

Enables stack overflow/underflow resets. 

The stack is a special set of registers which are usually used by the C compiler when calling 

functions.  Its use is managed by the C compiler and should not be something that, as a C 

programmer, you usually have to be concerned about. 

A stack overflow or underflow should never happen – but if it does, it means that something has 

gone wrong, and your program probably isn’t working properly.  If this option is enabled, the PIC 

will reset itself if a stack overflow or underflow occurs – hopefully allowing your program to 

recover.  So although, like brown-out resets, this type of event “shouldn’t happen”, it doesn’t hurt 

to leave this feature enabled. 

 BORV = LO 

Selects the low brown-out reset voltage option 

This option selects the voltage level at which the brown-out reset (if enabled) will be tripped. 

 LPBOR = OFF 

Disables low-power brown-out resets. 

The 12F1501 also has a lower-power brown-out reset facility; we can leave it disabled. 

 LVP = OFF 

Disables low-voltage programming. 

Normally, to program the device, a high voltage (around 12 V) must be applied to the VPP pin.  

Low-voltage programming mode avoids the need for this high voltage, but we don’t need it 

because the PICkit 3 can operate in the traditional high-voltage programming mode. 

 

The comments in the generated configuration code are very long, but a little confusing: does “Watchdog 

Timer Enable (WDT disabled)” mean that the watchdog timer is enabled or not? 

So we’ll modify the comments and rearrange the configuration code, grouping related options (note that 

it’s ok to have more than one configuration pragma in each line) to make it more informative: 

/***** CONFIGURATION *****/ 

//  ext reset, internal oscillator (no clock out), no watchdog timer 

#pragma config MCLRE = ON, FOSC = INTOSC, CLKOUTEN = OFF, WDTE = OFF 

//  brownout resets enabled, low brownout voltage, no low-power brownout reset 

#pragma config BOREN = ON, BORV = LO, LPBOR = OFF 

// no power-up timer, no code protect, no write protection 

#pragma config PWRTE = OFF, CP = OFF, WRT = OFF 

//   stack resets on, high-voltage programming 

#pragma config STVREN = ON, LVP = OFF 

 

 

Finally, in the template code, we have: 

void main(void) { 

    return; 

} 

 

As with most C compilers, the entry point for “user” code is a function called ‘main()’. 

In other words, this is where our program starts. 



© Gooligum Electronics 2013  www.gooligum.com.au 

Enhanced Mid-Range PIC C, Lesson 1: Light an LED Page 21 

Declaring main() as “void main(void)”  like this is “correct”, but the use of “void” isn’t strictly 

necessary.  This declaration is saying that the program does not receive or return any values – but that is 

only relevant when the program is being run by an operating system. 

Programs running on small microcontrollers, such as enhanced mid-range PICs, have nowhere to go if 

they “finish” – it’s not like programs running on a PC with an operating system.  If a PIC program is 

allowed to run past its “end”, it will attempt to execute whichever “instructions” happen to be in the 

(uninitialised, non-programmed) remainder of the program memory.  Whatever the “program” is doing at 

that point, it’s not under your control and not behaviour that you want. 

Using a “return” statement at the end of the program, as in the template code, doesn’t help because, again, 

there is no operating system for the program to return control to. 

So, programs running on small microcontrollers, where there is no operating system, are almost always 

designed to never finish running.  Instead, the usual structure is to have some initialisation code which 

runs when the program starts, often some interrupt services routines which will be run when interrupts are 

triggered, and a main loop, which repeats the same processes “forever” – that is, until the power is cut off 

or the device is reset. 

 

How you declare main() is really a question of personal style, but our C programs will normally be 

structured as: 

void main() 

{ 

    // configuration and initialisation code goes here  

             

    for (;;) 

    { 

        // main loop code 

        ; 

    }  

} 

 

This is where we place the code to turn on the LED! 

Turning on the LED 

To turn on the LED on RA1, we need to do two things: 

 Configure RA1 as an output 

 Set RA1 to output a high voltage 

We could leave the other pins configured as inputs, or set them to output a low.  Since, in this circuit, they 

are not connected to anything, it doesn’t really matter.  But for the sake of this exercise, we’ll configure 

them as inputs. 

When an enhanced mid-range PIC is powered on, all pins are configured by default as inputs. 

 

To configure only RA1 as an output, we have to clear bit 1 of the TRISA register, leaving all the other bits 

in TRISA set. 

 

XC8 makes the PIC’s special function registers available as variables defined in the header files. 

Loading the TRISA register with 111101b (clearing bit 1, configuring RA1 as an output) is simply: 

    TRISA = 0b111101;       // configure RA1 (only) as an output 
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Alternatively, to make it clear that we’re clearing bit 1, we can use bitwise operators in a logical 

expression: 

    TRISA = ~(1<<1);        // configure RA1 (only) as an output 

 

Of course, whether that form does seem clearer will depend on how familiar you are with C logical 

expressions! 

 

To make RA1 output a ‘high’, we have to set bit 1 of PORTA to ‘1’, which we could do with: 

    PORTA = 0b000010;       // set RA1 high 

 

 

Although there is no risk of running into read-modify-write problems when updating the port register in a 

single write operation like this, to avoid potential problems in other situations it is better to get into the 

habit of only ever writing to LATA to modify output pins: 

    LATA = 0b000010;        // set RA1 high 

 

Or, if you prefer: 

    LATA = 1<<1;            // set RA1 high 

 

 

Either way, we’re clearing every bit in the LATA register, while setting LATA<1> (or LATA1) bit. 

That’s ok in this example, where we only have a single LED, but normally you’d want to be able to set a 

single bit while leaving the rest of the register unchanged. 

Because this is such a common requirement, XC8 provides a mechanism to allow individual bits, such as 

LATA1, to be accessed through bit-fields defined in the header files. 

For example, the “pic12f1501.h” header file defines a union called LATAbits, containing a structure 

with bit-field members LATA0, LATA1, etc. 

So, to set RA1 to ‘1’, we can write: 

    LATAbits.LATA1 = 1;     // set RA1 high 

 

 

Finally, as explained earlier, if we leave it there, when the program gets to the end of this code, it will 

attempt to execute whatever happens to be in the remainder of the program memory.  We need to get the 

PIC to just sit doing nothing, indefinitely, with the LED still turned on, until it is powered off – which 

means finishing with an endless loop: 

    for (;;) 

    {                       // loop forever 

        ; 

    } 

 

 

Once again, this little program has a structure common to most PIC programs: an initialisation section, 

where the I/O pins and other facilities are configured and initialised, followed by a “main loop”, which 

repeats forever.  Although we’ll add to it in future lessons, we’ll always keep this basic structure of 

initialisation code followed by a main loop. 
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Complete program 

Putting together all the above, and adding a few more comments, here’s the complete C source code for 

turning on an LED, for the PIC12F1501: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 1, example 1                                 * 

*                                                                       * 

*   Turns on LED.  LED remains on until power is removed.               * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       RA1 = indicator LED                                             * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

//  ext reset, internal oscillator (no clock out), no watchdog timer 

#pragma config MCLRE = ON, FOSC = INTOSC, CLKOUTEN = OFF, WDTE = OFF 

//  brownout resets enabled, low brownout voltage, no low-power brownout reset 

#pragma config BOREN = ON, BORV = LO, LPBOR = OFF 

//  no power-up timer, no code protect, no write protection 

#pragma config PWRTE = OFF, CP = OFF, WRT = OFF 

//  stack resets on, high-voltage programming 

#pragma config STVREN = ON, LVP = OFF 

             

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation   

     

    // configure port   

    TRISA = ~(1<<1);        // configure RA1 (only) as an output 

     

    LATAbits.LATA1 = 1;     // set RA1 high 

 

 

    //*** Main loop 

    for (;;) 

    {                       // loop forever 

        ; 

    } 

} 

 

That’s it!  Not a lot of code, really… 

Building the Application and Programming the PIC 

Now that we have the complete XC8 source, we can build the final application code and program it into 

the PIC. 

This is done in two steps: 

 Build the project 

 Use a programmer to load the program code into the PIC 
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The first step, building the project, involves compiling the source files to create object files, and linking 

these object files, to build the executable code.  Normally this is transparent; MPLAB does all of this for 

you in a single operation.  The fact that, behind the scenes, there are multiple steps only becomes 

important when you start working with projects that consist of multiple source files or libraries of pre-

compiled routines. 

A PIC programmer, such as the PICkit 3, is then used to upload the executable code into the PIC.  

Although a separate application is sometimes used for this “programming” process, it’s convenient when 

developing code to do the programming step from within MPLAB, which is what we’ll look at here. 

Building the project 

Before you build your project using MPLAB X, you should first ensure that it is the “main” project.  It 

should be highlighted in bold in the Projects window. 

To set the project you want to work on (and build) as the main project, you should right-click it and select 

“Set as Main Project”.  If you happen to have more than one project in your project window, you can by 

removing any project you are not actively working on (to reduce the chance of confusion) from the 

Projects window, by right-clicking it and selecting “Close”. 

To build the project, right-click it in the Projects window and select “Build”, or select the “Run → Build 

Main Project” menu item, or simply click on the “Build Main Project” button (looks like a hammer) in the 

toolbar:  

This will compile any source files which have changed since the project was last built, and link them. 
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An alternative is “Clean and Build”, which removes any compiled (object) files and then re-compiles all 

files, regardless of whether they have been changed.  This action is available by right-clicking the project 

in the Projects window, or under the “Run” menu, or by clicking on the “Clean and Build Main Project” 

button (looks like a hammer with a brush) in the toolbar. 

 

When you build the project, you’ll see messages in the Output window, showing your source files being 

compiled and linked.  Toward the end, you should see: 

BUILD SUCCESSFUL (total time: 13s) 

(of course, your total time will probably be different…) 

If, instead, you see an error message, you’ll need to check your code and your project configuration. 

Programming the PIC 

The final step is to upload the executable code into the PIC. 

First, ensure that you have connected your PICkit 3 programmer to your Gooligum training board or 

Microchip LPC Demo Board, with the PIC correctly installed in the appropriate IC socket
11

, and that the 

programmer is plugged into your PC.  

If you have been following this lesson, you will have specified the programmer when you created your 

project (in step 4 of the wizard). 

The project dashboard, in the panel in the bottom right of the workspace, shows the currently-selected 

programmer under “Debug Tool”.  If you want to change this tool selection, you can right-click your 

project in the Projects window and select “Properties”, or simply click on the “Project Properties” button 

on the left side of the project dashboard, as shown:  

                                                      

11
 Or, in general, that the PIC you wish to program is connected to whichever programmer or debugger you are using, 

whether it’s in a demo/development/training board, a production board, or a standalone programmer. 
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This will open the project properties window, where you can verify or change your hardware tool 

(programmer) selection:  

After closing the project properties window, you can now program the PIC. 

You can do this by right-clicking your project in the Projects window, and select “Make and Program 

Device”.  This will repeat the project build, which we did earlier, but because nothing has changed (we 

have not edited the code), the “make” command will decide that there is nothing to do, and the complier 

will not run. 

Instead, in the “Build, Load” tab in the Output pane you should see output like: 

BUILD SUCCESSFUL (total time: 10s) 

Loading code from C:/Work/Gooligum/Tutorials/Series 2/Web/Enhanced C/1 - Basic digital output/EC_L1_1-

Turn_on_LED.X/dist/default/production/EC_L1_1-Turn_on_LED.X.production.hex... 

Loading symbols from C:/Work/Gooligum/Tutorials/Series 2/Web/Enhanced C/1 - Basic digital output/EC_L1_1-

Turn_on_LED.X/dist/default/production/EC_L1_1-Turn_on_LED.X.production.elf...Loading completed 

Connecting to programmer... 

Programming target... 

 

A “PICkit 3” tab will also appear in the Output pane, where you can see what the PICkit 3 is doing. 

Your PICkit 3 may need to have new firmware downloaded into it, to allow it to program enhanced mid-

range devices, in which case you will see messages like: 

Downloading Firmware... 

Downloading RS… 

Downloading AP... 

AP download complete 

Programming download... 

Firmware Suite Version.....01.29.33 

Firmware type..............Enhanced Midrange 
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You may also see a voltage caution warning, as shown below: 

 

Since we are using a 5 V device, you can click ‘OK’.  And feel free to click “Do not show this message 

again”, to avoid seeing this caution every time you program your PIC. 

You may now see an error message in the PICkit 3 output tab, stating: 

Target device was not found. You must connect to a target device to use PICkit 3. 

This happens if the PIC is unpowered, so we need to tell the PICkit 3 to supply power. 

Open the project properties window (as on the previous page), select ‘PICkit 3’ in the categories tree, and 

choose ‘Power’ option in the drop-down option categories list:  

Select “Power target circuit from PICkit3”, as shown.  You can leave the voltage set to 5.0 V, and then 

click ‘OK’. 
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If you now perform “Make and Program Device” again, the programming should be successful and you 

should see, in the build output tab, messages ending in: 

Programming completed 

 

Note that this action combines making (or building) the project, with programming the PIC. 

In fact, there is no straightforward way with MPLAB X to simply program the PIC without building your 

project as well. 

This makes sense, because you will almost always want to program your PIC with the latest code.  If you 

make a change in the editor, you want to program that change into the PIC.  With MPLAB X, you can be 

sure that whatever code you see in your editor window is what will be programmed into the PIC. 

But most times, you’ll want to go a step further, and run your program, after uploading it into the PIC, to 

see if it works.  For that reason, MPLAB X makes it very easy to build your code, program it into your 

PIC, and then run it, all in a single operation. 

There are a few ways to do this: 

 Right-click your project in the Projects window, and select “Run”, or 

 Select the “Run → Run Main Project” menu item, or 

 Press ‘F6’, or 

 Click on the “Make and Program Device” button in the toolbar:  

Whichever of these you choose, you should see output messages ending in: 

Running target... 

The LED on RA1 should now light. 

 

Being able to build, program and run in a single step, by simply pressing ‘F6’ or clicking on the “Make 

and Program Device” button is very useful, but what if you don’t want to automatically run your code, 

immediately after programming? 

If you want to avoid running your code, click on the “Hold in Reset” toolbar button ( ) before 

programming.  You can now program your PIC as above. 

Your code won’t run until you click the reset toolbar button again, which now looks like and is now 

tagged as “Release from Reset”. 

 

Summary 

The sections above, on building your project and programming the PIC, have made using MPLAB X seem 

much more complicated than it really is. 

Certainly, there are a lot of options and ways of doing things, but in practice it’s very simple. 

Most of the time, you will be working with a single project, and only one hardware tool, such as a 

programmer or debugger, which you will have selected when you first ran the New Project wizard. 

 

In that case (and most times, it will be), just press ‘F6’ or click on to build, program and run your 

code – all in a single, easy step. 

That’s all there is to it.  Use the New Project wizard to create your project, add a template file to base your 

code on, use the editor to edit your code, and then press ‘F6’.  
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Conclusion 

For such a simple task as lighting an LED, this has been a very long lesson! 

In summary, we: 

 Introduced the enhanced mid-range PIC architecture, using the PIC12F1501 

 Looked at some PIC device configuration options 

 Showed how to configure and use the PIC’s output pins 

 Implemented an example circuit using two development boards: 

o Gooligum training and development board 

o Microchip Low Pin Count Demo Board 

 Introduced the XC8 compiler 

 Showed how to use MPLAB X to: 

o Create a new C project, based on a template 

o Modify that template code 

o Build the program 

o Program the PIC, using a PICkit 3 

o Run the program 

 

That does seem to be a lot of theory, to accomplish so little. 

Nevertheless, after all this, you have a solid base to build on.  You have a working development 

environment.  You can create projects, modify your code, load (program) your code into your PIC, and 

make it run. 

 

Congratulations!  You’ve taken your first step in PIC development! 

That first step is the hardest.  From this point, we build on what’s come before. 

 

In the next lesson, we’ll make the LED flash… 

 

../2%20-%20Flash%20an%20LED/PIC_Enh_C_2.pdf
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Introduction to PIC Programming 

Programming Enhanced Mid-Range PICs in C 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 2: Flash an LED 

 

 

In lesson 1 we introduced Microchip’s XC8 compiler and used it to write a program which lit a single LED 

connected to one of the pins of a PIC12F1501. 

Now we’ll make the LED flash. 

In doing this, we will learn about: 

 Selecting the internal oscillator frequency 

 Using the XC8 delay function and macros 

with examples implemented using XC8
1
 (running in “Free mode”). 

The development environments and microcontrollers used for this lesson are the same as those in lesson 1. 

Again, it is assumed that you are using a Microchip PICkit 3 programmer and either the Gooligum Baseline 

and Mid-range PIC Training and Development Board or Microchip’s Low Pin Count (LPC) Demo Board, 

with XC 8 and Microchip’s MPLAB X integrated development environment.  But it is of course possible to 

adapt these instructions to a different programmers, compilers and/or development boards. 

Example Circuit 

Here’s the circuit from lesson 1 again: 

 

If you have the Gooligum training board, simply plug the 

PIC12F1501 into the top section of the 14-pin IC socket – the 

section marked ‘12F’. 

Connect a shunt across the jumper (JP12) on the LED labelled 

‘RA1’, and ensure that every other jumper is disconnected.  

. 

 

If you are using Microchip’s Low Pin Count Demo Board, refer 

back to lesson 1 to see how to build this circuit, by soldering a 

resistor, LED (and optional isolating jumper) to the demo board, 

or by making connections on the demo board’s 14-pin header. 

                                                      

1
 Available as a free download from www.microchip.com. 

../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
http://www.microchip.com/


© Gooligum Electronics 2013  www.gooligum.com.au 

Enhanced Mid-Range PIC C, Lesson 2: Flash an LED Page 2 

Creating a new project in MPLAB X 

It is a good idea, where practical, to base a new software project on work you’ve done before.  In this case, it 

makes sense to build on the program from lesson 1 – we just have to add extra statements to flash the LED. 

To create a new project in MPLAB X, based on an existing project, you first need to go into MPLAB X and 

open your existing project. 

If you were recently working on the project you want to copy (such as the project from lesson 1), it is 

probably already visible in the Projects window.  If it’s not, it may appear under the “File  Open Recent 

Project” menu list.  Or you can use the “File  Open Project” menu item, or click on the “Open Project…” 

toolbar button and browse to your project folder, select it, and click ‘Open Project’: 

You should now right-click the project name (‘EC_L1_1-Turn_on_LED’ in this example) in the Projects 

window, and select “Copy…”. 

The “Copy Project” dialog then gives you a chance to give your copied project a new name, such as 

‘EA_L2_1-Flash_LED’.  You can also specify (and create, if you wish) a new folder for the project location, 

by browsing to it: 

When you are satisfied with your new project name and location, click ‘Copy’. 

Your new project should now appear in the Projects window. 

You can close your old project by right-clicking it and selecting “Close”, so that only your new project is 

visible. 

../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
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If you expand your new project, you’ll see that source file from the old project has been copied into the new 

project, with its original name: 

To rename the source file, to something more appropriate for this project, right-click it and select 

“Rename…”: 

Type in the new name, such as ‘EC_L2_1-Flash_LED’ and then click ‘OK’. 

Note that there is no need to type the ‘.ASM’ suffix – the Rename dialog will keep the existing file 

extension. 

 

You now have a new project, with a new name in a new location, with a renamed source file, copied from 

your old project. 
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If you double-click your new source file, you’ll see a copy of your code from lesson 1 in an editor window: 

Flashing the LED 

You can now use the editor to update your code from lesson 1. 

We’ll need to add some code to make the LED flash, but first the comments should be updated to reflect the 

new project.  For example: 

/************************************************************************ 

*                                                                       * 

*   Filename:      EC_L2_1-Flash_LED.c                                  * 

*   Date:          20/11/13                                             * 

*   File Version:  1.0                                                  * 

*                                                                       * 

*   Author:        David Meiklejohn                                     * 

*   Company:       Gooligum Electronics                                 * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Architecture:  Enhanced Mid-range PIC                               * 

*   Processor:     12F1501                                              * 

*   Compiler:      MPLAB XC8 v1.21 (Free mode)                          * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Files required: none                                                * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Description:    Lesson 2, example 1                                 * 

*                                                                       * 

*   Flashes an LED at approx 1 Hz.                                      * 

*   LED continues to flash until power is removed.                      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       RA1 = flashing LED                                              * 

*                                                                       * 

************************************************************************/ 

../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
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We’re using the same PIC device as before, and it will be configured the same way, so we can leave the 

configuration pragmas unchanged. 

And, as always in an XC8 program, we must begin by including the universal “xc.h” header file. 

So we still have, unchanged from lesson 1: 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

//  ext reset, internal oscillator (no clock out), no watchdog timer 

#pragma config MCLRE = ON, FOSC = INTOSC, CLKOUTEN = OFF, WDTE = OFF 

//  brownout resets enabled, low brownout voltage, no low-power brownout reset 

#pragma config BOREN = ON, BORV = LO, LPBOR = OFF 

//  no power-up timer, no code protect, no write protection 

#pragma config PWRTE = OFF, CP = OFF, WRT = OFF 

//  stack resets on, high-voltage programming 

#pragma config STVREN = ON, LVP = OFF 

 

 

Again, we need to set up the PIC so that only RA1 is configured as an output, so we can leave the 

initialisation code from lesson 1 intact: 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

 

    // configure port 

    TRISA = ~(1<<1);        // configure RA1 (only) as an output 

 

 

In lesson 1, we made RA1 high, and left it that way.  To make it flash, we need to set it high, then low, and 

then repeat. 

You may think that you could achieve this with something like: 

    for (;;) 

    {                        

        LATAbits.LATA1 = 1;     // make RA1 high 

        LATAbits.LATA1 = 0;     // make RA1 low         

    }                           // repeat forever 

 

 

If you try this code, you’ll find that the LED appears to remain on continuously. 

In fact, it’s flashing too fast for the eye to see – enhanced mid-range PICs are nowhere near the fastest 

microcontrollers available, but they are certainly fast enough to flash an LED thousands of times a second. 

 

To slow it down enough to make the flashing visible, we have to add a delay. 

XC8 provides a built-in function, ‘_delay(n)’, which creates a delay ‘n’ instruction clock cycles long.  The 

maximum possible delay depends on which PIC you are using, but it is a little over 50,000,000 cycles. 

As mentioned in lesson 1, the PIC has been configured to use its internal RC oscillator, which by default 

provides a 500 kHz processor clock.  An instruction clock cycle corresponds to four processor clock cycles.  

So, with the default 500 kHz processor clock, corresponding to a 125 kHz instruction clock, that’s a 

maximum delay of a little over 400 seconds. 

../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
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The compiler also provides two macros: ‘__delay_us()’ and ‘__delay_ms()’, which use the 

‘_delay(n)’ function to create delays specified in µs and ms respectively.  To do so, they reference the 

symbol “_XTAL_FREQ”, which you must define as the processor oscillator frequency, in Hertz. 

So if our PIC is running at 500 kHz, we have: 

#define _XTAL_FREQ  500000      // oscillator frequency for _delay() 

 

Then, to generate a 500 ms delay, we can write: 

        __delay_ms(500);        // stay on for 500 ms 

 

 

We’ve mentioned a couple of times that the default processor clock speed is 500 kHz. 

However, the PIC12F1501’s internal RC oscillators can be configured, via the OSCCON register, to provide 

a range of processor clock frequencies: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OSCCON – IRCF3 IRCF2 IRCF1 IRCF0 – SCS1 SCS0 

 

 

The IRCF bits are used to select the internal 

oscillator frequency, as follows: 

The 12F1501 actually has two internal RC 

oscillators: an uncalibrated low frequency 

oscillator, ‘LFINTOSC’, running at 

approximately 31 kHz, and a high frequency 

oscillator, ‘HFINTOSC’, which is factory-

calibrated to run at 16 MHz. 

This 16 MHz oscillator is used as the clock 

source in the remaining “HF” modes, divided 

by a postscaler to generate frequencies down 

as low as 31.25 kHz, as shown in the table on 

the left
2
. 

The internal clock source (LFINTOSC or 

HFINTOSC, as above) is selected whenever 

the SCS1 bit is set, regardless of the 

processor configuration words. 

Otherwise, if SCS<1:0> = 00, the clock 

source is selected by the oscillator selection 

bits in the configuration words. 

 

The processor clock frequency isn’t really important in this example – any of these (even 31 kHz) is fast 

enough to flash an LED. 

But it’s important to be aware of what frequency the processor is running at, so that you can correctly define 

the “_XTAL_FREQ” symbol.  If you don’t get this right, your delays will be longer or shorter than expected! 

                                                      

2
 Not all possible IRCF values are shown here; those omitted duplicate some of the available processor frequencies. 

IRCF<3:0> Oscillator Frequency 

000x LF 31 kHz (approx) 

001x HF 31.25 kHz 

0100 HF 62.5 kHz 

0101 HF 125 kHz 

0110 HF 250 kHz 

0111 HF 500 kHz (default) 

1011 HF 1 MHz 

1100 HF 2 MHz 

1101 HF 4 MHz  

1110 HF 8 MHz 

1111 HF 16 MHz 
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And although we are using the default 500 kHz clock, it’s good practice to explicitly initialise the oscillator 

in any program, such as this one, which assumes a specific processor frequency – your code will be more 

likely to work (or at least you’ll see more easily what has to be changed) if you later move it to another 

processor. 

So we should include in our initialisation routine: 

    // configure oscillator 

    OSCCONbits.SCS1 = 1;        // select internal clock  

    OSCCONbits.IRCF = 0b0111;   // internal oscillator = 500 kHz 

 

Note again the use of bitfields (defined in the “pic12f1501.h” header file) to update individual bits such as 

SCS1 or fields such as IRCF within a special function register such as OSCCON. 

 

To make the LED flash at 1 Hz, with a duty cycle of 50% (500 ms on, then 500 ms off, and repeat), we could 

use as our main loop: 

    for (;;) 

    {                        

        LATAbits.LATA1 = 1;     // turn on LED on RA1 

 

        __delay_ms(500);        // stay on for 500 ms 

 

        LATAbits.LATA1 = 0;     // turn off LED on RA1 

 

        __delay_ms(500);        // stay off for 500 ms 

         

    }                           // repeat forever 

 

 

That will work, but it’s possible to optimise this a little. 

Instead of repeatedly setting and clearing LATA1, we could toggle it, with: 

LATAbits.LATA1 = ~LATAbits.LATA1; 

 

or: 

LATAbits.LATA1 = !LATAbits.LATA1; 

 

This works because single-bit bit-fields, such as LATA1, hold either a ‘0’ or ‘1’, representing ‘false’ or ‘true’ 

respectively, and so can be used with the logical negation operator ‘!’ – although the bitwise complement 

operator (‘~’), used in the first version, is considered more appropriate when working with bits like this. 

 

Note that in this example there is no need to set RA1 to an initial state; whether it’s high or low to start with, 

it will be successively flipped.  But usually you will want to ensure that the output pins are in a known state 

before the main loop begins. 

For example, if we wanted to begin with the LED off, we would clear the bit in LATA corresponding to 

RA1.  We don’t have any other output pins, but it doesn’t hurt to clear the whole of LATA, in case the LED 

is moved to another pin or other LEDs added later. 

In that case you would include in your initialisation code something like: 

    LATA = 0;                   // start with all output pins low (LED off) 
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It’s usually best to initialise the output pins before they are configured as outputs, so that they do not, even 

for an instant, output an incorrect level when the program starts running. 

So our port initialisation code becomes: 

    // configure port 

    LATA = 0;                   // start with all output pins low (LED off) 

    TRISA = ~(1<<1);            // configure RA1 (only) as an output 

 

 

Complete program 

Putting together all these pieces, here’s the complete LED flashing program: 

/************************************************************************ 

*                                                                       * 

*   Description:    Lesson 2, example 1                                 * 

*                                                                       * 

*   Flashes an LED at approx 1 Hz.                                      * 

*   LED continues to flash until power is removed.                      * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       RA1 = flashing LED                                              * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

 

 

/***** CONFIGURATION *****/ 

//  ext reset, internal oscillator (no clock out), no watchdog timer 

#pragma config MCLRE = ON, FOSC = INTOSC, CLKOUTEN = OFF, WDTE = OFF 

//  brownout resets enabled, low brownout voltage, no low-power brownout reset 

#pragma config BOREN = ON, BORV = LO, LPBOR = OFF 

//  no power-up timer, no code protect, no write protection 

#pragma config PWRTE = OFF, CP = OFF, WRT = OFF 

//  stack resets on, high-voltage programming 

#pragma config STVREN = ON, LVP = OFF 

 

#define _XTAL_FREQ  500000      // oscillator frequency for _delay() 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

 

    // configure port 

    LATA = 0;                   // start with all output pins low (LED off) 

    TRISA = ~(1<<1);            // configure RA1 (only) as an output 

 

    // configure oscillator 

    OSCCONbits.SCS1 = 1;        // select internal clock 

    OSCCONbits.IRCF = 0b0111;   // internal oscillator = 500 kHz 

 

 

    //*** Main loop 

    for (;;) 

    { 
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        // toggle LED on RA1 

        LATAbits.LATA1 = ~LATAbits.LATA1; 

 

        // delay 500 ms 

        __delay_ms(500); 

 

    }   // repeat forever 

}    

           

 

If you follow the programming procedure described in lesson 1, you should now see your LED flashing at 

something very close to 1 Hz. 

 

Conclusion 

It’s taken two lessons and dozens of pages to get here, but we finally have a flashing LED! 

In this lesson, we built on the first, showing how to base a new project on an existing one, modifying it and 

adding whatever additional features the new project needs. 

We saw how to toggle a pin and select the processor clock speed. 

We also saw how to use the delay macros provided by XC8. 

 

In addition to providing an output (such as a blinking LED), PIC applications usually have to respond 

sensors and/or user input. 

In the next lesson we’ll see how to read and respond to switches, such as pushbuttons. 

And since real switches “bounce”, which can be a problem for microcontroller applications, we’ll look at 

ways to “debounce” them, in software. 

 

../1%20-%20Light%20an%20LED/PIC_Enh_C_1.pdf
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Introductory 8-bit PIC Example Projects 

Using C and Assembly Language  

 

by David Meiklejohn, Gooligum Electronics 

 

Project 1: Traffic Lights 

 

 

This series of example projects for 8-bit PICs builds on the Gooligum baseline and mid-range PIC 

assembly language and C tutorials, showing how real devices are developed, to further illustrate concepts 

introduced in the tutorials.  As such, these example projects assume some familiarity with the material 

covered in the baseline and mid-range PIC tutorials, which will be referenced when appropriate. 

The hardware for each project can be ordered in kit form (full or PCB-only) from the Gooligum kit pages. 

To get the most out of these examples, you should consider purchasing the Gooligum Baseline and Mid-

range PIC Training and Development Board, which includes all the lessons on CD.  Alternatively, the 

tutorials can be ordered separately. 

We’ll assume that you have access to (and know how to use) a PIC development environment, as 

described in tutorial lesson 0. 

Although assembly language is used in some of these example projects, including this one, every project is 

also implemented in C, using Microchip’s XC8 compiler
1
 (running in “Free mode”).  Some of the projects 

are only implemented in C, reflecting the fact that C is more widely used in embedded devices than 

assembly language – even in projects as simple as these ones. 

Toy Traffic Lights 

Traffic lights are fairly simple devices: a green light is on for some time, followed by an amber (yellow) 

light for a short time, and then a red light for what always feels like an eternity – and then the sequence 

continually repeats. 

Of course real traffic lights are more complicated.  Their controllers have some “smarts”: the timing of the 

green/amber/red cycle depends on the time of day, and perhaps on whether a sensor has detected cars or a 

pedestrian has pressed the “cross” request button.  They are often synchronised with other lights and may 

be centrally controlled by a traffic management authority.  And they can be set to flash amber. 

Toy traffic lights don’t need to be so complicated.  But even for a single, standalone set of lights, as we’ll 

build in this project, could do with a little control.  Sometimes you might want the lights to cycle 

automatically, just like real traffic lights.  But other times you might want to be able to control them 

manually, perhaps pressing a button to advance the sequence from green to amber to red and so on.  And 

that means that we’d also need to be able to select between automatic and manual operation. 

Our toy traffic lights should be battery powered.  We don’t want the batteries to run flat, so we have to be 

able to power the lights on and off.  Children (and adults…) often forget to turn their toys off, so ideally 

the traffic lights would also be able to power down automatically, if they haven’t been used for some time.  

And that means that we need a way to power the lights back on, after they had shut themselves down. 

                                                      

1
 Available as a free download from www.microchip.com. 

http://www.gooligum.com.au/
http://www.gooligum.com.au/tut_baseline.html
http://www.gooligum.com.au/tut_midrange.html
http://www.gooligum.com.au/tut_midrange.html
http://www.gooligum.com.au/tut_baseline_C.html
http://www.gooligum.com.au/tutorials.html
http://www.gooligum.com.au/kits.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/tutorials/PIC_Intro_0.pdf
http://www.microchip.com/
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We know that PICs can enter a power-saving sleep mode (see e.g. baseline assembler lesson 7) and that 

they can be set to wake from sleep when an input changes.  We can use sleep mode to implement the 

“power down automatically” requirement and wake-up on change for “power the lights back on”.  And if 

we’re doing that, there’s no need for a separate power switch: if we need to have a button for “power on”, 

then we may as well use the same button for “power off”. 

We’ve now identified an initial set of requirements: 

 3 × light outputs: green, yellow (amber) and red 

 1 × automatic/manual “mode-select” switch 

 1 × “change” pushbutton switch, to advance the lights in manual mode 

 battery-powered 

 low-power standby mode, with automatic timeout 

 1 × on/off pushbutton switch 

 

We’ll still need to fill in some details, such as how long each light is on for in automatic mode, and how 

long the “power-off” timeout is. 

 

Step 1: Simple automation only 

When working on a project, even one as simple as this, it’s often best to proceed step by step – don’t try to 

design the whole thing at once, start by getting the core functions working, and be prepared to revise the 

design as you go. 

We’ll start very simply, with just a set of three lights (green, yellow and red) that light automatically in 

turn, with no “smarts”. 

 

We only need three outputs, and (at this stage) no inputs. 

The smallest PIC that meets this requirement (indeed, the smallest PIC of all) is the 10F200, introduced in 

baseline assembler lesson 1. 

It has only three I/O pins, one input-only pin, 256 

words of program memory, 16 bytes of data 

memory, no analog input capability, no advanced 

peripherals and only a single 8-bit timer (Timer0).  

But, for simply turning on three lights in sequence, 

even such a simple device is surely capable enough. 

 

If we use ordinary LEDs as the lights, we can drive 

them directly from the PIC’s output pins, as shown 

in the diagram on the right. 

Other than current-limiting resistors, a power 

supply and decoupling capacitor, that’s all we need. 

Given standard intensity green, yellow and red 

LEDS, a 5 V power supply and 330 Ω resistors, the 

current through each LED will be around 10 mA, 

which is more than enough to light them brightly. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_7.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
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If you have the Gooligum baseline training board, you can use it to implement this circuit.   

Plug the PIC10F200 into the 8-pin IC socket marked ‘10F’.
2
 

Connect shunts across jumpers JP11, JP12 and JP13 to connect the green LED to GP0, the yellow LED to 

GP1, and the red LED to GP2.  Ensure that every other jumper is disconnected.  

A PICkit 2 or PICkit 3 programmer can supply enough power for this circuit; there is no need to connect 

an external power supply. 

 

The program is very simple – we can express it in pseudo-code as: 

Initialisation: 

 configure LED pins as outputs 

 start with all LEDs off 

 

Main loop: 

do forever 

 // light each LED in sequence 

 turn on green 

 delay for green “on” time 

 turn off green 

 

 turn on yellow 

 delay for yellow “on” time 

 turn off yellow 

 

 turn on red 

 delay for red “on” time 

 turn off red 

end 

 

 

Whether you program in C or assembly language, your code will be more maintainable if you give the 

pins symbolic names, defined toward the start of your program (or in a header file), such as “G_LED” 

instead of “GP0”.  If you later change the connections – as we will as we develop this project – it is much 

easier to make the corresponding changes to your program code if you don’t have to find and update every 

statement or instruction where that pin is referenced. 

Similarly, you can make your code more maintainable by defining symbolic names for constants, such as 

“G_TIME” to represent the number of seconds that the green light should be turned on. 

So, using symbolic definitions, our pseudo-code program becomes: 

Definitions: 

 G_LED = GP0  // LEDs 

 Y_LED = GP1 

 R_LED = GP2 

 

 G_TIME = 12  // time (in seconds) each colour is turned on for 

 Y_TIME = 3 

 R_TIME = 10 

 

Initialisation: 

 configure LED pins as outputs 

 start with all LEDs off 

 

                                                      

2
 Ensure that no device is installed in the 12F/16F socket – you can only use one PIC at a time in the training board. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
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Main loop: 

do forever 

 // light each LED in sequence 

 G_LED = on   // green 

 delay G_TIME secs 

 G_LED = off 

 

 Y_LED = on   // yellow 

 delay Y_TIME secs 

 Y_LED = off 

 

 R_LED = on   // red 

 delay R_TIME secs 

 R_LED = off 

end 

 

XC8 implementation 

This program is little more than flashing LEDs, which we saw how to do in C, using the XC8 compiler, in 

baseline C lesson 1. 

 

First, as we do for all XC8 programs, we include the ‘xc.h’ file which defines a number of macros and 

the symbols specific to our selected PIC device: 

#include <xc.h> 

 

We then configure the processor: 

/***** CONFIGURATION *****/ 

// ext reset, no code protect, no watchdog 

#pragma config MCLRE = ON, CP = OFF, WDTE = OFF 

 

Note that we’ve selected external reset, with the MCLR  input enabled, even though no connection to the 

MCLR  (GP3) pin is shown in the circuit diagram above.  That’s because the MCLR  line is connected to 

your PIC programmer, allowing the programmer to reset the PIC.  In a real design (which we’ll get to…), 

you’d never leave any inputs floating – certainly not MCLR  if external reset was enabled. 

 

We’ll be using the __delay_ms() delay macro, for which we need to define the oscillator frequency, 

which in this case is 4 MHz (the only possible frequency for a PIC10F200): 

// oscillator frequency for __delay_ms() 

#define _XTAL_FREQ  4000000      

 

 

Completing the preliminaries, we can define the symbolic pin names and constants: 

// Pin assignments 

#define G_LED   GPIObits.GP0        // LEDs 

#define Y_LED   GPIObits.GP1 

#define R_LED   GPIObits.GP2 

 

 

/***** CONSTANTS *****/ 

#define G_TIME  12              // time (seconds) each colour is turned on for 

#define Y_TIME   3 

#define R_TIME  10 

 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_1.pdf
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The main program, as always, begins with the main() function: 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

 

We can then start program execution with an initialisation routine, to appropriately configure the PIC’s 

I/O ports and peripherals: 

    //*** Initialisation 

     

    // configure ports 

    GPIO = 0b0000;          // start with all LEDs off 

    TRIS = 0b1000;          // configure LED pins (GP0-2) as outputs 

 

    // configure timer 

    OPTION = 0b11011111;            // configure Timer0: 

             //--0-----                 timer mode (T0CS = 0) 

             //                         -> GP2 usable as an output 

 

Why configure the timer here?  We’re not actually going to use it, but as was explained in baseline 

assembler lesson 5, the GP2 pin is not usable as an output by default, because at power-on it is configured 

as the Timer0 counter input.  To make it possible to use GP2 as an output, we need to select timer mode.  

This is a common “gotcha” for beginners… 

 

Most PIC programs consist of initialisation code (often encapsulated in separate functions), some interrupt 

service routines (not available in baseline PICs such as the 10F200, but see mid-range assembler lesson 6 

for an explanation) and an endlessly-repeating “main loop”, which may in turn call various functions. 

So we next, and finally, have: 

    //*** Main loop 

    for (;;) 

    { 

        // light each LED in sequence 

        G_LED = 1;                  // turn on green LED 

        __delay_ms(G_TIME*1000);    //  for green "on" time 

        G_LED = 0; 

         

        Y_LED = 1;                  // turn on yellow LED 

        __delay_ms(Y_TIME*1000);    //  for yellow "on" time 

        Y_LED = 0; 

         

        R_LED = 1;                  // turn on red LED 

        __delay_ms(R_TIME*1000);    //  for red "on" time 

        R_LED = 0; 

         

    }                               // repeat forever 

} 

 

Note that, because the __delay_ms() macro generates a delay in milliseconds, we need to multiply our 

delay times, such as G_LED, which we’ve specified in seconds, by 1000 to give the delay in milliseconds. 

If we were going to have a lot of these, it might make sense to create a “DelayS()” macro which 

generates a delay in seconds, but it’s not really worth doing that here. 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
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MPASM implementation 

To implement this program in assembly language, using the MPASM assembler, we’ll draw on material 

from baseline assembler lessons 1, 2, 3, 5 and 6. 

 

First, as in every MPASM program, we use the list directive to specify the processor type, and then 

include the appropriate header file to define processor-specific symbols: 

    list        p=10F200 

    #include    <p10F200.inc> 

 

Baseline assembler lesson 3 introduced the banksel and pagesel directives, used to overcome memory 

addressing limitations in the baseline PIC architecture in a portable, maintainable way.  They’re not 

actually applicable to the PIC10F200, which doesn’t have multiple memory banks or pages.  It’s a good 

habit to use these directives anyway, to make it easy to move your code to a bigger device later, but the 

assembler will complain that they are not needed.  We can stop it issuing those warnings with: 

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

 

We would be good to use the “DelayMS” macro developed in baseline assembler lesson 6, which calls the 

“delay10” subroutine developed in baseline assembler lesson 3.  Unfortunately, unlike the XC8 

equivalent, that macro can only generate delays up to 2.5 seconds – we’d need to call it multiple times. 

An alternative is to create a new “delay1s” subroutine, to give a delay in seconds, based on “delay10”, 

but with an extra loop: 

;************************************************************************ 

;                                                                       * 

;   Description:    Variable Delay : N x 1 seconds (1 - 255 secs)       * 

;                                                                       * 

;       N passed as parameter in W reg                                  * 

;       exact delay = W x 1.0015 sec                                    * 

;                                                                       * 

;   Returns: W = 0                                                      * 

;   Assumes: 4 MHz clock                                                * 

;                                                                       * 

;************************************************************************ 

 

    #include    <p10F200.inc>   ; any baseline device will do 

 

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

    GLOBAL      delay1s_R 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

dc3     res 1 

dc4     res 1 

 

 

;***** SUBROUTINES ****************************************************** 

        CODE 

 

;***** Variable delay: 1 to 255 seconds 

; 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_6.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_6.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
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;  Delay = W x 1 sec 

; 

delay1s_R 

        banksel dc4             ; delay = ?+1+Wx(2+1001499+3)-1+4 = W x 1.0015 

sec 

        movwf   dc4  

dly3    movlw   .100            ; repeat middle loop 100 times 

        movwf   dc3             ; -> 100x(3+10009+3)-1 = 1001499 cycles 

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

        decfsz  dc4,f           ; end 1 sec count loop 

        goto    dly3 

 

        retlw   0 

 

 

        END 

 

This code is then placed in a separate file, such as “delay1s.asm”, so that the subroutine can be called 

from our main program as an external module.  To make this possible, the GLOBAL directive has been used 

to make the subroutine’s label, “delay1s_R”, externally accessible. 

 

We can then encapsulate this subroutine within a macro, to make it easier to use: 

;***** DelayS 

; Delay in seconds 

; 

; Calls: 'delay1s' subroutine, providing a W x 1 sec delay 

; 

DelayS  MACRO   secs                ; delay time in secs 

    IF secs>.255 

        ERROR "Maximum delay time is 255 secs" 

    ENDIF 

        movlw   secs               

        pagesel delay1s 

        call    delay1s 

        pagesel $ 

        ENDM 

 

If this macro is placed within an include file, such as “stdmacros-base.inc”, it can be made available 

to your program by “including” it toward the start of your main source file. 

 

So, getting back to our main program, since we want to be able use our new “DelayS” macro, we add: 

    #include    <stdmacros-base.inc>    ; DelayS - delay in seconds 

                                        ;   (calls delay1s) 

    EXTERN      delay1s_R               ; W x 1 sec delay 

 

The EXTERN directive is necessary, to allow our “DelayS” macro to call the “delay1s_R” subroutine, 

which is sitting in an external module. 
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Since, by default, the assembler interprets numeric constants as hexadecimal, which is a little counter-

intuitive, you can make your life easier by changing the default radix to decimal, which is done with: 

    radix       dec 

 

 

We can then configure the processor: 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDTE_OFF 

 

As in the C example above, note that we’ve selected external reset, with the MCLR  input enabled, even 

though no connection to the MCLR  (GP3) pin is shown in the circuit diagram.  What’s not shown is that, 

on a development board, the MCLR  line is connected to your PIC programmer, allowing the programmer 

to reset the PIC.  It wouldn’t be left floating like this in a real, final design. 

 

Next we can define the symbolic pin names and constants: 

; pin assignments 

    #define G_LED       GPIO,0      ; LEDs 

    #define Y_LED       GPIO,1     

    #define R_LED       GPIO,2       

 

 

;***** CONSTANTS 

    constant G_TIME = 12            ; time (seconds) each colour is on for 

    constant Y_TIME = 3             

    constant R_TIME = 10 

 

 

Before the main program commences, we update the internal RC oscillator calibration value to the factory 

setting, as usual: 

;***** RC CALIBRATION 

RCCAL   CODE    0x0FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 

 

And then, to get around the baseline architecture’s subroutine addressing limitation (see baseline 

assembler lesson 3), we have a subroutine jump table: 

;***** Subroutine vectors 

delay1s                         ; delay W x 1 sec 

        pagesel delay1s_R 

        goto    delay1s_R        

 

Strictly speaking, this precaution (using a jump table to call subroutines) is not necessary on the 

PIC10F200, which only has 256 words of program memory.  But it may become necessary if we later 

move this code to a larger device, so we may as well include this now, to make any future migration 

easier. 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf


© Gooligum Electronics 2013  www.gooligum.com.au 

Introductory 8-bit PIC Project 1: Traffic Lights  Page 9 

The main part of the program starts with the initialisation routine, which configures the PIC’s I/O ports 

and peripherals: 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start 

        ; configure port 

        clrf    GPIO                ; start with all LEDs off 

        movlw   b'1000'             ; configure LED pins (GP0-2) as outputs 

        tris    GPIO 

        ; configure timer 

        movlw   b'11011111'         ; configure Timer0: 

                ; --0-----              timer mode (T0CS = 0) 

        option                      ;   -> GP2 usable as an output 

 

Again, as we did in the C example, Timer0 is configured to use timer mode, making it possible to use the 

GP2 pin as an output, as explained in baseline assembler lesson 5. 

 

With the PIC configured, we come finally to the main loop: 

;***** Main loop 

main_loop 

        ; light each LED in sequence 

        bsf     G_LED               ; turn on green LED 

        DelayS  G_TIME              ;   for green "on" time 

        bcf     G_LED 

         

        bsf     Y_LED               ; turn on yellow LED 

        DelayS  Y_TIME              ;   for yellow "on" time 

        bcf     Y_LED     

          

        bsf     R_LED               ; turn on red LED 

        DelayS  R_TIME              ;   for red "on" time 

        bcf     R_LED   

 

        ; repeat forever 

        goto    main_loop    

 

 

        END 

 

Our “DelayS” macro (and the “delay1s” subroutine which it calls) makes this main loop as short and 

simple as the C version was – turn on each LED, delay a certain number of seconds, turn off the LED, 

then do the same for each LED in sequence and continually repeat. 

 

Step 2: Simple automation with sleep mode 

The previous design was as simple as possible – just sequence the three lights.  Now that that’s working, 

we can start adding more features. 

The first is the ability to turn the traffic lights on and off, by pressing a pushbutton. 

As mentioned earlier, the “off” state won’t really be fully off – it will be a “standby” state, using the PIC’s 

low-power sleep mode, in which the PIC typically draws less than 1 µA.  If the LEDs are turned off and 

there is negligible leakage in the rest of the circuit, the overall current consumption will also be less than 1 

µA – low enough for our traffic lights to remain in standby mode for their batteries’ entire shelf life. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
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We can connect the pushbutton to the 

GP3 pin, as shown on the right. 

The 1 kΩ resistor isn’t absolutely 

required, but as explained in baseline 

assembler lesson 4, it’s good practice to 

include an isolation resistor like this on 

inputs, especially on the GP3 pin when an 

in-circuit serial programming (ICSP) 

programmer, such as a PICkit 2 or PICkit 

3, could be connected – this pin is also 

used for MCLR  and the high programming 

voltage, and the isolation resistor helps to 

protect both the programmer and the PIC. 

Note that there is no external pull-up 

resistor.  Instead, we’ll use the PIC’s 

internal “weak pull-up” facility, as 

described in baseline assembler lesson 4. 

If you are using the Gooligum baseline training board, you can leave it set up as for the previous circuit; it 

has a pushbutton switch already connected to GP3.  There is no need to close any additional jumpers.   

 

We’ll need to disable external resets, to make it possible to use GP3 as an input. 

The baseline PIC architecture does not support interrupts (see mid-range assembler lesson 6), so to detect 

pushbutton presses we’ll need to poll GP3 within the main loop. 

The need to poll GP3 is a problem (this would be easier if we had interrupts...). 

Suppose we poll the button just once within of the main loop, for example (in pseudo-code): 

do forever 

 // light each LED in sequence 

 turn on green 

 delay for green “on” time 

 turn off green 

 

 turn on yellow 

 delay for yellow “on” time 

 turn off yellow 

 

 turn on red 

 delay for red “on” time 

 turn off red 

 

 // check for button press 

 if button is pressed 

  enter standby mode 

end 

 

The user may have to press the button for a long time (up to 25 seconds, assuming the delay values 

specified earlier) before the traffic lights detect the button press and respond by entering standby mode. 

Even if we insert this “check for button press” code after every delay, the user may still have to press the 

button for 10 seconds or more (the green light delay is 12 seconds) before it is detected.  That’s terrible 

user interface design.  We expect a device to respond to a button press in less than a second.  In fact, we 

should aim for a response time of less than one tenth of a second – which would mean polling the 

pushbutton input at least ten times per second. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_4.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_4.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_4.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
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We can’t do that if we have long, multiple-second delays, during which we don’t detect or respond to 

inputs.  So we’ll need to rethink our approach.  One option would be to switch to a similar low-end mid-

range PIC, such as the 10F320, to be able to use interrupts.  But there’s no real need – we can do this 

easily enough using the baseline architecture. 

To generate a long delay, we can use a sequence of short delays, polling the pushbutton between each. 

Instead of repeating this “polling delay” code multiple times, we can restructure the main loop (using 

pseudo-code) as follows: 

do forever 

// light each LED in sequence, while checking for button press 

for seconds = 0 to end_cycle_time 

  // light appropriate LED, depending on elapsed time 

  if seconds = start_green_time  

   turn off all 

   turn on green 

 

  if seconds = start_yellow_time  

   turn off all  

   turn on yellow 

 

  if seconds = start_red_time  

   turn off all  

   turn on red 

 

  // delay 1 second while polling pushbutton 

  repeat 1000/N times   

   delay N ms    

   // check for button press 

   if button pressed 

    enter standby mode 

 end 

end 

 

This code uses a seconds counter to keep track of what happens when in the traffic light cycle.  When the 

counter reaches various predetermined values, the appropriate LED is turned on (all other LEDs are turned 

off).  At the end of the cycle (when the red light finishes) the loop is restarted. 

Note that the “polling delay” loop has been specified in a way that is independent of the inner delay 

length, which is specified only as “N ms”.  If the inner delay is only 10 ms, N = 10 and the outer loop 

executes 1000/10 = 100 times. 

The timing of this “1 second” polling loop won’t be exact, because it doesn’t take the polling overhead 

into account.  As the inner delay becomes shorter, the polling overhead becomes comparatively greater.  

As the inner delay is made longer, the polling interval increases, making the pushbutton less responsive.  

A reasonable compromise is a 50 ms delay. 

 

Adding symbolic definitions, our pseudo-code program becomes: 

Definitions: 

 LEDS   = GPIO // all LEDs 

 G_LED  = GP0 // individual LEDs 

 Y_LED  = GP1 

 R_LED  = GP2 

 BUTTON = GP3 // pushbutton 

 

 G_TIME = 12  // time (in seconds) each colour is turned on for 

 Y_TIME = 3 

 R_TIME = 10 
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 G_START = 0  // seconds into cycle to turn on each LED 

 Y_START = G_TIME 

 R_START = Y_START + Y_TIME 

 

 R_END   = R_START + R_TIME // total cycle length 

 

 POLL_MS = 50   // polling interval (in ms) 

 

 

Initialisation: 

 // configure hardware 

 configure LED pins as outputs 

 start with all LEDs off 

 enable internal pull-ups 

 enable wake-up on change 

 

 // ensure that pushbutton is not pressed 

 wait for BUTTON = released 

 debounce BUTTON 

 

 

Main loop: 

do forever 

// light each LED in sequence 

for sec_cnt = 0 to R_END-1 

  // light appropriate LED, depending on elapsed time 

  if sec_cnt = G_START  

   LEDS = off   

   G_LED = on  // green 

 

  if sec_cnt = Y_START  

   LEDS = off  

   G_YED = on   // yellow 

 

  if sec_cnt = R_START  

   LEDS = off  

   R_LED = on  // red 

 

  // delay 1 second while polling pushbutton 

  repeat 1000/POLL_MS times   

   delay POLL_MS ms    

   // check for button press 

   if BUTTON = pressed 

    debounce BUTTON 

    enter standby mode 

 end 

end 

 

 

Note that we’ve added a section to the initialisation routine to ensure that the pushbutton is not pressed 

when the main loop begins.  As explained in baseline assembler lesson 7, this is necessary in case the 

pushbutton had been pressed to wake the device from sleep; if it’s still pressed when we get to the test at 

the end of the mail loop, it will be seen as a “new” button press and the device will go into standby mode.  

Similarly, it is important to debounce the pushbutton press before entering standby mode, to ensure that 

switch bounce doesn’t count as a “change” and wake the device from sleep. 

Note also that the seconds count finishes at “R_END–1”, i.e. one less than the total cycle time (when the 

red light finishes) in seconds.  That’s because the count starts at zero, not one, so the total number of 

iterations through the for loop will be equal to the cycle time. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_7.pdf
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XC8 implementation 

To implement this step’s additional features in C, we’ll draw on the explanations of reading switches and 

using the internal pull-ups in baseline C lesson 2, the timer-based switch debounce method from baseline 

C lesson 3, and the material on sleep mode and wake-up on change from baseline C lesson 4. 

 

First, we include not only ‘xc.h’ as usual, but also ‘stdint.h’ to define the standard ‘uint8_t’ type 

(see baseline C lesson 1) that we’ll be using for the variables, as well as the ‘stdmacros-XC8.h’ file, 

which defines various useful macros that we’ve developed for XC8 : 

#include <xc.h> 

#include <stdint.h> 

 

#include "stdmacros-XC8.h"  // DbnceHi() - debounce switch, wait for high 

                            // Requires: TMR0 at 256 us/tick 

 

Note that ‘xc.h’ and ‘stdint.h’ are enclosed in ‘<>’, because they are standard header files provided by 

the compiler and located in the complier’s ‘include’ directory, while ‘stdmacros-XC8.h’ is enclosed 

in ‘""’, because it’s a file that we’ve created, located locally, in our project directory. 

The ‘stdmacros-XC8.h’ file contains the ‘DbnceHi()’ macro developed in baseline C lesson 3: 

#define DEBOUNCE 10*1000/256    // switch debounce count = 10 ms/(256us/tick) 

 

// DbnceHi() 

// 

// Debounce switch on given input pin 

// Waits for switch input to be high continuously for DEBOUNCE*256/1000 ms 

// 

// Uses: TMR0       Assumes: TMR0 running at 256 us/tick 

// 

#define DbnceHi(PIN) TMR0 = 0;                /* reset timer              */ \ 

                     while (TMR0 < DEBOUNCE)  /* wait until debounce time */ \ 

                         if (PIN == 0)        /*   if input low,          */ \ 

                             TMR0 = 0         /*     restart wait         */ 

 

 

The processor is configured similarly to before, except that we need to disable the external reset function, 

to allow GP3 to be used as an input: 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog 

#pragma config MCLRE = OFF, CP = OFF, WDTE = OFF 

  

 

In addition to the LED symbols we used in the first step, we’ll define symbols to represent include the 

pushbutton: 

#define BUTTON  GPIObits.GP3        // Pushbutton (active low) 

 

and also a symbol to represent all of the LEDs, so that we can turn them all off in a single operation
3
: 

#define LEDS    GPIO                // all LEDs 

 

 

                                                      

3
 This is only possible because all of the LEDs are on a single I/O port; we wouldn’t be able to do it this way if the 

LEDs were connected to multiple ports on a larger PIC. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_3.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_3.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_4.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_1.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_3.pdf
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We need to add constants to represent the start time for each LED, as well as the overall cycle time: 

#define G_START 0                   // seconds into cycle to turn on each LED 

#define Y_START G_TIME 

#define R_START Y_START + Y_TIME 

 

#define R_END   R_START + R_TIME    // total cycle length 

 

We’ll also define the polling interval as a constant: 

#define POLL_MS 50                  // polling interval (in ms) 

 

 

At the start of the main() function, we declare the local variables that we will be using: 

void main() 

{ 

    uint8_t sec_cnt;            // seconds counter 

    uint8_t p_cnt;              // polling loop counter 

 

 

The initialisation code is similar to before, except that we also need to specify OPTION register bits to 

configure Timer0, weak pull-ups and wake-up on change: 

    // configure wake-on-change and timer 

    OPTION = 0b00000111;        // configure wake-up on change and Timer0: 

             //0-------             enable wake-up on change (/GPWU = 0) 

             //-0------             enable weak pull-ups (/GPPU = 0) 

             //--0-----             timer mode (T0CS = 0) 

             //----0---             prescaler assigned to Timer0 (PSA = 0) 

             //-----111             prescale = 256 (PS = 111) 

             //                     -> increment every 256 us 

             //                        GP2 usable as an output 

 

 

As discussed earlier, we ensure that the pushbutton is released (and no longer bouncing) before entering 

the main loop, in case the device has been woken from sleep by a pushbutton press: 

    // wait for stable button release 

    // (in case it is still bouncing following wake-up on change) 

    DbnceHi(BUTTON); 

 

 

The main loop is then a fairly straightforward translation into C of the pseudo-code version, above: 

    //*** Main loop 

    for (;;) 

    { 

        // light each LED in sequence 

        for (sec_cnt = 0; sec_cnt < R_END; sec_cnt++) 

        { 

            // light appropriate LED, depending on elapsed time 

            if (sec_cnt == G_START) 

            { 

                LEDS = 0;               // turn off all LEDs 

                G_LED = 1;              // turn on green LED 

            } 

            if (sec_cnt == Y_START) 

            { 

                LEDS = 0;               // turn off all LEDs   
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                Y_LED = 1;              // turn on yellow LED 

            } 

            if (sec_cnt == R_START) 

            { 

                LEDS = 0;               // turn off all LEDs   

                R_LED = 1;              // turn on red LED 

            } 

 

            // delay 1 second while polling pushbutton 

            // (repeat 1000/POLL_MS times) 

            for (p_cnt = 0; p_cnt < 1000/POLL_MS; p_cnt++)   

            { 

                __delay_ms(POLL_MS);    // polling interval 

             

                // check for button press 

                if (!BUTTON) 

                { 

                    // go into standby (low power) mode 

                    LEDS = 0;           // turn off all LEDs 

                    DbnceHi(BUTTON);    // wait for stable button release 

                    SLEEP();            // enter sleep mode 

                } 

            } 

        }         

    }                               // repeat forever 

} 

 

Again, as mentioned, the pushbutton is debounced before entering sleep mode, to ensure that switch 

bounce doesn’t immediately wake the device. 

 

MPASM implementation 

To implement this step in assembly language, we’ll draw on the explanations of reading switches and 

using the internal pull-ups in baseline assembler lesson 4, the timer-based switch debounce method from 

baseline assembler lesson 5, and sleep mode and wake-up on change from baseline assembler lesson 7. 

As before, we’ll include the ‘stdmacros-base.inc’ file which contains the definitions of the macros 

we wish to use, such as the ‘DbnceHi’ switch debounce macro developed in baseline assembler lesson 6: 

;***** DbnceHi 

; Debounce switch on given input port,pin 

; Waits for switch to be 'high' continuously for 10 ms 

; 

; Uses: TMR0  Assumes: TMR0 running at 256 us/tick 

; 

DbnceHi MACRO   port,pin 

    local       start,wait,DEBOUNCE 

    variable    DEBOUNCE=.10*.1000/.256 ; switch debounce count = 

                                        ;   10ms/(256us/tick) 

 

        pagesel $             ; select current page for gotos 

start   clrf    TMR0          ; button down so reset timer (counts "up" time) 

wait    btfss   port,pin      ; wait for switch to go high (=1) 

        goto    start  

        movf    TMR0,w        ; has switch has been up continuously for 

        xorlw   DEBOUNCE      ; debounce time? 

        btfss   STATUS,Z      ; if not, keep checking that it is still up 

        goto    wait 

        ENDM 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_4.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_7.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_6.pdf
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It also contains the definition of the ‘DelayMS’ macro developed in baseline assembler lesson 6, which in 

turn calls the ‘delay10’ subroutine developed in baseline assembler lesson 3.  They are very similar to 

the ‘DelayS’ macro and ‘delay1s’ subroutine we used in the first step, so there is no need to list them 

here.   Again, the delay code is placed in a separate “delay10.asm” file, linked with our main program, 

and made accessible via GLOBAL and EXTERN directives. 

 

So, the start of our main program becomes: 

    list        p=10F200 

    #include    <p10F200.inc>  

 

    errorlevel  -312    ; no "page or bank selection " messages 

 

    #include    <stdmacros-base.inc>  ; DbnceHi - debounce sw, wait for high 

                                      ; (requires TMR0 running at 256 us/tick) 

                                      ; DelayMS - delay in milliseconds 

                                      ; (calls delay10) 

    EXTERN      delay10_R             ; W x 10ms delay 

     

    radix       dec 

 

 

Since we need to disable external resets, allowing GP3 to be used as an input, the processor configuration 

becomes: 

;***** CONFIGURATION 

                ; int reset, no code protect, no watchdog 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _WDTE_OFF 

 

 

As we did in the C version, we’ll define additional symbols to represent the pushbutton: 

    #define BUTTON      GPIO,3      ; Pushbutton (active low)  

 

and also a symbol to represent all of the LEDs, so that we can turn them all off in a single operation: 

    #define LEDS        GPIO        ; all LEDs 

 

 

And again we will add constants to represent the start time for each LED, as well as the overall cycle time: 

    constant G_START = 0            ; seconds into cycle to turn on each LED 

    constant Y_START = G_TIME 

    constant R_START = Y_START + Y_TIME 

 

    constant R_END = R_START + R_TIME   ; total cycle length 

 

and define the polling interval as a constant: 

    constant POLL_MS = 50               ; polling interval (in ms) 

 

 

We also need to define the variables that we will be using: 

;***** VARIABLE DEFINITIONS 

VARS UDATA 

sec_cnt res 1                   ; seconds counter 

p_cnt   res 1                   ; polling loop counter 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_6.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
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The initialisation code is similar to that in the first step, except that we also need to specify OPTION 

register bits to configure Timer0, weak pull-ups and wake-up on change: 

        ; configure wake-on-change, pull-ups and timer 

        movlw   b'00000111'     ; configure wake-up on change and Timer0: 

                ; 0-------          enable wake-up on change (/GPWU = 0) 

                ; -0------          enable weak pull-ups (/GPPU = 0) 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111) 

        option                  ;   -> increment every 256 us 

                                ;      GP2 usable as an output 

 

And again, we have to ensure that the pushbutton is released (and no longer bouncing) before starting the 

main loop: 

        ; wait for stable button release 

        ; (in case it is still bouncing following wake-up on change) 

        DbnceHi BUTTON  

 

The main loop is a translation of the ‘for’ loop from the pseudo-code version, where we initialise the 

seconds counter and then for each time through the loop we compare the counter against the various LED 

start times, lighting LEDs as appropriate, before delaying 1 second (while polling the pushbutton) then 

incrementing the seconds count and, if we’re not at the end of the cycle yet, repeating the loop. 

So, at the start of the main loop, before our ‘for’ loop begins, we zero the seconds counter: 

main_loop 

        ; initialise seconds count (used to light each LED in sequence) 

        banksel sec_cnt         ; sec_cnt = 0 

        clrf    sec_cnt 

 

Then within the “automatic light sequencing” loop, we compare the current count against the LED start 

times, and light one of the LEDs if the count matches: 

auto_loop         

        ;*** Light appropriate LED, depending on elapsed time  

        banksel sec_cnt 

        movf    sec_cnt,w       ; if sec_cnt = G_START 

        xorlw   G_START 

        btfss   STATUS,Z 

        goto    auto_yellow 

        clrf    LEDS            ;   turn off all LEDs 

        bsf     G_LED           ;   turn on green LED 

auto_yellow 

        movf    sec_cnt,w       ; if sec_cnt = Y_START 

        xorlw   Y_START 

        btfss   STATUS,Z 

        goto    auto_red 

        clrf    LEDS            ;   turn off all LEDs 

        bsf     Y_LED           ;   turn on yellow LED 

auto_red 

        movf    sec_cnt,w       ; if sec_cnt = R_START 

        xorlw   R_START 

        btfss   STATUS,Z 

        goto    auto_red_end 

        clrf    LEDS            ;   turn off all LEDs 

        bsf     R_LED           ;   turn on red LED 

auto_red_end 
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Next comes the 1-second delay loop, during which we poll the pushbutton switch: 

        ;*** Delay 1 second while polling pushbutton 

        banksel p_cnt 

        movlw   1000/POLL_MS    ; loop 1s/(POLL_MS/loop) times 

        movwf   p_cnt 

poll_loop 

        DelayMS POLL_MS         ; polling interval 

        ; check for button press 

        btfss   BUTTON          ; if button down (low) 

        goto    standby         ;   go into standby mode 

        decfsz  p_cnt,f 

        goto    poll_loop   

 

When a pushbutton press is detected, the code jumps to a separate “enter standby mode” routine, placed at 

the end of the program (i.e. after the end of the main loop): 

;***** Standby (low power) mode 

standby 

        clrf    LEDS            ; turn off LEDs 

        DbnceHi BUTTON          ; wait for stable button release  

        sleep                   ; enter sleep mode 

 

        END 

 

Note that this “enter standby” routine could instead have been incorporated within the polling loop: 

        ;*** Delay 1 second while polling pushbutton 

        banksel p_cnt 

        movlw   1000/POLL_MS    ; loop 1s/(POLL_MS/loop) times 

        movwf   p_cnt 

poll_loop 

        DelayMS POLL_MS         ; polling interval 

        ; check for button press 

        btfss   BUTTON          ; if button down (low) 

        goto    btn_no_press    ;   go into standby mode: 

        clrf    LEDS            ;     turn off LEDs 

        DbnceHi BUTTON          ;     wait for stable button release  

        sleep                   ;     enter sleep mode 

btn_no_press 

        decfsz  p_cnt,f 

        goto    poll_loop  

 

Although this is closer in structure to the C version, the code version seems easier to follow if the “enter 

standby” routine is brought out as a separate routine, instead of being buried in the polling loop like this. 

 

At the end of the light sequencing loop we increment the seconds count.  The loop repeats until the cycle 

is finished (at the end of the red light), at which time we restart the main loop to start the cycle again: 

        ;*** End seconds count loop 

        banksel sec_cnt 

        incf    sec_cnt,w       ; sec_cnt = sec_cnt+1 

        movwf   sec_cnt 

        xorlw   R_END           ; loop until sec_cnt = R_END 

        btfss   STATUS,Z 

        goto    auto_loop 

 

        ;*** Repeat forever 

        goto    main_loop 
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Step 3: Adding a timeout 

To save batteries, our traffic lights should automatically turn themselves off after a certain time. 

It’s quite simple to add this feature to the previous design: we need to add a time counter, which is 

incremented within the sequencing loop, keeping track of how long the lights have been operating.  When 

the counter reaches the predetermined timeout value (say, 10 minutes), the device enters standby, in the 

same way as if the pushbutton had been pressed.  Since wake-up on change is enabled, pressing the 

pushbutton will still wake the device from sleep, regardless of whether it had entered sleep through a 

timeout or button press. 

 

To make our program more maintainable, we should define the timeout value as a symbolic constant. 

A key decision in programming is often how to represent values such as “how long the lights have been 

operating” – should it be a single variable measuring seconds, or perhaps two variables storing minutes 

and seconds separately?  Which representation you select will depend on factors such as the programming 

language you are using (some approaches make more sense in C than assembly language), or what else 

you might use the value for. 

Nevertheless, when expressing the program in pseudo-code, we don’t necessary need to make that 

decision up front, leaving the implementation details for later. 

So we can define the timeout value simply as: 

 TIMEOUT = 10   // auto-off timeout (in minutes) 

 

 

We’ll need a time counter which is initialised (zeroed) when the program starts. 

We then need to insert code to increment this counter and compare it against the timeout value within the 

light sequencing loop, as follows: 

Initialisation: 

 // configure hardware 

 

 // ensure that pushbutton is not pressed 

 

 // initialise time count 

 time_cnt = 0 

 

Main loop: 

do forever 

// light each LED in sequence 

for sec_cnt = 0 to R_END-1 

  // light appropriate LED, depending on elapsed time 

 

  // delay 1 second while polling pushbutton 

 

  // increment time count and check for timeout 

  time_cnt = time_cnt+1  

  if time_cnt = TIMEOUT*60 // timeout in seconds 

   enter standby mode 

 end 

end 

 

Note that the time counter is assumed here to be a single variable holding the number of seconds since the 

device was reset, so it is compared with the timeout value converted to seconds.  But, as mentioned, we 

might choose to implement the time counter as separate minutes and seconds, in which case we’d only 

compare the minutes part with the timeout value. 
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XC8 implementation 

We don’t need any new PIC programming techniques to implement the timeout feature in C – we only 

have to add an extra constant definition, a variable, and a test. 

 

Firstly, we add the timeout value to our constant definitions: 

#define TIMEOUT 10                  // auto-off timeout (in minutes) 

 

We’ll also need to declare the time counter as a variable.  Since we’ll be counting seconds, and a timeout 

of 10 minutes is 600 seconds, and 8-bit variables can only hold values up to 255, we’ll need a 16-bit 

variable: 

    uint16_t    time_cnt = 0;       // timeout counter (seconds since reset) 

 

An unsigned 16-bit integer can hold values up to 65535, so the maximum possible timeout period will be 

65535 seconds = 1029 minutes and 15 seconds, or 18.2 hours.  That should be plenty. 

Note that the count is zeroed as part of its declaration; we don’t need to do it separately in the initialisation 

code. 

Finally, we add the timeout test at the end of the LED sequencing loop: 

            // check for timeout 

            if (++time_cnt == TIMEOUT*60) 

            { 

                // go into standby (low power) mode 

                LEDS = 0;           // turn off all LEDs 

                SLEEP();            // enter sleep mode 

            }     

 

Note that the ‘++’ operator is used to increment the time counter before it is compared with the timeout 

value (which is converted to seconds). 

This saves a line of code, while still being clear to someone familiar with C.  

 

We could leave it there, but consider that we now have “enter standby mode” code in two places – after 

the pushbutton test, and after the timeout test. 

When similar chunks of code are repeated in different parts of a program, it may make sense to replace 

them with a function call, or perhaps a macro. 

In this case, although the two pieces of code are not exactly the same, because there is no need to wait for 

a pushbutton release after detecting a timeout, it doesn’t hurt to use the same “enter standby” code in both 

cases – there is no problem with waiting for a pushbutton release when a timeout is detected, because the 

pushbutton will already be released (if we’ve detected a timeout, the button cannot have been pressed). 

So we can define an “enter standby” function: 

/***** FUNCTIONS *****/ 

 

/***** Enter standby (low power) mode *****/ 

void standby(void) 

{ 

    LEDS = 0;           // turn off all LEDs 

    DbnceHi(BUTTON);    // wait for stable button release 

    SLEEP();            // enter sleep mode     

} 
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And, since we usually place function definitions at the end of the program, we need to add a prototype for 

it, before main(): 

/***** PROTOTYPES *****/ 

void standby(void);                 // enter standby (low-power) mode 

 

We can then call this function, to place the device in standby mode, after the pushbutton and timeout tests. 

The LED sequencing loop then becomes: 

        // light each LED in sequence 

        for (sec_cnt = 0; sec_cnt < R_END; sec_cnt++) 

        { 

            // light appropriate LED, depending on elapsed time 

            if (sec_cnt == G_START) 

            { 

                LEDS = 0;               // turn off all LEDs 

                G_LED = 1;              // turn on green LED 

            } 

            if (sec_cnt == Y_START) 

            { 

                LEDS = 0;               // turn off all LEDs   

                Y_LED = 1;              // turn on yellow LED 

            } 

            if (sec_cnt == R_START) 

            { 

                LEDS = 0;               // turn off all LEDs   

                R_LED = 1;              // turn on red LED 

            } 

 

            // delay 1 second while polling pushbutton 

            // (repeat 1000/POLL_MS times) 

            for (p_cnt = 0; p_cnt < 1000/POLL_MS; p_cnt++)   

            { 

                __delay_ms(POLL_MS);    // polling interval 

             

                // check for button press 

                if (!BUTTON) 

                    standby();          // enter standby mode 

            } 

             

            // check for timeout 

            if (++time_cnt == TIMEOUT*60) 

                standby();              // enter standby mode 

        }         

 

 

MPASM implementation 

We can apply techniques we’ve already used to implement the timeout feature in assembly language. 

We can start by adding the timeout value to our constant definitions: 

    constant TIMEOUT = 10               ; auto-off timeout (in minutes) 

 

We also need to keep track of the time.  As explained for the C version, if we wish to store a single value 

holding the number of seconds since the device was reset, it needs to be a 16-bit (2-byte) variable: 

time_cnt    res 2               ; timeout counter (seconds since reset) 
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Unlike C, where we can initialise a variable as part of its declaration, when programming in assembly 

language we need to explicitly load initial values into variables as part of our initialisation code: 

        ; initialise variables 

        banksel time_cnt 

        clrf    time_cnt        ; time_cnt = 0 

        clrf    time_cnt+1 

 

 

This time counter is incremented after the 1-second delay in our LED sequencing loop: 

        ;*** Check for timeout 

        banksel time_cnt 

        incf    time_cnt,f      ; increment time count 

        btfsc   STATUS,Z 

        incf    time_cnt+1,f     

 

 

Finally, we need to compare this incremented count with the timeout value, and enter standby mode if the 

timeout has been reached. 

To do that “properly”, we’d perform a full 16-bit compare, as we did in the C version, where it was 

trivially easy to do.  However, in assembly language programming it’s common to look for shortcuts. 

In this case, stepping back and thinking about what we’re trying to achieve tells us that the timeout doesn’t 

have to be exact.  A ten minute timeout is fine for testing, but that’s a bit short for our final product, where 

kids are likely to want to be able to play with their traffic lights for more than ten minutes.  A timeout of 

about an hour is more reasonable.  And if we’re aiming for “about an hour”, a few minutes more or less 

won’t make any really difference. 

This means that we don’t really need the accuracy of a full 16-bit comparison.  Instead, we can get away 

with comparing only the most significant bytes: 

        movlw   TIMEOUT*60/256  ; if timeout reached  

        xorwf   time_cnt+1,w    ; (high byte comparison only) 

        btfsc   STATUS,Z 

        goto    standby         ;   enter standby mode 

 

If TIMEOUT = 10, ‘TIMEOUT*60/256’ evaluates (using integer division) to 2, so our traffic lights will go 

into standby mode after 2 × 256 = 512 seconds = 8.5 minutes – reasonably close to the 10 minutes we 

were aiming for. 

For a “1 hour” timeout, TIMEOUT = 60 and ‘TIMEOUT*60/256’ evaluates to 14, so our actual timeout will 

be 14 × 256 = 3584 seconds = 59.7 minutes – which surely qualifies as “about an hour”. 

 

Step 4: Manual operation 

One of our requirements was to be able to control the traffic lights manually, by pressing a button to 

advance the sequence from green to amber to red then back to green. 

 

Instead of jumping right in and adding a “manual mode” to our existing design, it’s easier to develop the 

manual version separately.  Then, as a final step, we’ll bring the automatic and manual modes together 

into a single design.  In that way, we’re still only adding one extra feature at a time: manual mode first, 

and then the ability to switch between modes. 
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For manual operation we only need our 

three coloured LEDs and a pushbutton 

switch, so we can continue to use the 

circuit from step 2, as shown on the right, 

for now. 

 

We’ll use the pushbutton to change the 

light to the next in sequence. 

If we also want to use the pushbutton to 

enter sleep mode, as we did in steps 2 and 

3, we would have to implement a system 

such as holding the button down for a 

couple of seconds to turn the lights off. 

However, since we’ve already developed a 

means to power off the lights in automatic 

mode, and we intend to make it quick and 

easy to switch between modes, we don’t really need to add an “enter standby” function for manual mode.  

If the user is using the lights in manual mode, he or she can easily flick them over the automatic mode and 

then press the button to power them off.  So we won’t bother with adding an “enter standby” function for 

manual mode. 

Of course, you may disagree with that as a design decision, in which case you can extend the software to 

include it – that’s the beauty of programmable systems! 

 

Conceptually the program is very simple – we could express it in pseudo-code as: 

Initialisation: 

 configure LED pins as outputs 

 enable internal pull-ups 

 start with only green LED on 

 

Main loop: 

do forever 

 // light each LED in sequence on button press 

 wait for button press 

 turn off all LEDs  // change to yellow 

 turn on yellow 

 wait for debounced button release 

 

 wait for button press 

 turn off all LEDs  // change to red 

 turn on red 

 wait for debounced button release 

 

 wait for button press 

 turn off all LEDs  // change to green 

 turn on green 

 wait for debounced button release 

end 

 

Note that the next LED is lit immediately after the button is pressed, instead of waiting for the button to be 

released first.  The traffic lights will feel more responsive that way. 

And of course the pushbutton should be debounced, to avoid contact bounces triggering subsequent light 

changes. 
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Note that the same block of code is repeated, with minimal variations, for each light. 

That can be appropriate for a program like this, where we’re only repeating the same (or similar) operation 

a few times, although it can become unwieldy when we try to add features to it, as we saw when we went 

to add the power-down capability in automatic mode. 

So although the above structure is very simple, it’s actually difficult to build upon, and it’s better to 

restructure the program as follows: 

Initialisation: 

 configure LED pins as outputs 

 enable internal pull-ups 

 start with (only) green LED on 

 initial state = green 

 

Main loop: 

do forever 

 wait for button press 

 

 // light next LED in sequence 

 turn off all LEDs 

 select (current state) 

  green: 

   next state = yellow 

   turn on yellow 

  yellow: 

   next state = red 

   turn on red 

  red: 

   next state = green 

   turn on green 

 

 wait for debounced button release 

end 

 

In this way, we only wait for the button press at the start of the main loop, and then light the next LED in 

the sequence, depending on which LED is currently lit. 

Although in principal it’s possible to read the I/O port to determine which LED is currently lit, reliably 

reading the state of output pins can be problematic in baseline PICs
4
.  It is better to use a variable to keep 

track of the current state, perhaps representing “green” with the value 0, “yellow” with 1 and “red” with 2. 

XC8 implementation 

Again, we don’t need any new PIC programming techniques to implement this step in C – it’s only a 

matter of translating the above pseudo-code. 

 

We’ll need a variable to record the current state.  Although we could use numbers to represent the various 

states, as mentioned above, it’s clearer to declare the variable as an enumerated type: 

    enum {GREEN, YELLOW, RED} state;    // state = currently-lit LED 

 

The C compiler will define GREEN, YELLOW and RED as numeric constants behind the scenes, but we don’t 

need to know their specific values; we can simply use these symbolic values by name when working with 

this ‘state’ variable. 

                                                      

4
 see the discussion of the “read-modify-write” problem in baseline assembler lesson 2 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
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For example, within our initialisation routine we now need to set the initial state to “green”: 

    // set initial state 

    state = GREEN;              // initial state is green, so 

    G_LED = 1;                  // turn on green LED 

 

 

With the green LED initially on, the main loop begins by waiting for a button press: 

    //*** Main loop 

    for (;;) 

    { 

        // wait for button press 

        while (BUTTON)              // wait until button low 

            ; 

 

We then turn off whichever LED is currently lit: 

        LEDS = 0;                   // turn off all LEDs 

 

And then use the current state to select which LED to light next, updating the current state to the next in 

sequence: 

        switch (state)              // next LED depends on currently-lit LED 

        { 

            case GREEN:                 // if green: 

                state = YELLOW;         //  next state = yellow 

                Y_LED = 1;              //  turn on yellow LED      

                break; 

                 

            case YELLOW:                // if yellow: 

                state = RED;            //  next state = red 

                R_LED = 1;              //  turn on red LED   

                break; 

                

            case RED:                   // if red: 

                state = GREEN;          //  next state = green 

                G_LED = 1;              //  turn on green LED 

                break; 

        } 

 

Note that C’s ‘switch’ statement corresponds to the ‘select’ construct in the pseudo-code version, and 

that the use of an enumerated type for the ‘state’ variable makes this very clear and easy to read. 

 Finally, at the end of the main loop we wait for the pushbutton to be released, and debounce it: 

        // wait for stable button release 

        DbnceHi(BUTTON); 

 

 

MPASM implementation 

Again, we can apply techniques we’ve already used to implement this step in assembly language. 

We need to define a variable to record the current state, and for clarity we should also define constants to 

represent the various states: 

VARS UDATA 

state   res 1                   ; state = currently-lit LED 

        constant GREEN = 0 

        constant YELLOW = 1 

        constant RED = 2 
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The initialisation routine is much the same as we’ve used before, except that we also need to set the initial 

state to “green”: 

        ; set initial state 

        banksel state         

        movlw   GREEN           ; initial state is green, so 

        movwf   state 

        bsf     G_LED           ; turn on green LED 

 

 

We then begin the  main loop by waiting for a button press: 

main_loop 

        ;*** Wait for button press 

wait_dn btfsc   BUTTON          ; wait until button low 

        goto    wait_dn 

 

And then turn off whichever LED is currently lit: 

        clrf    LEDS            ; turn off all LEDs 

 

 

Next we can implement our pseudo-code ‘select’ construct, testing the current state to determine the 

next in sequence, updating the state and lighting the appropriate LED: 

        ; test current state, to determine next LED to light 

        banksel state 

        movlw   GREEN           ; if green: 

        xorwf   state,w 

        btfss   STATUS,Z 

        goto    man_yellow     

        movlw   YELLOW          ;   next state = yellow 

        movwf   state 

        bsf     Y_LED           ;   turn on yellow LED 

        goto    man_red_end 

man_yellow        

        movlw   YELLOW          ; if yellow: 

        xorwf   state,w 

        btfss   STATUS,Z 

        goto    man_red    

        movlw   RED             ;   next state = red 

        movwf   state 

        bsf     R_LED           ;   turn on red LED     

        goto    man_red_end               

man_red 

        movlw   RED             ; if red: 

        xorwf   state,w 

        btfss   STATUS,Z 

        goto    man_red_end       

        movlw   GREEN           ;   next state = green 

        movwf   state 

        bsf     G_LED           ;   turn on green LED      

man_red_end   

 

 

Finally, at the end of the main loop we wait for the pushbutton to be released, and debounce it: 

        ;*** Wait for stable button release                

        DbnceHi BUTTON  
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Step 5: Manual operation with timeout 

Again, to save batteries, if the user hasn’t pressed the “change” button for some time, the lights should 

enter standby mode, waking when the button is pressed again, in the same way as in automatic mode. 

This is quite easy to do, if we keep the program structure from the previous step. 

Instead of simply waiting for a button press, we repeatedly poll the pushbutton over a 1 second interval, as 

we did in step 2: 

  // delay 1 second while polling pushbutton 

  repeat 1000/N times   

   delay N ms    

   // check for button press 

   if button pressed 

    light next LED in sequence 

    wait for debounced button release 

 

Of course, if the button is pressed, lighting the next LED and then waiting for the button to be released 

will add to the time – this loop will take more than 1 second to execute.  But that’s ok – the timeout isn’t 

supposed to be an exact amount of time.  A few seconds more or less won’t make any practical difference 

if the traffic lights are supposed to turn themselves off after “an hour or so”, or even the ten minutes that 

we’ll use for testing. 

Having polled the pushbutton for a 1 second interval, we can then increment a timeout counter and enter 

standby mode when the time period has elapsed, as we did in step 3.  The counter should be reset 

whenever the pushbutton is pressed, so that it is counting time since the most recent press. 

Our main loop becomes, in pseudo-code: 

Main loop: 

do forever 

 // delay 1 second while polling pushbutton 

 repeat 1000/N times   

  delay N ms    

  // check for button press 

  if button pressed 

   time_cnt = 0 // reset timeout counter 

 

   // light next LED in sequence 

   turn off all LEDs 

   select (current state) 

    green: 

     next state = yellow 

     turn on yellow 

    yellow: 

     next state = red 

     turn on red 

    red: 

     next state = green 

     turn on green 

   wait for debounced button release 

 

 // increment time count and check for timeout 

 time_cnt = time_cnt+1  

 if time_cnt = TIMEOUT*60 // timeout in seconds 

  enter standby mode 

end 

 

The timeout counter must of course be zeroed as part of our initialisation routine.  We also need to enable 

wake-up on change, so that the device can be woken from sleep following a timeout. 
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XC8 implementation 

Implementing this step in C is mostly a matter of reusing pieces of code from the earlier steps. 

The switch statement used to select the next LED to light from step 4 is essentially placed within the 

polling loop from step 2, with the timeout code from step 3 added at the end of the main loop. 

To see how it all fits together, it’s easiest to look at the complete C program listing: 

/************************************************************************ 

*                                                                       * 

*   Description:    Simple Traffic Lights                               * 

*                   Tutorial project 1, example 5                       * 

*                                                                       * 

*   Lights green, yellow and red lights in sequence (manual operation), * 

*   advancing on each pushbutton press                                  * 

*                                                                       * 

*   Power on (wake from standby) on pushbutton press                    * 

*                                                                       * 

*   Enters standby mode if no button press                              * 

*   during timeout period (10 mins)                                     * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP0 = green  light (LED), active high                           * 

*       GP1 = yellow light (LED), active high                           * 

*       GP2 = red    light (LED), active high                           * 

*       GP3 = pushbutton switch (active low)                            * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

#include "stdmacros-XC8.h"  // DbnceHi() - debounce switch, wait for high 

                            // Requires: TMR0 at 256 us/tick 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog 

#pragma config MCLRE = OFF, CP = OFF, WDTE = OFF 

 

// oscillator frequency for __delay_ms() 

#define _XTAL_FREQ  4000000      

 

// Pin assignments 

#define LEDS    GPIO                // all LEDs 

#define G_LED   GPIObits.GP0        // individual LEDs 

#define Y_LED   GPIObits.GP1 

#define R_LED   GPIObits.GP2 

#define BUTTON  GPIObits.GP3        // Pushbutton (active low) 

 

 

/***** CONSTANTS *****/ 

#define POLL_MS 50                  // polling interval (in ms) 

#define TIMEOUT 10                  // auto-off timeout (in minutes) 

 

 

/***** PROTOTYPES *****/ 

void standby(void);                 // enter standby (low-power) mode 

 

 

/***** MAIN PROGRAM *****/ 
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void main() 

{ 

    enum {GREEN, YELLOW, RED} state;    // state = currently-lit LED 

     

    uint16_t    time_cnt = 0;       // timeout counter (seconds since reset) 

    uint8_t     p_cnt;              // polling loop counter 

     

     

    //*** Initialisation 

     

    // configure ports 

    GPIO = 0b0000;              // start with all LEDs off 

    TRIS = 0b1000;              // configure LED pins (GP0-2) as outputs 

 

    // configure wake-on-change, pull-ups and timer 

    OPTION = 0b00000111;        // configure wake-up on change and Timer0: 

             //0-------             enable wake-up on change (/GPWU = 0) 

             //-0------             enable weak pull-ups (/GPPU = 0) 

             //--0-----             timer mode (T0CS = 0) 

             //----0---             prescaler assigned to Timer0 (PSA = 0) 

             //-----111             prescale = 256 (PS = 111) 

             //                     -> increment every 256 us 

             //                        GP2 usable as an output 

 

    // set initial state 

    state = GREEN;              // initial state is green, so 

    G_LED = 1;                  // turn on green LED 

     

    // wait for stable button release 

    // (in case it is still bouncing following wake-up on change) 

    DbnceHi(BUTTON);  

     

 

    //*** Main loop 

    for (;;) 

    { 

        // delay 1 second while polling pushbutton 

        // (repeat 1000/POLL_MS times) 

        for (p_cnt = 0; p_cnt < 1000/POLL_MS; p_cnt++)   

        { 

            __delay_ms(POLL_MS);    // polling interval 

         

            // check for button press 

            if (!BUTTON)            // if button pressed 

            { 

                time_cnt = 0;           // reset timeout counter 

                 

                // light next LED in sequence 

                LEDS = 0;               // turn off all LEDs 

         

                switch (state)          // next LED depends on current LED 

                { 

                    case GREEN:             // if green: 

                        state = YELLOW;     //  next state = yellow 

                        Y_LED = 1;          //  turn on yellow LED      

                        break; 

                 

                    case YELLOW:            // if yellow: 

                        state = RED;        //  next state = red 

                        R_LED = 1;          //  turn on red LED   

                        break; 
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                    case RED:               // if red: 

                        state = GREEN;      //  next state = green 

                        G_LED = 1;          //  turn on green LED 

                        break; 

                } 

                // wait for stable button release 

                DbnceHi(BUTTON); 

            } 

        } 

             

        // check for timeout 

        if (++time_cnt == TIMEOUT*60) 

            standby();          // enter standby mode 

    }                      

} 

 

 

/***** FUNCTIONS *****/ 

 

/***** Enter standby (low power) mode *****/ 

void standby(void) 

{ 

    LEDS = 0;           // turn off all LEDs 

    DbnceHi(BUTTON);    // wait for stable button release 

    SLEEP();            // enter sleep mode     

} 

 

 

MPASM implementation 

As with the C version, implementing this step with assembly language is a simple matter of placing the 

LED selection code from step 4 within the polling loop from step 2 while removing the automatic 

sequencing code, and adding the timeout code from step 3 at the end of the main loop. 

Here is the complete program listing, so that you can see how this all fits together: 

;************************************************************************ 

;                                                                       * 

;   Description:    Simple Traffic Lights                               * 

;                   Tutorial project 1, example 5                       * 

;                                                                       * 

;   Lights green, yellow and red lights in sequence                     * 

;   (timing defined by program constants)                               * 

;                                                                       * 

;   Power on (wake from standby) on pushbutton press                    * 

;                                                                       * 

;   Enters standby mode on pushbutton press,                            * 

;   or if no button press during timeout period (10 mins)               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP0 = green  light (LED), active high                           * 

;       GP1 = yellow light (LED), active high                           * 

;       GP2 = red    light (LED), active high                           * 

;       GP3 = pushbutton switch (active low)                            * 

;                                                                       * 

;************************************************************************ 

 

    list        p=10F200 

    #include    <p10F200.inc>  
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    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

    #include    <stdmacros-base.inc>  ; DbnceHi - debounce sw, wait for high 

                                      ; (requires TMR0 running at 256 us/tick) 

                                      ; DelayMS - delay in milliseconds 

                                      ; (calls delay10) 

    EXTERN      delay10_R             ; W x 10ms delay 

     

    radix       dec 

 

 

;***** CONFIGURATION 

                ; int reset, no code protect, no watchdog 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _WDTE_OFF 

 

; pin assignments 

    #define LEDS        GPIO        ; all LEDs 

    #define G_LED       GPIO,0      ; individual LEDs 

    #define Y_LED       GPIO,1     

    #define R_LED       GPIO,2       

    #define BUTTON      GPIO,3      ; Pushbutton (active low)     

 

 

;***** CONSTANTS 

    constant POLL_MS = 50               ; polling interval (in ms) 

    constant TIMEOUT = 10               ; auto-off timeout (in minutes) 

 

 

;***** VARIABLE DEFINITIONS 

VARS     UDATA 

state       res 1               ; state = currently-lit LED 

            constant GREEN = 0 

            constant YELLOW = 1 

            constant RED = 2 

time_cnt    res 2               ; timeout counter (seconds since reset) 

p_cnt       res 1               ; polling loop counter 

 

        

 

;***** RC CALIBRATION 

RCCAL   CODE    0x0FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

delay10                         ; delay W x 10 ms 

        pagesel delay10_R 

        goto    delay10_R        

 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start 

        ; configure port 
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        clrf    GPIO                ; start with all LEDs off 

        movlw   b'1000'             ; configure LED pins (GP0-2) as outputs 

        tris    GPIO 

         

        ; configure wake-on-change, pull-ups and timer 

        movlw   b'00000111'     ; configure wake-up on change and Timer0: 

                ; 0-------          enable wake-up on change (/GPWU = 0) 

                ; -0------          enable weak pull-ups (/GPPU = 0) 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111) 

        option                  ;   -> increment every 256 us 

                                ;      GP2 usable as an output 

 

        ; initialise variables 

        banksel time_cnt 

        clrf    time_cnt        ; time_cnt = 0 

        clrf    time_cnt+1 

         

        ; set initial state 

        banksel state         

        movlw   GREEN           ; initial state is green, so 

        movwf   state 

        bsf     G_LED           ; turn on green LED         

                                 

        ; wait for stable button release 

        ; (in case it is still bouncing following wake-up on change) 

        DbnceHi BUTTON  

         

 

;***** Main loop 

main_loop 

        ;*** Delay 1 second while polling pushbutton 

        banksel p_cnt 

        movlw   1000/POLL_MS    ; loop 1s/(POLL_MS/loop) times 

        movwf   p_cnt 

poll_loop 

        DelayMS POLL_MS         ; polling interval 

        ; check for button press 

        btfsc   BUTTON          ; if button pressed (low) 

        goto    poll_end    

        ; 

        ; BUTTON PRESSED 

        ; 

        clrf    time_cnt        ;   reset timeout counter 

        clrf    time_cnt+1   

        ; 

        ; Light next LED in sequence 

        ; 

        clrf    LEDS            ;   turn off all LEDs 

        ; 

        ; test current state, to determine next LED to light 

        banksel state 

        movlw   GREEN           ;   if green: 

        xorwf   state,w 

        btfss   STATUS,Z 

        goto    man_yellow     

        movlw   YELLOW          ;       next state = yellow 

        movwf   state 

        bsf     Y_LED           ;       turn on yellow LED 

        goto    man_red_end 
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man_yellow        

        movlw   YELLOW          ;   if yellow: 

        xorwf   state,w 

        btfss   STATUS,Z 

        goto    man_red    

        movlw   RED             ;       next state = red 

        movwf   state 

        bsf     R_LED           ;       turn on red LED     

        goto    man_red_end               

man_red 

        movlw   RED             ;   if red: 

        xorwf   state,w 

        btfss   STATUS,Z 

        goto    man_red_end       

        movlw   GREEN           ;       next state = green 

        movwf   state 

        bsf     G_LED           ;       turn on green LED      

man_red_end   

        ; 

        ; Wait for stable button release                

        DbnceHi BUTTON   

          

poll_end 

        decfsz  p_cnt,f 

        goto    poll_loop     

 

        ;*** Check for timeout 

        banksel time_cnt 

        incf    time_cnt,f      ; increment time count 

        btfsc   STATUS,Z 

        incf    time_cnt+1,f 

        movlw   TIMEOUT*60/256  ; if timeout reached  

        xorwf   time_cnt+1,w    ; (high byte comparison only) 

        btfsc   STATUS,Z 

        goto    standby         ;   enter standby mode 

         

        ;*** Repeat forever 

        goto    main_loop    

 

 

;***** Standby (low power) mode 

standby 

        clrf    LEDS            ; turn off LEDs 

        DbnceHi BUTTON          ; wait for stable button release  

        sleep                   ; enter sleep mode 

 

 

        END 

 

 

Step 6: Bringing it all together 

We’ve now developed, in steps 1 to 3, a set of automated traffic lights with an “on/off” pushbutton switch 

for entering and waking from standby mode, and a timeout feature. 

We also developed, in steps 4 and 5, a set of manually operated traffic lights with a “change” pushbutton 

and a timeout feature. 

It’s time to bring these together into a single device which combines all these features, as outlined in the 

requirements at the start of this document. 
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As has been mentioned, our pushbutton can do double duty: it can be used as an “on/off” button in 

automatic mode, and as a “change” button in manual mode. 

However, we do need to add a “mode” switch to the design, to allow the user to switch between automatic 

and manual modes. 

There’s a problem with that – adding another switch means using another digital input pin, but we’ve 

already used every pin on the PIC10F200.  So we’ll need to use a bigger PIC, with more pins. 

The next biggest is the 12F508.  Besides gaining two more I/O pins, it has twice as much program 

memory (512 words) as the 10F200 and more data memory (25 bytes instead of 16 bytes), which should 

be more than enough because each of the two programs we’re bringing together were able to fit within a 

10F200. 

 

Although it would be possible to use a pushbutton to toggle between modes, in this application a two-

position toggle or slide switch seems more appropriate.  It’s simple to use – flicking the switch “up” (or 

“left” or “forward” etc.) could select automatic mode, while setting the switch in the other direction would 

select manual mode.  And being a toggle or slide switch means that it’s easy to see which mode the lights 

are operating in (e.g. whether the switch is “up” or “down”). 

We can add an SPDT toggle 

or slide switch to our circuit 

as shown on the right. 

The switch is wired so that 

GP4 is pulled either high or 

low, via a 1 kΩ resistor. 

Again, this resistor isn’t 

strictly necessary, but it 

protects the PIC from a 

situation where GP4 is 

inadvertently configured as 

an output.  If the pin 

happened to be set to output 

a “high” while the switch 

connected it to ground (or 

vice-versa) the PIC could be 

destroyed without a resistor 

in place to limit the current. 

Although we could in principle use a SPST switch (open in one position, closed in the other – with only 

two terminals) with a weak internal pull-up, as we did with the pushbutton on GP3, there’s a good reason 

not to do it that way.  In sleep mode, the weak pull-ups must remain active – we can’t disable them before 

entering sleep mode, because the “change” pushbutton requires a weak pull-up for its proper operation, 

and we need that pushbutton to be working if it’s to be used to wake the device from sleep.  But suppose 

the “select” switch was connected to a pin with a weak pull-up enabled?  If the switch connects the pin to 

ground, current will flow through the pull-up to ground via the switch – draining the battery, even in 

standby mode. 

This wouldn’t be a problem if we used a mid-range PIC, such as 12F629, where the weak pull-ups can be 

individually enabled.  But for baseline devices such as the 12F508 it’s all (meaning GP0, GP1 and GP3) 

or none.  That’s ok – it simply means using a pin without weak pull-ups (GP2, GP4 or GP5) for the 

select function, and using a double-throw (three-terminal) switch connected as shown. 

Of course, as features are added to a design, you may reach a point where it makes more sense to use a 

different PIC architecture (or different type of microcontroller altogether).  For example, you might decide 
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that being able to use interrupts or having individually-selectable weak pull-ups available would simplify 

the design to an extent that it would be worthwhile to upgrade to a mid-range PIC.  That would be a 

perfectly valid decision, but as we’ll see it’s not difficult to implement this simple project with baseline 

devices such as the PIC12F508. 

 

If you have the Gooligum baseline training board, you can use the PIC12F509 that came with your board, 

instead of a 12F508
5
.  Leave the board set up as before, but plug the 12F508 or 12F509 into the top section 

of the 14-pin IC socket marked ‘12F’.
6
 

The training board comes with a 1 kΩ resistor, but you will need to supply your own toggle or slide switch 

which you can connect to GP4, VDD and GND via pins 3, 15 and 16 (respectively) on the 16-pin header. 

Alternatively, you could skip the circuit in this step and instead build the circuit in the next (and final) step 

using the PCB and parts supplied with the Gooligum traffic lights kit.  As we’ll see in the next step, the 

final version is logically the same but with different pin assignments and inverted (active low) LED 

operation to simplify the PCB layout.  So you could read this step and then go on to the final step to 

implement it using the “production” hardware. 

 

Combining the automatic and manual-mode programs, from steps 3 and 5, is straightforward. 

Each includes a loop which polls the pushbutton.  All we need do is, in addition to polling the pushbutton 

as normal, also test the select switch.  If the user has flicked the switch, to select the other mode, exit the 

current mode and start the other one. 

Although “exit the current mode” can be done via “goto” statements, these are generally frowned upon 

(famously “considered harmful”).  It’s cleaner to implement each mode as a subroutine (or function), and 

then to “exit the current mode” we simply exit, or return from, the current subroutine. 

 

The initialisation routine includes only the configuration or setup operations required by both modes. 

In pseudo-code we have: 

Initialisation: 

 

 // configure hardware 

 configure LED pins as outputs 

 start with all LEDs off 

 enable internal pull-ups and wake-up on change 

 

 // ensure that pushbutton is not pressed 

 wait for BUTTON = released 

 debounce BUTTON 

 

 // initialise timeout count 

 time_cnt = 0 

 

 

                                                      

5
 Ideally you would also specify “PIC12F509” instead of “PIC12F508” when creating your project, and, if using 

assembly language, modify the ‘list’ and ‘#include’ directives in your code to specify “12F509” instead of 

“12F508”.  But if you don’t do this, and leave your project and code configured for a 12F508, it will still work ok 

with a 12F509.  The compiler or assembler will simply treat it as a 12F508 and won’t be aware of, and therefore 

won’t use, the 12F509’s extra memory.  But that’s ok – it will still work just fine. 

6
 Ensure that no device is installed in the 10F socket – you can only use one PIC at a time in the training board. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/kits/trafficlights/trafficlights.html
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The main loop then consists of continually checking the status of the select switch, and calling the 

appropriate mode’s subroutine: 

Main loop: 

 

do forever 

 // enter appropriate mode, depending on SELECT switch 

 if SELECT = automatic 

  call AutoMode 

 else 

  call ManualMode 

end 

 

 

Each “mode” subroutine then consists of any unique initialisation code and the main loop from each of our 

previous automatic and manual-mode programs, with a test within the polling loop to exit the routine if the 

select switch has been changed. 

When either subroutine exits, we drop back into the main loop (above), which will call the subroutine 

corresponding to whichever mode has now been selected. 

 

So the automatic mode subroutine becomes, in pseudo-code: 

AutoMode: 

 

do forever 

// light each LED in sequence, while checking for button press 

for seconds = 0 to end_cycle_time 

  light appropriate LED, depending on elapsed time 

 

  // delay 1 second while polling switches 

  repeat 1000/N times   

   delay N ms  

   

   // check for button press 

   if button pressed 

    enter standby mode 

 

   // check for mode change 

   if SELECT = manual 

    time_cnt = 0 // reset timeout counter 

    exit   // exit automatic mode 

 

  // increment time count and check for timeout 

  time_cnt = time_cnt+1  

  if time_cnt = TIMEOUT*60 // timeout in seconds 

   enter standby mode 

 end 

end 

 

 

And the manual mode subroutine, including state initialisation, is: 

ManualMode: 

 

// initialise state 

initial state = green 

turn on (only) green LED 
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do forever 

 // delay 1 second while polling switches 

 repeat 1000/N times   

  delay N ms   

  

  // check for button press 

  if button pressed 

   time_cnt = 0 // reset timeout counter 

   light next LED in sequence 

   wait for debounced button release 

 

  // check for mode change 

  if SELECT = automatic 

   time_cnt = 0 // reset timeout counter 

   exit   // exit manual mode 

 

 // increment time count and check for timeout 

 time_cnt = time_cnt+1  

 if time_cnt = TIMEOUT*60 // timeout in seconds 

  enter standby mode 

end 

 

 

Note that the timeout counter is reset each time we exit to select the other mode, reflecting the fact that the 

user interacted with the traffic lights (they changed the mode). 

It would be possible to optimise this a little by resetting the timeout counter when entering each mode, 

instead of when exiting – meaning that the timeout counter wouldn’t have to be zeroed as part of the 

shared initialisation code.  But the intent seems clearer this way. 

Another possible optimisation would be to break the “increment time count and check for timeout” code 

out as a separate subroutine, since the same block of timeout handling code is repeated. 

But in general, whether an optimisation makes sense is an implementation decision, depending on the 

programming language and compiler – and sometimes the best approach isn’t obvious and you have to try 

it both ways, to see. 

XC8 implementation 

Once again, to implement this step in C we can reuse much of the code from earlier steps. 

We’re now using a PIC12F508, which provides a range of oscillator options (unlike the 10F200, which 

can only use its internal RC oscillator), so we need to specify that we’re using the internal RC oscillator as 

part of the processor configuration: 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC oscillator 

#pragma config MCLRE = OFF, CP = OFF, WDT = OFF, OSC = IntRC 

 

 

We also add symbolic names for the mode select switch and its possible values: 

#define SELECT  GPIObits.GP4        // mode switch: 

#define SEL_auto    0               //  low = auto 

#define SEL_manual  1               //  high = manual 

 

Defining the mode values as symbols in this way will make it easier to change the user interface (perhaps 

the select switch should be in the “up” position for automatic mode, instead of “down”) later, without 

having to make changes throughout the code. 
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Since we’ll be using automatic and manual mode functions, we need to add prototypes for them: 

/***** PROTOTYPES *****/ 

void AutoMode(void);                // automatic mode 

void ManualMode(void);              // manual mode 

void standby(void);                 // enter standby (low-power) mode 

 

 

The main loop is simply: 

    //*** Main loop 

    for (;;) 

    { 

        // enter appropriate mode, depending on select switch 

        if (SELECT == SEL_auto)      

            AutoMode();             

        else 

            ManualMode();     

    }   

 

 

Now we can take the main loop from the automatic mode program developed in step 3 and encapsulate it 

as a function. 

At the start of the function we need to declare the variables that are only used within (“local to”) that 

function.  So we have: 

/***** Automatic mode *****/ 

void AutoMode(void) 

{ 

    uint8_t     sec_cnt;            // seconds counter (for LED sequencing) 

    uint16_t    time_cnt = 0;       // timeout counter (seconds since reset)  

    uint8_t     p_cnt;              // polling loop counter 

 

Note that the timeout counter is zeroed as part of the declaration, so it will be reset to zero every time that 

automatic mode is entered.  This means that there is no need to zero it as part of the shared initialisation 

code, nor does it need to be reset when exiting manual mode; there is no need to access this ‘time_cnt’ 

variable from outside this function, so it can be declared as a local variable. 

When we come to the manual mode function, you’ll see that it also has timeout and polling loop counters, 

so you may think that we could save data memory by declaring them as global variables, accessed by both 

functions.  Actually, that’s not the case.  The compiler allocates storage for non-static local (“auto”) 

variables like these from a shared memory pool, on demand – storage is only allocated to a function’s 

local variables while that function is running (unless they are declared to be “static”), and can be reused by 

another function’s variables when needed. 

The upshot of this is that we don’t waste any data memory by declaring variables within a function like 

this, even when there are variables with the same name in another function.  An advantage of doing so is 

that the function is then self-contained, making the program more maintainable and code re-use easier. 

 

The previous “main loop” then becomes a “for (;;)” loop within this function.  Most of the code is the 

same as before, so we we’ll only list the comments for the unchanged sections here (there will be a full 

listing at the end of the next step), except that the polling loop now also reads the mode select switch: 

    for (;;) 

    { 

        // light each LED in sequence 

        for (sec_cnt = 0; sec_cnt < R_END; sec_cnt++) 

        { 
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            // light appropriate LED, depending on elapsed time 

 

            // delay 1 second while polling pushbutton 

            // (repeat 1000/POLL_MS times) 

            for (p_cnt = 0; p_cnt < 1000/POLL_MS; p_cnt++)   

            { 

                __delay_ms(POLL_MS);    // polling interval 

             

                // check for button press 

                 

                // check for mode change 

                if (SELECT == SEL_manual) 

                    return;             // exit automatic mode 

            } 

             

            // check for timeout 

        }         

    }  

 

 

The approach for the manual mode function is the same, encapsulating the main loop from the program 

developed in step 5 as a function, except that we also need to include initialisation code to set the initial 

state to “green”.  So the manual mode function begins, including variable definitions, with: 

/***** Manual mode *****/ 

void ManualMode(void) 

{ 

    enum {GREEN, YELLOW, RED} state;    // state = currently-lit LED 

     

    uint16_t    time_cnt = 0;       // timeout counter (seconds since reset) 

    uint8_t     p_cnt;              // polling loop counter     

     

    // set initial state 

    state = GREEN;              // initial state is green, so 

    LEDS = 0; 

    G_LED = 1;                  // turn on green LED (only) 

 

 

As in automatic mode, the previous “main loop” becomes a “for (;;)” loop within this function, and 

again most of the code is the same as before, so we we’ll only list the comments for the unchanged 

sections here, except for the extra code within the polling loop which reads the mode select switch: 

    for (;;) 

    { 

        // delay 1 second while polling pushbutton 

        // (repeat 1000/POLL_MS times) 

        for (p_cnt = 0; p_cnt < 1000/POLL_MS; p_cnt++)   

        { 

            __delay_ms(POLL_MS);    // polling interval 

         

            // check for button press 

             

            // check for mode change 

            if (SELECT == SEL_auto) 

                return;                 // exit manual mode 

        } 

             

        // check for timeout 

    }                      
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MPASM implementation 

Once again, we can reuse much of our earlier code when implementing this step with assembly language. 

Now that we’re using a PIC12F508, we need to specify it, using the list and #include directives at the 

start of the program: 

    list        p=12F508 

    #include    <p12F508.inc> 

 

We also now need to specify that we’re using the internal oscillator, as part of the processor configuration: 

;***** CONFIGURATION 

                ; int reset, no code protect, no watchdog, int RC oscillator 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

We should define a symbolic name for the mode select switch: 

    #define SELECT      GPIO,4      ; mode switch (low = auto, high = manual) 

 

However (unlike the C version), it does not make sense to define symbols for the switch values that 

represent automatic and manual modes, because we’ll be using bit-test (btfss and btfsc) instructions to 

read and react to the select switch input – there is no opportunity to explicitly compare the input value 

with a constant, as we can do so easily in C. 

One possible approach to abstracting these types of input pin tests, to make it easier to change the user 

interface later (so that a low input means “automatic” instead of “manual”) is to encapsulate the bit test 

instructions as macros, using the macros in your code in place of the bit test instructions, and updating the 

macro definitions if the pin assignments or meanings change.  In fact it’s possible to take that to a level 

where the code no longer looks much like assembly language – but then it’s arguable that you then might 

as well have been using C.  So, we’ll keep it simple here. 

 

The variable definitions combine those from both the automatic and manual mode programs: 

;***** VARIABLE DEFINITIONS 

VARS     UDATA 

sec_cnt     res 1               ; seconds counter (for LED sequencing) 

state       res 1               ; state = currently-lit LED 

            constant GREEN = 0 

            constant YELLOW = 1 

            constant RED = 2 

time_cnt    res 2               ; timeout counter (seconds since reset) 

p_cnt       res 1               ; polling loop counter 

 

 

Since we’ll be using automatic and manual mode subroutines, we should add them to our jump table: 

;***** Subroutine vectors 

delay10                         ; delay W x 10 ms 

        pagesel delay10_R 

        goto    delay10_R        

 

AutoMode                        ; automatic mode 

        pagesel AutoMode_R 

        goto    AutoMode_R 

         

ManualMode                      ; manual mode 

        pagesel ManualMode_R 

        goto    ManualMode_R 



© Gooligum Electronics 2013  www.gooligum.com.au 

Introductory 8-bit PIC Project 1: Traffic Lights  Page 41 

Recall that the main loop will consist of continually reading the select switch input, and then running the 

appropriate subroutine. 

In pseudo-code, we wrote this as: 

do forever 

 // enter appropriate mode, depending on SELECT switch 

 if SELECT = automatic 

  call AutoMode 

 else 

  call ManualMode 

end 

     

We could translate that directly into assembly language, but given the need for pagesel directives when 

calling subroutines and also for the ‘goto’ instructions needed to jump around the code blocks within the 

“if/else” structure (see baseline assembler lesson 3)
7
, it gets a bit messy. 

It’s easier to implement it in assembly language if we note that, after exiting automatic mode, we will 

always want to enter manual mode next (because the select switch must have changed). 

So it is actually quite ok to drop the “else” and simplify it to: 

do forever 

 // enter appropriate mode, depending on SELECT switch 

 if SELECT = automatic 

  call AutoMode 

 call ManualMode 

end 

   

And that translates quite neatly into assembly language as: 

;***** Main loop 

main_loop 

        ; enter appropriate mode, depending on select switch 

        pagesel AutoMode 

        btfss   SELECT          ; if automatic (low) 

        call    AutoMode     

        call    ManualMode      ; else (or then) enter manual mode 

 

        ;*** Repeat forever 

        pagesel main_loop 

        goto    main_loop    

 

 

The automatic mode subroutine consists of the main loop from the automatic mode program developed in 

step 3, with the timeout counter being reset at the start of the subroutine: 

;***** SUBROUTINES ****************************************************** 

SUBS    CODE 

 

;***** Automatic mode 

AutoMode_R 

        ; initialise variables 

        banksel time_cnt 

        clrf    time_cnt        ; time_cnt = 0 

        clrf    time_cnt+1 

 

                                                      

7
 not strictly needed on a 12F508, which has only a single page of memory, but good practice to include in case the 

program is ever migrated to a 12F509 or any other baseline PIC with more than memory page 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf
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Most of the loop code is the same as before, so we we’ll only list the comments for most of the unchanged 

sections here (there will be a full listing at the end of the next step), except that the polling loop now also 

reads the mode switch, and exits (returns from) the subroutine if manual mode has been selected: 

auto_start 

        ; initialise seconds count (used to light each LED in sequence) 

        banksel sec_cnt         ; sec_cnt = 0 

        clrf    sec_cnt 

         

auto_loop         

        ;*** Light appropriate LED, depending on elapsed time  

                         

        ;*** Delay 1 second while polling pushbutton 

        banksel p_cnt 

        movlw   1000/POLL_MS    ; loop 1s/(POLL_MS/loop) times 

        movwf   p_cnt 

auto_poll_loop 

        DelayMS POLL_MS         ; polling interval 

        ; check for button press 

        btfss   BUTTON          ; if button down (low) 

        goto    standby         ;   enter standby mode 

        ; check for mode change 

        btfsc   SELECT          ; if manual mode selected (high) 

        retlw   0               ;   exit automatic mode 

        ; end polling loop 

        decfsz  p_cnt,f 

        goto    auto_poll_loop     

 

        ;*** Check for timeout 

         

        ;*** End seconds count loop 

        banksel sec_cnt 

        incf    sec_cnt,w       ; sec_cnt = sec_cnt+1 

        movwf   sec_cnt 

        xorlw   R_END           ; loop until sec_cnt = R_END 

        btfss   STATUS,Z 

        goto    auto_loop 

 

        ;*** Repeat (until mode change or timeout) 

        goto    auto_start    

 

 

The manual mode subroutine consists of the main loop from the program developed in step 5, plus 

initialisation code which resets the timeout counter and sets the initial state to “green”. 

So the manual mode subroutine begins with: 

;***** Manual mode 

ManualMode_R 

        ; initialise variables 

        banksel time_cnt 

        clrf    time_cnt        ; time_cnt = 0 

        clrf    time_cnt+1 

         

        ; set initial state 

        banksel state         

        movlw   GREEN           ; initial state is green, so 

        movwf   state 

        clrf    LEDS 

        bsf     G_LED           ; turn on green LED (only)     
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Again most of the loop code is taken directly from the program we developed in step 5, so we we’ll only 

list the comments for most of the unchanged sections here, except for the extra code within the polling 

loop which reads the mode switch and exits the subroutine if automatic mode has been selected: 

man_start 

        ;*** Delay 1 second while polling pushbutton 

        banksel p_cnt 

        movlw   1000/POLL_MS    ; loop 1s/(POLL_MS/loop) times 

        movwf   p_cnt 

man_poll_loop 

        DelayMS POLL_MS         ; polling interval 

        ; check for button press 

        ; check for mode change 

        btfss   SELECT          ; if automatic mode selected (low) 

        retlw   0               ;   exit manual mode 

        ; end polling loop 

        decfsz  p_cnt,f 

        goto    man_poll_loop     

 

        ;*** Check for timeout 

         

        ;*** Repeat (until mode change or timeout) 

        goto    man_start   

                       

Final Step: Production version 

We now have a working set of traffic lights which meets all of our design requirements – but it’s still only 

a prototype.  As a final step, we need to make the design production-ready; something that can be 

manufactured (or built as a kit, in this case) at reasonably low cost while being reliable enough. 

We’ll need a power supply.  We’ve said that the traffic lights should be battery powered, so we’ll use 

batteries, but what type and how many?  A 4 × AAA battery holder was selected for the Gooligum traffic 

lights kit because it is a suitable size – square, and fits nicely at the base of the enclosure.  It would have 

been possible to use fewer batteries, but the weight of four AAA batteries adds stability.  These decisions 

aren’t always based on electrical considerations! 

However, 4 × AAA batteries supply a nominal 6.0 V (a little more for fresh alkaline cells), while the 

PIC12F508 has a maximum VDD of 5.5 V (the absolute maximum specified in the data sheet is 6.5 V).  To 

reduce the power supply to below 5.5 V, and also provide reverse polarity protection (to avoid destroying 

the PIC if the batteries are inserted backwards, a rectifier diode is added in line with the battery supply, as 

shown in the circuit diagram below: 

http://www.gooligum.com.au/kits/trafficlights/trafficlights.html
http://www.gooligum.com.au/kits/trafficlights/trafficlights.html
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We also need to replace idealised components, such as the switches shown in the earlier circuit diagrams, 

with real devices.  In this case, the “select” switch becomes a PCB-mounted slide switch, with additional 

“terminals” (shown as ‘B’ and ‘B1’) having no electrical connection but used for mounting.  Similarly, the 

“change” switch becomes a PCB-mounted pushbutton with four terminals connected in pairs, as shown. 

 

Sometimes, when “productionising” a design, components are added to make the design more robust, such 

as the diode used to protect the PIC from reverse or over-voltage.  But you may find that some parts can 

be omitted safely.  For example, as long as we’re certain that our code has been fully debugged and that 

there is no possibility that the switch input pins will be programmed as outputs, it’s ok to drop the resistors 

that we had previously placed between each switch and input pin.  For a truly robust design, you would 

never do this, but for a cheap toy where you’re certain that the program is production-ready and won’t be 

programmed in-circuit, it’s ok to remove these resistors. 

 

Normally, when driving LEDs, while it’s ok to drive a number of LEDs in series (where the current in 

each LED will be the same), each “string” of LEDs should have its own current-limiting resistor, because 

LEDs in parallel are not guaranteed to share current evenly.  However, our traffic lights will only ever 

have one LED lit at once.  And since only one LED will ever be lit at once, it is ok for them to share a 

single current-limiting resistor, as shown. 

This resistor has been reduced to 180 Ω to increase the LED current; with a power supply of 5.3 V (6.0 V 

supplied by the batteries minus a drop of 0.7 V across the diode) and an LED forward voltage of 1.8 V, the 

diode current will be (5.3 V – 1.8 V) / 180 Ω = 19.4 mA.  That’s well within the 25 mA that each pin can 

source or supply, while lighting the LEDs brightly. 

 

It’s good practice to tie any unused inputs high or low, instead of leaving them to “float”, especially for 

CMOS inputs (such as those on the PIC12F508), where floating inputs can lead to high current draw by 

the CMOS input circuitry.  So you may wonder why the GP3 input is left disconnected.  In fact, it’s not.  

Our program code enables weak pull-ups on all input pins with that facility, which on the 12F508 includes 

GP3.  So in fact the GP3 input isn’t left floating; it’s pulled to VDD internally. 

 

One of the advantages of working with microcontrollers is that it’s often possible to simplify the PCB 

design by remapping the I/O pins, making it easier to layout tracks and, for a simple circuit like this one, 

avoid the need for a double-sided board or links.  Of course, we do have some constraints: GP3 cannot be 

used as an output, and weak pull-ups and wake-up on change are only available on GP0, GP1 and GP3.  

However, by rearranging the pin assignments as shown, it was possible to design a simple, single-sided 

PCB with the switches and battery and LED connectors in appropriate locations. 

But note that another, more significant change was also made to the design to make the PCB layout 

process easier: the LEDs are now connected as active-low devices (the pin being pulled low to turn on the 

LED connected to it), instead of the active-high approach we’ve used so far. 

Although active-high is more intuitive (“make the pin ‘high’ to light the LED” is easy to grasp), the pins 

on a PIC12F508 can sink as much current as they can source.  There is no electrical reason to choose one 

approach over the other; both are perfectly valid.  And if having active-low LEDs simplifies the PCB 

layout, why not make that change to the design?  It’s easy to modify the software for active-low operation; 

simply set each output pin low, instead of high, to turn on that pin’s LED. 

When designing, you should consider both active-high and active-low operation to be valid, and be 

prepared to select either depending on electrical, component, or layout considerations. 
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This final version of the circuit is the same as that used in the Gooligum traffic lights kit.  To build it, you 

could supply and breadboard the parts yourself (note that it’s not possible to use the LEDs on the 

Gooligum baseline training board directly, because they are set up for active-high operation), or you could 

purchase the kit, or just the PCB, from www.gooligum.com.au. 

 

To modify the previous program to with the production hardware, we only need to update the pin 

assignments and invert the operation of all the “turn off/on LED” code, for active-low operation. 

But since this is now the final version, we should also increase the timeout from 10 minutes to a more 

realistic 60 minutes – or whatever you think is appropriate. 

 

XC8 implementation 

The program is the same as that in the previous step, except for the changes mentioned above. 

The pin assignments become: 

// Pin assignments 

#define LEDS    GPIO                // all LEDs 

#define G_LED   GPIObits.GP0        // individual LEDs 

#define Y_LED   GPIObits.GP4 

#define R_LED   GPIObits.GP5 

#define BUTTON  GPIObits.GP1        // pushbutton (active low) 

#define SELECT  GPIObits.GP2        // mode switch: 

#define SEL_auto    0               //  low = auto 

#define SEL_manual  1               //  high = manual 

 

And the timeout value is changed to 60 minutes: 

#define TIMEOUT 60                  // auto-off timeout (in minutes) 

 

 

We need to change the initialisation routine to reflect the fact that a different set of pins (GP0, GP4 and 

GP5) are now outputs, and that pins must now be set ‘high’ to turn off the LEDs: 

    // configure ports 

    GPIO = 0b111111;            // start with all LEDs off 

    TRIS = 0b001110;            // configure LED pins (GP0,4,5) as outputs 

 

 

And then throughout the rest of the code, to turn off all the LEDs we use: 

        LEDS = 0b111111;        // turn off all LEDs 

 

Note that we could instead use: 

        LEDS = 0b110001;        // turn off all LEDs 

 

because the LEDs are only connected to GP0, GP4 and GP5.  But that would be harder to maintain – we 

might reassign the pins again someday.  By setting every output pin high (this statement won’t affect any 

pins configured as inputs), we are sure to turn off every connected (active-low) LED. 

 

Finally to turn on a single LED we have, for example: 

        G_LED = 0;              // turn on green LED 

 

 

http://www.gooligum.com.au/kits/trafficlights/trafficlights.html
http://www.gooligum.com.au/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/
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Here is the complete, and final, C program listing: 

/************************************************************************ 

*                                                                       * 

*   Description:    Simple Traffic Lights                               * 

*                   Tutorial project 1, example 7                       * 

*                   (final production version)                          * 

*                                                                       * 

*   Automatic or manual operation, selected by slide switch             * 

*                                                                       * 

*   Automatic mode:                                                     * 

*       Sequence G->Y->R->G based on preset times                       * 

*       Power down (standby) on button press                            * 

*                                                                       * 

*   Manual mode:                                                        * 

*       G->Y, Y->R, R->G transitions on button press                    * 

*                                                                       * 

*   Mode can be changed through select switch at any time               *   

*                                                                       * 

*   Power on (wake from standby) on button press                        * 

*                                                                       * 

*   Power off (standby) on button press in automatic modes,             * 

*   or if no button press or switch change                              * 

*   during timeout period (60 mins)                                     * 

*                                                                       * 

************************************************************************* 

*                                                                       * 

*   Pin assignments:                                                    * 

*       GP0 = green  light (LED), active low                            * 

*       GP4 = yellow light (LED), active low                            * 

*       GP5 = red    light (LED), active low                            * 

*       GP1 = pushbutton switch (active low)                            * 

*       GP2 = slide switch (low = auto, high = manual mode)             * 

*                                                                       * 

************************************************************************/ 

 

#include <xc.h> 

#include <stdint.h> 

 

#include "stdmacros-XC8.h"  // DbnceHi() - debounce switch, wait for high 

                            // Requires: TMR0 at 256 us/tick 

 

/***** CONFIGURATION *****/ 

// int reset, no code protect, no watchdog, int RC oscillator 

#pragma config MCLRE = OFF, CP = OFF, WDT = OFF, OSC = IntRC 

 

// oscillator frequency for __delay_ms() 

#define _XTAL_FREQ  4000000      

 

// Pin assignments 

#define LEDS    GPIO                // all LEDs 

#define G_LED   GPIObits.GP0        // individual LEDs 

#define Y_LED   GPIObits.GP4 

#define R_LED   GPIObits.GP5 

#define BUTTON  GPIObits.GP1        // pushbutton (active low) 

#define SELECT  GPIObits.GP2        // mode switch: 

#define SEL_auto    0               //  low = auto 

#define SEL_manual  1               //  high = manual 

 

 

/***** CONSTANTS *****/ 
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#define G_TIME  12                  // time (secs) each colour is on for 

#define Y_TIME   3 

#define R_TIME  10 

 

#define G_START 0                   // seconds into cycle to turn on each LED 

#define Y_START G_TIME 

#define R_START Y_START + Y_TIME 

 

#define R_END   R_START + R_TIME    // total cycle length 

 

#define POLL_MS 50                  // polling interval (in ms) 

#define TIMEOUT 60                  // auto-off timeout (in minutes) 

 

 

/***** PROTOTYPES *****/ 

void AutoMode(void);                // automatic mode 

void ManualMode(void);              // manual mode 

void standby(void);                 // enter standby (low-power) mode 

 

 

/***** MAIN PROGRAM *****/ 

void main() 

{ 

    //*** Initialisation 

     

    // configure ports 

    GPIO = 0b111111;            // start with all LEDs off 

    TRIS = 0b001110;            // configure LED pins (GP0,4,5) as outputs 

 

    // configure wake-on-change, pull-ups and timer 

    OPTION = 0b00000111;        // configure wake-up on change and Timer0: 

             //0-------             enable wake-up on change (/GPWU = 0) 

             //-0------             enable weak pull-ups (/GPPU = 0) 

             //--0-----             timer mode (T0CS = 0) 

             //----0---             prescaler assigned to Timer0 (PSA = 0) 

             //-----111             prescale = 256 (PS = 111) 

             //                     -> increment every 256 us 

             //                        GP2 usable as an output 

              

    // wait for stable button release 

    // (in case it is still bouncing following wake-up on change) 

    DbnceHi(BUTTON);  

 

 

    //*** Main loop 

    for (;;) 

    { 

        // enter appropriate mode, depending on select switch 

        if (SELECT == SEL_auto)      

            AutoMode();             

        else 

            ManualMode();         

    }   

} 

 

 

/***** FUNCTIONS *****/ 

 

/***** Automatic mode *****/ 

void AutoMode(void) 

{ 
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    uint8_t     sec_cnt;            // seconds counter (for LED sequencing) 

    uint16_t    time_cnt = 0;       // timeout counter (seconds since reset)  

    uint8_t     p_cnt;              // polling loop counter 

     

    for (;;) 

    { 

        // light each LED in sequence 

        for (sec_cnt = 0; sec_cnt < R_END; sec_cnt++) 

        { 

            // light appropriate LED, depending on elapsed time 

            if (sec_cnt == G_START) 

            { 

                LEDS = 0b111111;        // turn off all LEDs 

                G_LED = 0;              // turn on green LED 

            } 

            if (sec_cnt == Y_START) 

            { 

                LEDS = 0b111111;        // turn off all LEDs   

                Y_LED = 0;              // turn on yellow LED 

            } 

            if (sec_cnt == R_START) 

            { 

                LEDS = 0b111111;        // turn off all LEDs   

                R_LED = 0;              // turn on red LED 

            } 

 

            // delay 1 second while polling pushbutton 

            // (repeat 1000/POLL_MS times) 

            for (p_cnt = 0; p_cnt < 1000/POLL_MS; p_cnt++)   

            { 

                __delay_ms(POLL_MS);    // polling interval 

             

                // check for button press 

                if (!BUTTON) 

                    standby();          // enter standby mode 

                 

                // check for mode change 

                if (SELECT == SEL_manual) 

                    return;             // exit automatic mode 

            } 

             

            // check for timeout 

            if (++time_cnt == TIMEOUT*60) 

                standby();          // enter standby mode 

        }         

    }  

} 

 

 

/***** Manual mode *****/ 

void ManualMode(void) 

{ 

    enum {GREEN, YELLOW, RED} state;    // state = currently-lit LED 

     

    uint16_t    time_cnt = 0;       // timeout counter (seconds since reset) 

    uint8_t     p_cnt;              // polling loop counter     

     

    // set initial state 

    state = GREEN;              // initial state is green, so 

    LEDS = 0b111111; 

    G_LED = 0;                  // turn on green LED (only) 
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    for (;;) 

    { 

        // delay 1 second while polling pushbutton 

        // (repeat 1000/POLL_MS times) 

        for (p_cnt = 0; p_cnt < 1000/POLL_MS; p_cnt++)   

        { 

            __delay_ms(POLL_MS);    // polling interval 

         

            // check for button press 

            if (!BUTTON)            // if button pressed 

            { 

                time_cnt = 0;           // reset timeout counter 

                 

                // light next LED in sequence 

                LEDS = 0b111111;        // turn off all LEDs 

         

                switch (state)          // next LED depends on current LED 

                { 

                    case GREEN:             // if green: 

                        state = YELLOW;     //  next state = yellow 

                        Y_LED = 0;          //  turn on yellow LED      

                        break; 

                 

                    case YELLOW:            // if yellow: 

                        state = RED;        //  next state = red 

                        R_LED = 0;          //  turn on red LED   

                        break; 

                

                    case RED:               // if red: 

                        state = GREEN;      //  next state = green 

                        G_LED = 0;          //  turn on green LED 

                        break; 

                } 

                // wait for stable button release 

                DbnceHi(BUTTON); 

            } 

             

            // check for mode change 

            if (SELECT == SEL_auto) 

                return;                 // exit manual mode 

        } 

             

        // check for timeout 

        if (++time_cnt == TIMEOUT*60) 

            standby();          // enter standby mode 

    }                      

} 

 

 

/***** Enter standby (low power) mode *****/ 

void standby(void) 

{ 

    LEDS = 0b111111;    // turn off all LEDs 

    DbnceHi(BUTTON);    // wait for stable button release 

    SLEEP();            // enter sleep mode     

} 
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MPASM implementation 

As with the C version, the assembly language program is the same as in the previous step, except for 

changes to the pin assignments, timeout, and inverted (active-low) outputs. 

The pin assignments become: 

; pin assignments 

    #define LEDS        GPIO        ; all LEDs 

    #define G_LED       GPIO,0      ; individual LEDs 

    #define Y_LED       GPIO,4     

    #define R_LED       GPIO,5       

    #define BUTTON      GPIO,1      ; pushbutton (active low)   

    #define SELECT      GPIO,2      ; mode switch (low = auto, high = manual) 

 

And the timeout value is changed to 60 minutes: 

    constant TIMEOUT = 60               ; auto-off timeout (in minutes) 

 

The initialisation routine is changed to reflect the fact that a different set of pins (GP0, GP4 and GP5) are 

now outputs, and that pins must now be set ‘high’ to turn off the LEDs: 

        ; configure port 

        movlw   b'111111' 

        movwf   GPIO                ; start with all LEDs off 

        movlw   b'001110'           ; configure LED pins (GP0,4,5) as outputs 

        tris    GPIO 

 

Throughout the rest of the code, to turn off all the LEDs we use: 

        movlw   b'111111'       ; turn off all LEDs 

        movwf   LEDS 

 

Since we only have LEDs on GP0, GP4 and GP5, we could instead use: 

        movlw   b'110001'       ; turn off all LEDs 

        movwf   LEDS 

 

But as noted for the C version, it would be harder to maintain.   

 

Finally to turn on a single LED we have, for example: 

        bcf     G_LED           ; turn on green LED 

 

This means that, to turn off all the LEDs except one, we have for example: 

        movlw   b'111111'       ; turn off all LEDs 

        movwf   LEDS             

        bcf     G_LED           ; turn on green LED 

 

That’s ok but a bit unwieldy.  You might prefer to define symbols to represent the port bit numbers 

corresponding to each LED, for example: 

; pin assignments 

    #define   LEDS      GPIO        ; all LEDs 

    #define   G_LED     GPIO,0      ; individual LEDs 

    constant nG_LED = 0             ;   (green on pin 0)  

    #define   Y_LED     GPIO,4   

    constant nY_LED = 4             ;   (yellow on pin 4) 

etc. 
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You could then write, to turn off all the LEDs except green, for example: 

        movlw   ~(1<<nG_LED)    ; turn on green LED (only) 

        movwf   LEDS             

 

That saves an instruction and is just as maintainable, but whether it’s clearer is really a matter of personal 

preference. 

 

Here is the complete, and final, assembly language program listing: 

;************************************************************************ 

;   Description:    Simple Traffic Lights                               * 

;                   Tutorial project 1, example 7                       * 

;                   (final production version)                          * 

;                                                                       * 

;   Automatic or manual operation, selected by slide switch             * 

;                                                                       * 

;   Automatic mode:                                                     * 

;       Sequence G->Y->R->G based on preset times                       * 

;       Power down (standby) on button press                            * 

;                                                                       * 

;   Manual mode:                                                        * 

;       G->Y, Y->R, R->G transitions on button press                    * 

;                                                                       * 

;   Mode can be changed through select switch at any time               *   

;                                                                       * 

;   Power on (wake from standby) on button press                        * 

;                                                                       * 

;   Power off (standby) on button press in automatic modes,             * 

;   or if no button press or switch change                              * 

;   during timeout period (60 mins)                                     * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP0 = green  light (LED), active low                            * 

;       GP4 = yellow light (LED), active low                            * 

;       GP5 = red    light (LED), active low                            * 

;       GP1 = pushbutton switch (active low)                            * 

;       GP2 = slide switch (low = auto, high = manual mode)             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F508 

    #include    <p12F508.inc>  

 

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

    #include    <stdmacros-base.inc>  ; DbnceHi - debounce sw, wait for high 

                                      ; (requires TMR0 running at 256 us/tick) 

                                      ; DelayMS - delay in milliseconds 

                                      ; (calls delay10) 

    EXTERN      delay10_R             ; W x 10ms delay 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; int reset, no code protect, no watchdog, int RC oscillator 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC 
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; pin assignments 

    #define LEDS        GPIO        ; all LEDs 

    #define G_LED       GPIO,0      ; individual LEDs 

    #define Y_LED       GPIO,4     

    #define R_LED       GPIO,5       

    #define BUTTON      GPIO,1      ; pushbutton (active low)   

    #define SELECT      GPIO,2      ; mode switch (low = auto, high = manual) 

 

 

;***** CONSTANTS 

    constant G_TIME = 12            ; time (seconds) each colour is on for 

    constant Y_TIME = 3            

    constant R_TIME = 10 

 

    constant G_START = 0            ; seconds into cycle to turn on each LED 

    constant Y_START = G_TIME 

    constant R_START = Y_START + Y_TIME 

 

    constant R_END = R_START + R_TIME   ; total cycle length 

 

    constant POLL_MS = 50               ; polling interval (in ms) 

    constant TIMEOUT = 60               ; auto-off timeout (in minutes) 

 

 

;***** VARIABLE DEFINITIONS 

VARS     UDATA 

sec_cnt     res 1               ; seconds counter (for LED sequencing) 

state       res 1               ; state = currently-lit LED 

            constant GREEN = 0 

            constant YELLOW = 1 

            constant RED = 2 

time_cnt    res 2               ; timeout counter (seconds since reset) 

p_cnt       res 1               ; polling loop counter 

 

        

 

;***** RC CALIBRATION 

RCCAL   CODE    0x0FF           ; processor reset vector 

        res 1                   ; holds internal RC cal value, as a movlw k 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; apply internal RC factory calibration  

        pagesel start 

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

delay10                         ; delay W x 10 ms 

        pagesel delay10_R 

        goto    delay10_R        

 

AutoMode                        ; automatic mode 

        pagesel AutoMode_R 

        goto    AutoMode_R 

         

ManualMode                      ; manual mode 

        pagesel ManualMode_R 

        goto    ManualMode_R 

 

 

;***** MAIN PROGRAM ***************************************************** 
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MAIN    CODE 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   b'111111' 

        movwf   GPIO                ; start with all LEDs off 

        movlw   b'001110'           ; configure LED pins (GP0,4,5) as outputs 

        tris    GPIO 

         

        ; configure wake-on-change, pull-ups and timer 

        movlw   b'00000111'     ; configure wake-up on change and Timer0: 

                ; 0-------          enable wake-up on change (/GPWU = 0) 

                ; -0------          enable weak pull-ups (/GPPU = 0) 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111) 

        option                  ;   -> increment every 256 us 

                                ;      GP2 usable as an output 

 

        ; wait for stable button release 

        ; (in case it is still bouncing following wake-up on change) 

        DbnceHi BUTTON  

         

 

;***** Main loop 

main_loop 

        ; enter appropriate mode, depending on select switch 

        pagesel AutoMode 

        btfss   SELECT          ; if automatic (low) 

        call    AutoMode     

        call    ManualMode      ; else (or then) enter manual mode 

 

        ;*** Repeat forever 

        pagesel main_loop 

        goto    main_loop    

 

 

;***** Standby (low power) mode 

standby 

        movlw   b'111111'       ; turn off all LEDs 

        movwf   LEDS 

        DbnceHi BUTTON          ; wait for stable button release  

        sleep                   ; enter sleep mode 

 

 

;***** SUBROUTINES ****************************************************** 

SUBS    CODE 

 

;***** Automatic mode 

AutoMode_R 

        ; initialise variables 

        banksel time_cnt 

        clrf    time_cnt        ; time_cnt = 0 

        clrf    time_cnt+1 

 

auto_start 

        ; initialise seconds count (used to light each LED in sequence) 

        banksel sec_cnt         ; sec_cnt = 0 

        clrf    sec_cnt 
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auto_loop         

        ;*** Light appropriate LED, depending on elapsed time  

        banksel sec_cnt 

        movf    sec_cnt,w       ; if sec_cnt = G_START 

        xorlw   G_START 

        btfss   STATUS,Z 

        goto    auto_yellow 

        movlw   b'111111'       ;   turn off all LEDs 

        movwf   LEDS             

        bcf     G_LED           ;   turn on green LED 

auto_yellow 

        movf    sec_cnt,w       ; if sec_cnt = Y_START 

        xorlw   Y_START 

        btfss   STATUS,Z 

        goto    auto_red 

        movlw   b'111111'       ;   turn off all LEDs 

        movwf   LEDS 

        bcf     Y_LED           ;   turn on yellow LED 

auto_red 

        movf    sec_cnt,w       ; if sec_cnt = R_START 

        xorlw   R_START 

        btfss   STATUS,Z 

        goto    auto_red_end 

        movlw   b'111111'       ;   turn off all LEDs 

        movwf   LEDS 

        bcf     R_LED           ;   turn on red LED 

auto_red_end 

                         

        ;*** Delay 1 second while polling pushbutton 

        banksel p_cnt 

        movlw   1000/POLL_MS    ; loop 1s/(POLL_MS/loop) times 

        movwf   p_cnt 

auto_poll_loop 

        DelayMS POLL_MS         ; polling interval 

        ; check for button press 

        btfss   BUTTON          ; if button down (low) 

        goto    standby         ;   enter standby mode 

        ; check for mode change 

        btfsc   SELECT          ; if manual mode selected (high) 

        retlw   0               ;   exit automatic mode 

        ; end polling loop 

        decfsz  p_cnt,f 

        goto    auto_poll_loop     

 

        ;*** Check for timeout 

        banksel time_cnt 

        incf    time_cnt,f      ; increment time count 

        btfsc   STATUS,Z 

        incf    time_cnt+1,f 

        movlw   TIMEOUT*60/256  ; if timeout reached  

        xorwf   time_cnt+1,w    ; (high byte comparison only) 

        btfsc   STATUS,Z 

        goto    standby         ;   enter standby mode 

         

        ;*** End seconds count loop 

        banksel sec_cnt 

        incf    sec_cnt,w       ; sec_cnt = sec_cnt+1 

        movwf   sec_cnt 

        xorlw   R_END           ; loop until sec_cnt = R_END 

        btfss   STATUS,Z 

        goto    auto_loop 



© Gooligum Electronics 2013  www.gooligum.com.au 

Introductory 8-bit PIC Project 1: Traffic Lights  Page 55 

        ;*** Repeat (until mode change or timeout) 

        goto    auto_start    

                                

 

;***** Manual mode 

ManualMode_R 

        ; initialise variables 

        banksel time_cnt 

        clrf    time_cnt        ; time_cnt = 0 

        clrf    time_cnt+1 

         

        ; set initial state 

        banksel state         

        movlw   GREEN           ; initial state is green, so 

        movwf   state 

        movlw   b'111111'       ; turn off all LEDs 

        movwf   LEDS 

        bcf     G_LED           ; turn on green LED (only)     

            

man_start 

        ;*** Delay 1 second while polling pushbutton 

        banksel p_cnt 

        movlw   1000/POLL_MS    ; loop 1s/(POLL_MS/loop) times 

        movwf   p_cnt 

man_poll_loop 

        DelayMS POLL_MS         ; polling interval 

        ; check for button press 

        btfsc   BUTTON          ; if button pressed (low) 

        goto    man_poll_end    

        ; 

        ; BUTTON PRESSED 

        ; 

        clrf    time_cnt        ;   reset timeout counter 

        clrf    time_cnt+1   

        ; 

        ; Light next LED in sequence 

        ; 

        movlw   b'111111'       ;   turn off all LEDs 

        movwf   LEDS 

        ; 

        ; test current state, to determine next LED to light 

        banksel state 

        movlw   GREEN           ;   if green: 

        xorwf   state,w 

        btfss   STATUS,Z 

        goto    man_yellow     

        movlw   YELLOW          ;       next state = yellow 

        movwf   state 

        bcf     Y_LED           ;       turn on yellow LED 

        goto    man_red_end 

man_yellow        

        movlw   YELLOW          ;   if yellow: 

        xorwf   state,w 

        btfss   STATUS,Z 

        goto    man_red    

        movlw   RED             ;       next state = red 

        movwf   state 

        bcf     R_LED           ;       turn on red LED     

        goto    man_red_end               

man_red 

        movlw   RED             ;   if red: 
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        xorwf   state,w 

        btfss   STATUS,Z 

        goto    man_red_end       

        movlw   GREEN           ;       next state = green 

        movwf   state 

        bcf     G_LED           ;       turn on green LED      

man_red_end   

        ; 

        ; Wait for stable button release                

        DbnceHi BUTTON   

          

man_poll_end 

        ; check for mode change 

        btfss   SELECT          ; if automatic mode selected (low) 

        retlw   0               ;   exit manual mode 

        ; end polling loop 

        decfsz  p_cnt,f 

        goto    man_poll_loop     

 

        ;*** Check for timeout 

        banksel time_cnt 

        incf    time_cnt,f      ; increment time count 

        btfsc   STATUS,Z 

        incf    time_cnt+1,f 

        movlw   TIMEOUT*60/256  ; if timeout reached  

        xorwf   time_cnt+1,w    ; (high byte comparison only) 

        btfsc   STATUS,Z 

        goto    standby         ;   enter standby mode 

         

        ;*** Repeat (until mode change or timeout) 

        goto    man_start    

 

 

        END 

 

         

Conclusion 

Who would have thought that toy traffic lights could be so complicated? 

They’re not really – but we’ve seen in this project that even a simple device may have a number of 

features, and that, when developing the device, it can make sense to start with the most basic functionality, 

get that working, and then add one feature at a time.  And that, if your device has more than one operating 

mode, it can be best to implement each mode separately, and then combine them later. 

We also saw, when we added pushbutton polling to the basic automatic mode, that to add an apparently 

simple feature can mean having to rethink our approach and restructure the program. 

Finally, we saw that, when taking the step from prototype to production, it may make sense to reassign the 

pins allocated to various I/O functions, and perhaps even change the way that those functions work – such 

as the change from active-high to active-low LED operation. 

And if you’re an assembly language programmer, you might have noticed that the C versions of the 

examples are shorter and easier to follow than the assembly language versions!  C programmers will of 

course already have known this… 

 

 



© Gooligum Electronics 2011  www.gooligum.com.au 

 

Simple minute timer project guide  Page 1 

Simple Minute Timer 

Construction and Operation Guide 

 

Most commercial household timers have two or three buttons which must be held down or repeatedly 

pressed to enter the time, which can be a tedious process, and an LCD display, which can be difficult 

to see in poor lighting. 

This compact, hand held, battery-powered timer solves those problems by using a keypad to allow the 

time to simply be typed in directly, and a bright LED display that’s easily visible in bright or dim 

light.  It also has a penetrating, yet not too loud, alarm 

Features 

 Bright four-digit LED display, showing hours and minutes 

 Duration up to 99 hours and 99 minutes 

 Alarm (piezo speaker) 

 Flashing seconds indicator 

 Simple keypad operation 

 Timer can be paused 

 Battery powered (2 × AA batteries) 

 Turns itself off (goes to sleep) when not in use 

 Low-battery indication 

 Batteries easily changed – no need to open the case. 

How it works 

The circuit, built around a PIC16F690 microcontroller, is shown on the next page. 

Two AA batteries provide a nominal 3V power supply.  The PIC can operate down to 2.0V, so there 

is no need for regulation.  However, as the battery voltage falls, the display will become dimmer.  A 

“low battery” condition is indicated (by turning on the right-most decimal point) when the power 

supply falls to 2.4 V. 

There is no power switch.  Power is always supplied to the PIC, but it draws less than 10 µA when in 

standby mode, where the display is blanked and only the PIC’s Timer1 oscillator, driven by the 

32.768 kHz crystal (loaded by the two 27 pF capacitors), is running.  The batteries should be able to 

supply this standby current for years. 

A 100 nF bypass capacitor helps stabilise the power supply to the PIC.   

 

The display module consists of four common-cathode 7-segment LED displays with the anodes (one 

per segment) connected in parallel.  These anodes are driven directly by the 16F690, via 47 Ω 

resistors, which limit the current in each segment to 19 mA, assuming a 2.0 V forward voltage drop 

across each segment LED and an output high voltage on the PIC of 2.9 V.  This is well within the 

PIC’s maximum current ratings for each pin and in total. 

NPN transistors, driven via 1 kΩ resistors, are used to connect each display cathode (one per digit, 

and another for the ‘:’) to ground. 
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The displays are multiplexed; each transistor is turned on, one at a time, and the appropriate pattern 

output to the anode pins, to turn on the LED segments corresponding to a single digit to be displayed. 

A timer-driven interrupt repeats this process almost 1000 times per second, meaning that, although 

only one digit is ever displayed at once, the overall display (all four digits plus ‘:’) is refreshed almost 

200 times per second; quickly enough that each digit appears to be continuously on. 

 

The keypad consists of a four row × three column matrix of pushbutton switches. 

Three of the NPN transistors are used to pull the keypad columns low.   Making the display-driving 

transistors do double-duty like this saves on transistors and PIC pins. 

The keypad rows are connected to PIC pins, configured as digital inputs, with internal pull-ups 

enabled.  This means that each pin will normally read high (or ‘1’) until one of the keypad buttons, in 

whichever column is being pulled low, is pressed.  By pulling each column low in turn, and reading 

the row inputs each time (‘scanning’ the keypad), it is possible to determine which keys are being 

pressed. 

This scanning process is performed by the same interrupt routine which updates the display.  Every 

1.024 ms, it turns on one transistor, which pulls one display cathode and, for three of the transistors, 

one keypad column low.  It then reads the keypad inputs (if applicable; not all of the transistors are 

connected to the keypad) and outputs the appropriate pattern for each digit to the display anodes.  It 

also sounds the alarm, if it is enabled. 

 

The alarm is a piezo speaker, driven by two PIC pins configured as complementary (one is the inverse 

of the other) PWM outputs, running at 4 kHz.  Using complementary outputs in this way doubles the 

voltage seen by the piezo, significantly increasing the volume. 
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The PIC’s Timer1 oscillator is used to drive the 32.768 kHz crystal, triggering an interrupt every two 

seconds, which in turn keeps track of the time. 

As mentioned above, the Timer1 oscillator continues to run when the device is in standby (or sleep) 

mode.  The PIC is configured to wake from sleep every two seconds, when TMR1 overflows.   If the 

‘*’ key is pressed, the PIC stays awake and the minute timer comes back to life; otherwise it goes 

back to sleep for another two seconds. 

Construction 

The kit contains two single-sided printed circuit boards, connected by ribbon cables – a main board 

holding the microcontroller, and a display board on which the display and keypad are mounted.  If 

they are delivered as a single board, you will need to snap along the scoring to separate them. 

The main board is shown below, with a component overlay diagram on the right. 

It is often easiest to build up a PCB by starting with the lowest-profile components, so begin by 

soldering the resistors to the main board, followed by the capacitors and IC socket, and then the 

crystal and transistors – orienting them as shown in the overlay.  Finally, install the buzzer.  Note that 

the buzzer sits approximately 1 mm off the board. 

 

The display board, with the display module fitted, and its component overlay, are shown below. 

 

 

 

 

 

 

 

 

 

 

 

You can solder the 4-digit display module to the display board at this time, but before going further 

you need to prepare the enclosure. 
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The kit is designed to fit into a Hammond 1593Q hand-held instrument case, or equivalent.  These 

cases include an inlay in the top section, a removable end panel (useful when they are used to build a 

remote control) and a battery compartment with a sliding door. 

Print the drilling guide (downloadable from 

www.gooligum.com.au) and use a water-

soluble glue to paste it to the inlay, with the 

LED display toward the removable panel 

end, as shown. 

Use the guide to drill 4 x 2.5mm holes for 

the keypad mounting posts and to cut holes 

for the 4-digit LED display and keypad. 

The cut-outs can be made fairly easily by 

drilling a series of small holes around the 

inside of the lines, cutting between the 

holes with a craft knife. 

The slot for the keypad can be left rough, as it won’t be visible. 

Use a small file to slowly expand the display cut-out, regularly checking it against the display board 

until the display just fits, with the PCB lined up with the two mounting holes in the enclosure.  Note 

that the other two mounting posts were within the display cut-out area and will have been be removed. 

Wash off the paper drilling guide with soapy water.   

Temporarily press the keypad into place – it should be a tight fit – to check that the keypad pins 

correctly align with the holes in the display PCB and that the keypad pins reach far enough through 

the PCB to be soldered.  They should just reach the copper layer.  This is enough to make a good 

connection to each pad if you let the solder flow long enough.  But to make certain, you may wish to 

lengthen the keypad pins by soldering solid wires (e.g. resistor lead cut-offs) to each. 

Put a drop of glue (any suitable for plastics is ok, but “super glue” works well) on each keypad 

mounting hole, and press the keypad firmly into place. 

You should also put a little of the same glue around the inside of the display cut-out, to glue the LED 

module to the case.  A smear on each inside edge is plenty, if you’ve done a neat job of filing the cut-

out to size. 

Install the display PCB, with the display protruding a little past the outside of the case – just far 

enough to make it possible to solder the keypad pins.  You can now screw the display PCB to the 

mounting holes, as shown. 

http://www.gooligum.com.au/
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The keypad pins can now be soldered to the 

display PCB. 

 

Prepare the three lengths of flat ribbon cable 

(8-way, 5-way, and 4-way), each around 5 cm 

long.  Making them longer can make assembly 

a little easier, but if they are too long it will be 

difficult to fit them into the enclosure – there’s 

not a lot of room in there! 

Solder the ribbon cables to the pads on the 

display board, as shown. 

 

It is easiest to install the (programmed) 

PIC16F690 in its socket now, before the 

ribbon cables are connected to the main board. 

 

You can now solder the ribbon cables to the 

main board, connecting the two PCBs together.  

For each connection, pin 1 (square) on the 

display board connects to pin 1 on the main 

board.  The cables remain straight, not twisted, 

as shown. 

 

Next, affix the battery holder to the case. 

You can use some strong plastics glue to affix 

the holder to the battery compartment in the 

bottom half of the case, as shown here – but it 

has to be a very strong, specialised plastics 

glue, which “welds” the surfaces together, 

because it has to withstand the force of 

batteries being inserted and removed. 

Unlike the keypad and display module, “super 

glue” is NOT good enough here! 

 

A more robust solution is to use double-sided 

adhesive tape to attach the battery holder to the 

top half of the case, above the battery 

compartment. 

To do so, you must cut off the keypad 

mounting posts (side cutters do a good job), 

and thread the battery holder leads past the 

enclosure mounting pillars, as shown. 
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Cut the battery holder leads to around 9 cm long and solder them to the pins marked ‘+’ and ‘-’ on the 

main PCB. 

 

It is now possible to test the timer – see the operating instructions, below. 

 

If the timer works correctly, you can go ahead and screw the main board to the bottom of the 

enclosure, using the four PCB mounting posts.  You will need to swivel the top part of the enclosure 

out of the way as shown below – hopefully you’ve made the cables long enough! 

 

 

Tuck up the cables and then screw the enclosure 

halves together. 

Remember to install the end panel first! 

 

You can now test the timer again. 

If the alarm is not loud enough, you can make it 

louder by drilling some holes in the end panel – 

after removing it from the case of course! 

 

The full kit includes the top panel artwork, printed on an 

adhesive label.  Alternatively, you can print the artwork from 

the PDF file available for download from 

www.gooligum.com.au. 

Cut out the front label, removing the cut-outs for the display 

and keyboard with a sharp hobby knife.  To make it easier to 

fit, you should cut around the outside of the lines. 

You can now affix the label to the inlay section of the top 

panel, as shown. 

 

Your timer is now ready to use! 

 

 

http://www.gooligum.com.au/
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Operation 

Turn the minute timer on by pressing and holding the ‘*’ key. 

Use the numeric keypad to enter the time.  The two digits to the right of the ‘:’ represent hours and the 

two on the left are minutes.  The maximum time you can enter is 99 hours and 99 minutes. 

For example, if you want the alarm to sound after ninety minutes, type ‘90’.  Or equivalently, you 

could type ‘130’, which will show as “1:30”, or one hour and thirty minutes. 

To start the countdown, press ‘#’.  The ‘:’on the display will flash, to show that the timer is running. 

To pause the timer, press ‘#’ again.  The ‘:’ will stop flashing and the time will stop counting down.  

To resume the countdown, simply press ‘#’ again. 

When the alarm sounds, press ‘*’ or ‘#’ to silence it.  Or wait twenty seconds and it will stop by itself. 

Pressing ‘*’ at any time will stop the timer and clear the display to “0:00”.  This is useful if you want 

to abort the countdown, or if you make a mistake when entering the time. 

If the right-most decimal point lights, the batteries are getting low and it’s time to change them! 

To turn the timer off (place it in standby mode), press and hold the ‘*’ key. 

It will turn itself off, if no key is pressed for five minutes while the timer is stopped on “0:00”. 

Parts List 

1 Pre-programmed PIC16F690-I/P 

1 32768 Hz “watch” crystal (12.5 pF load capacitance) 

2 27 pF ceramic capacitors 

1 100 nF monolithic ceramic capacitor 

8 47 Ω 1/4W resistors 

9 1 kΩ 1/4W resistors 

5 BC337 NPN transistors 

1 10 mm 4-digit common cathode 7-segment LED display module (Lite-On LTC-4727JS) 

1 3 × 4 front-mount keypad (Grayhill 96AB2-152-F) 

1 13 mm PCB ext drive piezo sounder, 5 mm spacing (e.g. muRata PKM13EPYH4000) 

1 20-pin DIP IC socket 

150 mm 8-way ribbon cable (or any suitable to make up 50 mm lengths of 8-way, 5-way and 4-way) 

1 2-way AA flat battery holder with fly leads 

1 Hand-held instrument case with battery compartment, at least 112 mm × 66 mm × 28 mm 

(e.g. Hammond 1593Q) 

6 #4 or M2.5, 6 mm panhead machine screws 

 Double-sided foam tape (optional, to mount battery holder – see text) 

 



(c) HaPe Timer1.c 18 December 2013 22:44

/************************************************************************

*                                                                       *

*   Filename:      Timer1                                               *

*   Date:          6/12/11                                              *

*   File Version:  1.6                                                  *

*                                                                       *

*   Author:        David Meiklejohn                                     *

*   Company:       Gooligum Electronics                                 *

*                                                                       *

*************************************************************************

*                                                                       *

*   Architecture:  Midrange PIC                                         *

*   Processor:     16F690                                               *

*   Compiler:      HI-TECH C v9.83 (Lite mode)                          *

*                                                                       *

*************************************************************************

*                                                                       *

*   Files required: none                                                *

*                                                                       *

*************************************************************************

*                                                                       *

*   Description:    Simple minute timer                                 *

*                                                                       *

*   Sounds alarm when input time (hh:mm) counts down to 0:00            *   

*                                                                       *

*   Timing is derived from 32.768 kHz crystal driving Timer1            *        

*                                                                       *

*   Time is entered using 0-9 keys on 3x4 numeric keypad,               *

*   with each keystroke displayed as a digit on the right,              *

*   pushing existing digits to the left.                                *

*                                                                       *

*   Timer is started and stopped using '#' key                          *

*                                                                       *

*   Display ':' flashes at 1 Hz when timer is running,                  *

*               steady when timer not running.                          * 

*                                                                       *

*   Alarm sounds when timer counts down to "0:00"                       *

*   Alarm stops sounding when '*' or "#' is pressed,                    *

*   or after time-out period of 20 seconds                              *

*                                                                       *

*   '*' resets time to "0:00" and stops timer                           *

*   and turns off alarm (if it is sounding)                             *

*                                                                       *

*   Holding '*' down for 2 secs (at any time),                          *

*   or not pressing any key for 5 mins (while display is zeroed)        *

*   places timer into sleep mode                                        *

*                                                                       *

*   Pressing '*' again (after release) wakes the device                 *

*                                                                       *

*   Low battery condition (Vdd < 2.4 V)                                 *

*     indicated by decimal point on digit 4                             *

*                                                                       *

*************************************************************************

*                                                                       *

*   Pin assignments:                                                    *

*       RB4-6, RA1          = keypad row inputs (active low)            *

*       RC2,7, RB7          = keypad column enables (active high)       *
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*       RA0-2, RB4-6, RC0,1 = 7-segment display bus (active high)       *

*       RB7, RC2,3,6,7      = display segment enables (active high)     *

*       P1A, P1B            = piezo speaker                             *

*       OSC1, OSC2          = 32.768 kHz crystal                        *

*                                                                       *

************************************************************************/

#include <htc.h>

/***** CONFIGURATION *****/

#ifdef __DEBUG

//  no code or data protect, no brownout detect, no watchdog, no power-up timer

//  int reset, int clock with I/O, failsafe clock monitor, int/ext switch disabled   

__CONFIG(CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF & PWRTE_OFF &

MCLRE_OFF & FOSC_INTRCIO & FCMEN_ON & IESO_OFF);

#else

//  code and data protect, no brownout detect, no watchdog, power-up timer

//  int reset, int clock with I/O, failsafe clock monitor, int/ext switch disabled   

__CONFIG(CP_ON & CPD_ON & BOREN_OFF & WDTE_OFF & PWRTE_ON &

MCLRE_OFF & FOSC_INTRCIO & FCMEN_ON & IESO_OFF);

#endif

// *** Pin assignments

// keypad row inputs (active low):

#define KP_R1       RB6         // row 1 (1,2,3), pin 1

#define KP_R2       RB5         // row 2 (4,5,6), pin 2

#define KP_R3       RB4         // row 3 (7,8,9), pin 3

#define KP_R4       RA1         // row 4 (*,0,#), pin 4

// keypad column enables (active high):

#define  KP_C1      RC7         // column 1 (1,4,7,*), pin 5

#define sKP_C1      sPORTC.RC7      

#define  KP_C2      RB7         // column 2 (2,5,8,0), pin 6

#define sKP_C2      sPORTB.RB7 

#define  KP_C3      RC2         // column 3 (3,6,9,#), pin 7

#define sKP_C3      sPORTC.RC2

// 7-segment display digit enables (active high):

#define  D1_EN      RC3         // 1: 10 hours

#define sD1_EN      sPORTC.RC3

#define  D2_EN      RC6         // 2:  1 hours

#define sD2_EN      sPORTC.RC6

#define  D3_EN      RB7         // 3: 10 mins 

#define sD3_EN      sPORTB.RB7

#define  D4_EN      RC2         // 4:  1 mins 

#define sD4_EN      sPORTC.RC2

#define  CL_EN      RC7         // 5: colon and indicator

#define sCL_EN      sPORTC.RC7

// 7-segment display indicators (active high):

#define  DP         RB6         // decimal point (on each digit)

#define sDP         sPORTB.RB6

#define  L1         RA2         // colon top

#define sL1         sPORTA.RA2

#define  L2         RA0         // colon bottom
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#define sL2         sPORTA.RA0

#define  L3         RC0         // indicator LED

#define sL3         sPORTC.RC0

// 7-segment display bus TRIS masks (for enabling/disabling display output / keypad row pins)

#define t7SEG_A     0b000111    // RA0-2

#define t7SEG_B     0b01110000  // RB4-6

#define t7SEG_C     0b00000011  // RC0-1

/***** SYMBOLS *****/

// key codes (returned by keypad scan function)

#define KEY_STAR    10      // '*' key

#define KEY_HASH    11      // '#' key

#define KEY_NONE    12      // no key pressed

// display codes (sent to digit display function)

#define DSP_STAR    10      // '*'

#define DSP_HASH    11      // '#'

#define DSP_BLANK   12      // blank digit

/***** CONSTANTS *****/

#define MAX_DB_CNT      50/5        // key debounce period = 50 ms / 5 ms per sample

#define MAX_STAR_CNT    2000/5      // time to press '*' key to enter standby

//  = 2 sec ( / 5 ms per count)

#define ALM_TIMEOUT     20          // seconds to sound alarm   

#define KEY_TIMEOUT     300         // seconds to enter standby if no key pressed   

#define MINVDD          2400        // minimum Vdd in mV (for low battery test)

/***** FUNCTION PROTOTYPES *****/

void initialise(); // initialise processor

void set7seg(char digit); // display digit on 7-segment display 

/***** GLOBAL VARIABLES *****/

// variables updated by ISR

volatile unsigned char db_key = KEY_NONE; // most recent debounced keypress:

//      0-9 = '0' to '9'

//      KEY_STAR = '*',

//      KEY_HASH = '#'

//      KEY_NONE = no key pressed

volatile bit key_change = 0; // keypad state change flag: 

//      1 = 

changed                                       

volatile unsigned int press_cnt = 0; // measures keypress time

// (increments every 5 ms while any key is 

held down, 

//  cleared on release)

volatile unsigned char digit[4] = {0,0,0,0}; // display digits

volatile unsigned char hrs = 0; // time remaining

volatile unsigned char mins = 0;

volatile unsigned char secs = 0;
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volatile unsigned int t_secs = KEY_TIMEOUT; // timeout counter (seconds)

// flags

volatile bit buzz_on = 0; // buzzer state (1 = on)

volatile bit timer_on = 0; // timer state (1 = countdown active)

volatile bit standby = 0; // sleep mode (1 = in standby mode)

volatile bit low_bat = 0; // low battery detected (1)

// shadow registers

volatile union { // PORTA

unsigned char byte;

struct {

unsigned RA0 : 1;

unsigned RA1 : 1;

unsigned RA2 : 1;

unsigned RA3 : 1;

unsigned RA4 : 1;

unsigned RA5 : 1;

};

} sPORTA;

volatile union { // PORTB

unsigned char byte;

struct {

unsigned : 4;

unsigned RB4 : 1;

unsigned RB5 : 1;

unsigned RB6 : 1;

unsigned RB7 : 1;

};

} sPORTB;

volatile union { // PORTC

unsigned char byte;

struct {

unsigned RC0 : 1;

unsigned RC1 : 1;

unsigned RC2 : 1;

unsigned RC3 : 1;

unsigned RC4 : 1;

unsigned RC5 : 1;

unsigned RC6 : 1;

unsigned RC7 : 1;

};

} sPORTC;

/***** MAIN PROGRAM *****/

void main()

{

unsigned char key; // current keypress

initialise(); // configure ports and 

timers                                                                                    
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// enable interrupts

PEIE = 1; // enable peripheral 

ei(); //   and global interrupts 

// Main loop  

for (;;)

{

// handle any key presses (detected by TMR0 interrupt)

if (key_change)

{

key = db_key; // get new keystroke

key_change = 0; //   clear change flag

t_secs = KEY_TIMEOUT; //   restart keypad timeout counter

switch (key) // and handle it:

{

case KEY_NONE: // key release:

break; // do nothing

case KEY_HASH: // '#' key:

if (buzz_on)

buzz_on = 0; // turn off buzzer if sounding

else

timer_on = !timer_on; // else toggle timer on/off

break;

case KEY_STAR: // '*' key:

timer_on = 0; // disable and

digit[0] = 0; //  zero timer 

digit[1] = 0;

digit[2] = 0;

digit[3] = 0;

hrs = 0;

mins = 0;

buzz_on = 0; // turn off buzzer

break;

default: // other keys (0-9):

digit[0] = digit[1]; // show new digit on display

digit[1] = digit[2]; //   shift digits to the left

digit[2] = digit[3];

digit[3] = key; //   display new key press on right

hrs = digit[0]*10 + digit[1]; // update time from new digits

mins = digit[2]*10 + digit[3];

secs = 60; // (new time is shown a full minute 

before it decrements)

break;

}

}

// update display digits with current time

//  NOTE: time is maintained by TMR1 interrupt

//        digits are displayed by TMR0 interrupt

digit[0] = (unsigned)hrs / 10;

digit[1] = (unsigned)hrs % 10;

digit[2] = (unsigned)mins / 10;

digit[3] = (unsigned)mins % 10;
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// check for shutdown ('*' held down or keypad timeout)

if ((db_key == KEY_STAR && press_cnt > MAX_STAR_CNT) || t_secs == 0)

{

// blank display until key release

buzz_on = 0; // turn off alarm

standby = 1; // flag standby mode (will blank display)

digit[0] = 0; // zero timer 

digit[1] = 0;

digit[2] = 0;

digit[3] = 0;

hrs = 0;

mins = 0;

while (db_key != KEY_NONE) // wait for key release

;

// prepare to enter standby mode

TMR2ON = 0; // disable PWM 

TMR1 = 0; // reset Timer1 and interrupt flag,

TMR1IF = 0; //   so that Timer1 wakeup will be 2 secs 

from now

T0IE = 0; // ensure no wake-ups from Timer0

di(); // disable interrupts

// sleep until '*' is pressed again

do

{

// minimise power

PORTA = 0; // drive all pins low

TRISA = 0;

PORTB = 0;

TRISB = 0;

PORTC = 0;

TRISC = 0;

// enter standby mode (for 2 secs)           

SLEEP(); // sleep until woken by Timer1

TMR1IF = 0; // clear interrupt flag for next time

// setup to read '*' key

TRISA = t7SEG_A; // make display bus / keypad row pins inputs

TRISB = t7SEG_B;

TRISC = t7SEG_C;

KP_C1 = 1; // enable keypad column 1 ('*' is C1, R4)

}

while (KP_R4); // sleep again if '*' not pressed

db_key = KEY_STAR; // record keypress

// restart display and keyboard scanning

initialise(); // reset processor state  

ei(); // re-enable interrupts   

standby = 0; // clearing standby mode will re-enable 

display

// wait for '*' key release

while (db_key != KEY_NONE)

;
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t_secs = KEY_TIMEOUT; // restart keypad timeout counter      

}

}

}

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

static unsigned char mpx_cnt = 0; // multiplex counter

static unsigned char db_cnt = MAX_DB_CNT; // debounce counter

static unsigned char key; // current keypress    

if (T0IF)

{

// *** Service Timer0 interrupt

//

//  This interrupt is triggered by a TMR0 overflow every 1.024 ms

//

//  Displays current time on 4-digit 7-segment LED display

//      Implements multiplexing; on successive interrupts:

//          digit[0-3] output to digit 1-4

//          ':' turned on, or flashed when timer enabled

//      Entire display refresh every 5 interrupts (5.12 ms)

//      Output changes are made via shadow registers

//

//  Scans keypad

//      Each column read in turn, during display multiplexing "loop"

//      Scanning complete after 5 interrupts (5.12 ms)

//      Debounce performed at end of scan

//      -> updates keypad variables:

//          db_key      (current debounced keypad state)

//          key_change  (new keypress or release indication)

//          press_cnt   (time current key has been held down)

//

//  Sounds alarm

//      Enables PWM (piezo) outputs, every 0.5 s, if alarm is on

//

//  Displays indicator if battery is low

//

//  Blanks display on shutdown (standby)

//

//  Copies shadow registers to output ports

//

//

T0IF = 0; // clear interrupt flag

// Setup for keypad read

//   blank display during keypad read

//   (re-enable display output at end of ISR)

TRISA |= t7SEG_A; // make display bus / keypad row pins inputs

TRISB |= t7SEG_B;

TRISC |= t7SEG_C;

// Multiplexing "loop" used to:

//   display digits on 4 x 7-segment LED display

//   handle ':' flashing
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//   scan and debounce keypad

//   handle alarm

// 

//   mpx_cnt determines current keypad column to read and/or digit to display

//        

switch (mpx_cnt)

{

case 0:

// setup for keypad read cycle

key = KEY_NONE;

// read keypad column 1

// (pulled low for ':' display during last interrupt)

if (!KP_R1) key = 1;

if (!KP_R2) key = 4;

if (!KP_R3) key = 7;

if (!KP_R4) key = KEY_STAR;

// display digit 1

if (digit[0] > 0) // output digit 1

set7seg(digit[0]); // (blank if leading zero)

else

set7seg(DSP_BLANK);

sD1_EN = 1; // enable digit 1 

// sound alarm (if enabled)

if (buzz_on && TMR1 & 1<<14) // sound alarm each second if alarm flag 

set

{ // (TMR1<14> cycles at 1 Hz)

TRISC4 = 0; //    enable PWM (piezo) outputs to 

sound alarm

TRISC5 = 0;

}

else

{

TRISC4 = 1; //    disable PWM outputs to silence alarm

TRISC5 = 1;

}

break;

case 1:

// display digit 2

set7seg(digit[1]); // output digit 2

sD2_EN = 1; // enable digit 2 

break;

case 2:

// display digit 3

set7seg(digit[2]); // output digit 3

sD3_EN = 1; // enable digit 3 

break;

case 3:
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// read keypad column 2

// (pulled low for digit 3 display during last interrupt)

if (!KP_R1) key = 2;

if (!KP_R2) key = 5;

if (!KP_R3) key = 8;

if (!KP_R4) key = 0;

// display digit 4

set7seg(digit[3]); // output digit 4

sD4_EN = 1; // enable digit 4 

// low battery indication

if (low_bat) // if low battery,

sDP = 1; //   turn on decimal point on digit 4

break;

case 4:

//  read keypad column 3

// (pulled low for digit 4 display during last interrupt)

if (!KP_R1) key = 3;

if (!KP_R2) key = 6;

if (!KP_R3) key = 9;

if (!KP_R4) key = KEY_HASH;

// scan is complete, so debounce keypad

key_change = 0;

if (key == db_key) // if no change

db_cnt = MAX_DB_CNT; //   reset debounce count

else // if change

if (--db_cnt == 0) //   when change is stable

{

db_key = key; //      accept it

key_change = 1; //      flag it

db_cnt = MAX_DB_CNT; //      reset debounce count

}

// update key press counter

if (key_change) // if a new key is pressed or released

press_cnt = 0; //   reset the count

else

if (db_key != KEY_NONE) // if a key is currently pressed

press_cnt++; //   increment the count

// display colon 

sPORTA.byte = 0; // clear all display bits

sPORTB.byte = 0;

sPORTC.byte = 0;

sL1 = 1; // turn on colon LEDs

sL2 = 1;

if (timer_on && TMR1 & 1<<14) // flash colon if timer enabled

{ // (TMR1<14> cycles at 1 

Hz)                            

sL1 = 0; //    blank colon LEDs every alternate 

second

sL2 = 0;

}
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sCL_EN = 1; // enable colon 

break;

}

// increment multiplex counter, to select next time slice for next interrupt

mpx_cnt++;

if (mpx_cnt == 5) // reset count if at end of sequence

mpx_cnt = 0;

// blank display if entering standby mode (provides visual indication)

if (standby)

{

sPORTA.byte &= ~(t7SEG_A); // clear display bus port bits

sPORTB.byte &= ~(t7SEG_B);

sPORTC.byte &= ~(t7SEG_C);

}

// copy shadow regs to ports

PORTA = sPORTA.byte;

PORTB = sPORTB.byte;

PORTC = sPORTC.byte;

// start driving 7-segment display bus (display will light)

TRISA &= ~(t7SEG_A); // make display bus pins outputs

TRISB &= ~(t7SEG_B);

TRISC &= ~(t7SEG_C);

}

if (TMR1IF)

{

// *** Service Timer1 interrupt

//

//  This interrupt is triggered by a TMR1 overflow every 2 s

//

//  Handles background time keeping:

//      If timer active:

//          Countdown time

//          Stop timer and enable alarm when countdown complete

//      If timer not active and time is 0:00

//          Countdown keypad timeout

//      If alarm sounding:

//          Countown alarm timeout

//          Disable alarm when timeout complete

//      If in standby mode:

//          Do nothing

//

//  Initiates low battery check (ADC read of 0.6 V ref)

//

//

TMR1IF = 0; // clear interrupt flag

//  If preparing to enter standby mode, do nothing

if (standby)

return;

//  If timer active, countdown time

-10-



(c) HaPe Timer1.c 18 December 2013 22:44

if (timer_on)

{

if (hrs > 0 || mins > 0)

{

// decrement time by 2 secs         

if (secs > 0)

secs -= 2;

else // handle underflow

{

secs = 58;

if (mins == 0)

{

mins = 59;

if (hrs > 0)

hrs--;

}

else

mins--;

}

}

// check for countdown complete

if (hrs == 0 && mins == 0)

{

buzz_on = 1; // turn on alarm

secs = ALM_TIMEOUT; // set seconds to countdown alarm timeout

timer_on = 0; // turn off timer

}

}

//  If timer not active and time is 0:00, countdown keypad timeout  

else

if (hrs == 0 && mins == 0 && t_secs > 0)

t_secs -= 2;

//  If alarm sounding, countdown alarm timeout

if (buzz_on)

{

// decrement alarm timeout by 2 secs         

if (secs > 0)

secs -= 2;

else

// timeout complete

buzz_on = 0; // turn off alarm

}

//  Initiate battery check 

GO = 1; // initiate ADC conversion (will trigger interrupt)

}

if (ADIF)

{

// *** Service ADC interrupt

// 

//  Triggered every 2 secs by Timer1 interrupt

//

//  Compares sampled value of 0.6 V reference with a threshold,

//  to test for low battery (Vdd) condition
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//

ADIF = 0; // clear interrupt flag

// test for low Vdd (measured 0.6 V > threshold)

low_bat = (ADRESH > 255*600L/MINVDD);

}

}

/***** FUNCTIONS *****/

/***** Initialise processor *****/

void initialise()

{

// configure ports

PORTA = 0; // start with all digits off

PORTB = 0; //   -> all display pins low

PORTC = 0;

sPORTA.byte = 0; //   update shadow registers

sPORTB.byte = 0;

sPORTC.byte = 0;

TRISA = 0b111000; // output pins are RA0-2, 

TRISB = 0b00001111; //                 RB4-7,

TRISC = 0b00110000; //                 RC0-3,6-7              

ANSEL = 0; // all inputs are digital

ANSELH = 0;

WPUA = 0b00000010; // enable weak pull-ups on RA1 

WPUB = 0b01110000; //   and RB4-6

// setup timers + weak pull-ups

OPTION_REG = 0b01000001; // configure Timer0 and weak pull-ups:

//0-------                 enable global weak pull-ups (*RABPU = 0)

//--0-----                 timer mode (T0CS = 0)

//----0---                 prescaler assigned to Timer0 (PSA = 0)

//-----001                 prescale = 4 (PS = 001)

//  -> increment every 4 us

//  -> TMR0 overflows every 1.024 ms

T0IE = 1; // enable Timer0 interrupt  

T1CON = 0b00001110; // configure Timer1:

//-0------                      gate disabled (TMR1GE = 0)

//--00----                      prescale = 1 (T1CKPS = 00)

//----1---                      LP oscillator enabled (T1OSCEN = 1)

//-----1--                      asynchronous mode (/T1SYNC = 1)

//------1-                      external clock (TMR1CS = 1)

//-------0                      disable Timer1 (TMR1ON = 0)

//  -> increment TMR1 at 32.768 kHz

TMR1 = 0; // clear Timer1 (start counting from 0)       

TMR1ON = 1; // start Timer1   

TMR1IE = 1; // enable Timer1 interrupt    

// setup PWM

T2CONbits.T2CKPS = 0; // TMR2 prescale = 1

//  -> TMR2 increments every 1 us

PR2 = 249; // period PR2+1 = 250 us

//  -> PWM frequency = 4 kHz   

-12-
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CCPR1L = 125; // CCPR1L:CCP1CON<5:4> = 500

CCP1CONbits.DC1B = 0; //  -> PWM pulse width = 125 us

//  -> PWM duty cycle = 50%

CCP1CONbits.CCP1M = 0b1101; // select PWM mode:

//  P1A active-high, P1B active-low

CCP1CONbits.P1M = 0b00; //  single output   

STRA = 1; // enable P1A and P1B as PWM outputs

STRB = 1; //  (output pins disabled by TRIS bits)  

TMR2ON = 1; // start PWM (enable TMR2)           

// setup ADC (for low battery test)

ADCON1 = 0b01010000; // configure ADC:

//-101----                     A/D conversion clock = Fosc/16    

//  -> Tad = 4.0 us (with Fosc = 4 MHz)

ADCON0 = 0b00110101;

//0-------                     MSB of result in ADRESH<7> (ADFM = 0)

//-0------                     voltage reference is Vdd (VCFG = 0)

//--1101--                     select 0.6 V reference (CHS = 1101)

//-------1                     turn ADC on (ADON = 1)   

ADIF = 0; // clear ADC interrupt flag  

ADIE = 1; // enable ADC interrupt      

}

/***** Display digit on 7-segment display *****/

void set7seg(char digit)

{

// Lookup pattern table for 7 segment display on PORTA

// RA2:0 = AGB

const char pat7segA[13] = {

//   AGB

0b000101, // 0

0b000001, // 1

0b000111, // 2

0b000111, // 3

0b000011, // 4

0b000110, // 5

0b000110, // 6

0b000101, // 7

0b000111, // 8

0b000111, // 9

0b000011, // *

0b000110, // #

0b000000 // (none)

};

// Lookup pattern table for 7 segment display on PORTB

// RB5:4 = EF

const char pat7segB[13] = {

//  EF

0b00110000, // 0

0b00000000, // 1

0b00100000, // 2

0b00000000, // 3

0b00010000, // 4

0b00010000, // 5

0b00110000, // 6
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0b00000000, // 7

0b00110000, // 8

0b00010000, // 9

0b00110000, // *

0b00000000, // #

0b00000000 // (none)

};

// Lookup pattern table for 7 segment display on PORTC

// RC1:0 = DC

const char pat7segC[13] = {

//      DC

0b00000011, // 0

0b00000001, // 1

0b00000010, // 2

0b00000011, // 3

0b00000001, // 4

0b00000011, // 5

0b00000011, // 6

0b00000001, // 7

0b00000011, // 8

0b00000011, // 9

0b00000001, // *

0b00000010, // #

0b00000000 // (none)

};

// lookup pattern bits and write to shadow registers

sPORTA.byte = pat7segA[digit];

sPORTB.byte = pat7segB[digit];

sPORTC.byte = pat7segC[digit];

}

-14-
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