

M16C/62P, M16C/62M Group

Differences between M16C/62P and M16C/62M

Abstract

This issue is the reference matelials of function differences between M16C/62P and M16C/62M.

2. Introduction

The explanation of this issue is applied to the following condition:

Applicable MCU: M16C/62P, M16C/62M

3. Contents

3.1 Function differences

Table 3.1.1 and table 3.1.2 show the function differences (mask ROM version and flash memory version). Table 3.1.3 shows the function differences (flash memory version).

Table 3.1.1 Function differences (mask ROM version and flash memory version)-1(Note1)

Item	M16C/62P	M16C/62M	
Shortest instruction execution time	41.7ns(f(BCLK)=24MHz, VCC1=3.0 to 5.5V) 100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)	100ns(f(XIN)=10MHz, VCC=2.7 to 3.6V) 142.9ns(f(XIN)=7MHz, VCC=2.2 to 3.6V, with software one-wait)	
Supply voltage	VCC1=3.0 to 5.5V, VCC2=3.0V to VCC1 (f(BCLK)=24MHz) VCC1=VCC2=2.7 to 5.5V (f(BCLK)=10MHz)	2.7 to 3.6V(f(XIN)=10MHz) 2.4 to 3.6V(f(XIN)=7MHz) 2.2 to 3.6V(f(XIN)=7MHz, with software one-wait)	
I/O power supply	Double (VCC1, VCC2)	Single (VCC)	
Package	80-pin, 100-pin, 128-pinplastic mold QFP	80-pin, 100-pinplastic mold QFP	
Clock generating circuit	PLL, XIN, XCIN, on-chip oscillator When placed in low power mode a divided-8 value is used for these clocks. The XIN drive capability is set to HIGH.	XIN, XCIN When placed in low power mode, the divided-n value for the main clock does not change. Nor does the XIN drive capability change.	
System clock protective function	Built-in	None (protected by protect register)	
Oscillation stop, re-oscillation detecton function	Built-in	None	
Low power consumption	18mA(VCC1=VCC2=5V, f(BCLK)=24MHz) 8mA(VCC1=VCC2=3V, f(BCLK)=10MHz) 1.8uA(VCC1=VCC2=3V, f(XCIN)=32kHz, wait mode)	9.5mA(VCC=3V, f(XIN)=10MHz) 0.9uA(VCC=3V, f(XCIN)=32kHz, wait mode)	
Memory area	Memory area expandable (4M bytes)	1 M bytes fixed	
External device connect area	04000h to 07FFFh (PM13=0) 08000h to 0FFFFh(PM10=0) 10000h to 26FFFh 28000h to 7FFFFh 80000h to CFFFFh (PM13=0) D0000h to FFFFFh (Microprocessor mode)	04000h to 05FFFh (PM13=0) 06000h to CFFFFh D0000h to FFFFFh (Microprocessor mode)	

Note 1: About the details and the characteristics, refer to hardware manual.

Table 3.1.2 Function differences (mask ROM version and flash memory version)-2(Note1)

Item	M16C/62P	M16C/62M	
Upper address memory	P4_0 to P4_3(A16 to A19),	P4_0 to P4_3(A16 to A19)	
expansion mode and	P3_4 to P3_7(A12 to A15)	: Switchable between address bus and I/O port	
microprocessor mode	: Switchable between address bus and I/O port	A12 to A15: No Switchable	
Access to SFR	Variable (1 to 2 waits)	1 wait fixed	
Software wait to external area	Variable (0 to 3 waits)	Variable (0 to 1 wait)	
Protect	Can be set for PM0, PM1, PM2, CM0, CM1, CM2, PLC0, INVC0, INVC1, PD9, S3C, S4C, TB2SC, PCLKR, VCR2, D4INT registers	Can be set for PM0, PM1, CM0, CM1, PD9, S3C, S4C registers	
Watchdog timer	Watchdog timer interrupt or watchdog timer reset is selected Count source protective mode is available	Watchdog timer interrupt No count source protective mode	
Address match interrupt	4	2	
Timers A, timer B Count source	Selectable: f1, f2, f8, f32, fC32	Selectable: f1, f8, f32, fC32	
Timer A two-phase pulse signal processing	Function Z-phase (counter reset) input	No function Z-phase (counter reset) input	
Timer functions for	Function protect by protect register	No function protected by protect register	
three-phase motor control	Count source is selected f1, f2, f8, f32, fC32	Count source is selected :f1, f8, f32, fC32	
	Dead time timer count source is selected: f1, f1 divided by 2, f2, f2 divided by 2 Three-phase output forcible shutoff function based on NMI input is available, output polarity change, carrier wave phase detection	Dead time timer count source is fixed at f1 divided by 2	
Serial I/O	(UART, Clock synchronous, I ² C-bus TM (Note 2),	(UART, Clock synchronous) x 2	
(UART0 to UART2)	IEBus™ (Note 3)) x 3	(UART, Clock synchronous, I ² C-bus TM (Note 2), IEBus TM (Note 3)) x 1	
UART0 to UART2,	Select from f1SIO, f2SIO, f8SIO, f32SIO	Select from f1, f8, f32	
SI/O3, SI/O4	, , ,	, ,	
Count source			
Serial I/O RTS timing	Assert low when receive buffer is read	Assert low when reception is completed	
UART0 to UART2	This error occurs if the serial I/O started receiving	This error occurs when the next data is ready	
Overrun error occur timing	the next data before reading the UiRB register (i=0 to 2) and received the 7th bit of the next data (Clock synchronous). This error occurs if the serial I/O started receiving the next data before reading the UiRB register and received the bit one before the last stop bit of the next data (UART).	before contents of UiRB register (i=0 to 2) are read out	
Serial I/O	Have	None	
CTS/RTS separate function UART2 data transmit timing	After data was written, transfer starts at the 2nd	After data was written, transfer starts at the 1st	
OAK 12 data transmit timing	BRG overflow timing (same as UARTO and UART1)	BRG overflow timing (Output starts one cycle of BRG overflow earlier than UART0 and UART1)	
Serial I/O	None	Have	
Sleep function	Start condition aton condition: Auto concentian	Start condition, stop condition:	
Serial I/O I ² C mode	Start condition, stop condition: Auto-generation	Not auto-generation	
Serial I/O	Only digital delay is selected as SDA delay	Analog or digital delay is selected as SDA delay.	
I ² C mode	SDA digital delay count source: BRG	SDA digital delay count source: 1/f(XIN)	
SDA delay			
SI/O3, SI/O4	Selectable	Fixed	
Clock polarity			
A/D converter	10 bits x 8 channels Expandable up to 26 channels	10 bits x 8 channels	
A/D comments	·	Expandable up to 10 channels	
A/D converter	Selectable: fAD, fAD divided by 2, 3, 4, 6, 12	Selectable: fAD, fAD/2, fAD/4	
operation clock	•		

Note 1: About the details and the characteristics, refer to hardware manual.

Note 2: I²C is a trademark of Philips Semiconductors Corporation.

Note 3: IEBus is a trademark of NEC Electronics Corporation.

Table 3.1.2 Function differences (flash memory version)(Note1)

Item	M16C/62P	M16C/62M
User ROM blocks	14 blocks: 4 Kbytes X 3, 8 Kbytes X 3, 32 Kbytes X 1, 64 Kbytes X 7 (Flash memory: max. 512 Kbytes)	7 blocks: 8Kbytes X 2, 16 Kbytes X 1, 32 Kbytes X 1, 64 Kbytes X 3 (Flash memory: max. 256 Kbytes)
Program manner	Word	Page
Program command (Software command)	Page program command: none Program command: have (Program method: in units of word, in units of byte)	Page program command: have Program command: none (Program method: in units of page)
Block status after program function	None	Have
CPU rewrite mode	EW1 mode is available	No EW1 mode

Note 1: About the details and the characteristics, refer to hardware manual.

3.2 Pin function differences

Table 3.2.1 shows the pin function differences.

Table 3.2.1 Pin function differences

M16C/62P	M16C/62M	Remarks
VCC1	VCC	
P8_4/INT2/ZP	P8_4/INT2	Add ZP
P6_7/TxD1/SDA1	P6_7/TxD1	Add SDA1
P6_6/RxD1/SCL1	P6_6/RxD1	Add SCL1
P6_4/CTS1/RTS1/CTS0/CLKS1	P6_4/CTS1/RTS1/CLKS1	Add CTS0
P6_3/TxD0/SDA0	P6_3/TxD0	Add SDA0
P6_2/RxD0/SCL0	P6_2/RxD0	Add SCL0
VCC2	VCC	
P2_7/AN2_7/A7(/D7/D6)	P2_7/A7(/D7/D6)	Add AN2_7
P2_6/AN2_6/A6(/D6/D5)	P2_6/A6(/D6/D5)	Add AN2_6
P2_5/AN2_5/A5(/D5/D4)	P2_5/A5(/D5/D4)	Add AN2_5
P2_4/AN2_4/A4(/D4/D3)	P2_4/A4(/D4/D3)	Add AN2_4
P2_3/AN2_3/A3(/D3/D2)	P2_3/A3(/D3/D2)	Add AN2_3
P2_2/AN2_2/A2 (/D2/D1)	P2_2/A2 (/D2/D1)	Add AN2_2
P2_1/AN2_1/A1(/D1/D0)	P2_1/A1(/D1/D0)	Add AN2_1
P2_0/AN2_0/A0(/D0/-)	P2_0/A0(/D0/-)	Add AN2_0
P0_7/AN0_7/D7	P0_7/D7	Add AN0_7
P0_6/AN0_6/D6	P0_6/D6	Add AN0_6
P0_5/AN0_5/D5	P0_5/D5	Add AN0_5
P0_4/AN0_4/D4	P0_4/D4	Add AN0_4
P0_3/AN0_3/D3	P0_3/D3	Add AN0_3
P0_2/AN0_2/D2	P0_2/D2	Add AN0_2
P0_1/AN0_1/D1	P0_1/D1	Add AN0_1
P0_0/AN0_0/D0	P0_0/D0	Add AN0_0

3.3 SFR differences

Table 3.3.1 show the SFR differences.

Table 3.3.1 SFR differences-1

M16C/62P	M16C/62M	Remarks
PM1	PM1	Change function
CM0	CM0	Change function
CM1	CM1	Add bit1
PRCR	PRCR	Change function
DBR	-	
CM2	-	
WDC	WDC	Add bit5
VCR1	-	
VCR2	-	
CSE	-	
PLC0	-	
PM2	-	
D4INT	-	
TB4IC,U1BCNIC	TB4IC	Shard with U1BCNIC register
TB3IC,U0BCNIC	TB3IC	Shard with U0BCNIC register
FIDR	-	
RMAD2	-	
AIER2	-	
RMAD3	-	
PCLKR	-	
INVC1	INVC1	Change function
IFSR2A	-	
S3C	S3C	Add bit4
S4C	S4C	Add bit4
U0SMR4	-	
U0SMR3	-	
U0SMR2	-	
U0SMR	-	
U1SMR4	-	
U1SMR3	-	
U1SMR2	-	
U1SMR	-	
U2SMR4	-	
U2SMR3	U2SMR3	Change function
U2SMR2	U2SMR2	Change function
U2SMR	U2SMR	Change function
ONSF	ONSF	Add bit5
TB2SC	-	
U0MR	U0MR	Change function
U0C0	U0C0	Change function
U0C1	U0C1	Add Bits6, 7
U1MR	U1MR	Change function
U1C0	U1C0	Change function
L		l

Table 3.3.2 SFR differences-2

M16C/62P	M16C/62M	Remarks
U1C1	U1C1	Add bits6, 7
UCON	UCON	Add bit6
FMR1	FMR1	Address change from 03B6h to 01B5h. Change function.
FMR0	FMR0	Address change from 03B7h to 01B7h. Change function.
ADCON2	ADCON2	Change function

3.4 Interrupt vector differences

Table 3.4.1 shows the fixed vector table differences. Table 3.4.2 shows the relocatable vector table differences.

Table 3.4.1 Fixed vector table differences

M16C/62P interrupt source	M16C/62M interrupt source
Watchdog timer	Watchdog timer
Oscillation stop and re-oscillation detection	
Voltage down detection	

Table 3.4.2 Relocatable vector table differences

M16C/62P interrupt source	M16C/62M interrupt source	Software interrupt
		number
Timer B4, UART1 bus collision detect	Timer B4	6
Timer B3, UART0 bus collision detect	Timer B3	7
UART0 transmit, NACK0	UART0 transmit	17
UART0 receive, ACK0	UART0 receive	18
UART1 transmit, NACK1	UART1 transmit	19
UART1 receive, ACK1	UART1 receive	20

3.5 Support tool differences

Table 3.5.1 shows the support tool differences.

Table 3.5.1 support tool differences

Tool information	M16C/62P tool product	M16C/62P tool product	M16C/62M tool product	Change
	(Max.24MHz)	(Max.16MHz)		
C Compiler	M3T-NC30WA	M3T-NC30WA	M3T-NC30WA	
Real-time OS M3T-MR30		M3T-MR30	M3T-MR30	
Simulator Debugger	M3T-PD30SIM	M3T-PD30SIM	M3T-PD30SIM	
Emulator Debugger	M3T-PD30F	M3T-PD30	M3T-PD30	√
Emulator	PC7501	PC4701U	PC4701U	√
Emulation Pod, M3062PT-EPB		M3062PT3-RPD-E	M30620TL-RPD-E	√
Emulation Probe				

4. Reference

DATA SHEET
M16C/62M Group data sheet Rev.B1
(Acquire the most current version from Renesas web-site)

HARDWARE MANUAL
M16C/62P Group Hardware manual Rev.2.30
(Acquire the most current version from Renesas web-site)

5. Web-site and contact for support

Renesas Web-site

http://www.renesas.com

Contact for Renesas technical support

Mail to: support_apl@renesas.com

REVISION HISTORY

Rev.	Date	Description	
		Page	Summary
1.00	Jan 16, 2004	-	First edition issued
1.01	Feb 02, 2004	6 Address is revised (FMR0 register, FMR1 register)	
1.02	Aug 02,2004	-	Words standardized: On-chip oscillator, and A/D converter

Keep safety first in your circuit designs!

 Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.