/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2023 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include #include /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define DMX_FRAME_SIZE 513 #define DMX_BREAK_TIME_US 88 #define DMX_MARK_AFTER_BREAK_TIME_US 8 #define DMX_BIT_TIME_US 4 #define MIN_INTER_FRAME_TIME 176 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ RTC_HandleTypeDef hrtc; TIM_HandleTypeDef htim2; UART_HandleTypeDef huart5; UART_HandleTypeDef huart1; /* USER CODE BEGIN PV */ //receive Buffer uint8_t dmx_data[DMX_FRAME_SIZE]; char buffer[50]; uint32_t last_frame_time = 0; // DMX512 receive state enum { DMX_STATE_BREAK, DMX_STATE_START, DMX_STATE_DATA, DMX_STATE_IDLE } dmx_state = DMX_STATE_IDLE; // DMX512 receive address #define DMX_ADDRESS 1 // DMX512 receive flag volatile uint8_t dmx_received = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_UART5_Init(void); static void MX_USART1_UART_Init(void); static void MX_TIM2_Init(void); static void MX_RTC_Init(void); /* USER CODE BEGIN PFP */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_UART5_Init(); MX_USART1_UART_Init(); MX_TIM2_Init(); MX_RTC_Init(); /* USER CODE BEGIN 2 */ HAL_UART_Transmit(&huart1, "MAINBOARD_DMX_TEST_V_0_3\r\n",28 ,1000); HAL_GPIO_WritePin(GPIOE, GPIO_PIN_11, GPIO_PIN_RESET); // /D/E_IN_TX (U2 Driver disable) HAL_UART_Transmit(&huart1, "PIN 64 High: /D/E_IN_TX\r\n",25 ,1000); HAL_GPIO_WritePin(GPIOE, GPIO_PIN_12, GPIO_PIN_RESET); // RE_IN_RX (U2 Receiver enable) HAL_UART_Transmit(&huart1, "PIN 65 High: RE_IN_RX\r\n",23 ,1000); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, GPIO_PIN_SET); // Source: DMX-Cable HAL_UART_Transmit(&huart1, "PIN 79 High: Source_select\r\n",28 ,1000); // Start DMX512 reception HAL_UART_Receive_IT(&huart5, dmx_data, DMX_FRAME_SIZE); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { // Check if DMX512 data has been received if (dmx_received) { // Reset DMX512 receive flag dmx_received = 0; // Check DMX512 address if (dmx_data[DMX_ADDRESS] != 0) { // Display DMX512 value on UART1 char buf[20]; sprintf(buf, "DMX value: %d\r\n", dmx_data[DMX_ADDRESS]); HAL_UART_Transmit(&huart1, (uint8_t *)buf, strlen(buf), HAL_MAX_DELAY); } } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure LSE Drive Capability */ HAL_PWR_EnableBkUpAccess(); __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW); /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE|RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 432; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 9; //9 RCC_OscInitStruct.PLL.PLLR = 7; //7 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Activate the Over-Drive mode */ if (HAL_PWREx_EnableOverDrive() != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK) { Error_Handler(); } } /** * @brief RTC Initialization Function * @param None * @retval None */ static void MX_RTC_Init(void) { /* USER CODE BEGIN RTC_Init 0 */ /* USER CODE END RTC_Init 0 */ /* USER CODE BEGIN RTC_Init 1 */ /* USER CODE END RTC_Init 1 */ /** Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.HourFormat = RTC_HOURFORMAT_24; hrtc.Init.AsynchPrediv = 127; hrtc.Init.SynchPrediv = 255; hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN RTC_Init 2 */ /* USER CODE END RTC_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_SlaveConfigTypeDef sSlaveConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 0xFFFFFFFF; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_ETRMODE2; sClockSourceConfig.ClockPolarity = TIM_CLOCKPOLARITY_NONINVERTED; sClockSourceConfig.ClockPrescaler = TIM_CLOCKPRESCALER_DIV1; sClockSourceConfig.ClockFilter = 0; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sSlaveConfig.SlaveMode = TIM_SLAVEMODE_DISABLE; sSlaveConfig.InputTrigger = TIM_TS_ITR0; if (HAL_TIM_SlaveConfigSynchro(&htim2, &sSlaveConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } /** * @brief UART5 Initialization Function * @param None * @retval None */ static void MX_UART5_Init(void) { /* USER CODE BEGIN UART5_Init 0 */ /* USER CODE END UART5_Init 0 */ /* USER CODE BEGIN UART5_Init 1 */ /* USER CODE END UART5_Init 1 */ huart5.Instance = UART5; huart5.Init.BaudRate = 250000; huart5.Init.WordLength = UART_WORDLENGTH_8B; huart5.Init.StopBits = UART_STOPBITS_2; huart5.Init.Parity = UART_PARITY_NONE; huart5.Init.Mode = UART_MODE_RX; huart5.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart5.Init.OverSampling = UART_OVERSAMPLING_16; huart5.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart5.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_RXOVERRUNDISABLE_INIT;//UART_ADVFEATURE_RXOVERRUNDISABLE_INIT if (HAL_UART_Init(&huart5) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN UART5_Init 2 */ huart5.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_RXOVERRUNDISABLE_INIT;//UART_ADVFEATURE_RXOVERRUNDISABLE_INIT // Enable UART5 interrupts HAL_NVIC_SetPriority(UART5_IRQn, 0, 0); HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); HAL_NVIC_EnableIRQ(UART5_IRQn); /* USER CODE END UART5_Init 2 */ } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOE, GPIO_PIN_11|GPIO_PIN_12, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, GPIO_PIN_RESET); /*Configure GPIO pins : PE11 PE12 */ GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); /*Configure GPIO pin : PD10 */ GPIO_InitStruct.Pin = GPIO_PIN_10; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /* // DMX512 UART5 receive interrupt handler void UART5_IRQHandlerX(void) { //HAL_UART_Transmit(&huart1, "U5IRQ\r\n", 9, 100); uint32_t isrflags = READ_REG(huart5.Instance->ISR); uint32_t cr1its = READ_REG(huart5.Instance->CR1); // Debug message - print isrflags and cr1its char buf3[64]; snprintf(buf3, 64, "UART5 ISR flags: 0x%08X, CR1: 0x%08X\r\n", isrflags, cr1its); HAL_UART_Transmit(&huart1, (uint8_t*)buf3, strlen(buf3), HAL_MAX_DELAY); // Check for DMX512 break and mark-after-break conditions if ((isrflags & USART_ISR_FE) != RESET) { // DMX512 break detected //HAL_UART_Transmit(&huart1, "Break_detected\r\n", 16, 100); dmx_state = DMX_STATE_START; // Debug message char* message = "DMX512 break detected\r\n"; HAL_UART_Transmit(&huart1, (uint8_t*)message, strlen(message), HAL_MAX_DELAY); } else if ((isrflags & USART_ISR_RXNE) != RESET && (dmx_state == DMX_STATE_START)) { // DMX512 mark-after-break detected dmx_state = DMX_STATE_DATA; HAL_UART_AbortReceive_IT(&huart5); HAL_UART_Receive_IT(&huart5, dmx_data, DMX_FRAME_SIZE); // Debug message char* message = "DMX512 mark-after-break detected\r\n"; HAL_UART_Transmit(&huart1, (uint8_t*)message, strlen(message), HAL_MAX_DELAY); } else if ((isrflags & USART_ISR_IDLE) != RESET) { // DMX512 frame received dmx_received = 1; dmx_state = DMX_STATE_IDLE; __HAL_UART_CLEAR_IDLEFLAG(&huart5); // Debug message char* message = "DMX512 frame received\r\n"; HAL_UART_Transmit(&huart1, (uint8_t*)message, strlen(message), HAL_MAX_DELAY); // Debug message - print dmx_state char buf[32]; snprintf(buf, 32, "dmx_state: %d\r\n", dmx_state); HAL_UART_Transmit(&huart1, (uint8_t*)buf, strlen(buf), HAL_MAX_DELAY); // Debug message - print dmx_data[DMX_ADDRESS] char buf2[32]; snprintf(buf2, 32, "DMX512 data: %d\r\n", dmx_data[DMX_ADDRESS]); HAL_UART_Transmit(&huart1, (uint8_t*)buf2, strlen(buf2), HAL_MAX_DELAY); } // DMX512 data reception // Debug message - print isrflags char buf[32]; snprintf(buf, 32, "UART5 ISR flags: 0x%08X\r\n", isrflags); HAL_UART_Transmit(&huart1, (uint8_t*)buf, strlen(buf), HAL_MAX_DELAY); snprintf(buf, 32, "dmx_state: %d\r\n", dmx_state); HAL_UART_Transmit(&huart1, (uint8_t*)buf, strlen(buf), HAL_MAX_DELAY); if ((isrflags & USART_ISR_RXNE) != RESET && (dmx_state == DMX_STATE_DATA)) { HAL_UART_Transmit(&huart1, "DataReception\r\n", 15, HAL_MAX_DELAY); uint16_t dmx_byte_index = (huart5.RxXferSize - huart5.RxXferCount); if (dmx_byte_index == 0) { // Check for valid DMX512 start code if (dmx_data[0] != 0) { // Invalid DMX512 start code, restart reception dmx_state = DMX_STATE_BREAK; HAL_UART_AbortReceive_IT(&huart5); HAL_UART_Receive_IT(&huart5, dmx_data, DMX_FRAME_SIZE); } } else { // Store DMX512 data byte in buffer dmx_data[dmx_byte_index] = READ_REG(huart5.Instance->RDR); // Check for end of DMX512 frame if (dmx_byte_index == DMX_FRAME_SIZE - 1) { // Set DMX512 state to idle dmx_state = DMX_STATE_IDLE; // Reset UART5 to receive the next DMX512 frame HAL_UART_AbortReceive_IT(&huart5); HAL_UART_Receive_IT(&huart5, dmx_data, DMX_FRAME_SIZE); } } } // Handle UART errors if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE)) != RESET) { // Error handling, restart reception dmx_state = DMX_STATE_BREAK; HAL_UART_AbortReceive_IT(&huart5); HAL_UART_Receive_IT(&huart5, dmx_data, DMX_FRAME_SIZE); } // Clear UART5 interrupt flags if ((isrflags & USART_ISR_PE) != RESET) { WRITE_REG(huart5.Instance->ICR, USART_ICR_PECF); } if ((isrflags & USART_ISR_FE) != RESET) { WRITE_REG(huart5.Instance->ICR, USART_ICR_FECF); } if ((isrflags & USART_ISR_ORE) != RESET) { WRITE_REG(huart5.Instance->ICR, USART_ICR_ORECF); } if ((isrflags & USART_ISR_NE) != RESET) { WRITE_REG(huart5.Instance->ICR, USART_ICR_NCF); } } // UART5 error interrupt handler void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) { // Error handling, restart reception dmx_state = DMX_STATE_BREAK; HAL_UART_AbortReceive_IT(&huart5); HAL_UART_Receive_IT(&huart5, dmx_data, DMX_FRAME_SIZE); } // UART5 receive complete interrupt handler void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { // Error handling, restart reception dmx_state = DMX_STATE_BREAK; HAL_UART_AbortReceive_IT(&huart5); HAL_UART_Receive_IT(&huart5, dmx_data, DMX_FRAME_SIZE); } */ // DMX512 UART5 receive interrupt handler-Ansatz mit Timer zur MAB-detection void UART5_IRQHandlerX(void) { //HAL_UART_Transmit(&huart1, "U5IRQ\r\n", 9, 100); uint32_t isrflags = READ_REG(huart5.Instance->ISR); uint32_t cr1its = READ_REG(huart5.Instance->CR1); // Check for DMX512 break and mark-after-break conditions if ((isrflags & USART_ISR_FE) != RESET) { // DMX512 break detected dmx_state = DMX_STATE_START; // Debug message char* message = "DMX512 break detected\r\n"; HAL_UART_Transmit(&huart1, (uint8_t*)message, strlen(message), HAL_MAX_DELAY); // Start timer to measure time since break __HAL_TIM_SET_COUNTER(&htim2, 0); HAL_TIM_Base_Start_IT(&htim2); } else if ((isrflags & USART_ISR_RXNE) != RESET && (dmx_state == DMX_STATE_BREAK))//Change DMX_STATE_START to DMX_STATE_BREAK for check { // DMX512 mark-after-break detected // Debug message char* message = "DMX512 mark-after-break detected\r\n"; HAL_UART_Transmit(&huart1, (uint8_t*)message, strlen(message), HAL_MAX_DELAY); dmx_state = DMX_STATE_DATA; HAL_TIM_Base_Stop_IT(&htim2); uint32_t time_since_break = __HAL_TIM_GET_COUNTER(&htim2); uint32_t bit_time = (SystemCoreClock / 250000) / 8; // calculate bit time for 250 kbps baud rate uint32_t data_offset = (time_since_break - bit_time) / bit_time; // Check that the data offset is within range if (data_offset >= 0 && data_offset < DMX_FRAME_SIZE) { HAL_UART_Transmit(&huart1, "Offset in Range\r\n", 17, 100); // Start receiving DMX512 data bytes HAL_UART_Receive_IT(&huart5, &dmx_data[data_offset], DMX_FRAME_SIZE - data_offset); // Wait for the data to be received while (HAL_UART_GetState(&huart5) != HAL_UART_STATE_READY && HAL_UART_GetState(&huart5) != HAL_UART_STATE_BUSY_RX) {} // Debug messages char* message1 = "HAL_UART_Receive_IT() called\r\n"; HAL_UART_Transmit(&huart1, (uint8_t*)message1, strlen(message1), HAL_MAX_DELAY); char* message2 = "Data offset: %d\r\n"; sprintf(buffer, message2, data_offset); HAL_UART_Transmit(&huart1, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY); } else { HAL_UART_Transmit(&huart1, "Offset NOT in Range\r\n", 21, 100); // Invalid data offset, restart reception dmx_state = DMX_STATE_BREAK; HAL_UART_AbortReceive_IT(&huart5); } } else if ((isrflags & USART_ISR_IDLE) != RESET) { // DMX512 frame received dmx_received = 1; dmx_state = DMX_STATE_IDLE; __HAL_UART_CLEAR_IDLEFLAG(&huart5); // Debug message char* message = "DMX512 frame received\r\n"; HAL_UART_Transmit(&huart1, (uint8_t*)message, strlen(message), HAL_MAX_DELAY); // Wait for minimum inter-frame time (176 microseconds) uint32_t frame_time = __HAL_TIM_GET_COUNTER(&htim2); uint32_t inter_frame_time = frame_time - last_frame_time; if (inter_frame_time < MIN_INTER_FRAME_TIME) { HAL_Delay(MIN_INTER_FRAME_TIME - inter_frame_time); } last_frame_time = frame_time; // Reset timer for next frame __HAL_TIM_SET_COUNTER(&htim2, 0); } } // UART5 error interrupt handler void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) { // Error handling, restart reception dmx_state = DMX_STATE_BREAK; HAL_UART_AbortReceive_IT(&huart5); HAL_UART_Receive_IT(&huart5, dmx_data, DMX_FRAME_SIZE); } // UART5 receive complete interrupt handler void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { // Error handling, restart reception dmx_state = DMX_STATE_BREAK; HAL_UART_AbortReceive_IT(&huart5); HAL_UART_Receive_IT(&huart5, dmx_data, DMX_FRAME_SIZE); } // TIM2 update interrupt handler void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if (htim->Instance == TIM2) { // Stop timer and reset DMX512 state HAL_TIM_Base_Stop_IT(&htim2); dmx_state = DMX_STATE_BREAK; HAL_UART_AbortReceive_IT(&huart5); } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */