
Chapter 3
Narrow Band & Wide Band Processing
Basics

Abstract In this chapter we describe and implement the narrow band processing
elements NCQ and FIR decimators, and how to easily find the image frequency that
should be rejected. In this chapter we describe and implement the wide band pro­
cessing elements of various shaping windows and FFT implementation types.

Keywords NCO • DDC • FIR ■ Decimation ■ CIC • Compensator • Aliasing ■
Image ■ Nyquist • Convolution • Shaping window ■ wola • FFT ■ bro • dro • Twiddle
factor • Radix 2 • Radix 4

RF frequencies in some certain band or preselector are usually converted by a
receiver to a fixed IF frequency followed by an analog filter at the desired band­
width, higher bandwidth enables more frequencies in parallel but is more sensitive
with respect to dynamic range and spurs.

Using digital signal processing, the IF analog information is converted to bits by
an a2d converter, sampling at Fs Hz. Usually the IF frequencies are located at Fs/4,
3*Fs/4, 5*Fs/4... called Nyquist zones so that a maximum and symmetric band­
width is attained.

Higher IF helps the receiver designer to avoid spurs but needs a more expensive
a2d that has acceptable SNR and ENOB, as the ratio between Fs and IF is lower,
jitter increases and decreases SNR at the a2d output.

There are two basic ways to process the IF frequency band, one is the narrow
band processing, described by the following diagram:

The digital IF samples stream is shifted to baseband, where it is filtered and deci­
mated to the desired output bandwidth and sampling frequency, each channel
requires dedicated processing.

I 18 3 Narrow Band & Wide Band Processing Basics

The second way is to use wide band processing as described by the following
diagram:

The digital IF sample stream undergoes a frequency shaping window that ren­
ders separation of channels (bins), then an N size FFT is performed which results in
one complex number per bin.

If a stream of such complex numbers per bin over time is desired, then consecu­
tive FFTs shifted in time are performed.

3.1 Narrow Band Processing

3.1.1 Introduction

In this chapter we describe and demonstrate design considerations and implementa­
tion of numerically controlled oscillator (NCO) and decimators which are the ele­
ments of narrow band processing, and how to easily find the image frequency that
should be rejected when shifting frequencies.

3.1.2 Numerically Controlled Oscillator

The numerically controlled oscillator (NCO) shifts digitally the digital stream from
the a2d by f 1, making the operation in Matlab as follows:

j = sqrt(-l);
t = (0:N-1)/Fs;
Nco_out = a2d_out.*exp(-j*2*pi*f1*t);

This operation generates an image frequency in addition to baseband, this image
should be rejected by the first LPF (low pass filter) after the NCO, since the pass-
band and stopband frequencies are also determined by the decimation rules then the
strict requirement determines.

The generated image frequency is equal to twice fl and aliased to (3*Fs - 2*fl),
in order to not bother with calculating the resulting frequencies, a simple Matlab
code renders the correct imase frequency as follows:

3.1 Narrow Band Processing 19

Code 3.1.1

Fs = 160e6;
f l 2 = 220e6; "
f l 1 = f12 - 2e6;
f l 3 = f l 2 + 2e6;
N = 8192;
t = (0:N-1)/Fs;
inp = sin(2*pi*f11*t) + sin(2*pi*f12*t) + sin(2*pi*f13*t);
nco = inp.*exp(-j*2*pi*f12*t);
win = chebwin(N)’;
win = win/sum(win);
Sigw = nco.*win;
Fout = abs(fftshift(fft(Sigw,N))).A2/N/N;
Fout = Fout/max(Fout);
Fx = (-4095:4096)*Fs/N;

That renders the following figure:
As seen from Fig. 3.1, the image frequency aliased to (3 * 160-2 * 220) Mhz

should be rejected.

o S p e c t r u m a f te r NCO a t 220 Mhz

-20

-40

-80

-100

-120
-8 -6 -4 -2 0 2 4 6 8

Hz <40/Wz x io 7

H r. 3.1 Finding the image frequency after the NCO operation

I 20 3 Narrow Band & Wide Band Processing Basics

For implementing the NCO operation, a sin table from 0 to 2*pi with 2AScaleTab
entries is used, described by a Matlab code as

ScaleTab = 12;
SinTable = round(sin([0:2AScaleTab -1)]/(2AScaleTab)*2*pi)*(2AScaleTab - 1));

The table coefficients are written to an *.h file as described in Sect. 2.2.2 before,
ScaleTab is chosen by the required resolution of the frequency shifting, which is the
sampling frequency of the a2d divided by the table size 2AScaleTab.

Another consideration to increase ScaleTab is that the spectrum of the complex
NCO output will not have spurs or elevated noise floor.

A Matlab code that implements NCO operation is

Code 3.1.2

acc = 0;
IF = Fs/8;
Fc = round(IF/Fs*2AScaleTab);

for k = 1:length(lnp)

sin_adr = acc;
if (sin_adr == 0)
sin_adr = 1;

end

cos_adr = mod(acc + (2AScaleTab)/4,2AScaleTab);
if (cos_adr == 0)

cos_adr = 1;
end

s_tbl = SinTable(sin_adr);
c_tbl = SinTable(cos_adr);

varl = c_tbl*lnp(k);
var2 = -s_tbl*lnp(k);

Xnco(k) = floor((var1 + j*var1)/2AScaleTab);
acc = mod(acc + Fc, 2AScaleTab);

end

The cos() value is found from the sin table using the relation cos(a) = sin(pi/2 + a).
Qnr\r\r\o£* that a 1 f \ hit a9H i« h«pH thp «in fahle u/p used has 2A1 S e lem en ts o f tvne

3.1 Narrow Band Processing 21

Code 3.1.3

void nco(short *x, int n, int dp, short *y)
{
int sin_val, cos_val, acc, i;

acc = 0;
for (i = 0; i < n; i++)

{
sin_val = Sin_Tab[acc];
cos_val = Sin_Tab[(acc + 8192) & 0x7fff];
y[i] = (cos_val*x[i]) » 15;
y[l + n] = (-sin_val*x[i]) » 15;
acc = (acc + dp) & 0x7fff;
}

}

The phase increment dp is round(fl/Fs*2AScaleTab), the software produces a
short array of the real part followed by a short array of the imag part.

If fl is negative, then dp is round((Fs + fl)/Fs*2AScaleTab), the above verified
code consumes 31 nS per sample on an 15 2.9 GHz.

3.1.3 Finite Impulse Response Decimators

A decimator reduces the input sampling frequency to a lower output one, this opera­
tion requires a low pass filter (LPF) at the input sampling rate, followed by a suit­
able decimation. The highest passband frequency Fp at the LPF output should not
exceed half of the output sampling frequency if the decimator is real, and not exceed
(he output sampling frequency if the decimator is complex, as per Nyquist theorem.

As we will see later, the most efficient way to design a decimator in terms of
processing time is to divide the decimation between several stages or multirate
method, the first stage should follow the rule of thumb

Fp = min(decimation constraint as above, image frequency of the NCO)

where dec 1 is the 1 st stage decimation, for the next stages if any, the same rule
applies besides rejecting the image frequency of the NCO.

Decimators are usually implemented by FIRs with possible addition of cascaded
integrator comb (CIC) filters, they may also be implemented by IIRs, all types will
be described later.

I 22 3 Narrow Band & Wide Band Processing Basics

Earlier versions of the Matlab used functions such as Remez, Firls, the current
one uses Firpm to design filters, we found that using the fdesign tool in the signal
processing toolbox renders efficient designs in short time, a Matlab code that
does it is

Code 3.1.4

Fsl = 160e6;
dm = fdesign. lowpass(‘Fp,Fst,Ap,Asf ,20e6,79e6,0.1,105, Fsl);
hm = design(dm);
b13 = hm.numerator;
b13 = b13/(sum(b13) + eps);

Fp is the largest passband frequency at which the filter gain is -1 db, lower value
relative to the sampling frequency Fs 1 renders more coefficients for the designed FIR.

Fstop is the smallest stopband frequency, the ratio between Fstop and Fp is called
the shape factor of the filter where a value of less than 1.5 for the total response is
common, reducing shape factor renders more coefficients for the designed FIR,
Fstop should be less than Fsl/2.

Ap is the ripple in db at the passband, a value of 0.1 is common, reducing Ap
renders more coefficients for the designed FIR.

Ast is the attenuation in db at the stopband, values between 90 and 110 are com­
mon to get actually —80 to —100 db, lower attenuation renders less coefficients for
the designed FIR.

3.1.4 Low Decimation Ratio Finite Impulse Response Filters

When we say low decimation we mean 2-8.
We will demonstrate the design and verification by an example: Suppose that we

need to design a decimator by 4, with final bandwidth of 30 Mhz, following a
receiver with IF frequency of 120 Mhz sampled by a 160 Mhz a2d.

The efficient design in terms of processing time is to use multirate design, which
is to divide the decimation as close as possible to decimation by 2 units, for our
example that means 2 FIRs, the 1st closer to the a2d or NCO receives a double rate
of samples relative to the second, but its shape factor requirement is lower, the sec­
ond and final FIR has a shape factor of 1.47 measured from the total response.

ACIC filter, declared by the Z transform response M M * (1 - Z 'w)/(1 - Z 1) where
M is the filter order may be used instead of the 1st FIR, but the droop of this filter
even forM = 2 is such that the total response cannot have a passband ripple of 0.1 db.

3.1 Narrow Band Processing 23

Trial and error method should be used by watching the figures of total frequency
response and the frequency verification measure in Sect. 2.2.1, as seen from the
total response the decimation rules of thumb should be kept at the end points Fp and
Fstop but may be violated elsewhere.

res = 2048;
Fsl = 160e6;
decl = 2;

FI = Fs1/2/dec1/res*(0:res*dec1 - 1);
dm = fdesign.lowpass(‘Fp,Fst,Ap,Ast’,20e6,79e6,0.1,105,Fsl);
hm = design(dm);
b13= hm.numerator;
b13 = b13/(sum(b13) + eps);
hal =freqz(b13,1,F1,Fs1);

That renders 9 coefficients and

F2 = Fs1/2/dec1/res*(0 : (res - 1);
dm = fdesign.lowpass(‘Fp,Fst,Ap,Ast’,13.87e6,22e6,0.1,105,Fsl/2);
hm = design(dm);
b23 = hm.numerator;
b23 = b23/(sum(b23) + eps);
ha2 = freqz(b23q,1,F2,Fs1/2);

That renders 42 coefficients

hat = ha1(1:length(F2)).*ha2;

The second filter is computed with the same resolution as the 1 st but on half of
frequencies, the total response is calculated on the same points and plotted on the
second range as follows (Fig. 3.2).

The two FIRs design looks like 4-

Code 3.1.5

24 3 Narrow Band & Wide Band Processing Basics

R e s p o n s e l

After design verification in frequency as described in Sect. 2.2.1 a C implemen­
tation for floating point inputs and coefficients which differs for even and odd num­
ber of coefficients looks like

3.1 Narrow Band Processing 25

Code 3.1.6

void dec_even(float *x, int n, int dec, float *y)
{
int i, k, count, Ien2;
float sum1,sum2;

count = 0;
Ien2 = 2*len_b_dec;
for (k = (Ien2 - 1); k < n; k += (2*dec))

{
suml = (float)O.;
sum2 = (float)O.;

for (i = 0; i < len_b_dec; i++)
{
suml += b_dec[i] * (x[k - i] + x[k - Ien2 + i + 1]);
sum2 += b_dec[ij * (x[k - i + dec] + x[k - Ien2 + i + 1 + dec]);
}

y[count++] = suml;
y[count++] = sum2;
}

}
void dec_odd(float *x, int n, int dec, float *y)
{
int i, k, count, Ien2;
float sum1,sum2;

count = 0;
Ien2 = 2*len_b_dec - 1;
for (k = (Ien2 - 1); k < n; k += (2*dec))

{
suml = (float)O.;
sum2 = (float)O.;

for (i = 0; i < (len_b_dec - 1); i++)
{
suml += b_dec[i] * (x[k - i] + x[k - Ien2 + i + 1]);
sum2 += b_dec[ij * (x[k - i + dec] + x[k - Ien2 + i + 1 + dec]);
}

suml += b_dec[len_b_dec - 1]*x[k - len_b_dec +1];
sum2 += b_dec[len_b_dec - 1]*x[k - len_b_dec + 1 + dec];

y[count++] = suml;
y[count++] = sum2;
}

26 3 Narrow Band & Wide Band Processing Basics

Two outputs are performed for each loop step, so the number of steps is half, if
several computing units are available as in some DSPs, then more outputs could be
computed every step.

Len_b_dec is half the filter length for even and half the filter length + 1 for odd
length numbers.

The processing time is 74 pS for the l 81 filter and 160 pS for the 2nd filter,
both for a sampling interval of 60 pS (10,000 samples) on an 15 2.9G CPU, since
the processing time is about 4 times larger than the sampling interval, one has to
use a 4 times faster CPU to enable full throughput on a single core or use hard­
ware implementation. Processing at 160 Mhz is too fast for current CPU
technology.

If the processing unit does not have an efficient floating point support, then the
computations may be done in fixed point format.

Representing the coefficients in fixed point format may be done in Matlab by

b l3 = round(bl3* (2 Aq u - l)) / (2 Aq u - l)

where qu is the number of bits used, when the number of coefficients increases
some of the coefficients are very small which requires more bits, the same applies
to stopband attenuation, where larger one requires more bits.

In the next figure the response for floating point coefficients and 16 bits fixed
point coefficients for the above example are presented (Fig. 3.3).

3.1 Narrow Band Processing 27

Responsel

Hz xlO7

Kig. 3.3 Total frequency response for fixed and floating point FIR implementation

If the designer is satisfied with 80 db stopband rejection he may use fixed point
calculations, but unless we gain with respect to processing time, the performance of
floating point formats is better.

When dealing with fixed point calculations, the range of suml, sum2 which
is -2A31 to 2A31-1 must be kept, otherwise incorrect results are produced, for our
example and 16 bits coefficients this is achieved by limiting the FIR’s input to 15
bits signed format.

A fixed point implementation in C which differs between even and odd number
of coefficients is

