/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2023 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define LUT_SIZE_MAX ((uint32_t) 1000) /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ HRTIM_HandleTypeDef hhrtim; DMA_HandleTypeDef hdma_hrtim1_m; /* USER CODE BEGIN PV */ ALIGN_32BYTES (static uint32_t lut[LUT_SIZE_MAX][3]); //generate lookup table with 1000 entries, containing 1000 entries for each TIMER_A.CMP1xR, TIMER_B.CMP1xR and TIMER_C.CMP1xR /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_HRTIM_Init(void); /* USER CODE BEGIN PFP */ static void CPU_CACHE_Enable(void); uint8_t calcLUTsawTooth(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* Enable the CPU Cache */ CPU_CACHE_Enable(); /* Enable I-Cache---------------------------------------------------------*/ SCB_EnableICache(); /* Enable D-Cache---------------------------------------------------------*/ SCB_EnableDCache(); /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_HRTIM_Init(); /* USER CODE BEGIN 2 */ calcLUTsawTooth(); /* Clean Data Cache to update the content of the SRAM to be used by the DMA */ SCB_CleanDCache_by_Addr((uint32_t *) lut, LUT_SIZE_MAX ); /* activate outputs */ HAL_HRTIM_WaveformOutputStart(&hhrtim, HRTIM_OUTPUT_TA1 | HRTIM_OUTPUT_TA2 | HRTIM_OUTPUT_TB1 | HRTIM_OUTPUT_TB2 | HRTIM_OUTPUT_TC1 | HRTIM_OUTPUT_TC2); /* start timers */ HAL_HRTIM_WaveformCountStart_DMA(&hhrtim, HRTIM_TIMERID_MASTER | HRTIM_TIMERID_TIMER_A | HRTIM_TIMERID_TIMER_B | HRTIM_TIMERID_TIMER_C); // Timer starten /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Supply configuration update enable */ HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_DIV1; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 4; RCC_OscInitStruct.PLL.PLLN = 12; RCC_OscInitStruct.PLL.PLLP = 2; RCC_OscInitStruct.PLL.PLLQ = 2; RCC_OscInitStruct.PLL.PLLR = 2; RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3; RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE; RCC_OscInitStruct.PLL.PLLFRACN = 4096; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2 |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1; RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief HRTIM Initialization Function * @param None * @retval None */ static void MX_HRTIM_Init(void) { /* USER CODE BEGIN HRTIM_Init 0 */ /* USER CODE END HRTIM_Init 0 */ HRTIM_BurstModeCfgTypeDef pBurstModeCfg = {0}; HRTIM_TimeBaseCfgTypeDef pTimeBaseCfg = {0}; HRTIM_TimerCfgTypeDef pTimerCfg = {0}; HRTIM_CompareCfgTypeDef pCompareCfg = {0}; HRTIM_DeadTimeCfgTypeDef pDeadTimeCfg = {0}; HRTIM_OutputCfgTypeDef pOutputCfg = {0}; /* USER CODE BEGIN HRTIM_Init 1 */ /* USER CODE END HRTIM_Init 1 */ hhrtim.Instance = HRTIM1; hhrtim.Init.HRTIMInterruptResquests = HRTIM_IT_NONE; hhrtim.Init.SyncOptions = HRTIM_SYNCOPTION_NONE; if (HAL_HRTIM_Init(&hhrtim) != HAL_OK) { Error_Handler(); } pBurstModeCfg.Mode = HRTIM_BURSTMODE_CONTINOUS; pBurstModeCfg.ClockSource = HRTIM_BURSTMODECLOCKSOURCE_MASTER; pBurstModeCfg.Prescaler = HRTIM_BURSTMODEPRESCALER_DIV1; pBurstModeCfg.PreloadEnable = HRIM_BURSTMODEPRELOAD_ENABLED; pBurstModeCfg.Trigger = HRTIM_BURSTMODETRIGGER_MASTER_REPETITION; pBurstModeCfg.IdleDuration = 3; pBurstModeCfg.Period = 1000; if (HAL_HRTIM_BurstModeConfig(&hhrtim, &pBurstModeCfg) != HAL_OK) { Error_Handler(); } pTimeBaseCfg.Period = 50000; pTimeBaseCfg.RepetitionCounter = 0x00; pTimeBaseCfg.PrescalerRatio = HRTIM_PRESCALERRATIO_DIV2; pTimeBaseCfg.Mode = HRTIM_MODE_CONTINUOUS; if (HAL_HRTIM_TimeBaseConfig(&hhrtim, HRTIM_TIMERINDEX_MASTER, &pTimeBaseCfg) != HAL_OK) { Error_Handler(); } pTimerCfg.InterruptRequests = HRTIM_MASTER_IT_NONE; pTimerCfg.DMARequests = HRTIM_MASTER_DMA_MREP; pTimerCfg.DMASrcAddress = (uint32_t)&lut[0][0]; pTimerCfg.DMADstAddress = HRTIM_BDMADR_BDMADR; pTimerCfg.DMASize = 1000; pTimerCfg.HalfModeEnable = HRTIM_HALFMODE_DISABLED; pTimerCfg.StartOnSync = HRTIM_SYNCSTART_DISABLED; pTimerCfg.ResetOnSync = HRTIM_SYNCRESET_DISABLED; pTimerCfg.DACSynchro = HRTIM_DACSYNC_NONE; pTimerCfg.PreloadEnable = HRTIM_PRELOAD_ENABLED; pTimerCfg.UpdateGating = HRTIM_UPDATEGATING_DMABURST_UPDATE; pTimerCfg.BurstMode = HRTIM_TIMERBURSTMODE_MAINTAINCLOCK; pTimerCfg.RepetitionUpdate = HRTIM_UPDATEONREPETITION_ENABLED; if (HAL_HRTIM_WaveformTimerConfig(&hhrtim, HRTIM_TIMERINDEX_MASTER, &pTimerCfg) != HAL_OK) { Error_Handler(); } pTimeBaseCfg.Period = 2000; pTimeBaseCfg.PrescalerRatio = HRTIM_PRESCALERRATIO_DIV1; if (HAL_HRTIM_TimeBaseConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_A, &pTimeBaseCfg) != HAL_OK) { Error_Handler(); } pTimerCfg.InterruptRequests = HRTIM_TIM_IT_NONE; pTimerCfg.DMARequests = HRTIM_TIM_DMA_NONE; pTimerCfg.DMASrcAddress = 0x0000; pTimerCfg.DMADstAddress = 0x0000; pTimerCfg.DMASize = 0x1; pTimerCfg.UpdateGating = HRTIM_UPDATEGATING_INDEPENDENT; pTimerCfg.PushPull = HRTIM_TIMPUSHPULLMODE_DISABLED; pTimerCfg.FaultEnable = HRTIM_TIMFAULTENABLE_NONE; pTimerCfg.FaultLock = HRTIM_TIMFAULTLOCK_READWRITE; pTimerCfg.DeadTimeInsertion = HRTIM_TIMDEADTIMEINSERTION_ENABLED; pTimerCfg.DelayedProtectionMode = HRTIM_TIMER_A_B_C_DELAYEDPROTECTION_DISABLED; pTimerCfg.UpdateTrigger = HRTIM_TIMUPDATETRIGGER_NONE; pTimerCfg.ResetTrigger = HRTIM_TIMRESETTRIGGER_NONE; pTimerCfg.ResetUpdate = HRTIM_TIMUPDATEONRESET_ENABLED; if (HAL_HRTIM_WaveformTimerConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_A, &pTimerCfg) != HAL_OK) { Error_Handler(); } pTimerCfg.PreloadEnable = HRTIM_PRELOAD_DISABLED; pTimerCfg.ResetUpdate = HRTIM_TIMUPDATEONRESET_DISABLED; if (HAL_HRTIM_WaveformTimerConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_B, &pTimerCfg) != HAL_OK) { Error_Handler(); } pTimerCfg.PreloadEnable = HRTIM_PRELOAD_ENABLED; if (HAL_HRTIM_WaveformTimerConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_C, &pTimerCfg) != HAL_OK) { Error_Handler(); } pCompareCfg.CompareValue = 1000; if (HAL_HRTIM_WaveformCompareConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_A, HRTIM_COMPAREUNIT_1, &pCompareCfg) != HAL_OK) { Error_Handler(); } if (HAL_HRTIM_BurstDMAConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_A, HRTIM_BURSTDMA_CMP1) != HAL_OK) { Error_Handler(); } if (HAL_HRTIM_BurstDMAConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_B, HRTIM_BURSTDMA_CMP1) != HAL_OK) { Error_Handler(); } if (HAL_HRTIM_BurstDMAConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_C, HRTIM_BURSTDMA_CMP1) != HAL_OK) { Error_Handler(); } pDeadTimeCfg.Prescaler = HRTIM_TIMDEADTIME_PRESCALERRATIO_DIV1; pDeadTimeCfg.RisingValue = 10; pDeadTimeCfg.RisingSign = HRTIM_TIMDEADTIME_RISINGSIGN_POSITIVE; pDeadTimeCfg.RisingLock = HRTIM_TIMDEADTIME_RISINGLOCK_WRITE; pDeadTimeCfg.RisingSignLock = HRTIM_TIMDEADTIME_RISINGSIGNLOCK_WRITE; pDeadTimeCfg.FallingValue = 10; pDeadTimeCfg.FallingSign = HRTIM_TIMDEADTIME_FALLINGSIGN_POSITIVE; pDeadTimeCfg.FallingLock = HRTIM_TIMDEADTIME_FALLINGLOCK_WRITE; pDeadTimeCfg.FallingSignLock = HRTIM_TIMDEADTIME_FALLINGSIGNLOCK_WRITE; if (HAL_HRTIM_DeadTimeConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_A, &pDeadTimeCfg) != HAL_OK) { Error_Handler(); } if (HAL_HRTIM_DeadTimeConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_B, &pDeadTimeCfg) != HAL_OK) { Error_Handler(); } if (HAL_HRTIM_DeadTimeConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_C, &pDeadTimeCfg) != HAL_OK) { Error_Handler(); } pOutputCfg.Polarity = HRTIM_OUTPUTPOLARITY_HIGH; pOutputCfg.SetSource = HRTIM_OUTPUTSET_TIMPER; pOutputCfg.ResetSource = HRTIM_OUTPUTRESET_TIMCMP1; pOutputCfg.IdleMode = HRTIM_OUTPUTIDLEMODE_NONE; pOutputCfg.IdleLevel = HRTIM_OUTPUTIDLELEVEL_INACTIVE; pOutputCfg.FaultLevel = HRTIM_OUTPUTFAULTLEVEL_NONE; pOutputCfg.ChopperModeEnable = HRTIM_OUTPUTCHOPPERMODE_DISABLED; pOutputCfg.BurstModeEntryDelayed = HRTIM_OUTPUTBURSTMODEENTRY_REGULAR; if (HAL_HRTIM_WaveformOutputConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_A, HRTIM_OUTPUT_TA1, &pOutputCfg) != HAL_OK) { Error_Handler(); } if (HAL_HRTIM_WaveformOutputConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_B, HRTIM_OUTPUT_TB1, &pOutputCfg) != HAL_OK) { Error_Handler(); } if (HAL_HRTIM_WaveformOutputConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_C, HRTIM_OUTPUT_TC1, &pOutputCfg) != HAL_OK) { Error_Handler(); } pOutputCfg.SetSource = HRTIM_OUTPUTSET_NONE; pOutputCfg.ResetSource = HRTIM_OUTPUTRESET_TIMPER; if (HAL_HRTIM_WaveformOutputConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_A, HRTIM_OUTPUT_TA2, &pOutputCfg) != HAL_OK) { Error_Handler(); } if (HAL_HRTIM_WaveformOutputConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_B, HRTIM_OUTPUT_TB2, &pOutputCfg) != HAL_OK) { Error_Handler(); } pOutputCfg.ResetSource = HRTIM_OUTPUTRESET_TIMCMP1; if (HAL_HRTIM_WaveformOutputConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_C, HRTIM_OUTPUT_TC2, &pOutputCfg) != HAL_OK) { Error_Handler(); } if (HAL_HRTIM_TimeBaseConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_B, &pTimeBaseCfg) != HAL_OK) { Error_Handler(); } if (HAL_HRTIM_WaveformCompareConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_B, HRTIM_COMPAREUNIT_1, &pCompareCfg) != HAL_OK) { Error_Handler(); } pTimeBaseCfg.Period = 50000; if (HAL_HRTIM_TimeBaseConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_C, &pTimeBaseCfg) != HAL_OK) { Error_Handler(); } if (HAL_HRTIM_WaveformCompareConfig(&hhrtim, HRTIM_TIMERINDEX_TIMER_C, HRTIM_COMPAREUNIT_1, &pCompareCfg) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN HRTIM_Init 2 */ /* USER CODE END HRTIM_Init 2 */ HAL_HRTIM_MspPostInit(&hhrtim); } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Stream0_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, LD1_Pin|LD3_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(USB_OTG_FS_PWR_EN_GPIO_Port, USB_OTG_FS_PWR_EN_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : B1_Pin */ GPIO_InitStruct.Pin = B1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : PC1 PC4 PC5 */ GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF11_ETH; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pins : PA1 PA2 PA7 */ GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF11_ETH; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : LD1_Pin LD3_Pin */ GPIO_InitStruct.Pin = LD1_Pin|LD3_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : PB13 */ GPIO_InitStruct.Pin = GPIO_PIN_13; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF11_ETH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : STLINK_RX_Pin STLINK_TX_Pin */ GPIO_InitStruct.Pin = STLINK_RX_Pin|STLINK_TX_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF7_USART3; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pin : USB_OTG_FS_PWR_EN_Pin */ GPIO_InitStruct.Pin = USB_OTG_FS_PWR_EN_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(USB_OTG_FS_PWR_EN_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : USB_OTG_FS_OVCR_Pin */ GPIO_InitStruct.Pin = USB_OTG_FS_OVCR_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(USB_OTG_FS_OVCR_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : PA11 PA12 */ GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF10_OTG1_FS; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : PG11 PG13 */ GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_13; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF11_ETH; HAL_GPIO_Init(GPIOG, &GPIO_InitStruct); /*Configure GPIO pin : LD2_Pin */ GPIO_InitStruct.Pin = LD2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ static void CPU_CACHE_Enable(void) { /* Enable I-Cache */ SCB_EnableICache(); /* Enable D-Cache */ SCB_EnableDCache(); } uint8_t calcLUTsawTooth() { // Generate Phase Shift (120° per phase) sawtooth values (range from 500 to 1500) uint16_t i_L2 = round(LUT_SIZE_MAX/3); uint16_t i_L3 = round(2 * LUT_SIZE_MAX/3); uint16_t pwm_duty = 500; for(uint16_t i = 0; i < LUT_SIZE_MAX; ++i) { pwm_duty = (uint16_t) pwm_duty + 1; if(i_L2 < LUT_SIZE_MAX) {lut[i_L2][1] = pwm_duty; i_L2 ++;} else { i_L2 = 0; lut[i_L2][1] = pwm_duty; i_L2 ++; } if(i_L3 < LUT_SIZE_MAX) { lut[i_L3][2] = pwm_duty; i_L3 ++;} else { i_L3 = 0; lut[i_L3][2] = pwm_duty; i_L3 ++; } } return 0; } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */