

R4131 SERIES SPECTRUM ANALYZER

WARRANTY

ADVANTEST product is warranted against defects in material and workmanship for a period of one year from the date of delivery to original buyer.

- LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by buyer, unauthorized modification or misuse, accident or abnormal conditions of operations. No other warranty is expressed or implied. ADVANTEST specifically disctaims the implied warranties of merchantability and fitness for a particular purpose.

ADVANTEST shall not be liable for any special incidental or consequential damages, whether in contract, tort or otherwise.

Before reselling to other corporations or re-exporting to other countries, you are required to obtain permission from both the Japanese Government under its Export Control Act and the U.S. Government under its Export Control Law.

© 1988 ADVANTEST CORPORATION All rights reserved. Feb. 17–1988 Printed in Japan

Preface

PREFACE

This Instruction Manual describes the following spectrum analyzers collectively:

Spectrum analyzers: R4131A, R4131AN R4131B, R4131BN R4131C, R4131CN R4131D, R4131DN

The description of product outline views, screen displays, etc. in this manual refers to the R4131B unless otherwise clearly indicated. All information contained in this manual that refers to the R4131 or the equipment is common to each of the R4131A/AN/B/BN/C/CN/D/DN. In several parts of this manual, the term ATT. refers to "attenuator."

Table of Contents

TABLE OF CONTENTS

1. GENERAL DESCRIPTION	1 - 1
1.1 How to Use this Operation Manual	1 - 2
1.2 Outline of Products	1 - 3
1.3 Before Starting the Use	1 - 4
1.3.1 Appearance Check and Accessory Check	1 - 4
1.3.2 Environmental Conditions for Use	1 - 5
1.3.3 Before Power ON	1 - 5
(1) Power Supply Condition	1 - 5
(2) Check for Supply Voltage Selection Switch	1 - 6
(3) Check for Fuse	1 - 6
(4) Check for Power Supply Cable	1 - 7
(5) Maximum Input	1 - 8
2. USING R4131 FOR THE FIRST TIME	2 - 1
2 1 Screen of Spectrum Analyzer	2 2 2
2.7 Basic Operating Procedure	2 - 2
(1) Initialization Screen	2 - 3
(7) Install Measurement Signal	2 - 3
(2) Input of Measurement Dignal	2 - 3
(4) Setting of Frequency Span	$2 - \frac{1}{5}$
(4) becching of Reference Level	2 - 6
(6) How to lice the MAPKER Key	2 - 0
(0) How to Umprove Proguency Accuracy According to	2 - 0
(7) now to improve frequency Accuracy According to	2 0
(2) Warmup Time	2 - 2
(0) warm-up time	2 - 9
	2 _ 1
2.1 Description of Front Danel	2 - 1
2.2 Description of Frank Key (in the NORWAL rode)	5 - 2
3.2 Description of Each Key (in the NORMAL mode)	3 - 5
3.3 Description of Each Key (in the SHIFT mode)	3 - 0
3.4 Description of Rear Panel	3 - 7
3.5 How to Read CRT Display Indication	3 - 10
	A 1
4. OPERATING METHOD	4 - 1
4.7 Initialization	4 - 2
4.2 Center Frequency Programmy Decurrent	4 - 4
4.3 Function to Improve Center Frequency Accuracy	4 - 6
(1) AFC Function (only in $R4+5+D/DN/D/DN$)	4 - 0
(2) ZERO CALIDRATION	4 - 6
(3) CF CALibration	4 - 6
(4) CF ADJustment	4 - 7
4.4 Frequency Span	4 - 9
(1) What Is Zero Span (Displayed in the Time Axis)?	4 - 9
4.5 Interlocking Function (AUTO)	4 - 10
4.6 Resolution Bank Width (RBW)	4 - 11
4.7 Reference Level and Ordinate Axis Scale	4 - 12
(1) Reference Level	4 - 12

				-
	(2) Quadrature Axis Scale (dB/DIV)	4	-	12
	(3) Reference Level Step Width (COARSE/FINE)	4	-	14
	(4) Unit (UNITS)	4	-	14
	(5) Calibration of Ordinates Axis Level	4	-	14
	4.8 RF Input Attenuator	4	-	15
	4.9 Display Line	4	-	16
	4.10 Marker Function	4	-	17
	(1) Display of Marker	4	-	17
	(2) Erasing of Marker	4	_	17
	(3) PEAK SedICH	4	_	18
	(5) SIGnal TRack	4	-	19
	(6) MARKER PAUSE	4		20
	(7) Measurement of NOISE/Hz	4	-	21
,	4.11 Video Filter Band Width (VIDEO FiLTeR)	4	-	22
•	4.12 Setting of Sweep Time	4	-	23
. •	4.13 Selection of Sweep Mode/Trigger Mode	4	-	24
	4.14 Display Detection Mode	4	-	25
	(1) SAMPLE DETection	4.	-	25
	(2) POSi PeaK DETection	4	-	25
	(3) NORMAL DETection (POSI/NEGA DET)	4	-	26
	4.15 Selection of Trace Mode	4	-	28
	(1) WRITE	4	***	28
	(2) STORE	4	-	28
	$(3) \text{ VIEW} \dots \text{ VIEW} (2 - a - a - a - a - a - a - a - a - a - $	4	_	28
	(4) WRITE and VIEW (2-Screen display) $\dots \dots \dots$	4	_	23
	4 16 Setting Conditions and SAVE/RECALL of Displayed Waveform	4	_	33
	(1) SAVE	4		34
	(2) RECALL	4	-	35
	4.17 Automatic Setting at Power ON	4	-	36
	4.18 Electric Field Intensity Measurement (dBµ/m)	4	-	37
	4.19 QP Value Measurement (Quasi-peak Value Measurement)	4	_	39
	4.20 Normalize	4	-	42
	4.21 Option 04: Occupied Frequency Band Width (OBW)			
	Measurement (only for R4131B/D)	4		47
	4.22 Option 14 (only for R4131B/D)	4	-	49
	4.23 Plotter Output	4	-	52
_				
5.	APPLIED MEASURING METHOD	5	-	1
	5.1 Measurement of Modulation Frequency and Index of AM Signal	5		2
	S.I.I Measurement of AM wave when the Modulation Frequency is Low	E		2
	5.1.2 Measurement of AM Waye When Modulation Frequency is High and	5	_	5
	Modulation Index is Small	5	_	7
	5.2 Measurement of FM Wave	5		10
	5.2.1 Measurement of FM Wave When Modulation Frequency Is Low	5		10
	5.2.2 Measurement of FM Wave for High Modulation Frequency	5	_	13
	5.2.3 Measurement of Peak Deviation (Af peak) of FM Wave	5	-	15
	5.2.4 How to Obtain Modulation Index m when FM Modulation Index m	-		-
	Is Small	5 ·	- '	17

6. GPIB CONNECTION AND ITS PROGRAMMING	6 - 1
6.1 Outline of GPIB	6 - 2
6.2 Standards	6 - 4
6.2.1 GPIB Specifications	6 - 4
6.2.2 Interface Function	6 - 5
6 3 GPIB Handling Method	6 - 6
6 3 1 For Connection to Component Devices	5 - 6
6.2.2 Sotting of ADDRESS SW	6 - 6
6.3.2 Become of ADDRESS SW	0 - 0
6.3.3 Programming	6 - 7
6.4 Setting of Each Function	6 - 8
(1) When the Center Frequency	9 - 9
(1) when the Center Frequency is Set Using the Command	c
IOF Setting the TUNING KNOD	6 - 9
(2) when the value of Center Frequency is set Directly	6 - 10
6.4.2 Setting of Frequency Span	0 - 11
(1) when Using the Command Corresponding to the Key	-
on Front Panel	6 - 11
(2) When the Value of Frequency Span Is Set Directly	6 - 12
6.4.3 Setting of Reference Level	6 - 12
(1) When Using the Command Corresponding to the Key	
on Front Panel	6 - 13
(2) When the Value of the Reference Level Is Set Directly	6 - 14
6.4.4 Setting of Marker	6 - 14
(1) When Using the Command Corresponding to the Data Knob	6 - 14
(2) When the Value of Marker Frequency Is Set Directly	6 - 15
6.4.5 Setting of Resolution Band Width	6 - 16
(1) When Using the Command Corresponding to the Key	6 - 16
(2) When the Resolution Band Width Is Set Directly	6 - 17
6.4.6 Setting of VIDEO Filter Band width	6 - 18
(1) when Using the Command Corresponding to the Key	6 - 18
(2) when the value of VIDEO FILTER Band width is set Directly	6 - 19
6.4.7 Setting of Sweep Time (SWEEP TIME/DIV)	6 - 19
(1) when Using the Command Corresponding to the Key	6 - 20
(2) when the Sweep Time is Set Directly	6 - 21
6.5 Output of Setting Conditions	6 - 22
6.5.1 "OP" Command	6 - 22
6.5.2 Format of Output Data	6 - 23
(1) Header	6 - 24
(2) Block Delimiter	6 - 26
6.5.3 Mode String	6 - 27
6.6 Input/Output of Trace Data	6 - 30
6.6.1 Output of Trace Data	6 - 31
(1) Method to Output the Trace Data with ASCII Code	6 - 31
(2) Method to Output Data with the Binary Code	6 - 32
6.6.2 Input of Trace Data	6 - 34
(1) Method to Input the Trace Data with the ASCII Code	6 - 34
(2) Method to Input the Trace Data with the Binary Code	6 - 35
6.7 Service Request	6 - 37
(1) Status Byte	6 - 37
(2) Output of Status Byte	6 - 38

 6.8 Notes in Programming (1) Noteworthy Points in Sending a Command (2) Noteworthy Points in Spectrum Analysis When the Frequency 	6 - 6 -	39 39
Span Is Made Narrower	6 -	39
When the Frequency Span Is Less Than 10 MHz 6.9 List of GPIB Codes	6 - 6 -	40 41
7. NOTES IN STORING AND SHIPPING THIS EQUIPMENT	7 -	1
7.1 Storage of This Equipment	7 -	2 ⁺
7.2 Cleaning of This Equipment	7 -	2
7.3 Shipment of This Equipment	7 -	2
8. TECHNICAL DATA OF FUNCTION AND ACCESSORIES	8 -	1
8.1 Technical Data of Function	8 -	2
(1) Frequency Specification	8 -	2
(2) Amplitude Specification	8 -	3
(3) Sweep Specification	8 -	5
(4) Input Specification	8 -	5
(5) Display Unit Specification	8 -	5
(6) Output Specification	8 -	6
(/) General Specifications	8 -	6
(8) Option (only $K4131B/D$)	8 -	0 7
8.2 Accessories	0 ~	/
9. FUNCTIONAL DESCRIPTION	9 -	1
9.1 Outline	9 -	2
9.1.1 Basic Operations	9 -	2
9.1.2 R4131 Series Configuration	9 -	5
9.2 RF Block	9 -	7
9.2.1 First Mixer	9 -	8
(1) 3.6 GHz Low-pass Filter	9 -	8
(2) 4.0 GHz Band Pass Filter	9 -	8
$(3) \text{ First Mixer} \dots \dots$	9 -	8
9.2.2 Second Mixer	9 -	8
(1) 4.0 GHZ Band Pass Filter	9 -	9
(2) Second Local Uscillator	9 -	9
Q 2 3 Third and Fourth Mixers	9 -	9
(1) 226 42 MHz Preamplifier	9 -	9 0
() Third Mixer	9 -	9
(2) Inite Mixer the Oscillator (3) 200 MHz Crystal Oscillator	9 -	10
(4) Gain Control Amplifier	9 -	10
(5) 30 MHz Crystal Oscillator	9 -	11
9.3 YTO CONT/IF Board	9 -	12
9.3.1 IF Filter	9 -	12
(1) Input 3.58 MHz Band Pass Filter	9 -	13
(2) Gain Adjust Amplifier	9 -	13
(3) Crystal Filter	9 -	15
(4) LC Filter	9 -	15
(5) Step Amplifier	9 -	16

.

9.3.2 YTO Controller and AFC	9		17
(1) YTO Controller	9	_	18
(2) AFC	9	-	29
9.4 Analog Board	9	_	21
9.4.1 Log Amplifier	9	_	21
0 A 2 Pamp Generator	á	_	21
(1) Current Course	0		24
(1) Current Source	9		25
(2) Ramp Generator	9	-	26
9.4.3 A/D Converter	9	-	28
(1) X-axis A/D Converter	9	-	39
(2) Y-axis A/D Converter	9	-	39
9.4.4 Analyzer Test	9	-	30
	10		1
10. CALIBRATION AND ADJUSTMENTS	10	-	-
10.1 Preparation	10	-	2
10.2 A/D Adjustment (Analog Board) (BLR-015117)	10	-	4
10.3 LOG Ampiliter Adjustment (Analog Board) (BLR-01511/)	10	-	6
10.4 IF Filter Adjustment (YTO_CONT/IF Board	10		8
10.4.1 3.58 MHz BPF Adjustment	10	-	8
10.4.2 Crystal Filter Adjustment	10	-	9
10.4.3 LC Filter Adjustment	10	-	11
10.4.4 Resolution Bandwidth Level Adjustment	10	-	12
10.4.5 Step Amplifier Adjustment	10	-	13
10.5 YTO_CONT Adjustment (YTO_CONT/IF Board) (BLR-015116)	10	~	15
10.6 RF Block Adjustment	10	-	19
10.6.1 Third Local Oscillator Adjustment	10	-	19
10.6.2 Second Local Oscillator Adjustment	10	-	19
10.6.3 Fourth Local Oscillator Adjustment	10	-	19
10.7 Location Diagram of YTO CONT/IF Board	10		20
10.8 Location Diagram of Analog Board	10		21
11. PERFORMANCE TESTING	11		1
11.1 Preparation	11	-	2
11.2 General Precautions	11	-	3
11.3 Frequency Span Accuracy	11	-	4
11.4 Center Frequency Readout Accuracy	11	-	10
11.5 Residual FM	11	-	12
11.6 Noise Sidebands	11		15
11.7 Resolution Bandwidth Accuracy	11	-	17
11.8 Resolution Bandwidth Selectivity	11	- 3	22
11.9 Resolution Bandwidth Switching Accuracy	11	:	24
11.10 LOG Linearity and LIN Linearity	11	- :	26
11.11 Reference Level Accuracy	11	-	29
11.12 Residual Responses	11.		31
11.13 Gain Compression	11	_ `	32
11 14 Frequency Response	11		24
11 15 Averane Noise Level	11	_	27
11 16 Swaap Time Ageuragy	11	2	20
11 17 Calibrated Output Accuracy	11.		17 17
THAT / CATIDIALEO DUEDUE ACCUEACY	11.	- 4	± 4

.

Table of Contents

12. MAINTENANCE DATA	12	-	1
12.1 Preparation	12	-	2
12.2 Location Diagram (Top & Bottom)	12		4
12.3 Location Diagram for RF	12	-	6
12.4 Block Diagram	12	-	7
12.5 Self Test	12 -	-	8
APPENDIX			
A.1 Explanation of Terminologies	Α·		2
A.2 Level Conversion Table	A	-	9
A.3 Parts Location and Circuit Diagrams	Α.		10
List of Figures	F·	-	1
List of Tables	т -	- '	1
List of Examples	Е·	- '	1

External View

1

6. GPIB Connection and Programming

6. GPIB CONNECTION AND PROGRAMMING

This equipment features the measurement bus GPIB (General Purpose Interface Bus), which conforms the IEEE Standards 488-1978, as standard equipment to enable full remote control by an external controller.

6.1 Outline of GPIB

The GPIB is an interface system which can connect a measuring instrument to a controller and its peripheral equipment, etc. with a simple cable (bus line). Compared with conventional interfacing methods, it has excellent expandability, is easy to use, and is compatible with products of other companies electrically, mechanically, and functionally. This allows versatile configuration from a simple system to a high-level automatic measuring system with one bus cable.

In the GPIB system, it is first necessary to preset an "address" of separate component equipment connected to its bus line. These equipment can perform one or two of three roles -- controller, talker (speaking party), and listener (listening party).

During the system operation, only one talker can send data to the bus line and a multiple listeners can receive the data. The controller specifies the address of a talker and listener to transfer data from the talker to listener, or the controller itself (a talker in this case) sets measuring conditions, etc., of the listener.

For data transfer between equipment, the GPIB system uses eight data lines of bit parallel and byte serial types and also transmits data in both directions asynchronously. Being an asynchronous system, high speed devices and low speed ones can be connected to each other.

The data (messages) exchanged between devices consists of measuring data, measuring conditions (programs), and various commands. The system uses the ASCII code.

In addition to the above eight data lines, the GPIB provides three handshaking lines to control sending and receiving asynchronous data, and five control lines to control the flow of data on bus lines.

Figure 6-1 Outline of GPIB

• The following signals are used for handshaking lines:

17-

DVA (Data Valid) : This is a signal to indicate that the data is valid. NRFD (Not Ready For Data): This is a signal to indicate that the data is ready for receiving. NDAC (Not Data Accepted) : This is a signal to indicate that the data reception is completed.

• The following signals are used for control lines:

ATN	(Attention)	:	This is a signal used to distinguish that the signal on the data line is either address or command, or some other data.
IFC	(Interface Clear)	:	This is a signal to clear the interface.
EQI	(End or Identify)	:	This is a signal used when the data transfer ends.
SRQ	(Service Request)	:	This is a signal used to request a service from any equipment to the controller.
REN	(Remote Enable)	:	This is a signal used when remote programmable equipment is controlled remotely.

6.2 Standards

6.2.1 GPIB Specifications

Conformed standards	:	IEEE Standards 488-1978
Code used	:	ASCII code, or binary code for packed format
Logical level	:	Logical 0 "High" status More than +2.4 V Logical 1 "Low" status Less than +0.4 V
Signal line termination	:	16 bus lines are terminated as shown below:

Figure 6-2 Signal Line Termination

Driver specification	:	Open collector type Output voltage under the "Low" status 48 mA at +0.4 V or less Output voltage under the "High" status 5.2 mA at +2.4 V or more
Receiver specification	1:	"Low" status at +0.6 V or less
		"High" status at +2.0 V or more
Length of bus cable	:	The length of each cable should be less than
		4 m and the total length of all bus cables
		(the number of equipment connected to buses x
		2) should not exceed 20 m.
Address specification	:	31 types of TALK address/LISTEN addresses can
		be set freely using the ADDRESS switch on the rear panel.
		After changing over to the ADDRESS switch,
		turn OFF the POWER SW once and then ON again.
Connector	:	24-pin GPIB connector

Oct 20/89

6.2 Standards

6.2.2 Interface Function

Table 6-1 Interface Function	Table	6-1	Interface	Function
------------------------------	-------	-----	-----------	----------

Code	Function and explanation				
SH1	Source handshaking function				
AH1	Acceptor handshaking function				
Т6	Basic talker function, serial polling function, and talker releasing function by listener specification				
L4	Basic listener function and listener releasing function by talker specification				
SR1	Service requesting function				
RL1	Remote function				
PP0	No parallel function provided				
DC1	Device clearing function provided				
DT1	Device triggering function provided				
C0	No controlling function provided. However, the controller function is enabled when the plotter is used.				
E1	Open collector and bus driver used. However, E2 is used for EOI and DAV (three-state bus driver used).				

6.3 GPIB Handling Method

6.3 GPIB Handling Method

6.3.1 For Connection to Component Devices

Since the GPIB system is composed of multiple devices, prepare the entire system while paying attention to the following points especially.

- Before connection, check the condition and operation of each device according to the operation manual for R4131, controller and other peripheral devices, etc.
- (2) Do not make any bus cable connected to each measuring instrument and controller, etc., unnecessarily long. The length of each cable should be less than 4 m and the total length of all bus cables (the number of devices connected to buses x 2) should not exceed 20 m. ADVANTEST provides standard bus cables as shown in Table 6-2.

Length	Name
0.5 m	408JE-1P5
1 m	408JE-101
2 m	408JE-102
4 m	408JE-104

Table 6-2 Standard Bus Cables (To Be Purchased Separately)

- (3) Bus cable connectors are of a piggy back type. Male and female connectors are provided for one connector, which can be used one over the other. Do not pile up three or more connectors when connecting cables. Also, be sure to screw connectors tightly with setscrews.
- (4) Before turning ON the power of the devices connected to the bus lines, check their power supply conditions, grounding status, and setting conditions, too, when necessary. Be sure to set the power of each component unit to ON. If any of them is not set to ON, the overall operation cannot be guaranteed.

6.3.2 Setting of ADDRESS Switch

The rear panel of this equipment has a ADDRESS switch (Figure 6-4) used to set addresses on the GPIB. By setting bits 1 (the right end) to 5 to 0 or 1, addresses can be set from 0 to 30.

Set the ADDRESS switch before turning on the power.

The relationship between this ADDRESS switch and GPIB addresses is shown in Table 6-3.

GPIB address	Bit 54321	GPIB address	Bit 54321	GPIB address	Bit 54321
0 1 2 3 4 5	0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0	11 12 13 14 15	0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1	21 22 23 24 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 7 8 9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 27 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table	6-3	Setting	of	ADDRESS	Switch

Figure 6-4 ADDRESS Switch

6.3.3 Programming

Programming for GPIB covers the sending of GPIB command codes and data to equipments to be connected, reading of data from devices, execution of bus commands, and I/O commands, e.g., serial polling, etc. The arithmetic operation and others shall conform to the program generating procedure in the controller.

The format of GPIB commands to any equipments and I/O statements of data have the configuration as follows:

I/O Part	Unit Address	;	I/O Command, Code, and Data
L			

Oct 20/89

6.4 Setting of Each Function

6.4 Setting of Each Function

This equipment may be put under remote control for all functions using the GPIB controller.

This section describes the setting of each function of this equipment referring to program examples using a desk-top computer, HP Corporation's HP200/300 series.

Program examples are all assumed to be set from their initial status.

Example 6-1: Setting the Center Frequency to 500 MHz and Frequency Span to 2 MHz

HP200, 300 Series

When programmed and executed as above, this equipment is set to 500 MHz in center frequency and 2 MHz in frequency span.

CF, SP, and MZ, etc. in the program are all GPIB commands to control this equipment.

Since these commands correspond to keys of this equipment, the programming can be made in the order of pressing keys on the panel.

See Section 6.9 for a list of GPIB codes.

6.4.1 Setting of Center Frequency

There are two methods available for the setting of center frequency using the GPIB.

One is to make the center frequency increase (or decrease) step by step using the data knob setting command, and, while reading its value sequentially, it is repeated until the frequency is set to the target value. The other method is to set the value of frequency directly.

(1) When the Center Frequency Is Set Using the Command for Setting the TUNING Knob

Example 6-2: Setting the Center Frequency to 1 GHz

HP200/300 Series

10 OUTPUT 701; "SP 1GZ" 20 OUTPUT 701; "OPCF" 30 ENTER 701;F 40 IF F=1E9 THEN 70 50 OUTPUT 701; "CD" 60 GOTO 30 70 IF F=1E9 THEN 100 80 OUTPUT 701; "CU" 90 GOTO 30 100 END

Line No.	Meaning
10	Sets the frequency span to 1 GHz.
20	Instructs this equipment to output the value of the center frequency.
	See the OP Command in 6.5.1.
30	Reads the value of the center frequency.
40	Branches to line No. 70 when the read data is smaller than or equal to 1×109 (Hz)
50	Sends the command to turn the data knob counterclockwise for 1 step of COARSE.
60	Returns to line No. 30.
70	Branches to line No. 100 when the read data is equal to 1 x 10^9 (Hz).
80	Sends the command to turn the data knob clockwise for 1 step of COARSE.
90	Returns to line No. 30.
100	End of program

Note: Note that the set resolution of the center frequency becomes coarse and the center frequency cannot be set to the desired value when the frequency span is wide.

6.4 Setting of Each Function

(2) When the Value of Center Frequency is Set Directly

Example 6-3: Setting the Center Frequency to 1 GHz Directly

HP200/300 Series

10 OUTPUT 701: "CF1GZ" 20 END

Line No.	Meaning
10	Sets the center frequency to 1 GHz.
20	End of program

6.4 Setting of Each Function

6.4.2 Setting of Frequency Span

There are two methods available for the setting of the frequency span using the GPIB. One is to make the frequency span wider or narrower in 1-2-5 steps using the command (NR and WD) corresponding to the key on the front panel. The other method is to set the value of the frequency span directly.

(1) When Using the Command Corresponding to the Key on Front Panel

Example 6-4: Setting the Frequency Span to 20 MHz

HP200/300 Series

10 OUTPUT 701; "OPSP" 20 ENTER 701;S 30 IF S<=20E6 THEN 60 40 OUTPUT 701; "NR" 50 GOTO 20 60 IF S=20E6 THEN 90 70 OUTPUT 701; "WD" 80 GOTO 20 90 END

Line No.	Meaning
10	Instructs this equipment to output the set value of frequency span. Sends the command SP of the SPAN key to light the LED on the key.
20	Reads the data (the value of the frequency span).
30	Branches to line No. 60 when the read data is smaller than or equal to 20 x 10^6 (Hz).
40	Sends the command for for of this equipment to make the frequency span narrower by 1 step.
50	Returns to line No. 20.
60	Branches to line No. 90 when the read data is equal to 20 \times 10 ⁶ (Hz).
70	Sends the command for 🐼 of this equipment to widen the frequency
80 90	span by 1 step. Returns to line No. 20. End of program

6.4 Setting of Each Function

(2) When the Value of Frequency Span Is Set Directly

Example 6-5: Setting the Frequency Span to 20 MHz Directly

HP200/300 Series

10 OUTPUT 701; "SP20MZ" 20 END

Line No.	Meaning
10	Sets the frequency span to 20 MHz.
20	End of program

When the frequency span is set directly, do it using the codes given in the table below.

Frequency	Span	Set	Value	Codes
-----------	------	-----	-------	-------

Code	SPAN	Code	SPAN	Code	SPAN
SP50KZ SP100KZ SP200KZ SP500KZ SP1MZ SP2MZ SP5MZ	50 kHz 100 kHz 200 kHz 500 kHz 1 MHz 2 MHz 5 MHz	SP10MZ SP20MZ SP50MZ SP100MZ SP200MZ SP500MZ	10 MHz 20 MHz 50 MHz 100 MHz 200 MHz 500 MHz	SP1GZ SP2GZ SP4GZ ZS	1 GHz 2 GHz 4 GHz 2EROSPAN

6.4.3 Setting of Reference Level

There are two methods available for setting the reference level using the GPIB.

One is to set the reference level up and down using the command (LU, LD, or FC) corresponding to the key on the front panel to set it to the desired value. The other method is to set the value of the reference level directly.

Note that the set range of the reference level narrows according to the set value of the input attenuator.

```
(1) When Using the Command Corresponding to the Key on Front Panel
   Example 6-6: Setting the Reference Level to -30 dBm
   HP200/300 Series
    10 OUTPUT 701; "OM"
    20 ENTER 701 USING "#,B";A1,A2,A3,A4,A5,A6,A7
    30 IF A4=1 THEN 50
    40 OUTPUT 701; "FC"
       OUTPUT 701; "OPRL"
    50
    60 ENTER 701; L
    70 IF L<=-30 THEN 100
    80 OUTPUT 701; "LD"
    90 GOTO 60
   100 IF L=-30 THEN 130
   110 OUTPUT 701; "LU"
   120
        GOTO 60
   130 END
```

Line No.	Meaning
10	Instructs the equipment to output the mode string.
20	Reads the mode string.
30	Incorporates a numeric value which indicates the setting COARSE or FINE that the reference level setting switch sets to the numerical variable A4 (COARSE = 0 FINE = 1)
	Branches to line No. 50.
40	Sends the COARSE/FINE SELECTION key command.
50	Instructs this equipment to output the set value of the reference
	level.
60	Reads the data.
70	Branches to line No. 100 when the read data is less than or equal to -30 (dBm).
80	Sends the command of the REFERENCE LEVEL DOWN key 😎 to lower the reference level by 1 step.
90	Returns to line No. 60.
100	Branches to line No. 130 when the read data is equal to -30 (dBm).
110	Sends the command of the REFERENCE LEVEL UP key 줎 to raise the
	reference level by 1 step.
120	Returns to line No. 60.
130	End of program
L	

Note: See the mode string in 6.5.3.

6.4 Setting of Each Function

(2) When the Value of the Reference Level Is Set Directly

Example 6-7: Setting the Reference Level to -30 dBm Directly

HP200/300 Series

- 10 OUTPUT 701: "RL-30DM"
- 20 END

Line No.	Meaning
10	Sets the reference level to -30 dBm.
20	End of program

6.4.4 Setting of Marker

There are two methods available for setting the marker.

One is to increase or decrease the marker frequency step by step using the command for the data knob setting, and while reading its value sequentially, this is repeated until the marker is set to the desired value. The other method is to set the value of the marker frequency directly.

(1) When Using the Command Corresponding to the Data Knob

Example 6-8: Setting the Marker Frequency to 1 GHz

HP200/300 Series

10 OUTPUT 701; "M1" 20 OUTPUT 701; "OPMF" 30 ENTER 701;M 40 IF M<=1E9 THEN 70 50 OUTPUT 701; "FD" 60 GOTO 30 70 IF M=1E9 THEN 100 80 OUTPUT 701; "FU" 90 GOTO 30 100 END

6.4 Setting of Each Function

Line No.	Meaning
10	Displays the marker.
20	Instructs this equipment to output the value of the marker frequency.
30	Reads the value of the marker frequency.
40	Branches to line No. 70 when the read data is smaller than or equal to 1 x 10^9 (Hz).
50	Sends the command to turn the data knob counterclockwise for 1 step of FINE.
60	Returns to line No. 30.
70	Branches to line No. 100 when the read data is equal to 1 \times 10 ⁹ (Hz).
80	Sends the command to turn the data knob clockwise for 1 step of FINE.
90	Returns to line No. 30.
100	End of program

(2) When the Value of Marker Frequency Is Set Directly

Example 6-9: Setting the Marker Frequency to 1 GHz Directly

HP200/300 Series

10 OUTPUT 701; "MK1GZ"

20 END

Line No.	Meaning
10	Sets the marker frequency to 1 GHz.
20	End of program

6.4 Setting of Each Function

6.4.5 Setting of Resolution Band Width

There are two methods available for setting the resolution band width using the GPIB. One is to set it by making the resolution wide or narrow as in step 1.3, using the command (RB, NR, or WD) corresponding to the key on the front panel. The other method is to set the resolution band width directly.

(1) When Using the Command Corresponding to the Key

Example 6-10: Setting the Resolution Band Width to 10 kHz

HP200/300 Series

10 OUTPUT 701; "OPRBRB"
20 ENTER 701; R
30 IF R<=1E4 THEN 60
40 OUTPUT 701; "NR"
50 GOTO 20
60 IF R=1E4 THEN 90
70 OUTPUT 701; "WD"
80 GOTO 20
90 END

Line No.	Meaning
10	Instructs this equipment to output the value of the resolution band width Sends the BBW key command
20	Receives the data (the value of the resolution hand width).
30	Branches to line No. 60 when the read data is smaller than or equal to 1×10^4 (Hz)
· 40	Sends the command of \bigotimes to make the resolution band width narrower by 1 step.
50	Returns to line No. 20.
60	Branches to line No. 90 when the read data is equal to 1 x 10^4 (Hz).
70	Sends the command of \bigotimes to widen the resolution band width by 1 step.
80 90	Returns to line No. 20. End of program

6.4 Setting of Each Function

(2) When the Resolution Band Width Is Set Directly

Example 6-11: Setting the Resolution Band Width to 10 kHz Directly

HP200/300 Series

10 OUTPUT 701; "RB10KZ"

20 END

Line No.	Meaning
10	Sets the resolution band width to 10 kHz.
20	End of program

When the value of the resolution band width is set directly, do it using the codes shown in the table below.

Resolution Band Width Set Value Codes

Code	Resolution	n band width	Code	Resolution	n band width
RB1KZ RB3KZ RB10KZ RB30KZ	1 3 10 30	kHz kHz kHz kHz	RB100KZ RB300KZ RB1MZ	100 300 1	kHz kHz MHz

In addition, this equipment can automatically set the resolution band width and sweep time to the optimum value, respectively, according to the frequency span as shown in the following example:

Example 6-12: Making the Resolution Band Width into the Automatic Setting Mode

HP200/300 Series

10 OUTPUT 701: "BA" 20 END

Line No.	Meaning
10	Sends the AUTO key command to this equipment.
20	End of program

Oct 20/89

6.4 Setting of Each Function

6.4.6 Setting of VIDEO FiLTeR Band Width

There are two methods available for setting the VIDEO FiLTER band width using the GPIB. One is to set it by making the VIDEO FiLTER band width narrower or wider step by step using the command (VU or VD) corresponding to the key on the front panel. The other method is to directly set the value of VIDEO FiLTER band width.

(1) When Using the Command Corresponding to the Key

Example 6-13: Setting the VIDEO FiLTeR band width to 100 Hz

HP200/300 Series

10 OUTPUT 701; "OPVF" 20 ENTER 701;V 30 IF V<=1E2 THEN 60 40 OUTPUT 701; "VD" 50 GOTO 20 60 IF V=1E2 THEN 90 70 OUTPUT 701; "VU" 80 GOTO 20 90 END

Line No.	Meaning
10	Instructs this equipment to output the value of VIDEO FiLTER band width.
20	Reads the data.
30	Branches to line No. 60 when the read data is smaller than or equal to 1 x 10^2 (Hz).
40	Sends the VIDEO FILTER DOWN key 🐼 command to lower the set value of VIDEO FILTER band width by 1 step.
50	Returns to line No. 20.
60	Branches to line No. 90 when the read data is equal to 1 \times 10 ² (Hz).
70	Sends the VIDEO FILTER UP key 🙆 command to raise the set value of VIDEO FILTER band width by 1 step.
80	Returns to line No. 20.
90	End of program

6.4 Setting of Each Function

(2) When the Value of VIDEO FiLTER Band Width Is Set Directly

Example 6-14: Setting VIDEO FiLTeR band width to 100 Hz Directly

HP200/300 Series

10 OUTPUT 701; "VF 100HZ"

20 END

Line No.	Meaning
10	Sets the VIDEO FiLTeR band width to 100 Hz.
20	End of program

When the value of VIDEO FiLTER band width directly, do it using the codes shown in the table below.

Code	Value of VIDEO FiLTeR Band Width
VF10Hz	10 Hz
VF100Hz	100 Hz
VF1KZ	1 kHz
VF10KZ	10 kHz
VF100KZ	100 kHz
VF300KZ	300 kHz
VF1MZ	1 MHz

VIDEO FiLTER Band Width Set Value Codes

6.4.7 Setting of Sweep Time (SWEEP TIME/DIV)

There are two methods available for setting the sweep time using the GPIB. One is to set the sweep by making it long (or short) in steps of 1-2-5 using the command (TU or TD) corresponding to the key on the front panel. The other method is to set the sweep time directly.

6.4 Setting of Each Function

(1) When Using the Command Corresponding to the Key

Example 6-15: Setting the Sweep Time to 200 ms/DIV.

HP200/300 Series

10 OUTPUT 701; "OPST"
20 ENTER 701;T
30 IF T<=0.2 THEN 60
40 OUTPUT 701; "TD"
50 GOTO 20
60 IF T=0.2 THEN 90
70 OUTPUT 701; "TU"
80 GOTO 20
90 END

Line No.	Meaning
10	Instructs this equipment to output the value of the sweep time.
20	Reads the data (the value of the sweep time).
30	Branches to line No. 60 when the read data is smaller than or equal to 0.2.
40	Sends the TIME/DIV DOWN key \bigodot command to lower the sweep time by 1 step (to speed up the sweeping).
50	Returns to line No. 20.
60	Branches to line No. 90 when the read data is equal to 0.2.
70	Sends the TIME/DIV key 🙆 command to raise the value of the sweep time by 1 step (to slowdown the sweeping).
80	Returns to line No. 20.
90	End of program

6.4 Setting of Each Function

(2) When the Sweep Time Is Set Directly

Example 6-16: Setting the Sweep Time to 200 ms/DIV Directly

HP200/300 Series

10 OUTPUT 701: "ST200MS"

20 END

Line No.	Meaning
10	Sets the sweep time to 200 ms/DIV.
20	End of program

When the value of the sweep time is set directly, do it using the codes shown in the table below.

Code	Sweep time	Code	Sweep time
ST5MS ST10MS ST20MS ST50MS ST100MS ST200MS	5 ms/ 10 ms/ 20 ms/ 50 ms/ 100 ms/ 200 ms/	ST500MS ST1S ST2S ST5S ST10S ST20S ST50S ST100S	500 ms/ 1 s/ 2 s/ 5 s/ 10 s/ 20 s/ 50 s/ 100 s/

Sweep Time Set Value Codes

6.5 Output of Setting Conditions

6.5 Output of Setting Conditions

To make the system output the set data of measurement parameters, call it directly using the "OP" command, or make it output the mode strings to detect it.

6.5.1 "OP" Command

When making the measurement parameter output directly, use the "OP" command (Output Interrogated Parameter).

Following the "OP" command, the OP parameter code of the set data to be output is sent to this equipment.

The OP parameters of this equipment are shown below.

OP Parameter Codes

Code	Parameter output
АТ	ATTENUATOR
CF	CENTER FREQUENCY
MF	MARKER FREQUENCY
ML	MARKER LEVEL
RB	RESOLUTION BAND WIDTH
RL	REFERENCE LEVEL
SP	FREQ SPAN
ST	SWEEP TIME
VF	VIDEO FILTER BAND WIDTH
PL	DISPLAY LINE
OB	OCCUPIED BAND WIDTH (for R4131B/D + OPT 04
	and R4131B/D + OPT 14 only)

Program examples to output the set data are given below.

6 - 22

6.5 Output of Setting Conditions

Example 6-17: Setting the Value of the Center Frequency and Reference Level, and Making These Data Display by Reading It from This Equipment

HP200/300 Series

10 OUTPUT 701; "CF470MZ"
 20 OUTPUT 701; "RL-30DM"
 30 OUTPUT 701; "OPCF"
 40 ENTER 701; F
 50 OUTPUT 701; "OPRL"
 60 ENTER 701; L
 70 DISP F,L
 80 END

Line No.	Meaning
10	Sets the center frequency to 470 MHz.
20	Sets the reference level to -30 dBm.
30	Instructs this equipment to output the set data of center frequency.
40	Reads the data and fetches it to variable F.
50	Instructs this equipment to output the set data of the reference level.
60	Reads the data and fetches it to variable L.
70	Displays the value of variables F and L.
	The value is displayed as "470000000 -30" in this example.
80	End of program

After the execution of the above program, the "470000000 -30" is displayed on the screen.

6.5.2 Format of Output Data

The format of the output data by the "OP" command is as shown below:

The data output from this equipment is all output in this format excluding the trace data and status byte. Since the total number of bytes of data is 17 bytes, make an array declaration with more than 17 bytes when the data is input as a character array variable from the GPIB controller, etc.

Oct 20/89

6.5 Output of Setting Conditions

The header in the head of output data indicates the type of data and it varies according to the data to be output. See Item (1).

The header may be omitted when not required. The header is set to OFF by the "HD 0" command and to ON by the "HD 1" command.

Header set examples are given below:

(1) Header

The header in the head of output data indicates the type of data, and it varies according to the data to be output.

The table below shows the relation between the output data and header.

Туре о	Header		
CENTER I	CF		
SPAN	SP		
REFERENC	CE LEVEL	dBm	DM
		dBµ	עם
		dBµ∕m	VM
		LINEAR	LV
		dBmV	DQ
SWEEP TI	ST		
RESOLUTI	RB		
VIDEO FI	VF		
ATT	AT		
MARKER	FREQUENCY		MF
	LEVEL	dBm	ММ
		dBµ	MU
		dBµ∕m	ME
		LINEAR	ML
		dBmV	MQ

Relation Between Output Data and Header

The header may be omitted when not required.

The header is set to OFF by the "HD 0" command and to ON by the "HD 1" command. Header set examples are given below:

Oct 20/89

6.5 Output of Setting Conditions

Example 6-18: Setting the Header to OFF and Fetching the Value of Center Frequency as a Character String. Next, Setting the Header to ON and Fetching the Value of Center Frequency as a Character String.

HP200/300 Series

10 DIM A\$[17]
20 OUTPUT 701; "HD0 OPCF"
30 ENTER 701; A\$
40 PRINT A\$
50 OUTPUT 701; "HD1"
60 ENTER 701; A\$
70 PRINT A\$
80 END

Line No.	Meaning
10	Declares the length of character string A\$ to be 17 characters.
20	Sets the header of output data of this equipment to OFF. Also,
	instructs this equipment to output the value of the center fraquency.
30	Reads the data and fetches it to character string variable A\$.
40	Displays the value of character string variable A\$.
	When the center frequency is 400 MHz, for instance, the value is
	displayed as " 00400000.00E+3".
50	Sets the header of output data of this equipment to ON.
60	Reads the data and fetches it to character string variable A\$.
70	Displays the value of character string variable A\$.
	When the center frequency is 400 MHz, the value is displayed as
	"CF_00400000.00E+3 ".
80	End of program
6.5 Output of Setting Conditions

(2) Block Delimiter

The block delimiter indicates the end of signal.

This equipment provides four types of block delimiters as shown in the table below.

Block Delimiter Specified Codes

Code	Block delimiter
DL 1	Outputs the 1-byte code of "LF".
DL 2	Outputs the last byte of data and single-wire signal "EOI" at the same time.
DL 3	Outputs the 2-byte codes of "CR" and "LF".
DL O	Outputs the 2-byte codes of "CR" and "LF". Also, outputs the single-wire signal "EOI" simultaneously with "LF".

When a command or data is sent from the GPIB controller, etc., to this equipment, it accepts the command or data, if the sent command or data is applicable to either one of the above-mentioned block delimiters. When the block delimiter is not applicable to either one of the above four types, the GPIB of this equipment will not operate normally.

When data is fetched from this equipment, the block delimiter of this equipment must be set to that of the data receiving side (GPIB controller, etc.). Select either one of the above four types.

The block delimiter can be changed to a different type of block delimiter by sending the appropriate command for the desired block delimiter from the GPIB controller.

The block delimiter of this equipment is set to DL 3 at power ON.

6.5 Output of Setting Conditions

6.5.3 Mode String

The set value of center frequency and frequency span of this equipment can be output the "OP" command. The setting status of the other keys (e.g., INPUT ATTENUATOR key, etc.) can be checked by the mode string when output.

The mode string is composed of seven bytes of binary code. Each byte indicates the setting status of each function of this equipment.

When the mode string is to be output, use the "OM" (OUTPUT MODE STRING) command. When this command is sent, this equipment outputs the mode string when it is specified to TALKER.

When the mode string is output, the delimiter of the data adds the EOI of the single-wire signal to the last byte (the seventh byte). The CR and LF codes are not used.

The meanings of each byte of the mode string and the functions to be read are as follows:

1st byte: Setting status of MIN INPUT ATTENUATOR

2nd byte: Setting status of 10 dB/, 2 dB/, 5 dB/, LINEAR switches

3rd byte: Setting status of the unit (UNITS switch) of the reference level

4th byte: Setting of reference level FINE/COARSE SELECTION switch

5th byte: Setting status of trigger mode

6th byte: Definition of whether the setting of data knob is CENTER FREQ or MARKER

7th byte: Definition of whether the AFC mode is ON or OFF

6.5 Output of Setting Conditions

	T		
Byte #	Bit usage 76543210	Decimal value	Description
1	00000000	0	INPUT ATTENUATOR: 0 dB
	00000001	1	10 dB
	0000010	2	20 dB
	00000011	3	30 dB
	00000100	4	40 dB
	00000101	5	50 dB
2	0 0 0 0 0 0 0 0	0	Tube surface ordinates 10 dB/DIV
	0000001	1	axis display: 2 dB/DIV
	00000010	2	5 dB/DIV(QP)
	00000011	3	LINEAR
3	0 0 0 0 0 0 0 0	0	Display unit of dBm
	0000001	1	REFERENCE LEVEL: dBµ
	00000010	2	dBµ/m(A)
	0 0 0 0 0 0 1 1	3	d Bµ∕m(B)
	00000100	4	dBµ∕m(C)
	0 0 0 0 0 1 0 1	5	dBµ∕m(D)
	0 0 0 0 0 1 1 0	6	mV, μV
	0 0 0 0 0 1 1 1	7	dBmV
4	0 0 0 0 0 0 0 0	0	REFERENCE LEVEL: COARSE
	0 0 0 0 0 0 0 1	1	FINE
5	0 0 0 0 0 0 0 0	0	TRIGGER MODE: FREE RUN
	0 0 0 0 0 0 0 1	1	LINE
	0 0 0 0 0 0 1 0	2	VIDEO
	0 0 0 0 0 0 1 1	3	SINGLE
6	0 0 0 0 0 0 0 0	0	DATA KNOB: MARKER
	0 0 0 0 0 0 0 1	1	CF
7	0 0 0 0 0 0 0 0	0	AFC: OFF
	0 0 0 0 0 0 0 1	1	ON

Mode String

6.5 Output of Setting Conditions

Example 6-19: Detecting the Value of Attenuator by Making the Mode String Output

HP200/300 Series

10 DIM M(6)
20 OUTPUT 701; "OM"
30 ENTER 701 USING
 "#, B"; M(*)
40 DISP M(0)
50 END

Line No.	Meaning
10	Secures 7 bytes for variable M.
20	Specifies the output of the mode string.
30	Fetches the mode string.
40	Displays the 1st byte (ATTENUATOR) of the mode string.
50	End of program

6.6 Input/Output of Trace Data

6.6 Input/Output of Trace Data

This equipment can output the trace data (waveform displayed on the screen). It also can input the same data from outside. This function makes it possible to analyze and arithmetically process the waveform data using the controller.

The trace data on the screen of this equipment is composed of 701 points of data on the frequency axis (horizontal axis). For input/output of the trace data, this 701-point data is input or output from the left (lower ones in frequency) sequentially. The trace data of each point is expressed with integers from 0 to 511 (Figure 6-5).

Number of points of data

Figure 6-5 Correlation Between Screen Grids and Trace Data

The input/output of trace data can be made in two forms, ASCII code and binary code. Of the two, the ASCII code is convenient when data is input or output point by point. When the data is input or output for one screen (701 points) all together, the binary code is faster in finishing the processing. Use these two ways case by case.

6.6 Input/Output of Trace Data

6.6.1 Output of Trace Data

The "OP" command is used for the output of trace data. When the parameter code is sent in succession to the "OP" command, the desired trace data can be output. For the parameter codes of trace data, see the table below.

Trace Data Parameter Codes

Code	Data to be input or output	Type of data
TAA	Trace data of VIEW screen memory	ASCII code
TAW	Trace data of WRITE screen memory	
TBA	Trace data of VIEW screen memory	Binary code
TBW	Trace data of WRITE screen memory	

(1) Method to Output the Trace Data with ASCII Code

OUTPUT 701; "OPTAW"

When this program is executed, this equipment outputs the trace data of the WRITE screen memory with the ASCII code when it is specified to TALKER.

ENTER 701; A

When this program is executed, the trace data for one point is fetched to variable A. When the same ENTER statement is executed, the trace data of the second point, third point ... can be obtained sequentially.

The data format at this time is expressed in 4-digit numerics with no header as shown below:

When the trace data is fetched as a character string variable, declare the array by setting the length of the character string variable used to more than 4 bytes.

6.6 Input/Output of Trace Data

A program example to output the trace data with ASCII code

Example 6-20: Output the trace data in memory with ASCII code, and store in array variable.

HP200/300 Series

10 DIM A(700) 20 OUTPUT 701; "OPTAW" 30 FOR I=0 TO 700 40 ENTER 701; A(I) 50 NEXT I 60 END

Line No.	Meaning
10	Declares array variable A(I) up to 701 points.
20	Instructs this equipment to output the trace data of the WRITE
	screen memory with the ASCII code.
30	Instructs this equipment to vary variable I from 0 to 700 one by one. (The loop is repeated 701 times.)
40	Reads the trace data for one point and stores it in array variable $A(I)$.
50	Increments variable I by 1 only, and returns to line No. 40 when $I < 700$, but runs on to the next line when $I \ge 700$.
60	End of program

(2) Method to Output Data with the Binary Code

OUTPUT 701; "OPTBW"

When this program is executed, this equipment outputs the trace data of the WRITE screen memory with the binary code when it is specified to TALKER. Since 701 points of trace data (for 1 screen) is output all together at this time, the controller side should be ready to input the 701 points of data at the one time. Also, since the EOI signal is specified to the delimiter when the data is output with the binary code, the controller side should continue the data input until the EOI signal can be detected.

6.6 Input/Output of Trace Data

The data output format with the binary code is shown below:

One point of data consists of 9 bits in the binary code. Consequently, one point of data is expressed in 2 bytes which are divided into high order byte and low order byte. When the data is output to the GPIB, the upper byte in the first is output first and then the low order byte in the first point, followed by the high order byte in the second point and so forth, and lastly the low order byte in the 701st point.

Example 6-21: The trace data in the memory is output with the binary code to be stored in an array variable.

HP200/300 Series

10 DIM A(700)
20 OUTPUT 701; "OPTBW"
30 FOR I=0 TO 700
40 ENTER 701 USING "#,W"; A(I)
50 NEXT I
60 END

Line No.	Meaning
10	Declares numeric array variable A(I) for as many numbers as required.
20	Instructs this equipment to output the trace data in the WRITE
	screen memory with the binary code.
30	Instructs this equipment to vary variable I from 0 to 700 one by
	one. (The loop is repeated 701 times.)
40	Fetches 2-byte binary data, converts it into decimal data, and
	stores it in numeric array variable A(I). Then, increments variable
50	I by 1 only. When I is < 700 , the program execution returns to the
	preceding line. When I \geq 700, it proceeds to the next line.
60	End of program. (Usually, the trace data execution program is input
	after this.)

6.6 Input/Output of Trace Data

6.6.2 Input of Trace Data

The "IN" command is used to input the trace data in R4131. When the parameter code of trace code is sent to this equipment after the "IN" command, the desired trace data can be input. The parameter code of trace data used for this input is the same as the code used in its output.

(1) Method to Input the Trace Data with the ASCII Code

OUTPUT 701; "INTAA"

When programmed and executed like this, this equipment enters the input mode of the trace data. When the data is sent to this equipment with the ASCII code after this, that data is stored in the first point of the VIEW screen memory.

When the data is sent further, the trace data is set to the second point, third point ... in the memory, sequentially.

If any data other than the trace data is sent to the equipment under this status, this equipment automatically exits from the trace data input mode and returns to its routine status.

The data format is the same as that when the data is output with the ASCII code.

A program example to input the trace data with the ASCII code

Example 6-22: The trace data is assumed to be provided in numeric array variable A(I). The data in A(I) is then input to the VIEW screen memory of this equipment with the ASCII code.

HP200/300 Series

100 OUTPUT 701; "INTAA"
110 FOR I=0 TO 700
120 OUTPUT 701; INT(A(I))
130 NEXT I
140 END

6.6 Input/Output of Trace Data

Line No.	Meaning
100	Instructs this equipment to receive the trace data to the VIEW screen memory with the ASCII code.
110	Instructs this equipment to vary variable I from 0 to 700, one by one. (The loop is repeated 701 times.)
120	Converts the data in array A(I) into integers and sends it to this equipment.
130	Increments the value of variable I by 1 only. When I < 700, the program execution returns to line No. 120. When I \geq 700, it proceeds to the next line.
140	End of program

When this equipment is set to the VIEW mode after the execution of this program, it is possible to see the tracing waveform by the input data.

(2) Method to Input the Trace Data with the Binary Code

OUTPUT 701; "INTBA"

When programmed and executed like this, this equipment enters the trace data input mode with the binary code. In the binary code, input the trace data for one screen (701 points) all together at a time. Since R4131 continues the data input until the EOI signal is detected, be sure to add the EOI to the last byte of the trace data.

The data format is the same as in the output of the trace data with the binary code. A program example for the input of trace data is as follows:

A program example to input the trace data with the binary code

Example 6-23: The trace data is assumed to be provided in the numeric array variable A(I). The data in A(I) is then input in the VIEW screen memory of this equipment with the binary code.

HP200/300 Series

100 OUTPUT 701; "INTBA" 110 FOR I=0 TO 699 120 OUTPUT 701 USING "#,W"; A(I) 130 NEXT I 140 OUTPUT 701 USING "#,W"; A(I), END 150 END

6 - 35

6.6 Input/Output of Trace Data

Line No.	Meaning
100	Instructs this equipment to receive the trace data in its VIEW screen memory with the binary code, and to make a change so that the EOI is added to the last byte of the delimiter.
110	Instructs this equipment to vary variable I from 0 to 699, one by one. (The loop is repeated 701 times.)
120	Converts the data of numeric array A(I) into 2-byte binary code and sends it to this equipment.
130	Increments variable I by 1 only. When $I < 699$, the program execution returns to the preceding line. When $I \ge 699$, it proceeds to the next line.
140 150	Adds the EOI signal when the last point data is set. End of program

When this equipment is set to the VIEW mode after the execution of the above program, it is possible to see the trace data input through the input data.

6.7 Service Request

By using the service request function of GPIB, various statuses of this equipment can be detected from the outside.

Contents of the service request can be known from status bytes shown in Table 6-17.

Bit #	Decimal value	Function
7	1 28	End of sweep
6	64	Service request (SRQ)
5	32	
4	16	CF CAL
3	8	Signal track
2	4	Marker search
1	2	Center frequency set
0	1	ZERO CAL

Status Byte

(1) Status Byte

Each bit of the status byte is set to "1" when the following conditions are met.

Status byte

- Bit 0: "1" is set when ZERO CAL is executed and the calibration is finished.
- Bit 1: "1" is set when the center frequency is set using the "CF" command of GPIB.
- Bit 2: "1" is set if the marker ends the searching when the searching function is executed by the marker.
- Bit 3: This bit is changed from 0 to 1 when the waveform peak position is ended to be set to the center frequency during the execution of the signal tracking function of marker.
- Bit 4: "1" is set when the CF CL is executed and the calibration is finished.
- Bit 6: When "1" is set to either bit 0 to bit 5, or bit 7 and the service request (SRQ) is transmitted, this bit also goes to "1" at the same time.
- Bit 7: "1" is set when the sweeping ends.

6.7 Service Request

This service request is turned ON/OFF by GPIB commands "SO" and "S1".

When the status byte is read, this equipment clears the status byte.

(2) Output of Status Byte

The status byte can be read when the serial polling is executed as shown in the following example:

Example 6-24: ZERO CAL is judged to be ended by reading the status byte.

HP200/300 Series

- 10 OUTPUT 701; "SHFL"
- 20 S=SPOLL(701)
- 30 IF BIT(S,O) <>1 THEN 20
- 40 OUTPUT 701; "CF200MZ SP100KZ"
- 50 END

Line No.	Meaning
10	Executes the ZERO CAL.
20	Reads the status byte and incorporates it in variable S.
30	Waits until bit #0 becomes 1 after the end of the execution of ZERO CAL.
40	For the next setting after the end of ZERO CAL, the center frequency is set to 200 MHz and spans to 100 kHz in this stage.
50	End of program

6.8 Notes in Programming

(1) Noteworthy Points in Sending a Command

When a command is sent to this equipment, the command can be delimited with a space (...) or comma (,) as shown below:

Example 6-25: A command is delimited with a space (_) or comma (,) and sent to this equipment.

OUTPUT 701; "SO OPCF, HD 1"

(2) Noteworthy Points in Spectrum Analysis When the Frequency Span Is Made Narrower

The center frequency setting accuracy is ± 10 MHz or less when R4131A/AN/C/CN and the AFC of R4131B/BN/D/DN are set to OFF. Hence, when the center frequency is set directly by setting the frequency span to less than 10 MHz, no spectrum is displayed on the screen in some cases.

Consequently, when the spectrum is analyzed by making the frequency span narrow, try to program so that narrow the span narrows while always seizing the signal.

Example 6-26: The frequency span is made narrow up to 50 kHz for the 200 MHz reference signal.

HP200/300 Series

10 OUTPUT 701; "CF 200MZ, SP20MZ, RL-30DM" 20 WAIT 1 30 OUTPUT 701; "SHM4" 40 S=SPOLL(701) 50 IF BIT(S,3)<>1 THEN 40 60 OUTPUT 701; "NR" 70 OUTPUT 701; "OPSP" 80 ENTER 701; A 90 IF A <> 50000 THEN 40 100 END

Line No.	Meaning
10	Sets the center frequency to 200 MHz, frequency span to 20 MHz, and reference level to -30 dBm.
20	Waits for 1 sec.
30	Sets the signal tracking function to ON.
40	Reads the status byte and incorporates it to variable S.
50	After the end of signal tracking, waits until bit #3 becomes 1.

6.8 Notes in Programming

Line No.	Meaning
60	Makes the frequency span narrower by 1 step.
70	Reads the frequency span and sets the mode.
80	Reads the data.
90	Returns to line 40 unless the frequency span is 50 kHz.
100	End of program

(3) Noteworthy Points for the Setting of Center Frequency When the Frequency Span Is Less Than 10 MHz

When the center frequency is changed in the setting of the frequency span to less than 10 MHz, the spectrum shifts after the setting, although varied according to the amount of change. This is caused by the time constant of the frequency stabilization circuit. Note that no correct data is indicated in the case of a program used to read the marker frequency level under this status.

Example 6-27: When the Frequency of the 200 MHz Reference Signal Is Read

HP200/300 Series

10 OUTPUT 701; "CF 3500MZ SP 10MZ" 20 WAIT 1 30 OUTPUT 701; "CF 200MZ" 40 WAIT 10 50 OUTPUT 701; "M4" 60 OUTPUT 701; "OPMF" 70 ENTER 701; F 80 DISP F

Line No.	Meaning
10 20 30 40	Sets the center frequency to 3500 MHz and frequency span to 10 MHz. Sets the waiting time for 1 sec. Sets the center frequency to 200 MHz. Takes the waiting time here until the spectrum is stabilized
50 60 70 80	(approx. 10 sec. maximum). The waiting time is set to 10 sec. in this example. Executes the PEAK SEARCH. Reads the marker frequency. Incorporates the marker frequency to variable F. Displays the marker frequency.

6.9 List of GPIB Codes

Table 6-4 List of GPIB Codes

Setting	Code	Kemarks	Setting	Code	Remarks
Input of measuring condition	Command (See Fi	code corresponding to each key gure 6-6.)	Input of trace data	i N	Memory, ASCII/ binary specified code is the same as in its output,
Output of measuring condition and trace data	OP	Specifies the output data by the OP parameter code. Specifies the output waveform data by the trace memory, ASCII/binary specified code.	Output of the status byte	OS	The EOI is added to the last byte of data as a delimiter. (CR LF is not used.)
OP parameter code		Output format of output data	Output of the mode string	OM	
ATTENDATOR CENTER FREQUENCY MARKER FREQUENCY MARKER LEVEL		(Number of bytes: 17 except delimiters) HH DDDDDDDD, DD E±D CRLF	Service request Transmitted Not transmitted	S0 S1	"S1" at the power ON
REFERENCE LEVEL	RL	TT Block delimiter	Initialization	IP	
FREQ SPAN SWEEP THE VIDEO FILTER BAND WIDTH DISFLAY LINE OCCUPIED FREQUENCY BAND WIDTH	D WIDTH VF VF VCY OB VCY OB VCY CPSitive: Space " (Blank)	Header OFF HDO DN HD1 Header to be o		"HD1" at the power ON output	
(R4131B/D+OPT04 and (R4131B/D+OPT14 only)		Header Header	CENTER CF FREQU FREQUENCY SWEEP	ENCY SPAI TIME	N SP MARKER MF St Frequency
Trace memory, and ASCII/ binary specified code Trace data of memory A ASCII output TAA Binary output TBA	Output format of trace data ASCII DDDD CRLF (Number of bytes: 4 Carcept delimiters) Block delimiter Trace data (for a point) Binary DDD-DDD (Number of bytes: 1402)	REFERENCE RESOL LEVEL dB µ DU BAND dBm DM VIDEO dB µ/m VN BAND LINEAR LV ATTEN dBmV DQ	UTION WIDTH FILTER WIDTH UATOR	RB LEVEL dBm MM dB _J MU VF dB _J /m ME LINEAR ML AT dBmV MQ	
WRITE memory trace data ASCII output Binary output	WRITE memory trace data ASCII output Binary output TBW TBW ASCII output TBW TBW TBW TBW TBW TBW TBW TBW TBW TBW		Block delimiter CR, LF+EOI LF EOI CR, LF	DLO DL1 DL2 DL3	"DL3" at the power ON

6.9 List of GPIB Codes

Table 6-5 GPIB Code Corresponding to Each Key

Кеу	Code	Кеу	Code
INSTR PRESET	IP (SHMO)	ATT 0dB	A0
CTR FREQ DAT A KNOB	CF	VIDEO FLTR	vu
COARSE DOWN UP	CD CU	DOWN	VD
FINE DOWN UP	FD FU	SWEEP TIME/DIV	TU
MARKER ON	M1	🐼 down	TD
MKR CF	M3	TRIGGER	TR
PEAK	M4	START/RESET	SR
CF CAL	FL	LCL	LC
FREQ SPAN	SP	202	20
ZERO SPAN	ZS (SHSP)	WRITE	WR
AUTO	BA	STORE	SE
RBW	RB	VIEW	VW
FREQ SPAN, RBW		MAX HOLD	MA (SHWR)
বিক্তী WIDE	WD	RECALL	RC
		SAVE	SV (SHRC)
NARROW	NR		
		CF ADJ	SHCF
	LU	VEC OBM	SHM1 *
	T.D	SIC TRK	SHM3
	00	ZERO CAL	SHFL
FINE/COARSE	FC		
		NOISE/Hz	SHBA
10dB/DIV	L1 (SHLD)	NORMALIZATION	SHRB
2dB/DIV	L2 (SHLU)	DSPL LINE	SHWD
QP	L3 (SHFC)		
LINEAR	LN (SHUN)	NORMAL DET	SHVD **
UNITS	UN	PUS DET GAMDIE DET	SHTU Shte
INPUT ATTENUATOR	AU	SWALTE DET	SHIK
🖸 down	AD		

Note: Codes marked with one asterisk (*) are available for R4131B/D + OPT 04 and R4131B/D + OPT 14 only. Codes marked with two asterisks (**) are available for R4131B/BN/D/DN only.

- i - si

Figure 6 - 6 GPIB Code for each Key

6 - 43

Conte	Co	de	
UNITS	d B m d B μ d B μ /m (A) d B μ /m (B) d B μ /m (C) d B μ /m (D) d B m V	D D D D D D D	M U 1 2 3 4 V
Trigger Mode	FREE RUN LINE VIDEO SINGLE	FI L V S	R I I I
Attenuator	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB	A (A) A) A) A)) 1 2 3 4 5
Conte	Code+	data □ □	
Center freq Reference 1 Frequency s Resolution Marker Video filte Sweep time Display lin	CF RL SP RB MK VF ST PL		

Table 6 - 6 Direct Set GPIB Codes

Table 6 - 7 Unit Display GPIB Codes

Unit	Code
GHz	G Z
MHz	MZ
k H z	KZ
Hz	HZ
V	V
mV	MV
μ٧	UV
sec	S
msec	MS
d Bm	DM
d B μ	DU
$dB\mu/m$ (A)	D1
$dB\mu/m$ (B)	D2
$dB\mu/m$ (C)	D3
$dB\mu/m$ (D)	D 4

6.9 List of GPIB Codes

Table 6 - 8 Numreric Value Code in Setting Condition Input

Т

	Code	Set value
Video band width	VF10HZ VF100HZ VF1KZ VF10KZ VF100KZ VF300KZ VF1MZ	10Hz 100Hz 1kz 10kz 100kz 300kz 1Mz
Sweep time	ST5MS ST10MS ST20MS ST50MS ST200MS ST200MS ST1S ST2S ST5S ST5S ST10S ST20S ST50S ST50S ST100S	5 ms/ 10 ms/ 20 ms/ 50 ms/ 100 ms/ 200 ms/ 500 ms/ 500 ms/ 500 ms/ 50 s/ 20 s/ 500 s/ 100 s/
Attenuator	A0 A1 A2 A3 A4 A5	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB
Frequency span	SP50KZ SP100KZ SP200KZ SP500KZ SP500KZ SP50MZ SP50MZ SP20MZ SP50MZ SP500MZ SP500MZ SP500MZ SP500MZ SP200MZ SP200MZ SP200MZ SP20Z SP46Z ZS	50 kHz 100 kHz 200 kHz 500 kHz 1 MHz 2 MHz 5 MHz 10 MHz 20 MHz 50 MHz 100 MHz 200 MHz 500 MHz 1 GHz 2 GHz 4 GHz ZEROSPAN
Resolution band width	RB1KZ RB3KZ RB10KZ RB30KZ RB100KZ RB300KZ RB300KZ RB1MZ	1 kHz 3 kHz 10 kHz 30 kHz 100 kHz 300 kHz 1 MHz

Table 6 - 9 Mode String

Byte #	Bit 76543210	Decimal value	Contents
1	00000000 00000001 00000010 00000011 00000100 00000100 00000101	0 1 2 3 4 5	INPUT ATT 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB
2	00000000 00000001 00000010 00000011	0123	Tube surface ordinates axis display 10 dB/DIV 2 dB/DIV 5 dB/DIV (QP) LINEAR
3	$\begin{array}{c} 00000000\\ 0000001\\ 00000010\\ 00000011\\ 00000100\\ 00000100\\ 00000101\\ 00000110\\ 00000111\\ 00000111 \end{array}$	01234567	Ordinates axis unit, dBm dBμ dBμ/m(A) dBμ/m(B) dBμ/m(C) dBμ/m(D) mV,μV dBmV
4	00000000 00000001	0 1	REF LVL STEP SIZE: COARSE FINE
5	00000000 00000001 00000010 00000010 000000	0 1 2 3	TRIGGER MODE FREF RUN LINE VIDEO SINGLE
6	00000000 00000001	0 1	Data knob Marker CF
7	00000000 00000001	0	AFC OFF ON

Table 6 - 10 Status Byte

Bit	Decimal value	Function (set to 1 when ended)
76543210	128 64 32 16 8 4 2 1	End of sweeping Service request CF CAL Signal track Marker search Center frequency setting ZERO CAL

• • • • • .

7. Notes in Storing and Shipping this Equipment

7. NOTES IN STORING AND SHIPPING THIS EQUIPMENT

7 - 1

7.1 Storage of This Equipment

7.1 Storage of This Equipment

The storage temperature range of this equipment is -20° C to $+70^{\circ}$ C. When this equipment is not used for a long period of time, cover it with vinyl or put in a cardboard box, and store it in a dry place away from direct sunlight.

7.2 Cleaning of This Equipment

Periodically take off the filter which protects the CRT display and clean the inside of the filter and CRT display unit with a soft cloth soaked in alcohol. Do not use any cleaner other than alcohol.

The filter can be taken off by removing two screws of the bezel.

CAUTION

Never use any cleaner other than alcohol for the maintenance of this equipment. Organic solvent such as benzene, toluene or acetone may spoil the plastic parts of this equipment.

7.3 Shipment of This Equipment

When shipping this equipment, use the original packing materials. If they are not available, pack the equipment as follows:

- (1) Wrap this equipment in appropriate shock absorbing material and put it in a corrugated cardboard box at least 5 mm thick.
- (2) Wrap its accessories separately in the same shock absorbing material and put them in the same corrugated cardboard box together with this equipment.
- (3) Fasten the corrugated cardboard box with packing strings.

8. Technical Data of Function and Accessories

8. TECHNICAL DATA OF FUNCTION AND ACCESSORIES

·

8 - 1

8.1 Technical Data of Function

8.1 Technical Data of Function

(1) Frequency Specification

Frequency range	:	10 kHz to 3.5 GHz
Frequency display	:	Displayed on the CRT screen
		Maximum resolution: 1 kHz (to be changed
		according to the frequency span)
Frequency displaying	accu	Iracy.

requency displaying accuracy:

R4131A/AN/C/CN	Less than ±10 MHz	After ZERO CAL
R4131B/BN/D/DN	±100 kHz + SPAN 3% or less	After ZERO CAL Within the range of 0 Hz to 2.5 GHz in center frequency and 5 ms to 0.5 S/DIV in sweep time.
	±10 MHz	After ZERO CAL Center frequency 2 GHz or more

From row cran row + E	
riequency span accuracy: 15%	
Frequency stability : R4131A/AN/C/CN	
Less than 100 kHz/5 min.	
Frequency is fixed 30 min. after powe	er ON.
R4131B/BN/D/DN	
Less than 10 kHz/5 min	
Frequency is fixed 30 min. after powe	r ON.
(Within the range of 0 Hz to 2.5 GHz in	L
center frequency and 5 ms to 0.5 S/DIV	in
sweep time)	
Residual FM : Less than 2 kHzp-p/100 ms	
Noise sideband :	

	Where the resolution band width is assumed to
More than 80 dBc	be 1 kHz, video filter band width to be
	10 Hz, and 20 kHz to be detuned from signal.

8 - 2

8.1 Technical Data of Function

Resolution: Resolution band width 3 dB 1 kHz to 1 MHz with 1-3 step 6 dB 9 kHz to 120 kHz when QP mode is selected Band width selectivity : Less than 15:1 60 dB: 3 ratio of dB resolution band width Resolution band width accuracy : Less than ±20% Less than the value of CISPR Standards in the QP mode : Can be set freely Marker display Resolution 1 kHz max. (To be changed according to the SPAN) Measuring accuracy ... Center frequency display accuracy + frequency span accuracy (2) Amplitude Specification Tube surface display range LOG 80 dB 10 dB/DIV : 2 dB/DIV 20 dB 5 dB/DIV, In the QP mode only 40 dB LIN 10 DIV LOG ± 0.15 dB/1 dB Linearity : $\pm 1 \, dB/10 \, dB$ $\pm 1.5 \text{ dB}/70 \text{ dB}$ or more Less than 5% of LIN scale : LOG -69 dBm to +40 dBm: R4131A/B/C/D, Reference level 40.25 dBµ to 150 dBµ: R4131AN/BN/CN/DN 10 dB, 1 dB step 10 dB/DIV 2 dB/DIV, 1 dB, 0.25 dB step in the QP mode LIN 72.77 µV to +22.36 V: R4131A/B/C/D (102.9 µV to +31.62 V: R4131AN/BN/CN/DN) Reference level accuracy Less than ±1 dB in the LOG mode This value is taken after calibrating the level at a frequency of 200 MHz and input ATT of 10 dB within the range of 0 to 59 dBm (R4131A/B/C/D) and 110 dBµ to 51 dBµ (R4131AN/BN/CN/DN) in reference level. Unit of reference level: dBm, dBµ, dBµ/m, or dBmV, selectable Marker display Resolution 0.2 dB 10 dB/DIV 0.05 dB 2 dB/DIV

8.1 Technical Data of Function

than 1 MHz

Dynamic range Average noise level -116 dBm +1.55F (GHz) dB Resolution band width 1 kHz, Video filter band or less: R4131A/B width 10 Hz, Input ATT 0 dB, -114 dBm +1.55F (GHz) dB or less: R4131AN/BN More than 1 MHz in frequency -110 dBm: R4131C/D -108 dBm: R4131CN/DN Secondary/tertiary distortion Where the input level is More than 70 dB assumed to be -30 dBm and frequency to be more

Frequency response:

R4131A/C	100 kHz \leq F \leq 2 GHz ATT 10 dB or more ±1 dB or less		10 kHz $\leq F \leq 3.5$ GHz ATT 10 dB or more ±3.5 dB or less		
R4131B/D	100 kHz $\leq F \leq 2$ GHz ATT 10 dB or more ± 1 dB or less		10 kHz \leq F ATT 10 dB o ±2 dB or le	≦ 3.5 GHz or more ss	
R4131AN/BN R4131CN/DN	100 kHz $\leq F \leq 1.5$ GHz ±1.5 dB or less	10 kHz ±2.5 dB	$\leq F \leq 2$ GHz or less	2 kHz $\leq F \leq 3.5$ GHz ±4 dB or less	

Residual response: -100 dBm or less: When terminated at input R4131A/B ATT 0 dB and input 50 Ω -95 dBm or less: R4131C/D When terminated at input -98 dBm or less: ATT 0 dB and input 75 Ω R4131AN/BN -93 dBm or less: R4131CN/DN Note: At frequency > 100 kHz Video filter band width: 1 MHz, 300 kHz, 100 kHz, 10 kHz, 1 kHz, 100 Hz, or 10 Hz Resolution selecting accuracy : Less than ±1 dB at +20°C to +30°C Gain compression : Less than 1 dB at input of -10 dBm

8.1 Technical Data of Function

(3)	Sweep Specification	n	
	Sweep time : Sweep time accurac	5 ms/div to 100 s/div Y	with 1-2-5 step
	:	Less than ±15%	
	Sweep trigger :	FREE RUN, LINE, VIDEO, an	d SINGLE (Reset/Start)
(4)	Input Specification	1	
	RF input :	Approx. 50 N-type input Approx. 75 N-type input	connector: R4131A/B/C/D connector: R4131AN/BN R4131CN/DN
	Maximum input level		
	:	± 20 dBm, ± 25 VDCmax	Input ATT 20 dB or more: R4131A/B/C/D
		127 dB μ , ±25 VDCmax	Input ATT 20 dB or more: R4131AN/BN/CN/DN
	Input ATT :	0 to 50 dB	with a step of 10 dB
	Input ATT selecting	accuracy	
	-	±1 dB or less	10 kHz \leq F \leq 2 GHz
			(10 dB in standard)
		±1.5 dB or less	2 GHz $<$ F \leq 3.5 GHz (10 dB in standard)
	Input VSWR	R4131A/B/C/D	
	-	1.5 or less	100 kHz \leq F \leq 2 GHz
		2.0 or less	2 GHz $<$ F \leq 3.5 GHz
			At input ATT 10 dB or more
		R4131AN/BN/CN/DN	
		1.5 or less	100 kHz \leq F \leq 1.5 GHz
		2.0 or less	10 kHz < F \leq 2 GHz
		2.5 or less	2 GHz $<$ F \leq 3.5 GHz
			At input ATT 10 dB or
			more
(5)	Display Unit Specif	ication	
	Display :	Waveform, setting condition	ons, and grid
	Trace :	2-screen display of WRITE waveform	waveform and VIEW
	WRITE :	Memory is rewritten each	time sweep and WRITE

STORE VIEW

MAX. HOLD

Dictation

:

8 - 5

waveform is displayed.

detection functions.

: WRITE waveform is stored.

: Stored waveform data is displayed.

: Each time of repetition from the starting point of this function, the maximum signal level on the horizontal axis is measured and displayed. This equipment provides the POSI/NEGA (for

R4131B/BN/D/DN only), POSI, and SAMPLE display and

8.1 Technical Data of Function

(6) Output Specification Output signal for calibration 200 MHz ±30 kHz, -30 dBm ±0.5 dB: R4131A/B/C/D : 200 MHz ±30 kHz, 80 dBµ ±0.5 dB : R4131AN/BN R4131CN/DN : Possible to listen with an earphone (approx. 8 $\Omega)$ Monitor output Analog output only for WRITE waveform Recorder output : X-axis Approx. -5 V to +5 V (approx. 10 k Ω) Y-axis Approx. 0 V to +4 V (approx. 220 Ω) : The IF signal, 3.58 MHz, is output at approx. 50 $\Omega.$ IF output : This output includes the output terminal to Video output external CRT display and VIDEO plotter, etc., output impedance of approx. 75 Ω , 1 V_{p-p}, and composite signal. Probing power terminal ± 15 V : 4-pin connector GPIB data output : Mode operation and I/O are enabled using the GPIB. Display screen can be recorded by connecting this Plotter interface: equipment directly to the plotter without passing through the controller. Output for TG: -5 dBm or more Approx. 4 GHz to 7.5 GHz 1st LOCAL OUT -5 dBm or more 2nd LOCAL OUT Approx. 3.75 GHz SLOPE OUT; Sweep signal output for TG output level correction 2 V/GHz (7) General Specifications Using ambient conditions : Less than 0°C to 50°C and 85% RH Storage temperature range -20°C to +70°C : 90 V to 132 V or 198 V to 250 V Power supply : 48 to 66 Hz Less than 120 VA Power consumption: External dimensions : Approx. 300 (W) x 177 (H) x 460 (D) (mm) : Approx. 10 kg : R4131A/AN/C/CN Weight Approx. 10.5 kg: R4131B/BN/D/DN (8) Option (only R4131B/D) OPTION 04

OPTION 04 : Occupied frequency band width (OBW) measuring function OPTION 14 : Occupied frequency band width (OBW) measuring function and 3 dB down width measuring function

8.2 Accessories

8.2 Accessories

• TR1625 RF Coupler

DC-500 MHz
50 W
40 dB ±1 dB
50 Ω in both main and auxiliary lines
Less than 1.5
Less than 1 dB
Main line N-type for both main and auxiliary
lines

• TR1626 RF Coupler

Frequency range : DC-1500 MHz Maximum input 50 W : Degree of coupling : 40 dB ±1 dB 50 Ω in both main and auxiliary lines Impedance : Less than 1.5 V.S.W.R : Insertion loss : Less than 1 dB Main line ... N-type, and auxiliary line ... BNC Connector : type

8.2 Accessories

BNCP-FJ Conversion Adaptor

Dielectric strength : 500 VAC/1 min. Insulation resistance: More than 500 k Ω at 500 VDC Contact resistance : Less than 5 M Ω V.S.W.R : Less than 1.2 at 0.1 GHz

• Earphone for TR16191 Voice Monitor

When the FREQ SPAN is set to 0 (zero) and this spectrum analyzer is tuned with the data knob, the demodulation wave can be observed on the screen, but also listening can be done through the earphone connected to the phone.

Connection cables

MO-15 Connection cable BNC-BNC (75Ω)

Part code: DCB-FF0442

MC-37 Connection cable BNC-SMA

GPIB connection cable

Model name	Length
408JE-1P5	0.5 m
408JE-101	1 m
408JE-102	2 m
408JE-104	4 m

Antenna

• TR1711 Log-periodic Antenna

This is a brad band reception antenna of 8 to 1000 MHz in frequency range. It can be used for monitoring radio waves and for analyzing disturbing waves which occurs in wide bands.

Frequency range	:	80 MHz to 1000 MHz
Gain	:	5 dB ($\lambda/2$ dipole antenna ratio)
Front-to-back ratio	:	More than 14 dB
V.S.W.R	:	Less than 2.5
I/O impedance	:	50 Ω
Weight	:	Antenna main body Approx. 5 kg
Components	:	Log-periodic antenna (Element 31 x 2, antenna main body, and balancer), angle adjuster (450 to 0° to 90°), tripod, measuring scale (with N-type connector, 10 m), elements container box, and antenna main body container bag

8.2 Accessories

• TR1722 Half-wave Dipole Antenna

When measuring the field intensity and disturbing wave by using the spectrum analyzer, this antenna is used by changing the length of elements according to the measuring frequency.

Frequency	range	:	25 MHz to 1000 MHz
	Element 1	• • •	25 MHz to 80 MHz
	Element 2	• • •	80 MHz to 250 MHz
	Element 3	• • •	250 MHz to 600 MHz
	Element 4	• • •	600 MHz to 1000 MHz
Transmissi	ion impeda	nce	
		:	50 Ω
Polarizati	lon	:	Horizontal polarization/vertical polarization selected
Antenna gr	ound heigh	ht:	Approx. 1 to 4 m
Tripod		:	Folding type
Attached c	oaxial cal	ble	
		:	Attached with 50D, 2W, 10 m, and N-type connector

8.2 Accessories

• TR1720 Loop Antenna

. •

.

Frequency range Antenna tuner unit	:	100 kHz to 30 MHz 1-band 100 kHz to 200 kHz 2-band 150 kHz to 300 kHz 3-band 300 kHz to 600 kHz 4-band 600 kHz to 1400 kHz 5-band 1.4 MHz to 3.5 MHz 6-band 3.5 MHz to 10 MHz 7-band 10 MHz to 30 MHz
Loop antenna section	1:	7 types of loop antenna for 1-7 bands
Vertical antenna sec	tio	n
	:	Set to 2 m and 1 m in total length
Impedance	:	75 Ω (TR1720N) or 50 Ω (TR1720)
Dimensions and weigh	it:	
Tuner unit	:	Approx. 210 (W) x 140 (H) x 110 (D) (mm); and 2 kg
Loop antenna Big) Small) Vertical antenna	:	Approx. 3 kg in one set Approx. 360 (W) x 250 (H) x 6 (D) (mm) Approx. 250 (W) x 190 (H) x 6 (D) (mm) 2 m (5 stages in total length) 1 m (expansion and contraction) and 0.2 kg
Container case	:	Approx. 495 (W) x 290 (H) x 155 (D) (mm) Aluminum made and approx. 1.9 kg in weight

8.2 Accessories

• TR17201 10 kHz to 30 MHz Active Antenna

This is an antenna used for the measurement of field intensity from 10 kHz to 30 MHz. Since it integrates a low noise and broad band amplifier and the antenna factor is almost contact, the field intensity can be directly read easily.

Frequency range	:	10 kHz to 30 MHz
Antenna factor	:	Approx. 10 to 13 dB
Output impedance	:	Approx. 50 Ω
Input impedance	:	More than 1 M Ω (when measured at the antenna block)
Amplification gain	:	7 dB ±2 dB in nominal gain
Connector	:	BNC type
Power supply	:	12.6 V mercury cell (approx. 20 hours)
External dimensions	:	Approx. 131 (L) x 108 (W) x 77 (H) (mm)
Weight	:	Approx. 1 kg

• TR17203 25 MHz to 230 MHz Active Dipole Antenna

Since the antenna factor for the measurement of field intensity from 25 MHz to 230 MHz is close to 0 (zero), this antenna can directly read the field intensity in a wide range when used in combination with the spectrum analyzer.

Frequency range	:	25 MHz to 230 MHz
Antenna factor	:	Approx. 0 dB
Impedance	:	Approx. 50 Ω
Connecting terminal	:	N-type
Power supply	:	15 VDC (with 1 m long cable)
Weight	:	Approx. 580 g

• TR17204 200 MHz to 1000 MHz Log-periodic Antenna

The antenna can measure a broad band of 200 MHz to 1000 MHz without replacing any element. In addition to its compactness and lightweight, it can be used for transmission and reception. So, it is suitable for immunity measurement in high frequency.

Frequency range	:	200 MHz to 1000 MHz
Antenna factor	:	Approx. 14 dB to 25 dB at 200 MHz to 1000 MHz
Impedance	:	Approx. 50 Ω
Connecting terminal	:	N-type
Average V.S.W.R.	:	Less than 2.0
Average gain	:	Approx. 7 dB
Antenna dimensions	:	Approx. 750 (length) x 750 (maximum width) x 63.5 (thickness) (mm)
Weight	:	Approx. 2 kg

• TR17205 1 GHz to 10 GHz Log-spiral Antenna

This is an antenna of 1 GHz to 10 GHz which is used to measure EMI conformable to the MIL Standards.

Frequency range	:	1 GHz to 10 GHz
Average power gain	:	3.75 dB
Average V.S.W.R.	:	Less than 2.0
Axial ratio	:	Less than 1 dB
Average beam width	:	500
Impedance	:	Approx. 50 Ω
Polarization	:	Circular polarization
External dimensions	:	Approx. 381 (length) x 127 (maximum diameter) (mm)
Weight	:	Approx. 3.6 kg

• TR17206 1 GHz to 18 GHz Double-ridged Guide Antenna

This is the most suitable antenna for the EMI measurement. It can measure a wide band of 1 GHz to 18 GHz.

Frequency range	:	1 GHz to 18 GHz
Average power gain	:	10.7 dB (Isotropic)
Average V.S.W.R.	:	Less than 1.5
Impedance	:	Approx. 50 Ω
Average beam width	:	E Plane 530
		H Plane 48 ⁰
Connector	:	N-type
External dimensions	:	Approx. 280 (L) x 245 (W) x 159 (H) (mm)
Weight	:	Approx. 1.8 kg
R4131A/AN/B/BN SPECTRUM ANALYZER INSTRUCTION MANUAL

Filter

MEP-293/MEP-294/MEP-295/MEP-29, TR14101

Model name		MEP-292	MEP-293	MEP-294	Mep-295	TR14101	
Filter	пате	By-pass filter	By-pass filter	By-pass filter	By-pass filter	Rejection filter	
Objective communi- cation equipment frequency band		27 MHz	60 MHz	150 MHz	400 MHz	800 MHz to 900 MHz	
Working frequency range		26 MHz to 30 MHz	50 MHz to 80 MHz	120 MHz to 190 MHz	335 MHz to 520 MHz	800 MHz to 900 MHz	
Filter Char-	Cut-off frequency	40 MHz	100 MHz	240 MHz	670 MHz	1200 MHz	
acter- istics	Attenuation character- istic	More than 35 dB at 28 MHz or less More than 40 dB at 27 MHz	More than 50 dB at 70 MHz More than 30 dB at 80 MHz	More than 50 dB at 170 MHz More than 30 dB at 190 MHz	More than 50 dB at 470 MHz More than 30 dB at 520 MHz	More than 35 dB at 800 MHz to 900 MHz More than 30 dB at 800 MHz or less	
	Pass band	40 MHz to 300 MHz	100 MHz to 1000 MHz	240 MHz to 1000 MHz	670 MHz to 1500 MHz	1500 MHz to 3000 MHz	
	Insertion loss (within the pass band)	Less than 1 dB	Less than 2 dB	Less than 2 dB	Less than 2 dB	Less than 2 dB	
Through char- acter- istics	Pass band	DC to 300 MHz	-	-	-	DC to 1000 MHz	
	Insertion loss (within the pass band)	Less than 1 dB	-	-	-	Less than 1 dB	
Characteristic impedance		50 Ω (BNCJ-BNCJ)	50 Ω (NP-NJ)	50 Ω (NP-NJ)	50 Ω (NP-NJ)	50 Ω (NP-NJ)	

R4131A/AN/B/BN SPECTRUM ANALYZER INSTRUCTION MANUAL

8.2 Accessories

Band Pass Filter

TR14201/14202/14203/14204

This filter is used to remove the large signal out of a measurement band in the measurement conforming to the CISPR Standards using the spectrum analyzer.

	ويجري بارق بالأوربين الأراد بقاتا فوعرادهي فتجع فيتخرج جهاد فببرد بيتك الأقيب بمتبع والتسك تعبير ويرب	والمستعد المتحدين والمتحد والمستعد والمستعد والمستعد والمتحد المتحال فالمتحد والتحد والمتحد والمتحد والمتحد والمحاد		
	TR1 4201	TR14202	TR14203	TR14204
Pass band	10 kHz to 150 kHz	150 kHz to 30 MHz	25 MHz to 300 MHz	300 MHz to 1000 MHz
Insertion loss within the pass band	Less than 1.5 dB	Less than 1.5 dB	Less than 1.5 dB	Less than 1.5 dB
Attenuation characteristic	More than 20 dB at less than 3 kHz but more than 300 kHz	More than 35 dB at less than 30 kHz but more than 60 MHz	More than 35 dB at less than 12 MHz but more than 600 MHz	More than 30 dB at less than 150 MHz but more than 1500 MHz
Characteristic impedance (connector)	Approx. 50 Ω (NJ-NP)	Approx. 50 Ω (NJ-NP)	Approx. 50 Ω (NP-NJ)	Approx. 50 Ω (NP-NJ)

External dimensions: Approx. 31 (H) x 50 (S) x 100 (L) (mm) Weight : Approx. 350 g

•

9. Functional description

9. FUNCTIONAL DESCRIPTION

Oct 20/89

9.1 Outline

9.1 Outline

9.1.1 Basic Operations

Figure 9-1 shows the block diagram of this equipment.

(1) When the measuring signal is input to the input connector, the input signal, after passing through the 50 dB RF input attenuator, enters the first mixer where it is mixed with the first local signal sent from the 4 to 7.5 GHz YTO (YIG tuning transmitter), and then it is output as the first IF signal of 4 GHz.

The YTO, under the control of the YTO circuit, sweeps the range of 4 to 7.5 GHz using the RAMP signal and also varies the center frequency with the maximum resolution of 500 Hz.

(2) The output first IF signal of 4 GHz enters the second mixer where it is mixed with the second local signal of 3.77 GHz and then enters the third mixer as the second IF signal of 226 MHz. This signal is mixed with the third local signal of 200 MHz and then enters the fourth signal as the third IF signal of 26.4 MHz. This signal is further mixed with the fourth local signal of 30 MHz and converted into the fourth IF signal of 3.58 MHz.

Incidentally, the CAL OUT signal of 200 MHz is generated through the crystal oscillator of the third local signal.

- (3) The fourth IF signal of 3.58 MHz passes through the LC filter second stage and crystal filter second stage, through which the resolution band width is selected in a range from 1 MHz to 1 kHz, and further, the output level is controlled by the resolution of 0.25 dB max. by the STEP AMP. of 50 dB.
- (4) The 3.58 MHz IF signal of which resolution band width and output level are controlled enters the LOG AMP. of the dynamic range 80 dB, and after being subjected to logarithmic companding, the signal enters the detector where it is detected and converted into the DC output. The detection output signal enters video filter circuit where the video filter band width is selected to a range from 1 MHz to 10 Hz and then output as the Y. OUT signal.
- (5) The Y. OUT signal and the X. OUT signal of the RAMP signal are both input to the A/D circuit. The Y. OUT (ordinates axis) is converted from analog to digital signal at 9 bits (512 points) and the X. OUT (quadrature axis) is converted the similarly at 10 bits (1024 points). After being stored in the memory, these signals are controlled by the CPU to display the waveform on CRT through the CRT control circuit.

9.1 Outline

This equipment has two memories, the WRITE memory which rewrites data at each sweeping and VIEW memory which stores the displayed waveform. It also has a non-volatile memory which stores data even after power OFF.

Furthermore, it performs the MAX. HOLD and normalization processing using the WRITE memory, VIEW memory, and the CPU's arithmetic operation function.

(6) The AFC (Automatic Frequency Control) block is mounted on R4131B/BN/D/DN only. It applies locking in a range from 4 to 6.5 GHz in the YTO frequency to improve the center frequency setting accuracy.

(This page has been intentionally left blank.)

R4131 SERIES SPECTRUM ANALYZER

INSTRUCTION MANUAL

(

(

Figure 9-1 Block Diagram of this Equipment

Oct 20/89

9.1 Outline

9.1.2 R4131 Series Configuration

9 - 5

9.1 Outline

Figure 9-2 RF Block

R4131 SERIES SPECTRUM ANALYZER INSTRUCTION MANUAL

9.2 RF

9.2 RF Block

9.2.1 First Mixer

(1) 3.6 GHz Low-pass Filter

The 3.6 GHz low-pass filter limits the input frequency band.

(2) 4.0 GHz Band Pass Filter

The 4.0 GHz band pass filter passes only 4 GHz frequency signals of the first IF signals generated by the first mixer.

(3) First Mixer

The first mixer is single-balanced type. It has two ports: one mixes the RF input signals and IF output signals which are isolated by the LPF and BPF in the previous stage.

9.2.2 Second Mixer

(1) 4.0 GHz Band Pass Filter

The 4.0 GHz band pass filter consists of two dielectric resonators.

(2) Second Local Oscillator

The second local oscillator using a dielectric resonator oscillates the 3770 MHz frequency.

Figure 9-5 Second Local Oscillator

(3) Second Mixer

The second mixer converts the first IF signals (4 GHz) to the second IF signals (226.4 MHz).

9.2.3 Third and Fourth Mixers

The second IF signals (226.4 MHz) are converted to 26.4 MHz (third IF signals) by the third mixer and further converted to 3.58 MHz by the fourth mixer.

The third local oscillator signal is also used as a CAL.OUT signal.

The third IF signal uses a slope signal from the YTO-CONT/IF board to correct the frequency characteristics.

(1) 226.42 MHz Preamplifier

The 226.42 MHz preamplifier has a gain of 20 dB. L3, L4, and C9 are input matching filters. L5, L6, and C13 are output matching filters.

(2) Third Mixer

The third mixer is designed so that it does not input signals outside the band by using the 226.42 MHz BPF. The BPF band width is 4 MHz.

9.2 RF Block

The BPF output is input to the isolation amplifier (Q1) and mixed with 200 MHz signals from the third local oscillator by the third mixer, then converted to 26.4 MHz. The third mixer is a double-balanced type.

(3) 200 MHz Crystal Oscillator

The base-ground Colpitts 200 MHz crystal oscillator oscillates a 200 MHz signal. It also oscillates a CAL.OUT signal (200 MHz, -30 dBm).

(4) Gain Control Amplifier

The gain control amplifier changes the resistance of the Q1 emitter and collector to convert the amplifier gain.

9.2 RF Block

As the current flowing through the pin diode D1 changes, the resistance changes. Using this characteristic, the gain control amplifier corrects the level. D1 uses a Slope Gain signal to correct the frequency characteristics.

L9 and R20 build a 50-ohm wide band matching circuit so that the gain control amplifier does not affect the 26.4 MHz BPF in later stages.

The 26.4 MHz band pass filter consists of four helical resonators. The circuit converts the signal frequency to 3.58 MHz by the fourth mixer in the next stage. The double-balanced fourth mixer mixes signals by using a 30 MHz signal generated by the fourth local oscillator.

(5) 30 MHz Crystal Oscillator

The Colpitts 30 MHz crystal oscillator oscillates a 30 MHz local signal. The circuit outputs the signal via a tank circuit (C30 and L13) so that it is not changed by the load.

Oct 20/89

The IF filter consists of filters having the resolution bandwidth.

The bandwidth of the filter can be switched by the center frequency of 3.58 MHz according to the setting from the front panel. The filter with narrow bandwidths (1 kHz and 3 kHz) uses four crystal filters; the filter with other bandwidths (1 MHz to 10 kHz) uses four LC filters.

(1) Input 3.58 MHz Band Pass Filter

L2, L3, L4, C2, C3, C4, and C124 form a 3.58 MHz BPF. L1, C1, and R1 form a wide-band impedance matching circuit.

(2) Gain Adjust Amplifier

The gain adjust amplifier is non-inverse type. The circuit changes the total gain by adjusting the variable resistor (AMPTD_CAL) on the front panel.

AMPTD_CAL is used to change the resistance using the FET (Q1) to change the total gain.

R6 is a thermister. It compensates the gain changed by the temperature.

9.3 YTO-CONT/IF Board

Figure 9-9 Gain Adjust Amplifier

When Q1 = OFF G = 1 + $\frac{R10}{R8 + R9}$ = 1 + $\frac{470}{120}$ = 4.92 G (dB) = 20 LogG = 14 (dB) When Q1 = ON (10 ohms) G = 1 + $\frac{R10}{RT}$ = 1 + $\frac{470}{44.2}$ = 11.63 G (dB) = 20 LogG = 21 dB

Note: RT is the resistance of R6 to R9 and Q1.

(3) Crystal Filter

Figure 9-10 Crystal Filter

The bandwidth is selectable with the switch (D1): 1 kHz or 3 kHz. C7 adjusts the symmetry of the filter.

(4) LC Filter

Figure 9-11 LC Filter

The bandwidth is changeable from 10 kHz to 1 MHz by switching the R45 to R49. The bandwidth is narrower as the resistance is larger.

(5) Step Amplifier

The step amplifier consists of three step amplifiers (U12 to U14), four 1 dB step attenuators (Q7 to Q10), and a 0.25 dB step attenuator.

U12 and U14 are 0/20 dB step amplifiers and U13 is a 0/10 dB step amplifier.

These step amplifiers and attenuators set the level by steps of 0.25 dB in the range from 0 dB to 59.75 dB.

9.

ω

N

YTO Controller

and AFC

9.3 YTO-CONT/IF Board

Oct 20/89

1

(1) YTO Controller

The YTO controller consists of a controller and a driver.

The tune voltage changes depending on the set center frequency. The YTO controller sets three digital/analog frequency bands and generates a tune voltage by a combination of the three bands. The three D/A converters have different setting ranges.

Tune D/A	Input data	Cent, freq, data	Freq, span
MAIN A (U57)	32 to DE_{H}	0 to 3.5 GHz	20 MHz to 4.0 GHz
MAIN B (U56)	00 to F9 _H	△ 25.6 MHz	
FM (U58)	00 to F9 _H	∧ 128 kHz	100 kHz to 10 MHz

Table 9-1 Tune Voltage Data

For the span voltage, the YTO controller converts the ramp voltage from the ramp generator of the analog board for setting a span by two step attenuators and adds it by the tune voltage in the U64. When the span voltage reaches 10 MHz, a relay (K1) is switched and a noise filter (large-capacity chemical capacitor) is inserted between the main coils. If a charged or discharged current flows through the capacitor, however, the current flowing through the main coil changes, causing a frequency drift. To solve this problem, a charger/discharger is added to charge or discharge at the main T- (See Figure 9-3) even if the noise filter is turned off.

The frequency may also drift because of temperature change. The YTO controller corrects the frequency by the following two methods:

() Feeds back the voltages at the both ends of the main coil.

When the current flowing through the main coil is increased or decreased to change the YTO oscillation frequency, the temperature inside the YTO controller changes and causes a frequency drift. Temperature change also causes the main coil resistance. The resistance change can be canceled by feeding back the voltages at both ends of the coil.

(2) Mounts a diode inside the YTO controller and feed back the on-voltage change of the diode to the U64. As the ambient temperature changes, the on-voltage of the diode changes.

Using the above two circuits, the YTO controller reduces frequency drifts without the PLL.

9.3 YTO-CONT/IF Board

(2) AFC

The AFC mounted on R4131B operates at the frequency span of 200 MHz or smaller and applies AFC to the YTO. The AFC function is available in the band from 0 to 2.5 GHz.

The YTO output (4.0 to 6.5 GHz) is input to the AFC block and converted to the 500 MHz to 812.5 MHz range by the 1/8 divider.

Then, it is compared with the 12.8 MHz oscillation signal by the phase detector and fed back to the tune FM voltage. At this time, if a fault is found in the phase detector output, a pulse is output to the LOCK_IND signal line.

The AFC function is executed between sweeps. During AFC, the span is set to 0 and the SAMP/HOLD circuit is closed. It opens when a sweep starts.

Figure 9-14 SAMP & HOLD

9.3 YTO-CONT/IF Board

AFC operation sequence is shown below.

9.4 Analog Board

9.4 Analog Board

9.4.1 Log Amplifier

Figure 9-16 Log Amplifier Schematic Diagram

The log amplifier consists of nine saturation amplifiers: each has a gain of 10 dB.

Figure 9-17 shows the saturation amplifier.

9.4 Analog Board

 $Gain = 20 \ Log \frac{R_C}{R_E}$

 $Vsat p-p = R_C \times (I_{E1} + I_{E2})$

Figure 9-17 One Stage of 10 dB Amplifier

A signal from the IF block is input to the input buffer (Q1) then to the saturation amplifier. $V_{O\ OUT}$ is converted to the current V_O/R and input to the current amplifier.

To amplify the current, base-ground amplifiers Q3 and Q4 are used with Q2 and Q3, just as for the bias constant current source.

The current amplified by the base-ground amplifier is converted to the voltage by the R19.

When a 3 Vp-p signal is input to the input buffer (Q1), the 10 dB saturation amplifier output is all 3 Vp-p.

The current amplifier output is found as shown below.

 $V_{I} = (3/0.62R + 9 \times 3/R) \times R19$

Assume that $3/R \times R13 = V$.

 $V_{I} = 10.56 V$

When the input level decreases by 10 dB, the following voltage is output: $V_{I}(-10) = (3/3.16 \times 1/0.62R + 9 \times 3/R) \times R13 = 9.49 V$ Similarly, $V_{I}(-20) = (\frac{1}{10} \times \frac{1}{0.62} + \frac{1}{3.16} + 8) V = 8.47 V$ $V_{I}(-30) = (\frac{1}{100} \times \frac{1}{0.62} + \frac{1}{10} + \frac{1}{3.16} + 7) V = 7.43 V$ \vdots $V_{I}(-80) = (\frac{1}{100} + \frac{1}{10} + \frac{1}{3.16} + 2) V = 2.43 V$

As shown above, if the input level changes by 10 dB, the output level changes by approximately 1 dB.

The current amplified by the log gain adjust amplifier (Q8) is sent to the base-ground amplifiers (Q10 and Q11) and shaped to half waves for detection. The output is input to the x7.7 amplifier via the LPF, then to the scale attenuator or QP circuit via the 1 MHz LPF.

The scale attenuator sets the vertical axis mode (10 dB/div., 2 dB/div.) by switching the Q12 on/off.

The U11 is a constant current source used to set the offset in logarithms. It is switched according to the horizontal axis mode selected.

The QP circuit detects an envelope by a detector consisting of the U13 and D13 and a discharger consisting of the R84 to R87, D13, and C43.

The D13 and C84 change for each time constant when repetitive frequency goes high or low.

The Q15 is turned off when the bandwidth is 120 kHz and on when it is 9 kHz.

Signals detected by the QP circuit is input to the LPF then to the DC log amplifier consisting of the U15 and U17.

The LOG or LIN/QP modes is set by the switch consisting of the U19 and output via the U16 and output buffer.

9.4.2 Ramp Generator

Figure 9-18 Block Diagram

The ramp generator generates a ramp voltage from approximately -5 V to +5 V which is used to sweep the YTO (first local oscillator). The ramp voltage is also used as X-axis data by the A/D converter.

The ramp generator also generates a Z-axis signal which is used to reset the X-axis A/D converter.

The constant current generated from the current source of the ramp generator is applied to the timing capacitor and generates the ramp voltage.

9.4 Analog Board

(1) Current Source

Figure 9-19 Current Source Circuit

The Q22 is a current source that is used to determine the voltage of the U21, pin 5. The voltage is used to correct the temperature of $V_{\rm BE}$ of the Q22.

The voltage of the U21, pin 5 is determined by a combination of the R132 to R135. After the voltage is determined, the emitter current of the Q23 flows until the voltage of the U21, pin 5 is the same as that of the U21, pin 6. The Q23 emitter current is controlled by a combination of the switches (U29 and Q21).

The Q23 collector current is the same as the emitter current because the Q23 current amplifier ratio (hfe) is large.

9.4 Analog Board

The constant current determined by the switches (U19 and Q21) flows through the timing capacitor (C63), and then generates a ramp voltage. $V = \frac{1}{C}$ It.

The Q24 and Q25 form a sweep stop controller. When a +5 signal is applied to the base of the Q25, the Q24 and Q25 are switched on and all currents flowing through the C63 flow through the Q24 and Q25. At this time, the ramp voltage is in hold state.

(2) Ramp Generator

Figure 9-20 Ramp Generator

The ramp voltage from the C63 is input to the sweep comparator U23, pin 2. When the ramp voltage is low, the U23, pin 7 is +15 V and the Q28 is switched on.

When the ramp voltage increases, the voltage of the U23, pin 2 reaches 2.2 V. In other words, when the ramp voltage is 6 V, the U23, pin 1 is inverted and the D25 is switched off. Along with this change, the anode voltage of the D27 also changes via the dead time capacitor. Then, the voltage of the U23, pin 7 becomes -15 V and the Q28 is switched off.

9.4 Analog Board

At the same time, the U23, pin 1 is -15 V, the D23 is switched on, and the voltage charged by the C63 is discharged.

When the ramp voltage reaches -6 V, the U23, D23, and U21 form a close loop to keep -6 V. The dead time capacitor (C68) is charged by the R168 because the D27 anode voltage increases. When the voltage of the U23, pin 5 exceeds 7.5 V, the U23, pin 7 becomes +15 V and the Q18 is switched on.

This changes the voltage of the U23, pin 2 and the voltage of the U23, pin 1 to +15 V. The D23 is switched off then the timing capacitor starts charging.

Thus, the ramp generator generates a ramp voltage.

The dead time of the ramp voltage is determined by the R168 and C68. The Q26 is switched on when the trigger mode is set to line, video, or single. Then the D27 anode voltage is set to 7.5 V or less. When the ramp voltage reaches 6 V, the U23, pin 1 is inverted and the Q28 is switched off. When it reaches -6 V, the U23, pin 1 is kept constant.

If the Q29 is switched on by a trigger signal, the voltage of the U23, pin 1 becomes +15 V and the D23 is switched off. Then, the timing capacitor C63 starts charging and a ramp voltage is generated.

· · ·

Q

4 Analog Board

Oct 20/89

9

28

9.4 Analog Board

(1) X-axis A/D Converter

The X-axis A/D converter compares the voltage generated by the ramp generator and outputs data from the counter with the D/A converted value. The comparator U47 is inverted when the difference between the current generated by VREF and the current generated by the sweep voltage match the current generated by D/A converter input data. At this time the converter latches the counter and at the same time starts Y-axis A/D by *YADS.

(2) Y-axis A/D Converter

The Y-axis A/D converter converts data analog to digital via the peak detector by the successive approximation for display data.

The peak detector mode is selectable using the input waveform: POSI or NEGA.

When a *YADS signal is input to the U74 from the X-axis A/D converter, the Y-axis A/D converter starts Y-axis A/D conversion and outputs QCC from the SAR (U74) successive comparator. Then, converted Y-axis data is latched by the U77.

The converter issues *BUSRQ to the CPU board. When receiving a *BUSAK signal from the board, it selects the fresh memory on the CPU board by *ADCS and transfers it from the A/D board to the CPU board by a direct memory access (DMA).

When a *ADCS signal is input to the OE terminal of the X-axis and Y-axis latch circuits (U52 and U77), the A/D converter is set to the output mode.

9.4.4 Analyzer Test

Figure 9-22 Analyzer Test

The R4131 Series has an adjustment function on the screen display. It generates a stable reference voltage and divides it into the 4 V reference voltage. The output is sent to the A/D converter and displayed on the top of the scale. The A/D gain can be adjusted by the 4 V power without DVM. The operator simply aligns the displayed line on the top of the scale. Similarly, adjust the A/D offset by setting the U85 switch to (3) (Figure 9-22) so that the displayed line is on the bottom of the scale.

When the U85 switch is set to (4), the three power sources and slope gain of the YTO CONT/IF board can be tested.

9.4 Analog Board

These operations can be set by keys. To start the analyzer test mode, press as follows:

The screen shown below appears.

+4	v									
AN	ALYZ	ER 1	EST	:	#	Y,OF	F			
				:		Y,GA		5 17		
				:		REF,	-13.	5 V		
				:-	-	REF,	+10	v		
				:	_	SLOP	E O E 2	V V/G	Hz	
				•	_			.,		
		Q	JIT	:	U	NIT				
٥	v									

Figure 9-23 Analyzer Test Display

Move the mark "#" to the item to be tested with the \bigcirc and \bigcirc keys.

Software

A \$6 23.11.92

Generetyp:

Stort/Rest Taske obrücken u einschalten! OBU: EPron Option!
10. Calibration and Adjustments

10. CALIBRATION AND ADJUSTMENTS

This section describes the procedures for making basic checks on the R4131 and for calibrating them after performance testing.

10.1 Preparation

Table 10-1 lists the equipment and tools required for calibration and adjustment. Use equipment and tools equivalent or superior in performance to these.

Table 10-1 Equipment and Tools Required for Calibration and Adjustment

Equipment	Performance	Recommended equipment
Digital voltmeter	Range : $\pm 1000 \text{ V}$ Accuracy : $\pm 0.1\%$ Input impedance: $10 \text{ M}\Omega$	TR6846 (Voltage adjustment)
Synthesized signal generator	Frequency range : Frequency accuracy:	TR4511 Adjustment for YTO CONT/IF
10 dB step attenuator	Frequency range: DC to 500 MHz Variable : 0 to 80 dB or more Accuracy : +0.5 dB or less	Adjustment for LOG AMP
1 dB step attenuator	Frequency range: DC to 500 MHz Variable : 0 to 10 or more Accuracy : <u>+</u> 0.2 dB or less	Adjustment for LOG AMP
Spectrum analyzer	Frequency range : 10 MHz to 4 GHz Frequency accuracy: <u>+</u> 100 kHz	R4136 Adjustment for RF
Spectrum analyzer	Frequency range:10 Hz to 120 MHzTracking generator output:10 Hz to 120 MHzT.G. output flatness: ± 1 dBImpedance:50 Ω and 1 M Ω	TR4171 or R4136 + TR4154 Adjustment for IF FILTER

Table 10-2 Maintenance Tools Required for Calibration and Adjustment

Product name	Stock number	Remarks
Cable (SMA-SMA)	MM-14	2
Cable (BNC-BNC)	MI-02	2 pcs.
UM to UM linear adapter	JCF-AC001JX07-1	UM-QA-JJ

*

10.1	Prep	bara	tion
------	------	------	------

(1)	Notes on Adjustment
	Before adjustment, performs the following operations:
1	Before setting the Power switch to OFF, press \square and \square .
	This operation sets correct data set by the CPU to zeros when ZERO CAL is executed.
	Corrected data is not erased even if the power is switched off. To reset correction, press these keys again.
2	Adjust the R4131B/BN/D/DN having the AFC function as follows:
	- Set the Power switch to ON while the key is pressed down.
	- The message "strike any key" appears on the screen.
	- Press the key and the following screen appears:
	<type>:#R4131A (50) R4131B (50) (AFC) R4131AN (75) R4131BN (75) (AFC)</type>
	OPTION>: OBW off
	- Move the mark "#" to the R4131A or R4131AN with the keys. R4131B R4131A R4131BN R4131AN
	- Press the key.
	- Adjust the values.
	- Return setting to the original type.
	$R4131A \rightarrow R4131B$ R4131AN \rightarrow R4131BN

10.2 A/D Adjustment (Analog Board)

(BLR-015117)

SHIFT - STARTRESET - UNITS sonst keine stabile Unbedingt einpelen: Merwerte ! 10.2 A/D Adjustment (Analog Board) (BLR-015117)

- (1) Measure the voltage between the TP19 and TP1 (GND) by the DMM and remember the measured value (V_{TP19}) .
- (2) Adjust the variable resistors so that the voltages of the TP20, TP21, and TP22 are as shown in Table 10-3. (This adjustment is available for the R4131B/BN/D/DN only.)

Table 10-3 TP20, TP21, TP22 Voltage Adjustment Values

Relien Mersuart Zu TP 19!

TP	Voltage	VR
TP20	$V_{\rm TP19} \pm 10 {\rm mV}$	R241
TP2 1		R258
TP22		R277

3 Press , and . , and

(4) The following data appears on the screen display:

+4	v											
AN	ALYZ	ER 1	rest	:	#	Y,OF	F					
				:		Y,GA	II	N	1			1
				:		REF	+	13.	5	V		
				:		REF,	-	13.	. 5	V		
						REF,	+	10	V-			
				:		SLOI	Е	0	v			
				:		SLOI	Е	2	V/	′GI	Ηz	
												
		Q	JIT	:	U	NIT						
Q	v											

Mit MM auf Plet 19 (22, mit messen! R240 aut Pletine OK YTO Contr. R232 gemesser TP 19 auf Pletine Anelop!

(5) Move the mark "#" to Y.OFF with the $[\ \nabla]$ and $[\ \Delta]$ keys.

- (6) Adjust the R308 so that the displayed line aligns with the bottom line on the scale.
- (7) Similarly, move the mark "#" to Y.GAIN with the $| \nabla |$ and $| \Delta |$ keys. Slope D1: Sope an TP23 und auf Symmetric mit R296 just Stope D2: Scope an TP24 und auf Symmetrie mit R342 just Achtung: Rechteck jittert ! 10 - 4 Oct 20/89

10.2 A/D Adjustment (Analog Board) (BLR-015117)

•														
8	Adjust	the	R310	so	that	the	displayed	line	aligns	with	the	top	line	on
_	the sca	ale.												

- (9) Press the 🛄 key to initialize the R4131.
- (10) Set the local feed-through to the center of the screen at the span 20 MHz.
- (1) If the local feed-through is not at the center when the span is returned to 4 GHz, adjust the R233 so that it comes to the center. (X-axis and position adjustment)
- (12) Set the local feed-through at the center of the screen and change the span to 1 MHz and RBW to 30 kHz.
- (3) Set the display detection mode to POSI with the 🗌 and 💿 keys.
- (14) Adjust the R296 so that the waveforms are smoothed.
- (15) Set the display detection mode from POSI to NEGA with the and keys.
- (16) Adjust the R302 so that waveforms are smoothed.

10.3 LOG Amplifier Adjustment (Analog Board)

(BLR-015117)

10.3 LOG Amplifier Adjustment (Analog Board) (BLR-015117)

- (1) Disconnect the UM cable from the J4 and press \square and \square to set the X-axis to the linear mode.
- (2) Adjust the R57 and R72 so that voltage of the TP13 and TP14 is within ±1 mV.

	1		Voltage	VR
TP1	620 .	TP.13	±1 mV	R57
		TP.25		R72

(3) Connect the log amplifier as shown in Figure 10-1.

(4) Set the signal generator as follows:

Frequency: 3.5789 MHz Amplitude: -1 dBm

Figure 10-1 Log Amplifier Adjustment

Oct 20/89

10.3 LOG Amplifier Adjustment (Analog Board)

(BLR-015117)

(5) Set the R4131 as follows:

Frequency span: 1 GHz 10 dB/DIV

- (6) Set the step attenuator to 0 dB.
- (7) Adjust the R40 so that the waveform aligns with the top line on the scale.
- (8) Set the step attenuator to 70 dB.
- (9) Adjust the R69 so that the waveform aligns with the second line from the bottom on the scale.
- (10) Repeat steps (6) to (9).
- (11) Set the R4131 to 2 dB/div.
- (12) Set the step attenuator to 0 dB.
- (3) Adjust the R65 so that the waveform aligns with the top line on the scale.
- (14) Set the R4131 to LINEAR.
- (5) Adjust the R38 so that the waveform aligns with the top line on the scale.
- (16) Set the R4131 to QP.
- (1) Adjust the R109 so that the waveform aligns with the top line on the scale.
- (18) Set the step attenuator to 20 dB.
- (19) Adjust the R102 so that the waveform aligns with the middle line on the scale.
- (20) Set the step attenuator to 35 dB.
- (21) Adjust the R96 so that the waveform aligns with the second line from the bottom on the scale.
- (22) Repeat steps (17) to (21).

10.4 IF Filter Adjustment (YTO-CONT/IF Board)

10.4 IF Filter Adjustment (YTO-CONT/IF Board)

10.4.1 3.58 MHz BPF Adjustment

(1) Set the TR4171 as follows:

INPUT IMPEDANCE	:	1 ΜΩ
MAG mode		
CENTER FREQ.	:	3.5795 MHz
FREQ. SPAN	:	5 MHz
REF. LEVEL	:	-30 dBm
TG LEVEL	:	-10 dBm
1 dB/DIV.		

(2) Connect the units as shown in Figure 10-2.

Figure 10-2 3.58 MHz BPF Adjustment

(3) Turn the core of the L1 to L4 to adjust the waveform so that its peak is at 3.5789 MHz.

Hessungem mit Scope - TK: (hochohmige Messungen:)

Scope als Zuischen verstürker vervenden! Achtemp ænf 10-8 Versterkung!

Oct 20/89

10.4 IF Filter Adjustment (YTO-CONT/IF

Board)

Figure 10-3 Waveform of 3.58 MHz BPF

10.4.2 Crystal Filter Adjustment

(1) Connect the units as shown in Figure 10-4.

Figure 10-4 Crystal Filter Adjustment

10 - 9

10.4	IF	Filter	Adjustment	(YTO-CONT/IF
------	----	--------	------------	--------------

Board)

(2) Set the TR4171 as follows:

CENTER FREQ.: 3.5795 MHz FREQ. SPAN : 50 kHz 10 dB/DIV.

(3) Set the R4131 as follows:

RBW: 3 kHz

- (4) Connect the TP1 with the INPUT2 of the TR4171 and adjust the C9 so that the waveform is symmetrical. Then adjust the L8 so that the peak of the waveform is at its lowest level.
- (5) Connect the TP2 with the INPUT2 of the TR4171 and adjust the C18 so that the waveform is symmetrical. Then adjust the L10 so that the peak of the waveform is at its lowest level.
- 6 Press RBW, , , and set the R4131 as follows:

- (7) Connect the TP9 with the INPUT2 of the TR4171 and adjust the C99 so that the waveform is symmetrical. Adjust the L27 so that the peak of the waveform is at its lowest level.
- (8) Connect the TP10 with the INPUT2 of the TR4171 and adjust the C108 so that the waveform is symmetrical. Adjust the L28 so that the peak of the waveform is at its lowest level.

RBW: <u>QP</u> BW: 9 kHz

10.4 IF Filter Adjustment (YTO-CONT/IF

Board)

(9) Adjust the L29 so that the waveform is at its maximum size.
10.4.3 LC Filter Adjustment

Figure 10-6 LC Filter Adjustment

(1) Set the TR4171 as follows:

```
CENTER FREQ.: 3.5789 MHz
FREQ. SPAN : 100 kHz
2 dB/DIV.
```

(2) Set the R4131 as follows:

RBW: 10 kHz

- (3) Connect the TP4 with the INPUT2 of the TR4171 and adjust REF.LEVEL so that the waveform appears on the screen.
- (4) Adjust the L12 so that the waveform aligns with the center frequency.
- (5) Connect a probe to the TP5 and adjust REF.LEVEL so that the waveform appears on the screen.
- (6) Adjust the L13 so that the waveform aligns with the center frequency.
- (7) Connect a probe to the TP7 and adjust REF.LEVEL of the TR4171 so that the waveform appears on the screen.

10.4 IF Filter Adjustment (YTO-CONT/IF Board)

8 Adjust the L23 so that the waveform aligns with the center frequency.
9 Connect a probe to the TP8 and adjust REF.LEVEL of the TR4171 so that the waveform appears on the screen.
10 Adjust the L24 so that the waveform aligns with the center frequency.
10.4.4 Resolution Bandwidth Level Adjustment
(1) Connect the TP5 with the INPUT2 of the TR4171.
2) Set the TR4171 as follows:
CENTER FREQ.: 3.5795 MHz FREQ. SPAN : 100 kHz 2 dB/DIV.
3) Set the R4131 as follows:
RBW: 300 kHz
(4) Adjust REF.LEVEL so that the waveform positions at the center on the scale of the TR4171 and store the waveform.
5 Set the R4131 as follows:
RBW: 10 kHz
\bigcirc Adjust the R67 so that RBW is set to the same level as at 300 kHz.
(7) Set the R4131 as follows:
RBW: 3 kHz
(8) Adjust the R35 so that RBW is set to the same level as at 300 kHz.
(9) Connect the J8 with the INPUT2 of the TR4171.
10 Set the R4131 as follows:
RBW: 300 kHz
(1) Adjust REF.LEVEL so that the waveform positions at the center on the scale of the TR4171 and store the waveform.
2 Set the R4131 as follows:
RBW: 10 kHz

(13) Adjust the R141 so that RBW is set to the same level as at 300 kHz.

10.4 IF Filter Adjustment (YTO-CONT/IF

Board)

(14) Set the R4131 as follows:

RBW: 3 kHz

(5) Adjust the R184 so that RBW is set to the same level at 300 kHz.10.4.5 Step Amplifier Adjustment

(1) Connect the units as shown in Figure 10-7.

2) Set the R4131 as follows:

RBW: 300 kHz

(3) Set the TR4171 as follows:

CENTER FREQ.	. :	3.5789 MHz
FREQ. SPAN	:	200 kHz
REF. LEVEL	:	-10 dBm
TG LEVEL	:	-30 dBm
1 dB/DIV.		

10.4 IF Filter Adjustment (YTO-CONT/IF

Board)

(4) Set and adjust R4131 REF.LEVEL and external ATT as shown in Table 10-4 using the R4131 REF.LEVEL as reference.

REF.LEVEL	0 dBm	-10 dBm	-20 dBm	-30 dBm	-40 dBm	-50 dBm
External ATT value	0 dB	10 dB	20 dB	30 dB	40 dB	50 dB
VR to be adjusted	Reference	R89	R75	Check	R123	Check

Table 10-4 Step Amplifier Adjustment

R4131 SERIES SPECTRUM ANALYZER

INSTRUCTION MANUAL

10.5 YTO-CONT Adjustment (YTO-CONT/IF Board) (BLR-015116)

10.5 YTO-CONT Adjustment (YTO-CONT/IF Board) (BLR-015116)

1) Press , and set the Power switch to OFF. Then set the Power switch to ON and press , and , and , and , *Koweblur dates ausschut Lie*

(2) The following data appears on the screen display:

+4	V								
AN	ALY	ER '	rest	:	#¥,0F	F			
				:	Y,GA	IN		<u> </u>	
				:	REF,	+13	.5 V		
				:	REF,	-13	.5 V		
				-:	REF,	+10	v		
				:	SLOP	E 0	v		
				:	SLOF	E 2	V/G	Ηz	
		Q	JIT	:	UNIT				
q	v								

Figure 10-8 Analyzer Test Display

3 Move the mark "#" to REF.+10 V with the _____ and ____ keys.

- (4) Adjust the R232 so that the displayed line aligns the top line on the scale.
- (5) Move the mark "#" to REF.-13.5 V with the $|\nabla|$ and $|\Delta|$ keys.
- (6) Adjust the R240 so that the displayed line aligns the top line on the scale.

(7) Move the mark "#" to REF.+13 V with the V and A keys.

- (8) Check whether the displayed line is almost overlapped on the top line on the scale.
- (9) Set the offset of the R4131 as follows:

CENTER FREQ : 0 MHz FREQ. SPAN : 20 MHz

- 0 Set the local feed-through to the center of the screen by the encoder.
- (1) Adjust the R355 so that the local feed-through does not shift horizontally even if the frequency span is set to 10 MHz.

10.5 YTO-CONT Adjustment (YTO-CONT/IF Board) (BLR-015116)

(12) Main Span

Connect the units as shown in Figure 10-9.

Figure 10-9 Adjustment for Main Span

(13) Set the SG as follows: FREQUENCY: 800 MHz AMPLITUDE: +10 dBm (14) Set the R4131 as follows: CENTER FREQ .: 2 GHz 4 GHz FREQ. SPAN : (5) Adjust the R308 so that the spectrum aligns the scale. (6) Set the SG of FM span as follows: FREQUENCY: 80 MHz AMPLITUDE: +0 dBm (17) Set the R4131 as follows: FREQ. SPAN: 10 MHz (18) Adjust the R319 so that the spectrum aligns the first vertical line from both ends of the scale.

R355 offset: 10MHz Spen: Local feed through to Center \$Hz, cet Spen 2\$ MHz adjust R355 to \$Hz. Check! 10-16 Oct 20/89

10.5 YTO-CONT Adjustment (YTO-CONT/IF Board) (BLR-015116)

Switch off AFC ! (19) Set the SG of OM tune A as follows: FREQUENCY: 800 MHz AMPLITUDE: +0 dBm (20) R4131 as follows: CENTER FREQ.: 0 MHz FREQ. SPAN : 20 MHz CF CAL (21) Adjust the R287 so that the local feed-through is 0 MHz ± 2 MHz. (22) Set the R4131 as follows: 3200 MHz CENTER FREQ .: FREQ. SPAN : 20 MHz CF CAL (23) Adjust the R270 so that the spectrum is 3200 MHz ±2 MHz. (24) Repeat steps (20) to (23). (25) Tune B Set the Power switch of the R4131 to OFF. (26) Set the Power switch to ON while the key is pressed down. (27) The following data appears on the screen display: A : 96 32 в: FM: 32 01, Dec, 87 (28) Set the R4131 as follows: CENTER FREQ .: 0 MHz FREQ. SPAN : 20 MHz (29) Turn the encoder so that B: 05 is set. (30) Press and (31) Turn the encoder so that B: CD is set. (32) Adjust the R269 so that the current waveform aligns the stored waveform.

10.5 YTO-CONT Adjustment (YTO-CONT/IF Board) (BLR-015116)

3 Tune FM
Set the R4131 as follows:
CENTER FREQ.: 0 MHz FREQ. SPAN : 200 kHz SWEEP TIME : 5 ms/
34) Turn the encoder so that FM: F8 is set.
35 Press and .
36 Turn the encoder so that FM: 32 is set.
(37) Adjust the R317 so that the spectrum aligns the stored waveform.
38 Slope
Press \square , \square , and \square and data shown in Figure 2-8 appears.
39 Move the mark "#" to SLOPE_0 V with the and keys.
(40) Adjust the R261 so that the displayed line aligns with the bottom line on the scale.
(4) Similarly, move the mark "#" to SLOPE_2 V/GHz with the 1 and
keys.
(42) Adjust the R257 so that the displayed line aligns with the top line on the scale.
Slope-Gain R253: Frequenzpeng in Tolerenzkurve
bringen Falls Iel. Der 3,5 GH
20 provo 1. Miscler dio de priste !

10 - 18

10.6 RF Block Adjustment

```
10.6 RF Block Adjustment
 10.6.1 Third Local Oscillator Adjustment
    (1) Connect the R4136 INPUT to the CAL.OUT connector.
    (2) Set the R4136 as follows:
       CENTER FREQ.:
                      200 MHz
       FREQ. SPAN :
                      20 kHz
       REF. LEVEL
                  : -25 dBm
       RBW
                   :
                      1 kHz
       10 dB/DIV.
    (3) Adjust the C20 so that spectrum positions at the center of the
       oscillating start frequency and stop frequency.
   (4) Set the R4136 as follows:
       1 dB/DIV.
   (5) Adjust the R27 so that the CAL.OUT level is -30 dBm ±0.5 dB.
 10.6.2 Second Local Oscillator Adjustment
   (1) Connect 2ND LOCAL OUT on the rear panel of the R4131 to R4136 INPUT.
   (2) Set the R4136 as follows:
      CENTER FREQ .:
                     3770 MHz
      FREQ. SPAN :
                     2 MHz
   (3) Turn the adjusting bar on the upper cover of the second local block so
      that the frequency is 3770 MHz.
 10.6.3 Fourth Local Oscillator Adjustment
   (1) Remove a shorting pin from the J3 and connect a probe to the J3, pin 2.
   (2) Set the R4136 as follows:
      CENTER FREQ .:
                     30 MHz
                     500 kHz
      FREQ. SPAN :
      REF. LEVEL :
                     0 dBm
      2 dB/DIV.
   (3) Adjust the L13 so that the peak of the waveform is set.
                       R15: Center Goin on Front. Adjust R15
   Total Gain
                          J2 em speise wat a CB1 (3,58 MH2 out)
   Filter 116- 119:
                            10 - 19
abpleichen!
                                                                   Oct 20/89
```

10.7 Location Diagram of YTO CONT/IF Board

10.7 Location Diagram of YTO CONT/IF Board

Figure 10-10 Location Diagram of YTO CONT/IF Board

10.8 Location Diagram of Analog Board

10.8 Location Diagram of Analog Board

Figure 10-11 Location Diagram of Analog Board

10 - 21*

. .

11. PERFORMANCE TESTING

This section describes performance test procedures for the R4131.

11.1 Preparation

The equipment for the performance testing are listed in Tables 11-1.

Table 11-1 Equipment Required for Performance Testing

Equipment	Specifications	Recommended model
(1) Synthesized signal source		TR4511
(2) Function generator	Frequency accuracy: 0.5% or less	
(3) 10 dB step ATT 1 dB step ATT	Accuracy: ±0.5 dB or less, 0 to 70 dB or more Accuracy: ±0.1 dB or less, 0 to 12 dB or more	
(4) Power meter	Frequency range: 10 MHz to 8 GHz	
(5) Power sensor		
(6) Sweep oscillator	Frequency range: 10 MHz to 8 GHz	TR4515
(7) Sweep adapter		TR13211
(8) Impedance converter		ZT301

11.2 General Precautions

11.2 General Precautions

- Always operate the instrument at the specified voltage. Refer to Section 1.3 for the power line voltage.
- (2) The operating temperature range should be 0°C to 50°C, and the relative humidity less than 85%.
- (3) Warm up the instrument for about 30 minutes before starting the performance test.

11.3 Frequency Span Accuracy

11.3 Frequency Span Accuracy

Specification : The frequency span between two arbitrary points on the display screen must be ±5% or less. Equipment used: Synthesized signal source, function generator

(1) Description

Test the accuracy of frequency span by using the synthesized signal source and function generator. Use the 800 MHz radio frequency of the synthesized signal for the frequency span of 4 GHz to 1 GHz. For the frequency span of 500 MHz to 500 kHz, use the reference synthesized signal subtracted by the span width frequency. For the frequency span of 200 kHz to 50 kHz, use the pulse modulation synthesized signal of the function generator.

- (2) Procedure
- (1) Set the R4131 as follows: FREQUENCY SPAN : 4 GHz RESOLUTION BANDWIDTH : AUTO (1 MHzw) REFERENCE LEVEL : COARSE, 10 dB/DIV, -10 dBm INPUT ATTENUATOR : 0 dB TRACE : WRITE VIDEO FILTER BAND WIDTH: 1 MHz SWEEP TRIGGER : FREE RUN
- (2) Test frequency spans from 4 GHz to 1 GHz Referring to Figure 11-1, connect the output of TR4511 synthesized signal source to the INPUT connector of the spectrum analyzer.
- (3) Set the output of TR4511 synthesized signal sourse to -5 dBm, 800 MHz, modulation off.
- (4) Turning the TUNING dial on the spectrum analyzer, adjust the local feedthrough (zero carrier wave) to position it on the leftmost graticule on the display screen. Check that the 4th signal (3.2 GHz) from the local feedthrough (without counting the feedthrough itself) is positioned on or within ±0.4 division of the eighth graticule from the left most graticule (without counting the leftmost graticule itself). (See Figure 11-1.)

Figure 11-1 Frequency Span 4 GHz Test

- (5) With the spectrum analyzer SPAN switch set to 2 GHz, turn the TUNING dial to position the local feedthrough on the leftmost graticule on the display screen. Check that the second signal (1.6 GHz) from the local feedthrough is positioned within ± 0.4 division of the eighth graticule from the left.
- (6) Next, with the spectrum analyzer SPAN switch set to 1 GHz, turn the TUNING dial to position the local feedthrough on the leftmost graticule on the display screen. Check that the first signal (800 MHz) from the local feedthrough is positioned within ±0.4 division of the eighth graticule from the left.

11 - 5

R4131

Figure 11-2 Frequency Span Test Setup

- (7) Test frequency spans 500 MHz to 500 kHz. Set the spectrum analyzer INPUT ATTENUATOR switch to 10 dB and the SPAN switch to 500 MHz.
- (8) Set the output of TR4511 synthesized signal source to -10 dBm, 1 GHz modulation off.
- (9) Turning the TUNING dial, adjust the 1 GHz input signal to the leftmost graticule on the display screen.
- Set the output frequency of the TR4511 synthesized signal source to 1.4 GHz. Check that the signal is positioned on the eighth graticule from the leftmost graticule on the display screen (or within ±0.4 division of the eighth graticule). (See Figure 11-3.)

11.3 Frequency Span Accuracy

Figure 11-3 Frequency Span 500 MHz Test

(1) Perform similar tests by reducing the frequency span to 200 MHz, 100 MHz, and finally to 500 kHz. For each frequency span, adjust the 1 GHz signal to be on the leftmost graticule on the display screen; then, apply a signal having a frequency equal to 1 GHz + 0.8 x span, checking that the input signal is positioned on the eighth graticule from the leftmost graticule on the screen (or within ±0.4 division of the eighth graticule).

11.3 Frequency Span Accuracy

Table 11-2 Frequency Span 500 MHz to 500 kHz Test

Frequency span	Signal adjusted to be on the leftmost graticule on the display screen	Second in- put signal	Tolerance
500 MHz	1 GHz	1.4 GHz	Check that the second
200 MHz	1 GHz	1.16 GHz	input signal is posi- tioned on the eighth
100M	1 GHz	1.08 GHz	graticule from the
50M	1 GHz	1.04 GHz	leftmost graticule on the display screen (or
20M	1 GHz	1.016 GHz	within ±0.4 division of
10M	1 GHz	1.008 GHz	the eighth graticule.)
5M	1 GHz	1.004 GHz	
2м	1 GHz	1.0016 GHz	
1 M	1 GHz	1.0008 GHz	
500k	1 GHz	1.0004 GHz	

- (12) Next, perform frequency span 200 kHz to 50 kHz tests using the same setup as shown in Figure 11-2.
- Set the output of the TR4511 synthesized signal source as follows: Frequency: 1 GHz Modulation: External pulse modulation Output level: -10 dBm Set the function generator as follows: Waveform: Square wave Output amplitude: 0 to +5 V

11 - 8

11.3 Frequency Span Accuracy

(14) Set the output frequency of the function generator to 20 kHz. Turn the TUNING dial to bring the reference spectrum to the leftmost graticule on the display screen. Check that the eighth signal from the reference spectrum is positioned on the eighth graticule from the leftmost graticule on the display screen (or within ±0.4 division of the eighth graticule). (See Figure 11-4.)

Figure 11-4 Frequency Span 200 kHz Test

(5) Similarly, test frequency span 100 kHz and 50 kHz by referring to Table 11-3.

Table 11-3 Tests for Frequency Spans of 200 kHz or Less

Span	Function generator output frequency	Eighth span position
200 kHz	20 kHz	Within ±0.4 division of the eighth graticule from the
100 kHz	10 kHz	leftmost graticule on the display screen
50 kHz	5 kHz	

11.4 Center Frequency Readout Accuracy

11.4 Center Frequency Readout Accuracy

Specification : R4131A/AN/C/CN ... Less than ±10 MHz After ZERO CAL R4131B/BN/D/DN ... Less than ±100 kHz + SPAN 3% or less after ZERO CAL Within the range of 0 Hz to 2.5 GHz in center frequency and 5 ms to 0.5 S/DIV in sweep time. Less than ±10 MHz After ZERO CAL Center frequency 2.5 GHz or more. Equipment used: TR4511

(1) Description

Display the signal applied from the TR4511 synthesized signal source to the R4131 in the center of the display screen and test this center frequency as displayed.

- NOTE: Perform zero calibration before performing the center frequency readout accuracy test. (See Section 4-3)
- (2) Procedure
- (1) With the spectrum analyzer INPUT connector open, press the ZERO CAL switch to perform zero calibration.

(2) Set the spectrum analyzer as follows: FREQUENCY SPAN : 4 GHz RESOLUTION BANDWIDTH : AUTO (1 MHzw) REFERENCE LEVEL : COARSE, 10 dB/DIV, 0 dBm INPUT ATTENUATOR : 10 dB TRACE : WRITE VIDEO FILTER BAND WIDTH: 1 MHz SWEEP TRIGGER : FREE RUN

R4131

Figure 11-5 Center frequency readout accuracy test setup

11.4 Center Frequency Readout Accuracy

- (3) Set the frequecny to test the TR451; synthesized signal source. An example of 1 GHz.
- (4) Set the dial of spectrum analyzer to 1000 MHz, gradually decrease the frequency span from 4G, 2G, 1G and so on, and set the frequency span so that the waveforms can be displayed within the screen.
- (5) Make sure that the shift from the center frequency is within the range of specifications (see Figure 11-6).

Figure 11-6 Center Frequency Readout Accuracy Test

11.5 Residual FM

Specification: Less than 2 kHzp-p/100 ms

(1) Description:

The calibration signal with a stabilized frequency from this spectrum analyzer is used to perform the residual FM test. The test is performed by FM demodulation by using the R4131 as a fixed tuned receiver with its frequency span set to zero span.

Demodulation is accomplished by using the slope of the spectrum analyzer IF bandpass filter.

<u>NOTE</u>: When performing the residual FM test, install the spectrum analyzer in a place free from vibration, because accuracy of measurement is extremely susceptible to vibrations.

- (2) Procedure
- Set the spectrum analyzer as follows: FREQUENCY SPAN : 100 MHz CENTER FREQ : 200 MHz RESOLUTION BANDWIDTH : AUTO (300 kHzw) REFERENCE LEVEL : COARSE, 2 dB/DIV, -40 dBm INPUT ATTENUATOR : 10 dB TRACE : WRITE VIDEO FILTER BAND WIDTH: 1 MHz SWEEP TRIGGER : FREE RUN
- (2) Connect the spectrum analyzer CAL OUT connector and the INPUT connector with the supplied cable as shown in Figure 11-7.

Figure 11-7 Residual FM Test Setup

11.5 Residual FM

- (3) Reduce the spectrum analyzer frequency span to 100 kHz. If the 200 MHz signal moves from the center of the display screen, center it again by turning the TUNING dial. The resolution bandwidth is set to 10 kHz.
- (4) Set the spectrum analyzer to the ZERO SPAN mode, and turn the TUNING dial to bring the signal level closer to the center line on the display screen.
- (5) With the sweep time/division set to 0.1 second, press the STORE switch twice to keep the waveform still. Check that the peak-to-peak level change in any division (that is, 0.1 second) on the horizontal axis is 1.2 divisions or less as shown in Figure 11-8.

Figure 11-8 Residual FM Test

The value of 1.2 divisions has been acquired for the following reason: The 10 kHz bandwidth filter of the spectrum analyzer is used to allow the residual FM to be displayed on the display screen. The residual FM can be visually observed when the spectrum analyzer is set to a resolution bandwidth of 10 kHz. (See Figure 11-9.) As can be seen from this figure, a 2 kHz change in the frequency axis moves the level about 1.2 divisions.

Figure 11-9 Residual FM to AM Conversion Display

Therefore, if the peak-to-peak level change as shown in Figure 11-8 is less than 1.2 divisions, it follows that the residual FM is less than 2 kHz.
11.6 Noise Sidebands

11.6 Noise Sideban	ds
Specification:	-80 dBc or less with a resolution bandwidth of 1 kHz and 10 Hz video filter at the position which is 20 kHz from the carrier
Equipment used	Synthesized signal source
(1) Description	
The noise a -10 dBm sig	idebands test is performed using stable, high-purity 1 GHz, nals.
(2) Procedure	
1 Connect the each other	spectrum analyzer and the synthesized signal source to as shown in Figure 11-10.
 Set the out wave) and - 	put of the synthesized signal source to 1 GHz (carrier 10 dBm.
3 Set the spe FREQUENCY S CENTER FREQ RESOLUTION REFERENCE L INPUT ATTEN TRACE VIDEO FILTE SWEEP TRIGG	ctrum analyzer as follows: PAN : 1 GHz : 1 GHz BANDWIDTH : AUTO (300 kHzw) EVEL : COARSE, 10 dB/DIV, -10 dBm UATOR : 10 dB : WRITE R BAND WIDTH: 1 MHz ER : FREE RUN R4131

Figure 11-10 Noise Sidebands Test Setup

- (4) Reduce the span to 100 kHz. If the waveform peak moves from the center of the display screen, center it again by turning the TUNING dial.
- (5) If the peak moves from the center of the display screen, center it again by turning the TUNING dial.

11.6 Noise Sidebands

- (6) Set the reference level to -30 dBm and the video filter to 10 Hz.
- (7) Measure the noise sidebands at the position which is 2 divisions (20 kHz) from the center of the display screen. Check that the noise sidebands is lower than the reference level by 60 dB or more as shown in Figure 11-11.

Figure 11-11 Noise Sidebands Measurement

11.7 Resolution Bandwidth Accuracy

11.7 Resolution Bandwidth Accuracy

Specification: Resolution bandwidth between -3 dB points from the signal peak must be calibrated to ±20% or less. Equipment used: Synthesized signal source

(1) Description

The resolution bandwidth is tested by setting the spectrum analyzer vertical axis to the 2 dB/division mode and measuring the width between two points -3 dB from the signal peak. Resolution bandwidths narrower than 3 kHz are tested by applying 3.58 MHz signals to the spectrum analyzer IF FILTER IN connector.

(2) Procedure

 Connect the calibration signal of the spectrum analyzer to the INPUT connector as shown in Figure 11-12 (a).

11.7 Resolution Bandwidth Accuracy

(~)

Figure 11-12 Resolution Bandwidth Accuracy Test Setup

2) Set the spectrum analyzer as follows:

FREQUENCY SPAN	:	1 GHz
CENTER FREQ	:	200 MHz
RESOLUTION BANDWIDTH	:	AUTO
REFERENCE LEVEL	:	COARSE, 2 dB/DIV, -23 dBm
INPUT ATTENUATOR	:	10 dB
TRACE	:	WRITE
VIDEO FILTER BAND WIDTH	:	1 MHz

SWEEP TRIGGER : FREE RUN SWEEP TIME/DIV: 10 ms

- (3) Set the span to 2 MHz. If the signal peak moves from the center of the display screen, center it again by turning the TUNING dial.
- (4) Set the resolution bandwidth to 1 MHz.
- (5) Turning the spectrum analyzer AMPTD CAL control, adjust the signal peak to be 1.5 divisions (3 dB) above the horizontal axis in the center of the display screen. (See Figure 11-13.) Then, measure the width of the two points on the horizontal axis traversed by the signal. This width is taken as the 3 dB bandwidth.

Figure 11-13 Resolution Bandwidth Accuracy Test

- 6 Move the signal to left and right by turning the TUNING dial to determine the order of the graduation in which the measured bandwidth falls. Check that this width is between 4 and 6 divisions (5 ±1 divisions).
- (7) Change the spectrum analyzer frequency span and resolution bandwidth to the values specified in Table 11-4, and repeat steps (5) and (6) above.

11.7 Resolution Bandwidth Accuracy

Resolution	Frequency	3 dB down width			
bandwidth	span	min.	max.		
1 MHz	2 MHz	4 div	6 div		
300 kHz	500 kHz	4.8 div	7.2 div		
100 kHz	200 kHz	4 div	6 div		
30 kHz	100 kHz	2.4 div	3.6 div		
10 kHz	50 kHz	1.6 div	2.4 div		

Table 11-4 Resolution Bandwidth Test 1 MHz to 10 kHz

- (8) In testing resolution bandwidths 3 kHz to 1 kHz, remove the top cover of the spectrum analyzer and apply 3.58 MHz, -20 dBm signals to the IF FILTER IN connector from the synthesized signal source. (See Figure 11-12 (b).)
- (9) Set the spectrum analyzer resolution bandwidth to 3 kHz and adjust the output frequency of the synthesized signal source for the maximum waveform peak by varying the output frequency at the 10 Hz place.
- 10 Adjust the output level of the synthesized signal synthesized source to bring the spectrum analyzer display level to 1.5 divisions above the horizontal axis in the center of the display screen.
- (1) Reduce the output frequency of the synthesized signal source until the waveform peak displayed on the display screen coincides with the horizontal axis in the center of the display screen. Record this output frequency as f1.
- (2) Next, increase the output frequency of the synthesized signal source until the waveform peak rises once above the horizontal axis in the center of the display screen, and then correspondingly falls. Record this output frequency as f2.
- (13) Determine the 3 dB bandwidth by calculating f2 minus f1. Check that this value falls between 2.4 and 3.6 kHz (3 ±0.6 kHz or less).
- (14) Test resolution bandwidths 1 kHz according to Table 11-5. Keep records of the resultant 3 dB resolution bandwidth values for use in the resolution bandwidth selectivity test described in Section 11.8.

11.7 Resolution Bandwidth Accuracy

	TR4511 output	f2 - f1			
Resolution bandwidth	frequency variation place	min.	max.		
3 kHz	10 Hz	2.4 kHz	3.6 kHz		
1 kHz	10 Hz	0.8 kHz	1.2 kHz		

Table 11-5 Resolution Bandwidth Accuracy Test 3 kHz to 1 kHz

11.8 Resolution Bandwidth Selectivity

11.8 Resolution Bandwidth Selectivity

Specification: 60 dB/3 dB resolution bandwidth ratio: 15 : 1 Equipment used: Synthesized signal source

(1) Description

The 60 dB bandwidth of the spectrum analyzer is determined first, and is then compared with the 3 dB bandwidth obtained in Section 11.7 to determine resolution bandwidth selectivity. As in Section 11.7, the resolution bandwidth selectivity is tested in two parts: 1 MHz to 10 kHz, and 3 kHz or less resolution bandwidths.

- (2) Procedure:
- (1) Set the spectrum analyzer as follows: FREQUENCY SPAN : 4 GHz : 200 MHz CENTER FREQ RESOLUTION BANDWIDTH : 1 MHzw REFERENCE LEVEL : COARSE, 10 dB/DIV, -10 dBm INPUT ATTENUATOR : 10 dB TRACE : WRITE VIDEO FILTER BAND WIDTH: 10 kHz SWEEP TRIGGER : FREE RUN SWEEP TIME/DIV : 10 ms

TR4511

Figure 11-14 Resolution Bandwidth Selectivity Test Setup

- (2) Set the synthesized signal source to 200 MHz (CW), -10 dBm. Connect the spectrum analyzer and the synthesized signal source to each other as shown in Figure 11-14.
- (3) Press the SPAN switch to activate the frequency span. Reduce the span while turning the TUNING dial to adjust the signal to be in the center of the display screen. Select the minimum span that allows the two points 60 dB lower than the signal peak to be observed on the screen.

11.8 Resolution Bandwidth Selectivity

(4) Turn the AMPTD CAL control to bring the signal peak to the top graticule on the display screen. (5) Turn the TUNING dial to position the 60 dB point for the best reading. (6) Measure and record the 60 dB bandwidth. Check that the ratio of the 60 dB bandwidth to the 3 dB bandwidth measured in Section 11.7 is 15 or less. (7) Repeat steps (3) to (6) for resolution bandwidths of 300 kHz to 10 kHz as well. (8) Connect the output of the synthesized signal source to the spectrum analyzer IF FILTER IN connector as shown in Figure 11-12 (b). (9) Set the output frequency of the synthesized signal source to 3.58 MHz (CW), -20 dBm. (10) Adjust the output frequency of the synthesized signal source for a maximum reading on the R4131 display screen, and set the signal to be on the reference graticule. (1) Increase the output frequency of the synthesized signal source until the signal level is reduced 60 dB (6 graticules). Now measure and record this frequency as f1. (12) Reduce the output frequency of the synthesized signal source until the signal level is up 60 dB (6 graticules). Again, measure and record this frequency as f2. (13) Determine the 60 dB bandwidth by calculating f1 minus f2. Check that the following relation holds: 60 dB bandwidth/3 dB bandwidth ≤ 15 . Repeat steps 10 to 13 for resolution bandwidth of 1 kHz. (14)

11.9 Resolution Bandwidth Switching Accuracy

11.9 Resolution Bandwidth Switching Accuracy

Specification: ±1 dB (referenced to 300 kHz bandwidth)

(1) Description

The amplitude readout error associated with switching of the resolution bandwidth is measured using a CAL signal.

(2) Procedure

(1)	Set th	he TR4131	as fól	lows:				
-	FREQU	ENCY SPAN	:	1 GHz				
	CENTE	R FREQ	:	200 MHz				
	RESOLU	JTION BAN	DWIDTH:	1 MHz				
	REFERI	ENCE LEVE	L:	COARSE,	2	dB/DIV,	-28	dBm
	INPUT	ATTENUAT	OR :	10 dB				
	TRACE		:	WRITE				
	VIDEO	FILTER	:	10 kHz				
	SWEEP	TRIGGER	:	FREE RUN	N			
	SWEEP	TIME/DIV	:	10 ms				

- (2) Connect the CAL input to the INPUT connector. (See Figure 11-15.)
- (3) Set the span to 2 MHz, while turning the TUNING dial to center the waveform on the display screen.
- (4) Pressing the RBW switch, set the resolution bandwidth to 300 kHz.

Figure 11-15 Resolution Bandwidth Switching Accuracy Test Setup

(5) Turn the AMPTD CAL control to adjust the signal peak to be 1 division lower than the reference graticule on the display screen.

11.9 Resolution Bandwidth Switching Accuracy

- (6) Set the resolution bandwidth to 1 MHz. Check that the maximum amplitude point is ±1 dB (±0.5 division) or less when compared to the 300 kHz resolution bandwidth.
- (7) Similarly, set the span and the resolution bandwidth to 100 kHz. Check that the maximum amplitude point is ±1 dB or less when compared to the 300 kHz resolution bandwidth.
- (8) Also test resolution bandwidths 30 kHz to 1 kHz at the settings specified in Table 11-6.

Resolution bandwidth	Frequency span/division	Amplitude readout change
1 MHz	2 MkHz	±1 dB
300 kHz	2 MkHz	0 dB (REF.)
100 kHz	1 MkHz	±1 dB
30 kHz	200 kHz	±1 dB
10 kHz	100 kHz	±1 dB
3 kHz	50 kHz	±1 dB
1 kHz	50 kHz	±1 dB

Table 11-6 Bandwidth Switching Uncertainty

11.10 LOG Linearity and LIN Linearity

11.10 LOG Linearity and LIN Linearity

Specification: LOG linearity: ±1 dB/10 dB, ±0.15 dB/1 dB, ±1.5 dB/70 dB LIN linearity: ±5% of full scale Equipment used: Synthesized signal source 10 dB step ATT 1 dB step ATT

(1) Description

Linearity test is performed by utilizing the marker on the display screen when the aid of the external signal and the attenuators.

- (2) Procedure LOG linearity
- (1) Set the R4131 as follows: FREQUENCY SPAN : 1 GHz : 200 MHz CENTER FREQ RESOLUTION BANDWIDTH : AUTO : -10 dB REFERENCE LEVEL INPUT ATTENUATOR : 10 dB : WRITE TRACE VIDEO FILTER BAND WIDTH: 1 MHz SWEEP TRIGGER : FREE RUN
- (2) Set the output frequency of the synthesized signal source to 200 MHz (CW), -10 dBm, and connect the synthesized signal source to the spectrum analyzer INPUT connector using attenuators as shown in Figure 11-16.

11.10 LOG Linearity and LIN Linearity

Figure 11-16 LOG/LIN Linearity Test Setup

- (3) Set the 10 dB step ATT to 0 dB.
- (4) Set the span to 2 MHz while turning the TUNING dial to position the signal peak in the center of the display screen. Then, make the following settings: Resolution bandwidth : 30 kHz Sweep time/division : 20 ms Video filter band width: 10 kHz
- (5) Press the MARKER switch and turn the TUNING dial to position the marker at the signal peak.
- (6) Adjust the AMPTD CAL control to set the marker level reading to -10.0 dBm.
- (7) Vary the 10 dB step ATT 10 dB at a time, checking that the marker level values conform to the values of Table 11-7. With an attenuator setting of 70 dB, set the video filter to 100 Hz and the sweep time/division to 0.1 s in order to prevent noise being superimposed on the signal.
 - NOTE: If the marker moves off the signal peak during measurement, position it at the signal peak again by turning the TUNING dial.

11.10 LOG Linearity and LIN Linearity

Table 11-7 LOG Linearity

ATT setting	Marker level readout	Video filter	Sweep time/div
0	-10 dBm (REF)	10 kHz	20 ms
10	-20 ±1 dBm	10 kHz	20 ms
20	-30 ±1 dBm	10 kHz	20 ms
30	-40 ±1 dBm	10 kHz	20 ms
40	-50 ±1 dBm	10 kHz	20 ms
50	-60 ±1 dBm	10 kHz	20 ms
60	-70 ±1 dBm	10 kHz	20 ms
70	-80 ±1.5 dBm	100 Hz	0.1 s

- (8) Connect the 1 dB step ATT to the spectrum analyzer and set the video filter to 10 kHz and the sweep time/division to 20 ms.
- (9) Set the ATT to 0 dB.
- Set the R4131 reference level to 2 dB/division and the resolution bandwidth to 300 kHz. Turn the AMPTD CAL control to adjust the marker level to be -10.0 dBm.
- Set the ATT to 2 dB. Check that the resultant marker level reading is -12 dBm ±0.3 dB, or less. Next, set the ATT to 10 dB. Check that the resultant marker level reading is -20 dBm ±1 dB, or less.

LIN linearity

- (2) Set the ATT to 0 dB, and set the output level of the synthesized signal source to -10 dBm (70.71 mV).
- (13) Set the R4131 to the LIN mode, and position the marker at the signal peak. Turn the AMPTD CAL control until the marker level is set to 70.71 mV (on the reference graticule).
- (4) Set the ATT to 6 dB. Check that the marker level reading is 35.4 mV ±3.5 mV, or less.

11.11 Reference Level Accurcy

11.11 Reference Level Accuracy

Specification: The reference level as varied with MIN INPUT ATT 10 dB (fixed) must be accurate to within 1 dB. Equipment used: Synthesized signal source 10 dB step ATT 1 dB step ATT

(1) Description

The reference level accuracy can be determined by testing the IF GAIN accuracy in the LOG display mode.

(2) Procedure

(1)	Set the R4131 as follows	:
\smile	FREQUENCY SPAN :	1 GHz
	CENTER FREQ . :	200 MHz
	RESOLUTION BANDWIDTH :	AUTO
	REFERENCE LEVEL :	FINE, 2 dB/DIV, 0 dBm
	INPUT ATTENUATOR :	10 dB
	TRACE :	WRITE
	VIDEO FILTER BAND WIDTH:	1 MHz
	SWEEP TRIGGER :	FREE RUN

(2) Set the output frequency of the synthesized signal source to 200 MHz (CW), -10 dBm, and connect the source to the spectrum analyzer INPUT connector using attenuators as shown in Figure 11-17.

R4131A/B

Oct 20/89

8.12 REFERENCE LEVEL ACCURACY

- (3) Set both the 10 dB and 1 dB step ATTs to 0 dB.
- (4) Set the span to 2 MHz while turning the TUNING dial to position the signal peak in the center of the display screen.
- (5) Then, make the following settings: Resolution bandwidth: 300 kHz
 Video filter : 1 kHz
 Sweep time/division : 50 ms
- 6 Press the MARKER switch and turn the TUNING dial to position the marker at the signal peak.
- (7) Adjust the AMPTD CAL control to set the marker level reading to -10.0 dBm.
- (8) With the 1 dB step ATT at 1 dB, set the reference level to -1.00 dBm. Check that the marker level reading is -11.00 ±1 dB or less.
- (9) Proceed with further testing with the settings specified in Table 11-8.

Reference level setting	ATT setting	Marker readout level
0 dBm	0 dB	-10.00 dBm (REF.)
-1 dBm	1 dB	-11.00 ±1 dBm
-2 dBm	2 dB	-12.00 ±1 dBm
-3 dBm	3 dB	-13.00 ±1 dBm
-4 dBm	4 dB	-14.00 ±1 dBm
-5 dBm	5 dB	-15.00 ±1 dBm
-6 dBm	6 dB	-16.00 ±1 dBm
-7 dBm	7 dB	-17.00 ±1 dBm
-8 dBm	8 dB	-18.00 ±1 dBm
-9 dBm	9 dB	-19.00 ±1 dBm
-10 dBm	10 dB	-20.00 ±1 dBm
-20 dBm	ŻO dB	-30.00 ±1 dBm
-30 dBm	30 dB	-40.00 ±1 dBm
-40 dBm	40 dB	-50.00 ±1 dBm
-50 dBm	50 dB	-60.00 ±1 dBm

Table 11-8 Reference Level Accuracy

11.12 Residual Responses

Specification:

R4131A/B ...
-100 dBm or less (at an input attenuator setting of 0 dB)
R4131AN/BN...
-98 dBm or less (at an input attenuator setting of 0 dB)
R4131C/D ...
-95 dBm or less (at an input attenuator setting of 0 dB)
R4131CN/DN ...
-93 dBm or less (at an input attenuator setting of 0 dB)

(1) Description

Residual responses refers to the signal displayed on the display screen in the absence of input. Testing is performed at 100 MHz intervals in the range 100 kHz to 3.5 GHz.

(2) Procedure

(1) After terminating the spectrum analyzer INPUT connector with a 50 Ω terminator (R4131A/B/C/D) and a 75 Ω terminator (R4131AN/BN/CN/DN), set the spectrum analyzer as follows: FREQUENCY SPAN : 100 MHz CENTER FREQ : 50 MHz RESOLUTION BANDWIDTH : 30 kHz REFERENCE LEVEL : COARSE, 10 dB/DIV, -50 dBm : 0 dB INPUT ATTENUATOR TRACE : WRITE VIDEO FILTER BAND WIDTH: 1 kHz : FREE RUN SWEEP TRIGGER SWEEP TIME/DIV : 1 s

- (2) Set the TRIGGER MODE switch to SINGLE and press the START switch to test residual responses in the range of 0 to 100 MHz. Check that the residual responses is -100 dBm or less (R4131A/B), -98 dBm or less (R4131AN/BN), -95 dBm or less (R4131C/D), -93 dBm or less (R4131CN/DN).
- (3) Turn the TUNING dial to set the center frequency to 150 MHz. Press the START switch to test residual responses in the range of 100 to 200 MHz. Check that the residual responses is -100 dBm or less (R4131A/B) and -98 dBm or less (R4131AN/BN), -95 dBm or less (R4131C/D), -93 dBm or less (R4131CN/DN).
- (4) Similarly, test residual responses up to 3.5 GHz at 100 MHz intervals.

11.13 Gain Compression

11.13 Gain Compression

Specification:	*MIX input end must be 1 dBm or less for a -10 dBm input.
	[*: (Input signal level) - (MIN INPUT ATT)]
Equipment used:	Synthesized signal source
	Power meter
	Power sensor
	10 dB step ATT

(1) Description

The gain compression is tested by checking to see if the reading level rises 10 dB when the MIX input end level is increased from -20 dBm to -10 dBm.

(2) Procedure

 \sim

(1)	Set the R4131 as follow	S	:				
Ŭ	FREQUENCY SPAN	:	100 MHz				
	CENTER FREQ	:	200 MHz				
	RESOLUTION BANDWIDTH	:	AUTO				
	REFERENCE LEVEL	:	COARSE, 1	10	dB/DIV,	-10	dBm
	INPUT ATTENUATOR	:	10 dB				
	TRACE	:	WRITE				
	VIDEO FILTER BAND WIDTH	:	1 MHz				
	SWEEP TRIGGER	:	FREE RUN				

- (2) Set the output frequency of the synthesized signal source to 200 MHz (CW) and connect it to the power meter, adjusting the synthesized signal source for 0 dBm output.
- 3 Set the 10 dB step ATT to 10 dB and connect it to the spectrum analyzer as shown in Figure 11-18.

Figure 11-18 Gain Compression Test Setup

- (4) Set the span to 1 MHz while turning the TUNING dial to position the 200 MHz signal in the center of the display screen. Pressing the RBW switch, set the resolution bandwidth to 300 kHz, and set the reference level to 2 dB/DIV.
- (5) Turn the AMPTD CAL control to bring the signal peak to the reference graticule (top graticule) on the display screen.
- (6) Set both the reference level and the 10 dB step ATT to 0 dB. Check that the signal peak falls within 0.5 division (1 dB) of the top graticule (reference graticule) on the display screen.

11.14 Frequency Response

Specification: Frequency response (MIN INPUT ATT: 10 dB)

R4131A/C	100 kHz≦F≦2 GHz ±1 dB or less			10 kHz≦F≦3.5 GHz ±3.5 dB or less
R4131B/D	100 kHz≦F≦ ±1 dB or le:	2 GHz ss		10 kHz≦F≦3.5 GHz ±2 dB or less
R4131AN/BN, R4131CN/DN	100 kHz≦F≦1.5 GHz ±1.5 dB or less	10 kHz≦F≦ ±2.5 dB or	2 GHz less	2 GHz≦F≦3.5 GHz ±4 dB or less

Equipment used: Sweep oscillator Power meter Power sensor Sweep adapter

(1) Description

Testing is performed by setting the R4131 to the full span mode and a sweep oscillator to the external sweep mode and observing changes of the amplitude reading on the display screen. Since sweep oscillator frequency responses are included in the measurement results, measure the sweep oscillator response with a power meter prior to testing for later correction of the measurements.

(2) Procedure

(1)	Set the R4131 as follow	S	
-	FREQUENCY SPAN	:	4 GHz
	CENTER FREQ	:	2000 MHz
	RESOLUTION BANDWIDTH	:	AUTO
	REFERENCE LEVEL	:	COARSE, 10 dB/DIV, 0 dBm
	INPUT ATTENUATOR	:	10 dB
	TRACE	:	WRITE, POSI PEAK
	VIDEO FILTER BAND WIDTH	:	1 MHz
	SWEEP TRIGGER	:	FREE RUN
	SWEEP TIME/DIV	:	10 ms

(2) Set the sweep oscillator output to 200 MHz (CW), -10 dBm and connect it to the power meter using the A01002 cable. Adjust the output level of the sweep oscillator to -10 dBm. (See Figure 11-19.)

Figure 11-19 Frequency Response Test Setup

- (3) Connect the sweep OSC output to the spectrum analyzer INPUT connector. Connect the impedance converter for the R4131AN/BN/CN/DN. (See Figure 11-19) With its amplitude set to 2 dB/division, set the refrence level to display a 200 MHz signal on the center axis of the display screen.
- (4) Set the sweep oscillator to the external sweep mode, and set the start and stop frequencies to 10 MHz and 4 GHz, respectively.
- (5) Press the sweep adapter START switch, and adjust the START dial to display the signal at the leftmost position on the display screen. Next, press the STOP switch and adjust the STOP dial to display the signal at the rightmost position on the display screen.
- (6) When the SWEEP switch is pressed after the STOP dial has been adjusted, the waveform, shown in Figure 8.20 (a) appears. When a uniform spectrum waveform is not displayed, finely adjust the START and STOP dials.
- Set the sweep time/division to 1 s, and the frequency characteristics will be displayed on the display screen. (See Figure 11-20 (b).)
 Make sure that the ripple current is within the range of the specifications.

11.14 Frequency Response

.

11.15 Average Noise Level

Specification:

R4131A/B ... -116 dBm + 1.55F (GHz) dB or less R4131AN/BN ... -114 dBm + 1.55F (GHz) dB or less R4131C/D ... -110 dBm or less R4131CN/DN ... -108 dBm or less (Resolution bend width 1 kHz, Video filter 10 Hz, Input ATT 0 dB, More than 1 MHz in frequency.)

(1) Description

The average noise level is the maximum value of the average noise levels in the 1 kHz resolution bandwidth with an input ATT setting of 0 dB.

Note: Be sure to perform amplitude calibration (see Section 4.7) before performing this test.

(2) Procedure

(1)	Set the R4131 as follows	:
$\mathbf{\tilde{\mathbf{v}}}$	FREQUENCY SPAN :	4 GHz
	CENTER FREQ :	2000 MHz
	RESOLUTION BANDWIDTH :	1 MHz
	INPUT ATTENUATOT :	0 dB
	REFERENCE LEVEL :	-50 dBm
	TRACE :	WRITE
	VIDEO FILTER BAND WIDTH:	1 kHz
	SWEEP TRIGGER :	FREE RUN
	SWEEP TIME/DIV :	1 s
	MARKER :	ON

(2) Turning the TUNING dial, position the marker at the maximum noise level point. (See Figure 11-21)

11.15 Average Noise Level

(3) Press the MKR→CF switch. (Set the center frequency to the marker frequency.) Set the frequency span to zero span and set the resolution bandwidth to 1 kHz.

(4) Set the video filter to 10 Hz. (See Figure 11-22) Check that the marker level reading is -116 dBm + 1.55F (GHz) or less (R4131A/B), -114 dBm + 1.55F (GHz) or less (R4131AN/BN), -110 dBm or less (R4131C/D), and -108 dBm or less (R4131CN/DN).

Figure 11-22 Average Noise Level Test

11.16 Sweep Time Accuracy

11.16 Sweep Time Accuracy

Specification : ±15% Equipment used: Synthesized signal source Function generator

(1) Description

Sweep time accuracy is tested by demodulating signals in the R4131 zero span mode after they are amplitude modulated by the function generator and measuring the periods of the demodulated waves.

(2) Procedure

(1)	Set the R4131 as follow	's	:
$\overline{}$	FREQUENCY SPAN	:	100 MHz
	CENTER FREQ	:	50 MHz
	RESOLUTION BANDWIDTH	:	1 MHz
	REFERENCE LEVEL	:	2 dB/DIV, $-10 dBm$
	INPUT ATTENUATOR	:	10 dB
	TRACE	:	WRITE
	VIDEO FILTER BAND WIDTH	:	10 kHz
	SWEEP TRIGGER	:	FREE RUN
	SWEEP TIME/DIV	:	10 ms

- (2) Set the output frequency of the synthesized signal source to 50 MHz, -10 dBm, EXT AM mode.
- (3) Set the function generator to generate sine waves at 200 Hz ± 0.5 %.
- (4) Connect the instruments as shown in Figure 11-23. Turn the R4131 TUNING dial to position the signal in the center of the display screen. Further, set the frequency span to zero span and adjust the TUNING dial to obtain the maximum signal level.
- (5) Adjust the function generator output level to obtain demodulated waves in the order of 3 DIV_{p-p}.
- (6) Adjust the reference level to position the signal at an easily viewed position on the display screen.
- (7) Set the TRIGGER MODE switch to VIDEO.
- (8) Set the sweep time/division to 5 ms and store the resultant waveform. Check that five periods of the demodulated waves have a duration of 25 ±3.75 ms, or less. (See Figure 11-24)
- (9) Similarly, test other sweep time/division with the settings specified in Table 8-11.

11.16 Sweep Time Accuracy

Sweep time/div	Function generator frequency	Duration of five periods
5 ms	200 Hz ±0.5%	25 ms ±3.75 ms
10 ms	100 Hz ±0.5%	50 ms ±7.5 ms
20 ms	50 Hz	100 ms ±15 ms
50 ms	20 Hz	250 ms ±37.5 ms
0.1 s	10 Hz	0.5 s ±75 ms
0.2 s	5 Hz	1 s ±150 ms
0.5 s	2 Hz	2.5 s ±375 ms
1 s	1 Hz	5 s ±0.75 s
2 s	0.5 Hz	10 s ±1.5 s
5 s	0.2 Hz	25 s ±3.75 s
10 s	0.1 Hz	50 s ±7.5 s

Table 11-9 Sweep Time Accuracy

Figure 11-23 Sweep Time Accuracy Test Setup

11.17 Calibrated Output Accuracy

11.17 Calibrated Output Accuracy

Specification : 200 MHz ±30 kHz, -30 dBm ±0.5 dB:R4131A/B/C/D 200 MHz ±30 kHz, 80 dBµ ±0.5 dB :R4131AN/BN/CN/DN Equipment used: Synthesized signal source Power meter

(1) Description

Test the accuracy of CAL signal frequency by using the synthesized signal source. Test the accuracy of signal level by connecting the power meter directly to the CAL signal line.

(2) Procedure

Frequency Test

- (1) Press the R4131 ZERO CAL switch.
- (2) Set the synthesized signal source to 200 MHz, -30 dBm.
- (3) Connect the synthesized signal sourse to the spectrum analyzer INPUT connector. Set the span to 100 kHz while turning the TUNING dial to position the 200 MHz signal in the center of the display screen.
- (4) Next, connect the CAL signal to INPUT connector. (See Figure 11-25) Check that the center frequency is 200 MHz ±30 kHz, or less.

Amplitude Test

- (1) Directly connect the power meter to the CAL OUT signal line.
- (2) Make sure that the CAL OUT output signal level is -30 dBm ±0.5 dB (R4131A/B/C/D) or -28.92 dBm ±0.5 dB (R4131AN/BN/CN/DN).

The reason why the R4131AN/BN/CN/DN has the -28.93 dBm signals when the 80 dBµ CAL OUT signal is measured on the 50 Ω power meter:

12.1 Preparation

The equipment and tools necessary for troubleshooting are listed in Table 12-1. The equipment must have equivalent or better performance ratings than those in the table.

Table 12-1 Equipment and Tools Required For

Equipment	Performance	Recommended equipment
Digital voltmeter	Range: $\pm 1000 \text{ V}$ Accuracy: $\pm 0.1\%$ Input impedance:10 M Ω	TR6846
High frequency power meter	Frequency : 100 kHz to 8 GHz Sensitivity: -30 dBm to +20 dBm Accuracy : <u>+</u> 0.5 dB	
DC power supply	Output voltage: <u>+</u> 10 V Accuracy : <u>+</u> 0.03%	TR6142
Oscilloscope	Frequency range: DC to 100 MHz Input impedance: 1 MΩ	
Signal generator	Frequency range : 100 kHz to 1800 MHz Output level : ± 10 dBm or more Output impedance : 50 Ω Frequency accuracy: 2 E-8/day Variable frequency: 1 Hz step	TR4512
FET probe	Frequency range: DC to 500 MHz Input impedance: 1 MΩ or more, 2 pF or less	
Spectrum analyzer	Frequency range : 10 MHz to 8 GHz Frequency accuracy: <u>+</u> 100 kHz	R4136
Spectrum analyzer	Input frequency range : 100 kHz to 1.8 GHz Tracking generator output: 400 kHz to 1.8 GHz T.G. output flatness : +1 dB Impedance : 50 Ω	TR4171 or R4136 + TR4154
High frequency power meter	Frequency : 100 kHz to 1500 MHz Sensitivity: -30 dBm to +20 dBm Accuracy : +0.5 dB	

12.1 Preparation

The equipment and tools necessary for troubleshooting are listed in Table 12-1. The equipment must have equivalent or better performance ratings than those in the table.

Table 12-1 Equip	ment and	Tools	Required	For
------------------	----------	-------	----------	-----

Equipment	Performance	Recommended equipment
Digital voltmeter	Range : $\pm 1000 V$ Accuracy : $\pm 0.1\%$ Input impedance: 10 M Ω	TR6846
High frequency power meter	Frequency : 100 kHz to 8 GHz Sensitivity: -30 dBm to +20 dBm Accuracy : <u>+</u> 0.5 dB	
DC power supply	Output voltage: <u>+</u> 10 V Accuracy : <u>+</u> 0.03%	TR6142
Oscilloscope	Frequency range: DC to 100 MHz Input impedance: 1 MΩ	
Signal generator	Frequency range:100 kHz to 1800 MHzOutput level:±10 dBm or moreOutput impedance:50 ΩFrequency accuracy:2 E-8/dayVariable frequency:1 Hz step	TR4512
FET probe	Frequency range: DC to 500 MHz Input impedance: 1 M Ω or more, 2 pF or less	
Spectrum analyzer	Frequency range : 10 MHz to 8 GHz Frequency accuracy: <u>+</u> 100 kHz	R4136
Spectrum analyzer	Input frequency range : 100 kHz to 1.8 GHz Tracking generator output: 400 kHz to 1.8 GHz T.G. output flatness : +1 dB Impedance : 50 Ω	TR4171 or R4136 + TR4154
High frequency power meter	Frequency : 100 kHz to 1500 MHz Sensitivity: -30 dBm to +20 dBm Accuracy : <u>+</u> 0.5 dB	

12.1 Preparation

Product name	Stock number	Remarks
Cable (UM-UM)	MM-17	
Cable (SMA-SMA)	MM-14	
Cable (BNC-BNC)	MI-02	
Cable (BNC-UM)	MC-36	2 pcs.
UM to UM Linear Adapter	JCF-AC001JX07	
SMA to SMA Adapter	JCF-AA001JX28	

Table 12-2 Maintenance Tools Required for Troubleshooting

12.2 Location Diagram (Top & Bottom)

12.2 Location Diagram (Top & Bottom)

Figure 12-1 Location Diagram (Bottom View)

12.2 Location Diagram (Top & Bottom)

Figure 12-2 Location Diagram (Top View)

12 - 5

Oct 20/89

12.3 Location Diagram for RF

12.3 Location Diagram for RF

Figure 12-3 Location Diagram for RF
12.4 Block Diagram

Figure 12-4 Block Diagram

12 - 7

12.5 Self Test

The R4131 performs SELF TEST for the RAM and ROM on the CPU board when power is turned on.

In the case there is a failure RAM or ROM, the following error message is displayed on the CRT.

Message	Mean
RAM error	Failure RAM U26 or U32 (SMM-8464C-5) on the CPU board (BLR-015114)
ROM error	Failure ROM U21 (SMM-27C25-1) on the CPU board (BLR-015114)

Appendix

APPENDIX

A.1 Explanation of Terminologies

A.1 Explanation of Terminologies

IF Bandwidth

In this spectrum analyzer, a band pass filter (BPF) is used to analyze each frequency component included in input signals. The 3 dB bandwidth of this BPF is called the IF band (see Figure A-1 (a)). The BPF characteristic should be set to the appropriate size according to the sweep width and sweep speed. In this equipment, it is set to the maximum value according to the sweep width. Since this bandwidth can generally improve the resolution (a degree of separation) more and more when it is set narrower, the resolution of the spectrum analyzer is expressed in the narrowest IF bandwidth in some cases (see Figure A-1 (b)).

Figure A-1 IF Bandwidth

Gain Compression

In case the input signal becomes larger than a certain value, no correct value is displayed on the CRT screen and a somewhat compressed phenomenon occurs even when the input signal is increased. This is called the gain compression. It expresses the linearity of the input signal range. In general, a level range is used until 1 dB is compressed.

Input Sensitivity

This means the highest capacity of a spectrum analyzer to detect minor signals. The sensitivity is related to the noise generated from the spectrum analyzer itself and it depends on the IF bandwidth used. Generally, the input sensitivity expresses the average noise level in the minimum IF bandwidth of that spectrum analyzer.

Maximum Input Level

This is the maximum allowable level of the input circuit of a spectrum analyzer. The allowable level can be changed by the input attenuator.

A.1 Explanation of Terminologies

Residual FM

This is a method to express a short term frequency stability of the local oscillator groups integrated in a spectrum analyzer. The frequency straying per unit time is expressed in p-p. This also indicates the critical value when the residual FM of a measured signal is measured.

Residual Responses

This defines to what level value the spurious signal generated in a spectrum analyzer is suppressed when calculated in terms of the input level. This signal is caused when a particular signal, e.g., the local oscillator output, etc., inside the spectrum analyzer is leaked. Care should be taken in this respect when a very small input signal is analyzed.

Quasi Peak Value Measurements

Disturbing noise received in radio communication often appears in an impulsive state. As an objective evaluation of this disturbance, the disturbing noise component is evaluated with a value proportional to its peak value. Such prerequisite factors as the measuring bandwidth and detection time constant for this measurement are used as the quasi peak values. This is represented by the JRTC Standards in Japan and by the CISPR Standards internationally.

Frequency Response

Frequency response is usually used as a term to indicate the amplitude characteristic with frequency (frequency characteristic). In spectrum analyzer, this term means the frequency characteristic (flatness) of an input attenuator, mixer, etc. at each input frequency. It is represented by ± dB.

Frequency Span

This means the display range of the ordinates axis (frequency axis) on the Braun tube. The frequency span is set arbitrarily from a broad band to narrow band with the frequency scale which is calibrated accurately.

Zero Span

A spectrum analyzer does not sweep the frequency in this mode. Instead, it sweeps an arbitrary frequency taking the ordinates axis as the time axis.

Spurious

The spurious means unnecessary signals. They are classified into the following categories according to the properties of each signal:

A.1 Explanation of Terminologies

Harmonic spurious: This is defined to indicate the harmonic level to be generated by the spectrum analyzer itself (to be generated in the mixer circuit in general) when no-distortion signal is applied to it. At the same time, it means the capacity of the harmonic wave distortion measurement.

Neighborhood spurious: A small spurious generated in the neighborhood of the spectrum analyzer when a pure single spectrum signal is applied to it.

Non-harmonic spurious: Apart from the above two, the spectrum analyzer generates a certain proper frequency as a spurious. This is also called the residual response.

Noise Bandwidth

This is used widely as performance to express the oscillation purity of an oscillator, etc. In the spectrum analyzer itself, the noise is generated in the vicinity of the spectrum on the Braun tube from local oscillator and phase lock loop, thus lowering the analyzing capacity of the analyzer. To compensate, the analyzer defines its own sideband range enabling it to analyze the incoming signal noise sidebands within this range. The spectrum analyzer expresses the noise sideband characteristic as follows:

Example:

-70 dB apart from the carrier by 20 kHz where the IF bandwidth is assumed to be 1 kHz. It is also expressed with the energy which exists within the 1 Hz bandwidth in general (Figure A-2 (b)).

Since this value is -70 dB at the 1 kHz bandwidth when expressed with a 1 Hz bandwidth, the signal within the 1 Hz bandwidth becomes a value which is lower than it by approx. 10 log 1 Hz/1 kHz (dB), approx. 30 dB. It is then expressed as -100 dB/Hz apart from the carrier by 20 kHz when the IF bandwidth is 1 kHz.

Figure A-2 Noise Sideband

A.1 Explanation of Terminologies

Bandwidth Selectivity

The characteristic of a band-pass filter is not the so-called rectangular characteristic, but it is generally given an attenuation characteristic like a gauss distribution. When two large and small signals are mixed close by, the small signal is concealed behind the large signal (Figure A-3). It is therefore necessary to define the bandwidth in a certain attenuation area (60 dB). For this purpose, the ratio of 3 dB width vs. 60 dB width is expressed as the bandwidth selectivity.

Figure A-3 Bandwidth Selectivity

Bandwidth Accuracy

This is the performance to express the bandwidth accuracy of the IF filter. It is expressed as a deviation of the nominal value at a 3 dB lowering point. Although this performance little affects the level measurement of ordinary continuous signals, it should be taken into consideration for the level measurement of a noise signal.

Bandwidth Switching Accuracy

For dissolving a signal into spectrums, not one but several IF filters are used to obtain the optimum resolution for the scan width. Even when measuring the same signal, an error occurs when the IF filter is switched for a portion having different loss. This is defined as the bandwidth switching accuracy.

A.1 Explanation of Terminologies

Figure A-4 Bandwidth Switching Accuracy

Reference Level Display Accuracy

In the spectrum analyzer, the absolute level of an input signal is obtained by reading how much the dB is lowered from the upper-most scale on the tube surface as a standard. The level set on this upper-most stage is called the reference level. The reference level is changed by the IF GAIN key and input attenuator and it is expressed in dBm or dBµ. The absolute accuracy of this display becomes the reference level frequency.

Figure A-5 Reference Level

VSWR: Voltage Standing Wave Ratio

This is a constant which expresses the impedance matching status. It is expressed as the ratio of the maximum value vs. minimum value of the standing wave caused by the composition of the progressive wave and reflected wave, where the spectrum analyzer is loaded to the ideal and nominal impedance source. This is expressed in a different form by the reflection coefficient and reflection loss.

A.1 Explanation of Terminologies

When signal E_0 sent from the transmission side is completely transmitted to the reception side (the spectrum analyzer input section) without miss-matching in the impedance in Figure A-6, signal E_1 received in the reception side is equivalent in value to E_0 . When not all the signal is transmitted owing to the miss-matching on the reception side and returned by reflection to the reception side, the reflected ratio (the reflection coefficient) can be expressed as follows where the size of the reflected wave is taken as $E_{\rm B}$:

Reflection coefficient m = Reflected wave $E_R / progressive$ wave E_0

The ratio of reflected wave ${\rm E}_{\rm R}$ vs progressive wave ${\rm E}_0$ becomes the reflected attenuation.

Reflected attenuation = 20 log E_R / E_0 (dB) VSWR = $(E_0 + E_R) / (E_0 - E_R)$

Its relation with the reflection coefficient becomes a range of 1 to in VSWR where the VSWR is assumed to be VSWR = (1+|m|) / (1-|m|). The closer to 1, the better the matching condition.

		Spectrum
(Measured sign	nal)	analyzer
Transmission	Eo	Reception
Prog	ressive	Reflected wave
Wave		Ex

Figure A-6 V.S.W.R.

Spurious Response

When the signal level becomes larger, the harmonic wave is distorted in the input mixer circuit. A range usable with no distortion varies according to the fundamental wave input level. In the example in Figure A-7, it becomes -70 dB for the -30 dBm. When the input signal level is larger, the signal applied to the mixer is made smaller by the input attenuator so that it becomes an optimum input level.

A.1 Explanation of Terminologies

Figure A-7 Spurious Response

YIG-turned Oscillator

This was reported by Griffiths for the first time in 1946. The garnet-series ferrite which represents the (Yttrium Iron Garnet) monocrystal shows a quite sharp electronic spin resonant phenomenon and its resonant frequency has a linear proportional relationship throughout a broad frequency band for the applied DC magnetic field. It is known from this that the broad band electronic tuning is enabled by varying the exciting current of electromagnet which forms the AC magnetic field. This is applied to the spectrum analyzer and to the local sweep generator of the automatic microwave frequency counter of ADVANTEST.

A.2 Level Conversion Table

 $dBm/50\Omega$, $dBm/75\Omega$, Vrms, W/50 Ω , $dB\mu$, dBV Conversion Table W/50Ω dBm/75Ω dBV dBm/50Ω dΒμ Vrms + 30d Bm 1₩ 500 m W 5Vrms +104BV 130dB# + 20d Bm + 20dBm 100mW 50mW - lVrma - 120dBu + 10d Bm 04BV + 10d Bm 10mW SmW 500m Vrms -104BV 110dBu 0dBm 0d Bra lm₩ 500µW - 100dBu - 10dBm - 20dBV 100mVrms - 10dBm 100*µ* W 50µW 50m Vrma 90 d B u - 20dBm - 30d B V - 20dBa 10µ W ₩ ير\$. - 40d BV 80dB# 10m Vrms - 30d Bm - 30d Bm ۱µW 500m W SmVrms - 506BV 70dB# - 404B-- 40dBm 100n W 50n W - 60d B V 60dBµ 1mVrms - 50dBm - 50d B m 10n W Sn₩ 500,4 Vrms - 70d B V 504B# - 60d Bm - 60dBm la W - 80d B V 40⊿8 0d8V=iVrms 1004 Vrms - 70d Bm 0dBµ = |µVrms - 70d Bas 0 d B m = 1 m W 50µ Vrms R = 50 Q - 50d Bm - 90d B V 30dB# - 80d Bas -1004BV 20dB# 10µVrms - 90d Bm

Figure A-8 Level Conversion Table

A.3 Parts Location and Circuit Diagrams

A.3 Parts Location and Circuit Diagrams

R4131 SERIES BLR-015114 (1/2)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
Parts No. $ \begin{array}{ccccccc} C1 & -8 \\ C9 & -12 \\ C13 & -14 \\ C15 \\ C16 \\ C17 & -19 \\ C20 \\ C21 \\ C22 \\ C23 & -24 \\ C25 \\ C26 & -30 \\ C31 \\ C32 & -40 \\ C41 \\ C42 \\ C43 & -44 \\ C45 \\ C43 & -44 \\ C45 \\ C46 \\ C47 \\ C48 \\ D1 & -6 \\ D9 & -10 \\ J1 \\ J2 \\ J3 \\ J4 \\ J5 \\ J6 \\ J7 \\ J8 \\ L1 & -2 \\ L3 \\ Q1 \\ Q2 \\ Q3 \\ Q4 & -5 \\ R1 \\ R2 \\ \end{array} $	ADVANTEST Stock No. CSM-AGR1U50V CCK-AR100U16V CSM-AGR1U50V CSM-AGR1U50V CSM-AGR1U50V CCK-AR10U16V CSM-AGR1U50V CCK-AR10U16V CSM-AGR1U50V CCK-AR10U16V CSM-AGR1U50V CCK-AR10U16V CSM-AGR1U50V CCK-AR10U16V CSM-AGR1U50V CCK-AR470U10V CCK-AR470U10V CCK-AR470U10V CCK-AR10U16V SDS-1SS270 SDS-1SS270 SDS-1SS270 JCR-AF040PX01 JCP-BH005PX01 JCP-BH005PX01 JCP-BH02PX05 JCP-BG012PX03 JCR-AF050PX01 JCS-BG024JX05 JCP-BH02PX01 JCI-AH014JX01 LCL-T00084A STP-2SA1015 STN-2SC2026 STN-2SC2026 RCB-AG220	Parts No. R21 R22 R23 R24 R25 -26 R27 R28 -29 R30 -33 R34 R35 -38 R39 R40 R41 R42 R43 -44 R43 -44 R45 R46 R47 R48 S1 TP1 -4 U1 U2 U3 U4 -5 U6 U7 U8 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20	ADVANTEST Stock No. RCB-AG1R5K RCB-AG2R7K RCB-AG2R7K RAY-AL3R9K8 RCB-AG4R7K RAY-AL3R9K8 RAY-AL47K4 RCB-AG82K RAY-AL3R9K8 RCB-AG10K RCB-AG220 RCB-AG680 RCB-AG680 RCB-AG1R5K RCB-AG220 RCB-AG68 RCB-AG100 RCB-AG68 RCB-AG100 RCB-AG68 RCB-AG100 RCB-AG68 SIM-74HC374 SIM-74HC4538 SIM-74HC25 SIM-74HC25 SIM-74HC25 SIM-74HC25 SIM-74HC4538 SIM-74HC4538 SIM-74HC4538 SIM-74HC4538 SIM-74HC26 SIM-74HC274 SIM-74HC4538 SIM-74HC274 SIM-74HC245 SIM-74
R2 R5 R6 R7 R8 R9 R10 -11 R12 R13 -15 R16 R17 R18 R19 R20	RCB-AG220 RCB-AG560 RCB-AG680 RCB-AG470 RCB-AG68 RCB-AG680 RCB-AG680 RCB-AG22K RAY-AL3R9K8 RCB-AG10K RCB-AG33K RCB-AG33K RCB-AG3R3K RCB-AG22K	U20 U21 U22 U23 U24 U25 U26 U27 U28 U27 U28 U29 U30 U31 U32 U33	SIM-74HC74 SMM-27C256B SIM-74HC14 SIM-653438 SIM-6845C SIM-8254C SMM-8464C SIM-74HC244 SIM-74HC244 SIM-61VH136 SMM-8422A SIM-8254C SMM-8464C SIM-9914

R4131 SERIES BLR-015114 (2/2)

U34 SIT-75160 U35 SIT-75161 U36 -37 SMM-2018B U38 SIM-74HC04 U39 SIM-74HC74 U40 SMM-27128A U41 SIM-8254C	
U42 SMM-2864 U43 SIM-74HC393 U44 SIM-74HC04 X1 DXC-000109	

R4131 SERIES BLR-015116 (1/5)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
C1	CMC-AP820PR3K	C112	CMC-AP820PR3K
C2	CMC-AP560PR3K	C113-115	CCP-BBR1U50V
	CMC-AP1000PR1K	C118-119	CCP-BBR1U5OV
	CMC-AP560PR3K	C120-123	CCK-CD47U25V
		124 - 126	
		C128	
68		C120	
C9		C130	CCF = CD100U35V
C11	CCP-BBR1U50V	C131-149	CCP-BBR1U50V
C12	CCK-CD10U25V	C151-154	CCK-CD47U25V
C13	CCP-BBR1U50V	C155	CCP-BBR1U50V
C14	CCP-BAR01U50V	C157-159	CCP-BBR1U50V
C16	CCP-BBR1U50V	C160	CCK-CD10U25V
C17	CCP-BA8P50V	C161-163	CCP-BBR1U50V
C18	СТМ-ВМ6Р	C164-165	CCK-CD10U25V
	CCP-BAR01U50V	C166-169	CCP-BBR1U5OV
120 - 21	CCP-BBR1U50V	C171	CCP-BA1000P50V
122 - 23		C172	
0.30		C174	
C32		C175	CCP = BBR1000P50V
C33 -37	CCP-BAR01U50V	C176-179	CCP-BBR1U50V
C38	CMC-AP1000PR1K	C180	CCP-BA1000P50V
C40 -42	CCP-BBR1U50V	C181	CCK-CD33U1OV
C43	CCK-CD10U25V	C182	CCK-CD100U10V
C44	CCP-BBR1U50V	C183-184	CCP-BBR1U50V
C45	CCP-BAR01U50V	C185	CCP-BA1000P50V
		0186	
		10187 - 189	
(50 - 55)		10196	
C50 - 65		C197-201	CCP-BBR1U50V
C66		C202-203	CCK-CD47U25V
C67 -68	CCP-BBR1U50V	C204-205	CCK-CD10U25V
C69 -73	CCP-BAR01U50V	C206-209	CCP-BBR1U50V
C74 -82	CCP-BBR1U50V	C210	CFM-AH1U100V
C83	CMC-AP1000PR1K	C211	CCK-CD47U1OV
C85 -90	CCP-BAR01U50V	C212	CCP-BAR01U50V
C91	CMC-AP1000PR1K	10213	CCP-BAR01050V
(93 - 94)		10214 - 210	
C95		D1 -10	SDS-199270
C97		D12 -35	SDS-1SS279
C98	CCP-BA8P50V	D38 -43	SDS-1SS270
C99	CTM-BM6P	D46	SDZ-M130
C101-105	CCP-BBR1U50V	D47	SDZ-2-1
C106	CCP-BAR01U50V	D48 -52	SDS-1SS270
C107	CCP-BA8P50V	D53	SDS-LD1
0108	CTM-BM6P	J1	JCR-AF050PX02
C110 C111		J 2	
~ + + +	CCF-DARUIUJUV	L L	JOF-MAUIEFAU/

A - 13

R4131 SERIES BLR-015116 (2/5)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
Parts No. $J4$ $J5$ $J6$ $J7$ -9 $K1$ $L1$ $L2$ $L3$ $L4$ $L5$ $L6$ $L7$ $L8$ $L9$ $L10$ $L12$ $L33$ $L4$ $L5$ $L6$ $L7$ $L8$ $L9$ $L10$ $L11$ $L22$ $L33$ $L20$ -22 $L23$ -24 $L25$ -26 $L27$ -28 $L29$ -32 $L30$ -32 $L35$ $L39$ $L37$ -44 $Q1$ $Q2$ $Q3$ $Q4$ $Q5$ -10 $Q11$ $Q12$ $Q13$ $Q14$	ADVANTEST Stock No. JCP-BH010PX01 JCP-AF010PX01 JCF-AC001JX01 KRL-000874 LCL-C00554 LCL-C00490 LCL-C00673 LCL-C00124 LCL-C0012 LCL-C0012 LCL-C00672 LCL-C00672 LCL-C00672 LCL-C00549 LCL-C0012 LCL-C0012 LCL-B01024 LCL-C00549 LCL-C00549 LCL-C00554 LCL-C00555 LCL-C00554 LCL-C00555 LCL-	Parts No. R4 R5 R6 R7 R8 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R26 R27 R28 R29 R30 R31 R32 R33 R34 R36 R37 R38 R39 R40 R41 - 42 R43 - 44 R45 R46	ADVANTEST Stock No. RCP-AH22K RCP-AH470K DSP-000015 RCP-AH100 RCP-AH68 RCP-AH470 RMF-AC470QFJ RCP-AH100 RCP-AH15 RCP-AH33 RCP-AH22K RCP-AH22K RCP-AH4R7K RMF-AC100QFJ RCP-AH560 RMF-AC1KFJ RCP-AH3R9K RCP-AH15 RCP-AH38 RCP-AH33 RCP-AH4R7K RCP-AH22K RCP-AH4R7K RCP-AH22K RMF-AC150QFJ RCP-AH38 RCP-AH3R9K RCP-AH3R9K RCP-AH3R9K RCP-AH3R9K RCP-AH3R9K RCP-AH3R9K RCP-AH3R9K RCP-AH3R9K RCP-AH282K RMF-AC1KFJ RCP-AH300 RMF-AC1KFJ RCP-AH100 RCP-AH100 RCP-AH100 RCP-AH282K RMF-AC282KFJ RCP-AH3R3K
Q17 -27 Q30 Q31 -32	STN-FN1A4P STP-2SA1162 STP-2SA1015	R47 R48 R49	RCP-AH750 RCP-AH220 RCP-AH56
Q34 -35 Q36 -37 Q38 Q39 Q40 Q41 Q42 -44 R1 R2 R3	STN-2SC1815 SFN-SST4393 STN-2SC1983 STN-FA1A4P STP-2SA1162 STN-2SC2712 STN-2SC1815 STP-2SA1015 RCP-AH39 RCP-AH56 RCP-AH10K	R50 -52 R53 R54 R55 R56 R57 -58 R59 -60 R61 R62 R63 R64	RCP-AH120 RCP-AH390 DSP-000017 RCP-AH470 RCP-AH100 RCP-AH2R2K RMF-AC2R2KFJ RCP-AH6R8K RCP-AH6R8K RCP-AH3R3K RCP-AH750 RCP-AH220

R4131 SERIES BLR-015116 (3/5)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
R65	RCP-AH56	R134	ВСР-АНАВАК
RAA	RCP-AH560	R135	RCP-AH3R3K
R68	RCP-AH100	R136	RCP-AH1R2K
R69	RCP-AH150	R137	RCP-AH680
R73	RCP-AH33	R138	RCP-AH220
R74	RCP-AH2R2K	R139	RCP-AH56
R76	RCP-AH1K	R140	RCP-AH560
R77	RCP-AH470	R142	RCP-AH100
R78 -79	RMF-AC1KFJ	R143-144	RCP-AH2R2K
R80	RMF-AC30QFJ	R145-147	RMF-AC2R2KFJ
R82	RMF-AC1KFJ	R148	RCP-AH6R8K
R83	RMF-AC499QFJ	R149	RCP-AH3R3K
R84 -85		R150	
1886		R151	
		R152	
ROO ROO		R155	
R91		R155	DSP-000015
R92	RMF-AC1KFJ	R156-157	RCP-AH100
R93 -94	RCP-AH10K	R158	RCP-AH15
R95	RCP-AH2R7K	R159	RCP-AH33
R96	RMF-AC390QFJ	R160	RCP-AH4R7K
R97	RCP-AH4R7K	R161	RMF-AC150QFJ
R98	RMF-AC220QFJ	R162	RCP-AH22K
R'99	RCP-AH2R2K	R163	RCP-AH560
R100-101	RCP-AH10K	R164	RMF-AC1KFJ
R102		R165	
R103		R166	
R104	RME-AC2700EJ	R107 P168	
R106	RCP-AH2R2K	R169	RCP-AH220K
R107-108	RCP-AH10K	R170	RCP-AH15
R109	RCP-AH2R7K	R171	RCP-AH33
R110	RMF-AC82QFJ	R173	RCP-AH4R7K
R111	RCP-AH910	R174	RMF-AC150QFJ
R112	RMF-AC301QFJ	R175	RCP-AH22K
R113		R176	RCP-AH560
R114-115		R177	RMF-AC1KFJ
R110 D117	RUF-ACS1QEI	R178	
R117 R118	RCP-AH270	R179	
R119	RMF-AC390QFJ	R180 D191	
R120	RCP-AH2R2K	R182	RCP-AH220K
R121	RCP-AH33	R183	RCP-AH680
R122	RCP-AH2R2K	R185	RCP-AH470
R124	RCP-AH1K	R186	RMF-AC680QFJ
R125	RCP-AH470	R187	RCP-AH220
R126	RCP-AH820	R188	RCP-AH390
R127		R189	RCP-AH470
K128	KCY-AH100 RCD AH2R24	R190	RMF-AC470QFJ
R127-130	RMF-402R2KF1	R191 - 192	RCP-AH10K
1.1.2.1.2.2	ATT ACCILITY	R193	KCP-AH56

R4131 SERIES BLR-015116 (4/5)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
R196-203	RCP-AH47K	R286	RME-AC8R2KFJ
R204-205	RCP-AH10K	R288	RMF-AC6R2KFJ
R206-211	RCP-AH47K	R290	RCP-AH10K
R212	RCP-AH150	R291	RCP-AH220
R213	RCP-AH62K	R292	RCP-AH1K
R214-219	RCP-AH220	R293	RCP-AH100
R220	RCP-AH1R5K	R294	RCP-AH270
R221	RCP-AH47K	R295-298	RCP-AH100
R222	RCP-AH51	R299	RCP-AH4R7K
R223-224	RCP-AH39	R300	RCP-AH1K
R227-229	RCP-AH10K	R301	RMF-BJ30KFJ
R230	RCP-AH3R3K	R302	RMF-BJ15KFJ
R231	RMF-AC4R7KFJ	R303-304	RMF-BJ7R5KFJ
R233	RMF-AC8R2KFJ	R305	RMF-BJ10KFJ
R234	RMF-AC510QFJ	R306	RMF-BJ1KFJ
R235-237	RCP-AH10K	R307	RMF-BJ110QFJ
R238	RCP-AH3R3K	R309	RMF-BJ10KFJ
R239	RMF-BJ8R2KFJ	R310	RMF-BJ220QFJ
R241	RMF-BJ6R8KFJ	R311	RMF-BJ2R7KFJ
R242-243		R312	RMF-BJ/R5KFJ
R244 R2/5		R313	
R245		R314 D715	
R248-249			
R250		0318	
R251	RCP-AH5R1K	R320	RME-BI3KEI
R252	RCP-AH10K	R321	RCP-AH100K
R254	RCP-AH3R3K	R322	RME-BJ5R1KFJ
R255	RCP-AH15K	R323	RCP-AH1R5K
R256	RCP-AH10K	R324-332	RCP-AH220
R258	RMF-BJ5R1KFJ	R333-335	RMF-AS330QFK
R259	RMF-BJ10KFJ	R336	RMF-BJ20KFJ
R260	RMF-BJ68KFJ	R337	RMF-BJ10KFJ
R262	RCP-AH820K	R338-340	RCP-AH680
R263	RCP-AH1M	R341	RMF-BJ10KFJ
R204 D245	RMF-BJSR6KFJ	R342	RMF-BJ12KFJ
R265		R343	RMF-BJ10KFJ
R267		R 344	RMF-BJ12KFJ
R268			
R271	RME-RI11KEI		
R272	RME-BISKOFI	R347	
R273	RMF-BJ10KFJ	R349	
R274	RMF-AC10KFJ	R350	RME-BIJRSKEI
R275	RMF-AC7R5KFJ	R351	RME-BJ51KFJ
R276	RMF-BJ330KFJ	R352	RMF-BJ15KFJ
R277	RMF-BJ1KFJ	R353	RMF-BJ7R5KFJ
R278	RMF-BJ30KFJ	R354	RMF-BJ7R5KFJ
R279	RMF-BJ1KFJ	R356	RCP-AH3R3K
K280-283	RMF-BJ5R1KFJ	U1 -2	SHB-001655
		U3 –4	SHB-001658
11202	RUF-ANIK	05	SHB-001656

R4131 SERIES BLR-015116 (5/5)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
U6 -7 U8 U9 -10	SHB-001657 SHB-001544 SHB-001543		
U11 U12 -14 U15	SHB-001544 SHB-001655 SHB-001656		• • • •
U18 -17 U18 U19 -20 U21	SHB-001657 SHB-001655 SHB-001658 SHB-001655		
U22 U23 U24 U25	SHB-001656 SHB-001543 SHB-001544 SHB-001543		
U26 U29 -32 U33 U34	SHB-001544 SIM-74HC138 SIM-74HC273 SIM-74HC174		
U35 U36 -37 U38 -40 U41	SIM-74HC273 SIM-74HC174 SIM-74HC74 SIM-74HC4538		
U42 U43 -45 U46 U47	SIM-74HCO4 SIT-74LSO6 SIA-4558 SIA-324		
U51 U52 U53 -54	SIM-74HC273 SIA-0P77P SIA-TL082 SIA-4558		
U56 -58 U59 -62 U63 -65	SIA-595 SIA-DA7524-4 SIA-DG201 SIA-0P77P		
U67 U68 U69	SIA-1L072 SIA-811 SIA-811 SIA-TL072		
U71 U72 U73	SIA-812 SIA-4558 SIA-398 SIA-DG201		
U75 U76 X1 -4	SIA-4558 SIA-4558 SIA-811 DXD-001059		

R4131 SERIES BLR-015117X01 (1/4)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
Parts No. C1 -4 C5 -7 C8 -11 C12 C13 -15 C16 C17 -24 C27 -28 C29 C30 C31 -32 C33 -37 C38 C39 C40	ADVANTEST Stock No. CCP-BAR01U50V CCP-BBR1U50V CCP-BAR01U50V CMC-AP330PR5K CCP-BAR01U50V CMC-AP470PR3K CCP-BAR01U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CTA-AC10U16V CTA-AC10U5V CFM-ASR01U50V	Parts No. C104-105 C106-107 C108 C109 C110-111 C112-115 C116 C117 C118-119 C120-121 C122-123 C124-125 C126-127 C128-129 C130	ADVANTEST Stock No. CCK-CD10U25V CCP-BBR1U50V CCP-BA33P50V CFM-AS1000P50V CCK-CD10U25V CCP-BBR1U50V CCP-BA33P50V CFM-AS2200P50V CCF-BA33P50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V
C40 C41 C42 C43 C44 -45 C46 -47 C48 -49 C50 -55 C56 C57 C61 C62 C63	CFM-ASRO1050V CMC-AP100PR5K CCP-BA330P50V CFM-AHR47U100V CCP-BBR1U50V CTA-AC10U16V CCP-BAR01U50V CCP-BBR1U50V CCP-BA15P50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V	C130 C131 C132 C133 C134 - 136 C141 - 148 C149 - 150 C151 - 192 D1 -2 D1 -2 D3 -4 D5 -9 D10 D11	CCP-BA100P50V CCK-CD10U25V CCP-BA47P50V CCK-CD22U25V CCP-BBR1U50V CCK-CD47U25V CCK-CD47U10V CCP-BBR1U50V SDS-1SS270 SDS-1SS270 SDS-1SS270 SDS-1SS286 SDS-1SS286 SDS-1SS286
C64 -66 C67 C68 C69 C70 C71 -72 C73 C74 -75 C76 C77 C78 C78 C79	CCP-BBR1U50V CCP-BAR01U50V CFM-ASR022U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCK-CD2R2U50V CCK-CD220U25V CCP-BBR1U50V CCK-CD10U25V CCP-BBR1U50V CCK-CD10U16V	D11 D12 -17 D20 D21 -23 D24 -34 D35 D36 -39 D41 -45 D47 D48 -50 D52 D53 -56	SDS-LD1 SDS-1SS270 SDZ-M030 SDS-LD1 SDS-1SS270 SDS-1SS270 SDS-1SS270 SDS-LD1 SDS-1SS270 SDS-LD1 SDS-LD1 SDS-LD1
C80 -81 C82 C83 C84 C85 -86 C91 -95 C96 C97 C98 C99 C100-101 C102 C103	CCP-BBR1U50V CCP-BA1000P50V CCP-BA220P50V CCP-BA1000P50V CCP-BBR1U50V CCP-BBR1U50V CCP-BA47P50V CCP-BA47P50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BBR1U50V CCP-BA33P50V CCP-BA33P50V CCP-BA33P50V	$\begin{array}{cccc} & & -60 \\ & & -62 \\ & & -62 \\ & & & -62 \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	SD2-M051 SDS-1SS286 JCR-AF050PX02 JCP-BH002PX02 JCF-AC001JX01 LCL-T00084A LCL-C00014 STN-2SC2757 STN-2SC2757 STN-2SC2757 STP-2SA1462 STN-FA1A4P STN-2SC2757

R4131 SERIES BLR-015117X01 (2/4)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
Q12 Q13 -14 Q15 Q16 Q17 Q19 Q20 Q21 Q22 Q23	SFN-SST4859 STN-2SC2712 SFN-SST4393 STP-2SA1162 STN-2SC2712 STN-2SC2712 STN-2SC2712 STP-2SA1162 SFN-SST4393 STN-2SC2712 STN-2SC2712 STP-2SA1162	Parts NO. R47 R48 R49 R50 -51 R52 R53 R54 R55 R56 R58	RCP-AH470 RCP-AH1R2K RCP-AH1R2K RCP-AH1R2K RCP-AH1R2K RCP-AH3R3K RCP-AH1R5K RCP-AH1R5K RCP-AH1R5K RCP-AH1R5K RCP-AH1R5K RCP-AH1R5K RCP-AH1R5K RCP-AH1R5K RCP-AH1R5K
Q24 Q25 -31 Q32 Q35 Q36 Q39 Q40 Q41	STP-2SA1162 SFN-SST4393 STN-2SC2712 STP-2SA1162 STP-2SA1162 STP-2SA1162 STP-2SA1162 STN-2SC2712 STP-2SA1162	R58 R59 -60 R61 R62 R63 R64 R66 R66 R67 R68	RMF-BJ1R5KFJ RMF-BJ10KFJ RMF-BJ3R3KFJ RCP-AH100K RMF-BJ39KFJ RMF-BJ100KFJ RMF-BJ100KFJ RMF-AC200KFJ RMF-BJ1R2KFJ
Q44 -45 Q46 Q49 R1 R2 R3 R4 R5	STN-2SC2712 STP-2SA1162 STN-2SC2712 RCP-AH82 RCP-AH10K RCP-AH15K RCP-AH150 RCP-AH15K	R70 R71 R73 R74 R75 R76 -81 R82 R83	RMF-BJ3R9KFJ RCP-AH1K RMF-AC2R49KFJ RMF-BJ10KFJ RMF-BJ1R5KFJ RCP-AH10K RCP-AH1K RCP-AH1M
R6 R7 R8 -16 R17 R18 R19 R20 -21	RCP-AH82 RMF-AC6R2KFJ RCP-AH18 RCP-AH10K RCP-AH820 RCP-AH150 RCP-AH15K	R84 R85 R86 R87 R88 R89 R90	RCP-AH220K RCP-AH820K RCP-AH680K RCP-AH2R2K RCP-AH680 RCP-AH680 RCP-AH100K RCP-AH15K
R22 R23 -24 R25 R26 -27 R28 R29 R30	RCP-AH2R2K RCP-AH51 RCP-AH2R2K RCP-AH15K RCP-AH12K RCP-AH10K RCP-AH10K RCP-AH82	R91 -92 R93 R94 R95 R97 R98 R99 -100	RCP-AH27K RCP-AH15K RCP-AH100K RCP-AH330 RCP-AH100K RCP-AH330 RMF-AC2KFJ
R31 -32 R33 R34 R35 R36 R37 R39 R41 R42 R43 R44 R45 -46	RCP-AH1K RCP-AH47K RCP-AH12K RCP-AH390 RCP-AH1K RCP-AH150 RCP-AH82 RCP-AH82 RCP-AH390 RCP-AH47K RCP-AH18 RCP-AH10K RCP-AH5R6K	R101 R103 R104 R105 R106 R107 R108 R110 R111 R112 R113 R114	RMF-BJ6R8KFJ REE-AR510-1 RCP-AH3R9K RCP-AH15K RMF-BJ15KFJ RMF-BJ10KFJ RMF-BJ20KFJ RMF-BJ68KFJ RCP-AH15K RCP-AH1M RCP-AH1K RCP-AH100

A - 19

R4131 SERIES BLR-015117X01 (3/4)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
D115		D4 0 0	
		R188	
K 1 1 0 D 1 1 7		R189	
KII/ D110		R190	
		R191	
N 1 1 7 D 1 2 0 - 1 2 1		R192	
RIZU - IZI D122		D107_100	
N 122 P123		R197-199	
R124 - 127		R201-202	
R124 101		R203	RCP-AH/P7K
R131	RCP-AH47K	R205	RCP-AH/7K
R132	RCP-AH10K	R206	RCP-AH30K
R133	RCP-AH3R9K	R207-218	RCP-AH47K
R134 -135	RCP-AH3R3K	R232	RMF-BJ4R7KF1
R136 -137	RCP-AH10K	R234	RCP-AH1R8K
R138	RCP-AH100K	R235	RCP-AH4R7K
R139 -140	RCP-AH1M	R236	RCP-AH22
R141	RCP-AH200K	R237-238	RME-BJ10KEJ
R142 -143	RCP-AH1M	R239	RCP-AH10K
R144	RCP-AH200K	R240	RCP-AH1K
R145	RCB-AK10M	R242	RCP-AH2R2K
R146 -147	RCP-AH27K	R243	RCP-AH100
R149 -150	RCP-AH10K	R244	RCP-AH6R8K
R151	RCP-AH270K	R245	RCP-AH150
R152	RCP-AH47K	R246	RCP-AH6R8K
R153 -156	RCP-AH10K	R247	RCP-AH150
R157	RCP-AH330	R248-249	RCP-AH33
R158	RCP-AH1K	R250	RCP-AH1K
R159	RCP-AH220	R251-252	RCP-AH180
R160	RCP-AH15K	R253	RCP-AH82K
R161	RCP-AH10K	R254-255	RCP-AH2R2K
R162	RMF-BJ10KFJ	R256	RCP-AH4R7K
R163	RMF-BJ12KFJ	R257	RCP-AH1K
R164	RMF-BJ5R6KFJ	R259	RCP-AH2R2K
R165	RMF-BJ2R2KFJ	R260	RCP-AH100
R166	RCP-AH1M	R261	RCP-AH6R8K
R167 P148		R262	RCP-AH150
R100 P160	RCP-AH220K	R263	RCP-AH6R8K
R170-171		R264	RCP-AH150
R170 171		K265-266	RCP-AH33
R173		R207-200	
R174-175		R209	RCP-AH100K
R176		R270 D271	
R177	RCP-AH100K	R272	
R178	RMF-BJ10KFJ	R273	
R179	RCP-AH47K	R274	RCP-AH100
R180	RCP-AH10K	R276	RCP-AH100
R181	RCP-AH180	R278	RCP-AH2R2K
R182-184	RCP-AH47K	R279	RCP-AH100
R185	RCP-AH100	R280	RCP-AH6R8K
R186-187	RCP-AH47K	R281	RCP-AH150

R4131 SERIES BLR-015117X01 (4/4)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
$\begin{array}{c} R282 \\ R283 \\ R284 - 285 \\ R286 \\ R287 - 288 \\ R289 \\ R290 \\ R291 \\ R292 \\ R293 - 294 \\ R295 \\ R297 \\ R298 - 300 \\ R301 \\ R303 \\ R304 \\ R305 - 306 \\ R307 \\ R309 \\ R311 \\ R312 - 313 \\ U1 -9 \\ U11 \\ U13 -16 \\ U17 \\ U18 \\ U19 \\ U21 -22 \\ U23 \\ U24 \\ U25 \\ U26 \\ U27 \\ U28 \\ U29 \\ U31 -33 \\ U34 -37 \\ U38 \\ U39 -40 \\ U41 -42 \\ U45 \\ U46 \\ U47 \\ U48 \\ U49 \\ U50 -51 \\ U52 \\ U55 \\ U56 \\ U57 \\ \end{array}$	$ \begin{array}{l} RCP-AH6R8K \\ RCP-AH150 \\ RCP-AH33 \\ RCP-AH160 \\ RCP-AH180 \\ RCP-AH100K \\ RCP-AH3R3K \\ RCP-AH8R2K \\ RCP-AH4R7K \\ RCP-AH10K \\ RCP-AH10K \\ RCP-AH10K \\ RCP-AH10K \\ RCP-AH10K \\ RCP-AH17K \\ RCP-AH17K \\ RCP-AH15K \\ RMF-BJ10KFJ \\ RCP-AH22 \\ RMF-AC16KFJ \\ RMF-BJ1R2KFJ \\ RCP-AH1K \\ SHB-001464 \\ SIA-TL072 \\ SIA-TL072 \\ SIA-TL072 \\ SIA-TL072 \\ SIA-FL072 \\ SIA-FL072 \\ SIA-FL073 \\ SIA-74066 \\ SIA-74066 \\ SIA-74HC03 \\ SIM-74HC03 \\ SIM-74HC174 \\ SIA-666 \\ SIM-74HC174 \\ SIA-666 \\ SIM-74HC174 \\ SIA-666 \\ SIM-74HC174 \\ SIM-74HC174 \\ SIM-74HC174 \\ SIA-6012 \\ SIM-74HC174 \\ SIA-8EF01D \\ SIA-REF01D \\ SIA-74HC175 \\ SIM-74HC175 \\ SIM-74HC02 \\ SIM-74HC02 \\ SIM-74HC04 \\ \end{array}$	U58 -60 U61 -62 U63 -64 U65 -66 U67 U68 U69 U70 U71 U72 U73 U74 U75 U76 U77 U78 U79 U80 U81 U82 U83 U84	SIA-2525D SIA-393 SIA-311N SIM-74HC74 SIM-74HC4538 SIM-74HC139 SIM-74HC08 SIA-6012 SIA-311N SIM-74C905 SIM-74HC08 SIM-74HC08 SIM-74HC07 SIM-74HC175 SIM-74HC175 SIM-74HC04 SIM-74HC02 SIM-74HC00 SIA-DG201

R4131 SERIES BLR-015117X02 (1/4)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
C1 -4	CCP-BAR01U50V	C103	
C5 -7	CCP-BBR1U50V	C104 - 105	C(K - CD10)(25V)
C8 -11	CCP-BAR01U50V	C112-113	CCP-BBR1U50V
C12	CMC-AP330PR5K	C130	CCP-BA100P50V
C1315	CCP-BAR01U50V	C131	CCK-CD10U25V
C16	CMC-AP470PR3K	C132	CCP-BA47P50V
C17 -24	CCP-BAR01U50V	C133	CCK-CD22U25V
625 -26	CMC-AP22PR5K	C134-136	CCP-BBR1U50V
627 - 28		C141-148	CCK-CD47U25V
CZ9		C149 - 150	CCK-CD47U1OV
(31 - 32)		10151 - 193	CCP-BBR1U50V
C33 - 37	CCP-BBR1USOV		
C38	CFM-ASR022U50V		SDS-155270
C39	CFM-AS2200P50V	D5 -9	SDS-155280
C40	CMC-AP820PR3K	D10	SDS-185286
C41	CMC-AP220PR5K	D11	SDS-LD1
C42	CCP-BA330P50V	D12 -13	SDS-1SS270
C43	CFM-AHR47U100V	D15 -17	SDS-1SS270
(44 - 45)	CCP-BBR1U50V	D20	SDZ-MO30
(40 - 47)		D21 -23	SDS-LD1
(40 - 49)		D24 -34	SDS-1SS270
056	CCP = BBR1050V	D35	SDZ-M051
C 57	CCP-BA15P50V	0.30 - 39	SDS-1SS270
C61	CCK-CD22U16V	D41 -45	SDS-155270
C62	CCP-BBR1U50V		SD7-M051
C63	CFM-AH1U100V	D61 -62	SDS-185286
C64 -66	CCP-BBR1U50V	J1	JCR-AF050PX02
C67	CCP-BAR01U50V	J2	JCP-BH002PX02
C68	CFM-ASR022U50V	J3 ·	JCP-BH010PX02
669	CCP-BBR1U5OV	J4	JCF-ACOO1JXO1
(70)		L2 -4	LCL-T00084A
073		L5 -6	
C74 -75	CCK = CD22OU25V		SIN-2802757
C76	CCP-BBR1U50V	QZ -5	STN-25C2757
C77	CCK-CD10U25V	Q7 -8	STP-2SA1462
C78	CCP-BBR1U50V	Q.9	STN-FA1A4P
C79	CCK-CD10U16V	Q10 -11	STN-2SC2757
C80 -81	CCP-BBR1U50V	Q12	SFN-SST4859
		Q13 -14	STN-2SC2712
687		Q15	SFN-SST4393
C85 -86	CCP-BBR1U50V	Q16	STP-2SA1162
C91 -95	CCP-BBR1U50V	Q17	SIN-2562/12
C96	CCP-BA47P50V	020	STP-2562712
C97	CCK-CD22U25V	Q21	SFN-SST4393
C98	CCP-BBR1U50V	Q22	STN-2SC2712
C99	CCP-BA330P50V	Q23	STP-2SA1162
(100 - 101)		Q24	SFN-SST4393
0101	CCF-DAJJFJUV	Q25 -31	STN-2SC2712

R4131 SERIES BLR-015117X02 (2/4)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
Q32 Q33 Q35 Q36 Q38 Q39 R1 R2 R3 R4 R5 R6 R7 R8 -16 R17 R18 -16 R17 R20 -21 R22 -24 R25 -27 R28 -27 R28 -27 R28 -27 R28 -27 R28 -27 R29 R30 -32 R31 -32 R33 -32 R33 -32 R35 R36 R37 R39 R31 -32 R37 R39 R31 -32 R37 R39 R31 -32 R37 R39 R31 -32 R33 -32 R35 -46 R47 R48 R445 -46 R47 R48 R445 -46 R47 R48 R49 -51 R552 R55 R55 R55 R56 R59 -60 R62 R63 R64	STP-2SA1162 $SFN-SST4859$ $STN-2SC2712$ $STP-2SA1162$ $SFT-SST406S$ $STP-2SA1162$ $RCP-AH82$ $RCP-AH162$ $RCP-AH150$ $RCP-AH1750$ $RCP-AH188$ $RCP-AH188$ $RCP-AH100$ $RCP-AH180$ $RCP-AH1750$ $RCP-AH1750$ $RCP-AH1750$ $RCP-AH1750$ $RCP-AH170$ $RCP-AH170$ $RCP-AH170$ $RCP-AH12X$ $RCP-AH180$ $RCP-AH180X$ $RCP-AH180X$ $RCP-AH180X$ $RCP-AH180X$ $RCP-AH180X$ $RCP-AH180X$ $RCP-AH180X$ $RCP-AH180X$ $RCP-AH10X$ $RCP-AH180X$ $RCP-AH180X$ $RCP-AH10X$ $RCP-AH180X$ $RCP-AH180X$ $RCP-AH180X$ $RMF-BJ3R3XFJ$ $RMF-BJ383XFJ$ $RMF-BJ383XFJ$	R66 R67 R68 R70 R71 R73 R74 R75 R76 -81 R82 R83 R84 R85 R86 R87 R88 R87 R88 R87 R97 R97 R97 R97 R97 R97 R97 R97 R97 R9	RMF-BJ100KFJ RMF-AC200KFJ RMF-BJ1R2KFJ RMF-BJ1R2KFJ RMF-BJ1R2KFJ RMF-BJ10KFJ RMF-BJ10KFJ RMF-BJ680KFJ RCP-AH10K RCP-AH10K RCP-AH220K RCP-AH820K RCP-AH820K RCP-AH680 RCP-AH680 RCP-AH680 RCP-AH100K RCP-AH100K RCP-AH100K RCP-AH100K RCP-AH100K RCP-AH330 RMF-BJ6R8KFJ REE-AR510-1 RCP-AH389K RCP-AH15K RMF-BJ10KFJ RMF-BJ10KFJ RMF-BJ20KFJ RMF-BJ20KFJ RMF-BJ68KFJ RCP-AH15K RCP-AH100 RCP-AH100 RCP-AH100 RCP-AH220 RCP-AH10K RCP-AH220 RCP-AH10K

R4131 SERIES BLR-015117X02 (3/4)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
R124-127	RCP-AH680	D107-100	
R128	RCP-AH1K	R197-197	
R120	RCP-AH100K	R200	
R130	RME-BIASOQEI	R201-202	
D131	PCP-AH/7K	R203	
D130	PCP-AH10K	R205	
R132	RCP-AH3R9K	R206	
R134 -135	RCP-AH3R3K	R207-211	
R134 - 137	RCP-AH10K	R213-210	
R138	RCP-AH100K	R232	
R139 - 140	RCP-AH1M	R234	
R141	RCP-AH200K	R233	
R142-143	RCP-AH1M	0227-228	
R144	RCP-AH200K	0230	RCP-AH10K
R145	RCB-AK10M	R237	RCP-AH1K
R146-147	RCP-AH27K	P240	RCP-AH2R2K
R149-150	RCP-AH10K	R242	RCP-AH100
R151	RCP-AH270K	R244	RCP-AH6R8K
R152	RCP-AH47K	R245	RCP-AH150
R153-156	RCP-AH10K	R246	RCP-AH6R8K
R157	RCP-AH330	R247	RCP-AH150
R158	· RCP-AH1K	R248-249	RCP-AH33
R159	RCP-AH220	R250	RCP-AH1K
R160	RCP-AH15K	R251-252	RCP-AH180
R161	RCP-AH10K	R253	RCP-AH82K
R162	RMF-BJ10KFJ	R254	RCP-AH2R2K
R163	RMF-BJ12KFJ	R255	RCP-AH1K
R164	RMF-BJ5R6KFJ	R256	RCP-AH4R7K
R165	RMF-BJ2R2KFJ	R304	RCP-AH15K
R166	RCP-AH1M	R305-306	RMF-BJ10KFJ
R167	RCP-AH180K	R307	RCP-AH22
R168	RCP-AH220K	R309	RMF-AC16KFJ
R169	RCP-AH270K	R311	RMF-BJ1R2KFJ
R170-171	RCP-AH15K	R312-313	RCP-AH1K
R172 ·	RCP-AH100K	R314	RMF-BJ3KFJ
R1/3		R315	RMF-BJ2KFJ
R174-175		R318	RCP-AH22
R170		U1 -9	SHB-001464
R1//		010	SIA-318C
R170 P170		U11	SIA-IL072
R180	RCP-AH10K		SIA-318C
R181	RCP-AH180	013 - 16	SIA-ILU/2
R182-184	RCP-AH47K		SIA-1559
R185	RCP-AH100		SIA-4006
R186-187	RCP-AH47K	1120	STA-4558
R188	RCP-AH4R7K	1121 -22	STA-TL082
R189	RCP-AH15K	1123	STA-4558
R190	RCP-AH1K	U24	SIA-393
R191	RCP-AH180K	U25	SIM-74HC4538
R192	RCP-AH1K	U26	SIM-74HC03
R193-196	RMF-BJ22KFJ	U27	SIM-74HCOO

R4131 SERIES BLR-015117X02 (4/4)

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
$\begin{array}{c} U28 \\ U29 \\ U31 & -33 \\ U34 \\ U35 \\ U36 & -37 \\ U38 \\ U39 & -40 \\ U41 & -42 \\ U45 \\ U46 \\ U47 \\ U48 \\ U49 \\ U50 & -51 \\ U52 \\ U53 \\ U54 \\ U56 \\ U57 \\ U58 \\ U61 \\ U66 \\ U67 \\ U71 \\ U72 \\ U73 \\ U74 \\ U75 \\ U76 \\ U77 \\ U78 \\ U79 \\ U80 \\ U81 \\ U82 \\ U83 \\ U89 \\ \end{array}$	SIM-74HC74 SIA-4066 SIM-74HC138 SIM-74HC174 SIM-74HC273 SIM-74HC174 SIT-DN8650 SIT-74LS06 SIM-74HC74 SIA-6012 SIA-REF01D SIA-311N SIM-74HC107 SIM-74HC175 SIM-74HC574 SIM-74HC574 SIM-74HC72 SIM-74HC04 SIA-2525D SIA-393 SIM-74HC04 SIA-311N SIM-74HC08 SIA-6012 SIA-311N SIM-74HC08 SIM-74HC08 SIM-74HC08 SIM-74HC07 SIM-74HC07 SIM-74HC07 SIM-74HC02 SIM-74HC02 SIM-74HC02 SIM-74HC02 SIM-74HC02 SIM-74HC02 SIM-74HC02 SIM-74HC03 SIM-74HC32 SIA-398		

R4131 SERIES BLC-015115

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
D1 D2 -11 D12 D13 -17 D18 -75 J1 R1 -17 S1 -29	NLD-000111 NLD-000010 NLD-000111 NLD-000010 SDS-1SS270 DCB-RR0726X02-1 RCB-AG820 KSP-000609		
			an a

R4131 SERIES BLC-015118X01

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
C1 -2 C3 C4 C5 C6 C7 -9 C10 C11 C12 -14 C15 C16 -17 C18 C19 C20 C21 C22 C23 C24 -25 C26 C27 C28 C29 C30 C31 C32 C34 C35 C34 C35 C36 C37 C38 C39 C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C35 C38 C39 C40 C41 C42 C35 C38 C39 C40 C41 C42 C35 C34 C35 C36 C37 C38 C39 C40 C41 C42 C35 C36 C37 C38 C39 C40 C41 C41 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C35 C36 C37 C38 C39 C40 C41 C42 C35 C36 C37 C38 C39 C40 C41 C42 C35 C38 C39 C40 C41 C42 C41 C42 C35 C38 C39 C40 C41 C42 C38 C39 C40 C41 C41 C42 C38 C39 C40 C41 C41 C38 C39 C40 C41 C41 C41 C38 C39 C40 C41 C41 C41 C41 C32 C38 C39 C40 C41 C41 C41 C41 C41 C41 C41 C41 C41 C41	CCP-BA1000P50V CCP-BAR01U50V CCP-BAR01U50V CCP-BAR01U50V CCP-BAR01U50V CCP-BAR01U50V CCP-BAR01U50V CCP-BAR01U50V CCP-BASP50V CCP-BASP50V CCP-BASP50V CCP-BAR01U50V CCP-BAR01U50V CCP-BAR01U50V CCP-BAR01U50V CCP-BAR01U50V CCP-BAR01U50V CCP-BA30P50V CCP-BA33P50V CCP-	L14 L15 L20 M1 -2 Q1 Q2 -3 Q4 Q5 Q6 R1 R2 R3 R4 R5 R6 R7 R8 -9 R10 R11 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R14 R15 R21 R22 R17 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R13 R14 R17 R12 R24 R25 R24 R35 R24 R35 R35 R35 R35 R35 R35 R35 R35 R35 R35	LCL-C00010 LCL-A00066 LCL-A00066 DEE-000736 STN-2SC2759 STN-2SC2757 STN-2SC2757 STP-2SA1226 RCP-AJ56 RCP-AJ56 RCP-AJ33 RCP-AJ220 RCP-AJ33 RCP-AJ470 RCP-AJ56 RCP-AJ56 RCP-AJ10K RCP-AJ33 RCP-AJ470 REE-AS47 RCP-AJ220 RCP-AJ10K RCP-AJ580 RCP-AJ580 RCP-AJ680 RCP-AJ10 RCP-AJ10 RCP-AJ10 RCP-AJ10 RCP-AJ10 RCP-AJ10 RCP-AJ10 RCP-AJ10 RCP-AJ22K RCP-AJ28K RCP-AJ28K RCP-AJ28K RCP-AJ284 RCP-AJ284 RCP-AJ284 RCP-AJ284 RCP-AJ284 RCP-AJ284 RCP-AJ285

A - 27

R4131 SERIES BTB-015119X01

C1 CCP-ADR47U50V	
K1 -3 KRL-000350 R1 RCP-AM91 R2 RCP-AM68 R3 RCP-AM91 R4 RCP-AM62 R5 RCP-AL120 R6 RCP-AM62 R7 -8 RCP-AL120 R9 RCP-AL120 R10 RCP-AL130 R10 RCP-AL130 R11 RCP-AM62	
	iyo ay ata'i

R4131 SERIES BTB-015120

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
D1 R1 -3	SDS-DMJ4317-1 RCP-AJ100		

R4131 SERIES BTB-015122

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
R1 -2	RCP-AJ100		

R4131 SERIES BTC-015121

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
C1 -2 C3 -4 C5 C6 -8 C9 C10 C11 -12 C13 D1	CCP-AC100P50V CCP-ACR01U50V CCP-ADR47U50V CCP-ACR01U50V CCP-AC15P50V CCP-AC1000P50V CCP-AC1000P50V CCP-ACR01U50V CCP-AC2P50V SDS-ND587T		
L1 L3 L4 L5 L6 Q1 Q2 Q3	LCL-E00932 LCL-A00671 LCL-E00934 LCL-E00939 LCL-E00388 SFN-2SK571 STN-2SC2585 STN-2SC3356		
R1 -2 R3 R4 R5 R6 R7 R8 R9 R10	RCP-AJ82 RCP-AJ1K RCP-AJ100K RCP-AJ2R7K RCB-AG10K RCP-AJ100 RCP-AJ62 RCP-AJ100		
R11 R12 -13 R14 R15 R16 R17 R18 R19 U1	RCP-AJ880 RCP-AJ2R2K RCB-AQ330 RCP-AJ10K RCP-AJ3R3K RCP-AJ8R2 RCP-AJ220 RCP-AJ180 SHB-001697		
Y1 -2 Y3 .	DXD-000792 DXD-001050		

~

R4131 SERIES WFU-4131AE

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
B1 CB1 CB2 CB3 CB4 CB6 CB7 CB8 CB7 CB8 CB9 CB10 CB11 CB12 CB13 CB14 J1 J2 -5 J6 J8 NF1 P1 R1 R2 V1	DMF-001496 DCB-FF1223X03-1 DCB-FF1223X12-1 DCB-FF2023X32-1 DCB-FF2023X26-1 DCB-FF2680X15-1 DCB-QQ2805X01-1 DCB-QQ2805X01-1 DCB-QF2802X01-1 DCB-QF2802X01-1 DCB-QF2803X01-1 DCB-QF2804X01-1 DCB-QF2801X01-1 DCB-QF2801X01-1 DCB-QQ2799X01-1 DCB-QS2800X01-1 JCI-AF003JX05-3 JCF-AB001JX03 JCS-AV004JX01 JCD-AV003PX01 DEE-001427 JTE-AG001EX01 RVR-BA10K RVR-BL200K AAA-ME5813A		

A - 32

R4131 SERIES WBL-4131AFC

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
FL1 -7 J1 -2 J3	DNF-001052 JCF-AA001JX01 YEE-000868-1		

R4131 SERIES WBL-4131ARF

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
FL1 -10 J1 J2 J3 J4 J5 -6 J7 -9 J11 J12	DNF-001052 JCF-AF001JX09-1 JCF-AA001JX39-1 JCF-AA001JX01 JCF-AA001JX06-1 JCF-AA001JX01 JCF-AC001JX02 JCR-AE010JX02 JCS-BZ010JX01		
R4131 SERIES

WBL-4131BNRF

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
CB1 CB2 CB3 FL1 -10 J2 J3 J4 J5 -6 J7 -9 J11 J12 B1 CB1 CB2 CB3 CB4 CB5 CB6 J1 J2 J3 J6 -5 J8 NF1 P1 R1 R2 V1	DCB-FF0934X07-1 DCB-FF0934X09-1 DCB-FF2680X08-1 DNF-0Q1052 JCF-AA001JX01 JCF-AA001JX01 JCF-AA001JX02 JCR-AE010JX02 JCS-BZ010JX01 DMF-001496 DCB-FF223X12-1 DCB-FF2023X26-1 DCB-FF2023X26-1 DCB-FF2034X16-1 DCB-FF203X05-3 JCF-AB001JX03 JCF-AB001JX03 JCF-AB001JX03 JCF-AB001JX03 JCF-AB001Z01 DEE-001427 JTE-AG001EX01 RVR-BA10K RVR-BL200K AAA-ME5813A		

R4131 SERIES

BTB-015245

• .

Parts No.	ADVANTEST Stock No.	Parts No.	ADVANTEST Stock No.
Parts No. C1 C2 -3 C4 C5 -6 C7 C8 -9 C10 C11 C12 C13 -14 C15 C16 L1 -2 Q1 -2 R1 -2 R1 -2 R3 -4 R5 -6 R7 -8 R9 R10 R11 R12 R13 R14 R15 -16 R17 -18 R19 -20 R21 R22 R23 R24 R25 U1 -2 U1 -2 U3 U4 U5 B1 CB1 CB2 CB3 CB4 CB5 CB6	ADVANTEST Stock No. CCP-AC100P50V CCP-ACR01U50V CCP-ACR01U50V CCP-ACR01U50V CCP-ACR01U50V CCP-ACR01U50V CCP-ACR01U50V CCP-ACR01U50V CCP-ACR01U50V CCP-ACR01U50V CCP-ACR01U50V CCP-ACA700P50V CCP-AC4700P50V CCP-ADR1U50V LCL-A00670 SFN-2SK878 RCP-AJ100 RCP-AJ39 RCP-AJ39 RCP-AJ100 RCP-AJ39 RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ2R7K RCP-AJ282 RCP-AJ282 RCP-AJ283 SIC-560 SIC-50106CF-1 DMF-001496 DCB-FF1223X12-1 DCB-FF2023X26-1 DCB-FF2023X26-1 DCB-FF2023X26-1 DCB-FF2023X26-1 DCB-FF2023X26-1	Parts No.	ADVANTEST Stock No. JCF-AB001JX03 JCS-AV004JX01 JCD-AV003PX01 DEE-001427 JTE-AG001EX01 RVR-BA10K RVR-BL200K AAA-ME5813A
CB3 CB6 CB7 CB8 CB9 CB10 CB11 CB12 CB13 CB14 J1	DCB-FF2680X15-1 DCB-QQ2805X01-1 DCB-QR2791X04-1 DCB-QF2802X01-1 DCB-QF2803X01-1 DCB-QF2804X01-1 DCB-QF2801X01-1 DCB-QF2801X01-1 DCB-QQ2799X01-1 DCB-QS2800X01-1 JCI-AF003JX05-3		$(2-f) \leq e^{-if(x)/2}$

R4131 SERIES SCHEMATIC SECTION WFU-4131AE/ANE/BE/BNE

A - 37

R4131 SERIES RF BLOCK WBL-4131ARF/BNRF

A - 38

CND

-FL4

- FL 10

- FL 2

-FL5

R4131 SERIES LOGIC BLR-015114 1/14

A - 39

R4131 SERIES LOGIC BLR-015114 2/14 A - 40

R4131 SERIES LOGIC BLR-015114 3/14 A - 41

R4131 SERIES LOGIC BLR-015114 5/14 A - 43

R4131 SERIES LOGIC BLR-015114 6/14

A - 44

R4131 SERIES LOGIC BLR-015114 7/14

R4131 SERIES LOGIC BLR-015114 8/14

R4131 SERIES LOGIC ' BLR-015114 9/14 A - 47

R4131 SERIES LOGIC BLR-015114 10/14

R4131 SERIES LOGIC BLR-015114 11/14 A - 49

R4131 SERIES LOGIC BLR-015114 12/14 A - 50

R4131 SERIES LOGIC BLR-015114 13/14 A - 51

R4131 SERIES BLR-015114 14/14 A - 52

LOGIC

R4131 SERIES YTO CNT/IF BLR-015116 1/6 A - 53

⁶⁶² ⊥

₹R106 2 2 k

4dB T

R4131 SERIES YTO CNT/IF BLR-015116 2/6

D21

0

±C65

R123 20

R122

\$R120 2.2k

1dB R

663⊥ 012↓

\$R113 \$2.2k

2dB

Ġ

P88 P89 22k

<u>]</u> Дођ

] "C55

S2 2k \$R84 \$2,2k

0.25dB 0.5dB

016

R905

٢

\$R99 222k

8dB

D13

R76

๎

R74

1053

YTO CNT/IF BLR-015116 3/6

R4131A/C YTO CNT/IF

R4131 SERIES YTO CNT/IF BLR-015116 5/6 A = 57

R4131 SERIES YTO CNT/IF BLR-015116 6/6 A = 58

)

R4131 SERIES ANALOG(Lo9) BLR-015117 1/8

R4131 SERIES ANALOG(Lo9) BLR-015117 2/8 A - 60

R4131 SERIES ANALOG (RamP) BLR-015117 3/8A = 61

R4131 SERIES ANALOG BLR-015117 4/8

R4131 SERIES ANALOG(A/D) BLR-015117 5/8

R4131A/AN/C/CN ANALOG (A/D) BLR-015117 6/8 A - 64

R4131B/BN/D/DN ANALOG(A/D) BLR-015117 7/8 A - 65

R4131 SERIES ANALOG(A/D) BLR-015117 8/8 A - 56

RC7 016

R4131 SERIES KEY BLC-015115 1/2 A - 57

CCB8

240

R4131 SERIES KEY BLC-015115 2/2 A - 68

R4131 SERIES RF 3rd BLC-015118 A - 59

R4131 SERIES RF ATT BTB-015119×01/×02

A - 70

R4131 SERIES RF 1st BTB-015120 A - 71

R4131 SERIES COUPLER BTB-015122 A - 72

.

R4131A/C RF 2nd BTC-015121 A - 73

R4131B/BN/D/DN AFC BTB-015245 A - 74*

(G=12dB)

(L=3dB)

List of Figures

_

LIST OF FIGURES

<u>No.</u>	Title	Page
1-1	Check for Power Supply Voltage Selection Switch	1 - 6
1-2	Check for Fuse	1 - 6
1-3	Plug and Adaptor of Power Supply Cable	1 - 7
1-4	Input of Excessive Signal Level	1 - 8
2-1	Screen of Spectrum Analyzer	2 - 2
2-2	Initialization screen	2 - 3
2-3	Input the Calibration Signal	2 - 4
2-4	Setting Center Frequency to 200 MHz	2 - 5
2-5	Setting the Frequency Span to 2 MHz	2 - 6
2-6	Setting the Reference Level to -30 dB	2 - 7
2-7	Setting the Marker to the Peak of the	
·	Measured Signal	2 - 8
3-1	Description of Front Panel	3 - 2
3-2	Description of Each Key in the NORMAL Mode	3 - 5
3-3	Description of Each Key in the SHIFT Mode	3 - 6
3-4	Rear Panel	3 - 7
3-5	Indication of CRT Display	3 - 10
4-1	Initial Screen	4 - 3
4-2	Change in Center Frequency	4 - 5
4-3	CF ADJ	4 - 7
	CF ADJ (cont'd)	4 - 8
4-4	Making the Frequency Span Narrow and	4 - 9
4-5	ZERO SPAN Mode	4 - 10
4-6	Change in Resolution Band Width	4 - 11
4-7	Change in Reference Level	4 - 12
4-8	Ordinates Axis Scale	4 - 13
4-9	Input Attenuator Displaying Position	4 - 15
4 - 10	Display Line	4 - 16
4-11	Operation of Marker	4 - 17
4-12	PEAK Search	4 - 18
4-13	MarKeR Center Frequency	4 - 19
4-14	SIGnal TRack	4 - 20
4-15	MARKER PAUSE	4 - 21
4-16	Setting of NOISE/Hz	4 - 21
4-17	VIDEO FiLTeR	4 - 22
4-18	Sweep Time	4 - 23
4-19	SAMPLE DET (R4131)	4 - 26
4-20	POSI PK DET (R4131)	4 - 26
4-21	NORMAL DET (R4131B/BN/D/DN)	4 - 27
4-22	Setting the Measured Signal to the	
	Center Frequency	4 - 29
4-23	Two-screen Display with a New WRITE Waveform	4 - 30

List of Figures

No.	Title	Page
4-24	Two-Screen Display of Secondary Harmonic Wave and	
4 25	STORE Waveform	4 - 30
4-25 4-26	MAX HOLD Two-screen Display of the Maximum Hold Contents	4 - 31
	and WRITE Waveform	4 - 32
4-27	SAVE/RECALL Waveform Memory	4 - 34
4-28	SAVE Screen	4 - 34
4-29	RECALL Screen	4 - 35
4-30	Relationship between Frequency and Calibration Factor	A 41
4-31	Direct Connection between Tracking Generator	4 - 41
	and System	4 - 42
4-32	Moving the through Waveform	4 - 43
4-33	Moving the Display Line	4 - 43
4-34	Normalize	4 - 44
4-35	Connection of Measured Cable	4 - 45
4-36	Cable Loss Characteristic	4 - 45
4-37	Reading the Characteristic of Waveform from the	1 - 16
1-38	Frample of OPW Mosquroment	4 40
4-20	Diampie of Obw Measurement	4 - 40
4-39		4 - 52
5-1	AM Signal Wave	5 - 2
5-2	Set-up in Measurement of Modulation Wave	5 - 3
5-3	Setting the Center Frequency to the Frequency of	5 2
	the Measured Signal	5 - 3
5-4	Setting the Ordinates Axis Scale to LINEAR	5 - 4
5-5	Reading the Time Display of Marker	5 - 5
5-6	Reading the Difference from the Time Indication of	
	the Adjacent Peak	5 - 6
5-7	Reading the Emax	5 - 6
5-8	Reading the Emin	5 - 6
5-9	Measurement of AD Wave When Modulation Frequency is	
	High and Modulation Index is Small	5 - 7
5-10	Relationship Between the Value of (Sideband Level	
	$\Delta SB = Caller Devel EC) and Modulation$	5 - O
5-11	Massurament of FM Ways When Modulation Programov	5 - 9
5-11	Te Low	5 - 11
5-12	IS HOW	
5-12	and Reading Its Time Indication	5 - 12
5-13	Obtaining the Time Interval T(s) of	5 - 12
5 15	Demodulation Wave	5 - 13
5-14	Measurement of FM Wave When Modulation Frequency	J *** (J
	Is High	5 - 14
5-15	Reading the Modulation Frequency by Indication of	- •
•	the Marker	5 - 14
5-16	Waveform When Λf , Te Small	5 - 15
	mererer men erpeak is small	

No.	Title	Page
5-17 5-18	Waveform When Δf_{peak} Is Large	5 - 16
	Index m Is Small	5 - 18
6-1	Outline of GPIB	6 - 3
6-2	Signal Line Termination	6 - 4
6-3	GPIB Connector Pins Assignment Diagram	6 - 5
6-4	ADDRESS Switch	6 - 7
6-5	Correlation Between Screen Grids and Trace Data	6 - 30
6-6	GPIB Code for each Key	6 - 43
9-1	Block Diagram of This Equipment	9 - 4
9-2	RF Block	9 - 7
9-3	First Mixer Block Diagram	9 - 8
9-4	Second Mixer Block Diagram	9 - 8
9-5	Second Local Oscillator	9 - 9
9-6	Double-balanced Mixer	9 - 10
9-7	Gain Control Amplifier	9 - 10
9-8	IF Filter	9 - 12
9-9	Gain Adjust Amplifier	9 - 14
9-10	Crystal Filter	9 - 15
9-11	LC Filter	9 - 15
9-12	Step Amplifier	9 - 16
9-13	YTO Controller & AFC	9 - 17
9-14	SAMP & HOLD	9 - 19
9-15	Flowchart for AFC	9 - 20
9-16	Log Amplifier Schematic Diagram	9 - 21
9-17	One Stage of 10 dB Amplifier	9 - 22
9-18	Block Diagram	9 - 24
9-19	Current Source Circuit	9 - 25
9-20	Ramp Generator	9 - 26
9-21	A/D Converter	9 - 28
9-22	Analyzer Test	9 - 30
9-23	Analyzer Test Display	9 - 31
10-1	Log Amplifier Adjustment	10 - 6
10-2	3.58 MHz BPF Adjustment	10 - 8
10-3	Waveform of 3.58 MHz BPF	10 - 9
10-4	Crystal Filter Adjustment	10 - 9
10-5	Waveform of Crystal Filter	10 - 10
10-6	LC Filter Adjustment	10 - 11
10-7	Step AMP Adjustment	10 - 13
10-8	Analyzer Test Display	10 - 15
10-9	Adjustment for Main Span	10 - 16
10-10	Location Diagram of YTU CONT/IF Board	10 - 20
10-11	LOCALION DIAGRAM OF ANALOG BOARG	10 - 21

List of Figures

No.	Title	Page
11_1	Proguancy Span & CHE Mach	11 5
11-7	Frequency Span 4 GAZ Test	11 - 6
11-3	Frequency Span fest Secup	11 - 0 11 - 7
13-4	Frequency Span 200 kHz Test	11 - 9
11-5	Center Frequency Readout Accuracy Test Setup	11 - 10
11-6	Center Frequency Readout Accuracy Test	11 - 11
11-7	Residual FM Test Setup	11 - 12
11-8	Residual FM Test	11 - 13
11-9	Residual FM to AM Conversion Display	11 - 14
11-10	Noise Sidebands Test Setup	11 - 15
11-11	Noise Sidebands Measurement	11 - 16
11-12	Resolution Bandwidth Accuracy Test Setup	11 - 18
11-13	Resolution Bandwidth Accuracy Test	11 - 19
11-14	Resolution Bandwidth Selectivity Test Setup	11 - 12
11-15	Resolution Bandwidth Switching Accuracy Test Setup	11 - 22
11-16	LOG/LIN Linearity Test Setup	11 - 27
11-17	Reference Level Accuracy Test Setup	11 - 29
11-18	Gain Compression Test Setup	11 - 33
11-19	Frequency Response Test Setup	11 - 35
11-20	Frequency Response (100 kHz - 3.6 GHz)	11 - 36
11-21	Maximum Noise	11 - 38
11-22	Average Noise Level Test	11 - 38
11-23	Sweep Time Accuracy Test Setup	11 - 40
11-24	Sweep Time Accuracy Test	11 - 41
11-25	Calibrated Output Accuracy Test Setup	11 - 43
12-1	Location Diagram (Bottom View)	12 - 4
12-2	Location Diagram (Top View)	12 - 5
12-3	Location Diagram for RF	12 = 5 12 = 6
12-4	Block Diagram	12 - 7
	,	
A-1	IF Bandwidth	A - 2
A-2	Noise Sideband	A - 4
A-3	Bandwidth Selectivity	A - 5
A-4	Bandwidth Switching Accuracy	A - 6
A-5	Reference Level	A - 6
A-6	V.S.W.R	A - 7
A-7	Spurious Response	A - 8
A-8	Level Conversion Table	A - 9

F - 4*

.

List of Tables

LIST OF TABLES

NO.	Title	Page
1-1	Major Function of R4131	1 - 3
1-2	R4131A/B/C/D Standard Accessories	1 - 4
1-3	R4131AN/BN/CN/DN Standard Accessories	1 - 4
1-4	Power Supply Conditions	1 - 5
4-1	Initialization Condition	4 - 2
4-2	SAVE/RECALL Enabled Panel Setting	4 - 33
4-3	Screen Stored in Each Trace Mode	4 - 34
4 - 4	CISPR Standards for QP Value Measurement Basic	
	Characteristic	4 - 39
4-5	PLOT TYPE of Each Plotter	4 - 53
1 0		
6-1	Interface Function	6 - 5
6-2	Standard Bus Cables (To Be Purchased Separately)	6 - 6
6-3	Setting of ADDRESS Switch	6 - 7
6-4	List of GPIB Codes	6 - 41
6-5	GPIB Code Corresponding to Each Key	6 - 42
6-6	Direct Set GPIB Codes	6 - 44
6-7	Unit Display GPIB Codes	6 - 44
6-8	Numeric Value Code in Setting Condition Input	6 - 45
6-9	Mode String	6 - 45
6-10	Status Ryte	6 - 45
0 10		0 10
9-1	Tune Voltage Data	9 - 18
10-1	Equipment and Tools Required for Calibration	
	and Adjustment	10 - 2
10-2	Maintenance Tools Required for Calibration	
	and Adjustment	10 - 2
10-3	TR20, TP21, TP22 Voltage Adjustment Values	10 - 4
10-4	Step Amplifier Adjustment	10 - 14
11-1	Rauinmont Required for Porformance Mesting	11 - 2
11-7	Frequency Span 500 MHz to 500 kHz Test	11 - 8
11-2	Trequency Span 500 Miz to 500 kiz lest	11 - 9
11-1	Resolution Bandwidth Test 1 MHz to 10 kHz	11 - 20
11-4	Resolution Bandwidth Accuracy Tost 3 kHz to 1 kHz	11 - 21
11-5	Resolution Bandwidth Accuracy lest 5 khz to 1 khz	11 - 21
11.7	Too Tinearity	11 - 25
11-7	LOG Linedity	11 - 20
11-8	Reference Level Accuracy	11 - 30
11-9	Sweep Time Accuracy	11 - 40
12_1	Equipment and Toole Dequired For	10.0
12-1	Maintonance Moole Dequired for Mroublachecting	12 - 2
12-2	Maincenance Tools Required for Troubleshooting	12 - 3

List of Examples

LIST OF EXAMPLES

No.	Title	Page
6-1	Setting the Center Frequency to 500 MHz and	
0 1	Erequency Span to 2 MHz	6 - 8
6-2	Setting the Center Frequency to 1 GHz	6 - 9
6-3	Setting the Center Frequency to 1 GHz Directly	6 - 10
6-1	Setting the Frequency Span to 20 MHz	6 - 11
6-5	Setting the Frequency Span to 20 MHz Directly	6 - 12
6-6	Sotting the Reference Level to -30 dBm	6 - 13
6-7	Setting the Reference Level to -30 dBm Directly	6 - 14
6-8	Setting the Marker Frequency to 1 GHz	6 - 14
6-0	Sotting the Marker Frequency to 1 GHz Directly	6 - 15
6-10	Setting the Decolution Road Width to 10 kWg	· 6 · 16
6-10	Setting the Resolution Band Width to	0 - 10
0-11	10 by Directly	C 17
<i>c</i>	10 kHz Directly Deal Highly inter the betraction	0 - 17
6-12	Making the Resolution Band Width into the Automatic	<i>c</i> 17
· · · · ·	Setting Mode	6 - 1/
6-13	Setting the VIDEO FILTER Band Width to 100 Hz	6 - 18
6-14	Setting VIDEO FiLTER Band Width to 100 Hz Directly .	6 - 19
6-15	Setting the Sweep Time to 200 ms/DIV.	6 - 20
6-16	Setting the Sweep Time to 200 ms/DIV Directly	6 - 21
6-17	Setting the Value of the Center Frequency and	
	Reference Level, and Making These Data Display	C D
C 10	by Reading it from This Equipment	6 - 23
6-18	Setting the Header to OFF and Fetching the value of	
	Center Frequency as a Character String. Next,	
	Setting the Header to ON and Fetching the Value of	<i>c</i> 05
<i>c</i>	Center Frequency as a Character String	6 - 25
6-19	Detecting the Value of Attenuator by Making the Mode	<i>c</i> o o o
	String Output	6 - 29
6-20	Output the trace data in memory with ASCII code, and	
	store in array variable	6 - 32
6-21	The trace data in the memory is output with the	
	binary code to be stored in an array variable	6 - 33
6-22	The trace data is assumed to be provided in numeric	
	array variable A(I). The data in A(I) is then input	
	to the VIEW screen memory of this equipment with	
	the ASCII code	6 - 34
6-23	The trace data is assumed to be provided in the	
	numeric array variable A(I). The data in A(I) is	
	then input in the VIEW screen memory of this	
	equipment with the binary code	6 - 35
6-24	ZERO CAL is judged to be ended by reading the	•
	status byte	6 - 38

List of Examples

No.	Title	Page
6-25	A command is delimited with a space (_) or comma (,) and sent to this equipment	6 - 39
6-26	The frequency span is made narrow up to 50 kHz for	
	the 200 MHz reference signal	6 - 39
6-27	When the Frequency of the 200 MHz Reference Signal	
	Is Read	6 - 40

E - 2*

R4131EXT1-711-A

EXTERNAL VIEW

R4131

FRONT VIEW

R4131A

R4131EXT3-711-A

R4131B

FRONT VIEW

R4131EXT4-711-A

R4131BN FRONT VIEW

R4131EXT5-711-A

R4131EXT6-909-A

FRONT VIEW

R4131EXT7-909-A

R4131D

R4131EXT8-909-A

FRONT VIEW

R4131 REAR VIEW

R4131EXT10-909-A

.

R4131DN

R4131EXT9-909-A

FRONT VIEW

SERVICE

During the warranty period, ADVANTEST will, at its option, either repair or replace products which prove to be defective.

When trouble occurs, buyer should contact his local supplier or ADVANTEST giving full details of the problem and the model name and serial number.

For the products returned to ADVANTEST for warranty service, buyer shall prepay shipping and transportation charges to ADVANTEST and ADVANTEST shall pay shipping and transportation charges to return the product to buyer. However, buyer shall pay all charges, duties, and taxes incurred in his country for products returned from ADVANTEST.

CLAIM FOR DAMAGE IN SHIPMENT TO ORIGINAL BUYER

The product should be throughly inspected immediately upon original delivery to buyer. All material in the container should be checked against the enclosed packing list or the instruction manual alternatively. ADVANTEST will not be responsible for shortage unless notified immediately.

If the product is damaged in any way, a claim should be filed by the buyer with carrier immediately. (To obtain a quotation to repair shipment damage, contact ADVANTEST or the local supplier.) Final claim and negotiations with the carrier must be completed by buyer.

SALES & SUPPORT OFFICES

Advantest America, Inc.

300 Knightsbridge Parkway, Lincolnshire. II. 60069, U.S.A. Phone (312)634-2552

Advantest UK Limited

CI Tower St. Georges Square High Street New Marden Surry, KT3 4HH UK Phone 01-336-1606

Shinjuku-NS Building, 4-1, Nishi-Shinjuku 2-chome, Shinjuku-ku, Tokyo 163, Japan Phone: (03)342-7500 Facsimile: (03)342-7410 Telex: 232-4914 ADVAN J

ADVANTEST CORPORATION