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Abstract   
The data on which Medhurst's semi-empirical self-capacitance formula is based are re-analysed in a
way that takes the permittivity of the coil-former into account.  The updated formula is compared 
with theories attributing self-capacitance to the capacitance between adjacent turns, and also with 
transmission-line theories.  The inter-turn capacitance approach is found to have no predictive 
power.  Transmission-line behaviour is corroborated by measurements using an induction loop and 
a receiving antenna, and by visualising the electric field using a gas discharge tube.  In-circuit 
solenoid self-capacitance determinations show long-coil asymptotic behaviour corresponding to a 
wave propagating along the helical conductor with a phase-velocity governed by the local refractive
index (i.e., v = c if the medium is air).  This is consistent with measurements of transformer phase 
error vs. frequency, which indicate a constant time delay.  These observations are at odds with the 
fact that a long solenoid in free space will exhibit helical propagation with a frequency-dependent 
phase velocity > c.  The implication is that unmodified helical-waveguide theories are not 
appropriate for the prediction of self-capacitance, but they remain applicable in principle to open-
circuit systems, such as Tesla coils, helical resonators and loaded vertical antennas, despite poor 
agreement with actual measurements.  A semi-empirical method is given for predicting the first self-
resonance frequencies of free coils by treating the coil as a helical transmission-line terminated by 
its own axial-field and fringe-field capacitances.  

Keywords:  circuit modelling, solenoid coil, self-capacitance, self-resonance, helical waveguide, 
sheet helix, sheath helix. 
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1.0  The inductor modelling problem   
Of the circuit theory elements: resistance, capacitance and inductance; the latter is the least 
amenable to realisation in practical devices.  The reason is that the lumped-component theory 
depends on the assumption that every physical dimension is negligible in comparison to the 
operating wavelength.  In a wound inductor, the difficulty lies with the length of the piece of wire 
inside it.  Although that wire might be coiled-up in a small volume, its full length nevertheless 
dictates the inductor's high-frequency behaviour.
     When a solenoid coil is operated in the regime in which wire length is negligible in comparison 
to wavelength, its partial inductance3 can be calculated with good accuracy from magnetic 
considerations alone.  A straightforward basis for so doing is the hypothetical current-sheet inductor
that, with corrections for realistic wire, allows the inductance of coils of small pitch-angle to be 
determined from physical parameters to an accuracy of around one part-per-thousand4.  Magnetic 
theory must, of course, be respected in the asymptotic behaviour of any hypothesis that purports to 
describe inductors at high frequencies, and this has been a weakness in some of the more influential 
studies.
     At audio and low-radio frequencies, the situation is complicated by the onset of the skin effect, 
and its companion, the proximity effect.  The internal impedance of isolated wires is however fairly 
easy to calculate5; and the proximity effect, albeit more difficult to quantify, is nevertheless 
susceptible to attack6 7.  We can also note that the redistribution of electric current that affects 
external inductance is physically constrained; i.e., the loop radius is always determined to a point 
that lies within the body of the conductor.  Hence, with a little empiricism, we can push the inductor
model into the radio-frequency range and still obtain respectable accuracy.  More relevant to the 
present discussion however, we can envisage the existence of data corrected for minor non-
idealities, which frees us from distractions when looking to higher frequencies still.
     As the lumped element theory would have it: corrected for strays and losses (and better-still also 
corrected for the effects of non-uniform current distribution over the wire cross section); the 
reactance of a coil looks like the reactance of a pure inductance in parallel with a capacitance.  This 
so-called self-capacitance is often attributed to capacitances presumed to exist between adjacent 
turns; and although that is partly true for multi-layer coils and flat spirals, the hypothesis turns out 
to be a hopeless predictor of the reactance of single-layer high-Q solenoids.  
     The lumped element approach also fails to give the correct impedance in the vicinity of the 
principal self-resonance frequency (the SRF 8 ), a difficulty that gives rise to inaccuracies in circuit 
simulation.  A possible solution lies in recognising that the coil is a transmission-line; although the 
line in question turns out to be a rather complicated one.
     Even for resistors and capacitors, the lumped approximation is just a special limiting case of 
transmission-line theory.  It is just that those components can generally be made small in 
comparison to wavelength; and when they do become large, the distributed parameter models 
remain fairly simple.  Not so for the inductor; a device in which different regions of the line 
overlap, giving rise to hybridisation between what would otherwise be distinct propagation 
processes.

3 i.e., its theoretical inductance prior to adding connecting wires and closing the circuit.
4 See, for example: Inductance Calculations: Working Formulas and Tables, F. W. Grover, 1946, 1973. Dover 

Phoenix 2004,  ISBN: 0-486-49577-9. 
5 Practical continuous functions for the internal impedance of solid cylindrical conductors. D. W. Knight. 

DOI: 10.13140/RG.2.1.3865.1284  https://www.researchgate.net/publication/301674351  
6 Practical Model and Calculation of AC resistance of Long Solenoids. E. Fraga, C Prados, and D.-X Chen. IEEE 

Transactions on Magnetics, Vol 34, No. 1. Jan 1998. 
7 Solid State Tesla Coil. Gary L Johnson, 2001. Chapter 6. http://ece.k-state.edu/people/faculty/gjohnson/

(accessed 18th March 2016)
8 There are actually numerous resonances.  The SRF is usually taken to be the lowest parallel-resonance frequency of 

the disconnected coil. 

http://ece.k-state.edu/people/faculty/gjohnson/
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     If it were just a matter of replacing the expression for the reactance of a pure inductance in 
parallel with a pure capacitance with the expression for a short-circuited conventional line, then 
inductor modelling would present no serious challenge.  Actual measurements remain anomalous 
when compared against either model however; an issue that came to this author's attention some 
years ago while investigating and attempting to predict the behaviour of broadband current 
transformers.
     The lumped component and the simple transmission-line models agree over a fairly wide 
frequency range.  Hence there is a correspondence between self-capacitance and time delay, which 
might be exploited in the modelling of phase-sensitive circuits. In the interests of predicting self-
capacitance therefore (and in view of what appeared to be the consensus in this matter) attention 
was turned to the classic 1947 work of R G Medhurst9, which offers a widely used empirical 
formula for solenoids that can, in principle, be adapted to deal with toroids and other shapes. 
     It soon became apparent that Medhurst's formula was not good enough for the task in hand.  It is 
clearly on the right track, because it gives results that are accurate within about ±75%; but, for coil 
length-to-diameter ratios of >1, a fair degree of accuracy can be obtained by accounting for static 
stray capacitance and otherwise assuming that waves propagate along the coil wire with a phase 
velocity equal to that of light in the surrounding medium (vp = c if the medium is air).  The latter 
approach incidentally, does not agree with helical transmission-line models (for reasons that will be 
explained later); but it definitely works.  Instead of abandoning Medhurst however; an attempt was 
made to find the cause of the errors.  That investigation, reported in this article, results in a formula 
that brings the uncertainty in estimating the self-capacitance of typical RF inductors to a more 
respectable ±2%.
     It was actually the business of acquiring self-capacitance data, rather than that of predicting it, 
that produced the greatest difficulty.  Measurements, for want of exotic test equipment at the time, 
were made using the ancient but venerable resonance method of G W O Howe10.  This involves 
resonating the test coil against a series of known capacitances, then fitting the data to a regression 
line.  If we take, for the purpose of illustration, the simple case where the Q is sufficiently high to 
permit the neglect of losses, the parallel resonance formula reduces to:

(2π f 0)
2
=

1
L(CL+C ref)

 

Where CL is the self-capacitance, and Cref  is the added parallel capacitance including all strays. 
Rearranging gives:

Cref =−CL+
1

(2πf 0)
2 L

 (1.1)

which, insofar as the lumped component representation is valid, is a straight-line graph of the form  
y = a + xb .  Hence, if  1/(2π f0 )²  is chosen as  x , a linear regression procedure returns the slope  
1/L  and the y-axis intercept  -CL . 
     Medhurst's measurements were made using a variant of Howe's method, but there is no effective 
difference.  For a given test coil, he acquired data using reference capacitances considerably greater 
than CL .  That amounts to shooting at the graph intercept from a distance; and although the 
measurements were performed with great care, the limited perspective precludes discovery of 
deviations from the model in the vicinity of the SRF.
     For the measurements made by this author, data were taken over a wide frequency range: 

9 H. F. Resistance and Self-Capacitance of Single-Layer Solenoids. R G Medhurst (GEC Research Labs.). Wireless
Engineer, Feb. 1947 p35-43, Mar. 1947 p80-92. Corresp. June 1947 p185, Sept. 1947 p281. [Medhurst 1947]

10 The calibration of wave meters for radio-telegraphy.  G W O Howe. Proc. Phys. Soc. 1911, Vol 24, p251-259.



5

generally at least three and sometimes as many as six octaves for each test coil.  A method was 
developed using a set of pre-calibrated plug-in mica reference capacitors11, and a simple jig with a 
stray capacitance of only 0.73 pF was constructed on the back of a BNC socket12.  The small jig 
capacitance meant that, for most of the coils, measurements at the high end of the frequency range 
involved external capacitances of less than CL  .  The results turned out to have both explicable and, 
initially, inexplicable deviations from linearity.
     One feature of the datasets covering sufficient range was the dispersion due to skin and 
proximity effects.  This however, in cases where it caused statistically-significant deviations, could 
be corrected-for using well known methods.  Hence, in the discussion to follow, we will concern 
ourselves only with what remains after that correction13, if it is actually needed.

Self-capacitance determination using Howe's method: In this example14, the coil is a 32 turn toroid wound
on a Fair-rite ½" type 61 ferrite bead.  The graph of reference capacitance vs. 1/f0

2  is a convincing straight 
line, with a y-axis intercept, a = -1.703 ±0.007 pF.  This value however, also contains the jig capacitance 
(0.73 ±0.05 pF), and so the actual coil self-capacitance is 0.97 ±0.05 pF.  Note however, that a toroid has an 
additional static capacitance beyond the solenoid-like self-capacitance, because the ends are close together.  
This gap capacitance was estimated to be 0.5 ±0.05 pF, and so the solenoid-like self-capacitance component 
for this coil is 0.47 ±0.07 pF.  There is more interesting information however in the statistical analysis (next 
graph).

11 Capacitor standardisation using a reference inductor.  D W Knight.  (Method description and data analysis). 
Available from http://g3ynh.info/zdocs/magnetics/appendix/refcoil.html

12 Self-capacitance of toroidal inductors.  D W Knight.  (Method description and data analysis).  Available from 
www.g3ynh.info/zdocs/magnetics/

13 We can also usually neglect the internal inductance correction for thick-wire coils, because the dispersion occurs at 
low frequency; and we can approximate the proximity-effect correction on external inductance for thick-wire coils 
by calculating the inductance using the internal diameter of the coil.

14 See worksheet F61-32T.ods, downloadable from http://g3ynh.info/zdocs/magnetics/appendix/self-res.html
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Fitting residuals for a 3-octave extrapolation: This graph shows the scatter of residuals (measured minus 
calculated capacitance) for the preceding self-capacitance determination.  Also shown are the one-standard-
deviation limits (±1σ) for an observation.  These are obtained by using a realistic error function for the 
reference-capacitor standardisation and adjusting it slightly to give a variance of fit (reduced  χ2 ) close to 1.  
If the model is realistic, the data should be normally distributed over the ±1σ bound, with a 68% probability 
of being inside it.  The capacitors were standardised to about ±0.15% ±0.012 pF, and so for the largest 
values, the absolute uncertainty is >0.1 pF and the scatter is large.  In the 2½ to 10 MHz region however, the 
scatter has settled down, and we see a slight (but not statistically significant) upward curvature due to falling 
internal inductance (onset of the skin-effect|).  When no reference capacitor is connected however, all we 
have is the jig capacitance (here 0.73 ±0.5 pF).  In that case the data point does not lie close to the regression 
line and has to be excluded from the fit.  The 'self-capacitance' appears to have mysteriously diminished by 
0.25 pF at that point.  All solenoids and toroids measured by the author exhibited this type of deviation for 
shunt capacitances comparable to the extrapolated self-capacitance.

     If a coil behaves as a conventional short-circuited transmission line, we should see a low 
frequency agreement between the data and the lumped component model, but disagreement 
elsewhere.  Experimentally however, what is seen is an agreement over a wide range, but with a 
pronounced deviation on approaching the SRF.  If, out of sentimental attachment to the lumped-
element theory, we say that the inductance is constant, then it appears that the self-capacitance starts
to decline when the external capacitance is reduced to the point at which it becomes comparable to 
the self-capacitance.  It is as though there is a component of capacitance or inductance that only 
comes into existence when a shunt impedance is connected to the coil.
     One way to look at what might be happening is to note that, with a large resonating capacitance 
connected, the current distribution along the length of the coil wire is relatively uniform.  With a 
small external capacitance (or no capacitance) however, there will be current nodes associated with 
the ends of the wire, and the current distribution will have its peak half-way along the coil.  
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Inductance is a dynamic phenomenon, it doesn't exist in the absence of current, and so as the current
distribution becomes non-uniform, some inductance must disappear.  Thus the extrapolated SRF 
will increase as the resonating capacitances get smaller.  This idea is corroborated, to some extent, 
by the observation that the deviation is greater for long coils than it is for short coils.  This can be 
expected because the induced voltage across the ends of a short coil will give rise to an end-to-end 
capacitance, which will help to maintain the current as external capacitance is removed.  While an 
explanation based on declining inductance might be useful however, it nevertheless assumes 
lumped-element LC parallel resonance, and this cannot account for the fact that there is a strong 
relationship between the SRF and the conductor length.
     Theoretical difficulties aside, a problem with the ill-behaved resonance data is that it looks like 
an artefact.  Specifically, it looks like a calibration problem associated with the jig strays and the 
smaller reference capacitors.  No amount of careful recalibration would make it go away however; 
and so for some time the only viable solution was to exclude the deviant data points from the 
analysis by setting their fitting weights to zero.  Still thinking that it was a systematic error, this led 
the author to try measuring the SRF of coils without connecting them to a test jig.
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1.1  Scattering experiment   
For solenoid measurements, a solution to what was thought at the time to be a calibration issue was 
to scatter radiation from isolated coils and detect the resultant field using a small loop or an 
electrometer dipole connected to an oscilloscope.  An experiment using a high-powered signal 
source is shown in the photograph below.  In that case the generator is an HF radio transmitter 
modified to give continuous coverage from 1.6 MHz to 30 MHz, and the induction coil is a 2-turn 
loop of about 90 mm diameter made from stiff wire. 
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In the configuration shown, a coil of copper tubing is suspended from a length of multi-strand 
Dyneema15 fishing line, which is tensioned by means of a lead weight.  The arrangement places a 
negligible amount of dielectric material inside the coil, which is therefore effectively suspended in 
mid air.  The supporting frame, antenna stands, etc., are also constructed from non-conducting 
materials wherever possible, to minimise eddy currents, and the coil is kept well clear of the 
electronic test equipment.
     Of course, the coil is not strictly isolated from its environment, because it is in the near 
(induction) field of the radio transmitter.  It is however, sufficiently isolated that the positioning of 
antennas and test equipment has little effect on the resonant frequency.   Note also that the term 
'scattering' refers to the scattering of radiation by the coil.  It does not refer to the measurement of S 
(scattering) parameters (although an S21 transmission measurement using the two antennas is a very 
good way of finding resonances).
     The electrical configuration is shown in the diagram below.  Notice that the generator passes 
current through the induction loop to a coaxial load resistor; the point being to maintain a 
reasonable impedance match and thereby avoid provoking the transmitter's protection circuitry.  
Thus, although the power delivered to the load is in the 2 W to 10 W range, the actual radiated 
power is somewhat less than 100 μW.  Also observe that the arrangement constitutes a low-k 
transformer (and the distance between the loop and any point on the test coil is much less than one 
wavelength).  The response of the diode detector monitoring the transmitter output is proportional 
to the input current.  The balun on the pick-up antenna is 4-turns bifilar on a Fair-Rite  FT50A-61 
bead16, and the primitive high-pass filter before the oscilloscope helps to reject mains hum.

It takes several hundred microvolts at the oscilloscope input to produce a usable display, and so for 
the antenna separation shown (about 0.85 m) very little is seen in the absence of a test coil.  With a 
coil in situ however; numerous scattering resonances can be detected (depending on the coil 
geometry and the available frequency coverage), some visible with the field sensor looking along 
the  axis and some requiring it to be moved around to the side.  One of the strongest resonances 
however is the fundamental SRF; which gives rise to an enormous increase in scattering cross-
section, and a consequent sharp increase of several orders of magnitude in the received signal.  Note
that the detected signal is the superposition of incident and scattered waves, giving rise to 

15 Gel-spun ultra-high molecular weight polyethylene (UHMwPE).  The line shown is 0.43mm in diameter, and rated 
for a maximum load of 36 kg.  'Dyneema' is a registered trade mark of DSM.  http://www.dyneema.com/emea/

16 http://www.amidoncorp.com/specs/
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interference phenomena when investigating weak resonances; but the scattering signal at the SRF is 
so great that there is no ambiguity in finding the centre of the peak.
     That this is a parallel resonance frequency is incidentally most easily demonstrated by 
connecting a neon bulb across the coil (see photograph below).  A parallel L C network  presents a 
high impedance at its terminals and so exhibits a high voltage when energised.  Attaching wires to 
the coil, of course, shifts the resonance to lower frequency; but the shift is progressive, depending 
on the amount of stray capacitance and inductance added, and is not sufficiently great to confuse the
assignment.  

We now come to the principal observation; which is that the lowest parallel SRF of a disconnected 
coil occurs when the total length of wire is comparable to the free-space half-wavelength (just as it 
does with an end-fed wire antenna).  This is most accurately true for coils with a length to diameter 
ratio in the 1 to 3 range.  The data for the coil shown above (DWK 18T) serve to illustrate the point:

DWK 18T
Solenoid length:

Average diameter :
length to diameter ratio:

Number of turns:
Wire (tubing) diameter:

Winding pitch:
Pitch to wire diam. ratio:

Conductor length:
SRF:

Free-space half-wavelength:
Apparent helical velocity factor:

ℓ = 152 mm
Da = 96 mm (= inside diam. + wire diam.)
ℓ / Da = 1.583
N = 18.09
d = 4.7 mm
p = ℓ / N = 8.4 mm
p / d = 1.79
ℓw = √[ (π Da N)² + ℓ² ] = 5.45793 m
f0s = 26.69 MHz
λ0/2 = c/(2f0s) = 5.61619 m
vhx / c = 5.458 / 5.616 = 0.972

From this, the principal resonance mechanism can be deduced.  Waves travel along the helix and 
reflect from the impedance discontinuities that occur at the ends of the wire.  The strong scattering 
resonance at the fundamental SRF corresponds to the standing-wave pattern that builds up when a 
single round trip brings the wave back to its starting point in phase with itself.  The apparent 
average phase velocity moreover, despite interaction with the fields from adjacent turns and 
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possible end effects, is not greatly different from c  for the shapes of coil found to give best Q in 
radio filter applications; which implies that the wave is intimately associated with the guiding wire, 
at least at the SRF17. 
     More information about the nature of the travelling wave can be had by using dipoles for both  
source and receiver; with cables brought straight-out at the back and choked-off with baluns.  With 
the test coil removed, and an uncluttered working area, it can be shown that there is a minimum in 
the direct signal when the two dipoles are at right-angles.  When the coil is introduced however, 
with its axis along the path between the antennas, there is no-longer a minimum when the dipoles 
are crossed, particularly on approaching and going above the SRF.  Hence an observation that will 
come as no surprise to those who work with helical antennas18; which is that the coil converts 
linearly polarised radiation into circularly polarised radiation.  By sampling the electric field while 
looking along the axis, we see an advancing wave with a rotating electric vector; i.e., the axial 
component of the propagating wave travels along the helix with its electric vector substantially 
perpendicular to the axis.

     In truth, there is nothing novel or controversial about the scattering experiment as described so 
far.  The association between self-resonance and wire length has been easily observable since the 
invention of the grid-dip oscillator (GDO) in the 1920s, it was known to both Howe and Medhurst, 
and was actually studied in detail by Paul Drude in 1902 (next section).  There is also theory that 
can account for the observed velocity factors in disconnected coils, at least approximately.  What is 
of interest is the way in which the information sheds light on the relationship between self-
capacitance and the transmission-line resonance.
     The scattering experiment shows that the principal SRF of air-cored solenoids occurs when the 
wire length is in the vicinity of λ0 /2.  This is particularly true when the overall shape is chosen to 
give optimal Q.  What Medhurst's study shows however, is that the  λ/2  rule only applies when the 
coil is long and thin.  Specifically, for the solenoid shapes typically used in radio applications (ℓ/D 
in the 1 to 2 range), the self-capacitance deduced from regression analysis predicts the SRF at a 
frequency that is too low in comparison to that of the disconnected coil.  This does not imply, 
incidentally, that self capacitance is a useless conception.  It is still the appropriate modelling 
parameter for conventional parallel LC resonators, because it correctly describes the circuit 
behaviour whenever the minimum padding capacitance is greater than  CL  (which is usually the 
case).  When parallel resonance data are acquired over a wide frequency range however; the points 
(as has been shown previously) are seen to veer away from the regression line at high frequencies as
the shunt impedance is removed and the λ/2 wire-length resonance is approached. 

17 Note however that there is a certain sleight of hand using the average coil diameter.  We expect the current density to
be greatest on the inside of the wire at high frequencies.  If we use the inner diameter (91.3 mm) for the calculation, 
we get a conductor length of  5.191 m and a helical velocity factor of 0.924.  The true value is somewhere between 
0.924 and 0.972, but such subtleties make no difference to the resonance assignment.

18 Antennas for all applications, John D Kraus and Ronald J Marhefka, 3rd international edition 2003, McGraw-Hill. 
ISBN 0-07-123201-X.  Chapter 8. The helical antenna, axial and other modes.
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1.2  Conductor length vs. SRF   
A systematic study of solenoid self-resonance was published by the German physicist Paul Drude19 
in 1902.  Drude made measurements on a large number of coils, both with and without coil formers,
and collected data covering a wide range of length-to-diameter ratios.  RF excitation of reasonably 
narrow bandwidth was achieved by means of an induction loop with a variable resonating capacitor,
which was driven by an induction coil and a Tesla transformer with both primary and secondary 
spark gaps. Resonance was detected by holding an electrodeless low-pressure sodium-vapour 
discharge tube near to the coil.  Accurate frequency measurement methods had not been developed 
at the time, but the operating wavelength of the exciter loop in each instance was determined to an 
accuracy of somewhat better than 1% by using a parallel-wire transmission line with a moveable 
shorting strap, resonance of the line being indicated by placing the discharge tube at the voltage 
anti-node.
     Drude was able to characterise his coils in a surprisingly simple way by defining a function, f, as 
the ratio of the self-resonant half-wavelength to the wire length.  He chose this definition because it 
gives f =1 for a straight piece of wire.  The symbol f  is nowadays always used to mean 'frequency' 
in an electrical context; but before we change it, note that in the previous section we have already 
defined 'apparent helical velocity factor' as the ratio  ℓw/(λ0/2).  Drude's f  is the reciprocal of that, 
which means that it is the apparent refractive index for a wave travelling along the helix.  Hence we 
will use the symbol nhx , defined as:

n hx =
λ0

2 ℓw
 =  apparent refractive index for helical propagation  (Drude's f ).  

Note however, that Drude made no mention of the possible dynamics of wave propagation in coils, 
and was interested in explaining his results in terms of inductance and capacitance.
     Drude's principal solid core materials were wood and ebonite (hard rubber), neither of which are 
of much interest to modern engineers.  His coreless coils however were made by using twine to 
bind cotton-covered copper wire into helices, and for those he made series of measurements at three
different pitch-to-diameter ratios. For the two smaller p/d ratios, the turns were compressed until 
they were held apart by the wire insulation, and in these cases, the self-resonant frequencies are 
reduced by the effect of the dielectric.  For the largest p/d ratio however (2.4), there was enough 
space between the turns to render the dielectric effect fairly negligible.  That the amount of 
dielectric present had little effect is demonstrated by the fact that some new measurements, made 
using the scattering method described in the previous section, agree very closely with Drude's data. 
     Drude recorded resonance data for his coils over a length/diameter range from 0.04 to 6.  In 
addition to that, Alex Pettit (KK4VB) has made supplementary measurements20 covering the range 
from 6 to 40, using an induction loop and an impedance analyser.  The results are shown in the 
graph below, with the data plotted as nominal (i.e., apparent) helical velocity factors (i.e., 1/nhx , 
which is the reciprocal of Drude's f )

19 Zur construction von Teslatransformatoren. Schwingungsdauer und Selbstinduction von Drahtspulen (On the
construction of Tesla transformers: Period of oscillation and self-inductance of the coil).  P Drude, 1902, Ann. Phys. 
314 (10) p293-339, 314 (11) p590-610.  English translation by D W Knight and R S Weaver, 2015, available from: 
https://www.researchgate.net/publication/301624796

20 http://g3ynh.info/zdocs/magnetics/appendix/kk4vb_srf.html
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Apparent velocity factor for air-cored solenoids at the first SRF.  Note that Drude, working in 1902, 
smoothed his data by sketching a curve between the scattered points and then reading the smoothed values 
back from the graph paper.  This method is likely to introduce artefacts, and such is the most probable 
explanation for some obvious kinks in the curve.  Alex's data (KK4VB) have not been smoothed and show 
experimental scatter (note that it is extremely difficult to make good measurements on very long or very 
short coils).  The segment marked DWK relates to measurements made on self-supporting thick-wire coils, 
on the author's scattering jig, in order to confirm that Drude's p/D = 2.4 measurements are largely free from 
the dielectric effects.

The curve obtained has the appearance of a sigmoid with a long-coil limit possibly somewhere in 
the region of vhx=2c.  This is broadly consistent with (approximate) helical waveguide theories (see 
section 1.7) but it is not consistent with self-capacitance measurements which, as we will see, 
always show a long-coil asymptotic limit of  vhx=c.  What we have found therefore is that coils 
measured open-circuit have an SRF much higher than that predicted by extrapolation 
measurements.  This, of course, explains the discovery that data veer-away from the Howe-method 
regression line as the external capacitance becomes very small, the point being that the coil is 
crossing over from in-circuit to open-circuit behaviour.  We will return to this matter in section 10.
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1.3  Single-conductor transmission-line   
In order to understand the transmission-line-like behaviour of coils, and also to reassure ourselves 
that it is consistent with (rather than contradictory to) the familiar lumped-element model; it is 
helpful to understand the relationship between the physical and electrical parameters of a 
conventional line and the equivalent parameters of a coil.  It is also necessary to clarify the 
relationship between equivalent line-length and conductor length.

The input impedance of a lossless transmission line can be expressed as follows21:

Z =
R0 [ ZT+j R0 tan(2π ℓTL /λ) ]

[ R0+jZT tan (2π ℓTL / λ) ]
 

Where R0 is the characteristic resistance22, ZT is the impedance at the far-end of the line (the 
termination), ℓTL is the physical length of the line, and λ is the wavelength in the propagation 
medium provided by the line.
     Now, if we terminate the line with a short-circuit, the terms involving ZT in both numerator and 
denominator vanish, and we are left with:

Z = jR0 tan( 2π ℓTL

λ )  

which says that the shorted lossless line is purely reactive, with a reactance:

X = R 0 tan( 2π ℓTL

λ )  

Also, noting that 2π radians corresponds to 360º, and that the tangent of an angle is positive 
between 0º and 90º, we can see that X will be positive provided that  ℓTL/λ  is less than ¼ , i.e.: 
when  0 < ℓTL < λ/4  the short-circuited line has an inductive reactance.  Also; when  ℓTL→ λ/4 , 
X→∞ , i.e.;  the line has a parallel-type self-resonance when its physical length is λ/4  ( λ being the 
electrical wavelength, not necessarily the free-space wavelength).  Thus the line and the coil are so-
far qualitatively similar,  except that the lowest parallel SRF of the line occurs when its electrical 
length is λ/4, whereas the SRF of the coil occurs when the conductor length is λ/2.  This little 
conundrum however immediately evaporates when we note that the line is a go-and-return circuit.  
In other words, the conductor length of a transmission line is twice its physical length, i.e.;  
ℓw=2ℓTL .  So now we can write the shorted transmission-line reactance as:

X = R0 tan(π ℓw

λ )   . . . . . . . . (1.2)

so that  when   ℓw < λ/2  the impedance presented at the terminals is inductive and 
when  ℓw→ λ/2  ,  X→∞ .
     Notice, incidentally, that the quantity inside the tangent bracket is the electrical length of the 
transmission line in radians.  Recall also that for small angles, the tangent converges with the angle, 
i.e., as  θ→0 ,  tanθ→θ .  Thus, since  λ = vp/f   (phase velocity / frequency), the reactance of the 
short-circuited transmission-line input at low frequencies becomes:

21 See for example: Transmission lines for digital and communications networks, R E Matick, 1969,  McGraw-Hill,
LCCN 68-30561.  p48, equation (2-77).

22 Generally called the 'characteristic impedance', but real for a lossless line and so referred to here as a 'resistance'.
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X = 2π f
R0 ℓTL

vp

i.e., since the reactance is inductive:

XL = 2π f
R0 ℓw

2 vp
 

This has the same form as the lumped-element formula for inductive reactance; i.e., we find that:

L =
R0 ℓw

2vp
 (1.3)

Unfortunately, we must be circumspect about applying this relationship analytically because, 
according to widely accepted helical transmission line models, R0 and vp are frequency-dependent 
(the line is dispersive). It does show however that the inductance of a coil is related to the conductor
length.  Also, it might be the case that the theory that has been widely assumed to apply will prove 
to be in need of modification in the case of coils having a relatively uniform current distribution 
along the helix, in which event the simple formula above might prove to be useful in that special 
(but somewhat important) case.  We will return to this matter in section 11.

     Those who have worked with VHF and UHF antennas will, of course, know that an adjustable 
length of short-circuited transmission line can be used as a variable inductor.  Such a device is 
sometimes called a 'trombone', by analogy to the musical instrument.  The trombone however, 
continues to be useful at frequencies above the λ/4 ( ℓw = λ/2 ) resonance, because its input reactance
alternates between inductive and capacitive as the frequency is increased.  A crossover occurs each 
time there is a resonance; and  resonances occur at intervals of  ℓw = mλ/2   (m = 1, 2, 3,  . . . .),  
alternating between high input impedance (parallel type, m odd) and low input impedance (series 
type, m even).  
     The lumped-element representation of resonator as an inductance in parallel with a capacitance 
would have us believe that there is only one resonance when we use a wound inductor instead of a 
transmission-line stub.  This idea is oddly persuasive, but it arises from a confusion between the 
idealised analytical circuit element and an actual practical coil.  In fact, the only relationship 
between the two is that the inductive circuit-element can be used to represent a coil that is being 
operated well below its SRF.  The coil, on the other hand, can always be represented as a 
transmission line, albeit in general a dispersive one; and qualitatively it exhibits the same series of 
resonances as a conventional line terminated by a short-circuit.
     The standing-wave patterns that occur on a short-circuited transmission line should be familiar to
anyone who has studied radio theory.  A solenoid coil also exhibits a pattern of standing waves as 
we step through the sequence of  mλ/2  resonances, and in the following set of photographs, these 
are made visible by using a strong excitation and placing a mercury-vapour gas discharge tube close
to the coil.  The electric field produced by the coil ionises the gas, and a changing pattern of voltage
nodes is seen as m is increased.  
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The node pattern is not obviously reminiscent of the textbook parallel-conductor-line discussion, 
but it takes a little mental juggling to see the analogy.  Bear in mind that the gas discharge tube is 
mainly sampling the electric field strength of a wave that travels along the helical conductor with its
electric vector almost perpendicular to the solenoid axis.  Also, by viewing the coil side-on, we are 
essentially looking into the terminals of the equivalent parallel-conductor line (the terminals being 
the two ends of the coil).   
     At the fundamental SRF, a wave makes a single round-trip before it gets back into phase with 
itself.  No cancellation occurs, and so we see the gas ionised all along the coil, with some sprawl at 
the ends due to fringe-field effects.  At the higher-order resonance frequencies however, waves 
undergo one or more cycles on a go-and-return trip, the points of reversal are fixed at or near the 
ends, and we see the superposition of all waves that satisfy the imposed conditions.  Hence there are
points along the coil axis at which electric-field cancellation occurs (i.e., voltage nodes).  
     Note incidentally, that by saying that the coil is a dispersive transmission line, we mean that the 
velocity factor for wave propagation changes with frequency.  This means that the high-order 
resonances do not occur at exact integer multiples of the fundamental SRF.  Hence they are referred 
to as 'overtones' rather than 'harmonics'. 

     The illustrations on the following page show a transmission measurement obtained by placing a 
coil between two loop antennas connected to a network analyser23.  The coil is the large 18.1 turn 
copper-tubing solenoid discussed earlier (DWK 18T).  The first eight mλ/2 conductor-length 
resonances can be seen on the interval between 20 MHz and 220 MHz.

23 DG8SAQ VNWA3E.   http://sdr-kits.net/VNWA3_Description.html.
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mλ/2 conductor-length resonances  (of coil DWK 18T).  Resolution is 100 kHz (2000 data points spanning 200 MHz).
The use of unun (common-mode) chokes in the lines to and from the network analyser reduces capacitive loading by the
antennas and helps to minimise background artefacts (i.e., system resonances).
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1.4  Normal-mode antennas and Tesla coils   

The fundamental quarter-wave transmission-line
resonance of the isolated coil is not the only type of
quarter-wave resonance of which a helical conductor
is capable.  The other type of  resonance occurs
when the coil is mounted above an infinite ground
plane.  In that case, the conductor really is  λ/4 in
length (as opposed to  λ/2 for the isolated coil)
because the missing part is provided by the ground
plane according to the 'ground reflection' or 'ground
mirror' effect.
     The resonant behaviour is illustrated by the
inductively-loaded vertical antenna shown on the
right.  This antenna works from about 1.7 MHz to
2.5 MHz (in its fundamental resonance mode), its
resonating capacitance (for a resistive input
impedance at the base) being adjusted by means of a
telescopic whip at the top.   It falls into the category
of extremely electrically short antennas (ca. 0.01 λ),
and so might be expected to be beyond the folkloric
design principle that a normal-mode loaded-vertical
is a quarter-wave antenna with part of its conductor
wound around a stick.  As the coil parameters
illustrate however, its conductor length is is very
close to  λ0 /4 in the 160m band, with an average
velocity factor of 1.023, (assuming that the close
turn-spacing forces the effective coil diameter to the
inner diameter, and neglecting end effects).  There is
however, a considerable element of coincidence in
this result, because the large length/diameter ratio
(≈9.3) forces the velocity factor up (as we saw in 
section 1.2), but the fibre-glass coil former and the
capacitance of the telescopic whip force it down.
     The antenna is shown operating at  1.84 MHz,
with a neon lamp soldered to the tip (only one
terminal connected) and a 6W fluorescent tube
mounted near the top of the coil by means of an
acrylic clamp.  The glow-discharges in the gas tubes
demonstrate the voltage magnifying effect (the antenna works on the same principle as a Tesla 
coil24 ).  The coil parameters are given in the table below.

24 System of Transmission of Electrical Energy, N Tesla, US Pat. No. 645 576, March 1900.  p3, lines 58-64: "The 
length of the thin-wire coil . . . should be approximately one quarter of the wave length . . ."
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Operating frequency:
Physical antenna height (adjusted for 1.84 MHz):

Solenoid length:
No. of turns:

wire diameter:
Coil inner diam.:

ℓ/D =
Coil conductor length at inner diam.:

Total conductor length (assuming strong proximity effect):
Apparent average velocity factor:

1.84 MHz ( λ0 = 162.9 m)
1.45 m
ℓ = 236 mm
N = 507
d = 0.45 mm
25.4 mm
9.29 (based on inner diam.)
ℓw = √[(πDN)2 + ℓ2 ] = 40.46 m
40.46 + 1.45 - 0.236 = 41.67 m
1.023

The lowest self-resonance in the presence of a ground-plane occurs at approximately half the 
frequency of the parallel-resonant SRF.  It cannot however be excited in the absence of a ground 
plane because it is the fundamental series self-resonance; i.e., a generator can only deliver energy to
an impedance, and so a counterpoise is required to complete the circuit if the coil is to be series-
driven.  Note however, that it is possible to excite multiple-internal-reflection resonances at 
approximate sub-multiples of the SRF25 (sometimes called sub-harmonics).  One of these will be 
close to the lowest series resonance, but it will have a different field pattern.

     The much misunderstood 'ground mirror' effect can incidentally be explained as the attainment 
of a limiting value when extending the transmission-line length.  Using the scattering method of 
section 1.1 for example, it is easily shown that if a short length of wire is attached to one end of the 
coil, the resonant frequency drops.  The frequency-shift occurs because the sharp impedance 
discontinuity (the reflection point) at the coil terminal is abolished and replaced by the discontinuity
at the end of the wire.  If progressively longer pieces of wire are added, the frequency continues to 
drop in a predictable manner (v ≈ c), but the Q also diminishes as the added conductor becomes the 
principal resonator.  When the added conductor length becomes comparable to the coil conductor-
length however, the half-wave resonance of the total conductor becomes strong again and, of 
course, now peaks at around half the frequency of the isolated coil SRF.  The now so-called quarter-
wave resonance remains at this frequency if the length of the added conductor is further increased.  
     This transmission-line extension effect, although not identified as such, was observed by Drude 
in his 1902 study of coil resonance26.  He noted that when 'capacitance' is added to one end of an 
isolated coil, such as by the connection of a conducting sphere, the period of oscillation is increased
but 'this increase is always smaller than twice the period of the coil with free ends'. 

25 Radio Frequency Transistors.  Norn Dye and Helge Granberg (Motorola). Butterworth-Heinemann 1993. 
ISBN 0-7506-9059-3.  See p142

26 Drude 1902. On the construction of Tesla transformers.  Already cited in section 1.2.  p337-338.  Also, p 609, 
Summary of results, point no. 7.
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1.5  Helical resonators   
Another example of a the use of solenoids in the series (ground-plane) self-resonant mode is given 
by the helical filter27, a type of bandpass filter often used at VHF or UHF.  Such filters consist of an 
array of coils, all grounded at one end and typically coupled by means of apertures in the shielding 
between them.  In this configuration, and assuming that the resonator is a simple helix, the coils 
resonate when the conductor length is  

ℓw = (2m+1)λ/4   ,     m = 0 , 1, 2, . . . . . 

with the  m=0  ( i.e., λ/4) choice usually being preferred.  λ of course refers to electrical wavelength,
the relationship between it and free-space wavelength  λ0  being modified by the screening cavity 
and tuning arrangements. 
     What is interesting about the helical resonator for the present discussion is that it can be given a 
lumped-element representation for the purposes of simulation, but its behaviour can only be 
explained by treating it as a transmission line.  In other words, it tells us that the lumped-element 
theory contains no information about the physics of of the solenoid inductor.  
     The point is illustrated by the semi-diagrammatic drawing shown below, which is taken  from 
Peter Vizmuller's patent for the folded
helical resonator28.  A lumped-element
model can be obtained notionally by
resonating the coils using the capacitances
to the cavity walls and adjusting screws,
and by representing the coupling as a
mixture of the mutual inductances between
the parts of the coils carrying most current
(the grounded ends) and the capacitances
between the parts of the coils having the
highest voltages relative to ground (the open-circuit ends).  So far, so good, but now notice that the 
middle resonator has its winding-direction reversed part-way along its length.  It is Vizmuller's 
discovery, and the basis of his invention, that the reversal, for a given total conductor length,  makes
practically no difference to the λ/4 resonance.  The lumped-component theory however, would have
us expecting that the large negative mutual inductance between the two sections would cancel much
of the overall inductance of the coil and send the resonance to much higher frequency.
     What actually happens in Vizmuller's folded resonator, is that the higher-order harmonic 
behaviour is altered.  An important modification is obtained, for example, when the line-length ratio
of the two sections is 3:1 ;  i.e., the winding direction is reversed for ¼ of the total length.  In that 
case, the  3λ/4  resonance is suppressed  (and replaced by a resonance at  4×  the fundamental). This
makes the folded resonator useful (for example) for filtering the output of push-pull amplifiers 
(which cancel even-order harmonics, but produce an abundance of odd-order harmonics, especially 
the 3rd ).
     A study of Tesla transformers using the folded-helix topology has been carried out by Richard 
Craven29.

27 Filters with helical and folded helical resonators.  Peter Vizmuller.  Artech House 1987, ISBN 0-89006-244-7.
28 Folded-over helical resonator. Peter Vizmuller (Motorola Inc.).  US Pat. # 4422058, 1983.
29 A study of secondary winding designs for the two-coil Tesla transformer, Richard M Craven, PhD thesis, 

Loughborough University, 2014.  https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/14375
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1.6  Helical waveguide models overview  
A theoretical analysis that is generally assumed to come close to describing the high-frequency 
behaviour of solenoids is that given by Schelkunoff for the sheet-helix model first proposed in 1926
by Franz Ollendorff30.  Schelkunoff's extended derivation is outlined in J. R. Pierce's classic work 
on the travelling-wave tube31 32 and elsewhere33 34 35.  The theory has also been augmented to include
the effects of inner and outer coaxial conducting cylinders36 37; and Poritsky et al38 perform a 
derivation including inner and outer Faraday shields and inner and outer magnetic cores.

     A sheet-helix (also called a 'sheath helix') is notionally constructed by winding a helix with an 
infinitesimal conducting filament, then adding more identical filamentary helices in the gap 
between turns, parallel to the first, until the gap is completely filled.  The filaments are connected 
together at the two ends of the winding.  The resulting structure is essentially a current-sheet 
solenoid, except that the isolation of the filaments ensures that conduction can only take place in the
helical direction.
     The case of interest for the purpose of inductor modelling is that in which the circumference of 
the coil is small in comparison to wavelength, so that the field patterns are radially symmetric (the 
Kraus T0 mode39 or 'delay-line' mode).  For coils of many turns, this model is still appropriate at 
frequencies well above the fundamental SRF.  The system supports a hybrid of two modes for 
electromagnetic propagation: one being associated with a plane wave, the 'slow-wave', travelling 
along the coil axis; the other being associated with a wave travelling along the helical conductor.  
Note that the two waves are not physically distinguishable.  The overall field pattern is given by 
their superposition.  They represent two ways in which radiation can traverse the coil, and since 
they must always remain in lock-step, the ratio of their phase velocities is given by the conductor 
length per unit coil length. 
     Ramo et al. liken the propagation environment for the axial slow-wave (in an actual coil, rather 
than in a sheet-helix) to the situation within a disk-loaded waveguide40.  The wave passes a series of
slits, each of which leads to a short-circuited transmission-line stub, the resulting inductive loading 
causing a reduction in phase velocity.  The series of Hertzian loops let into the walls of the 

30 Die Grundlagen der Hochfrequenztechnik [Foundations of high-frequency technology], Franz Ollendorff, 
Springer Verlag 1926.  p79-87 Das dynamische Feld der mehrwindigen Spule [Dynamic field of multi-turn coils].
[Ollendorff 1926]. 

31 Theory of the Beam-Type TWT. J R Pierce. Proc. IRE. Feb. 1947. p111-123. See Appendix B, p121-123, 
"Propagation of a wave along a helix", which gives Schelkunoff's derivation of propagation parameters for the 
Ollendorff helix. 

32 Travelling Wave Tubes.  J R Pierce.  Bell System Technical Journal [ http://bstj.bell-labs.com/ ], 1950: 29(1) p1-59,
29(2) p189-250, 29(3) p390-460, 29(4) p608-671.  See esp. Ch 3 (p20) and Appendix 2 (p56).

33 RF Coils, Helical Resonators and Voltage Magnification by Coherent Spatial Modes, K L and J F Corum, 
Microwave Review, Sept 2001 p36-45. 

34 Multiple Resonances in RF Coils and the Failure of Lumped Inductance Models. K L Corum, P V Pesavento, J 
F Corum. 6th International Tesla Symposium 2006. 

35 Fields and Waves in Communication Electronics.  S Ramo, J R Whinnery and T Van Duzer. Wiley 1994. ISBN 0-
471-58551-3. Section 9.8: The idealixed helix and other slow-wave structures.

36 Some wave properties of helical conductors, J H Bryant, Elec. Comm. 31(1) 1954.  Considers the free coil case 
and also the effects of inner and outer coaxial conducting cylinders.

37 Coaxial Line with Helical Inner Conductor. W Sichak. Proc. IRE. Aug. 1954. p1315-1319. Correction Feb. 1955, 
p148. Reprinted in: Electrical Communication 32(1), March 1955. p62-67.

38 Field Theory of Wave Propagation ALong Coils.  H Poritsky, P A Abetti, R P Jerrard.  Power Apparatus and 
Systems, Part III, Trans. of the AIEE. 72(2), Oct. 1953. p930-939.

39 Antennas for all applications, J D Kraus and R J Marhefka.  3rd edition, 2003, Mc Graw-Hill. 
ISBN 0-07-123201-X. Section 8.8, p251-252.

40 Fields and Waves in Communication Electronics. [cited earlier] Section 9.9: Surface guiding.
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misnamed 'cavity' magnetron have an analogous effect41 42.  The additional complication in the 
solenoid lies in the varying relative dominance of the axial and helical processes.
     The difficulty is that of finding an overall quantitative theory.  The sheet-helix model is often 
assumed to be definitive because it underlies the invention of the TWT.  It has also successfully 
explained why the voltage magnification that occurs in Tesla coils is much greater than the lumped-
element approach predicts.  Thus Sichak43 and the Corum brothers44 have been emphatic in stating 
that the model is general, and in particular that it can be applied in the lumped-element limit (i.e., by
inserting the sheet-helix results for R0 and vhx into equation 1.3).  There are some caveats however, 
and the output of models using the theory should be treated with caution.
     The sheet-helix theory is a theory based on what happens in the middle region of an infinitely 
long solenoid.  It lacks fringing-field corrections (cf. Nagaoka's coefficient) and so can only be 
argued to pass to the lumped theory for very long coils.  Even then however, its accuracy for 
predicting inductance is poor in comparison to the conventional magnetic approach.  This limitation
must be at least partly attributed to artificial constraints inherent in the model.  Hence corrections 
for the difference between the sheet-helix and an actual helical wire are needed, and these are not 
the same as the corrections used with the current-sheet model.
     A further difficulty however is that the elevated helical phase-velocities associated with trading 
between the helical wave and the axial slow-wave  might actually be absent in coils exchanging 
current with an external circuit.  A velocity-limiting effect certainly occurs in helical lines having an
outer coaxial shield (although slow-waves are still produced), and it might be that in-circuit and 
free-coil measurements differ for analogous reasons.  If that is so, then the free-coil helical-
waveguide approach will remain appropriate for open circuit systems (subject to short-coil 
corrections that have yet to be obtained), but it will not apply unmodified to the matter of self-
capacitance.  Much of this article will be concerned with these issues.
     A more realistic helical transmission-line model, known as the 'tape helix', was introduced by 
Samuel Sensiper in 1951 45 46.  This is similar to the sheet-helix (zero current perpendicular to the 
helix direction), but allows for an inter-turn gap and so produces additional (usually minor) terms to
account for axial periodicity.  With regard to velocity factors however, the results for the lowest 
axially-symmetric (delay-line) mode are generally similar to those of the sheet-helix.  A general 
treatment of the tape helix, including the facility to model the presence of an external coaxial 
conducting cylinder, is given by Louis Stark47.
     The earliest theoretical study of wave propagation on helical conductors, based on a single 
perfectly conducting filament, was published by H C Pocklington48 in 1897.  Approximate solutions
predicted that the phase velocity of the axial wave would approach c at low frequencies, and the 
helical velocity would fall to c at high frequencies.  Thus Pocklington appears to have established 
the basic physical situation, but the later sheet and tape-helix models are considered to be more 
accurate.

41 The Magnetron as a Generator of Centimeter Waves. J B Fisk, H D Hagstrum, P L Hartman.  Bell System 
Technical Journal. Vol. 25(2), April 1946.  See fig. 22.

42 Technical and Military Imperatives: A Radar History of World War II. Louis Brown. 1999. Taylor and Francis. 
ISBN13: 978-0-7503-0659-1. See Ch. 4. Resonant Magnetron: p153, p409. 

43 Sichak 1955 (cited above).  Page 1317 in Proc. IRE or p64 in Elec. Comm.  "The standard formula for the 
inductance of a long solenoid cab be obtained by treating the solenoid as a short length of short-circuited line and 
using [the sheet-helix expressions for characteristic impedance and  phase velocity]."

44 Corum & Corum, 2001 (cited above).  Passage to lumped elements, p41.
45 EM Wave Propagation on Helical Conductors, S Sensiper, Tech. Report No. 194, May 1951, MIT Research Lab. 

of Electronics.  http://dspace.mit.edu/bitstream/handle/1721.1/4865/RLE-TR-194-04734124.pdf
46 Electromagnetic Wave  Propagation on Helical Structures (a Review and Survey of Recent Progress), Samuel 

Sensiper, Proc. IRE, Vol. 43 (Feb. 1955) p149-161.
47 Lower modes of a concentric line having a helical inner conductor.  L Stark, J. Appl. Phys. 25(9), 1954. p1155-

1162.
48 Electrical oscillations in wires, H C Pocklington, Proc. Camb. Phil. Soc. (9), )ct. 1897, p324-332.

http://dspace.mit.edu/bitstream/handle/1721.1/4865/RLE-TR-194-04734124.pdf
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1.7  Velocity-factor for a finite free helix   
Despite the large number of papers on helical-waveguide theory, one of the best ways to get 
acquainted with the subject in relation to RF inductors is via Ollendorff's original derivation49.  The 
reason is that much of the later commentary is concerned with travelling-wave tubes and helically-
wound coaxial cables, in which case, the primary interest is satisfied by considering an infinitely 
long coil.  Ollendorff, on the other hand, defined the problem using an infinitely long coil, but then 
adapted it by considering a section of the coil of length ℓ.  This gives a considerable simplification 
in applying the method to practical inductors; but it means that the model has no fringe-fields and 
therefore cannot provide an accurate description of coils of small ℓ/D ratio.  Further simplification 
is also necessary in order to make the problem mathematically tractable. This is obtained by 
defining the winding as a perfectly conducting current-sheet (no gap fields, no losses), and by 
constraining the current to flow only in the direction of the helix (no current density perpendicular 
to the helix direction).  Only the radially-symmetric (T0  or 'delay-line') mode is considered, i.e., it is
assumed that the circumference of the solenoid is small in comparison to wavelength.

     The helix parameters are defined in the illustration below (the notation used in this article is not 
the same as Ollendorff's).

The various resonant frequencies of a length of transmission line can, of course, be calculated from 
the physical dimensions and an appropriate velocity factor.  In this case however, the velocity factor
for axial propagation turns out to be a function of frequency (the transmission line is found to be 
dispersive) and so instead of solving for it directly, Ollendorf produced an expression for finding the
sequence of overtone resonances.  

2π f
c

= √ J0( j x) H0
(1)

( j x)

J1( j x) H1
(1)

( j x)

2 m π

2 ℓ
p

2π r
   ,     m = 1, 2, 3, . . . . . (1.4)

where x = m π
2

D
ℓ

  ,   and  m is the overtone number (putting m=1 corresponds to the first SRF). 

The quantities within the square root are Bessel (Jn) and Hankel (Hn) functions of the first kind of 
zero and first order, with purely imaginary arguments.  This square-root of a combination of Bessel 
functions crops up in all subsequent derivations of helix waveguide properties, including the small 
pitch-angle limiting case of Sensiper's tape helix, and so we will give it the symbol W(x) and refer 
to it as 'Ollendorff's function'.  Also note that, while some commentators persist in writing it as 
above, it is a real quantity and can be converted to a function of a real argument by using standard 
Bessel function identities: 

49 Ollendorff 1926, already cited.  For a rough working translation of the article 'The dynamic field of multi-turn 
coils', contact the author (see title page of this article).
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J0( jx)= I0(x)    (Dwight50 p195, 813.1)

J1( j x)= j I1 (x) (Dwight p195, 813.2)

H0
(1)

( j x)=− j
2
π K 0 (x) (Dwight p197, 817.2)

H1
(1)

(j x)=−
2
π K1(x)  (Dwight p197, 817.5)

Where In and Kn are modified Bessel functions of the first and second kind.  Thus, noting the 
cancellations that occur, and that j2 =-1 :

W (x)  =  √ J0(jx ) H0
(1)

( jx)

J1( jx ) H1
(1)

( jx)
 = √ I0(x) K0 (x)

I1(x) K1 (x)
  . Ollendorff's function (1.5)

The modified Bessel functions are built-in functions in spreadsheets such as Open Office.

Now recalling that c = f λ0 , we can write equation (1.4) as:

2π
λ0

= W (x)
2πm
2 ℓ

p
2π r

  (1.6)

but notice that 2ℓ/m is the axial wavelength of the standing-wave at resonance; and this being an 
electrical wavelength, is related to the axial phase velocity via   vax = f λax .  Thus:

2 ℓ
m λ0

 =  
λax

λ0
 = 

vax

c
 = W(x)

p
2π r

 . Axial velocity factor. (1.7)

Also notice however that  p/2πr = p/πD = tanψ , where ψ is the pitch angle; and recall that 
tanψ=sinψ/cosψ .  Thus we can write:

vax

c
⋅

1
sin ψ

 =  W(x)
1

cos ψ

Now referring to the diagram on the right, and noting that the
axial and helical propagation processes constitute a single
hybrid mode, it can be seen that:

sin ψ=
vax

vhx
 

and using this as a substitution gives:

vhx

c
=

W(x)
cos ψ

   ,   where x = m π
2

D
ℓ

 . Helical velocity factor. (1.8)

50 Tables of integrals and other mathematical data, H B Dwight, 4th edition, Macmillan 1961.  LCCN 61-6419.
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For small pitch angles, i.e., coils of many turns and typical radio coils, cosψ is close to 1 and can 
usually be neglected. Thus the mysterious combination of Bessel functions that appears everywhere 
in helical waveguide theory is the uncorrected free-coil radial (i.e., circumferential) velocity factor, 
which can be used as an approximation for the helical velocity factor when the pitch-angle is small.

     Most discussions of helical waveguide theory show Ollendorff's function plotted against a 
composite parameter which is a function of  f, D and p.  Here however, we will start by showing it 
plotted against ℓ/D for differing values of m.  This, as shown in the graph below, is particularly 
illuminating when compared with Drude's air-dielectric coil data and the supplementary 
measurements by Alex Pettit (KK4VB) (as introduced in section 1.2).  This is exactly the kind of 
data that Ollendorff was trying to explain, and while it might appear at first glance that he has not 
done that, in reality he has achieved a brilliant success.  It all comes down to recognising the 
significance of the dispersion parameter m.
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     Electromagnetic phenomena are scaleable.  Consequently, when a dispersion effect is linked to 
the dimensions of a structure, that effect will scale with the structure.  Thus Ollendorff cannot 
directly state the variation of phase-velocity with frequency, but when solving for a particular 
frequency associated with a dimensional resonance, he can state a set of frequencies associated with
the overtones of that resonance.  Now if we transform that information to make it dimensionless, 
i.e., we represent it as velocity factor vs. ℓ/D, we lose all knowledge of specific frequencies, but 
instead obtain a set of choices along a dispersion co-ordinate m.
     The obvious choice when comparing the theory with fundamental SRF data is to put m=1.  We 
should not expect this to agree with our data however, for several reasons, the first of which is that 
there are no fringe-field corrections.  
     We can see from the graph that the dispersion effect is associated with superluminal helical 
phase velocity, and that this phenomenon does not occur in short coils.  Thus we can deduce that 
there will be no superluminal velocity in the end regions of a truncated coil, and we can assume that
the lengths of the two fringe-field regions will each be comparable to the coil radius.  Thus one of 
the effects of applying an end correction to the theory will be to shift the set of dispersion contours 
to the right along the  ℓ/D axis.  It so happens that the parameter m does just that, and if we set it to 
1.9 it produces a curve that coincides with Drude's data from about ℓ/D=3 to ℓ/D=5.  Broadly, at this
stage, we can say that the apparent superluminal helical phase velocity needed to account for 
Drude's and Alex's measurements is confirmed by Ollendorff's theory.
     There is however another effect apparent in Alex's data (ℓ/D=6 to ℓ/D=40), which is the 
flattening-off of the phase-velocity profile in very long coils.  This is a second-order effect, but a 
rather noticeable one, and it has several possible causes:
1)   The superluminal effect is easily disturbed by changes in the current profile; and so a change in 
gradient might be something that the model fails to reproduce because the conduction-current is 
constrained to flow only in the helix direction.  In the next few sections, it will be demonstrated that
the superluminal phase velocity is easily abolished by perturbations in the coil current, and so any 
model shortcomings in this respect are likely to have some influence in regions in which the 
velocity is elevated.  
2)   Since Alex's measurements were made using a single stretchable coil, they might be affected by 
a constantly increasing SRF as ℓ/D increases.  The measured frequencies however only ranged from
64 MHz to 78 MHz, while it requires an approximate doubling of frequency to traverse a whole 
number distance in the m co-ordinate.  Thus while the frequency increase might account for some 
of the flattening, it is not sufficient to produce the whole effect.  It should also be noted that this 
idea is not a strictly correct interpretation of Ollendorff's theory. The contours tell us that if we 
know one overtone, we can find the series, and not that a curve for a single value of m can cross 
contours.  That constraint might break down however on consideration of small pitch-angle limiting
behaviour.
3)   The helical phase velocity as given by equation (1.8) is strictly Ollendorff's function divided by 
cosψ.  Thus, the theoretical curve plotted contains the assumption that cosψ=1.  It follows that the 
vertical axis for the graph is actually velocity factor divided by cosψ; which means that strictly the 
measurements should also be corrected by dividing by cosψ.  It will turn out that this adjustment is 
not negligible for some of Alex's data, but we must hold off from applying theoretical corrections 
until we have finished developing the theory, and so we will leave this matter until section 11.
4)   Apart from Ollendorff's model, there is a perfectly good physical reason for expecting that the 
the helical phase velocity will eventually fall back to c in the limit that the coil becomes very long.  
This is because as the coil is stretched out, it becomes more like a straight wire in free space.  This 
is also particularly true if the pitch-angle is allowed to increase as the coil is elongated.  The 
resonance of a straight wire cannot be excited by an induction loop perpendicular to it, but 
propagation along the wire at v≈c is nevertheless the limiting behaviour as the response disappears.
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     Some readers might be wondering, at this point, why we are so concerned with the superluminal 
region when there is a gross and obvious discrepancy for the smaller ℓ/D ratios.  The reason 
however is that the basic explanation for the latter is straightforward and somewhat mundane.  
Ollendorff's model produces a phase velocity, whereas the actual data are apparent phase velocities 
computed using the conductor-length and the SRF.  Thus the apparent velocities are roughly 
realistic for longer coils, but there is an induced axial electric-field that must give rise to an end-to-
end capacitance in shorter coils.  Thus the SRF is that of a short-circuited transmission-line 
apparently terminated in a static capacitance.  This will be lower than the SRF that would occur in 
the absence of the axial-field, giving the impression that the phase velocity is reduced.  Thus, as ℓ/D
becomes smaller, the apparent velocity factor crosses the v/c=1 line.  To model this effect, we 
require a way of calculating the axial-field capacitance, and a way of determining the characteristic 
resistance (impedance) of the helical transmission-line so that its input reactance at the SRF can be 
obtained.  The transmission-line equation will then provide the electrical length, and thus the phase 
velocity by comparison with the actual length (see section 11).  We might also turn this observation 
on its head however, and say that since Ollendorff has shown us that the true helical phase velocity 
will be c in shorter coils, then Drude's and other short-coil measurements contain information on the
axial-field capacitance.
     Interestingly, the balance between the axial-field effect and the superluminal effect means that 
free coil SRF measurements give an apparent phase velocity vhx=c when the ℓ/D ratio is about the 
same as the golden ratio51 (1.618 . . . ).  This also happens to be roughly the point at which the Q of 
radio coils is maximised.  This coincidence (if it is a coincidence) is responsible for the observation 
that the SRF of a radio inductor (actually the free-coil value, not a value predicted from in-circuit 
measurements) occurs when the length of the wire is approximately λ0 /2.

  Simple fringe-field correction  
In addition to making the measurements shown earlier, Alex also made a set of long coil 
measurements in which he recorded the fundamental and the first and second overtone resonances52 
(i.e., m=1, 2 and 3).  In the following graph, these are shown compared with the m contours 
produced by Ollendorff's function (1.5) with a single empirical parameter included in an attempt to 
correct for the fringe-fields.  The correction is applied to the argument of the modified Bessel 
functions thus:

x =(m+k ff )
π
2

D
ℓ

 (1.9)

There are two obvious ways in which we might apply a basic correction; one being the 
multiplication of the whole argument by a constant, which shifts the set of contours along the 
horizontal axis; and the other being the addition of a constant to the overtone number, which 
produces a shift that dies-out as m becomes large.  The latter method, with kff =1.15 seems to 
reproduce the spacing between the three experimental velocity factor curves rather well.  This 
method however, can only be used when vhx /c > 1, and when we come to apply a general fringe-
field correction, it will be done in a different way. 
     To make a complete model for the free coil, of course, we also need to correct for the axial 
electric-field capacitance primarily affecting short coils, and we need to correct for the flattening-
off of velocity factor that occurs when the coil is long. 

51 https://en.wikipedia.org/wiki/Golden_ratio   φ = (1 + √5)/2
52 http://g3ynh.info/zdocs/magnetics/appendix/kk4vb_srf.html

https://en.wikipedia.org/wiki/Golden_ratio
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Overtone series measurements made by Alex Pettit using a single stretchable coil.  Note that for ℓ/D<5, 
the coil was supported on a polyethylene rod. This causes the apparent velocity factors to come out 
somewhat too low, the effect diminishing as the coil becomes longer.  For ℓ/D>5 the coil was suspended 
vertically from one end.  This gives a much better fit until the measured velocity factors begin to flatten-off.  
The data are not smoothed and therefore show considerable scatter, and the drop-off is exacerbated because 
pitch-angle correction has not been applied.

An Open Office Basic macro routine for calculating Ollendorf's function using the built-in Bessel 
functions is given in the box below.

Function OLLENDF(byval x as double) as double
' Calculates Ollendorff's function.  D W Knight. Version 1.00, 2016-03-16
Dim I0 as double, I1 as double, K0 as double, K1 as double
Dim oFA as Object
oFA = createUNOService("com.sun.star.sheet.FunctionAccess")
I0 = ofa.callFunction( "Besseli", array(x, 0) ) 
K0 = ofa.callFunction( "Besselk", array(x, 0) ) 
I1 = ofa.callFunction( "Besseli", array(x, 1) ) 
K1 = ofa.callFunction( "Besselk", array(x, 1) ) 
OLLENDF = sqr( I0*K0/(I1*K1) )
end function
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  Decline of velocity factor with frequency  
Note that in visualising Ollendorff's theory in terms of vhx vs. ℓ/D, as we have done in the preceding 
discussion, there is a danger of giving a false impression.  The theory implies that long coils will 
show an  elevated vhx at relatively low frequencies, but that this will tail-off as the frequency 
increases.  Hence, if we pick a particular value of  ℓ/D, increasing the frequency by following a line 
of increasing m results in a decline in phase velocity.  The graph below shows the effect

     That the helical phase velocity in a long coil is high at low frequencies and decays 
asymptotically towards c as the frequency is increased was demonstrated experimentally by C C 
Cutler53 in 1948, using a scaled-up model of a travelling-wave-tube helix.  Cutler also noted a fairly 
good agreement between field measurements and the helix waveguide model at high frequencies, 
but at low frequencies there was a need to shift the model curve towards higher frequency.  This 
observation provides some justification for the empirical correction used in (1.9), which is to the 
effect that the amount of adjustment applied needs to die-off as the frequency is increased.

53 Experimental determination of helical-wave properties.  C C Cutler, Proc. IRE Feb. 1948, p230-233.  See p232, 
Fig 4. and observation 4. 
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1.8  Velocity factor for an infinite free helix  
After Ollendorff had published his solution for the solenoid resonance problem, there was an 
upsurge in interest in applying his method to the problem of the infinite helix.  To do so abolishes 
the length parameter and replaces it with a transmission-line parameter called the radial 
wavenumber54.  This approach quickly became ubiquitous, to the extent that Ollendorf's original 
solution was largely forgotten, and subsequent applications of the theory to truncated helices have 
the problem formulated in this somewhat unintuitive way.  Still, it is necessary to explore this 
approach fairly thoroughly, because it is the source of some formulae that have found wide 
application in the field of self-resonance and self-capacitance calculation.

Note that attenuation is not considered.  Following Schelkunoff55, we give the radial wavenumber 
the symbol γ  and define it in the expression:

γ
2
=β

2
−β0

2  (1.10)

where β is the axial phase constant, defined as:

β=
2π
λax

 =  ω
vax

 , where   ω = 2πf   

and β0 is (by analogy) the 'free space phase constant': 

β0 =
2π
λ0

 =  ω
c

 

The axial velocity factor is then:

vax

c
=

β0

β
 

and a little rearrangement of (1.10) gives it as:

vax

c
=

1

√1+(
γ
β0 )

2   (1.11)

where the single unknown γ needs to be determined from the coil parameters.  Now bearing in mind
that γ is measured in [radians / unit length], we multiply it by the coil radius (D/2) to make it 
dimensionless and then use it as the argument in Ollendorff's formula (1.6).  To see this substitution 
in action, recall that in section 1.7 the Bessel function argument was given as:

x = m π
ℓ

D
2

 

this now changes to:

54 A wavenumber is a frequency measured in cycles per unit length or radians per unit length.
55 See Pierce 1947, Theory of the beam-type TWT (already cited in section 1.6), Appendix B, Propagation of a 

wave along a helix.
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x = γ
D
2

 (1.12)

and we have to make the substitution:  mπ/ℓ → γ  throughout.  We can now rewrite equation (1.6) 
with all instances of  mπ/ℓ  thus replaced, and bearing in mind that  p/πD = tanψ  , we end up with:

β0 =
2π
λ0

 =  W( γD /2) γ tan ψ   (1.13)

Ollendorff's formula now becomes a transcendental equation for γ, which is to say that it gives no 
direct algebraic solution, but we can nevertheless find γ for a given set of coil parameters by a 
process of trial and error.  Those parameters are incidentally the coil diameter (or radius), the pitch 
(or pitch angle) and the frequency (or free-space wavelength).
     Now if we multiply both sides of (1.13) by D/2, replace instances of  γD/2 with x and rearrange, 
the problem is put into the generalised form:

2π
λ0

D
2

1
tan ψ

= x W(x)   (1.14)

There are numerous ways in which the left-hand side of this expression can be rearranged, but for 
the time being, we will simply regard it as a generic function of three unique variables U(f, D, p).  
Thus:

U (f, D, p) = x W(x)  (1.14a)

The need to solve this equation has caused some difficulty in the past; but as problems requiring an 
iterative solution go, this is probably one of the most well behaved.  The reason is that the radial 
velocity factor W(x) usually remains fairly close to 1,  and so the best first estimate for x in any 
iteration process is U.
 
The un-optimised Open Office Basic macro routine shown below accepts an input value of 
U ≥ 0.013 and returns x to within ±0.000 000 001. 

Function GetOlex(byval u as double) as double
' Solves Ollendorf's function for u = x W(x) and returns x.  
' Calls function Ollendf(x).  v 1.00, D W Knight, 2016-03-21.
Dim u1 as double, x as double, diff as double, shift as double, n as integer
if u < 0.013 then exit function
n = 0
x = u
do
  u1 = x*ollendf(x)
  diff = u - u1
  shift = diff/2
  x = x + shift
  n = n + 1
loop until abs(diff) < 1E-9 or n > 255
Getolex = x
end function
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     Now, having a way of solving for x =  γD/2, we can collect various definitions of the composite 
parameter U by inspection of (1.13), (1.14) and (1.14a).  Thus:

U (f, D, p)  =  β0
D
2

1
tan ψ

 =  
2π
λ0

D
2

πD
p

 =  x W(x)     ,   etc. (1.15)

Also, we note that by rearranging (1.13), the radial velocity factor can be written:

W(x) =
β0

γ tan ψ
 

These two identities are the horizontal and vertical coordinates of the graph below, which occurs in 
practically every paper on the subject of helical waveguide theory.

This graph is effectively a version of the graph of W(x) vs. m, shown at the end of section 1.7.

     Using this formulation, we can find the self-resonances of finite-length coils by feeding the 
determined parameter x = γD/2 back into equation (1.11).  To do this, note that vax = f λax, and that 
the λax  is some multiple of the coil length.  For an ungrounded free-coil resonator:

λax=
2 ℓ
m

 ,   where  m = 1, 2, 3, . . . .

and for a free coil grounded at one end

λax=
4 ℓ

2m+1
 ,  where  m = 0, 1, 2, . . . .

     For the ungrounded free-coil case, for example, we take equation (1.11) and apply the 
substitutions  β0=2πf0 /c  and  γ=2x/D ,  which gives:
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vax

c
=

1

√1+( 2x c
D 2π f 0)

2  

Substituting  vax = f0 2ℓ /m  and squaring then gives:

( f 0 2 ℓ
m c )

2

=
1

1+( 2x c
D2 πf 0)

2  

i.e.:

( f 0 2 ℓ
m c )

2

(1+( 2xc
D 2π f 0)

2

)=1  

Multiplying-out and cancelling gives:

( f 0 2 ℓ
m c )

2

+( 2 ℓ x
m πD)

2

=1

which can be solved for f0 thus:

f 0 =
cm
2 ℓ √1−( 2 ℓ x

m π D)
2

 

A more interesting version is obtained however if we multiply m/2ℓ  into the square root:

f 0 = c √( m
2 ℓ )

2

−( x
π D)

2

  (1.16)

Now recall that, in the Ollendorff formulation of the problem, the Bessel function argument was 
given as:

x = m π
ℓ

D
2

 

Which means that, in that particular case:

m
2 ℓ

=
x

πD
 

Should this be used as a substitution in (1.16), either way round, the result is f0 =0.  This is the 
trivial solution to the sheet-helix problem.  It is valid, but somewhat useless except that it gives us a 
check on the derivation of (1.16).
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  Kandoian & Sichak  
Prior to the time when electronic computers were accessible to engineers and researchers, the fact 
that the radial wavenumber γ had to be obtained by solution of a transcendental equation gave rise 
to the need for an approximate formula.  That was provided by Kandoian and Sichak56 57 as a means 
for estimating the height (i.e., length) of coils used in helically-wound ¼-wave vertical antennas.  
The formula however is based on the unmodified Schelkunoff version of sheet-helix theory, and so 
can be applied both to grounded and ungrounded free coils.  Hence it is common practice to write it 
as an expression for axial velocity factor:

vax

c
=

1

√1+20(D
p )

2.5

( D
λ0)

0.5   Kandoian - Sichak formula. (1.17)

For those familiar with the original, one notational difference is that it uses turns-per-unit-length; 
but since that is the same as the reciprocal of the pitch distance, i.e., 1/p, we use the latter here. 
     Now comparing the formula with equation (1.11), we can see that an empirical solution for γ is 
given in the form:

(
γ
β0 )

2

=( γλ0

2π )
2

= 20(D
p )

2.5

( D
λ0)

0.5

 

and using (1.12) as a substitution (i.e., γ=2x/D) we get:

(x λ0

πD )
2

= 20(D
p )

2.5

( D
λ0)

0.5

 

 
which can be rearranged to give:

x =√20π( D
λ0

D
p )

1.25

   (1.18)

Note incidentally, that M is used instead of x in the original documents.  In the various versions of 
the K&S article, this is shown plotted against  D2/ pλ0  ,  another non-intuitive composite parameter, 
but by inspection of equation (1.15), we can see that:

D2

p λ0

=
U (f, D, p)

π
2   (1.19)

Here however, we plot both the K&S approximation for x, and the exact value obtained by solving 
equation (1.14a); and perhaps more to the point, we also plot the percentage difference.

56 Wide-frequency-range tuned helical antennas and circuits, A G Kandoian and W Sichak, Elec. Comm, Dec 
1953, vol. 30(4), p294-299.  + errata, Elec. comm 31(1), p49.  Also published in Convention record of the IRE, 
1953, National Convention, Part 2 - Antennas and communication, p42-47.  See equation (3).

57 Reference Data for Radio Engineers, ITT corp. 4th edition 1956. p682-687.  See equation (19).
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Kandoian & Sichak approximation for x = γD/2  (radial wavenumber × coil radius) compared to exact 
solution of equation (1.14a).  The approximation is claimed to be valid up to D2/pλ0  = 0.2.  The actual 
percentage error is shown in the graph below.
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     It must be understood, of course, that prior to digital computers it was the norm to use 
approximate methods, and the K&S formula was fairly well optimised for calculation using log 
tables.  As we can see, it is rather inaccurate; but Ollendorff's theory is also inaccurate in its basic 
form through lack of fringe and axial field corrections, and whether or not a secondary source of 
error is fatal depends on how it combines with other errors.  To investigate that, we can compare it 
with both Ollendorff's theory and free-coil resonance data, by converting it into an expression for 
helical velocity factor.  To do so we can neglect the unit term in the square-root argument of 
equation (1.17), so that we have:

vax

c
=

λax

λ0
=

1

√20(D
p )

2.5

( D
λ0)

0.5   (1.20)

This additional approximation is used by Kandoian and Sichak themselves, and it can be justified 
on the basis that the remaining term is >>1 when the pitch is small, because the axial velocity is 
then much less than the helical velocity.
     What we want to get out of this is the helical velocity factor as a function of  ℓ/D, and since we 
have good data for ungrounded free coils resonating at the fundamental SRF, we can specify the 
case with  λhx= 2ℓw /m  so that:

vhx

c
=

λhx

λ0
=

2 ℓw

m λ0
 ,    m=1

How to extract this quantity from (1.20) is not exactly obvious, but the trick is to start by raising the
whole thing to the power of 4.  Thus:

(λax

λ0 )
4

=
1

202 (D
p )

5
D
λ0

 =  
p5

λ0

202 D5 D     

i.e.;

1
λ0

=( p5

202 D6
λax

4 )
0.2

 

Now observe that the length of the coil is the number of turns multiplied by the pitch, i.e.,  ℓ=Np , 
so p=ℓ/N.  Thus:

1
λ0

=( ℓ5

202
(N D)

5 D λax
4 )

0.2

  

Also, to a good approximation for coils of small pitch angle, ℓw =πDN , so that  ND=ℓw/π .  Hence:
 

1
λ0

= π
ℓw(

ℓ5

202 D λax
4 )

0.2
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i.e.;

2 ℓw

λ0
 = 

vhx

c
 = 2 π( ℓ5

202 D λax
4 )

0.2

 

and finally noting that for m=1,   λax= 2ℓ ,  this leaves us with:

vhx

c
 =  2π( ℓ

202 D 24)
0.2

=
2π

(202 24
)

0.2⋅( ℓ
D )

0.2

 

Which can also be written:

vhx

c
=

2π

800.4 ( ℓ
D )

0.2

=  1.088789( ℓ
D )

0.2

 (1.21)

This is plotted on the following graph for comparison with Ollendorff's theory (m=1) and combined
free-coil SRF data (i.e., Data from Drude, DWK and Alex Pettit plotted as a single curve and 
averaged in the case of duplicate measurements).
     What we find is somewhat surprising.  So many approximations have been piled into the formula
that it has lost all knowledge of asymptotes, inflection and gradient; but by what appears to be a 
pure fluke, it falls considerably closer to the data than the Ollendorff curve.  Particularly, in the ℓ/D 
range from about 3 to 15, fairly typical of HF antenna loading coils and Tesla coils, it is actually not
a bad approximation.  Thus it would have offered fair guidance to engineers trying to fettle such 
devices, which of course must account for its long-standing success.  Note incidentally, that the 
numerical constant and the exponent in equation (1.21) are empirical parameters derived from 
fitting choices made by Kandoian and Sichak.  Adjusting them can give an improvement, although 
the curve remains a poor fit overall and has no merit as a candidate for the purpose of data 
reduction.

     The derivation given above is similar to a derivation given in a study of self-resonance and self 
capacitance by Miranda and Pichorim58.  Those authors apply the K&S formula to the prediction of 
fundamental and overtone self-resonance calculation for half-wave and quarter-wave resonators, 
with fair results.  A comparison between the formula and the self-capacitance data of Medhurst 
however is problematic due to an incorrect resonance assignment.  We will investigate Medhurst's 
work in great detail over the course of the next few sections, and demonstrate that free coil 
resonance formulae such as K&S cannot be applied to the self-capacitance problem (see section 
10).

     The K&S formula, useful though it has been over the years, is obsolete in the age of digital 
computers.  It has also become a source of misdirection in some quarters, because it has come to be 
referred-to as an 'exact' solution to to the coil self-resonance problem.  This belief is traceable to an 
unfortunate choice of words in the last sentence prior to equation (2) in the K&S 1953 helical 
antennas paper, the troublesome statement being: "The exact expression for [the helical velocity 
factor] is . . .".  What they actually meant is that 'what follows is exactly the same as the theory 
given by Schelkunoff (which is not in itself exact), prior to our making an approximation to it'.  The
ambiguity is further compounded by two errors in the sentence that immediately follows.  This is 
written: "The approximation in figure 2 is obtained by neglecting (1) in comparison to other 

58 Self-resonant frequencies of air-core single-layer solenoid coils calculated by a simple method.  C M de 
Miranda and S F Pichorim, Electrical Engineering, March 2014.  DOI: 10.1007/s00202-014-0312-3.
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factors."; but what it should say is "The approximation in figure 2 is obtained by neglecting the term
1 in comparison to the other terms in equations (1) and (2)."  The lack of clarity seems to cause 
people to ignore the sentence, thereby making the K&S formula 'exact' according to some 
commentators59.

59 The 2009 website publication of the DAE formula (section 5)  attracted correspondence admonishing the author for 
failing to realise that an 'exact solution' to the problem already existed.
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2.0  Self-capacitance    
As we must conclude from preliminary discussion, despite the sometimes confusing evidence, the 
reactance of a coil is only strictly defined by a transmission-line model.  For purposes of circuit 
design however, it is well known that a coil behaves approximately as a lumped inductance in 
parallel with a fixed capacitance on a large interval between very low frequencies and the 
fundamental SRF.  Hence the logical starting point for a general expression for self-capacitance is to
use the electrical resonance formula as an asymptotically-correct bridge, linking the low-frequency 
inductance (derived from magnetics) to the SRF (related to the conductor length).
     As will be demonstrated later, when the apparent self-resonance frequencies of coils are 
calculated from extrapolated self-capacitance measurements, the data indicate that the wire is 
physically one half-wavelength long at the long-coil limit.  Given that a strong resonance also 
occurs when  λ/4  of wire is connected at one end to an infinite ground-plane however, it might not 
be immediately obvious why the λ/2 conductor-length resonance is active in this case.  The 'self-
capacitance' however is a way of representing the propagation-delay for a wave travelling along the 
wire, and for a parallel resonance to occur, the wave must traverse the coil twice in a go-and-return 
journey.  Self-capacitance is also a hypothetical contributor to the impedance measured at the 
terminals of the coil, as opposed to a contributor to the impedance measured between one end of the
coil and a ground plane.  Hence it should be understood that, while some impedance measuring 
devices are earthed at one of the test terminals, and some are not, they all produce substantially the 
same result for measurements made by direct (two terminal) connection to device under test.  It 
should be noted that several authors have not resolved this issue, and have consequently interpreted 
their data incorrectly.  Verifying that taking the ground connection on and off makes barely any 
difference to a coil shunted by an impedance of magnitude smaller than that of its self-capacitance 
is advisable60.

2.1  Propagation of uncertainty from SRF to self-capacitance   
In deriving an expression for coil self-capacitance from the conductor length, it is useful to be 
aware of the way in which any uncertainty in the relationship between conductor length and SRF 
will be transmitted into the calculated value of self-capacitance.  A particular reason for wanting 
that information is that there is often a discrepancy of a few % in the assumption that the electrical 
length of the winding wire is identical to the physical length.  Furthermore, a given percentage 
uncertainty in SRF does not translate into the same percentage uncertainty in self-capacitance.  

When we represent the coil as a lumped inductance (L) in parallel with a lumped self-capacitance 
(CL ), the self-resonant frequency is given by the electrical resonance formula61:

f 0s =
1

2π√L CL

 (2.1)

The self capacitance is then, by rearrangement:

CL =
1

(2π f 0s)
2 L

 

60 Stray capacitance will change a little, but that's the only noticeable effect until the shunt impedance starts to 
approach an open circuit.  Making self-capacitance measurements without using a ground connection is best 
however (see method used in section 10), because then the actual λ/2 resonance occurs at the point at which the 
shunt is removed.

61 This assumes zero losses, i.e., the relationship is accurate for high Q coils.
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The uncertainty in CL  due to the uncertainty in f0s  (using the standard rule for propagation of 
uncertainties), is given by the rate of change of CL with respect to f0s  multiplied by the uncertainty 
in f0s  .  The rate of change is obtained by differentiation (strictly partial differentiation because there
is another variable L that we assume to be a constant), and in this case it involves a simple 
application of the standard  formula:
 

∂(axn
)

∂ x
= a nxn−1  (where, for the present case,  n = -2 )

Thus:

∂CL

∂f 0s

=−
1

2π
2 L f 0s

3   

If the uncertainty in CL  is δCL , and the uncertainty in  f0s  is δf0s , then:

δCL =
−δ f 0s

2π
2 L f 0s

3  

This relationship relates to absolute uncertainties (i.e., the uncertainty is in the same units as the 
quantity to which it relates), whereas relative uncertainty is often more informative (i.e, uncertainty 
expressed as a proportion of the determined quantity).  We can however obtain the relationship 
between the proportionate uncertainties (i.e.,  δCL /CL  and  δf0s /f0s ) by using equation (2.1) to 
substitute for f0s

2  in the expression above.  Multiplying numerator and denominator by 2CL  gives:

δCL =
−2δ f 0s CL

4 π
2 L CL f 0s

3   

but  4π² LCL = 1/f0s
2 , thus:

δCL

CL

=−2
δ f 0s

f 0s
 

When uncertainties are given as standard deviations, it is of course the magnitude of this expression
that interests us (we do not care about the minus sign, which simply says that an increase in SRF is 
associated with a reduction in self-capacitance).  What we find therefore is that the proportionate (or
percentage) uncertainty in the self capacitance, as determined from the SRF, is twice the 
proportionate uncertainty in the SRF.  This might not seem to bode well for our intention to derive 
self-capacitance from conductor length; but generally, the ability to calculate a small capacitance 
(typically a few pF) to within a few % constitutes a good first-order estimation procedure.  Thus the
fact that the error in self-capacitance, due to error in the assumption that SRF is dictated by physical
conductor length, is twice the error in predicted SRF is not particularly serious.
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2.2  Self-capacitance derived from the conductor-length   
The length of wire in a helical coil is given by:

ℓw =
2π r N
cos ψ

  (2.2)

where  r  is the effective solenoid radius,  N  is the number of turns, and  ψ  is the pitch angle.  At 
the extrapolated SRF (as will emerge from physical data):

ℓw = λ/2

where  λ=v/f ;  v being the apparent velocity of light in the surrounding medium.  v is given by:

v =
1

√μ ϵ
=

1

√μ0μr ε0ε r

 

and for a self-supporting coil in air or vacuum  (neglecting the effects of the helical propagation 
environment), λ = λ0  and:

v = c =
1

√μ0ε0

  

Hence, at the SRF, at least to a first-order approximation:

ℓw =
1

2f 0s√με
 

Using this in (2.2) gives:

2 r N
cos ψ

=
1

2π f 0s √με
 (2.3)

At this point it might seem logical to substitute for  2π f0s  using the electrical resonance formula 
(2.1), but to do so will not result in an equality.  This problem arises because of a hidden 
generalisation in eliminating f0s .  Equation (2.1) defines the relationship between L and CL only at 
the extrapolated SRF, whereas we want the relationship to hold from DC to the SRF, and we want it 
to capture any changes in wave propagation that might result from connecting the coil to a circuit.  
This implies that the self-capacitance is not strictly a constant, it might even change in the presence 
of a shunt impedance, and so it cannot be defined as a constant.  Hence we need an additional 
parameter, which is as yet unquantified, but which might prove to be a function of coil geometry, or 
frequency, or load impedance, or perhaps all of those.  It is analogous to a relative permittivity, and 
so we will include it with the permittivity and permeability factors.  It is also analogous to 
Nagaoka's coefficient (the fringing magnetic field correction for the current-sheet solenoid), and so 
we will call it kE (electric correction factor).  Hence, substituting (2.1) into (2.3) and restoring 
equality by including  kE :

2 r N
cos ψ

=√ L CL

με kE
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Squaring both sides then gives:

4 r 2 N2

cos2
ψ

=
L CL

με kE
 

Hence:

CL =
με4 r 2 N 2 kE

L cos2
ψ

 (2.4)

The equivalent lumped inductance of a solenoid can be written62:

L =μ
π r2

ℓ
N2 kH  (2.5)                      

where  kH  is an aggregation of correction factors that is typically within 2% of Nagaoka's 
coefficient ( kL ) for coils of small pitch angle, and is assumed to be equal to  kL  in the current-sheet
approximation.  Substituting (2.5) into (2.4) gives:

CL =
4με r2 N2 ℓ kE

μπ r2 N2 kH cos2
ψ

   

i.e.;

CL =
4ε
π ℓ

kE

kH

1
cos2

ψ
(2.6)

From which we note that this representation finds the self capacitance to be independent of the 
number of turns. For a self-supporting coil in air, it becomes:

CL =
4ε0
π ℓ

kE

kH

1
cos2

ψ
 , where   4ε0

π = 11.27350207 pF/ m  

The coefficient  kE , of course, remains to be determined.  Also, we should note that Nagaoka's 
coefficient and the various other small corrections that make-up  kH  are defined purely in terms of 
static magnetic fields.  kH is therefore (at least in principle) at liberty to change as the phase-shift 
over the length of the coil increases.  That means that any apparent frequency-independence of self-
capacitance is dependent on the way in which the effects of phase-shift either scale with coil 
geometry, or cancel due to complementary variations in the electric and magnetic coefficients.

62 Solenoid inductance calculation.  D W Knight. http://g3ynh.info/zdocs/magnetics/  .  See section 12,
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3.    Medhurst's formula   
The most widely cited study of solenoid self-capacitance is that reported by R G Medhurst63 .  The 
intended remit of that work however, was probably not as wide as is generally assumed.  Medhurst 
engaged in a study of the AC resistance of solenoids with a view to producing formulae and tables 
for the prediction of Q.  In order to do that, he needed to correct his measurements for the effect of 
self-capacitance, and it was his original intention to use the theory of A J Palermo (to be discussed 
in section 6) for that purpose.  Palermo gives a formula based on the hypothesis that the self-
capacitance can be deduced by considering the capacitance between adjacent turns.  Medhurst soon 
ran into difficulties with that approach; and so was forced to "find out whether Palermo's formula 
did in fact agree with experiment".  He concluded that the data supporting Palermo's theory were 
suspect; and fell only a little short of accusing Palermo of scientific fraud.
     Medhurst's solution to the dearth of believable theory was to make self-capacitance 
measurements on a large number of test coils, all of which were wound on solid polystyrene rods.  
He then corrected the data for strays and fitted them to the following regression formula:

CL

D
= 0.1126

ℓ
D

+0.08+0.27√ D
ℓ

           [ pF / cm ] Medhurst's Formula

The first thing to notice here is that the coefficient 0.1126 is  4ε0/π  in pF/cm with an error in the last
digit as occurs when the value of  c  is taken to be 300 M m/s (instead of 299 792 458 m/s, which is 
now the standard value).  As Medhurst stated in his paper: "The first numerical factor follows from 
Nagaoka's inductance formula for long coils and the experimental fact that the self-resonant 
wavelength for long coils equals twice the length of the winding".  In other words; he employed a 
derivation somewhat akin to that which led us to equation (2.6), but using the long current-sheet 
approximation ( kL=1), and without encountering the  1/cos²ψ  factor.  The latter omission is of no 
consequence however, because Medhurst was aware that self-capacitance is substantially 
independent of turn-spacing provided that the coil has plenty of turns.  He therefore chose to keep 
the number of turns per unit length high to eliminate pitch effects, and thus worked in the regime 
where  cos²ψ → 1 .
     Medhurst's formula can, of course, be put into the form of equation (2.6), and it is instructive to 
do so.  We start by multiplying throughout by D, restoring natural constants to their proper 
identities, and converting to SI units by multiplying by 10-12 to get rid of the p in pF, and 
multiplying by 100 to get rid of the c in /cm.  This gives:

CL =
4ε0 ℓ
π +8×10−12 D +27×10−12 D√ D

ℓ
 [Farads]

Now, factoring  4ε0 ℓ/π  from each of the terms we get:

CL =
4ε0 ℓ
π [1+8×10−12

π

4ε0

(D / ℓ)+
27× 10−12

π

4ε0

(D/ ℓ )
3
2]   

which, after re-enumerating the empirical constants (and avoiding the introduction of rounding error
by retaining more significant figures than is justified), gives:

CL =
4ε0 ℓ
π [1+0.7096(D / ℓ )+2.395(D / ℓ )

3/2 ] [Farads]  (3.1)

63 Medhurst 1947. Reference given earlier
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Comparing this with equation (2.6), shows that Medhurst has given us the coefficient kE / kH as:

kE

kH

= [1+0.7096 (D / ℓ)+2.395(D / ℓ)3 /2 ]   

We will not however accept Medhurst's formula as it stands, there being several shortcomings that 
need to be addressed.

  Repeat of Medhurst's data analysis   
The first issue is that, in 1947, carrying out a least-squares fitting procedure on any sizeable dataset 
could amount to several days of work.  Consequently, Medhurst's statistical investigation is 
minimal.  He does however report his data; which, although not in raw form, are nevertheless as 
adjusted prior to fitting.  Hence we can repeat the analysis.

Writing equation (3.1) with undefined empirical coefficients we have:

CL =
4ε0
π ℓ [1+k1(D / ℓ)+k 2(D / ℓ)3 /2 ]  

Dividing both sides by  (4 ε0 /π ) D  gives:

CL/D

4ε0/π
= (ℓ /D) [1+k1(D / ℓ )+k2(D /ℓ )

3/2 ]  

Multiplying  ℓ/D  into the right-most bracket gives:

CL/D

4ε0/π
= (ℓ /D)+k1 +k2(ℓ /D)

−1 /2
 

and subtracting (ℓ/D) from each side gives:

CL/D

4ε0/π
−(ℓ /D)= k1 +k 2( ℓ /D)

−1 /2
 

This is a straight-line graph of the form  y=a+bx , with:

y =
CL /D

4ε0/π
−( ℓ /D)  

Notice here that the derivative  ∂y/∂(CL/D)  is a constant. Hence there is no non-linear scaling of 
uncertainties to contend with in this case. 
     Medhurst reports his adjusted data as a table of  CL/D  vs.  ℓ/D .  What he actually measured in 
each case however, was capacitance in the range of about 1 pF to 10 pF.  Hence we should note that 
the uncertainty of a  CL/D  value is probably best expressed as a percentage common to the whole 
dataset.  It transpires however, that the regression line for Medhurst's function does not lie 
particularly close to the data for low  CL/D  values when realistically weighted.  The problem is that 
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the choice of polynomial is not optimal, and needs artificial weighting in order to force it on to the 
lower asymptote.  Thus, assuming for purely pragmatic reasons that all of Medhurst's data have 
equal uncertainties, a simple least-squares fit64 returns the following information:

k1 = 0.824903 ± 0.089 
k2 = 2.328995 ± 0.073
σCL = 3.6 D pF 

the latter statistic meaning that a value for  CL  computed from the formula below has a standard 
deviation in pF of 3.6 times the coil diameter in metres.  Hence, Medhurst's formula, in its best state
of optimisation is:

CL =
4ε0
π ℓ [1+0.8249(D / ℓ)+2.329(D / ℓ)3 /2 ]      [Farads] D/2 >> p

3.2
Medhurst refitted

Our best estimate for the coefficient  kE/kH  using Medhurst's data and choice of fitting function is 
therefore:

kE

kH

= [1+0.8249(D / ℓ)+2.329 (D / ℓ)3 /2 ] Solid polystyrene
former

3.3

Equation (3.2) describes the data fairly well, but the pattern of residuals (observed minus 
calculated) is not random and, as mentioned above, the weighting required in order to obtain it is 
not realistic.  This indicates that a different choice of fitting function will give a better result (i.e., a 
smaller standard-deviation of fit).  There is however no point in pursuing this matter until we have 
solved the riddle of the missing dielectric constant.

4.    Coil-former dielectric   
All of Medhurst's coils were wound on solid polystyrene rods.  No matter whether we subscribe to 
the 'capacitance-between-adjacent-turns' hypothesis, or to a transmission-line theory; even the most 
cursory consideration of the fields involved will tell us that the dielectric constant of the coil-former
must appear in any expression for self-capacitance.  In fact, it is odd that Medhurst did not raise this
matter, especially since he did briefly consider the issue of dielectric losses in determining  Rac  .  If 
he accepted that the dielectric was penetrated by the electric field, then why did he assume that it 
would not affect the capacitance?
     A clue to the conundrum can be had by plotting Medhurst's formula and comparing it against two
lines: one being the long-coil asymptote for the case where the effective permittivity is the same as 
that of air, i.e.;

CL

D
=

4ε0
π ( ℓ /D)  

the other being the the long-coil asymptote for the case where the effective permittivity is the 
average of that of the coil former and the surrounding air.  Medhurst made all of his measurements 

64 See worksheet: Medhurst.ods, sheet 1, downloadable from 
http://www.g3ynh.info/zdocs/magnetics/appendix/self-res.html
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at frequencies in the range 460 kHz to 25 MHz.  The dielectric constant of typical polystyrene in 
this region of the spectrum is 2.56.  Hence the average relative permittivity is: (2.56+1)/2 = 1.78 , 
and the asymptotic formula in that case is:

CL

D
= 1.78

4ε0
π (ℓ / D)  

The comparison is given in the graph below, with Medhurst's adjusted data superimposed65.

It is obvious that when the coils become long and thin, the data converge with the line 
corresponding to an effective relative permittivity of 1.  This behaviour can be interpreted in one of 
two ways: either the coil former dielectric plays no part in determining the self-capacitance; or the 
effect of the coil former material diminishes as  ℓ/D  increases. 
     Medhurst obviously chose the first interpretation.  He appears to have done so (despite having 
used the relationship between conductor length and SRF in deducing the asymptotic form) because 
he was attempting to interpret his findings according to the then prevailing wisdom: which is that 
self capacitance is composed of internal and external components.  The internal component is the 
capacitance between adjacent turns, which he considered to be the minor contributor.  The external 
component is the capacitance from the coil body to the ground plane, which he considered to be 
dominant.  This gave him qualitative grounds for rejecting Palermo's theory, and presumably a 
reason for ignoring the coil former dielectric; but he seems to have decided to terminate the 

65 See worksheet: Medhurst.ods, sheet 2
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investigation without pursuing the matter further.  We can perhaps understand his lack of curiosity 
at this point by observing that the shortcomings of Palermo's work had practically doubled the 
amount of work he needed to do in order to complete his study of AC resistance, and the 
development of a universal formula for self-capacitance was not his objective.  What is less 
excusable is the assumption, by several generations of engineers since then, that Medhurst's formula
can be applied to all coils, rather than just to coils with solid polystyrene cores.  That the self-
capacitance of a coil is not due to the presence of a ground plane is demonstrated by the experiment 
illustrated below.

Effect of a ground plane on SRF:  In this setup, the coil is suspended above an anodised aluminium plate, 
which is earthed to the outer shield of one of the cables connected to the induction loop.  A 2 ft mercury-
vapour tube (the same as was used in an earlier illustration) is laid on the plate close to the coil and parallel 
to the axis.  At the fundamental parallel resonance frequency, the glow discharge in the tube shows that the 
field pattern is in accordance with a simple static capacitance in parallel with the coil.  The added 
capacitance however, only reduces the resonant frequency from 26.7 MHz to 24.7 MHz (-7.5%), a 
surprisingly small change given that the ground plane is only 20 mm (0.2 coil diameters) away.  Because the 
solenoid axis is parallel to the plate, the disposition is such as to minimise eddy currents.  The principal 
interaction is therefore via the electric field.  Using the electrical resonance formula, it is trivial to show that, 
if a coil is shunted by a capacitance equal to its self-capacitance, then its resonant frequency will be reduced 
by a factor of 1/√2 , i.e., a shift of -29%.  Evidently, the ground plane capacitance is considerably less than 
the self-capacitance, and so it cannot be the principal component of the self capacitance.  Medhurst's ground-
plane hypothesis therefore fails.

     In this discussion, of course, we take the view that the SRF is a transmission-line resonance, in 
which case the disappearance of the coil-former permittivity from the long-coil asymptotic 
behaviour is not difficult to explain.  Consider a wave travelling along the helix.  In the middle 
region of the solenoid at least, the electric vector will be substantially perpendicular to the axis 
(actually, tilted by an amount equal to the pitch angle).  The boundary conditions for the related 
sheet-helix problem also require that the electric field is continuous across the conducting wall66, 
and while we will establish that this model is not appropriate here without modification, the 
continuity of the field is nevertheless the same.  Hence the relative permittivity on the inside of the 

66 See, for example, Corum & Corum, cited earlier.
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solenoid will affect wave propagation.  When the circumference is small in comparison to the 
wavelength however, the electric field will be cylindrically symmetric.  This means that the electric 
fields associated with wave propagation that penetrate into the interior of the solenoid from opposite
sides will be almost equal and opposite.  Therefore the radial fields on the inside of the solenoid 
will tend to cancel; the degree of cancellation being minimal when  ℓ/D << 1  and almost complete 
when  ℓ/D >> 1 . 
     The radial field cancellation effect is incidentally demonstrated by an ingenious experiment 
conducted by Lee et. al67.  These authors used an electrodeless piezoelectric sensor, transmitting its 
mechanical vibrations through a quartz rod to an electrical transducer outside the coil.  This gives a 
relatively non-invasive method for sensing the field in both magnitude and direction.  They confirm 
that the main field inside a solenoid is in the axial (induced voltage) direction and not the azimuthal 
(radial) direction.

Radial field pattern at the SRF:  A gas discharge tube perpendicular to the coil axis mainly shows the 
radial field amplitude.  This demonstration shows that the electric field is continuous across the solenoid 
wall.  It also shows the axial node, which occurs because the phase-shift from turn-to-turn is small at this 
frequency (26.7 MHz), so that the E-field for helical propagation cancels at the axis.

     It follows that self-capacitance can be conceived as the sum of two parts, although not as 
envisaged by Medhurst.  If we define the relative permittivity external to the solenoid as  εx  and the
relative permittivity on the inside as  εi  , then we need to re-derive the formula in such a way that:

εr = εx   when   ℓ/D >> 1

and

εr=
(εi+εx)

2
 when   ℓ/D << 1

67 Electric fields in solenoids.  S. Lee, Y Lee and I Yu., Japanese J Appl. Phys, 44(7a), 2005, 5244-5248.  
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i.e., for the latter case; when the diameter of the coil is large in comparison to the length, the 
effective permittivity tends to the average of the internal and external permittivities.  It is worth 
noting here incidentally, that Sichak68, in his study of helically-loaded coaxial lines, comes to the 
same conclusion in deriving his velocity factors.

A general first-order expression for coil self-capacitance was derived earlier as (2.4):

CL =
4ε
π ℓ

kE

kH

1
cos2

ψ
 

We can still retain this general form, and satisfy the required asymptotic behaviour, by re-writing 
the equation as follows:

CL =
4ε0
π ℓ [εx+k C

(εx+εi)

2 ] 1
cos2

ψ
 

Here the external relative permittivity  εx  has been separated from the original permittivity factor  
ε , and  kC  is a coefficient that goes to zero when  ℓ/D >> 1 .  Now factoring  εx  from the square 
bracket we have:

CL =
4ε0 εx

π ℓ [1+ kC

2 (1+
εi
εx ) ] 1

cos2
ψ

 (4.1)

which is in the same form as equation (3.2) (Medhurst's formula optimised) when  εx = 1  and 
cos²ψ = 1 .  Also noting that  εi = 2.56  for Medhurst's data, we have an initial estimate for  kC  from 
equation (3.3):

1.78 kC = 0.8249 ( D/ℓ ) + 2.329 ( D/ℓ )3/2 

i.e.,

kC = 0.4634 ( D/ℓ ) + 1.3084 ( D/ℓ )3/2

68 Coaxial Line with Helical Inner Conductor. W Sichak. Proc. IRE. Aug. 1954. p1315-1319. Correction Feb. 1955, 
p148.  See equations (5) and (6).
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5.    Empirically-corrected formula for self-capacitance   
Now having the complete form for an expression for self-capacitance (at least, in as far as 
Medhurst's approach is valid), we can use Medhurst's data, or indeed good data from any source, to 
find an empirical expression for the coefficient kC .  We start by dividing both sides of equation (4.1)
by D and rearranging:

[ (CL/ D) cos2
ψ

(ℓ /D) (4ε0/π) εx

−1] 2
(1+εi /εx)

 =  kC   (5.1)

If Medhurst's data are used to evaluate  kC  using this expression, it will be found that a roughly-
straight line of negative gradient is obtained when  log(kC )  is plotted against  log(ℓ/D).  Hence, to a
first approximation, there is a regression line having the form:

ln(kC ) = k1 - k2 ln(ℓ/D)

We can, of course, make the gradient positive by inverting the argument of the logarithm on the 
right, i.e.:

ln(kC ) = k1 + k2 ln(D/ℓ)

Fitting the data on this basis yields69:

ln(kC) = 0.604 + 1.363 ln(D/ℓ)

Although the existence of a logarithmic relationship might be analytically significant however (see 
section 9); the fit, corresponding to a standard deviation of 4.7% for unit variance of an observation 
of unit weight ( χ²/ν = 1 ), is not as good as that obtained in the process of optimising Medhurst's 
formula (section 3).  Hence a more complicated function with a greater number of adjustable 
parameters is needed.
 
Taking the exponent of the expression above gives a first approximation for kC as:

kC ≈ exp[ ln(1.83) + 1.363 ln(D/ℓ) ]

where ln(1.83) = 0.604.  Hence:

kC ≈ 1.83 (D/ℓ)1.363

The fit can obviously be improved by replacing this with a polynomial in D/ℓ.  Notice also that  kC 
must go to zero when  ℓ/D  is very large, i.e., when  D/ℓ→0 .  Hence the required polynomial has no
zero-order (i.e., constant) terms.  If the polynomial has a finite first-order term however, we can 
create a new expression with a finite zero-order term by multiplying throughout by  ℓ/D ; i.e., if we 
have a starting expression:

kC = k1 (D/ℓ) + k2 (D/ℓ)p2 + k3 (D/ℓ)p3 + . . . 

then

69 See worksheet: Medhurst.ods, sheet 3.
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(ℓ/D) kC = k1 + k2 (D/ℓ)p2-1 + k3 (D/ℓ)p3-1 + . . . 

Fitting the data to an expression of this type is easily accomplished using a modified linear 
regression procedure, where the third and higher terms (if needed) are manually adjusted.  The fact 
that we don't obtain uncertainties for the higher-order coefficients when we use this method doesn't 
matter, because we have no use for the uncertainty of a fitting parameter that is unrelated to any 
physical quantity.  Hence we rearrange equation (5.1) so that  (ℓ/D)kC  is the coefficient to be 
represented as a polynomial:

[(CL /D) cos2
ψ

(4ε0 /π) εx

−( ℓ / D)] 2
(1+εi/εx)

= (ℓ /D) kC   (5.2)

This expression is now taken to represent a simple polynomial of the form:

y = k0 + k1 x + k2 x² + . . . 

Note that the relationship between  x  and  D/ℓ  is yet to be decided; but by inspection of Medhurst's
formula it should come as no surprise that something approaching an optimal fit is obtained when:

x =√D / ℓ  

In performing a least-squares fit, we must, of course, weight the data according to their relative 
uncertainties.  Medhurst does not report the actual capacitances or diameters used in obtaining his 
table of CL/D values, but by fitting the data initially with equal weights, it can be seen from the 
pattern of residuals that the largest CL/D values have the greatest scatter.  Also, the largest CL/D 
values are those for long coils, and the data for long coils are least important because the long coil 
asymptotic behaviour is analytically defined.  Hence it is reasonable to fit the data on the basis that 
the uncertainty in an observation is proportional to the absolute value of the observation, i.e.:

δ(CL/D) = u (CL/D)

where  u  is a proportionate uncertainty (and 100u is a percentage uncertainty) common to the 
whole dataset.  From this we can determine the uncertainty of a y value as:

δy =
∂ y

∂(CL /D)
δ(CL /D)  =  

∂ y
∂(CL /D)

u (CL/D)   

The derivative ∂y/∂(CL/D) is obtained by differentiating (5.2):

∂ y
∂(CL/D)

=
cos2

ψ
(4ε0/π)εx

2
(1+ε i /εx)

 

Hence:

δy = u (CL /D)
cos2

ψ
(4ε0/π)εx

2
(1+εi /εx)
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which, for coils with external air dielectric and small pitch angle, reduces to:

δy =
u(CL/D)

(4ε0/π)

2
(1+εi)

 

The statistical weight of an observation is given by:

wi = 1 / δyi²

and u is adjusted until the standard deviation of fit, √χ
2
/ν = 1.

A good fit (u = 0.021) was obtained using the polynomial70:

(ℓ /D)kc = k0 +k1 √D / ℓ +k2(D / ℓ )   

where:
k0 = 0.717439 ± 0.027 
k1 = 0.933048 ± 0.021
k2 = 0.106

Thus:

CL =
4ε0 εx

π ℓ [1+kC

(1+εi /εx)

2 ] 1
cos2

ψ
    ± 2.1%

where    kC =0.717439(D / ℓ)+0.933048(D / ℓ)3 /2
+0.106(D / ℓ)2   

5.3
CL-DAE

This will be referred to as the DAE (doubly-asymptotic, empirically corrected) formula for solenoid
self-capacitance (generally applicable when the externally connected capacitance is > CL ).  Note 
that there is little point in extending the polynomial; a standard deviation of 2.1% being about right 
for the data available (and the theory as it stands), and the absence of high-order terms making it 
reasonably safe to extrapolate.
     Notice incidentally that the empirical constants have been retained to more decimal places than 
their uncertainties would seem to warrant.  This is because, when using an empirical formula to 
reproduce a dataset, the best curve is always obtained by not rounding the determined coefficients 
(i.e., by retaining information to a few places beyond the uncertainty).

A Basic macro function for calculating self-capacitance from the DAE formula is given in the box 
below.

Function CLDAE(ff as double, ei as double, ex as double) as double
'Calculates solenoid CL/D [pF/m] using DAE formula. v1.01 
'ff (form factor) is solenoid length / Diameter
Dim kc as double
kc = 0.717439/ff +0.933048*ff^-1.5 + 0.106/(ff*ff)
CLDAE = 11.27350207*ex*ff*(1+kc*(1+ei/ex)/2)
end function

70 See worksheet  Medhurst.ods, sheet 4
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6.    Inter-turn capacitance   
A trivial investigation involving a Grid-Dip Oscillator and a set of engineer's callipers will confirm 
that the various resonances exhibited by a disconnected radio coil are associated with the total 
conductor length.  It is therefore extraordinary that the self-capacitance of single-layer coils is often 
still attributed to the static capacitance that is presumed to exist between adjacent turns71.  This 
warrants consideration of whether of not the inter-turn capacitance hypothesis is plausible, and 
whether or not it can it provide insights into the properties of inductors.
     The basic idea is that if we inspect a small region of a solenoid wall we see a set of wires lying 
parallel to each other.  It is then presumed that there will be a capacitance between any chosen pair 
of wires; and that this capacitance can be calculated from physical dimensions.  There is a small 
paradox inherent in the fact that every infinitesimal element of capacitance is shorted-out by a loop 
of wire of length << λ , but we will put that detail aside for the moment.

     The capacitance between a parallel pair of conducting cylinders is given by Russell's formula72:

C =
επh

ln[ p
d

+√(p
d )

2

−1]  [Farads]  , h >> p ,   h >> d . Russell's formula (6.1)

Where  h  is the length of the cylinders,  p  is the distance from axis to axis, and  d  is the cylinder 
diameter.  Note that, if the surrounding medium is air,  ε = ε0  ; and in old publications,  ε0 × π  is 
sometimes given approximately as  1/3.6 pF/cm .  Also:

ln(x+√x2
−1)= arccosh (x )  

which gives rise to the compact form:

C =
επh

arccosh(p /d)
 [Farads] (6.1a)

Since arccosh (inverse hyperbolic cosine) is a built-in function of spreadsheets and some 
programming languages, the latter formula is often convenient.  Note that arccosh(1) = 0 , which 
means that the capacitance goes to infinity when the cylinders are just touching without making 
electrical contact.

Palermo  
The 1934 paper of A J Palermo73 was mentioned earlier as the source of Medhurst's frustrations.  
Palermo asserts that, since the voltage between adjacent turns is 1/N times the voltage across the 
whole coil, we should take the self-capacitance of the coil to be 1/N times the capacitance 
calculated using equation (6.1a).  To calculate that capacitance he integrates over the whole coil 
(ignoring pitch angle), effectively choosing to identify  h = πDN , and arrives at the formula:

71 Some authors don't even bother to give the coil ℓ/D ratio when reporting self-capacitance measurements.  
72 See, for example: Radio-Frequency Measurements by Bridge and Resonance Methods, L. Hartshorn, Chapman 

& Hall, 1940 (Vol. X of "Monographs on Electrical Engineering", ed. H P Young). 3rd imp. 1942.
Ch VI, section 3: Calculation of capacitance. (Russell's formula for wires on p104). 

73 Distributed Capacity of Single-Layer Coils, A J Palermo. Proc. IRE. Vol 22, No. 7, July 1934. p897-905. 
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CL =
ε0 π

2 D
arccosh (p/d )

 . Palermo's formula (6.2)

Relative permittivity is ignored, and there is no mention of coil-former dielectric anywhere in the 
paper.
     Notwithstanding any doubts we might have about this approach, there is a straightforward 
mathematical error in the formula.  The point of objection lies in the assumption that the turns 
overlap for the entire length of the wire; whereas there is no adjacent turn on the outside for the two 
turns at the ends of the coil.  Hence Palermo should have taken h to be  πD(N-1) , in which case he 
would have obtained the expression:

CL =
ε0π

2 D(N−1)

N arccosh (p /d)
 CT2T (6.3)

For the sake of working nomenclature, we will refer to this corrected version as "CT2T" 
(capacitance from turn to turn).
     We cannot know whether Palermo started by making measurements and then derived his 
formula, or vice versa.  It seems likely that he had at least one measurement available initially 
however, that of his coil No. 1.  The coil was made from 2 turns of 6.24 mm diameter wire, with an 
average diameter of 74.7 mm and a pitch of 16.7 mm.  Palermo measured the self-capacitance as 
3.2 pF, and calculated 3.9 pF using an approximate version of equation (6.2).  He considered this to 
be a "very severe test" of his formula; whereas, in view of the mathematical error, it is actually just 
a coincidence.  Subsequent coils had turns numbers in the range of 5 to 112 however, in which case 
the difference between (6.2) and (6.3) is less significant.
     Palermo reported a total of 19 self-capacitance measurements, 12 of which he carried out 
himself, and 7 of which were communicated to him by F W Grover of the National Bureau of 
Standards.  It was in the group of measurements performed by Palermo himself that Medhurst 
found some of the numbers to be irreproducibly large.  Later we will compare the measurements 
against the DAE formula and show that Medhurst was right to cry foul; but, in fact, the extent of the
tampering was even greater than Medhurst had suspected.
     Palermo's formula often produces values that are much too large.  In such cases, he appears to 
have adopted the habit of adjusting the calculated value downwards and the measured value 
upwards in order to obtain plausible agreement74.  Since he acknowledges the help of F W Grover 
however, he was evidently not in a position to tamper with the NBS data; and so in that case he 
confined himself to writing down false calculation results.  In the worst instance, his formula gives 
27 pF, but he reports 12.9 pF to confer with an NBS measurement of 12.8 pF.  There are other 
sleights of hand for those who wish to pursue the issue, but overall the paper is a travesty.
     This, unfortunately, is the insalubrious basis on which the inter-turn capacitance hypothesis 
became part of electromagnetic folklore.  What Palermo hoped to gain by promoting a defective 
theory is difficult to guess; but he was possibly motivated by an inability to accept failure after an 
early success.  His formula was subsequently turned into tables and abacs to 'assist' the radio 
engineer; and his ideas diffused naturally into the textbooks to lie in wait for the unwary.

74 See worksheet CL_theor_test.ods, sheet 3.
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GKMR  
The 'capacitance between adjacent turns' hypothesis re-emerged in a new form in 1999, in a paper 
by Grandi, Kazimierczuk, Massarini and Reggiani (GKMR)75.  In the GKMR approach, the coil is 
considered to be equivalent to a set of wire rings.  In that case, since there are  N-1  gaps between  
N  turns, the capacitance of an isolated coil is given by the capacitance between any pair of rings 
divided by  N-1 .  The length of a ring is  πD ; and so, using Russell's formula (6.1), and presuming 
the use of un-insulated wire, we have:

CL =
ε0 π

2 D

( N−1) ln[ p
d

+√(p
d )

2

−1]  . GKMR (6.4)

Grandi et al. support this derivation by measuring the capacitance of actual sets of wire rings.  In 
doing so they demonstrate that the neglect of capacitance between non-adjacent turns is not 
important, and that the curvature of the wires does not significantly affect the validity of Russell's 
formula.  The issue that must concern us here however, is that the wire-ring model does not have the
magnetic field of the actual solenoid, and it does not consider the electromagnetic propagation that 
dictates the relationship between the electric and magnetic fields.

7.    Comparison of self-capacitance formulae   
A fair test of all of the self-capacitance theories discussed so far can be had by using data from a 
source with no theoretical axe to grind.  Such data appear in the
documentation for the Coilcraft Maxi Spring™ ( 132-xxSM ) series of
surface-mount air-core inductors76 (pictured right), the guaranteed lower
limit of SRF having been recorded to 3 decimal places.  In fact these SRF
data are extrapolations, made from jig measurements with finite stray
capacitance, and so correspond to the pseudo-SRF calculated from the
parallel combination of inductance and self-capacitance.  Hence, using the published nominal 
inductance (±2%), they can be converted back to the self-capacitances they represent.  What is 
particularly useful about this dataset is that the solenoid length ℓ and diameter  D, and the wire 
diameter d, are constants.  The only variables are the number of turns N and the pitch to wire 
diameter ratio  p/d .  Hence there is no ambiguity in deciding between theories that predict no or 
minimal variation in self capacitance with turn-spacing, and those that make predictions to the 
contrary.

In order to test the various theories, the Coilcraft solenoid
parameters were extracted from the published mechanical
data as follows: 

     Coil length:  ℓ = 7.98 ±0.51 mm
     Mean coil diam.:  D = 4.8 mm (estimated)
     Wire diam.:  d = 0.397 mm (estimated).

75 Stray Capacitances of Single-Layer Solenoid Air-Core Inductors", G. Grandi, M K Kazimierczuk, A Massarini, 
U Reggiani. IEEE Transactions on Industry Applications, Vol 35, No. 5, Sept/Oct 1999, p1162-1168. 

76 Coilcraft Maxi Spring Air Core Inductors.  Document 185-1, 2003.  www.coilcraft.com
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Calculation results77 are shown in the following graph:

     The data are noisy, but there is obviously minimal correlation between the capacitance and the 
p/d ratio.  Instead, the points lie slightly above the  εx = 1  external-permittivity contour from the 
DAE formula (5.3).  The fact that the DAE prediction is a little low is explicable on several counts: 
Firstly, the experimental capacitances are calculated from the guaranteed minimum pseudo-SRF, 
and so correspond to a guaranteed 'no-greater-than' value.  Secondly, each of the coils has a tight-
fitting rectangular plastic cover, which touches the cylinder at three points around the circumference
(see illustration given earlier).  Thirdly, the coils have short connecting leads and so have slightly 
more wire than the helix parameters suggest.
     The curve labelled "CT2T" is produced by the corrected version of Palermo's formula (6.3).  The
uncorrected version (6.2) is even worse and falls nowhere close to the data shown.  The curve 
labelled "Grandi et al." is produced by the GKMR formula (6.4).  The inter-turn-capacitance 
theories bear no resemblance to the data series, but all are capable of matching a single 
measurement by deliberate or accidental choice of turn-spacing. In the case of the GKMR formula, 
the turns need to be very close together in order for the coincidence to occur.

     Interestingly, the theoretical work of Grandi et al. was supported by a single measurement on an 
actual coil, this having the very low  p/d  ratio of 1.02.  The coil was wound using 16 turns of 
10 mm diameter wire (presumably tubing), with a pitch of 10.2 mm maintained by using "plastic 
spacers" present for about 10% of the turn length.  The type of plastic and its dielectric constant 
were not reported78.  The mean coil diameter D was 326 mm, and its length (Np) was 163.2 mm.  
The inductance of the coil was measured to be 82.3 μH at 10 kHz, and its (pseudo) SRF was 5.1 
MHz, giving the self capacitance as:

77 See worksheet: CL_theor_test.ods, sheet 2.
78 The thickness and coverage suggest insulating tape.



57

CL =
1

(2π f 0s)
2 L

 =  11.83pF  

Equation (6.4) (GKMR) predicts the capacitance to be 9.51 pF, and Grandi et al. argue that the 
higher value in practice is due primarily to the effect of the plastic spacers, and to a lesser extent to 
approximations used in the derivation of their formula.  It seems curious however, given that the 
coil was robust enough to be self-supporting and that the spacers were bound to affect the 
capacitance, that the helix had to be compressed to the point where spacers were needed before the 
sole reported measurement was made.
     The DAE formula (5.3) predicts the capacitance of the GKMR test coil to be 10.1 pF in the 
absence of dielectric materials. The DAE prediction, of course, is not greatly affected by turn 
spacing.

     Of the self-capacitance prediction methods considered so far, all except the transmission-line 
related DAE approach have now failed.  Hence it is interesting to compare the data discussed so far 
against a set of coil-former permittivity contours generated by the DAE formula79.  The data are 
shown plotted below as ( CL/D ) cos²ψ  vs.  ℓ/D.

79 See worksheet: CL_theor_test.ods, sheet 1.
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The most arresting feature of the graph is the enormous scatter in the 'measurements' performed by 
Palermo.  The six points above the curve for εi = 6 are those that Medhurst suspected to be fake, and
it is difficult to fault that conclusion; but the measurements falling below εi = 4 might possibly be 
genuine.  The result for Palermo's coil No. 1 lies above the εi = 1 contour, even though the wire was 
thick enough to be self-supporting; but there might have been dielectric supporting material present 
during the measurement, and no details of any stray capacitance and lead corrections were given.  
His formula however predicts a value higher than his measurement, and he might simply have 
adjusted the result upwards.
     The measurements supplied to Palermo by the NBS all fall in a tight group, despite the coils 
having turns numbers between 5 and 112.  The situation, between the contours for  εi = 3  and 
εi = 5 , is consistent with the then (1934) standard practice of winding test inductors on wooden 
cylinders.
     The measurement for the author's large air test coil80 (DWK 18T) falls close to the εi = 1 contour 
when either the the inner or the average coil diameter is used.  This is not a cheat, and neither was 
this measurement used in determining the empirical coefficients.
     The remaining data have been discussed previously, and all lie above the  εi = 1  contour due 
(either arguably or reportedly) to the presence of dielectric material, or due to the measurement 
being an upper limit, or due to any uncorrected effects of connecting the coil to a measuring jig.

     In summary, it is fair to say that theories that attempt to attribute the self-capacitance of single-
layer solenoids to the inter-turn capacitance are wrong.  In Palermo's case, the problem lies firstly in
the assumption that a single wire can behave like two wires lying parallel, and secondly that the 
resulting capacitance should be divided by N .  Logically, his theory is no better than a guess; which
happens to work roughly for some coils, but has no actual predictive power. 
     The GKMR theory however is more plausible and challenges us to explain why it fails.  A coil of
wire is not a short-circuit at high frequencies.  It can sustain a voltage across its terminals, and the 
current that flows is controlled by the resistive, inductive and capacitive elements of its impedance. 
If we cut the solenoid wall parallel to the axis and flatten it out, we will have a set of  N  parallel 
wires with  N-1  gaps, and the capacitance of this structure is easily calculated.  Why then is it not 
the self-capacitance of the coil?
     The fallacy lies in the assumption that, since the coil can be modelled electrically as a set of 
lumped components, then the lumped components must have an independent existence within the 
coil.  In fact, it is not even rigorous to assume that the resistance is independent of the reactance, but
at least the error in that case is small provided that the Q is high.  The GKMR theory fails because 
the reactive elements are primarily aspects an energy storage mechanism associated with the 
particular geometry of the helix.  Cutting the coil open destroys the inductance, and thereby disrupts
the all-important relationship between the electric and magnetic fields.
     From the relationship between conductor length and self resonance, and from the ability of the 
coil to emit circularly polarised radiation when excited by linearly polarised radiation; we infer the 
existence of an electromagnetic wave propagating along the helix, and presume it to be a major 
reservoir of stored energy giving rise to the reactance.  The overall field surrounding the coil will be
the superposition of the fields from the individual turns.  In this, the overall electric field will be at a
maximum in a direction perpendicular to the wires and parallel to the pitch direction, i.e., it will be 
tilted away from being perpendicular to the coil axis by an amount equal to the pitch angle.  If we 
cut the coil open lengthwise, the helical waveguide will cease to function, the structure will turn 
into a capacitor, and the principal direction of the electric field will switch to point parallel to the 
axis.  It is this difference in the principal field directions between the static capacitance model and 

80 Worksheet 18T_scat_Howe.ods.
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the actual coil that causes the inter-turn capacitance hypothesis to fail.
     It is conceivable however, that although a major part of the energy is stored in a propagating 
wave, the inter-turn capacitance might still exist as a parasitic component.  In that case, we would 
need to include the GKMR capacitance in the total self-capacitance, and in correcting the DAE 
formula using actual data we might have missed a systematic offset.  Fortunately, no such offset is 
evident, as can be seen by re-examining the graph comparing Coilcraft data and theory that was 
given earlier.  When the spacing between turns is large, the GKMR formula predicts a small 
capacitance that is nearly independent of  N .  It is only when the gap between turns starts to close 
that the GKMR capacitance suddenly shoots up, but there is no corresponding trend in the data.
     It was suggested by Medhurst, that the fact that the capacitance does not increase asymptotically 
when the gap between turns closes is due to the proximity effect; i.e., due to the tendency for the 
current streams in adjacent turns to repel each other when they are very nearly in phase.  The 
proximity effect would indeed modify the asymptotic behaviour, but it does not explain the 
complete absence of observable effect.

     We are drawn to the conclusion that the most prominent feature of the inter-turn capacitance 
hypothesis is that it consistently fails to explain any aspect of self-capacitance.  This takes us back 
to an observation made at the beginning of this section, which is that the idea is paradoxical.  If we 
draw a line between two points situated on adjacent turns, there will always be a loop of conductor 
connecting those points; and in the regime in which the concept of self-capacitance is valid (i.e., 
well below the SRF) the length of that loop will be small in comparison to the wavelength.  Hence 
the inter-turn capacitance is shorted-out until the frequency becomes relatively high, an awkward 
fact that does not bode well for the derivation of a constant static capacitance by that method.  This 
does not mean that there will be no 'adjacent turns' effect however, it is just that it will make a minor
contribution.  
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8.    Tubular coil formers   
Medhurst was either wise or fortunate in his decision to wind his test coils on solid rods all made 
from the same material. Had he chosen to use tubes, or a variety of dielectrics, he would not have 
been able to fit his short-coil data successfully.  That this is true is easily demonstrated by setting up
the scattering experiment described in section 1.1.  When cylindrical blocks of dielectric material 
are inserted into air solenoids suspended on the jig, a substantial reduction of the SRF occurs.
     Most coil-formers used in practice are, of course, tubular.  This gives us the problem of how to 
determine  εi  , which will be some weighted average of the permittivities of the solid dielectric and 
the air inside.  Another issue is that of determining the fringe-field corrections for turns close to the 
ends of the coil (especially since the coil former permittivity only makes a substantial contribution 
to the self-capacitance of short coils).  Unfortunately however, there is little in the way of 
quantitative information on the effect of  discontinuous internal dielectrics.  The best we will do 
here therefore, is to posit a first-order correction that is reasonably realistic.

Long coil correction 
It seems likely that ignoring the effect of pitch angle will not cause any significant error.  We will 
also ignore end effects, not because they will be negligible, but because there is no simple way of 
dealing with them.  Under those conditions, for the case of a wave propagating along the helix, we 
only have to consider fields perpendicular to the solenoid axis.  We will also restrict ourselves to the
case in which the circumference of the cylinder is short in comparison to the wavelength, which 
means that there will be negligible phase shift from one turn to the next.  Thus the electric field is 
radially symmetric, and its strength is at a maximum at the conducting wall and zero at the axis.  
Deducing the actual decay law however is no easy matter, and so we will make the crude first-order 
assumption that the decay will be roughly linear.
     We now need to define the problem in such a way that dielectric close to the conducting wall has
more effect than dielectric close to the coil axis. This can be done by considering the area under the 
curve of relative field strength vs. relative radius divided into regions having different dielectric 
constants.  We will then assume that the average dielectric constant is weighted according to the 
relative areas in the two regions. This is a simple integration problem, so simple in fact that calculus
is not needed.
     In most practical situations, the medium in the hollow part
of the cylinder will be the same as that outside the coil (i.e., air
usually).  Hence the inner medium is taken to have a dielectric
constant εx . The coil-former tube is made from a material
having a dielectric constant  εf  , and the tube has a relative wall
thickness  w.
     The total area under the curve is ½.  The area in the region
having a dielectric constant  εx  is  (1-w)²/2.  The area in the
region having a dielectric constant  εf  is:

1−(1−w)
2

2
 

Hence:

εi = εx (1-w)² + εf  [1 - (1-w)²]

If ro is the outside radius of the coil former, and ri is the inside radius of the coil former, then:
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1−w =
r i

r o
 

Hence:

εi =εx( ri

ro)
2

+εf[1−( r i

ro)
2

]  (8.1)

Note that in determining the internal permittivity in this way, it is assumed that there is no 
difference between  ro  and the effective radius of the coil.  Since the effective radius tends towards 
the inner solenoid radius (average radius - wire radius) at high-frequencies, this approximation is 
unlikely to cause a large error.  In the current-sheet approximation, of course, the effective radius is 
the same as  ro  by definition.
     When using equation (5.3) to calculate self-capacitance, the internal permittivity parameter 
required is  εi /εx .  Hence, equation (8.1) can be conveniently rewritten:

ε i
εx

=( r i

r o)
2

+
ε f
εx [1−( ri

ro)
2

] (8.2)

It must be stressed that this is a very crude correction, which is offered strictly on the basis that any 
correction is better than no correction at all.  As has been pointed out by Tuck Choy81, a simple 
volume-fraction averaging approach such as this will produce an upper bound for the effective 
permittivity, and will therefore tend to exaggerate the coil-former effect (he gives some suggestions 
as to how the estimate might be improved).
     A volume averaging method for determining the effect of external dielectric support rods is 
given by Wallett and Qureshi82.

Short coil correction 
As we will see in the next section, the coil also has an end-to-end capacitance arising from the 
induced axial field.  Thus, for short coils in particular, the effect of the dielectric on the end-to-end 
capacitance will need to be taken into account and added to the long coil correction.  Fortunately 
however, the internal axial electric field is fairly uniform83 and an area weighting should be 
sufficient in that case.

81 On the efects of dielectric or permeable formers on the inductance and self-capacitance of solenoids.  Tuck 
Choy 2015.  Available from: http://g3ynh.info/zdocs/magnetics/appendix/self-res.html

82 Review of slow-wave structures. T M Wallett and A H Qureshi.  Nasa Technical Memorandum 106639.  1994.  
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940030764.pdf
See page 2.

83 See, for example: A visual demonstration of the electric field of a coil carrying a time-varying current, F S 
Chute and F E Vermeulen, IEEE Trans. on Education, E24(4), Nov. 1981.  This gives a tutorial on coil fields and 
also an ingenious demonstration of the electric field by means of resistive paper and temperature-sensitive liquid 
crystal material.  
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9.    Axial induced electric-field capacitance    
The analysis of Medhurst's data tells us that, in addition to the dynamic transmission-line 
capacitance, which is essentially a representation of time delay,  there is also a substantial 
component that is so-far only accounted-for by the empirical correction.  Since it has been 
demonstrated that this component has little or nothing to do with inter-turn capacitance, it becomes 
obvious that it must be associated with the voltage that develops across the ends of the coil.  This is 
also apparent from the fact that the empirical correction makes little contribution in the long coil 
limit, but a large contribution when the coil is short.  Isolating this apparently static component is of
interest because it will lead to alternative self-capacitance formulae; and it will provide us with a 
starting point for the modelling of free-coil self-resonant behaviour.
     Interestingly, it is feasible to invoke a notionally-static capacitance in order to account for self-
capacitance in full.  If we treat the end turns as electrodes, what we have is a capacitor stuffed with 
a special type of dielectric that, according to recent parlance, can be classified as a "metamaterial".  
An ordinary dielectric acquires its properties by virtue of the scattering of radiation from the atoms 
and molecules within; the emergent radiation being the superposition of the incident and scattered 
waves.  A metamaterial, on the other hand, acquires its properties by the scattering of radiation from
engineered structures.  In the present case, we have a wire helix, which sustains an electric field and
therefore has some dielectric quality.  This medium is, of course, dispersive; but its permittivity will
not change rapidly with frequency provided that we keep well away from the SRF.  Thus, at low 
frequencies, we might usefully assume it to have a dielectric 'constant'.  To derive an expression for 
that quantity is not straightforward, but we can at least see what the experimental data have to say 
about it.
     The model in this case is a capacitor with parallel wire-ring electrodes; the wire diameter being  
d , the electrode separation being  ℓ  (i.e., the overall length of the coil), and the electrode 
circumference being  πD.  To the relative permittivity of the intervening metamaterial, averaged 
over all space, we will assign the symbol  εh  (h for helix).  Thus, using Russell's formula (6.1a) we 
have:

Cee =
ε0εh π

2 D
arccosh( ℓ /d )

 [Farads] , (9.1)

Now, since we do not know εh , we can simply set it to 1 and see how the result compares against 
some actual measurements84.  As can be seen from the table below, the formula produces plausible 
but somewhat low estimates of the self-capacitances of air-cored coils.

Coil ℓ/D
D

/ mm
CL Meas. 

/ pF
Cee 

/ pF, εh = 1
Cee / D
/ pF/m

εh 
= CL/Cee

Palermo No. 1 0.45 74.7 3.2 2.76 37.0 1.16

GKMR 0.50 326 11.83 8.18 25.1 1.45

DWK 18T 1.58 91.3 3.15 2.01 21.0 1.54

Coilcraft 132-xxSM series 1.66 4.8 0.205 (mean) 0.114 23.7 1.80

It is surprising that advocates of the fully-static origin of self-capacitance have never discovered this
simple formula.  Had they done so it would have given good service, being more accurate than any 
of the inter-turn capacitance theories, and actually better than Medhurst's formula when the coil is 
short and has no core.  Also, there is some indication of scalability, as can be seen from the value of 

84 Worksheet: CL_axial-field.ods ,sheet 1.



63

Cee/D obtained. 

     The end-to-end capacitance obtained by treating the two end turns as a pair of wire rings of 
course suggests itself as a candidate for the axial-field component.  This approach was used by 
Chute and Vermeulen85; but it produces a first-order dependence of self-capacitance on the wire 
diameter that is not evident in the experimental data.  From a practical point-of-view also, it forces 
us to include a parameter that is not needed and is often not reported.
     The axial field is induced because there is requirement (i.e., a boundary condition) that the 
circumferential electric field induced by the time-alternating axial magnetic field must be 
completely cancelled in the helix direction at the conducting surface (assuming a perfect 
conductor).  Thus the axial field is related to the overall field dynamics and is not strongly 
influenced by the wire thickness.  Instead, we know to a good first-order approximation, that the 
total self-capacitance is a function of  ℓ/D even when the coil is short, and so we must expect the 
axial component to have the same dependence.  
     So let us see if we can reverse-engineer the axial-field capacitance from the data.  To do that we 
can separate the solenoid self-capacitance into two components thus:

CL = CT + CE  

where CT is the capacitance representing the time delay for a wave travelling along the helix, and CE

is the axial electric-field component defined in such a way that  CE →0  as  ℓ/D→∞ . 
     Assuming that the external medium is air, we know from Medhurst's data, that the helical phase 
velocity tends towards c as  ℓ/D→∞ (see section 4).  This is actually at odds with Drude's data for 
the resonances of disconnected coils, a matter to which we will turn our attention in section 10, but 
it is nonetheless true.  Consequently, an expression for CT  is given by setting kE to 1 in equation 
(2.6).  It lacks any provision to account for coil-former dielectric however, and so we will start by 
considering only the air-cored case.  Also, we will presume that the magnetic-field inhomogeneity 
parameter is well-approximated by Nagaoka's coefficient ( kL ), in which case we have:

CT =
4ε
π

ℓ

kL cos2
ψ

 

and for coils with closely-spaced turns:

CT =
4ε
π

ℓ
kL

 (9.2)                  

Now observe that, if we put  εi = εx = 1  into the DAE formula (5.3), we have a curve that 
corresponds to Medhurst's empirical data corrected back to air core.  

CL =
4ε0
π ℓ (1+kc)

  (9.3)

Certainly there is an assumption inherent in the way in which the effect of the polystyrene former 
was removed, but it is not unrealistic.  Thus we have tentative a way of isolating CE .
     So now, to find an expression for CE ,  we might imagine a virtual electrode structure that will 
allow us to model the difference between the long-coil and the short-coil field as a static 
capacitance.  This is just something to account for the distribution of electric field lines extending 

85 On the self-capacitance of solenoidal coils.  F S Chute and F E Vermeulen.  Canadian Elec. Eng. J.,Vol 7(2), 1982, 
p31-37.  See equations (16) - (19) and associated discussion.
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from one end of the coil to the other when the radial field is taken away.  As mentioned before; such
an origin suggests that it will not look like the capacitance between the two ends when the middle of
the coil is removed; because phenomena related to external impedance (and concerning fields that 
extend some distance from the coil) will not be greatly affected by the diameter of the wire.  We 
should also note that when the length to diameter ratio (ℓ/D) of a solenoid goes to zero, the first turn
is superimposed upon the last, and the self-capacitance due to end-effects will tend towards infinity. 
That certainly is where the data for short coils appear to be heading, and we should look for a first 
order dependence on ℓ/D that agrees. 
     It turns out that if we try to model the capacitance as being due to a set of plates, then the 
resulting curve does not fit the data.  Beyond that however, there are various possibilities 
reminiscent of Russell's formula (6.1 or 6.1a), one of which is:

CL = CT +
kA ε0π

2 D
arccosh (1+ ℓ / D)

 (9.4)

where the empirical coefficient kA = 0.2308.  Compared against 150 points calculated from the DAE
formula (8.3), logarithmically spaced over a  ℓ/D range from 0.1 to 100, this gives a standard 
deviation of fit of 1.29 pF/m in the calculation of CL/D.  Bearing in mind that the DAE formula 
involves assumptions and has a standard deviation of fit of 2.1%, this means that the the two curves 
are statistically indistinguishable; i.e., given some physically reasonable way of removing the effect 
of the coil-former dielectric, (8.4) should fit Medhurst's data just as well as the DAE formula86

     Another formula, which gives an even better fit is:

CL = CT +
4ε0 D

ln (1+π
2 ℓ / D)

  (9.5)

i.e.,

CL

D
=

4ε0
π [(ℓ /D)

kL

+ π

ln (1+π
2 ℓ /D) ]   (9.6)

Over the same data ranges as before, this gives an SD of fit of 1 pF/m.  This curve is shown on the 
graph below for comparison with the DAE curve with εi = 1 (dotted).  Shown also are the separate 
components CT and CE .  Note that, although this curve has no empirical parameters, it is still 
empirical.  It is also just as good as the DAE formula for air-cored coils, but lacks any correction for
coil-former dielectric. 
     From equation (9.5), the axial-field capacitance is proportional to the coil diameter and can be 
written as:

CE

D
=

4ε0

ln (1+π
2 ℓ / D)

 (9.7)

While the transmission-line delay capacitance per unit diameter, on the assumption that vhx=c, is by 
definition:

CT

D
=

4ε0( ℓ /D)

π kL
 (9.8)

86  Worksheet, CL_axial-field.ods, sheet 2.
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Note that (9.8) grows with ℓ/D, while (9.7) diminishes, leading to a curve of roughly parabolic 
appearance (on a logarithmic scale) when the two are added.  Both formulae are of course scaleable 
to account for the immersion of the coil in homogeneous media of any dielectric constant, simply 
by multiplying ε0 by εr , but they lack any provision for dealing with coil former dielectric or thick 
wire insulation.

Self capacitance represented as the sum of a time-delay component and an induced electric-field 
component.  The time delay component is curved because Nagaoka's coefficient is required to convert it into
a capacitance via the resonance formula.

  Correction for internal dielectric   
Equations (9.6) - (9.8) lack any provision for dealing with coils having a difference between the 
internal and external dielectric constant, i.e., coils wound on formers.  Such correction needs to be 
applied to the transmission-line and induced-field parts separately, but it is likely that the same 
approach as was used in section 4 will also work here to a good first-order approximation, i.e., the 
effective relative permittivity will be: εr = εx   when   ℓ/D >> 1  and  εr = (εi+εx )/2  when  ℓ/D << 1 
(subscripts i and x being for 'internal' and 'external'), with a simple weighting to bridge the two 
extremes.  On this basis, the general form of an expression for self-capacitance was given as 
equation (4.1).  It can be rewritten as capacitance per unit diameter thus:

CL

D
=

4ε0εx
π ( ℓ /D) [1+kC

(1+εi /εx)

2 ] 1
cos2

ψ
 (9.9)
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This expression should be compared with the prototype self-capacitance expression (2.6), which can
also be written per unit diameter thus:

CL

D
=

4ε
π ( ℓ /D)

kE

k H

1
cos2

ψ
  

From this we can see that the correction coefficient kE/kH is modified to include the effect of the coil
former by using the substitution:

kE

kH

=1+kC

(1+εi/εx)

2
 

Where kE and kH are the generalised electric and magnetic field non-uniformity corrections, and kC 
is the overall correction coefficient that was determined empirically in section 5.
     We can use a similar substitution to include the effect of coil-former dielectric in the expression 
for time-delay capacitance.  Also, at this point, we might as well restore the pitch-angle dependence 
by including the 1/cos2ψ  factor.  Equation (9.8) now becomes:

CT

D
=

4ε0
π (ℓ /D)

1
kL

1
cos2

ψ
 (9.10)

where kL is Nagaoka's coefficient.  What has happened here, of course, is that we have taken out the
electric field correction, and adopted the current-sheet approximation for inductance so that there is 
no need to worry about the details of the winding-wire.  Thus we have a new overall correction 
coefficient, which we will call kCT  (the time delay part of kC ).  Thus:

1
kL

=1+kCT

(1+ε i /εx)

2
 

and, by putting εi = εx =1, we can identify kCT as: 

kCT =
1

kL

−1  

Using this, we can write a complete expression for the time-delay capacitance per unit coil diameter
thus:

CT

D
=

4ε0 εx
π ( ℓ /D) [1+( 1

kL

−1)(1+εi /εx)

2 ] 1
cos2

ψ
 (9.11)

Various rearrangements are possible depending on preference, but the following one is interesting:

 
CT

D
=

4ε0 εx
π ( ℓ /D)

1
2 [ 1

kL

+1+( 1
kL

−1) εi
εx ] 1

cos2
ψ

 (9.11a)

We can now factor 1/kL from the square bracket thus: 
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CT

D
=

4ε0 εx
π ( ℓ /D)

1
kL

1
2 [1 +k L+

εi
εx

(1 −k L) ] 1
cos2

ψ

This has restored the form of equation (9.10) except for a relative permittivity factor 

εr =
εx

2 [1+kL+
ε i
εx

(1−kL)]  (9.11b)

which uses Nagaoka's coefficient (a function of ℓ/D)  to determine the effective average of the 
internal and external permittivities.  Recall also that the limiting behaviour of kL is:
when  ℓ/D→0 ,  kL→0 , and when  ℓ/D→∞ ,  kL→1 .

     Now that we have equation (9.11), of course, we can easily obtain an expression for the induced-
field capacitance CE  by subtracting CT from the total self-capacitance as given by the DAE formula 
(5.3), i.e.;

CE = CL - CT

It is more informative however to represent that part of self-capacitance not due to time delay using 
a modified form of Russell's formula.  To do that, we can put (say) equation (9.6) into the form of 
equation (9.9), starting with εi = εx =1 .  Thus:

CL

D
=

4ε0
π (ℓ / D)[1+ 1

kL

−1+
π(D / ℓ)

ln(1+π
2 ℓ /D) ] 1

cos2
ψ

 

Comparing this with (9.9), we can immediately see that the function kC can be written:

kC =
1
k L

−1+
π(D / ℓ)

ln(1+π
2 ℓ /D)

  

This quantity can be compared with the empirically determined kC of equation (5.3) and it will be 
found that the two functions are in good agreement.  Now inserting the effects of internal and 
external dielectrics, we obtain a new formula for self capacitance:

CL

D
=

4ε0εx
π (ℓ /D)[1+

(1+ε i /εx)

2 ( 1
k L

−1+
π(D / ℓ)

ln(1+π
2 ℓ /D) ) ] 1

cos2
ψ

 (9.12)

Putting cos2ψ=1, εx =1 and εi =2.56 (polystyrene),  this formula fits Medhurst's data with an 
estimated standard deviation of fit of 2.4% and no variable parameters87.  This is not quite as good 
as the fitted-polynomial DAE formula (5.3), which has an ESD of 2.1%, but there is no reason to 
presume that the DAE formula will give any more accurate predictions of self-capacitance than 
(9.12), and the latter has the advantage of being a representation of the preceding arguments relating
to the physical origins of self-capacitance. 
     Now comparing (9.12) with (9.11) we can see that an expression for the axial induced-field 
capacitance can be obtained by subtraction.  Also, although it does not appear to be mathematically 
rigorous to do so, we must drop the 1/cos2ψ factor, because it is not applicable to the induced-field 
component.  The reason for this adjustment is that there is an approximation in the original 

87 See worksheet Medhurst.ods, sheet 4.
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derivation (section 2.2) due to the assumption that the self-capacitance of a coil is primarily 
associated with helical wave propagation.  This required the 1/cos2ψ factor in order to ensure that 
the conductor length remained correct when ℓ/D was allowed to vary, with any corrections applied 
being treated as acausal at that point, and therefore a function of conductor-length by default.  It 
turns out, of course, that one part of the correction, the time-delay part, is a function conductor 
length; but the axial-field part is actually a function of coil length.  
     So, to obtain the axial-field part we subtract (9.11) from (9.12) and delete the 1/cos2ψ factor, 
which leaves:

CE

D
=

4ε0εx
π (ℓ /D)

(1+εi /εx)

2 ( π(D / ℓ)

ln (1+π
2 ℓ / D) )    

i.e., after cancellation and rearrangement:

CE

D
=

2ε0(εx+εi)

ln (1+π
2 ℓ / D)

 .  Axial induced-field capacitance / unit diameter (9.13)

Thus we obtain a complete expression for axial-field capacitance by a circuitous route and discover 
that, while the time-delay capacitance (9.11) has a weighting function based on Nagaoka's 
coefficient to determine the relative contributions of εi  and εx  as the coil shape varies, the axial-
field component is only dependent on their average.  It derives its long-coil asymptotic behaviour 
instead from the fact that its contribution dies out completely.
     Now we can give the properly corrected new formula for self-capacitance as the sum of (9.11) 
and (9.13):

CL

D
=

4ε0εx( ℓ /D)

π cos2
ψ [1+( 1

k L

−1) (1+εi /εx)

2 ]+ 2ε0(εx+εi)

ln(1+π
2 ℓ /D)

  
(9.14)

CL-TDE

This will be referred to as the TDE (time-delay + induced electric-field) formula.  Note that there 
might be some utility in factoring ε0 and εx from both major terms during calculation, but the above 
representation draws attention to the essential separability. Also, it is worth noting that, when 
modifying the formula to allow for the effect of a hollow coil former, the effective value of εi will 
be different for the two parts (see section 8).

     Shown in the following box are verified Open Office Basic macro functions for implementing 
the TDE calculation.  Function CTDW( ℓ/D ; εi ; εx ) performs the time-delay part of the capacitance
calculation and returns capacitance per unit diameter, i.e., CT/D.  It ends with 'W' because it uses an 
approximate formula for Nagaoka's coefficient, W82W(D/ℓ), which is accurate to within ±20.5 
ppM.  There is also a version CTDN( ℓ/D ; εi ; εx ), which uses the full elliptic integral calculation, 
but given the approximations inherent in self-capacitance calculation, there is no statistically 
significant gain in using it.  Function CIAE( ℓ/D ; εi ; εx ) returns CE/D.  Self capacitance is 
calculated using:

CL

D
=

CTDW (ℓ / D;εi ;εx)

cos2
ψ

+CIAE(ℓ /D;ε i ;εx)   .

The 1/cos2ψ factor in the first term can be omitted for coils of small pitch angle.
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Function CTDW(ff as double, ei as double, ex as double) as double
' Calculates solenoid time delay capacitance, CT/D [pF/m].  ff is solenoid length / Diameter
' Quick version using W82W for Nagaoka's coeff.  D W Knight.  v1.00, 2016-03-16 
Dim kct as double, kL as double
kL=W82W(1/ff)
kct = 1/kL - 1
CTDW = 11.27350207*ex*ff*(1+kct*(1+ei/ex)/2)
end function

'---------------------------------------------------------------

Function CIAE(ff as double, ei as double, ex as double) as double
' Calculates induced axial E-field component of solenoid self-C, CT/D [pF/m]. 
' D W Knight.  v1.00, 2016-03-16 .  ff is solenoid length / Diameter
CIAE = 17.70837564*(ei+ex)/log(1+pi*pi*ff)
end function

'---------------------------------------------------------------

Function W82W(byVal x as double) as double
' calculates Nagaoka's coeff. using Wheeler's 1982 eqn (7) as modified by Bob Weaver88.
'  Max error is +/- 21ppM.  x = Diam/length.  D W Knight, v1.00, June 2012.
if x = 0 then
  w82w = 1
else
Dim zk as double, k0 as double, k2 as double, p as double, w as double
  zk = 2/(pi*x)
  k0 = 1/(log(8/pi)-0.5)
  k2 = 24/(3*pi*pi -16)
  w = -0.47/(0.755 + x)^1.44
  p = k0 +3.437/x +k2/(x*x) +w
  W82W = zk*(log(1 + 1/zk) + 1/p)
end if
end function

     Finally, we can turn to the question of whether of not the axial induced-field capacitance formula
(9.13) will also apply to free coils.  On the plus side, it does not involve Nagaoka's coefficient, and 
so is not linked to the uniform-current inductance.  We cannot however expect the axial field to 
remain exactly the same when the current becomes non-uniform.  Nevertheless, the determined 
capacitance will still be approximately valid for short coils, because it is instrumental in 
maintaining the current, and so its accuracy will die off as its contribution dies off.

88 See: Solenoid Inductance calculation: D W Knight.  http://www.g3ynh.info/zdocs/magnetics/part_1.html.  
Section 8e.  Also:  http://electronbunker.ca/eb/CalcMethods3b.html
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10.  Velocity limiting   
In sections 1.2, 1.7 and 1.8, we showed solenoid self-resonance data for isolated coils plotted as 
velocity factor vs. ℓ/D.  Medhurst's data can also be plotted in this way; and since the DAE formula 
is a best-fit curve for Medhurst's measurements when εi  is set to 2.56, it can be used as a smoothed 
continuous version.  The DAE formula moreover has the advantage that εi can be set to 1, so that it 
can be compared directly with results for coils in the absence of dielectric material other than air.  
This, as we will see, is an instructive exercise.
      Medhurst's formula for self-capacitance was obtained by fitting measurements to a curve of  
CL/D vs.  ℓ/D.  As he also pointed out however89, it is possible to plot the same data as 
wavelength / conductor length vs. ℓ/D.  This gives a curve which, although he did not identify it as 
such, is proportional to the reciprocal of the apparent velocity factor for helical propagation.  He 
performed his derivation using cgs units, and so we will repeat it using rationalised mks (SI).
     Medhurst's formula, and the DAE formula of course, permit the calculation of a capacitance that,
if put into the electrical resonance formula with the coil inductance, will give a pseudo-SRF rather 
than an actual SRF.  The discrepancy, as we have already noted, occurs because the data do not fit 
on the Howe-extrapolation regression-line when the magnitude of the shunt impedance is large (i.e.,
approaching an open-circuit).  It seems therefore that the Howe method produces an in-circuit value
of self capacitance, and this points to a virtual self-resonance that is not the same as the actual one.  
Still, let us assume that this virtual SRF exists and is the resonance that would be seen if a uniform 
current distribution could be maintained along the conductor at the SRF.  So now we have:

f 0s(v )=
1

2π√L CL

 

Where f0s(v)  is the virtual self-resonance predicted using the uniform-current inductance L in 
conjunction with in-circuit measurement techniques for self-capacitance.  We have formulae that 
return CL/D however, so the resonance becomes a function of diameter thus:

f 0s(v )=
1

2π√L(CL /D)D
 

where (CL/D) can be the output of a program routine or calculation such as CLDAE (section 5), or 
actual data.  The free space wavelength associated with this frequency is given by:

λ0s(v )=
c

f 0s (v )

 

so that 

λ0s(v )= 2π c√L (CL/ D)D  (10.1) 

Now, on the basis that the current-sheet approximation for inductance (better than 2% for coils of 
small pitch angle) is sufficiently accurate for this investigation, we can substitute for L using the SI 
formula.

L=μ0
πD2

4 ℓ
N2 k L   Current-sheet inductance

89 Medhurst 1947.  Cited earlier.  See page 86, Table VI, Fig. 10 and  derivation.
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where kL is Nagaoka's coefficient.  Using this in (10.1) gives

λ0s(v )= 2π c√μ0
πD2

4 ℓ
N2 k L(CL /D)D   

Now removing D2 and N2 from the square-root argument and rearranging we get:

 λ0s(v )= πD Nc √μ0π kL (CL/ D) (D / ℓ)  (10.2)

but, as was given earlier as equation (2.2), the length of wire used to wind a solenoid coil is:

ℓw =
πD N
cos ψ

 

where ψ is the pitch angle.  For coils with many turns, cosψ ≈ 1, in which case (10.2) gives:

λ0s (v)

ℓw

= c√μ0 πk L (CL/D) (D / ℓ )  . Medhurst's " N "  (SI version)

The quantity on the right of this equation is referred to by Medhurst as " N " a notation that we will 
avoid for obvious reasons.  It is tabulated in his Table VI, and shown graphically in his Fig. 10, and 
it is very clear that it has an asymptotic value of 2 in the long-coil limit.  This is because the 
quantity is actually twice the apparent refractive index for helical propagation, on the assumption 
that the self resonance is a half-wave wire-length resonance, and that waves associated with this 
resonance propagate at the phase velocity for light in the local medium.  This is something that we 
have demonstrated already in a different way in section 4, it was also something that both Howe and
Medhurst knew perfectly well; and it takes us back to a point made in the introduction, which is that
self-capacitance can be calculated to a fair approximation on this simple basis (i.e., if we ignore or 
subtract any end-to-end capacitance).  More meaningful than the mongrel quantity given above 
however, is a nominal phase velocity (i.e., an actual phase velocity were it not for axial-field 
capacitance), which is generally given (as a velocity factor) by the expression:

v
c

= λ
λ0

 

where v is the phase velocity.  Thus, since λ = 2ℓw  for a half-wave conductor-length resonance, we 
have the nominal velocity factor for in-circuit self-capacitance measurements as:

λ
λ0s (v)

=
2 ℓw

λ0s (v)

=
2

c√μ0 πkL (CL/ D) (D / ℓ)
   (10.3)

In the graph that follows, this expression is used to calculate velocity factors from the DAE formula
and from measurement data, so that they can be compared with the disconnected-coil self-resonance
data that were introduced in section 1.2.  Also plotted are some measurements made by Willis 
Jackson90 in 1935.  These were reported as self-capacitances, but they are actually free-coil air-
dielectric SRF measurements converted into pseudo-capacitances using the measured inductance 
and the resonance formula.  Consequently, they have long been a source of interpretational 
difficulty for their failure to agree with in-circuit self-capacitance measurements.  They were 

90 The self-capacitance of single-layer coils.  W Jackson.  Phil. Mag. Ser. 7, Vol. 19, 128. Apr. 1935.  p823-835.
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recovered by laying a fine grid on Jackson's Fig. 1 and converted into velocity factors using 
equation (10.3), whereby it can be seen that they agree fairly well with Drude's work.

The lower of the curves is produced using the DAE formula for (CL/D) in equation (10.3) with 
εi =2.56, with Medhurst's data (crosses), converted into velocity factors in the same way, falling 
close-to or on it.  This particular curve is included to deflect any possible objections to the effect 
that, while the DAE formula with  εi =1, might give an asymptote at v=c, Medhurst's data might not.
As was pointed out in section 4, coils on formers still have the same long-coil asymptote as coreless
coils because of cancellation of the radial electric field at the axis.
     So now we come to the more interesting observation, which is that for air-cored coils with 
ℓ/D < 1, the free-coil and the DAE nominal velocity factors fall fairly close together.  The 
suggestion here is that the axial-field capacitance will provide a substantially uniform current 
distribution along the length of the wire in the free-coil case, eliminating the difference between the 
two methods of measurement.  It was the author's view while setting-up the calculation that the 
curves might converge for short coils, but evidently complete coincidence is not achieved, and 
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Jackson's measurements,  probably a little less affected by systematic errors due to residual 
dielectric than Drude's, are even further away from the DAE curve.   It is possible however that the 
method used to correct the DAE formula is not accurate, although here we have a specific test at  
ℓ/D=1.6. where the difference between the  εi =2.56 and  εi =1 curves is at its greatest.  For this, note 
the two crosses marked DWK 18T actual and virtual SRF.  These are measurements made on the 
large 18.1 turn copper tubing coil discussed in section 1.1.  The upper measurement, falling on the 
various free-coil curves, was made using the scattering method with very weak coupling to an 
induction loop.  The lower measurement was made using a modified extrapolation method; whereby
the coil is mounted between antennas as for the disconnected measurement, but with stiff-wire leads
and a socket attached for the addition of plug-in reference capacitors (see following photographs).  
The correction of this setup for lead inductance is straightforward, because in the absence of circuit 
branches, the small positive reactance can simply be added to the negative reactance of the 
reference capacitor.  The capacitance of the holder moreover, although very small (0.08 pF in this 
case),  is easily measured using an RF bridge.  Otherwise however, the procedure is the same as the 
Howe method described in section 1. 
     The pattern of fitting residuals for the linear regression is shown below (the data have not been 
smoothed).  Note that for measurements made above 22 MHz, as the true SRF (26.6 MHz in the 
absence of connecting wires) is approached, the points veer away from the horizontal (lumped 
parameter model) line.  We now know what is happening of course.  The coil behaviour is crossing 
over from the DAE curve to the free-coil curve as the shunt impedance increases.

Modified Howe extrapolation for self-capacitance.  The curves marked ±1σ are for an error function 
determined for the set of reference capacitors prior to the construction of the scattering jig.  Evidently these 
limits are pessimistic, since most of the points fall within the them, but all this means is that the two antenna 
method for determining resonance gives much reduced experimental scatter in comparison to direct 
connection methods.  The low frequency measurements have the largest uncertainty simply because the 
large-value reference capacitors were not standardised to two decimal places of pF.  The deviation from the 
model as the true SRF is approached is evident in every self-capacitance measurement made by the author, 
although it might not be the case for very short coils having large end-to-end capacitance.
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Variant of the Howe extrapolation method for self-capacitance.  By connecting only the reference 
capacitor to the coil, the lead correction is greatly simplified.  The RF source connected to the induction loop
(upper photograph) is an MFJ269 impedance analyser; floated from ground (in addition to the unun in the 
antenna cable) by placing a ferrite isolator in the power cable, and by attaching the tuning capacitor to a long 
non-conductive extension spindle and reduction drive.
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     The nominal velocity factor data for for free coils was discussed in relation to Ollendorff's 
helical waveguide theory in section 1.7.  There it was mentioned that the development of a 
superluminal helical phase velocity in long coils is a genuine effect associated with the production 
of an axial slow wave  (Ollendorff's velocity factor curve for m=1 is shown on the graph of 
collected data given earlier in this section, but recall that the application of an end-correction will 
shift the curve to the right along the  ℓ/D axis).
     What we have now established however, is that by attaching the coil to a shunt impedance, it 
does not take much of a loading before the effective phase velocity in the long coil limit equals that 
for propagation in the local medium, i.e., for air coils,  vhx = c.  The conclusion towards which we 
are drawn therefore, is that the conditions giving rise to vhx > c are fragile, easily disrupted, and that 
external conditions that prevent the establishment of a non-uniform current distribution abolish it.  
A similar velocity-limiting effect is seen when the helical waveguide is provided with an external 
coaxial conducting tube, and the tube radius becomes close to the solenoid radius.  In that case, of 
course, slow wave propagation is of less significance, and the helical wire and the outer cylinder 
behave more like a parallel-conductor transmission-line; in which case vhx→c as for any air-spaced 
line.
     Finally, notice that the Kandoian-Sichak curve (discussed in section 1.8) has also been plotted on
the comparison graph.  This is simply to show that it is far removed from anything that might be 
used as the basis for a self-capacitance formula.  Note however that Medhurst's polystyrene-core 
(εi =2.56) data can be made to coincide with it over a limited range if the calculated velocity factors 
are multiplied by 2.  Hence some of Medhurst's measurements are apparently coincident with the 
K&S formula if they are incorrectly assigned to the λ/4 resonance and dielectric effects are ignored.

     In the introduction, it was mentioned that the author became interested in coil self-capacitance as
part of a study of  phase-delay in broadband current transformers91 92.  The velocity limiting effect 
actually brings this study full-circle.  Although it might not seem like it at first glance, a toroidal 
coil is simply a long solenoid wound on a magnetic core, with the uniform magnetic field 
eliminating the need for Nagaoka's coefficient, and a static capacitance across the terminals due to 
the proximity of the ends.  There was a need to understand the phase-shift across the winding in 
order to devise a correction for the frequency-dependence of the transformer phase error.  Reference
material on the subject made it seem that this might be difficult, either due to the dispersive nature 
of the helical transmission line or due to the inconclusive nature of the literature on self-
capacitance.  It is however best to base any correction on actual data, and so an experiment was 
devised allowing the relative phase-delay to be measured with an uncertainty that turned out to be 
better than ±0.008º at 1.6 MHz and ±0.0005º at 30 MHz.  This was achieved by making the current-
transformer part of an impedance bridge using an adjustable capacitive voltage-divider with 
adjustable resistive phase-compensation.  The bridge was terminated with a UHF coaxial resistor, 
and accurate measurements were made of the voltage-divider capacitance and resistance settings 
needed to achieve balance  at a given frequency.  The way in which these settings change with 
frequency can be transformed into relative phase-delay.
     What was found was that, after removing the rising frequency response due to shunt inductance, 
and after accounting for the effect of circuit stray capacitance, the variation of phase error with 
frequency (degrees / MHz) was a near-perfect straight-line graph with a negative gradient.  There 
was no curvature, as might be expected from the type of dispersion effect predicted by Ollendorff; 
and although there was some systematic deviation in the pattern of residuals when the results were 
fitted to a regression line, this was small and explicable as being due to the ordinary polarisation 

91 Evaluation and optimisation of RF current-transformer bridges.  D W Knight, 2007, 2014. 
http://www.g3ynh.info/zdocs/bridges/index.html .  see sections 16 and 16a.

92 A self-evaluating precision reference bridge. D W Knight. 2007, 2014. 
http://www.g3ynh.info/zdocs/bridges/index.html
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drop-out dispersion of the ferrite material.  
     A quantity measured in degrees / MHz is a time, and if it is negative, it is a time delay.  Various 
experiments showed that over a range of at least 5 octaves, the phase delay in the transformer was 
nothing more than propagation delay.  Its value moreover was consistent with the time it would take
for a wave to travel half the length of the winding wire with a phase velocity a little less than c.  The
reason why the propagation distance is half the conductor length is that a magnetic disturbance in 
the core will affect all points on the wire simultaneously (in the local approximation), sending equal
and opposite disturbances upstream and downstream.  These disturbances will be seen in 
superposition at the terminals, with an average propagation distance of half the wire-length.  This is 
true for every point on the wire, which means that all of the disturbances add-together in phase in 
the absence of non-linearities, dispersion effects and leakage inductance.  This is how a transformer 
cancels most of its own inductance in respect of coupling between primary and secondary windings.
     Thus the question of how to compensate for current-transformer phase error was settled 
experimentally, and the correction methods devised on that basis led to the construction of some 
extremely accurate broadband transmission bridges.  The conclusion was therefore that the coil is 
not inherently dispersive in the absence of dispersive materials.  This, of course, was at odds with 
the most authoritative material on the subject, but not inconsistent with the basic assumptions used 
by Medhurst in the process of developing his formula.

Variation of phase error with frequency for a 1:12 toroidal current
transformer.  The transformer (shown on the right) is wound with 12
turns of 0.9 mm diameter enamelled Cu wire on a Fair-Rite FT50-61
½" ferrite bead.  The phase error vs. frequency graph is a straight line
with a gradient of -0.41 ns, i.e., the error is almost entirely due to
propagation delay.  The secondary winding wire length is 228 mm.
The time taken for light to travel half this distance is 0.38 ns, but when
other system delays are taken into consideration, the secondary-coil
phase velocity comes out at a little less than might be estimated from these numbers.

     As was demonstrated in the introduction, self-capacitance measurements made on toroidal coils 
show the same deviation from the Howe regression-line as solenoids, and although this is explicable
as being due to current non-uniformity, it also indicates that they exhibit the Ollendorff dispersion 
effect when the shunt impedance approaches an open-circuit.  The transformer linear phase-delay 
characteristic is thus another demonstration of the way in which a shunt impedance limits the 
helical phase-velocity.
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11.  Free coil SRF calculation   
In several places in this document, we have shown graphs of apparent or nominal helical velocity 
factor vs. ℓ/D  for free coils resonating at the first SRF (ℓw = λ/2).  In that case, the nominal velocity 
factor for an air-filled coil crosses the v=c line when  ℓ/D≈1.7.  As was pointed out in section 1.7 
however, this is not a true velocity factor, but merely the coil conductor length divided by the free-
space half-wavelength; i.e.;

vhx(nom)

c
=

2 ℓw

λ0
 =  

2 ℓw f 0

c
 (11.1)

We now know that the energy stored in the axial electric field corresponds to a capacitance that is 
effectively in parallel with the coil.  This induced-field capacitance will resonate with the helical 
transmission line, reducing f0 and thereby reducing the apparent phase velocity.  In section 9, we 
obtained a capacitance CE  that models this effect in the case of a coil having a shunt impedance, 
and this offers us at least a starting-point for modelling short free coils.  We must expect however, 
that in free coils the induced-field capacitance will differ from CE  because the current profile and 
propagation environment will not be the same.
     In the matter of designing helically-loaded vertical antennas and Tesla transformers, it is actually
the apparent velocity factor, rather than the true value, that is the main point of interest.  This is 
because it provides a way of calculating the true resonant frequency.  The objective therefore is to 
simulate the apparent velocity factor curve.  To do that, we can consider the coil as a short-circuited 
transmission line operating below its λ/4 overall length (i.e., λ/2 conductor-length) resonance 
frequency, so that it has an inductive input reactance.  This line is resonated against a capacitance 
CEF  (free-coil induced electric field capacitance) and its input reactance is therefore such that the 
sum of the two reactances is zero.  The reactance of the short-circuited line expressed using its total 
conductor length was given earlier as equation (1.2).  Here the subscript HG (helical guide) has 
been added, and a subscript on the wavelength makes it explicit that it is not the free-space value.

XHG = R0 tan(π ℓw

λhx )  

Note that when  λhx→ 2ℓw ,  the tangent argument →π/2  and  XHG→∞ .  When the line is resonated 
with a capacitance however, λhx>2ℓw ,  and  XHG  is finite and positive.  Resonance occurs when:

R0 tan(π ℓw

λhx )− 1
2 π f 0 CEF

= 0   

i.e.,

1
2π f 0 CEF

=R0 tan(π ℓw

λhx )   

but λhx = vhx/f0 .   Thus, with some rearrangement:

2π f 0 CEF R0 tan(π f 0 ℓw

vhx
)= 1   (11.2)

This is a transcendental equation that can be solved for f0 , provided that we can evaluate CEF , R0 
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and vhx .  Generally however, f0 is a scaleable function of the coil parameters, and so to produce a 
working formula we want to normalise it.  To do that, we can use the substitution given by (11.1), 
i.e., 

f 0 =
vhx(nom)

2 ℓw
 

Hence:

π
vhx(nom)

ℓw

CEF R0 tan(π
2
⋅

vhx(nom)

vhx
)= 1  (11.3)

which is a transcendental equation that can be solved for vhx(nom) .  Note that the unit of CR is time, 
and so the expression is dimensionless.  Also note that when ℓ/D<<1, then CEF  is large so that 
vhx(nom)<< vhx and the argument of the tangent becomes small.  In that case the equation becomes 
analytically soluble, i.e.;

π
2

2
⋅

vhx(nom)
2

ℓw vhx

CEF R0 ≈ 1  

which gives

vhx(nom)

c
≈

1
π c √ 2 ℓw vhx

CEF R0

  ℓ/D << 1 (11.4)

This can be used as a reference function for the limiting short-coil case, but note that it must be a 
function of ℓ/D in first order.  That means that the parameters must either be invariant in first order 
or functions of ℓ/D themselves. There is a problem in this respect with the quantity CEF , which we 
expect to be similar to CE (section 9).  CE is not a function of ℓ/D but CE/D is.  Thus we make the 
amendment:

vhx(nom)

c
≈

1
π c √ 2 ℓw vhx

(CEF /D)D R0

  

The D so liberated can now be combined with ℓw by noting that, for small pitch angles, ℓw≈πDN.  
Then using N=ℓ/p  and  tanψ=p/πD, we have ℓw=ℓ /tanψ .  Thus:

vhx(nom)

c
≈

1
π c √ 2( ℓ / D) v hx

(CEF /D)R0 tan ψ
  ℓ/D << 1 (11.5)

The function of course is still not in the required form because 1/tanψ  is strongly dependent on coil 
parameters and makes a large contribution to the nominal velocity factor.  Also recall from section 
1.7 that vhx is a function of  ℓ/D in first order (it is approximated by Ollendorff's function) and so 
will not give the required cancellation.  Thus it must be the case that the characteristic resistance R0 
has a factor93 at least approximately equal to 1/tanψ.

93 Since winding the conductor into a helix is a way of making a transmission line with a very high characteristic 
resistance, we would expect there to be a factor that is large for fine pitch and small for coarse pitch.
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  Helical-line surge resistance  
The surge resistance or characteristic resistance of a lossless transmission line is defined as:

R0 =√ L0

C0

 

where L0 and C0 are respectively the inductance and capacitance per unit length of the line.  The 
problem of calculating L0 and C0  for the infinite helical transmission line (see section 1.8) has been 
addressed by Chute & Vermeulen94, who give the solutions using modified Bessel functions.  
Assuming that the coil is immersed in air:

C0 =
πε0

K0(x) I0(x)  [Farads / metre] (11.6)

and

L0=
μ0 π(D / 2)2

p2 2 K1(x) I1(x)  [Henrys / metre] (11.7)

where the Bessel function argument is:

x = γ
D
2

≈ βhx
D
2

 

γ being the radial or circumferential wavenumber, which is approximately equal to the helical 
propagation constant when the pitch angle is small.  Note that at low frequencies, γD/2<<1  and  
K1(x)I1(x)→½ .  Equation (11.6) then reduces to:

L0=
μ0 πD2

4 p2  

The pitch distance p however is given by p=ℓ/N (coil length / number of turns), and so we have:

L0=
μ0 πD2 N 2

4 ℓ2  [Henrys / metre]

This is simply the inductance of a long coil divided by its length (i.e., the inductance per unit 
length); which is to say that if we multiply it by ℓ and Nagaoka's coefficient (kL) it becomes the 
standard current-sheet inductance formula.  
     A further check on the definitions of L0 and C0  is given by noting that the propagation constant is
given by:

βhx =ω√2L0C0  

This is slightly different from the propagation constant definition for a 2-wire transmission line, 

94 On the self-capacitance of solenoidal coils.  F S Chute and F E Vermeulen.  Canadian Elec. Eng. J.,Vol 7(2), 1982, 
p31-37.  See section II, p32. Trasnsmission line nature of the infinite solenoid.  Note that their β is the helical 
propagation constant.
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requiring L0 to be multiplied by 2 because we are effectively considering a wave on the whole 
conductor rather than a superposition of waves on half the conductor.  Squaring this expression and 
using (11.6) and (11.7), we get:

βhx
2

=ω
2 μ0 ε0 π

2 D2

p2

K1(x) I1(x)
K0(x) I0(x)

 

Now note that c=1/√μ0ε0 and that ω
2
/c2

=β0
2 .   Also, tan ψ=p /πD ,   and the reciprocal of 

the combination of Bessel functions shown is Ollendorff's function, W(x) (see section 1.7).  Thus, 
with some rearrangement:

β0 = W(βhx D /2)  βhx tanψ   

This is the same as equation (1.13), except that the helical propagation constant has been substituted
in place of the radial wavenumber.

Now recall that to convert equation (11.5) into a first-order function of ℓ/D, we require R0 to have a 
factor approximating 1/tanψ.  Notice therefore that (11.7) can be rewritten:

L0=
μ0

4π

1

tan2
ψ

2 K1(x) I1(x)  (11.7a)

Thus, combining (11.6) and (11.7a), we have:

R0 =√ L0

C0

 =  
1

tan ψ

1
2π √μ0

ε0

 √2K 1(x) I1(x) K0(x) I0(x)    

but note that √μ0/ε0 =Z0 , the impedance of free space (376.73 Ω).  Thus:

R0 =
1

tan ψ

Z0

2π
√2 K1(x) I1(x) K 0(x) I0(x) [Ohms] (11.8)

  Uniform current surge resistance  
For comparison purposes, we can also calculate a characteristic resistance for a coil operating with 
uniform current.  This becomes possible because the velocity limiting effect (section 10) tells us 
that the phase velocity will be governed by the local refractive index in that situation.  At low 
frequencies, when the electrical length of the line is small, the transmission line equation reduces to:

L =
R0 ℓw

2 vhx
  

(see equation 1.3).  Thus, if (say) the coil is immersed in air, we can substitute vhx=c and rearrange:

R0 =
2cL
ℓw

 =  
2L

√μ0ε0 ℓw
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Substituting for L using the current-sheet formula, we then have:

 R0 =
2

√μ0ε0 ℓw

μ0 πD2 N2 k L

4 ℓ

where kL is Nagaoka's coefficient.  Now recall that √μ0/ε0 =Z0  and, for small pitch angles 
ℓw ≈ πDN .  Thus:

R0 = Z0

D N kL

2 ℓ
  

and recall that  tanψ=p/πD  and  ℓ=Np ,  so we end up with:

R0 =
Z0

2π

kL

tan ψ
  [Ohms] (11.8a)

Now, bearing in mind that we have established that the coil is not a dispersive propagation 
environment under uniform current conditions, it will be found that  R0 tanψ  calculated using this 
equation differs from the value obtained from equation (11.8).  The reason, of course, is that the free
coil is dispersive.  This means that the effect of induced-field shunt capacitance in the free coil will 
be different from from the effect that occurs in circuit.  This is a partial explanation for the non-
convergence of the free-coil and in-circuit coil nominal phase velocities in the short-coil limit (see 
section 10).

  Nominal VF - short coil limiting case  
We can now substitute the quantity R0 tanψ  from equation (11.8) into equation (11.5).  Before 
doing that however, we should also note that the helical phase velocity vhx was given by equation 
(1.8) in section 1.7 as:

vhx

c
=

W(x)
cos ψ

 ≈  W(x)     where    W(x) = √ I0(x) K0 (x)
I1(x) K1 (x)

Hence we can make the combination:

vhx

R0 tan ψ
=

2 π c
Z0 √2

1
I1(x) K1(x)

  

Also note that c/Z0 =1/μ0  and  2/√2 = √2 , so that: 

vhx

R0 tanψ
=

√2π

μ0 I1 (x) K1 (x)
 

substituting this into (11.5) gives:
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vhx(nom)

c
≈

1
π c √ √2π

μ0 I1(x) K1 (x)
2(ℓ /D)

(CEF /D)
 

or perhaps more conveniently:

vhx(nom)

c
≈ √ 2√2ε0

π
1

I1(x) K1 (x)
(ℓ /D)

(CEF/D)
 (11.9)

With constants evaluated, this becomes:

vhx(nom)

c
≈ 2.823396847× 10−6 √ 1

I1 (x) K1(x)
(ℓ /D)

(CEF /D)
 (11.9a)

where the factor of 10-6 can be dropped if CEF/D is entered in pF/m.

When Chute & Vermeulen derived the characteristic resistance of the helical line, they used the 
Bessel function argument x=βhxD/2 .  There appears to be no reason however why we cannot 
truncate the coil in the manner adopted by Ollendorff (section 1.7).  In that case, the argument is as 
given by equation (1.9):

 x =(m+kff )
π
2

D
ℓ

 

where m=1 for the free coil first SRF case, and kff is an empirical fringe-field correction that can be 
set to zero when not required95.  Thus, with CEF taken to be the same as CE , as calculated using 
equation (9.13);  with ℓ/D=0.04 , equation (11.9a) produces a nominal velocity factor of 0.485.  
Drude's measurement for that coil-shape corresponds to vhx(nom)/c=0.465.  This gives us some 
confidence that the theory is on track, but note that (11.9) is very much a short-coil limiting case.  
Thus as the input ℓ/D value increases, the curve veers upwards somewhat wildly; although it does 
maintain a curvature reminiscent of the data.
     Note incidentally, that since (11.9) is a limiting case for large x, we can also insert the large 
argument limiting forms of the Bessel functions.  These are:

In (x) ≈
ex

√2π x
 x > 10 (Dwight96 p196, 814.2)

Kn (x) ≈ √
π
2

e−x

√x
 x > 10 (Dwight p197, 816.2)

Thus:

I1(x) K1 (x)≈
1
2x

=
1
π ( ℓ /D) ℓ/D < 0.16

Substituting this into (11.9) gives:

95 It will turn out that a component of CEF can provide the fringe-field correction in a more general way.
96 Tables of integrals and other mathematical data, 4th edition, cited in section 1.7.
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vhx(nom)

c
≈ √ 2√2ε0

(CEF /D)
  (11.10)

i.e., 

vhx(nom)

c
≈ 5.004340615×10−6 √ 1

(CEF/D)
(11.10a)

Once again, the factor 10-6 can be dropped if CEF is in pF.  The expression above  agrees with (11.9) 
to 4 decimal places at  ℓ/D=0.04.

  Nominal VF - Iterative solution   
We can now return our attention to the general solution for Vhx(nom) /c , which is to be obtained from 
equation (11.3).  This was given earlier as: 

π
vhx(nom)

ℓw

CEF R0 tan(π
2

 
vhx(nom)

vhx
)= 1   

By inspection we can see that, for long coils, as CEF diminishes, vhx(nom) gets closer to vhx and the 
tangent argument approaches π/2.  Thus the small angle approximations are inappropriate for the 
general problem and we must develop an iterative method.  Before we can do that however, we 
must satisfy the same requirement as before, which is that all parameters are either invariant in first 
order or functions of ℓ/D.  Thus, once again, we use the substitutions CEF=D(CEF/D)  and  
ℓw=ℓ /tanψ,  and the tanψ disappears by virtue of the fact that R0 , as given by (11.8), has a factor of 
1/tanψ.  Thus:

v hx(nom)(D / ℓ) (CEF /D)(R0 tanψ) tan(π
2

vhx(nom)

v hx
)= 1

π  (11.11)

where  

R0 tan ψ=
Z0

2π
√2 K1(x) I1(x) K0(x) I0(x)     and     

vhx

c
= √ I0 (x) K0 (x)

I1 (x) K1(x)
  

Note however, that we want to to use the helical velocity factor as as a parameter, and we want to 
express the solution as a velocity factor.  Thus a preliminary re-grouping on that basis gives a form 
eligible for trial-and-error solution:

vhx(nom)

c
=

1

tan(π
2

(vhx(nom) /c )

(vhx/c) )
( ℓ/ D)

c π(CEF /D)(R0 tanψ) (11.12)

The helical velocity factor can be computed using the Basic macro function "Ollendf(x)" (see 
section 1.7).  The OO Basic function R0tan(x), given in the following box, calculates R0 tanψ. 
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Function R0tan(byval x as double) as double
' Calculates R0 Tan(psi) for the sheet helix.  D W Knight. Version 1.00, 2016-04-04
Dim I0 as double, I1 as double, K0 as double, K1 as double
Dim oFA as Object
oFA = createUNOService("com.sun.star.sheet.FunctionAccess")
I0 = ofa.callFunction( "Besseli", array(x, 0) ) 
K0 = ofa.callFunction( "Besselk", array(x, 0) ) 
I1 = ofa.callFunction( "Besseli", array(x, 1) ) 
K1 = ofa.callFunction( "Besselk", array(x, 1) ) 
R0tan = 59.9584916*sqr( 2*I0*K0*I1*K1 )
end function

     Note that the quantities (ℓ/D), (CEF/D), (R0 tanψ) and (vhx/c) are all constant once a value ℓ/D has 
been selected.  We can therefore create some composite parameters in order to put the problem into 
a more manageable form.  These are:

a = π
2 v hx/c       and     b =

(ℓ /D)

cπ(CEF/D)(R0 tan ψ)
(11.13)

We will also use y to represent the solution, i.e.;

y =  vhx(nom) /c

Equation (11.12) then becomes:

y =
b

tan (a y )
  

To find a solution, one of the instances of y can be replaced with z (say).  Thus:

y =
b

tan (a z)
  

A guess for z can now be inserted and adjusted until z=y.  This method was tried manually and, 
using CE/D from equation (9.13) in place of CEF/D, served to confirm that the theory as it stands 
(without empirical corrections) already gives a fairly good simulation of the free-coil data of Drude 
and Jackson.  As a means of solution suitable for programming however, it is ill conditioned.  The 
difficulty lies in the fact that very small changes in z can produce large changes in y, and there is 
nothing to prevent az from approaching π/2, in which case the process will crash. That issue can be 
circumvented by swapping z and y and rearranging thus:

y =
1
a

arctan( b
z )  (11.14)

The arctan function has no argument limits.  To solve this equation algorithmically, note that after 
inserting an initial guess z, any shift in z (δz say) will cause a corresponding shift in y.  A solution 
will be obtained if we can define a shift such that:
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z +  δz = y +  δy

Were the system linear, then the shift in y would be equal to the shift in z multiplied by ∂y/∂z.  For a
non-linear system, this is only approximately true, but if the required shift diminishes after each 
change in z, then the problem will converge and the computed shift will become progressively more
accurate as the solution is approached.   Thus we have:

z+δ z ≈ y+δz
∂ y
∂ z

 

which can be rearranged:

δz ≈
z−y

(∂ y
∂ z

−1)   

Notice that the problem cannot be solved by this method if ∂y/∂z can take on a value of 1 during the
iteration process.  Checking for this type of singularity is easily accomplished using a spreadsheet,  
and in this case it does not occur.  To differentiate (11.14) note that the standard differential for 
arctan is:

d (arctan x)

dx
=

1
1+x2  

Thus, using the chain rule:

∂ y
∂ z

=
1
a

 
1

1+(b
z )

2
 b(−z−2

)
  

i.e.,

∂ y
∂ z

=−
b
a

 
1

z2
+b2  

The problem set out in this way turns out to be well conditioned.  Using Ollendorff's function (i.e., 
vhx/c) to provide the initial estimate for  vhx(nom) /c  (i.e., z), it was found that for small ℓ/D ratios, 
where  vhx/c ≈1 and y≈0.5, the difference |z-y| was reduced to <1 ppM in 3 rounds of iteration.  For  
ℓ/D>1, where the axial induced field capacitance is fairly small, the difference was reduced to 
<1 ppM after one round.  Thus the procedure is highly efficient.

     An experimental algorithm for obtaining  vhx(nom) /c is shown in the following box.  It is 
experimental because it uses the theoretical 'true' velocity factor and the composite parameter b (see
11.13) as its input arguments.  This arrangement is inconvenient for general modelling application, 
but it permits alteration of the input definitions for the purpose of adjusting the curve shape.
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Function VFnomx(byval vfh as double, b as double) as double
'Experimental function for calculating nominal helical velocity factor.
'vfh is theoretical 'true' helical VF.  D W Knight  v 2.01, 2016-04-13.
Dim y as double, z as double, a as double, diff as double, der as double, deltaz as double
Dim n as integer
if vfh <= 0 then vfh = 1
a = pi/(2*vfh)
z = vfh
n = 0
do
  y = (1/a)*atn(b/z)
  diff = z-y
  der = -(b/a)/(z*z+b*b)
  deltaz = diff /(der -1)
  z = z + deltaz
  n = n + 1
loop until abs(diff) < 1E-9 or n > 255
VFnomx = y
end function

The output of this function vs. ℓ/D is plotted in the following graph, with data for comparison.  
Fringe-field correction via the Bessel  function argument is not used.  The version using the axial 
field capacitance from the uniform current case (CE)  is marked  HTL//CE  (helical transmission line 
in parallel with CE ). 
     Note that the model (so far) has no provision for reproducing the flattening-off of velocity factor 
that occurs for very long coils.  Taking that into account, and bearing in mind that CE diminishes as 
ℓ/D increases, it is obvious that it takes only the presence of a very small amount of capacitance to 
shift the transmission-line resonance into the vicinity of the data.  In the ℓ/D< 1 region however, the 
curve has an inflection that is not evident in the data, and so the uniform-current TDE model 
capacitance CE is not correct for the free coil (as was expected).
     In order to obtain a curve that is realistic in the  ℓ/D< 1 region, we obviously need to find an 
expression for CEF .  The two empirical formulae shown below are suitable, and give practically 
identical results.  The curve marked HTL//CEF  is actually produced by the second formula (11.15), 
although it makes no visible difference.

CEF

D
=

5.5 ε0

arccosh(1.4 +2.5 ℓ / D+4(ℓ /D)
2
)

  

CEF

D
= 2ε0( 1

1+ln (1+ℓ /D)
+

1
arccosh(1.015+( ℓ /D)

2
))    (11.15)

There are various ways in which equation (11.15)  can be adjusted, but the only obvious empirical 
coefficient is the term 1.015 in the argument of the arccosh function.  This adjusts the curve in the  
ℓ/D< 1 region and allows the spurious inflection to be removed.  
     What is particularly interesting about (11.15) however is that it corresponds to two separate 
capacitances, one of which (the first term) provides the fringe-field correction.  In the region where 
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ℓ/D>1, this term produces almost exactly the same effect as that of adjusting the Bessel function 
argument x.  It is also fairly obvious that the fringe fields that result from truncating the solenoid 
will create a capacitance in addition to that which is due to the induced axial field.  Correcting for 
that via x however can only affect the curve in regions where vhx>1, whereas it is actually necessary 
to correct for it over the whole range. Thus, although adjusting  x  in order to slide the Ollendorff 
velocity factor curve along the ℓ/D axis was useful for investigative purposes (see section 1.7) it 
was never a viable fringe-field correction method overall.  The first term in (11.15) therefore 
represents a capacitance that decays slowly as ℓ/D increases.  A constant term would do almost the 
same job, but is physically unreasonable (an infinitely long coil does not require correction).

     Use of (11.15) for the capacitance in parallel with an Ollendorff helical transmission line plants 
the resulting curve in among the data up to about ℓ/D=4.  Note incidentally, that Drude's 
measurements for ℓ/D<0.1 should probably not be taken too seriously because there is no reason to 
expect a kink or minimum in that region.  
     The issue that remains however is that the curve does not follow the data when  ℓ/D>4.  This is a 
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matter of wave propagation, and has nothing to do with terminating capacitance (which has more or
less died out in this region).  That the true velocity factor will flatten-off and eventually return to 1 
seems physically reasonable, and the data appear to show it.  It could also be that helical phase 
velocity in very long solenoids is no longer primarily dependent on ℓ/D, but the contiguity of 
Drude's and Alex Pettit's data would seem to mitigate against that view.  
     It must be noted incidentally that increasing pitch angle will cause a falling-off of observed 
velocity factor (recall that Ollendorff's function should strictly be divided by cosψ).  As we will see 
however; the effect is not great enough to account entirely for the failure to fit Alex's data.  There is 
also some evidence of this fall-off in Drude's data, and Drude generally avoided using coils of large 
pitch (although the details are not always clear).  The production of an accurate long-coil velocity-
factor model would therefore seem to require either a modification of Ollendorff's function or a 
modification of the argument passed to that function.

  Pitch-angle correction  
In the matter of modelling the SRF of a coil as a function of ℓ/D, a second-order effect is by 
definition a factor that affects the SRF but is not a function of ℓ/D.  If such effects become 
pronounced, the only way in which we can deal with them is by adjusting the data.  Such is the case
with the effect of pitch.

The helical velocity factor according to Ollendorff's theory is:

vhx

c
=

W(x)
cos ψ

 

(see equation 1.8).  Thus the quantity that we have been assuming to be the true theoretical helical 
VF is actually:

vhx

c
cos ψ= W(x)  

Thus, in cases where we know the pitch angle, we can in principle apply a correction to the data so 
that it should better conform to the curve produced by W(x).  Of course, there is a complication in 
doing that in the case of short coils, because they are strongly subject to the effect of the axial-field 
capacitance, but for long coils the self-shunting effect is greatly diminished, and the gradient of 
Ollendorff's function becomes similar to that of the data.  Thus we can apply a simple second-order 
correction by dividing the observed values of vhx(nom) /c  by cosψ.  
     Note incidentally, that this correction implies that an infinitely long coil will have an infinite 
phase velocity.  This is, surprisingly, not paradoxical, the reason being that  an infinitely long coil 
will also have an infinite conductor length.  Thus we have, from equation (11.1):

f 0 =
vhx(nom)

2 ℓw

 →  
∞
∞

 

which simply means that the resonant frequency is undefined.  All we are doing therefore is turning 
large pitch-angle data into small pitch-angle data for the purpose of producing an empirical curve 
that is correct for small pitch-angles.
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  Long-coil correction  
Once the data have been corrected for the effect of pitch angle, it will be found that there is still a 
flattening-off of the velocity factor for long coils that is not accounted for by the unmodified 
Ollendorff transmission-line model.  
     In order to learn more about this effect, various empirical fitting strategies were tried in an 
attempt to reproduce the actual curve.  A complete replacement for Ollendorff's function was found 
to be impractical because any substitute function would need to be of a very high order in the 
argument x.  This is generally the case with combinations of Bessel functions, and it can be seen 
from the comparison between Ollendorff's function and the Kandoian-Sichak approximation in 
section 1.8 that the phase velocity is somewhat wayward.  The approach chosen was therefore that 
of progressively modifying the Bessel function argument.  This is a matter of shifting the Ollendorff
curve along the ℓ/D axis, as was done for demonstration purposes in section 1.7, but in this case the 
increment is governed by a function of ℓ/D rather than a constant.  Initial attempts to get this to 
work using simple polynomials and logarithmic functions however failed to produce the desired 
effect.
     Eventually, it was decided that the problem might be solved by finding out what the correcting 
function should look like.  Consequently, with the modified argument defined as  x' = x+δx ,  a 
spreadsheet column for δx was created and filled with zeros.  Numbers were then entered into this 
column manually in order to eliminate the fitting residuals (i.e., the difference between the data and 
the model curve) for  ℓ/D>1.  The resulting noisy correcting curve was then adjusted manually, first 
for monotonicity and then to make it smooth.
     The result was a sigmoid curve, of asymmetric appearance on a linear scale, but symmetric on a 
logarithmic scale.  Such a curve is the Gompertz function97:

G(t)= k1exp [−k2 exp(−k3 t)]  

where the parameter k1  sets the
asymptote, k2  controls the horizontal
translation and k3  controls the rate
of growth.  The actual Gompertz
function used is shown on the right
on a logarithmic scale, with the
manually determined corrections
(crosses) superimposed.  It is
explicitly:

G(ℓ /D)= 0.117exp [−22exp(−0.75 ℓ /D) ]  (11.16)

With this correction, the Bessel function argument becomes:

x( ℓ /D)= π
2
(D / ℓ )+G( ℓ / D)  (11.17)

Note incidentally, that this argument is used both in Ollendorff's function and in the expression for 
the HTL characteristic resistance (11.8).

97 https://en.wikipedia.org/wiki/Gompertz_function
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     With the correcting function as given the model now fits 62 data points from Drude, Jackson, 
DWK and Alex Pettit with a standard deviation of 2.1% on 58 degrees of freedom98.  The four 
parameters considered adjustable are the three for the Gompertz function and the single adjustable 
coefficient in equation (11.15).  The following graph shows the curve in relation to the data.

98 Worksheet Helical_vf.ods, sheet 9.
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  Coil former dielectric  
A question that might have been asked at various points in this section is: 'why bother with this 
complicated transmission-line model, when you could simply fit the data to a purely empirical 
curve?'  There are two principal answers to that criticism, the first being that the helical velocity 
factor veers, in a manner characteristic of behaviour described by Bessel functions.  Consequently, 
there won't be any simple closed-form handbook formulae of any merit99.  The second point 
however is more subtle and might be explained as follows.  
     There is no complete solution for the solenoid self-resonance problem from first principles.  
Accurate formulae will therefore require some empirical adjustment; but if we keep such 
adjustments to a minimum, and justify them on physical grounds, then the model can still be 
adapted in a systematic way.  
     One very good reason for wanting to adapt the model is that we want to be able to predict the 
effect of coil former dielectric.  This is not completely straightforward, because dielectrics affect 
different parts of the model in different ways.  Correction is therefore not simply a matter of 
multiplying the nominal VF by a number.  If the required correction works moreover, then it 
suggests that the various pragmatic decisions and empirical adjustments made along the way have 
not divorced the model too seriously from the underlying physics.

     We can start by applying a dielectric correction to the true helical velocity.  Instead of writing it 
as a velocity factor, it can be deconstructed by writing:

v hx = c
W (x)

cos ψ
 =  

1

√μ0 ε0

W (x)

cos ψ
 

Thus we can see that it can be corrected by multiplying ε0 by a relative permittivity factor.  The 
quantity required in this case is the average relative permittivity for radial propagation, which we 
will call εrad .  This will  be a weighted average of the permittivities on either side of the conducting 
boundary, such that the simple average will apply when the coil is very short, and the external 
permittivity will dominate when the coil is very long.  We have already encountered this type of 
average in determining self-capacitance, where the effective dielectric constant for the time-delay 
part was given as equation (9.11b).  Here we write the expression with the left-hand side changed to
εrad , because that is what it is. 

εrad =
εx

2 [1+kL+
ε i
εx

(1−kL)] (11.18)

where kL is Nagaoka's coefficient, and εi and εx are the internal and external dielectric constants.  
Note that using Nagaoka's coefficient to determine the weighting for the free coil is not a rigorous 
choice.  The average obtained however will still be fairly close to the actual, such that we will 
hopefully not notice any error in a curve that attempts to predict resonance to within a few %.  
     The velocity factor for helical propagation now becomes:

vhx

c
=

1

√εrad

W(x )

cos ψ
 ≈  

W(x )

√ε rad

(11.19)

     The HTL characteristic resistance was given earlier as equation (11.8).  With permittivity and 
permeability shown explicitly it can be written:

99 The Kandoian-Sichak approximation is discussed in section 1.8.  
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R0 tanψ =
Z0

2π
√2 K1(x) I1(x) K0(x) I0(x)  =  

1
2π √μ0

ε0

 √2 K1(x) I1(x) K0(x) I0(x)

From this we can see directly that ε0 , once again, needs to be multiplied by the relative permittivity 
for radial propagation.   Thus, the expression for characteristic resistance becomes: 

R0 tanψ =
1

√ε rad

Z0

2π
√2K 1(x) I1(x) K0(x) I0(x) (11.20)

     The capacitance terminating the transmission line was given by equation (11.15) in a form 
having two components.  Here we will separate those two parts explicitly, because it will be 
necessary to correct them for coil former dielectric in different ways.  Thus we have:

CEF = CFF+CAF  

where CFF is the fringe field capacitance given by:

CFF

D
=

2ε0

1+ln (1+ℓ /D)
   

and CAF is the axial field capacitance, given by:

CAF

D
=

2ε0

arccosh(1.015+( ℓ / D)
2
)

 

Of these two expressions, the second is the easiest to deal with because it represents a fairly 
straightforward end-to-end capacitance.  Consequently, we can expect it to depend on the average 
dielectric constant in much the same way as was encountered in the self-capacitance case (9.13).  
Thus, the axial dielectric constant can be taken to be:

εax =
ε1+εx

2  

in which case the axial field capacitance per unit diameter becomes:

CAF

D
=

ε0(εi+εx)

arccosh(1.015+( ℓ / D)
2
)

(11.21)

How to correct the fringe-field capacitance however is a little more difficult to decide, because the 
associated field lines are neither strictly axial or radial.  For that reason both types of correction 
were tried, and while it can be argued that neither is completely appropriate, the radial type 
correction was found to give by far the better result.  This is because the effect of dielectric needs to
die-off faster than the fringe-filed capacitance itself as the length of the coil increases.  Thus the 
fringe -field capacitance per unit diameter becomes:
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CFF

D
=

2ε0εrad

1+ln (1+ℓ /D)
  (11.22)

     With the corrected components (11.19) - (11.22) incorporated, the HTL'//CEF  model is compared 
with Drude's data for coils wound on solid ebonite (hard rubber) cores100 in the graph below101.  

     Drude actually made four series of measurements of coils on solid ebonite cores, two of which 
were for p/d=2.4.  Those two series are very similar, and so the graph shows the average.  The notes
given by Drude on coil construction are somewhat ambiguous, but the best interpretation appears to
be that the p/d=2.4 measurements refer to coils that had bare copper wire embedded in a shallow 
helical groove machined into the former.  The p/d=1.09 and p/d=1.24 measurements on the other 
hand, refer to turns of cotton-insulated wire pushed close together on the surface of a bare cylinder.  
Kaye & Laby102 gives the dielectric constant of ebonite as falling between 3 and 2.7 for the range 
from 1 kHz to 1 GHz, so the value εi =2.8 was considered reasonable for modelling purposes.
     Cotton is cellulose fibre, and cellulose is a highly polar material.  Hence cotton fabric can have a

100On the construction of Tesla transformers.  P Drude, English translation cited earlier.  Table on p322.
101 Worksheet Helical_vf.ods, sheet 10.
102 http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_5.html
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dielectric constant anywhere between about 2 and 7.5 depending on the state of compression.  Also 
we do not know what oils or waxes were soaked into the cotton to improve its properties.  
Consequently we should expect the curves for the close-spaced coils to fall below the p/d=2.4 
curve, and that is what is seen.  Thus the wide-spaced case, with only ebonite to consider, is the 
dataset with which we would like to see the model converge.  
     The model and the p/d=2.4 data agree very closely over the ℓ/D range from 0.4 to 4.  There is 
some divergence at the extremes, but this does not necessarily indicate a problem with the theory.  
For ℓ/D>4, it could simply mean that the coils had a fairly wide pitch and the velocity factor is 
falling-off slightly as a consequence.  For the coils with ℓ/D<4, It should be noted that the spacing 
between Drude's air core and ebonite core curves is uneven, and this looks like an artefact103.  Thus 
there is no convincing basis on which to modify the model.

     For a final test, the HTL'//CEF  model was used to predict the self-resonance
frequency of a large PTFE cored coil kindly provided by Dr Duncan Cadd104.
The coil, shown in the photograph on the right, has a thick-walled PTFE former
and a removable close fitting PTFE rod of 35 mm diameter inserted into it.  It
thus has an effectively solid PTFE core.  The turns are wound into a machined
helical groove.  The SRF was measured using the scattering jig described in 
section 1.1 (the coil was suspended using two loops of fishing line).  The coil
parameters and SRF are listed below.

Solenoid length:
Average diameter :

length / diameter ratio:
Number of turns:

Wire (tubing) diameter:
Winding pitch:

Pitch to wire diam. ratio:
Conductor length:

SRF:
λ0/2:

Nominal helical VF:

ℓ = 218.1 mm
D = 70.8 mm
ℓ/D = 3.08
N = 43.8
d = 4.0 mm
p = ℓ/N = 4.98 mm
p/d = 1.24
ℓw = √[ (πDN)² + ℓ² ] = 9.745 m
f0s = 17.939 MHz
= c/(2f0s) = 8.356 m
vhx(nom) /c = 9.745 / 8.356 = 1.166

The dielectric constant of PTFE is 2.1 over the range from 50 Hz to 3 GHz.  Putting this value into 
the model with ℓ/D=3.08 yields vhx(nom)/c = 1.169.  Multiplying this value by c and then using the 
formula:

f 0 =
vhx(nom)

2 ℓw
 

we get a predicted SRF of 17.98 MHz, which is within ±0.23% of the actual value.  Such good 
predictions cannot always be expected of course, but it does indicate that the model is fairly 
accurate at this particular ℓ/D value.
     Incidentally, the SRF of the coil with the 35  mm diameter inner core removed is 18.101 MHz, 
an increase of 162 kHz.

103 Drude hand smoothed all of his data, and short coils are very difficult to construct accurately.  
104 http://home.freeuk.net/dunckx/
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  Model properties, limitations and overall calculation procedure  
Since the development of the HTL'//CEF  model has been a somewhat long process, it is useful to 
summarise its capabilities and limitations and collect all of the steps required in implementing it. 
     Firstly, note that the input arguments are the coil length/diameter ratio, ℓ/D, the internal dielectric
constant εi , and the external dielectric constant εx .  Under normal circumstances, εx will be set to 1, 
but it can be set to a different value if, for example, the coil is immersed in a bath of liquid.  The 
quantity returned is the nominal helical velocity factor, vhx(nom) /c ,  for a free coil (i.e., a coil with no 
electrical connections) at its SRF.  This must be multiplied by c to obtain a nominal velocity.  The 
SRF can then be calculated  from the conductor length using:

f 0 =
vhx(nom)

2 ℓw

If the coil is connected at one end to an infinite ground plane, the SRF will be approximately 
halved.  The SRF obtained is an upper limit, and will be reduced by ball electrodes and other 
accoutrements. 
     The model is designed to predict the SRF of coils wound on cylindrical formers of uniform 
composition.  It will be most accurate if the wire is uninsulated, or if the insulation is thin and there 
is some gap between the turns.  If the former is a tube, the SRF will be higher than the value 
obtained for a solid core.  In order to produce accurate predictions for coils wound on tubular 
formers, the model would need to be extended.  If such an extension is attempted, note that the 
helical propagation process and the axial field capacitance will be affected differently in the event 
of a discontinuous internal medium.

The following calculations are required.

1) Bessel function argument, (11.16) and (11.17):

x = π
2
(D / ℓ )+0.117 exp [−22 exp(−0.75 ℓ /D)]  

2) Nagaoka's coefficient, kL , for use in the radial permittivity weighting function.  Various general 
purpose inductance calculation utilities can be used, e.g., the Basic macro function W82W(D/ℓ).

3) Relative permittivity for radial propagation, (11.18):

εrad =
εx

2 [1+kL+
ε i
εx

(1−kL)]  

4) Actual helical velocity factor(11.19).

vhx

c
=

W(x)

√εrad

         Where W(x) is Ollendorff's function (1.5). 

5) Fringe field capacitance, (11.22):

CFF

D
=

2ε0εrad

1+ln (1+ℓ /D)
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6) Axial field capacitance, (11.21):

CAF

D
=

ε0(εi+εx)

arccosh(1.015+( ℓ / D)
2
)

 

7) Characteristic resistance (11.20):

R0 tanψ =
1

√ε rad

 
Z0

2π
 √2K 1(x) I1(x) K0(x) I0(x)  

8) Iterative solution for vhx(nom) /c, (11.13) and (11.14):

a = π
2v hx/c

b =
(ℓ / D)

cπ [ (CFF/D)+(CAF /D) ](R0 tan ψ)
  

y =
1
a

arctan( b
z )     to be adjusted until y=z

∂ y
∂ z

=−
b
a

 
1

z2
+b2  

vhx(nom) /c = y

The complete algorithm is implemented in the Open Office Basic macro function given in the 
following box.  Three external functions are used:
● W82W(D/ℓ)  for Nagaoka's coefficient (see section 9), 
● Ollendf(x)  for Ollendorff's function (section 1.7),
● R0tan(x)  for R0 tanψ  (given after equation (11.12).

Note that OO Basic has no arccosh function, and so the following identity is used:

arccosh(x)= ln (x+√x2
−1)  

The iterative solution procedure for  vhx(nom) /c  is explained in the passage after equation (11.13).
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Function VFnom(byval lod as double, ei as double, ex as double) as double
' Calculates nominal helical velocity factor for a free coil at its first SRF.
' D W Knight, v1.00, 2016-04-14
' Calls functions W82W(), Ollendf(), R0tan()
Dim x as double, erad as double, kL as double, vf0 as double, vfh as double
Dim Cff as double, arg as double, Caf as double, Rotn as double
Dim n as integer, a as double, b as double, y as double, z as double
Dim diff as double, der as double, deltaz as double  
x = pi / (2 * lod)
x = x + 0.117*exp(-22*exp(-0.75*lod))
kL = W82W(1/lod)
erad = (ex/2)*(1 + kL + (ei/ex)*(1-kL))
vf0 = 1/sqr(erad)
vfh = vf0*Ollendf(x)
Cff = erad*2*8.854187818/(1+log(1+lod))
arg = 1.015 + lod*lod
Caf = 8.854187818*(ei+ex)/log(arg+sqr(arg*arg-1))
Rotn = vf0*R0tan(x)
b = 1000000*lod/(299.792458*pi*(Cff+Caf)*Rotn)
a = pi/(2*vfh)
'solve for VFnom
z = vfh
n = 0
do
  y = (1/a)*atn(b/z)
  diff = z-y
  der = -(b/a)/(z*z+b*b)
  deltaz = diff /(der -1)
  z = z + deltaz
  n = n + 1
loop until abs(diff) < 1E-9 or n > 255
Vfnom = y
end function
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12.  Pseudo self-capacitance   
In the earlier part of the 20th Century, the preferred technique for determining the self-capacitance of
a solenoid coil was the extrapolation method of GWO Howe (see introduction, etc.).  In 1935 
however, as was mentioned in section 10, Willis Jackson published a paper in which he lamented 
the lack of accurate measurements suitable for comparison with theory.  In this he asserted the (by 
then) common belief that the coil behaves as though it has a uniform current throughout its length 
right up to the SRF; in which case, poor experimental results could be attributed to failure to 
account for coil-former dielectric, stray capacitance and connecting leads.  He therefore devised an 
improved method for self-capacitance determination, which he applied to coils constructed with 
minimal dielectric supporting material.
     His solution was to use the resonance extrapolation method to determine the coil inductance; but 
instead of trusting the self-capacitance that also comes out of that analysis, he trimmed-off the 
leads, suspended the coil from a thread, and made a separate SRF measurement using an absorption 
method.
    His self-capacitances, calculated from the SRF and the inductance using the parallel resonance 
formula, came out a lot lower than the results obtained using the Howe method.  Anyone who has 
been paying attention to this article so far will realise why that was; but at the time, only a few 
months after Palermo's dubious contribution (see section 6), it will have seemed that he had found 
some serious shortcomings in prior studies.  
     The result, of course, was more confusion; and in later years some doomed attempts (best left to 
the reader to discover) to fit free-coil and in-circuit 'self-capacitance' data using the same theory in 
both cases.  As we now know, that doesn't work; and so it is perhaps not surprising that people later 
fell upon Medhurst's formula with relief and tried not to think too hard about coil former dielectric.

     The premise on which this study was based was actually very similar to Jackson's.  It was 
observed that there was some problem with self-capacitance measurements, such that it was not 
possible to account for them in a consistent way.  The difference however, is that this work began 
with extrapolation measurements made over a wide frequency range; and it became obvious early 
on that the explanation for the peculiar 'fact' that the lumped element theory holds right up to the 
SRF is that it is wrong.  In retrospect of course, it is obviously nonsense, because, notwithstanding 
the strange phenomenon of velocity limiting, there cannot be a uniform current in a coil with 
nothing connected to it.  Furthermore, it must be said, that it is not strictly even possible to define 
inductance for an open circuit, and the problem must therefore be formulated in terms of 
inductance-per-unit-length.  Thus an a-priori indication that it is a transmission-line problem, and by
a somewhat lengthy process, we end up with radically different models for the uniform-current and 
the free-coil cases.  
     There is however, an issue of measurement technique that remains.  This is that the idea that 
there is no difference between free-coil measurements and in-circuit measurements is so embedded, 
that people do not distinguish between the two approaches and often do not even report the method 
used.  The models developed here however are now sufficiently mature that they will allow us to 
distinguish between the two classes of data.

     In section 10, we converted self-capacitance curves and measurements into nominal velocity 
factors for the purpose of comparing them with free-coil data.  We can now do the converse, and 
thereby represent free coil data as pseudo self-capacitances, to be compared with true self-
capacitances.  It must be understood, of course, that a pseudo self-capacitance is a completely 
fictitious quantity; because an open-circuit coil does not have an inductance that can be inserted into
the resonance formula, but that does not stop people from calculating it.
     The inductance used in the reporting of pseudo self-capacitance is usually either calculated from 
the current-sheet formula or measured by a two-terminal method.  For reasonably small pitch 
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angles, the results are similar in either case; because the current-sheet formula gives the DC 
inductance without internal inductance, which is close to the RF uniform-current value.  

The nominal helical velocity factor as a function of self capacitance was given earlier as equation 
(10.3).  It can be written:

(vhx(nom)

c )
2

=
4ε0 ℓ /D

πkL (CL /D)

where kL is Nagaoka's coefficient.  For a nominal helical VF of arbitrary origin therefore, we can 
rearrange this to obtain an alleged 'self-capacitance' per unit diameter:

CL

D
=

4ε0
π

ℓ / D
kL (vhx(nom)/c)

2  (12.1)

For the purpose of generating free-coil pseudo self-capacitances, we can either feed this formula 
using actual SRF measurements, i.e. using:

vhx(nom)

c
=

2 f 0 ℓw

c
 

or we can use the output of the HTL'//CEF model developed in the previous section.  

A Basic macro that converts velocity factors into self-capacitance per unit diameter is given below.

Function V2Cw(vfnom as double, loD as double) as double
' Converts nominal VF into CL/D in pF/m.  D W Knight. v1.00, 2016-04-17
' loD is coil length / Diam. Calls function W82W for Nagaoka's coeff.
Dim kL as double 
if vfnom <= 0 then vfnom = 1 
kL = W82W(1/loD)
V2Cw = 11.27350207*lod/(kL*vfnom*vfnom)
end function

     Recall that in section 7, a graph was given showing various self-capacitance measurements 
against a set of coil-former relative permittivity contours generated using the CL-DAE formula.  The
following graph has true self-capacitance permittivity contours as before (solid lines), but it also has
pseudo-self-capacitance contours (dashed lines) produced using equation (12.1) and the HTL'//CEF 
program105.  Jackson's 'self capacitance' per unit diameter measurements taken from his paper are 
plotted for comparison, along with pseudo CL/D values created using air-core free-coil data from 
Drude, Alex Pettit and DWK.  It is obvious that the two types of data are very different, and they 
can be distinguished fairly easily if the solenoid internal permittivity is known. 

105 Worksheet: CL_theor_test.ods, sheet 5.  
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13.  Discussion and summary  
The matter of radio-frequency solenoid reactance and resonance prediction has had a remarkably 
troubled history.  In this article however, we have uncovered the various difficulties giving rise to 
that situation, particularly the velocity limiting effect that renders the Ollendorff helical waveguide 
theory inapplicable to coils carrying uniform current.  Cleared of that obstacle, it has been possible 
to develop practical calculation methods for both free-coil self-resonance and uniform current self-
capacitance and show that they agree with a substantial body of experimental data.  Theoretical 
issues however remain, particularly in the matter of why wave propagation along a helix is affected 
by external influences on current distribution, and in the matter of how to derive the induced axial 
field and fringe field capacitances from first principles.  
     For those who wish to develop this subject further, or who simply want to understand the 
solenoid resonator for the purpose of using it, the following general points have been established.

1) A free coil, i.e., a coil without connections, has its fundamental resonance when the wire length is
λ/2 (where λ is the electrical wavelength).  When one end of the coil is connected to an infinite 
ground plane, the fundamental SRF occurs when the conductor length is λ/4.  The removal of the 
impedance discontinuity at one end effectively doubles the length of the single-conductor 
transmission line.  
     When an impedance is connected in parallel with a coil, the impedance terminates the 
transmission line.  The coil behaves as a short-circuited two-wire line of half its conductor length, 
which is the same as a one-wire transmission line of length equal to its conductor length.  A two-
wire line presents a high impedance at its terminals when its electrical length is λ/4, i.e., when the 
length of the wire in it is  λ/2.  Thus when the line is resonated against a variable reference 
capacitor, the data extrapolated to zero capacitance point to the λ/2 wire length resonance (provided 
that the test frequency is not too close to the SRF).  This is true regardless of whether or not one 
terminal of the coil is grounded, because the ground is not involved in resonating the coil.  
     That grounding one end of the coil has very little effect on the parallel resonance of an LC 
network is easily verified by removing and replacing the ground connection (the small changes that 
do occur are due to stray capacitance).

2) A long free coil exhibits a superluminal helical phase velocity that declines with increasing 
frequency.  When a shunt impedance is connected across the coil terminals, and provided that its 
magnitude is low enough to render the current distribution reasonably uniform, the superluminal 
effect is abolished and waves travel along the helix at the velocity of light for the local medium.  
Hence free-coil waveguide theories do not apply to coils connected in circuit.
     For those unfamiliar with electromagnetic theory, please note that a superluminal phase velocity 
does not imply transmission of information at a velocity faster than that of light.  A phase velocity is
the apparent velocity of a superposition of incident and scattered waves, all of which have a true 
velocity of c.
     A generator of relatively low output impedance connected across the coil will have the same 
effect as a shunt impedance.  Hence network analyser (virtual) SRF measurements are not 
equivalent to free-coil measurements.

3) The variability of the superluminal phase velocity is what is being referred-to when it is said that 
a helical transmission line is dispersive.  When external circuitry provides a shunt impedance 
sufficient to abolish the superluminal effect, the line is not dispersive in the absence of an 
environment composed of dispersive material.  Thus coils in circuit are in general not dispersive, 
and propagation delay can be estimated on the simple basis that a wave travels along the coil-
winding at a velocity governed by the local refractive index (the refractive index is the reciprocal 
velocity factor for the surrounding medium).
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4)  The elevated helical phase velocity effect is not abolished by immersing the system in a medium
of high refractive index.  All apparent velocities are simply scaled in proportion.  Thus, although a 
guided wave might not have a phase velocity > c, it is still effectively superluminal if its phase 
velocity is greater than that of an unguided wave.

5) The time-varying current associated with an electromagnetic wave propagating along a helical 
conductor produces a time-varying magnetic field in the direction of the coil axis.  By Faraday's 
law, an electric field is induced around any loop that encloses this changing magnetic flux.  There 
will be a component of this induced circumferential field, Ecosψ, at the surface of the helix acting 
in the helical direction.  Assuming a perfect conductor, this field must be exactly cancelled at the 
conducting wall (a perfect conductor cannot sustain an electric field within its body).  For that 
requirement (i.e., EM boundary condition) to be satisfied, an electric polarisation must occur in the 
helical direction.  This causes a voltage to appear across the ends of the coil, and hence an axial 
electric field in addition to the axial magnetic field.  The energy stored in this axial electric field is 
equivalent to a capacitance.  Thus there is an apparent static capacitance between the two ends of 
the coil.  

6)  When a coil is short, the induced axial field capacitance renders the current distribution more 
uniform than would otherwise be expected, and this tends to abolish the superluminal effect even 
when the coil is unconnected.

7) The axial field capacitance is also present in coils connected in circuit.  It renders the current 
substantially uniform in short coils, allowing them to be modelled as a lumped inductance in 
parallel with a fixed capacitance.  In longer coils, the self-shunting effect is less pronounced, and 
superluminal helical phase velocity is restored as the parallel impedance increases in magnitude 
(i.e., becomes more like an open-circuit) and the SRF is approached.

8)  It is tempting to attribute the axial field capacitance to a series combination of capacitances 
assumed to exist between adjacent turns.  The problem here is that if the number of turns is 
increased, the voltage per turn required to cancel the surface helical component of the induced field 
goes down.  Hence the axial field capacitance is unaffected by the number of turns (at least, to a 
good first-order approximation).  For that reason, inter-turn capacitance theories have no predictive 
power in the case of single-layer solenoid coils (i.e., they are wrong).
     Also, the axial field is not concentrated in the gaps between the turns. It is actually fairly uniform
on the inside of the solenoid, allowing the the internal average dielectric constant to be calculated 
from the area average.
     There is, of course, static inter-layer capacitance in multi-layer coils.  Also, a spiral coil can be 
considered to be a single-turn multi-layer coil, and this topology gives a relatively large self-
capacitance.

DWK
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Glossary   

// = parallel impedance operator, defined such that: a//b=ab/(a+b)

β = 2π/λ = ω/v = propagation constant (wavenumber).
β0 = 2π/λ0 = ω/c
γ = √( β2 -  β0

2 ) = radial wavenumber
ε = ε0 εr = electric permittivity
ε0 = 1/(μ0 c²) = 8.854187818 pF/m = permittivity of free space
εr = relative permittivity (dielectric constant in the lossless approximation).
εrad = relative permittivity for radial wave propagation
εf   = dielectric constant (relative permittivity) of coil-former material.
εh = relative permittivity of a space occupied by a helical scattering element
εi  = relative permittivity inside the solenoid
εx = relative permittivity outside the solenoid
η = volume fraction
λ = v / f  = wavelength in the surrounding medium
λ0 = c / f  = wavelength in free space
λax = axial wavelength
λhx = helical wavelength
μ = μ0 μr  =  magnetic permeability
μ0 = 400π nH/m = permeability of free space
μr  = relative permeability (neglecting losses)
χ²/ν = reduced chi-squared = variance of an observation of unit weight.
ψ = arctan(p/πD)  = pitch angle
ω = 2πf = angular frequency [radians / sec.]

c = 1/√( μ0 ε0 ) = 299 792 458 m/s = Velocity of light
C0 = Capacitance per unit length of transmission line
Cee = End-effect capacitance
CE = Capacitance due to axial induced electric field
CEF = Axial induced field capacitance of free coil
CL = CT + CE = Self-capacitance of an inductor
CT = time delay expressed as a capacitance
D = Average or effective diameter of solenoid
DAE = "Doubly asymptotic, empirical"
d = wire diameter
DFM = Digital Frequency Meter
ESD = estimated standard deviation
f  = frequency
f0 = resonant frequency
f0s = self-resonant frequency (SRF)
f0s(v) = virtual SRF, calculated from uniform current inductance and self-capacitance.
g = Geometric mean distance (GMD)
G(x) = Gompertz function
GDO = Grid-dip oscillator
h = height
HTL = Helical transmission line
Hn

(1)(x) = Hankel function of the first kind of order n and argument x.
In(x) = Modified Bessel function of the first kind
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Jn(x) = Bessel function of the first kind.
Kn(x) = Modified Bessel function of the second kind.
kC = capacitance correction coefficient
kE = electric correction factor
kH = Generalised magnetic field inhomogeneity coefficient
kL = Nagaoka's coefficient (current-sheet field inhomogeneity coeff.)
L = Low-frequency inductance
L' = XL' / ( 2π f ) = Apparent inductance
L0 = Inductance per unit length of transmission line
ℓ = Np = Length (or height) of solenoid.
ℓ/D = col length to diameter ratio.
ℓw = 2πrN/cosψ  =  Wire (or conductor) length (often approximated by setting cosψ=1 )
ℓTL = physical length of a transmission line
m = 1, 2, 3, . . .  = Counting index for overtones.
nax or nz = Apparent refractive index for axial wave propagation.
nhx = Apparent refractive index for helical wave propagation (Drude's f ).
N = Number of turns
N/ℓ = 1/p = Number of turns per unit length
p = ℓ /N = pitch distance (i.e., distance between turns, wire centre to wire centre).
r = D/2 = Effective radius of solenoid (r < ra )
R0 = Characteristic resistance of a transmission line
ra = Average radius of solenoid (measured to middle of wire)
ri = inside radius of tubular coil-former
ro = outside radius of coil-former
SRF = Self-resonance frequency
T0 = Lowest helical waveguide propagation mode (radially symmetric).
TDE = "time delay + induced electric field"
TL = Transmission line
UHMWPE = ultra-high molecular weight polyethylene
unun = unbalanced-to-unbalanced transmission-line transformer
v = phase velocity, i.e., apparent propagation velocity (in medium. v = c in vacuo)
VF = velocity factor
vp = phase velocity
v/c = 1/n = velocity factor
vax /c = 1/nax = axial velocity factor
vhx /c = 1/nhx = helical velocity factor
vrad = vhx cosψ = radial phase velocity
VNA, VNWA = Vector Network Analyser
w = relative wall thickness
wi = statistical weight of the ith observation
x = Generalised function argument.  Polynomial root. Horizontal graph axis.
W(x) = vrad /c = Ollendorff's function (free-coil radial velocity factor).
X = reactance
XCL = -1/( 2πf CL ) = reactance attributable to self-capacitance 
XL = 2πf L = Inductive reactance 
Z0 = √( μ0 / ε0 ) = 376.7303134 Ω = Impedance of free space
Z0 / 2π = 59.9584916 Ω



105

Revision history  
2008-09: Refitted version of Medhurst's formula with correction for coil-former dielectric + 
comparison with inter-turn capacitance theories  first published online as HTML
2010-05-09: v 0.01:  1st draft PDF, ported from HTML and reformatted and put online .
2013-02-01: v 0.03.  Loaded vertical antenna discussion.
2013-04-23. v 0.06:  Helical resonators.
2013-05-02: v 0.07:  Notation updated to comply with SI conventions. 
2016-03-03: v 0.09:  Presentation of evidence for the velocity limiting effect.
2016-03-16: v 0.12:  Introduced the CL-TDE formula.
2016-03-27: v 0.14:  Changed 'sheath-helix' to 'sheet-helix'.  Macro code for Ollendorff's function. 
Iterative solution for wavenumber problem.  Comparison with the K&S approximation.  Added 
K&S to the collected VF curve (section 10).   
2016-03-31: v 0.15:  Correction in discussion of K&S curve & Medhurst's data.  Misassignment to 
the λ/4 resonance doubles the apparent velocity factor.
2016-04-07: v 0.16:  Correction to formula in section 1.2.
2016-04-19: v 0.17: Completed section 11.  Added section 12.
2016-04-21: v 0.18: Made more accurate (VNA two-antenna) measurements on the large PTFE coil,
both with and without the inner PTFE core.  HTL'//CEF prediction is actually within 0.23%.
2016-05-02: v 0.19:  Shorter abstract.  Minor changes to text and formatting.
2016-05-03: v 0.21.  Section 1.0 edited and renamed.  Pocklington ref. added.
2016-05-04: v 1.00.  Extended title.  Additional comments in discussion.

█


