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1.  Introduction
In today’s automotive and power industries, higher power requirements are leading to more
designs that require lower RDSon. Sometimes this is not achievable with a single packaged
MOSFET and the design will need to make use of two or more devices in parallel. Higher power
applications could also require the use of high performance substrates like heavy copper PCB, IMS
(Insulated Metal Substrate) or DBC (Direct Bonded Copper) and even bare dies. By paralleling, the
total current and thus dissipation is shared between each device. However, this is not as simple as
applying Kirchhoff’s current law: MOSFETs are not identical and thus they don’t share equally.

This application note describes how sharing imbalances between paralleled MOSFETs form as well
as guidelines and tools to take them into account. The final goal is to provide a set of best practices
that can help to design circuits with standard paralleled MOSFETs.

2.  Applications
Applications that require paralleled MOSFETs can be categorized into two main groups depending
on the operation of the MOSFET: switch-mode and load switch.

The switch-mode types include motor drive applications, such as belt starter generators and
superchargers, braking regeneration systems and switched mode power converters, such as
regulators (DC/DC) and other types of inverters (DC/AC). Here the half-bridge represents the
fundamental cell block that all the major circuit topologies are based upon. The MOSFETs are
generally required to switch ON and OFF at a constant rate that can vary widely depending on the
application, and are driven by a rectangular pulse with varying duty cycle (PWM). This is done with
the intent of modulating the output power of the system to the load.

Load switching mainly refers to applications where MOSFETs are used in series with the battery
such as in activation, safety switches and e-fuses, one example being battery isolation switches.
The MOSFETs are required to switch ON once and will remain fully ON until the system is switched
OFF. They might be swiftly switched OFF only in case some type of failure has been detected,
for example in case of short circuit. Additionally, these switches may come in a back-to-back
configuration in order to offer an additional reverse polarity protection.

This application note focuses on switch-mode applications and the half-bridge configuration.

3.  Key specifications
The most important figure to monitor is the MOSFET junction temperature. This is a function of
the power dissipated in each device which ideally should be uniform for all paralleled MOSFETs.
Since P = V × I and the same voltage is applied across all the paralleled MOSFETs, it is clear
that for ideal operation the current should be shared equally by each MOSFET and this is the
simplest metric to quantify how well the MOSFETs perform. However, an equally valid approach
is to consider the dissipated energy (or power), as done throughout the majority of this application
note.

Current sharing in paralleled MOSFETs is mainly affected by the part to part variation of three
data sheet parameters: RDSon, QG(tot), and VGS(th). This will be described further in the appropriate
sections.

During the design phase, it is important to understand how to predict the worst case scenario
in part to part variation in order to produce a reliable design. As with many other aspects of
electronics, the designer will eventually decide how much of a headroom to adopt against the
aforementioned worst case, maybe trading off some of the design robustness for improved
performance. As better said in “The Art of Electronics”:

"This example illustrates a frequent designer’s quandary, namely a choice between a
conservative circuit that meets the strict worst-case design criterion, and is therefore

guaranteed to work, and a better-performing circuit design that does not meet worst-case
specifications, but is overwhelmingly likely to function without problems. There are times when
you will find yourself choosing the latter, ignoring the little voice whispering into your ear." [1]
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Simulation setup
Disclaimer: this application note proposes the alteration of SPICE models. It is the user’s
responsibility to verify the model conformity to the data sheet, after any modification has
been implemented. This can be done by following the guidelines described in the appendix.

The circuit used in the application note is composed of 3 MOSFETs in parallel both at the high and
low side driving an inductive load, as shown in Fig. 1. The switching frequency is set at 20 kHz,
duty cycle at 50 % and maximum VGS is 15 V. Each MOSFET is conducting a current of 50 A,
which is set by the constant current source of 150 A used in series with the load inductor. The
SPICE simulation contains also three 0 V generators, one in each low side MOSFET source path,
which are used to measure the low side drain current in order to calculate the dissipated energy
and power. BUK7S1R0-40H is used throughout this document, unless stated otherwise. As shown
in Fig. 1, parasitic inductance linked to the layout has been added to the simulation. There is no
difference in terms of parasitics between the three branches (each branch corresponds to a single
MOSFET and the path connecting it to the others in parallel through inlet and outlet: VSUPPLY and
phase for the high side, phase and GND for the low side).

This is an ideal scenario but achievable in practice within a reasonable margin. In this case any
imbalance will only be determined by the intrinsic differences between the MOSFETs themselves.
The importance of layout and influence of parasitics is discussed further in the corresponding
chapter.

It is worth noting that the guidelines and observations made from now on do not depend on the
battery voltage or other specifications, so they can be applied to a wide range of scenarios.
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Fig. 1. SPICE simulation circuit: half-bridge
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4.  MOSFET dissipation and parameters' influence on current sharing
By understanding how MOSFET dissipation works and highlighting which are the main parameters
affecting it, it is possible to steer the worst case analysis towards a less burdensome but still
realistic evaluation.

Power dissipation in a MOSFET employed in a half bridge is caused by two processes: conduction
and switching. Fig. 2 shows the current flowing through the paralleled MOSFETs in case of ideal
devices and the dissipated energy.

I
(A)

D

15

-5

5

45

55

35

25

time (µs)
0 10 20 30 40 50

aaa-033643

E
(µJ)

diss

25

-25

0

100

125

75

50

M1, M2, M3
ID

M1, M2, M3
E diss

E COND

E SW(on) E SW(off)

Fig. 2. MOSFETs drain current (ID) and energy dissipation (Ediss) - ideal case: equal MOSFETs. The turn-ON,
conduction and turn-OFF phases are indicated

The average power dissipated over a cycle can be found in a simulation environment or calculated,
by taking into account each contribution separately. There is no hard separation between switching
and conduction losses. However, in a simulation environment, the dissipated power can help in
detecting this separation. Fig. 3 shows how the turn-ON phase has been found: the first point is set
at around 9.9 µs where the power is 0 W, the second point is set at 10.4 µs where the dissipated
power is almost constant at around 1.8 W (dissipated power during conduction - Pcond). While the
drain current (ID) flowing through MOSFET M1 is shown in Fig. 3, the drain-to-source voltage (VDS)
across it rises before the current falls, hence the valid loss recorded here. Moreover, the increase
in dissipated power starting at 10 μs and lasting around 100 ns is due to the gate charge required
to turn-ON the device.
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Fig. 3. MOSFETs drain current (ID), energy dissipation (Ediss) and power dissipation (Pdiss)
- ideal case: equal MOSFETs. The turn-ON phase is indicated

Fig. 4 shows how the turn-OFF phase has been found: the first point is set at 36.2 µs where the
power is 0 W, the second point is set at around 35.2 µs where the dissipated power starts to
increase from 1.8 W.
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Equation 1 expresses the power dissipation in the MOSFET, while equations 2 and 3 show the
individual contributions from switching and conduction.

P =avg(tot) Psw + Pcond (1)

(E=Psw + f swsw(ON) Esw(OFF)) (2)

E= f swPcond cond (3)

Where Esw(ON) and Esw(OFF) are the energy dissipation during turn-ON and turn-OFF, Econd is
the energy dissipation during a single conduction phase and fsw the switching frequency. In this
case, the total average power dissipated across each MOSFET over one cycle is around 2.1 W at
20 kHz.
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Table 1 shows the energy calculated during switching (divided into ON and OFF) and conduction.
The degree of sharing of each MOSFET can be defined in several ways. Here it is defined as
ratio between the energy dissipated in one MOSFET and the total energy dissipated in all of the
paralleled devices, by using equation 4.

Total Energy Sharing n FET

ESW(ON)
= 

Σ i =1

+ ESW(OFF)+ E SW(COND) (Mx) 100
( (

(Mi)ESW(ON) + ESW(OFF)+ E SW(COND)( ( (4)

In this case, switching (Esw(ON) + Esw(OFF)) accounts for around 55 % of the overall dissipation.
However the switching:conduction dissipation ratio will depend on the switching frequency: a low
frequency will lead to conduction losses dominating whereas switching losses will dominate at high
frequency. Therefore, in order to simplify the evaluation, one might consider to take into account
only parameters influencing the most important contribution.

With the MOSFET fully ON the only source of dissipation is given by its drain-to-source on state
resistance (RDSon). On the other hand, switching depends on threshold voltage (VGS(th)) and input
charge (QG(tot)).

Table 1. Summary - Ideal case: equal MOSFETs
Device ESW(ON) [µJ] ESW(OFF) [µJ] ECOND [µJ] Total Sharing

M1 5.1 52.8 46.1 33 %
M2 5.1 52.8 46.1 33 %
M3 5.1 52.8 46.1 33 %

5.  Influence of parameter spread on current sharing performance
As previously mentioned, manufacturing spreads in data sheet parameters have a big impact
on current sharing. Spread refers to the difference between maximum and minimum of a certain
parameter. These spreads are unavoidable and caused by both intra- and inter- wafer variation
during the silicon die fabrication. Every MOSFET produced by any manufacturer will carry these
spreads. Nexperia’s power MOSFET fabrication processes are optimised to keep spreads as tight
as possible in order to achieve good performance and reliability.

It is important to understand how each of the aforementioned parameters affect the current sharing
among paralleled devices, before describing techniques and guidelines to counteract them. This
can be done in a simulation environment. In the following section each parameter will be set at
the outmost values of its data sheet spread. In addition to the simulations presented here, the
Appendix contains experimental measurement data from an identical setup using MOSFETs with
similar parameter spreads.

It is worth noting that spreads are measured and thus guaranteed only at certain electrical
conditions. For instance, the threshold voltage spread is specified between 1 µA and 100 mA
and at VDS of 5 V, as shown in Fig. 5. However, this same behaviour is not guaranteed at higher
currents.
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Fig. 5. BUK7S1R0-40H sub-threshold drain current as a function of gate-source voltage

5.1.  Static operation (DC)

5.1.1.  Drain-source on-state resistance – RDSon

Table 2. BUK7S1R0-40H data sheet characteristics: RDSon
Symbol Parameter Conditions Min Typ Max Unit

VGS = 10 V; ID = 25 A; Tj = 25 °C 0.62 0.88 1 mΩ
VGS = 10 V; ID = 25 A; Tj = 105 °C 0.87 1.3 1.6 mΩ
VGS = 10 V; ID = 25 A; Tj = 125 °C 0.97 1.4 1.75 mΩ

RDSon drain-source on-state
resistance

VGS = 10 V; ID = 25 A; Tj = 175 °C 1.2 1.8 2.2 mΩ

The total spread, as per data sheet, is ∆RDSon = 0.38 mΩ or ∆RDSon,rel = ± 21.6 % (relative
percentage with respect to the nominal value). The SPICE model of the device has been adjusted
to account for the RDSon spread. This is done by changing the value of the RD parameter, located in
the “Drain, gate and source resistances” section. The correct values can be found by sweeping the
parameter after declaring a variable in the form of {variable}.

Table 3. SPICE model mod for RDSon spread
SPICE parameter – RD RDSon [mΩ] Conditions

316.247u 0.62
576.260u 0.88
695.949u 1.00

VGS = 10 V, ID = 25 A,
Tj = 25 °C
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The simulation setup and results are summarized in Table 4. The MOSFET having lower RDSon
(M1) will need to handle more energy, vice versa for M3. Both sharing during conduction and
switching are impacted. M1 is now dissipating 2.5 W, around 20% more than the ideal case (2.1 W)
while M3 is dissipating 1.7 W.

These results are valid only for the first cycles of operation, after which the temperature
dependency of the RDSon partly balance out the sharing, more information is provided in the
corresponding section on temperature dependency.

Table 4. Summary - Effects of RDSon spread
Device RDSon [mΩ] ESW(ON) [µJ] ESW(OFF)

[µJ]
Energy
Sharing

Switching

ECOND [µJ] Energy
Sharing

Conduction
M1 0.62 5.0 65.9 40.7 % 52.9 39.4 %
M2 0.88 5.1 48.8 30.9 % 42.5 31.6 %
M3 1 5.1 44.3 28.4 % 38.9 29.0 %

5.2.  Dynamic operation

5.2.1.  Total input charge – QG(tot)
Table 5 gives the typical and maximum values for gate charge parameters QG(tot), QGS and QGD;
refer to Fig. 7 for definitions of these parameters.

Table 5. BUK7S1R0-40H data sheet characteristics: gate charge
Symbol Parameter Conditions Min Typ Max Unit
QG(tot) total gate charge - 98 137 nC
QGS gate-source charge - 27 40 nC
QGD gate-drain charge

ID = 25 A; VDS = 32 V; VGS = 10 V

- 17 34 nC
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The total spread, as per data sheet, is ∆QG(tot) = 39 nC or ∆QG(tot),rel = +40 %. In order to introduce
this spread in the SPICE model, it is necessary to evaluate separately the contribution of QGS and
QGD through CGS and CGD.

By doing so, the MOSFET will end up showing slightly higher maximum QG(tot), since it is much
harder to control the slope of the VGS curve after the plateau voltage (refer to Fig. 7). Moreover, the
two capacitances will not necessarily behave in the same way: being mostly independent, it could
happen that a MOSFET shows, for instance, higher CGD and lower CGS, or any other combination
in between. To facilitate the evaluation, the two have been considered both at their typical and
maximum values only.

The SPICE model of the device has been adjusted to account for the CGD and CGS spread. This
is done by changing the value of CGS and multiplying the CGD value by a specific coefficient
CGD_scale. The former is defined as a constant value while CGD as a voltage dependent value
at the line “G11 3 2 VALUE …” in the corresponding section. The correct values can be found by
sweeping the parameter after declaring a variable in the form of {variable}.

Table 6. SPICE model mod for QG(tot) spread
SPICE parameter Conditions

CGS QGS [nC]
6.1n 27.148

9.24n 40.024
CGD_scale QGD [nC]

0.84 17.008
1.65 34.211

VDS = 32 V;
ID = 25 A; VGS = 10 V
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The simulation setup and results are summarized in Table 7. The value of QG(tot) has been
calculated as the sum of the respective QGS and QGD (from Table 6). At turn-ON the device with
lower input capacitance (M1) will switch ON first thus handling majority of the current. On the
other hand, at turn-OFF the MOSFET with higher input capacitance (M3) will switch OFF last now
handling most of the current. The sharing during switching is the most impacted, while conduction
has changed only marginally. M3 is now dissipating 2.8 W (0.7 W more than the ideal case) while
M1 is dissipating 1.9 W.

Table 7. Summary - Effects of QG(tot) spread
Device QG(tot) [nC] ESW(ON) [µJ] ESW(OFF)

[µJ]
Energy
Sharing

Switching

ECOND [µJ] Energy
Sharing

Conduction
M1 94.4 9.4 35.7 21.4 % 49.9 35.8 %
M2 125.7 6.9 60.8 31.9 % 46.1 33.2 %
M3 158.0 4.7 94.4 46.7 % 43.2 31.0 %

5.2.2.  Gate-source threshold voltage – VGS(th)

Table 8. BUK7S1R0-40H data sheet characteristics: VGS(th)
Symbol Parameter Conditions Min Typ Max Unit

ID = 1 mA; VDS=VGS; Tj = 25 °C 2.4 3 3.6 V
ID = 1 mA; VDS=VGS; Tj = 175 °C 1 - - V

VGS(th) gate-source threshold
voltage

ID = 1 mA; VDS=VGS; Tj = -55 °C - - 4.3 V

The total spread, as per data sheet, is ∆VGS(th) = 1.2 V or ∆VGS(th),rel = ± 20 %. The SPICE model
of the device has been adjusted to account for the VGS(th) spread. This is done by changing the
value of the Vto parameter located in the “.MODEL MINT NMOS” section. The correct values can
be found by sweeping the parameter after declaring a variable in the form of {variable}.

Table 9. SPICE model mod for VGS(th) spread
SPICE parameter Vto VGS(th) [V] Conditions

3.243 2.400
3.843 3.000
4.443 3.600

VDS = 12 V, ID = 1 mA
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The MOSFETs drain current is shown in Fig. 9. After turn-ON, the loop inductance present in the
circuit causes the current to stabilise only after 10 µs, further details in the Layout-dependent
parasitics section.
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Fig. 9. MOSFETs drain current (ID) - effects of VGS(th) spread

The simulation setup and results are summarized in Table 10. The MOSFET having lower VGS(th)
will need to handle more energy overall. At turn-ON M1 will switch ON first thus handling majority
of the current. Moreover, at turn-OFF the same MOSFET will switch OFF last, again, handling
most of the current. The sharing during switching is the most impacted, with one MOSFET (M3)
participating only minimally in the process, while conduction has changed only marginally. M1 is
now dissipating 4.7 W (2.6 W more than the ideal case) while M3 only 1 W.

Table 10. Summary - Effects of VGS(th) spread
Device VGS(th) [V] ESW(ON) [µJ] ESW(OFF)

[µJ]
Energy
Sharing

Switching

ECOND [µJ] Energy
Sharing

Conduction
M1 2.4 9.3 172.2 74.4 % 52.7 37.8 %
M2 3 5.1 48.7 22.1 % 45.7 32.8 %
M3 3.6 2.2 6.4 3.5 % 40.8 29.4 %

In conclusion, the MOSFET having lower VGS(th) will need to handle more energy both during
turn-ON and turn-OFF, while with the capacitance spread the switching energy will be balanced
between at least two devices. These results are valid only for the first cycles of operation, due
to the temperature dependency of the VGS(th). More information is provided in the corresponding
section on temperature dependency. Refer to Section 7.1 for an explanation of the shape of the
current between switching and conduction, as shown in Fig. 6, Fig. 8 and Fig. 9.
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5.3.  Paralleled MOSFETs and temperature dependency
Each MOSFET can be thought as a system composed of an electrical subsystem in a feedback
loop with a thermal subsystem, as shown in Fig. 10.
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Fig. 10. MOSFET electrical-thermal interaction

Power MOSFETs are often considered to be immune to thermal runaway due to the RDSon
temperature coefficient. However, this is only true for MOSFETs that are fully ON. When a
MOSFET is in the on-state, there are two competing effects that determine how its current behaves
with increasing temperature. As the temperature rises, VGS(th) falls, thereby increasing the current.
On the other hand, RDSon increases with increasing temperature, thereby reducing the current. The
resistance increase dominates at higher gate-source voltages (VGS), while the threshold-voltage
drop dominates at low VGS. Consequently, for a given VDS, there is a critical VGS below which there
is a positive feedback regime and above which there is a negative feedback and thermal stability.
This critical point is known as the Zero Temperature Coefficient (ZTC) point, Fig. 11.
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The interaction between thermal and electrical subsystems can be simulated using Nexperia
advanced models1 which make two additional thermal pins accessible: junction and case/mounting
base. Within these models, parameters of interest for the paralleling are modelled with increased
accuracy by including their temperature dependency. A circuit modelling the overall thermal system
MOSFET-PCB-ambient to the drain tab must be connected to the mounting base pin of the model.

1 The advanced models will be released later in 2021
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5.3.1.  Temperature dependency during static operation (DC)
In a parallel configuration, RDSon has the advantage of improving the sharing due to its positive
temperature coefficient (PTC), Fig. 12. As one MOSFET conducts more current and dissipates
more power, RDSon increases and the conduction losses change improving the sharing.
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Fig. 12. BUK7S2R5-40H data sheet graph: normalized on-state resistance as a function of
junction temperature

Ideally this phenomenon is maximized when the thermal coupling between paralleled MOSFETs is
less effective, as each MOSFET is less influenced by the others around it. However, this leads to
higher junction temperatures. This phenomenon can be described using the steady state simulation
shown in Fig. 13. This time, to simplify the interaction, only two MOSFETs have been used in
parallel. Additionally, a second circuit is used to model the thermal coupling between the two
MOSFETs and their connection with the PCB.

The SPICE model of the devices have been adjusted in order for M1 to show lower RDSon
(0.62 mΩ) than M2 (1 mΩ).
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Fig. 13. SPICE simulation circuit: thermal coupling
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With reference to the graph in Fig. 14: the total current flowing through the devices is set at 100 A
so that the leftmost y-axis shows current and sharing in percentage at the same time. In this case
current has been used to calculate the degree of sharing between the MOSFETs as this example
considers purely steady state conduction. As the thermal coupling between the two MOSFETs
worsens (Rth(M1-M2) increases) the junction temperature of M1 increases while the current
sharing in steady state improves (converges more towards 50 %). Moreover, even in case of high
decoupling the RDSon PTC will only improve the sharing by a maximum of around 2 % for each
MOSFET.

Therefore good thermal coupling between paralleled MOSFETs is to be preferred as it allows for
lower junction temperatures. More details on this are provided in the PCB Layout influence: Circuit
layout section.
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Fig. 14. Thermal coupling influence on sharing: RDSon(M1) = 0.62 mΩ and
RDSon(M2) = 1 mΩ

5.3.2.  Temperature dependency during dynamic operation
Threshold voltage is characterized by a negative temperature coefficient (NTC): it decreases as the
junction temperature increases. This behaviour is more detrimental in case of paralleled MOSFETs.
For instance, a device with an initial higher junction temperature will exhibit an even lower VGS(th)
which increases the current flowing through the MOSFET and thus the power that it dissipates.
As in the static case, good thermal coupling helps to keep the MOSFETs at similar temperatures.
Other guidelines could be adopted to mitigate temperature gradient across paralleled MOSFETs,
for more information refer to PCB Layout influence: Circuit layout.

Fig. 15 shows how the VGS(th) spread is almost constant with respect to the junction temperature,
however this behaviour is guaranteed only at a drain current of 1 mA. For a temperature difference
of 20 °C (from 25 to 45 °C) VGSth reduces by about 0.2 V.

AN50005 All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2021. All rights reserved

application note Rev. 1.1 — 13 September 2021 14 / 41



Nexperia AN50005
Paralleling power MOSFETs in high power applications

aaa-018139

-60 -30 0 30 60 90 120 150 180
0

1

2

3

4

5

Tj (°C)

VGS(th)VGS(th)
(V)(V)

TypTyp

MinMin

MaxMax

Fig. 15. BUK7S1R0-40H data sheet graph: gate-source threshold voltage as a function of
junction temperature

Finally, unlike RDSon and VGS(th), input charge is shown to only slightly vary with temperature.

5.4.  Data sheet and batch spreads
If considering multiple MOSFETs in parallel, data sheet spreads may be too conservative. The
design would certainly be reliable but the improved robustness to a wider worst case scenario
could end up being more expensive. In this case then, the designer would prefer to evaluate a
less stringent worst case scenario that, even if not guaranteed like the data sheet, can still be
considered realistic. This is done by looking at batch spreads.

A batch refers to a group of devices that go through the whole manufacturing process at the
same time. The number of dies in a batch can vary from a few thousands to over a few millions,
depending on the size of the dies themselves. Within a set of paralleled MOSFETs, it is preferable
to choose parts coming from the same reel in order to increase the possibility of using devices from
the same batch. Furthermore, using MOSFETs with identical batch codes, which can be found on
the package under the marking code, could be used to further narrow down the selection during
PCB assembly.

Spreads within a batch are observed to be much lower than the corresponding data sheet ones.
The same can be said even with those among different batches. Fig. 16 shows the spread of
VGS(th) for the BUK7S1R5-40H for 10 different batches. In this case the 6-sigma spread is observed
to be 0.42 V, from 2.86 V to 3.28 V. This value is calculated taking into account a small quantity of
outliers (not shown in the plot of Fig. 16). Therefore, the observed worst case is given by a ΔVGS(th)
= 0.42 V or ΔVGS(th),rel = ± 7 %, less than half of the guaranteed (data sheet) one.
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Fig. 16. VGS(th) batches spread for BUK7S1R5-40H

Fig. 17 shows the absolute value of the difference in VGS(th) (|∆VGS(th)|) between two consecutive
devices, within two different batches. In this case the 6-sigma spread is observed to be 0.25 V,
or ΔVGS(th),rel = ±4 %. Therefore, in case two consecutive MOSFETs coming from the same reel
are used in parallel, the difference between their VGS(th) is observed to be even smaller than that
between multiple batches.
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0

|∆VGS(th)|

 aaa-033949
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Fig. 17. Absolute value of the difference in VGS(th) between two consecutive devices

Fig. 18 compares the MOSFETs drain current in case of data sheet and batch spread, Table 11
quotes the energy shared by each MOSFET. M1 is now dissipating a total of 2.8 W and M3 1.5 W.
Therefore, a difference of ±7 % in VGS(th) leads to a reduction of 1.9 W over a cycle of M1, reducing
the ratio between these two MOSFETs dissipation from almost 5:1 down to 2.5:1.
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Fig. 18. MOSFETs drain current (ID) – data sheet and batch VGS(th) spread comparison

Table 11. Summary - Effects of VGS(th) batch spread
Device VGS(th) [V] ESW [µJ] Energy

Sharing
Switching

ECOND [µJ] Energy
Sharing

Conduction
M1 2.79 97.0 51.3 % 48.7 35.6 %
M2 3 59.4 31.4 % 45.4 33.2 %
M3 3.21 32.6 17.2 % 42.7 31.2 %

6.  Circuit optimisation
There are two main types of circuit modifications, each has a different impact on the current
sharing. These are: localized gate resistor and components in the MOSFETs source paths.

6.1.  Localized gate resistor
The first type of circuit modification is also the most advantageous, it has no major drawbacks
and it is the simplest to implement. The modification involves splitting the gate resistor between
a localized one close to the gate of each MOSFET and a common resistor at the driver side, as
shown in Fig. 18 b. Doing so will counteract the spreads and improve the sharing, mainly during
switching with little impact during conduction.

It is important to keep the localized resistance as low as possible to give maximum coupling
between the MOSFET gates, effectively allowing the input capacitances to be considered in
parallel. A simple simulation can display this effect: two circuits modelling the driver and input
impedance of each MOSFET are used as comparison. Fig. 19 a. shows the control voltage at each
MOSFET gate, the voltage is slowed down in case of the MOSFET with higher Ciss, vice versa it is
less filtered in case of lower capacitance.

By splitting the gate resistor the difference between the control voltages at each gate becomes
negligible (Fig. 19 b). With reference to the naming adopted in the SPICE circuits of Fig. 19, the
gate resistor at the driver can be calculated as:

=RG,drv -R
nFET
R

nFET
G G,split (5)

The value of RG,drv has been rounded to 12 Ω. A smaller RG,drv can be beneficial by reducing
the switching time where the unequal sharing occurs. In a similar manner, the smaller RG,split the
better coupled the MOSFETs gate, but it is recommended not to go below 2-3 Ω. In general, a gate
resistor helps in dampening any oscillation in the gate-source loop that might compromise the EMC
performance of the system. Therefore, given a lower resistance of the gate resistor, it is important
to reduce as much as possible the loop inductance of the driver loop, for further information see
section: PCB layout influence.

AN50005 All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2021. All rights reserved

application note Rev. 1.1 — 13 September 2021 17 / 41



Nexperia AN50005
Paralleling power MOSFETs in high power applications

aaa-033636

Vg1

RG1
39 Ω

Ciss1
1 nF

gate1

RG2
39 Ω

Ciss2
2 nF

gate2

RG3
39 Ω

Ciss3
3 nF

gate3

PULSE (0 15 0 1nF 1nF 1)

Vg2

RGsplit1
3.9 Ω

Rgdrv

12 Ω

Ciss1
1 nF

gate1

RGsplit2
3.9 Ω

Ciss2
2 nF

gate2

RGsplit3
3.9 Ω

Ciss3
3 nF

gate3

PULSE (0 15 0 1nF 1nF 1)

a. without gate resistor split b. with gate resistor split

Fig. 19. SPICE simulation circuit: gate resistor split comparison
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Fig. 20. Gate-source voltage without and with gate resistor split

The great improvement of the resistor split can be easily appreciated by simulating the same half-
bridge circuit using two different gate resistors setups and introducing some spread. This time an
arbitrary combination of all the spreads has been used. Fig. 21 shows the MOSFETs drain current
without gate resistor split, while Fig. 22 shows the MOSFETs drain current with gate resistor split.
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Fig. 21. MOSFETs drain current (ID) – without gate resistor split

The simulations setup and results are summarized in Table 12 and Table 13, while a final
comparison is given in Table 14. M3 is dissipating 8.2 W, M2 1.3 W and M1 2.0 W. At turn-ON
M1 is switching first, due to having both lower QG(tot) and VGS(th), thus handling the majority of the
current. On the other hand, at turn-OFF the MOSFET with higher input charge (M3) will switch last
and carry most of the current.
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Table 12. Summary - sharing without gate resistor split: RG = 39 Ω
Device RDSon

[mΩ]
VGS(th) [V] QG(tot)

[nC]
ESW [µJ] Energy

Sharing
Switching

ECOND [µJ] Energy
Sharing

Conduction
M1 0.62 3.21 94.4 42.7 9.6 % 62.2 47.0 %
M2 1 3 125.7 29.0 6.5 % 35.2 26.6 %
M3 0.88 2.79 158.0 373.0 83.9 % 34.9 26.4 %
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Fig. 22. MOSFETs drain current (ID) – with gate resistor split

With the gate resistor split M3 is now dissipating 3.8 W, M2 2.0 W and M1 1.6 W. The
improvements are noticeable both at turn-ON, where the peaks are now almost identical, and turn-
OFF. During the latter the peak current through M3 has reduced from around 150 A down to almost
90 A. Sharing during conduction has improved as well, this is due to time it takes for the current to
reach its conduction value following the turn-ON event. Overall, M3 is now dissipating 50 % less
power.

Table 13. Summary - sharing with gate resistor split: RG,drv = 12 Ω and RG,split = 3.9 Ω
Device RDSon [mΩ] VGS(th) [V] QG(tot) [nC] ESW [µJ] Energy

Sharing
Switching

ECOND
[µJ]

Energy
Sharing

Conduction
M1 0.62 3.21 94.4 30.0 12.4 % 52.3 39.6 %
M2 1 3 125.7 60.6 25.1 % 38.2 28.9 %
M3 0.88 2.79 158.0 150.5 62.4 % 41.4 31.5 %

Table 14. Summary – comparison of sharing with and without gate resistor split
Total Energy SharingDevice

without gate resistor split with gate resistor split
M1 18.1 % 22.1 %
M2 11.12 % 26.5 %
M3 70.7 % 51.4 %
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6.2.  Components in the source path
Employing a resistor in series with each of the MOSFETs source path can lead to better sharing
during conduction. The main disadvantage is that of an additional source of power dissipation
which lowers the overall efficiency of the system and increases the burden on the cooling system.
Given the relatively high value of resistance needed to be effective, this solution will not be ideal in
all scenarios.

Certain designs might already include series resistors to monitor the current flowing through a half
bridge. However, the only way for them to be effective in case of paralleled MOSFETs is if they are
placed within the gate-source loop, as shown in Fig. 23. In case of current sensing, an additional
small resistor may be added to decouple each loop in order to reduce potential crosstalk between
each branch.

The resistor helps to counteract the spread of the RDSon, thus leading to better sharing during
conduction. Inductance located in the same place has a similar effect of slightly improving the
sharing, this time during switching, by opposing quick changes in current (dI/dt) and thus lowering
the current peaks. On the other hand, conduction losses would increase slightly due to the larger
time constant of the current converging towards its conduction value (Itot / nFET).
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Fig. 23. SPICE simulation circuit: source resistors

The simulation setups and results are summarized in Table 15.
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Fig. 24. MOSFETs drain current (ID) – with a source resistor of 1 mΩ

Table 15. Summary – sharing with a source resistor of 1 mΩ
Device RDSon

[mΩ]
VGS(th) [V] QG(tot)

[nC]
ESW [µJ] Energy

Sharing
Switching

ECOND [µJ Energy
Sharing

Conduction
M1 0.62 3.21 94.4 27.9 11.5 % 41.6 30.8 %
M2 1 3 125.7 66.5 27.4 % 47.3 35.1 %
M3 0.88 2.79 158.0 148.4 61.1 % 46.1 34.1 %

The efficacy of the resistor on the current sharing depends on its value. If the aim is to balance
the current sharing, then the higher the resistance the better, as shown in Fig. 25. Naturally the
dissipation will increase considerably with it. In order for it to be effective in counteracting the RDSon
spread it needs to be comparable with the actual RDSon of the MOSFET.

I
(A)

D

10

-10

50

70

30

time (µs)
0 10 20 30 40 50

aaa-033654

RS = 1 µΩ
RS
R S
RS

= 250 mΩ
= 500 µΩ
= 1 mΩ

Fig. 25. MOSFETs drain current (ID) – effects of source resistor value
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7.  PCB layout influence
Tight spreads and a good layout are two important factors when designing an application with
paralleled MOSFETs. This chapter describes guidelines to achieve a good layout and how
parasitics influence the current sharing.

In a paralleled set of MOSFETs it is impossible to say beforehand where the device with lowest or
highest spreads will be placed. Therefore, it is important to lay out each branch in the same way,
failing to do so will result in the worsening of the worst case scenario.

7.1.  Layout-dependent parasitics
In case of paralleled devices loop inductance and resistance in the path should be not only
minimised but also equalised for each branch.

Higher inductance slows down the current reaching its steady state value due to the higher
time constant of the circuit (τ = L/R), as shown in Fig. 26. The inductance decreases the peak
current slightly but increases the overall sharing unbalance. Moreover, both high and low sides will
experience larger voltage overshoots and oscillations in VDS (and VGS) due to resonance with the
capacitances in the circuit (Fig. 27), often exceeding the supply voltage. This also leads to higher
interference with nearby circuits and wiring.

In general, any rule that would be recommended for a single MOSFET can be applied here. For a
more in depth explanation of the switching behaviour of a half-bridge and EMC consideration refer
to “AN90011: Half-bridge MOSFET switching and its impact on EMC”[2]
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Fig. 26. MOSFETs drain current (ID) - effects of parasitic inductance
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Fig. 27. Effects of higher parasitic inductance on low side VDS at turn-OFF

Differences between loop inductances lead to worse current sharing, as shown in Fig. 28.
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Fig. 28. MOSFETs drain current (ID) - effects of parasitic inductance imbalance

7.2.  Circuit layout
As in many other circumstances, the layout plays an important role in the final performance of an
electronic system, almost as much as the quality of the parts. In case of paralleled MOSFETs the
layout should be designed to provide: good thermal link between the devices, low and equal loop
inductance in the gate-source and source-drain loops and low and equal resistance between the
branches.

Good thermal coupling allows the devices to operate at similar lower temperatures. Furthermore,
the designer should aim at obtaining similar Rth(mb-amb) for each MOSFET. Multiple planes and
thermal vias help in improving the heat exchange between devices and environment. Care should
be taken in the placement of the MOSFETs: for instance by avoiding placing a subset of the
MOSFETs near heat sinks, connectors or other components that may be keep them cooler than
the other paralleled MOSFETs. For more information about this topic refer to “AN90003: LFPAK
MOSFET thermal design guide” [3].

Low inductance in a loop can be achieved by reducing the area of the loop (thereby reducing the
self-inductance) or by keeping the trace and its return path as close as possible to each other
(thereby increasing the mutual inductance). Loop inductance in the gate-source loop can be
reduced by keeping the driver as close as possible to the MOSFETs and by running gate and
source traces parallel to each other, as shown in Fig. 29.
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Fig. 29. Gate-source loop: possible layout

Inductance in the loop carrying the load current could be minimised, for instance, by employing
the design in Fig. 30. For further details refer to “AN90011: Half-bridge MOSFET switching and its
impact on EMC” [2].
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Fig. 30. Half-bridge layout possibilities showing inductances

The placement of inlets and outlets plays another important role because it determines each
branch parasitics. When using multiple devices in parallel, it could be helpful to use more than one
inlet and outlet. Using multiple smaller cables can be actually beneficial for other reasons too. The
positioning of these insertion points needs to be carefully planned. One possible way to facilitate
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this decision might be to use a CFD software and run a current density simulation. This type of
simulation highlights the preferred path the current takes in a steady state condition (DC).

Fig. 31 shows the setup used for the simulations: 3 MOSFETs are placed in parallel both at high
and low side. Each low side MOSFET is connected between phase (inlet), on the top layer, and
ground (outlet) on the bottom one (not shown in the picture), through a number of filled vias. Each
high side is instead connected between phase (outlet) and the positive supply (inlet) on the top
layer. A total current of 150 A is set to flow through the paralleled devices. Two simulations are
required, each with a single side active at a time.

aaa-033743

Fig. 31. CFD simulation setup

The results of the current density simulation for the low side and high side are shown in Fig. 32,
Fig. 33 and Fig. 34. Higher current density is shown in red, while low or null in blue. For instance
the high side simulation (Fig. 34) highlights a spot around M4 and inlet VBUS1 where current
density is higher, due to the position of the latter. By integrating the current density over the entire
surface of the die it is possible to calculate the sharing in steady state of the layout (between
30-40% in this particular case). These simulations have been obtained using scSTREAM.
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Fig. 32. CFD current density simulation: Low side MOSFETs ON – Top side
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Fig. 33. CFD current density simulation: Low side MOSFETs ON – Bottom side
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Fig. 34. CFD current density simulation: High side MOSFETs ON – Top side

8.  Driving paralleled MOSFETs
When driving paralleled MOSFETs it is recommended to use one single gate driver. This is mainly
done to synchronize the devices operation as much as possible.

The gate driver should have enough peak current capability to fully charge and discharge the total
input capacitance of the paralleled MOSFETs. This requirement becomes more and more stringent
as the number of MOSFETs increases, especially if the switching time is required to be low, as the
total input capacitance is now Ciss,tot = n.FETs × Ciss,max. Failing to do so means that the switching
speed will be set by the gate driver itself and not by the gate resistor.

As shown by the previous simulations turn-OFF dissipates more energy than turn-ON. One simple
way to reduce the switching losses is by decreasing the resistance of RG,drv only during the turn-
OFF. This can be done by using a combination of a smaller resistor in series with a diode, placed
in parallel with RG,drv, as shown in Fig. 35. However, before choosing the right value of RG,OFF it
is recommended to take into account any parasitic inductance that may be present in the circuit: a
combination of fast turn-OFF and high inductance could potentially induce avalanche, which, in a
parallel configuration, could greatly stress the device with lower breakdown voltage.
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Fig. 35. Speeding up turn-OFF switching
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9.  Simulation tools
This chapter describes how to set up a simulation aimed at finding the worst case scenario in a
set of paralleled MOSFETs. In this case SPICE has been used, however, the same ideas can be
applied to any other simulation tool that offers the same functionality.

The idea is to take into account MOSFET spreads in a simulation, in the same way of usual
components tolerances. Two types of simulations are discussed: probability distribution and worst
case scenario simulations.

Probability distribution simulation refers to a simulation where one or more parameters are defined
by their probability distribution, generally shown to be approximately Gaussian (or Normal).
This type of simulation would have the advantage of weighting each possible combination by
the likelihood of it happening. In theory, this would yield a more realistic evaluation and the
designer could run the simulation for a number of iterations corresponding to the design BOM
(bill of materials). In practice this type of evaluation is impractical since the data corresponding
to parameters distribution (mainly sigma value) would need to be measured for each specific
part name, it would not be guaranteed and it would require additional expensive steps in the
manufacturing process.

With respect to a distribution based simulation, the worst case scenario reduces the number of
iterations by taking into account only the maximum distribution of a parameter around its typical
value. The amount of runs is reduced to 2N + 1, where N is the number of indexed parameters and
1 is the nominal case, which is computed at the end. This type of evaluation is based on data sheet
spreads, which are guaranteed. On the other hand, it might miss “local extrema”, i.e. points inside
the spread at which the outcome is worse than the one resulting from considering only maximum,
minimum and nominal.

The analysis requires four main figures:

• Spreads, namely typical value and ∆ (tolerance)
• A function binary(run, index) that creates a set of indexes for the various combinations
• A function wc(nominal, tol, index) that reads these indexes and outputs the correct value for the

parameter
• A function that automatically measures the average dissipated power over a cycle

Besides, the spreads need to be symmetrical so, in case of RDSon, the evaluation will either use a
higher minimum or maximum resistance than the data sheet one. Instead, in case the data sheet
does not provide a minimum value, as for QG(tot), then the middle point can be considered as
nominal.

Prior to running the simulation the spice model of each MOSFET needs to be modified to replace
the value of each parameter considered in the evaluation, with the output of the wc(nom, tol, index)
function, as shown below:

• RDSon typical value 0.88 mΩ, tolerance ±0.12 mΩ
RD 3 4 {wc(576.2603u,tol_RD,3)} TC= 9.735m, 2.369u

• QGS typical value 33.5 nC, tolerance ± 13 nC
CGS 2 6 {wc(7.67n,tol_CGS,6)}

• QGD typical value 25.5 nC, tolerance ± 17 nC
.params CGD_scale = {wc(1.245,tol_CGD,9)}
…G11 3 2 VALUE {CGD_scale*V(13,0)*I(V11)}

• VGS(th) typical value 3 V, tolerance ±0.21 V
Vto= {wc(3.843,tol_VGSth,0)}

where: tol_RD = 119.68u, tolCGS = 1.57n, tol_CGD = 0.405 and tol_VGSth = 0.21.

In this particular case the number of parameters are 4, these change between the 3 paralleled
MOSFETs so the total number of indexed parameters is 12. Consequently the amount of
combinations will be 212 + 1 = 4097. Only one MOSFET can be considered for this evaluation. A
slightly modified version of the circuit seen in Fig. 1 is used for this simulation. Furthermore, the
small circuit of Fig. 36 is required in order to automatically compute the power dissipated by the
MOSFET under investigation (the corresponding 0 V monitor generator is required too).
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Fig. 36. SPICE simulation circuit: measure of MOSFET dissipated power

After the simulation is complete, the current through M1 can be displayed. The final result can be
seen in Fig. 37, Fig. 38 and Fig. 39, which shows the first 20 iterations.
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Fig. 37. Worst case simulation combinations - MOSFET drain current (ID)
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Fig. 38. Worst case simulation combinations - MOSFET average power
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Fig. 39. Worst case simulation combinations - MOSFET average power

The worst case scenario is when a single MOSFET is dissipating around 4.2 W of power. In
case only the VGS(th) spread is taken into account then the worst case scenario is when a single
MOSFET is dissipating around 1.7 W of power. This result can be used in a simple network
modelling the steady state temperature behaviour of the junction, as shown in Fig. 40. In this case
a PCB thermal resistance of around 15 K/W is needed to guarantee the junction temperature to be
lower than the maximum 175 °C. This would mean that an IMS or DBC board might be needed,
as the temperature at the interface between MOSFET and PCB is higher than the rating of FR4.
Alternatively, one might consider adding an additional MOSFET or selecting a lower RDSon part.

aaa-033640

Tamb

85 V

Rj_mbTj 149.68 °C

R_pcb
15 

0.4 

Pdiss

.op

4.2 A

Tmb148 °C

Fig. 40. SPICE simulation MOSFET temperatures check

This concept can be applied to a wide range of scenarios: for instance one could consider various
duty cycles, evaluating each worst case scenario and then plugging these values into the current
source of the circuit shown in Fig. 40. Furthermore the instantaneous power waveform of the worst
case could be exported and used within an RC thermal network to verify that the instantaneous
junction temperature is below 175 °C.
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10.  Conclusion
This application note aims at giving the reader a description of how the sharing among paralleled
MOSFETs is influenced by parameters spreads (e.g. RDSon, VGS(th) and QG(tot)) and PCB layout.
The analysis is conducted considering switch-mode (PWM) applications and thus the half-bridge
topology.

During switching, VGS(th) spread contributes the most to current unbalances, affecting turn-ON
and turn-OFF in the same way: the device with lower VGS(th) will turn-ON first and turn-OFF last,
dissipating more power during both events. Additionally, the NTC of VGS(th) leads to increased
dissipation as it further lowers the VGS(th) of the MOSFET that handles more power. The spread
in QG(tot) can be effectively counteracted by splitting the gate resistor between one close to the
MOSFETs gate and a common one at the driver side. This modification will improve the sharing
with huge benefits during switching.

The RDSon is not as significant as VGS(th) when considering MOSFETs in parallel since its PTC
improves the sharing during conduction and counteracts the imbalances caused by RDSon spread.
Additionally the losses during conduction (I2×R) are generally lower than the switching losses
therefore the imbalance will weigh less on the overall power sharing.

A worst case scenario simulation can be used to quantify and evaluate the performance of
paralleled devices. It can be useful to understand which and how many devices to use in parallel.
The worst case depends mainly on the spread of certain parameters. The VGS(th) batch variability is
shown to be around half that indicated on the respective data sheet. Albeit not guaranteed, spread
between batches is more realistic and leads to a design with improved performance.
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11.  Appendix

11.1.  Experimental measurements
The following data shows the first two pulses of current flowing through 3 low side MOSFETs used
in parallel. The circuit topology employed is the half bridge driving a 4 µH inductive load. Four
measurements are shown. M1, M2 and M3 RDSon, QG(tot) and VGS(th) (measured at both 1 mA and
1 A) are quoted in the tables for each measurement.

aaa-033750

15

25

5

35

45
I

-5

D
(A)

M1

M2
M3

time (µs)0 10 20 30

Fig. 41. Measurements n.1: MOSFET drain current

Table 16. Summary measurements n.1
Device RDSon [mΩ] QG(tot) [nC] VGS(th) [V]

@1 mA
VGS(th)

[V]@ 1 A
Energy
Sharing

Switching

Energy
Sharing

Conduction
M1 3.16 35.57 3.02 3.62 33.7 % 33.1 %
M2 3.02 36.45 3.02 3.63 32.5 % 32.9 %
M3 2.94 35.64 3.02 3.62 33.8 % 34.0 %
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Fig. 42. Measurements n.2: MOSFET drain current

AN50005 All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2021. All rights reserved

application note Rev. 1.1 — 13 September 2021 32 / 41



Nexperia AN50005
Paralleling power MOSFETs in high power applications

Table 17. Summary measurements n.2
Device RDSon [mΩ] QG(tot) [nC] VGS(th) [V]

@1 mA
VGS(th)

[V]@ 1 A
Energy
Sharing

Switching

Energy
Sharing

Conduction
M1 3.07 38.14 3.46 4.10 8.2 % 32.8 %
M2 2.94 35.64 3.02 3.62 36.1 % 33.7 %
M3 3.14 33.74 2.80 3.39 55.7 % 33.5 %
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Fig. 43. Measurements n.3: MOSFET drain current

Table 18. Summary measurements n.3
Device RDSon [mΩ] QG(tot) [nC] VGS(th) [V]

@1 mA
VGS(th)

[V]@ 1 A
Energy
Sharing

Switching

Energy
Sharing

Conduction
M1 3.16 35.57 3.02 3.62 32.0 % 32.9 %
M2 3.43 28.69 3.03 3.63 32.0 % 32.9 %
M3 3.05 44.50 3.02 3.62 36.0 % 34.2 %
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Fig. 44. Measurements n.4: MOSFET drain current

Table 19. Summary measurements n.4
Device RDSon [mΩ] QG(tot) [nC] VGS(th) [V]

@1 mA
VGS(th)

[V]@ 1 A
Energy
Sharing

Switching

Energy
Sharing

Conduction

M1 3.16 35.57 3.02 3.62 25.5 % 33.2 %

M2 3.05 44.50 3.02 3.62 27.5 % 33.2 %

M3 3.14 33.74 2.80 3.39 45.3 % 33.6 %

11.2.  Simulations
The following simulations can be used to verify a SPICE model conformity to data sheet.

RDSon simulation
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M1

VGS
0 V

ID
25 ABUK7S1R0-40H

.inc BUK7S1R0-40H.lib
.dc VGS 5 15 .1

Fig. 45. SPICE simulation circuit: RDSon check
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Fig. 46. SPICE simulation circuit: RDSon as a function of VGS

QG(tot) simulation
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.D1 anode cathode clamp_D
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Fig. 47. SPICE simulation circuit: QG(tot) check
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Fig. 48. SPICE simulation circuit: VGS as a function of time

VGS(th) simulation
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Fig. 49. SPICE simulation circuit: VG(th) check
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Fig. 50. SPICE simulation circuit: VG(th) check
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