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ABSTRACT

When an iPhone is turned off, most wireless chips stay on. For

instance, upon user-initiated shutdown, the iPhone remains locat-

able via the Find My network. If the battery runs low, the iPhone

shuts down automatically and enters a power reserve mode. Yet,

users can still access credit cards, student passes, and other items in

their Wallet. We analyze how Apple implements these standalone

wireless features, working while iOS is not running, and determine

their security boundaries. On recent iPhones, Bluetooth, Near Field

Communication (NFC), and Ultra-wideband (UWB) keep running

after power off, and all three wireless chips have direct access to the

secure element. As a practical example what this means to security,

we demonstrate the possibility to load malware onto a Bluetooth

chip that is executed while the iPhone is off.
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1 INTRODUCTION

Wireless chips on the iPhone can run in a so-called Low-Power

Mode (LPM). Note that LPM described in this paper is different

from the energy saving mode indicated by a yellow battery icon. In

LPM, the iPhone does not react to tapping the screen or shaking.
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This mode is either activated when the user switches off their phone

or when iOS shuts down automatically due to low battery. If the

iPhone was switched off by the user, it turns on when pressing

the power button. In battery-low power reserve mode, pressing

the power button only activates the screen for a few seconds. It

indicates the low battery and lists the currently active LPM features,

as shown in Figure 1.

LPM features increase the user’s security, safety, and conve-

nience in most situations. Find My is available after user-initiated

and battery-low shutdown. A user who loses their iPhone while

it is turned off can locate it using the Bluetooth-based Find My

network [26]. Express Mode supports selected student, travel, and

credit cards, as well as digital keys to be used faster without ad-

ditional authentication by the user. Upon battery-low shutdown,

these cards and keys can be used for up to 5 h [8]. Initially, this only

required the NFC to stay on. Instead, the new Digital Car Key (DCK)

3.0 protocol uses Bluetooth and UWB, and it also supports Express

Mode in power reserve [4]. Express Mode protects users against

locking themselves out of their cars and homes and being unable

to make payments.

LPM support is implemented in hardware. The Power Manage-

ment Unit (PMU) can turn on chips individually. The Bluetooth and

UWB chips are hardwired to the Secure Element (SE) in the NFC

chip, storing secrets that should be available in LPM. Since LPM

support is implemented in hardware, it cannot be removed by chang-

ing software components. As a result, on modern iPhones, wireless

chips can no longer be trusted to be turned off after shutdown.

This poses a new threat model. Previous work only considered that

journalists are not safe against espionage when enabling airplane

mode in case their smartphones were compromised [30]. LPM is

Figure 1: FindMy and Express Cards in power reservemode.
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significantly more stealthy than a fake power off that only dis-

ables the screen. Even though the National Security Agency (NSA)

used fake power off on smart TVs for espionage [57], high battery

drainage would be noticeable and could reveal such implants on

mobile devices. We show that LPM is a relevant attack surface that

has to be considered by high-value targets such as journalists, or

that can be weaponized to build wireless malware operating on

shutdown iPhones.

We are the first to analyze Apple’s LPM features. We reverse-

engineer multiple wireless daemons and firmware components to

systematically analyze LPM. Our key contributions are:

• We perform a security analysis of new LPM features intro-

duced in iOS 15,

• we identify flaws in the Find My LPM implementation, lim-

iting the total advertisement time to 24 h even after reboot,

• we design, implement, and open-source tooling to analyze

and modify Bluetooth firmware on recent iPhones, and

• we demonstrate that Bluetooth LPM firmware can be modi-

fied to run malware.

We responsibly disclosed all issues to Apple. They read the pa-

per prior to publication but had no feedback on the paper’s con-

tents. The tooling required for firmware analysis and modification

on modern iPhones is available as part of the InternalBlue 1
and

Frankenstein 2
repositories.

The remainder of this paper is structured as follows. Apple de-

scribes how NFC LPM is supposed to work, which we summarize

in Section 2. Then, we explain undocumented LPM Bluetooth and

UWB features in Section 3. Based on this knowledge, we analyze

threats posed by LPM in Section 4. In Section 5, we demonstrate

that it is possible to modify the Bluetooth firmware loaded while

the chip is in LPM. Our reverse-engineering methods are described

in Section 6 to ensure reproducibility of our results. We discuss

related work in Section 7 and conclude our paper in Section 8.

2 NFC LOW-POWER MODE

From a hardware perspective, enabling Bluetooth, UWB, or other

chips like NFC while the remaining iPhone is off are very similar.

Bluetooth and UWB LPM features are undocumented and have

to the best of our knowledge not been investigated, yet. However,

Apple’s platform security guide [3] documents an NFC LPM feature

called Express Card, introduced in iOS 12. Hardware components

supporting Express Cards and enforcing security boundaries are

shown in Figure 2. We describe these in the following.

2.1 Security Boundaries

iOS implements secure wireless payments on an NFC chip with a

Secure Element (SE). The SE is certified based on Common Criteria

and runs a JavaCard platform [3, p. 140]. This platform executes ap-

plets, e.g., Apple Pay [3, p. 141], DCK [3, p. 169], or other third-party

applets. During setup, applets are personalized. Personalization can

have additional security boundaries, e.g., no credit card informa-

tion is stored on a payment applet but a revokable identifier known

to the payment network [3, p. 145]. Applets, including their se-

crets, are separated from each other. They are stored within the SE

1
https://github.com/seemoo-lab/internalblue

2
https://github.com/seemoo-lab/frankenstein
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Figure 2: Secure Element (SE) and Secure Enclave Processor

(SEP) usage as documented by Apple.

and do not leave it. During a payment process or similar wireless

transactions, the SE within the NFC chip replies directly without

forwarding this data to iOS [3, p. 141]. Thus, even if iOS or apps are

compromised, credit cards and other keys cannot be stolen from

the SE [44].

The SE is connected to the Secure Enclave Processor (SEP). The

SEP authorizes payments by enforcing that the user authenticates

using Touch ID, Face ID, or a passcode [3, p. 141]. Note that the SEP

does not store data within the SE but uses a separate secure storage

component [3, p. 15]. The SE and SEP are paired in-factory and,

thus, can communicate encrypted and authenticated [3, p. 144].

2.2 Express Cards and Power Reserve

The Wallet app allows configuring selected NFC credit, travel, and

student cards as well as keys for Express Mode. An Express Card

does no longer require authorization via the SEP [3, p. 153f], en-

abling fast and convenient payment without unlocking the iPhone.

Possessing the iPhone is the only authorization in Express Mode.

Skipping authorization means that neither the SEP nor iOS are

required to complete an NFC transaction, and NFC can operate

standalone using SE applets.

Once an iPhone runs out of battery and if the user has an Express

Card, the iPhone shuts down but keeps the NFC chip powered for

up to 5 h [8]. This enables the user to use their transit and credit

cards as well as car keys until they can charge their iPhone. During

this period, the display indicates Express Cards are enabled when

pressing the power button, as shown in Figure 1. Express Cards are

only enabled in power reserve mode. A user-initiated shutdown

also powers off NFC [3, p. 28].

3 BLUETOOTH AND UWB LPM

iOS 15 introduces two new LPM features: (i) Find My, Apple’s

Bluetooth Low Energy (BLE)-based offline finding network, and (ii)
Digital Car Key (DCK) 3.0 support, which uses UWB for a secure

distance measurement. Thus, also the Bluetooth and the UWB chip

are able to operate standalone while iOS is powered off. These

capabilities are undocumented and have not been researched before.

To improve readability, we explain our reverse engineering process

later in Section 6, and only describe how these modes work in the

following.

3.1 Find My Bluetooth Module

3.1.1 Working Principle. Find My is an offline finding network,

which has been reverse-engineered in detail [26]. It locates iPhones,

AirTags, and other Apple devices while they are not connected
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to the Internet. To this end, offline devices in lost mode regularly

send BLE advertisements. Devices with a network connection scan

for these advertisements and report lost devices’ locations to the

legitimate owners.

The Find My protocol is end-to-end encrypted, anonymous, and

privacy preserving. This security guarantee is based on a device-

specific master beacon key. The master beacon key is synchronized

with the user’s iCloud keychain, allowing access as long as the user

can log in to iCloud. The keychain is also stored locally, and access to

its secret key requires a roundtrip through the SEP [3, p. 96]. Based

on the master beacon key, a rolling sequence of private/public key

pairs is generated. This sequence is fixed forever, and each key is

only valid during its time slot. Linking public keys in this sequence

to each other requires knowledge of the master beacon key. The

device broadcasts the current public key as BLE advertisement,

and a portion of the key also sets the MAC address to a random

value. Any Internet-connected device that observes a Find My BLE

advertisement can encrypt its current approximate location with

the public key and report it to Apple. Only the legitimate owner of

the offline device possesses the matching private key to decrypt the

location report. The location report does not include the reporter’s

identity. Public keys roll every 15min on iPhones, which limits

smartphone tracking via BLE advertisements.

AirTags work similar to Find My on iPhones. When they lose

the Bluetooth connection to the owner’s iPhone, they start sending

advertisements. On AirTags, the advertisement public key only rolls

every 24 h. This way, it can be detected when an AirTag follows

the same person, and an anti-stalking warning can be displayed on

the tracked person’s smartphone [25]. However, a longer rolling

time limits the legitimate user’s privacy. A 24 h time interval might

be a technical requirement on AirTags, which do not have a precise

time source. Drifting away from a shorter 15min window would

mean that they could no longer be found when querying Apple’s

servers.

3.1.2 Low-Power Mode Setup. When Find My is supported after

power off, this is shown as part of the shutdown dialogue. Users

can change this setting during each manual power off procedure as

depicted in Figure 3. If the iPhone runs out of battery and enters

power reserve mode, Find My is enabled automatically, similar to

Express Cards in the NFC chip.

LPM support requires a Bluetooth firmware that can send BLE

advertisements while iOS is off. Broadcom Bluetooth chips can

either be configured to interact with a host, such as iOS, or to run

as standalone application, such as IoT devices. When entering LPM,

the iOS Bluetooth stack is terminated and the Bluetooth chip is

Figure 3: Find My shutdown dialogue on iOS 15.

reset. Then, multiple Host Controller Interface (HCI) commands

configure FindMy parameters. The last HCI command disables HCI,

thereby stopping all communication with iOS. The firmware starts

a standalone Find My advertisement thread. The PMU is advised to

keep the Bluetooth chip on despite shutting iOS down.

The Find My configuration HCI commands are very flexible.

They allow setting multiple public keys for a short and a long rota-

tion interval. The rotation interval duration and the total number

of keys are variable parameters. As of iOS 15.3, 96 short interval

(15min) and 0 long interval (24 h) keys are set. Thus, the standalone

Bluetooth app can only send Find My advertisements for up to 24 h.

In power reserve mode, entered due to low-battery shutdown, Find

My stops even earlier, after slightly more than 5 h. This property

is opaque to users, who might expect that their iPhone remains

findable for a longer period of time.

Only configuring a limited amount of short interval public keys

has multiple security advantages. Advertisement linkability is re-

duced by the short rotation time, which increases privacy [41]. This

also means that the iPhone will not trigger anti-stalking features,

thereby hiding a potentially lost iPhone from thieves. Most impor-

tantly, the master beacon key stays within the keychain and is not

shared with the SE, Bluetooth chip, or Bluetooth daemon.

3.2 Digital Car Key 3.0 Bluetooth and UWB

Modules

3.2.1 UWB as NFC Successor for Car Keys. In addition to NFC

cards, iOS also supports car keys. Since they are digital, they can

have other properties than regular car keys. For example, they

can be individualized per user, including speed limits for young

drivers, and shared between iCloud users [4, 10]. While having

DCK support on iOS is convenient for users, this also adds new

attack vectors to car theft. On the implementation side, the main

risk is on car manufacturers—a compromised DCK or failures in its

implementation can be used to steal a car but not to steal an iPhone.

Unlike digital payments, physical car theft cannot be undone. This

risk motivated car manufacturers to move from DCK 2.0, which is

based on NFC, to DCK 3.0.

Even though the acronym Near Field Communication (NFC) sug-

gests that only two nearby communication parties can perform

transactions successfully, NFC and older car key technologies are

prone to relay attacks [21, 49]. In a relay attack, signals are for-

warded over a larger distance than intended. Relay attacks pose

a significant threat to applications like DCKs, because they allow

car access and theft while the user is not nearby. Short distances

can be reduced by amplifying an existing signal. Long distances

require decoding a signal into packets and forwarding these. The

first practical low-cost tool for performing packet-based NFC relay

attacks has been published in 2011 [22], and similar tools supporting

up-to-date NFC technologies are still maintained [31, 35].

While the DCK 2.0 specification relies on NFC [11], DCK 3.0

adds support for secure ranging based on UWB [12]. Even though

UWB was marketed to support secure ranging, the UWB distance

measuring fundamentals are flawed [47], and low-cost distance

shortening attacks against Apple’s UWB chip of up to 12m were

demonstrated in practice [37]. We assume that these flaws were
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Figure 4: New Secure Element (SE) and inter-chip interfaces

present in the iPhone 11, 12, and 13 series.

unknown during the DCK 3.0 design phase, and UWB still provides

better ranging security than NFC.

3.2.2 Working Principle. The DCK 3.0 protocol uses both, BLE and

UWB. BLE sets up the initial connection and authentication. Then,

UWB is used for fine ranging secured with a symmetric key, but

without data transfer. Thus, BLE and UWB both require access to

secret key material. The DCK 3.0 specification describing precise

steps of the BLE and UWB protocols is exclusively available to

members of the Car Connectivity Consortium. Marketing materials

only contain rudimentary information [10–12, 49]. The most de-

tailed information was released in a presentation by Apple, which

confirms that DCK 3.0 is supported in power reserve mode [4].

Apple prepared hardware components for DCK 3.0 since the

iPhone 11. On iPhones with DCK 3.0 support, the SE is hardwired

to the Bluetooth and UWB chips, as shown in Figure 4. Thus, similar

to NFC transactions using the SE, replies generated by the SE are

sent directly over-the-air without being shared to iOS. This ensures

the same security boundaries as DCK 2.0, while adding support for

secure ranging.

3.2.3 Low-Power Mode Setup. When the iPhone shuts down due

to low battery, and a car key is configured, UWB Express Mode is

enabled. This mode is very similar to the NFC Express Mode.

Initial DCK 3.0 protocol steps only require BLE. Hence, UWB

can go to sleep, but a BLE application keeps running. The Bluetooth

stack is terminated and a standalone application is started on the

Bluetooth chip, similar to the Find My LPM. Both applications,

DCK and Find My, run in the same thread. Applications are only

initialized and executed when certain flags are set, meaning that

the same firmware image can be used even if only one application

is active. The DCK application scans for other BLE devices, runs

a Generic Attribute (GATT) service for data exchange over BLE,

and retrieves key material from the SE using the Inter-Integrated

Circuit (I
2
C) protocol.

In contrast to the Bluetooth chip, the UWB chip is sleeping. The

daemon responsible for UWB sends a special LPM enabling and

configuration packet to the chip. Once secure ranging is needed, the

Bluetooth chip sends a wake signal over the hardwired connection

shown in Figure 4. Timing between Bluetooth and UWB is syn-

chronized to reduce active receiver times to the expected incoming

packet window [4]. The combination of both saves a lot of power

on the UWB chip, since it is sleeping most of the time, and even

when active only listens within very limited time windows.

Table 1: Wireless chips with actively used LPM support.

Series NFC + SE LPM Bluetooth/Wi-Fi UWB LPM

iPhone Xr NXP SN100 ✓ BCM4347B1 – –

iPhone Xs NXP SN100 ✓ BCM4377B2 – –

iPhone 11 NXP SN200 ✓ BCM4378B1 r1p0 ✓

iPhone SE 2020 NXP SN200 ✓ BCM4378B1 – –

iPhone 12 NXP SN210 ✓ BCM4387C2 r1p1 ✓

iPhone 13 NXP SN210 ✓ BCM4387C2 r1p2 ✓

3.3 Supported Devices

Bluetooth and UWB LPM support are mainly driven by DCK 3.0

integration. Only iPhoneswithDCK 3.0 support also have Bluetooth

and UWB LPM, as listed in Table 1. The Bluetooth chip in the

iPhone SE 2020 is the same as in the iPhone 11. Find My could run

standalone on this chip while powered by the PMU. However, as of

iOS 15.2, the firmware on the iPhone SE 2020 is missing the LPM

thread. It is unclear if this feature is missing intentionally or if a

firmware supporting only Find My without DCK 3.0 is still under

development. Apple might add Find My LPM support to further

devices in the future.

4 SECURITY ANALYSIS

In this section, we analyze security of LPM features following a

layered approach. First, we check if LPM applications areworking as

intended to ensure the user’s security and safety, and then analyze

the impact of LPM on firmware and hardware security.

4.1 Applications

4.1.1 Adversary Model. On the application layer, we assume an

attacker that did not manipulate the firmware or software on the

iPhone. Instead, they want to compromise or use LPM features, e.g.,

disable Find My to steal an iPhone or use Express Cards and Keys

to steal money or physical assets. There is a usability aspect, for

example, if the legitimate user does not understand technological

limitations of LPM features, theft becomes more likely.

4.1.2 Find My. When observing Find My, we found that LPM does

not hold its security promises to users. It stops sending advertise-

ments way earlier than expected and, in many cases, does not send

advertisements at all. In the following, we explain under which

conditions advertisements are sent and which problems occurred

during testing.

Figure 5: Passcode dialogue to disable FindMy on power off.
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Maximum LPM Time Period. Only 96 advertisements each broad-

casted for 15min are configured during user-initiated shutdown.

After 24 h, all advertisements are transmitted. This is not explained

to the user, who might think their iPhone remains findable for

multiple days. The current shutdown dialogue suggests that Find

My after power off is a strong security feature. Disabling even re-

quires a passcode as of iOS 15.3 as additional anti-theft measure,

as shown in Figure 5. Users might permanently lose their iPhone

when relying too much upon the Find My after power off feature.

The maximum time period could be extended by configuring more

advertisements, cycling advertisements only after 24 h, or by stor-

ing the master beacon key within an SE applet that the Bluetooth

chip can query to generate more advertisements.

Upon battery-low shutdown, Find My is only active for slightly

more than 5 h. This is similar to Express Mode [8] but not docu-

mented at all. The battery should not be fully discharged to prevent

hardware damage. Thus, at some point, the iPhone has to switch

from power reserve to power off.

Find My Stops Before First Unlock After 24 h. On power off, adver-

tisements for the next 24 h are additionally stored locally on disk.

Even if Find My was disabled on power off, advertisements are still

cached. Once the iPhone boots, it restores a Find My token from an

NVRAM storage [38, p. 14ff], which survives reboots. The Find My

token is then used to decrypt the cached advertisements, making

them accessible to the Bluetooth daemon before first unlock [3, p.

98]. When 24 h expire, the iPhone stops sending advertisements.

This is irrespective of previous actions, the iPhone could have been

in LPM before or rebooted directly. Since advertisements are fixed

to a scheduled transmission time, this period cannot be extended.

If the iPhone has an Internet connection before first unlock, it

connects to Apple’s servers for reporting its location. Many con-

ditions cause the iPhone to be offline before first unlock. Wi-Fi

keys are only available after first unlock [3, p. 97], and a cellular

connection fails if the user has set a SIM PIN or the SIM card was

removed. Thus, a thief can be sure that Find My is disabled after

24 h, even if they power on the iPhone.

Failures Initializing Find My LPM. Even when the user interface

shows that Find My is enabled after power off, this is sometimes

not the case. For example, Find My advertisement generation might

fail. We observed this error multiple times on a device with iOS

15.0.1. If Find My LPM setup fails during shutdown, no warnings

are shown to the user.

Unintended Boot. When connected a power cable is plugged in

during user-initiated power off and removed later, the iPhone boots

after a couple of hours. We observed this behavior on two iPhone

12 and an iPhone 13 on iOS 15.3 or lower with Find My enabled.

If no power cable is plugged in during power off, the iPhone does

not boot automatically. On an iPhone 12 on iOS 14, which does not

support Find My LPM, no unintended boots occurred. Due to this

issue, the user might find their iPhone with an empty battery when

Find My is active, despite switching it off.

Advertisement Accuracy. We observed a standard deviation of

19 s in the 15min rotation windows when capturing advertisements

of an iPhone in LPM for 24 h. This deviation could become an issue

when an iPhone would support LPM for more than 24 h. When

the advertisements are outside of the search window, the Find My

servers will no longer find the device.

4.1.3 Express Cards and Keys. The obvious threat for Express Cards
and Keys is that a user’s credit card or car key is usedwithout further

authentication when their iPhone is stolen. To this end, the user

must actively enable Express Mode once for each item in the Wallet

application. Limitations, such as unsupported cards or shutdown

after 5 h are publicly documented [8]. Thus, we assume that most

users understand the functionality and risks of Express Mode.

4.2 Firmware

4.2.1 Adversary Model. On the firmware layer, we assume an at-

tacker with privileged firmware access. For example, the attacker

could be able to send custom commands to the firmware via the

operating system, modify the firmware image, or gain code execu-

tion over-the-air. This is a strong precondition, which we discuss

first. Then, we discuss what an attacker could do once firmware is

compromised.

4.2.2 Tampering with Firmware. An attacker has different possibili-

ties to gain firmware control, which also vary in their preconditions.

Local Firmware Modification. An attacker with system-level ac-

cess could modify firmware of any component that supports LPM.

This way, they maintain (limited) control of the iPhone even when

the user powers it off. This might be interesting for persistent ex-

ploits used against high-value targets, such as journalists [30].

As of iOS 15, LPM-supported chips are NFC, UWB, and Bluetooth.

An attacker does not need to change kernel behavior and can use

existing drivers to enable LPM on these chips, and only needs to

modify the chip’s firmware. The NFC chip is the only wireless

chip on an iPhone that has encrypted and signed firmware. Even

though attempts were made to bypass the secure bootloader, these

were not successful [14]. The firmware of the UWB chip also has

secure boot but is only signed and not encrypted [16, 18]. However,

the Bluetooth firmware is neither signed nor encrypted. Since the

Bluetooth chip does not have secure boot enabled, it misses a root of

trust that could be used to verify the firmware it loads. In Section 5,

we show that it is possible to create malware that runs on iPhone

13 Bluetooth chips, even if the phone is powered off.

Remote Code Execution. Attackers without system-level access

could try to gain code execution on an LPM-enabled chip over

the air. In the past, various vulnerabilities have been disclosed

for the Bluetooth chip series used in iPhones [24, 40, 46]. Such

vulnerabilities could also exist in other wireless chips.

Minimizing functionality of a wireless stack also reduces its

attack surface [58]. The Find My module only transmits advertise-

ments over Bluetooth but does not receive data. However, NFC

Express Mode as well as Bluetooth and UWB DCK 3.0 allow data

exchange. Apple already minimizes the attack surface by only en-

abling these features on demand.

4.2.3 Reconfiguring Firmware Options. Even if all firmware would

be protected against manipulation, an attacker with system-level

access can still send custom commands to chips. The Bluetooth dae-

mon configures Find My LPM on shutdown with vendor-specific
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HCI commands. These commands allow a very fine-grained config-

uration, including advertisement rotation intervals and contents.

With these commands, an attacker, for example, could set every

second advertisement to a public key that matches their account.

Afterward, the attacker could locate the victim device, but the le-

gitimate user would still see their iPhone with a recent location in

Find My.

This specific attack is not relevant as of now, because the Blue-

tooth firmware on iPhones can be modified. If Bluetooth chips on

the next generation of iPhones would support secure boot, this

attack surface would become relevant. The Apple Watch, which

runs an iOS derivative, has a different Bluetooth chip supporting

secure boot [28]. If Find My LPM would be added to the Watch,

fine-grained configurability would introduce the same issues.

4.2.4 Direct Secure Element Access via Firmware. Bluetooth and

UWB LPM were introduced to support car keys, which store their

data in an SE applet. Transactions between wireless components

and the SE should be hidden from iOS [3, p. 141], ensuring secu-

rity even if iOS or applications are compromised. For example, a

malicious application that can access the SE could relay payment

transactions [44]. Since the Bluetooth firmware can be manipulated,

an additional SE interface is directly exposed to iOS. This weakens

the trust model for car keys and other secret information in the SE.

Additional interfaces influence the overall security level pro-

vided by the SE. It is unclear if the SE still holds the same security

standards, because the interface features, applet implementations,

and intended security boundaries are not public.

4.3 Hardware

4.3.1 Adversary Model. On the hardware layer, we assume that

neither attackers nor legitimate users would manipulate the hard-

ware. We analyze which components could be stealthily powered

on while the iPhone is off and which applications attackers could

build. We discuss if users could detect such LPM applications.

4.3.2 Suitable Chips. Any chip that is controlled by the Power

Management Unit (PMU) could be active in LPM. This property

holds for most chips in an iPhone but still does not make every chip

ideal to be operating in LPM. Since LPM should not significantly

drain the battery, suitable chips should either be standalone or

combinations of a few battery-friendly chips. Moreover, these chips

should have some way to interact with the user or the outside

world.

Even though most chips on an iPhone are connected to the PMU,

they are also connected to the Application Processor (AP) or the

Always-on Processor (AoP). The AP is the main processor running

iOS. The AoP is a co-processor running Apple’s RTKitOS, an em-

bedded Real-Time Operating System (RTOS) [38, p. 20ff]. While the

AoP is always active and waits for hardware events and triggers,

the AP can go to sleep, significantly reducing power consumption.

Drivers in the iOS kernel running on the AP often have a compan-

ion running on the AoP. This hardware architecture requires most

chips to either interact with the AoP, which then routes informa-

tion to the AP, or chips talk directly to the AP. Neither the AoP nor

the AP should be running in LPM, because they consume too much

energy.

All wireless chips are connected to the PMU and could operate

standalone. This includes the Wi-Fi chip and the cellular baseband,

which are currently not used for LPM applications. The display is

connected to the PMU. In power reserve mode, the display only

shows a static screen. The AP sets an image on the display when

entering LPM, but wireless chips cannot access the display. Buttons

are connected to the PMU, such that a button press can boot or reset

the iPhone from any state including LPM. Audio is routed via the

AoP, meaning that it is not possible to build a hidden microphone

by recording speech and forwarding it to a wireless chip in LPM.

4.3.3 Detection and Deactivation. Detecting that chips were run-
ning an LPM firmware or completely disabling LPM is not possible

with current iOS on-board tools. Additional monitoring hardware

is needed to detect wireless transmissions in LPM.

Logging. The original LPM firmware images support logging.

The UWB chip has a storage for crash logs, including DCK, which

is read out after system boot during chip initialization by iOS. The

Bluetooth LPM firmware has multiple logging statements, depend-

ing on logging flags, which could be stored on the SE. Logs on

this level are intended for iOS system developers and cannot be

extracted without jailbreak. Thus, users cannot determine if LPM

firmware was running and which actions it performed, even on a

system that is not compromised.

Disabling LPM. LPM support is implemented in the hardware.

Even if iOS would remove LPM features in the future, these basic

hardware features could be activated on a compromised system.

A possibility to remove permanent support in future hardware

revisions would be a physical switch that disconnects the battery.

Apple already has similar physical switches in their hardware, for

example, the microphone on MacBooks is disconnected when the

lid is closed [3, p. 27].

Other Protection. Users who are concerned about being spied on

by an iPhone that is off can install a transmission monitoring device,

which can be mounted on the back of an iPhone 6 and wiretaps

wireless chip connections on the mainboard [30]. Such a device

would even detect LPM malware. This solution would need to be

modified for modern iPhones, if applicable at all. The mainboard

has two stacked and soldered layers since the iPhone 11 [32]. The

desoldering process has a higher risk of damaging the iPhone than

on older models.

Another option would be to put the smartphone into a Faraday

bag. This solution is also considered in [30] but small holes and

gaps can lead to significant leakage.

5 BLUETOOTH FIRMWARE MODIFICATION

Recent iPhones introduced a new chip interface, including a new

Bluetooth firmware patch format. We show howwe can analyze the

chip’s ROM and RAM nonetheless, and that the new patch format

is unsigned. Based on this, we demonstrate how to build custom

firmware and malware.

5.1 Dumping and Loading Firmware

5.1.1 Firmware Dumps. We dump the complete firmware for an ini-

tial analysis. Broadcom Bluetooth chips store most of their firmware
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in ROM. A full dump including the ROM is required for understand-

ing the firmware. The ROM is readable with a vendor-specific Host

Controller Interface (HCI) command supported by all Broadcom

chips, including the one in the iPhone 13. Apple’s Core Bluetooth

framework does not allow sending HCI commands to the chip [5].

On a jailbroken iPhone, we use InternalBlue to send such HCI

commands [40]. It attaches itself to the Bluetooth subsystem to

send HCI commands and interpret received events. An iOS-specific

behavior of the current InternalBlue version is that the Bluetooth

daemon is detached, and we can exclusively access the chip without

interfering with other system components. The initial InternalBlue

iOS package only supported legacy chips connected via UART, and

we added support for the newer PCIe driver. With this modification,

we dump the ROM of the latest generation of Bluetooth chips. For

analysis purposes, we dump the RAM in different states.

5.1.2 Firmware Patching with Patchram. Firmware is patched tem-

porarily in RAM. Broadcom calls this mechanism Patchram, and

it has been documented within the InternalBlue project [40]. Any

4-byte value in ROM can be temporarily mapped to another 4-byte

value. On ARM, a function call requires a 4-byte instruction. Thus,

a function in ROM can be overwritten with a function call to an

address in RAM. For this purpose, RAM is writable and executable.

Modern Broadcom chips have 256 Patchram slots [46].

Legacy chips are connected via UART, and there is no other

transport layer than sending the whole firmware patch using small

HCI commands with a maximum size of 255 bytes. Broadcom’s

legacy .hcd patch format contains a sequence of HCI commands,

which directly write to RAM and configure the Patchram [39].

Since the iPhone Xs, the Bluetooth chip is connected via PCIe.

This allows for transferring one large .bin patch file at once. In

the following, we reverse-engineer this new format, enabling us to

install custom patches on modern iPhones.

5.1.3 Firmware Patch Image Upload. Most communication between

iOS and the Bluetooth chip is handled by the Bluetooth daemon.

For selected low-level tasks, the Bluetooth daemon calls BlueTool.
BlueTool allows sending HCI commands to the chip without in-

terfering with the stack, similar to InternalBlue, and additionally

allows loading firmware patches. BlueTool can be instrumented

via Cross-Process Communication (XPC) calls from other daemons,

used interactively via a command line interface, or execute scripts.

CRC # Sections ffffffff 00000000

Type Size Mapped To File Offset 1 CRC 00000000

Type Size Mapped To File Offset 2 CRC 00000000

Type Size Mapped To File Offset 3 CRC 00000000

...

00000000 00000000 00000000 00000000 00000000 00000000

...

Patchram 0

Patchram 1

Patch Configuration Data

File Start

S
e
c
t
i
o
n
H
e
a
d
e
r
s

Offset 1

Offset 2

Offset 3

Figure 6: New Bluetooth firmware .bin patch format, intro-

duced with the iPhone Xs PCIe Bluetooth chip interface.

It is an Apple-internal tool without documentation, and the help

output is incomplete. We can load a PCIe firmware as follows:

power off
device -D
bcm -w /tmp/path/to/firmware.bin

Using this method, we can apply firmware patches of arbitrary

iOS versions to the chip, no matter which iOS version a jailbroken

research iPhone has. iOS system logs indicate if a firmware patch

image could be loaded or not.

5.1.4 Firmware Patch Image Format. RAM dumps enable us to

determine address mappings of patches. We can modify arbitrary

parts of the patch file and see if the chip accepts it. This leads us

to the format shown in Figure 6. The patch is only verified with

Cyclic Redundancy Checks (CRCs) but not signed by Broadcom.

Two Patchram areas in RAM contain writable and executable

code regions. The regular RAM region used by threads to store data

is located in between.

A patch configuration data area in Type Length Value (TLV) for-

mat defines how patches are applied. It contains basic information

like a human-readable patch name, hardware configuration settings,

as well as 4-byte patch entry instructions that overwrite the ROM.

The format is very similar to the one defined within WICED Studio
6.2 .hdf files [20]. The configuration data section starts with the

string BRCMcfgS. Each patch entry starts with the byte sequence

0x0110, is 15 byte long, and contains the ROM address as well as the

new 4-byte instruction. A more detailed description of analyzing

and patching configuration data is provided in our blog post [15].

5.2 Analyzing and Modifying Firmware

5.2.1 Patch Analysis Tooling. With these new insights, we can

load any patch file on top of an existing InternalBlue ROM dump

for static reverse engineering. We modify existing patch files and

load them onto a running iOS device. We create three scripts to

assist us in this process: (1) A standalone Python script, which can

extract patch regions and also reassemble a patch file including

correct CRCs, and (2) an IDA Pro script, which can parse patch

configuration data, and (3) another IDA Pro script, which names

functions calling the abort handler.

Applications of such tools are very flexible. Broadcom Bluetooth

has been patched in the past to increase BLE reliability [48], enable

the chip to send and receive ZigBee [13], and test against security

issues in the Bluetooth specification [1, 2]. In the following, we

analyze if the firmware can be modified and loaded into iOS, and

also analyze the internals of the LPM module.

5.2.2 Malware Patch Example. Preventing firmware tampering

during runtime is an important security barrier. For example, it pre-

vents the Bluetooth daemon from directly observing and modifying

communication between the SE and the Bluetooth chip when a

DCK 3.0 is used. It also hardens against other inter-chip escalation

strategies, e.g., executing code in Wi-Fi via Bluetooth [17].

iOS can write to the executable RAM regions using a vendor-

specificHCI command. This is a legacy feature required for applying

.hcd files, still present in the iPhone 13 Bluetooth chip. The chip

protects itself from modification during runtime with a patch that
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disables this HCI command. We alter this patch to demonstrate that

firmware modification is still possible.

HCI commands are handled in the function bt_hci_ingress_
HandleCommand. This function has an abort handler and is already

named by our IDA Pro script. One of the functions it calls is an HCI

command filter. The filter has a very specific pattern and compares

HCI opcodes. The opcode for writing to RAM is 0xfc4c. Opcodes
are compared after subtracting 0xfc00. On an iPhone 12 with a

patch level of iOS 15.2, a part of this patch looks as follows:

patch1 :002 c57d2 cmp r2, #0x2e ; Download Minidriver
patch1 :002 c57d4 beq command_disallowed
patch1 :002 c57d8 cmp r2, #0x4c ; Write RAM
patch1 :002 c57da beq command_disallowed

After replacing the cmp r2, #0x4c instruction, repacking the

firmware patch image with the correct CRCs, and loading it with

BlueTool, we can write to the Bluetooth chip RAM during runtime.

As of January 2022, there is no iOS 15.2 jailbreak available. Thus,

we load modified iOS 15.2 firmware to an iPhone SE 2020 with iOS

14.8 and an iPhone 12 with iOS 14.2.1 to confirm our patches work

on the chips in the last three generations of iPhones (see Table 1).

5.2.3 Custom Bluetooth LPM Applications. Using the same meth-

ods, an attacker could alter the LPM application thread to embed

malware. For instance, they could advise the iPhone to send the

legitimate owner’s Find My advertisements and additionally send

advertisements that make the iPhone locatable for the attacker.

Instead of changing existing functionality, they could also add com-

pletely new features.

Broadcom Bluetooth chips can run a standalone application with-

out being connected to a host. This configuration is very common

for IoT devices—a Bluetooth application like a BLE thermal sensor

service can run on a single chip. WICED Studio provides a C wrap-

per for creating custom standalone applications [20]. Standalone

applications run in a thread called MPAF. Apple’s LPM application

runs in the same thread. Even though WICED Studio is for Cypress

chips, their code base is similar to Broadcom chips [23], and we can

use it as a base for reverse-engineering and function naming.

The application thread executes functions from a queue. Func-

tions can be added by calling mpaf_thread_PostMessage(void
*function). For example, Apple’s LPM application starts by en-

queueing a function that initializes the application thread, and later

on, a state machine decides if Find My advertisements or scanning

for cars should be activated. Functions can also be executed af-

ter a timer expires, using mpaf_timer_start(timer *p_tle, int
seconds) with a struct that contains a callback function. For exam-

ple, timers are used to cycle FindMy advertisements. Knowing these

semantics of the application thread, an attacker can add custom

LPM features.

Providing a full analysis of the LPM firmware and its modules

is out of scope of the paper. We reverse-engineered a lot of inter-

nals, such as Find My advertisements including their storage and

scheduling, the GATT service for DCK 3.0 and the I
2
C connection

to the SE. The manually reverse-engineered symbols for the iPhone

12 and 13 firmware, including more than checked 2000 function

names, are published within the Frankenstein repository.

6 REVERSE ENGINEERING METHODS

The reverse-engineering techniques we used are also applicable

when analyzing other functionality close to hardware on an iPhone.

In the following, we document them, which also ensures repro-

ducibility of our results.

6.1 Dynamic Analysis

Dynamic analysis close to hardware requires access to physical

devices. As of now, there is no full iOS emulator, and even com-

mercial solutions mock up the lower hardware layers [19]. Ideally,

the devices are on different iOS versions and have different hard-

ware revisions. Using outdated iOS versions is required to use jail-

breaks [34, 56], however, devices might behave differently without

jailbreak and on the latest iOS release. The initial efforts to build a

proper testing lab meeting these conditions is nonetheless worth

the efforts.

6.1.1 System Log Analysis. iOS system logs are very verbose and

show how daemons interact with each other. For example, they tell

which chips go into LPM on shutdown, with which HCI commands

the Find My LPM module is initialized, and that Find My restores

beacons from NVRAM before first unlock.

System logs can be extracted from any iOS device, even if not

jailbroken. Apple’s debug profiles increase log verbosity [6]. In

addition to the Bluetooth profile, we also installed the Location

Services profile, which increases verbosity on some Find My and

ranging-related messages. Logs can be collected up to three days

in retrospect, depending on the log type, by running a sysdiagnose.
Pressing all buttons until the iPhone vibrates triggers a sysdiagnose,

which is then located a few moments later in Settings → Privacy
→ Analytics Data. After unpacking on macOS, the system_logs.
logarchive can be read with the Console app. This method allows

to collect logs including the initial boot process and the very last

messages logged during shutdown.

For our analysis, we created logs under various conditions. For

example, we looked into shutdown logs with Find My enabled and

disabled, with and without Express Cards, user-initiated shutdown

versus battery-low shutdown, and combinations of those. In many

cases, these logs are so verbose that it is hard to find relevant mes-

sages. On a device that is actively used, these logs contain multiple

millions of messages just for three days. Messages can be filtered

by daemons and log message contents. The most relevant daemons

during our research were bluetoothd for Bluetooth, nearbyd for
UWB, nfcd for NFC, seserviced for the SE and findmydeviced
for Find My. Naming of features in log messages is often inconsis-

tent. For example, LPM is also called LPEM or LEPM, and the DCK

protocol is internally named Alisha. This turns log analysis into

a time-consuming and manual process. Also, not everything im-

plemented within a daemon is logged, and often, conditions under

which something interesting is logged are hard to reach. This is

especially the case for the DCK protocol, since the cars supporting

DCK 3.0 are yet to be released. Still, there are some hints, such

as the UWB chip that attempts to enter LPM on power off, and

the seserviced checking if UWB Express is active on battery-low

shutdown when other LPM features are disabled.
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1. Chip Reset 0c03

2. Find My Config fe62 05 00800c 0060 00 0f 6000 a005 0000 000003010007

3. Advertisements fe62 06 00000006 [bdbdbdbdbdbd1f1eff4c00121900adadadadadadadadadadadadadadadadadadadadadadad00]×6
fe62 06 000c0006 [cafecafecafe1f1eff4c00121900ad23ad23ad23ad23ad23ad23ad23ad23ad23ad23ad23ad00]×6
...

fe62 06 005a0006 [f00df00df00d1f1eff4c00121900ad42ad42ad42ad42ad42ad42ad42ad42ad42ad42ad42ad00]×6
4. LPM Flags fe62 07 0001

5. Enter LPM fe62 04

HCI Opcode

LPM Opcode

Total # of Adv.
15min

# Short Adv.
24 h

96 Advertisements

MAC Payload

Figure 7: Configuration of Find My LPM with HCI commands.

6.1.2 Find My Advertisement Capturing. Information obtained via

log messages should be further analyzed to be confirmed. For wire-

less protocols, signals and their timings can be captured and com-

pared to logs to see if anything is missing. System logs are not

available in LPM, which is the focus of our research.

One example for missing information in logs is Find My. Based

on log messages, only 80 Find My advertisements are set up during

power off via HCI commands. As we found later, 96 advertisements

are configured, however, HCI commands are truncated in the logs.

The logs do not show how often advertisements are cycled.

We create a Python script running on Linux collecting Find My

advertisements. This script allows us to see when an iPhone starts

or stops sending advertisements. Even if other devices are around,

we can assign Bluetooth MAC addresses to devices by comparing

them to system logs. This script assisted us in finding the issues in

Section 4.1.2. Besides these issues, Find My works very reliable.

6.1.3 Bluetooth Firmware Instrumentation. Even though not all

iOS versions are jailbreakable, we can backport specific features for

analysis. For example, we can use this to load Bluetooth firmware

with LPM support onto a jailbroken device, as explained in Section 5.

Then, we analyze it dynamically with InternalBlue [40].

First of all, we can send all HCI commands that the Bluetooth

daemon sends when entering LPM as well. These commands are

also shown in Figure 7. When we send the last command, it ter-

minates communication with the host. Thus, we cannot execute it

during dynamic analysis of the LPMmodule. However, we can send

all other commands and then take a RAM dump. This way, we can

see in which memory area advertisements and other configuration

is stored and look for functions that reference these. We can then

analyze if some of these values are used as timers or conditional

flags. For example, the HCI command 0xfe62 05 [19b config]
contains a 24 h timer as minutes in reverse byte order, which is

the total time of advertisements, as well as the total number of

advertisements, and the 15min rotation interval. Thus, we know

that these are configurable values.

6.2 Static Analysis

Static analysis is often more time-consuming than dynamic analysis.

It is still an important technique, because not everything shows up

in logs, and not all functions are called during runtime. Thus, it can

reveal hidden features and shows significantly more details.

6.2.1 Hardware Schematics. There is a large community sharing

smartphone schematics, mainly driven by the need to repair iPhones

and other devices independent from vendors. Hence, many schemat-

ics are leaked and publicly available on the Internet.

We use these schematics to confirm that the SE is hardwired

to UWB and Bluetooth in Section 3.2. Schematics allow us tracing

connections between other chips to estimate threats by LPM in Sec-

tion 4.3. The schematics also contain the interfaces’ protocols, e.g.,

PCIe or I
2
C. This further helps when reverse-engineering firmware

and drivers implementing these protocols.

6.2.2 System Daemon and Binary Analysis on iOS. In the following,

we first explain how to obtain binaries for iOS, because not all steps

for these are documented comprehensively for recent versions, and

then explain how to analyze them.

Obtaining Binaries. Analyzing different iOS versions allows to
compare features across different software and hardware revisions.

Even without a physical iPhone, iOS system updates can be down-

loaded [33], unpacked as .zip, and the included .dmg partitions

can be mounted.

Recent iOS versions have a Dynamically Loaded Library (DYLD)

shared cache [7], containing a lot of proprietary functionality also

used by daemons, which is one 4GB large binary blob. The packing

format changes regularly, and, thus, is often not fully supported

by free reverse engineering tools. After connecting an iPhone to

Xcode, an unpacked format containing separate libraries can be

found in the Xcode iOS DeviceSupport folder.
The kernel cache contains the iOS kernel and its drivers. On

recent iOS versions, it is no longer encrypted and can be unpacked

with img4tool [53]. Sometimes, Apple forgets to strip symbols from

the kernel cache. For example, Over-the-Air (OTA) updates [52] for

all iPhones and further devices between iOS 15.0 and iOS 15.1 Beta

3 contain a kernel cache with symbols. Names in driver interfaces

reveal hardware capabilities that are otherwise difficult to reverse-

engineer.

Analysis. Similar to the approach when analyzing logs, relevant

binaries and kernel drivers can be identified by searching for strings.

Log messages seen during dynamic analysis can be searched in

binaries. Interesting binaries can then be loaded into a disassembler

or decompiler [9, 29, 42]. Often, these tools do not find all references,

and logs can be used to reconstruct call graphs. Even a short analysis

can uncover additional features and code paths not reached when

capturing logs.
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6.2.3 UWB Firmware. In addition to Bluetooth firmware, we also

analyzed the UWB firmware. It is stored in a file called ftab.bin,
which contains firmware for a high-level AP on the UWB chip as

well as a second firmware for a low-level Digital Signal Processor

(DSP) [18]. The UWB firmware is under active development and

features change regularly. New features are sometimes added for

testing and removed later.

Early versions of the iPhone 11 UWB firmware had enhanced

logging. These versions also contained debug prints for communi-

cation with the SE. A lot of testing and logging functionality was

removed in later versions. Alisha, the code name for the DCK 3.0

protocol, started appearing in the firmware in iOS 14.3, and LPM

support for UWB was added to nearbyd in the same release. These

examples show that looking into multiple versions to understand

new feature integration is imperative.

7 RELATEDWORK

Wireless Firmware on iPhones. InternalBlue looked into Broad-

com’s Bluetooth firmware before [40]. It does not support the new

firmware patch format and did not analyze LPM features. Addition-

ally, Broadcom’s Bluetooth firmware was tested with fuzzing [46].

Apple’s UWB chip was analyzed with regards to basic driver and

firmware functionality [16, 18, 45], as well as practical distance

shortening attacks [37]. The NFC chip was not reverse engineered

so far. A very similar NFC chip byNXP has been analyzed and a secu-

rity issue in the bootloader was found [14]. The researcher also tried

attacking the SN100 chip, but the bootloader is different and not

affected. Common Criteria certification reports of NXP’s NFC chips

are publicly available. The SE component in the SN200 NFC chip

and the full SN100 NFC chip were tested, but no exploitable vulner-

abilities were found [54, 55]. Furthermore, the JavaCard Operating

System running on the SN200 and SN210 chips was evaluated [43].

Wireless Services on iOS. Various wireless services and their un-

derlying daemons and protocols have been analyzed on iOS. This in-

cludes FindMy [26], AirDrop [51], multiple Continuity services [50],

and Magic Pairing [28]. Security of the iOS Bluetooth cellular base-

band daemons has been tested with fuzzing [27, 36].

Inter-Chip Attacks. The direct connection between the SE and

multiple wireless chips enables potential inter-chip privilege es-

calation attacks. A practical attack that enables code execution

in Wi-Fi via Bluetooth has been demonstrated to work on recent

iPhones [17].

Transmission Monitoring. Airplane mode might not disable all

wireless transmissions on a smartphone under surveillance. Thus,

Huang and Snowden developed a separate hardware-based device,

which they attached to the mainboard of an iPhone 6 to monitor

wireless chips [30]. This generation of smartphones neither consid-

ered LPM nor supported UWB, adding a different attack angle and

requiring upgrades to the existing hardware.

8 CONCLUSION

The current LPM implementation on Apple iPhones is opaque and

adds new threats. Since LPM support is based on the iPhone’s

hardware, it cannot be removed with system updates. Thus, it has

a long-lasting effect on the overall iOS security model. To the best

of our knowledge, we are the first who looked into undocumented

LPM features introduced in iOS 15 and uncover various issues.

Design of LPM features seems to be mostly driven by functional-

ity, without considering threats outside of the intended applications.

Find My after power off turns shutdown iPhones into tracking

devices by design, and the implementation within the Bluetooth

firmware is not secured against manipulation. Tracking properties

could stealthily be changed by attackers with system-level access.

Furthermore, modern car key support requires UWB in LPM. Blue-

tooth and UWB are now hardwired to the SE, used to store car

keys and other secrets. Given that Bluetooth firmware can be ma-

nipulated, this exposes SE interfaces to iOS. However, the SE is

specifically meant to protect secrets under the condition that iOS

and applications running on it could be compromised.

Even though LPM applications increase security and safety in

many use cases, Apple should add a hardware-based switch to

disconnect the battery. This would improve the situation for privacy-

concerned users and surveillance targets like journalists.

AVAILABILITY

Our tools for modifying and analyzing recent Broadcom firmware

are published within the InternalBlue and Frankenstein repositories.

This includes a standalone firmware patcher, IDA Pro scripts for

interpreting firmware patch files and naming functions by debug

strings, and symbols for the iPhone 12 and 13 firmware.
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