The Z-80 in Parallel

Many design engineers have introduced
various types of parallel processing into
systems in order to achieve higher through-
putrates. Almost without exception though,
these applications have been limited to
medium and large scale computers due to
price and complexity.

In the past two years, microprocessors
have reached a level of sophistication which
makes them candidates for parallel processing
systems. Such systems could conceivably
offer minicomputer performance at micro-
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Figure 1: The author’s parallel Z-80 system. Both processors work indepen-
dently, each supported by 32 K bytes of programmable memory. The proces-
sors are linked by 32 K bytes of shared programmable memory. The shared
memory, addressable by either processor as the upper 32 K, has its own
address and data buses. Shared memory conflicts are resolved by the arbiter
circuit shown in figure 2a.
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computer cost. This article is an investiga-
tion of that idea.

The Z-80

The Z-80 microprocessor, manufactured
by Zilog, is a third generation LSI device
which offers full software compatibility with
the 8080 processor. Upgraded features
provided by the Z-80 include: two sets of
exchangeable registers, indexing, a full range
instruction set (including register or memory
bit operations), eleven addressing modes, a
nonmaskable interrupt, dynamic memory
refresh address generation, and an interrupt
register to provide a high speed vectored
interrupt response to any location in
memory.

The Z-80’s minimum number of control
bus signals makes it easy to interface in
multiple processor configurations.

System Layout

My design consists largely of two Z-80
microprocessors (processor X and processor
Y) operating independently, each supported
by 32 K bytes of programmable memory
(see figure 1). The processors are indirectly
linked by 32 IK bytes of common memory,
making a system total of 96 K bytes. The
shared memory, addressable by either
processor as the upper 32 K, has its own
address and data buses. Data or address
signals are gated onto their respective bus
when (1) either processor performs an opera-
tion involving a read or write against the
shared memory, or (2) either processor
attempts an op code fetch from the shared
memory, or (3) machine instructions com-
bine (1) and (2).

Shared memory bus conflicts are resolved
by the arbiter (see figure 2a). Since the
processors use opposite phases of the clock,
requests for bus access can never be initiated
at exactly the same time. However, depen-
ding upon the instruction sequences being
executed, bus request conflicts can occur.
This problem, summarized in table 3, has
been carefully examined and is represented
by figure 3b. It illustrates what is assumed to
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Figure 2a: The shared memory arbiter. This circuit resolves conflicts between the two proces-
sors if both attempt to gain simultaneous access to the shared memory bus. For example, a
request from processor X (XMREQ low) will cause IC3a to drive the XSELECT line low and
will also disable IC3b. Processor Y will be locked out during X’s memory request. If Y makes a
memory request while locked out, the output of IC4a will go low, activating the YWAIT line.

be the worst possible case of bus conflict:
both processors simultaneously executing
shared memory read or write instructions
from the shared memory. Of course, one
cannot predict when each processor will
attempt to access the shared memory, so all
possible interprocessor state relationships
have been investigated.

The basic memory read or write instruc-
tion has seven “T” cycles (T is defined as
the duration of one clock period). The T
states and their functions are:

M1,T1
M1,T2
M1,T3 ( Instruction
M1,T4 | decoding

M2,T1
M2,T2
M2,T3

The M cycles are machine cycles. Table 3
shows the seven interprocessor T state align-
ments: M1,T1 active for one processor when
states M1,T1 thru M2,T3 for the other are
active. Figure 3b illustrates an example of
the processor request signals and signals
from the conflict arbitration logic. Note that
after a very short period (maximum of seven
clock cycles) the arbiter synchronizes and
thereby provides complete cooperation
between the two processors’ fetch and

l Op code fetch

Memory read or write operation

execution cycles by putting one of the
processors into one or two wait states.
Further, in the seven possible interprocessor
T state relationships, there are two in which
opposing shared memory access request
signals are synchronized, in which case the
arbiter does nothing. This means that,

regardless of the processors’ instruction
Number Type +5V GND
IC1 74504 14 7
1C2 74S10 14 7
1C3 745126 14 7
IC4 74S32 14 7
IC5 74125 14 7
1C6 74125 14 7
IC7 74125 14 7
1C8 74125 14 7
1C9 74125 14 7
IC10 74125 14 7
IC11 74125 14 7
IC12 74125 14 7
1C13 7432 14 7
1IC14 7408 14 7
IC15 745157 16 8
IC16 745157 16 8
1C17 745157 16 8
IC18 745157 16 8
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Table 1: Power wiring
table for figures 2a and 2b.
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Figure 2b: Control cir-
cuitry for the shared
memory parallel Z-80
system. The respective
processor data buses
and the shared memory
data bus are shown at
the top. The shared
memory address bus
is at the right.
shared memory arbiter
is shown in the center
(see figure 2a for a de-
tailed schematic). This
circuit works on a first
come, first served basis
to resolve all conflicts
between the two pro-
cessors.
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Figure 3a: The basic Z-80 memory read or write cycle. Clock periods are referred to as T cycles
and the basic operations are referred to as M (for machine) cycles. The first machine cycle of
any instruction is a fetch cycle (M1). Subsequent M cycles move data to or from the memory.

sequences, 86 percent of the time the system
is at most one wait state away from syn-
chronization. Thereafter, both processors
can execute read and write instructions from
the shared memory at 100 percent processor
utilization, assuming the instruction syn-
chronization is not lost.

Certainly opposing software will not
consist solely of instructions which offer no
bus interference. But it is clear that the most
efficient method of solving the shared mem-
ory bus conflict problem is the one that will
achieve short term interprocessor synchroni-
zation whenever possible.

Arbitration Logic

Each processor provides signals to the
arbiter which identify a valid shared memory
access request. 1C2a and IC2b receive RFSH,
MREQ, and A15 (the high order address bit
signal) from their respective processors.
MREQ indicates that a memory read or
write operation is underway: either A15 line

going high identifies the shared memory as
the object of the request; and the RFSH
lines insure that the dynamic memory refresh
strobe from one processor will not interfere
with the shared memory access request of
the other.

IC3a and IC3b provide an opposing grant
or deny shared memory bus access proviso
that is strictly first come, first served. A
request from, say, processor X will cause
IC3a to drive XSELECT low, and coinciden-
tally disable 1C3b. Processor Y will be
locked out for the length of processor X’s
memory request. Now suppose processor Y
does make a request for bus access when
processor X is using the bus. This condition
will force IC4a to its low state, activating the
YWAIT line. The wait signal will continue
until processor X concludes its memory
access. Under no circumstances, however,
will processor Y be forced into more than
one wait state for this processor X access.
When XMREQ goes high, XSELECT follows

Beginning Finishing
Event Event Stipulation Delay Before Occurrence (ns)
XA15 high
XRFSH high to XSELECT low YSELECT high 28
XMREQ low
X A15 high
XRFSH high to XSELECT low YSELECT low 25 after YSELECT goes high
XMREQ low
YA15 high
YRFSH high to YSELECT low XSELECT high 28
YMREQ low
YA15 high g
YRFSH high to YSELECT low XSELECT low 25 after XSELECT goes high
YMREQ low
XA15 high
XRFSH high to XWAIT low YSELECT low 53
XMREQ low
YA15 high
YRFSH high To YWAIT low XSELECT low 53
YMREQ low
XSELECT high to YWAIT high YSELECT low 22
YSELECT high to YWAIT high XSELECT low 22

Continued on page 174

Table 2: Timing considera-
tions in the arbiter cir-
cuitry. The arbiter takes a
finite amount of time for
its logic circuits to effect
the changes shown. The
corresponding delays are
shown at the right.
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Continued from page 63
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Figure 3b: M1,T1/MI1,T1, one of the seven interprocessor T state alignments
shown in table 1. Synchronization is achieved after three clock cycles in this
example. A complete discussion of the M and T states can be found in the
Z-80 technical manual. (Note that, even though the arbiter activates the wait
lines at periods during synchronization, this has no effect on the processors
because the lines are not sampled until the falling edge of T2.)

Inter-processor
State Relationship Synchronization Pattern Wait States T States Until
P./P M1,T1/M1,T3 M1,T1/M2,T3 P, P Synchronization
x"y . X Y

M1,T1/M1,T1 N 0o 1 3
M1,T1/M1,T2 v 1 0 3
M1,T1/M1,T3 N 0 0 0
M1,T1/M1,T4 N 0 1 6
M1,T1/M2,T1 N 0 2 7
M1,T1/M2,T2 v 1.0 3
M1,T1/M2,T3 Vi 0 0 0

Table 3: Timing analysis for two Z-80 processors in parallel. The seven
possible interprocessor state relationships are shown at left. The center
column lists the two possible classes of operation for the parallel processors:
the first (M1,T1/M1,T3) occurs when both processors are performing an op
code fetch at the time of synchronization; the second is the case when one
processor is performing an op code fetch while the other is performing a
memory read or write. The wait states column indicates how many wait states
each processor must undergo until synchronization occurs. Note that in two
of the cases, the shared memory arbiter (see figure 2a) need not be employed,
since the two processors fall into synchronization spontaneously.
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suit, enabling IC3b; ie: granting processor
Y’s request.

System Timing

In order to choose a memory that is
subject to overlapping access requests from
more than one processor, system timing
must be carefully examined. Important
considerations in this design include the
control logic propagation delay and the
“window size'' provided by the processors
for read or write accesses to the common
memory.

In the single processor system, the
smallest memory access window of any Z-80
instruction occurs during the op code fetch
cycle. The effective length of that cycle is a
few nanoseconds less than 1.5 clock cycles
(1.5 ®). However, the dual processor config-
uration reduces the window size for two
reasons: (1) the delay in processor selection
(ie: the data gating signal) incurred by the
control logic and, (2) the overlap of the
memory request -signals from opposing
processors that is required to permit full
speed operation by the processors. Further,
the memory cycle time requirement
becomes more stringent, accommodating
from more than two clock cyclesina 1 pro-
cessor system to less than one clock cycle in
this system.
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The clock that drives the processors
operates at 2.5 MHz, defining a basic cycle
time of 400 ns. With this information it is
now possible to calculate the operating char-
acteristics required of the shared memory.

As stated earlier, the memory access
window depends on the control logic switch-
ing delay and the request signals overlap. It
has been shown (see figure 3) that the
smallest window occurs at times of bus
request conflicts, and that this window has a
length of one clock cycle. The equation,

SHARED MEMORY
DATA BUS

then, for actual window length is:

L

1l

®—5-T Ty

400 ns (1 clock cycle)

maximum delay in falling edge of
MREQ

maximum propagation delay of
contro! logic

maximum propagation delay of
decoding logic

Figure 4: Block diagram of
the shared memory The
memory is arranged in a
square array of 64 static
programmable memory
integrated circuits  with
4096 bits per circuit.
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Examining the control logic timing shown
in table 2, we observe that the maximum
timing delays from either MREQ line going
active until the arbiter sets the correspond-
ing SELECT line active are as follows:

Maximum

IC In Signal Propagation

Path Delay (ns)
74504 5
74S10 5
7415126 +18

Total Arbiter
Delay: 28 ns

Substituting into the equation for L_, we
obtain:

La = <I>76—TC—Td
= 400—20—28—Td
= 352—Tdns

The switching delay of the decoding
logic, Td (SELECT active until the memory
receives the signals), further reduces the
memory access window. Referring to figures
2b and 4, the signal path T is:

Ty = 7408 +max [745157 (select),
745157 (enable)] + 745138
= 19 +max [15,11]+ 12
= 46ns
Finally,
L, = 352-T4
= 306 ns

This allows plenty of time for a memory
access operation; so much time, in fact, that
we do not need the faster and more expen-
sive bipolar programmable memory.

We must also consider the memory cycle
timing (L_), reduced by this two processor
systemto ® —6:

L. b -5

= 400 — 20
380 ns

It is good design practice to calculate
delays in the system using the maximum
time figures rather than typical ones, and to
adjust the results by including a safety mar-
gin. Accordingly, we specify the following
requirements for the shared static program-
mable memory:

® Access time 280 ns or less
® Cycle time 350 ns or less

Conclusions and Possible Applications

The principle advantage of two (or more)
parallel processors performing complemen-
tary tasks is the cost savings. For example,
let us say that we operate a packet switching
network in which multiple microprocessors
perform the relay functions of each node,
such as the TELENET of Telenet Communi-
cations Corporation. Our responsibilities
include insuring data reliability (eg: using
cyclic redundance coding (CRC), checksum,
etc), doing format checks, and recognizing
the destination of the traffic and routing it
to another node in the network. Further,
this service must be provided at high speed.

Clearly, for one processor to perform
these and other nodal functions without
some delay, high performance and high cost
systems would be required. Conversely, mul-
tiple microprocessors could perform all of
these tasks in parallel at a significant reduc-
tion in cost.

For the experimenter, a multiprocessor
system doesn’t appear to offer much beyond
an interesting diversion in design engineering.
As mentioned earlier, the benefit from this
type of design is increased throughput (by
virtue of the reduced per unit cost). This is
an idea that has little significance for persons
with a dedicated system.

One possible application does come to
mind, however. Many 8080 system owners
are upgrading to the Z-80 for the expanded
instruction set, but for some, direct replace-
ment of a processor board is not possible.
Why not consider adding a Z-80 with your
current system acting as a front end?
Admittedly, it seems like a bit of overkill,
but it is an inexpensive way ($8 for the
interface circuitry of this design) to upgrade.
Of course, after installing another processor,
the owner must write an operating system to
accommodate the addition; but that’s part
of the continuing challenge to be found in
the world of microprocessors.m
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