The 6809

Part 1. Design Philosophy

Photo 1: Systems architects Ritter (right) and Boney review some of the
6809 design documents. This work results in a complete description of the
desired part in a 200 page design specification. The specification is then used
by logic designers to develop flowcharts of internal operations on a cycle by
cycle basis.

14 January 1979 © BYTE Publications Inc

Terry Ritter

Joel Boney

Motorola Inc

3501 Ed Bluestein Blvd
Austin TX 78721

This is a story. It is a story of computers
in general, specifically microcomputers, and
of one particular microprocessor — with
revolutionary social change lurking in the
background. The story could well be imagi-
nary, but it happens to be true. In this 3 part
series we will describe the design of what
we feel is the best 8 bit machine so far made
by human: the Motorola M6809.

Philosophy

A new day is breaking; after a long slow
twilight of design the sun is beginning to
rise on the microprocessor revolution.
For the first time we have mass production
computers; expensive, custom, cottage
industry designs take on less importance.

Microprocessors are real computers. The
first and second generation devices are not
very sophisticated as processors go, but
they are general-purpose logic machines.
Any microprocessor can eventually be
made to solve the same problems as any
large scale computer, although this may
be an easier or harder task depending on
the microprocessor. (Naturally, some jobs
require doing processing fast, in real time.
We are not discussing those right now. We
are discussing getting a big job done some-
time.) What differentiates the classes is a
hierarchy of technology, size, performance,
and, curiously, philosophy of use.

A processor of given capability has a
fixed general complexity in terms of digital
logic elements. Consider the computers
that were built using the first solid state
technology. In short, they consisted of many
thousands of individual transistors and other
parts on hundreds of different printed cir-
cuit cards using thousands of connections
and miles of connecting wire. A big compu-
ter was a big project and a very big expense.
This simple economic fact fossilized a whole
generation of technology into the ‘big
computer philosophy.”

Because the big computer was so expen-
sive, time on the computer was regarded as
a limited and therefore valuable resource.
Certainly the time was valuable to re-
searchers who could now look more deeply
into their equations than ever before. Com-
puter time was valuable to business people
who became at least marginally capable of
analyzing the performance of an unwieldy

Photo 2: 6809 logic design. Design engineer Wayne Harrington inspects a portion of 6809’s processor logic blueprint at the Mo-
torola Austin plant. The print is colored by systems engineers to partition the logic for the logic-equivalent TTL “breadboard.”

bureaucratic organization. And the compu-
ter makers clearly thought that processor
time was valuable too; it was a severely
limited resource, worth as much as the mar-
ket would bear.

Processor time was a limited resource.
But some of us, a few small groups of
technologists, are about to change that situa-
tion. And we hope we will also change how
people look at computers, and how pro-
fessionals see them too. Computer time
should be cheap; people time is 70 years
and counting down.

The large computer, being a very expen-
sive resource, quickly justified the capital
required to investigate optimum use of that
resource. Among the principal results of
these projects was the development of
batch mode multiprocessing. The computer
itself would save up the various tasks it had
to do, then change from one to the other at
computer speeds. This minimized the
wasted time between jobs and spawned the
concept of an operating system.

People were in the position of waiting for
the computer, not because they were less

important than the machine, but precisely
because it was a limited resource (the
problems it solved were not).

Electronics know-how continued to de-
velop, producing second generation solid
state technology: families of digital logic
integrated circuits replaced discrete transis-
tor designs. This new technology was ex-
ploited in two main thrusts: big computers
could be made conceptually bigger (or
faster, or better) for the same expense, or

About the Authors

University of South Florida.

Joel Boney and Terry Ritter are with the Motorola 6800 Micro-
processor Design Group in Austin TX. Joel is responsible for the
software input into the design of the 6800 family processors and
peripheral parts and was a co-architect of the M6809. Terry Ritter is
a microcomponent architect, responsible for specification of the 6809
advanced microprocessor. While with Motorola, Terry has been co-
architect of the 6809, and co-architect as well of the 6847 and 68047
video display generator integrated circuits. He holds a BSES from the
University of Texas at Austin and Joel Boney has a BSE from the

January 1979 © BYTE Publications Inc

15

The other major device
needed for home compu-
ters — the video display
generator color TV

interface — is presently in

volume production. Sev-

eral versions are available,

many derived from the
original Motorola archi-

tecture.

computers could be made physically smaller
and less expensive. These new, smaller
computers (minicomputers) filled market
segments which could afford a sizable but
not huge investment in both equipment and
expertise. Laboratories could use them, for
example. But most people, including scien-
tists and engineers, still used only the very
large central machines. Rarely were mini-
computers placed in schools; few computer
science or electrical engineering departments
(who might have been at the leading edge of
new generation technology) used them for
general instruction.

And so the semiconductor technologists
began a third generation technology: the
ability to put all the logic elements required
to build a complete computer on a single
chip of silicon. The question then became,
“How do we use this new technology (to
make money)?”

The semiconductor producer’s problem
with third generation technology was that an
unbelievably large development expense was
(and is) required to produce just one large
scale integration (LSI) chip. The best road
to profit was unclear; for a while, customer
interconnection of gate array integrated
circuits was tried, then dropped. Complete
custom designs were (and are) found to be
profitable only in very large volumes.

Another road to profit was to produce a

Photo 3: 6809 emulator board. Software and systems engineers implement a
functional equivalent of the 6809 as a 6800 program. A 6800 to 6809 cross

assembler allows 6809 programs to be assembled and then executed as a
check of the architectural design.

16

January 1979 © BYTE Publications Inc

few programmable large scale integration
devices which could satisfy the market needs
(in terms of large quantities of different sys-
tems) and the factory’s needs (in terms of
volume production of exactly the same
device). Naturally, the general-purpose com-
puter was seen as a possible answer.

So what was the market for a general-
purpose computer? The first thought was to
enter the old second generation markets;
ie: replacement of the complex logic of
small or medium scale integration. Control
systems, instruments and special designs
could all use a similar processor, but the
designer was the key. Designers (or design
managers) had to be converted from their
heavy first and second generation logic
design backgrounds to the new third genera-
tion technology. In so doing, some early
marketing strategists overlooked the principal
microprocessor markets.

Random logic replacement was by no
means a quick and sufficient market for
microprocessors. In particular, the design-
in cycle was quite long, users were often
unsophisticated in their uses of computers,
and the unit volume was somewhat small.
Only when microprocessors entered high
volume markets (hobby, games, etc) did
the manufacturers begin to make money and
thus provide a credible reason (and funds)
for designing future microprocessors. Natu-
rally, the users who wanted more features
were surprised that it was taking so long to
get new designs — they knew what was
needed.

Thus semiconductor makers began to
realize that their market was more oriented
to hobby applications than to logic replace-
ment, and was more generalized than they
had thought. But even the hobby market
was saturable.

Meanwhile companies continued to im-
prove production and reduce costs, and
competition drove prices into the ground.
Where could they sell enough computers
for real volume production, they wondered.
One answer was the personal computer!

Design of Large Scale Integration Parts

The design of a complex large scale
integration (LSI) part may be conveniently
broken into three phases: the architectural
design, the logic and circuit design/architec-
tural review, and the layout software and
hardware (breadboard) simulations. Each
phase has its own requirements.

The architect/systems designers represent
the use of the device, the needs of the mar-
ketplace and the future needs of all cus-
tomers. They propose what a specific cus-

Photo 4: Circuit design.
Detailed computer simu-
lations of the circuit under
design yield predictions of
on chip waveforms. Tulley
Peters and Bryant Wilder
decide to enhance a parti-
cular critical transistor.

tomer should have that could also be used
by other customers, possibly in different
ways. They advocate what the customers
will really want, even if no customers can
be identified who know that they will
want it, that it is possible or that it is inex-
pensive. The attitude that “I know what is
best for you’’ may be irritating to most
people, but it is necessary in order to make
maximum use of a limited resource (in this
case, a single LS| design). The architect
eventually generates the design specifica-
tion used in subsequent phases of the design.

Logic design consists of the production of
a cycle by cycle flowchart and the derivation
of the equations and logic circuitry necessary
to implement the specified design. This is a
job of immense complexity and detail, but
it is absolutely crucial to the entire project.
Throughout this phase, the specification
may be iterated toward a local optimum of
maximum features at minimum logic (and
thus, cost). The architectural design con-
tinues, and techniques are developed to
cross-check on the logical correctness of the
architecture.

The third phase is the most hectic in
terms of demands and involvement. By this
time, many people know what the product
is and see the resulting part merely as the
turning of an implementation ‘crank.”
It seems to those who are not involved in
this phase that more effort could cause that
crank to turn faster. Since the product could
be sold immediately, delay is seen as a real

loss of income. In actual practice, more
effort will sometimes ‘“‘break the crank.”

A medium scale integration logic imple-
mentation (usually transistor-transistor logic,
for speed) is required to verify the logic
design. A processor emulation may require
ten different boards of 80 medium scale
integrated circuits each and hundreds of
board to board interconnections. Each
board will likely require separate testing,
and only then will the emulation represent
the processor to come. Extensive test pro-
grams are required to check out each facet
of the part, each instruction, and each
addressing mode. This testing may detect
logic design errors that will have to be fixed
at all levels of design.

Circuit design, in the context of the
semiconductor industry, depends upon run-
ning computer simulations (which require
sophisticated device models) of signals at
various nodes to verify that they will meet
the necessary speed requirement. Transis-
tors are sized and polysilicon lines changed
to provide reliable worst case operation.

Layout is the actual task of arranging
transistors and interconnections to imple-
ment the logic diagram. Circuit design results
will indicate appropriate transistor sizes and
polysilicon widths; these must now be
arranged for minimum area. Every attempt
is made to make general logic “cells”” which
can be used in many places across the inte-
grated circuit, but area minimization is the
principal concern.

The layout for the chip eventually exists
only as a computer data base. Each cell is
individually digitized into the computer,
where it can be arbitrarily positioned,
modified or replicated as desired. Large
2 by 3 m (6.5 by 10 feet) plots of various
areas of the chip are hand checked to the
logic diagram by layout and circuit designers
as final checks of the implemented circuit.

When layout is complete, the computer
data base that represents the chip design is
sent to the mask shop (the mask is a photo-
graphic stencil of the part used in the
manufacturing process). At the mask shop
precision plotting and photographic step
and repeat techniques are used to produce
glass plates for each mask layer. Each mask
covers an entire wafer with etched nickel
or chrome layouts at real chip size. (A
typical LSI device will be between 5 by 5
and 7.5 by 7.5 mm (0.2 by 0.2 and 0.3 by
0.3 inches). These masks are used to expose
photosensitive etch resist that will protect
some areas of the wafer from the chemical
processes which selectively add the impuri-
ties that create transistors.

Actual processing steps are quite similar
for each part. But the processing itself is a
variable, and it will not be known until
final testing exactly how many parts will
turn out to be saleable. Therefore, a best
estimate is taken, and the required number

Photo 5: Checking the flowcharts. Logic and circuit designer Bryant Wilder
compares the specification to one of the flowcharts. The flowcharts are used
to develop Boolean equations for the required logic, those equations are then
used to generate a logic diagram.

20 January 1979 © BY TE Publications Inc

of wafers (of a particular device) is started
and processed. The whole industry revolves
around highly trained production engineers,
chemists and others who process wafers to
highly secret recipes. Some recipes work,
some don’t. You find out which ones do by
testing.

Each die (ie: individual large scale inte-
gration circuit) is tested while still on the
wafer; failing devices are marked with a
blob of ink. The wafer is sawed into individ-
ual dies and the good devices placed into a
plastic or ceramic package base. The con-
nection pads are ‘die bonded” to the
exposed internal lead frame with very tiny
wire. The package is then sealed and tested
again.

Testing a device having only 40 pins
but which has up to 40,000 internal transis-
tors is no mean trick nor a minor expense.
Furthermore, the device must execute all
operations properly at the worst case system
conditions (which may be high or low
extremes of temperature, voltage and load-
ing) and work with other devices on a com-
mon bus. Thus, the device is not specified
to its own maximum operating speed, but
rather the speed of a worst case system.
Motorola microprocessors can usually be
made to run much faster (and much slower)
than their guaranteed worst case
specifications.

Project Goals

The 6809 project started life with a
number of (mostly unformalized) goals. The
principal public goal was to upgrade the
6800 processor to be definitely superior to
the 8 bit competition. (The Motorola
68000 project will address the 16 bit mar-
ket with what we believe will be another
superior processor.) Many people, including
many customers, felt that all that had to be
done was to add another index register (Y),
a few supporting instructions (LDY, STY)
and correct some of the past omissions
(PSHX, PULX, PSHY, PULY). Since this
would mean a rather complete redesign any-
way, it made little sense to stop there.

A more philosophical goal — thus one
much less useful in discussions with en-
gineers and managers (who had their own
opinions of what the project should be)
— was to minimize software costs. This led
to an extensive, and thus hard to explain,
sequence of logic that went somewhat like
this:

Q: How do we reduce software costs?
A: 1. Write code in a block structured
high level language.

24

January 1979 © BYTE Publications Inc

2. Distribute the code in mass pro-
duction read only memories.

Q: Why aren’t many read only memories
being used now?

A:1. The great opportunities for error
in assembly language allow many
mistakes which incur severe read
only memory costs.

2. The present architecture is not
suitable for read only memories.

Q: /n what way are the second generation
processors unsuitable?

A: 1t is very difficult to use a read only
memory in any other context than
that for which it was originally de-
veloped. It is hard to use the same
read only memory on systems built
by different vendors. Simply having
different input and output (IO) or
using a different memory location is
usually enough to make the read only
memory product useless.

Q: What is needed?

A: 1. Position independent code.

2. Temporary variables on the stack.

3. Indirect operations through the
stack for input and output.

4. Absolute indirect operations for
system branch tables.

And so it went. How could we make a device
that would answer the software problems of
two generations of processors? How, indeed!

Design Decisions

Usually an engineering project may be
pursued in many ways, but only one way at
a time. The ever present hope is that this one
time will be the only time necessary. Further-
more, it would be nice to get the project
over with as soon as possible to get on with
selling some products. (A rapid return on
investment is especially important in a time
of rapid inflation.) To these honorable
ends certain decisions are made which
delineate the investment and risk undertaken
in an attempt to achieve a new product.

The 6809 project was no exception. To
minimize project risk it was decided that the
6809 would be built on the same techno-
logical base as the recently completed 6800
depletion load redesign. In particular, the
machine would be a random logic computer
with essentially dynamic internal operation.
It would use the reliable 6800 type of
storage register. Functions would be limited
to those befitting a producible sized device.

The 6809 part would have to be com-
patible with the defined 6800 bus and 6800
peripherals. This decision would extend the
life of parts already in production and mini-

mize testing peripheral devices for a partic-
ular processor (6800 versus 6809). Bus
compatibility doesn’t have to mean identity
— the new device could have considerably
improved specifications but could not do
worse than the specifications for the existing
device. This mandate was a little tricky when
you consider that we were dealing with a
more complex device using exactly the same
technology, but there was a slight edge: the
advancing very large scale integration (VLSI)
learning curve.

One wide range decision was that the new
device would be an improved 6800 part. The
widely known 6800 architecture would be
iterated and improved, but no radical
departure would be considered. In fact, the
new device should be code compatible with
the 6800 at some level.

Compatibility was the basis for the 6809
architectural design. It implied that the
6809 could capitalize on the extensive
familiarity with the 6800. 6800 program-
mers could be programming for the 6809
almost immediately and could learn and use
new addressing modes and features as they
were needed. This decision also ended any
consideration of a radically new architecture
for the machine before it was begun.

A corporation selling into a given market
is necessarily limited to moderate innovation.
Any vast product change requires reeduca-
tion of both the internal marketing organiza-
tion and the customer base before mass sales
can proceed. Consequently, designers have
to restrict their creativity to conform to the
market desires. The amount of change
actually implemented, produced and seen by
society is the true meaning of a computer
“generation.” In the end, society itself
defines the limits of a new generation, and
a design years ahead of its time may well
fail in the marketplace.

M6800 Data Analysis

Once the initial philosophical and market-
ing trade-offs were made, construction of
the final form of the M6809 began. By this
time a large number of M6800 programs had
been written by both Motorola and our
customers, so it was felt that a good place to
start design of the 6809 was to analyze large
amounts of existing 6800 source code. Sur-
prisingly, the data gathered about 6800
usage of instructions and addressing modes
agreed substantially with similar data pre-
viously compiled for minicomputers and
maxicomputers. By far the most common
instructions were the loads and stores, which
accounted for over 38 percent of all 6800
instructions. Next were the subroutine calls

26

Instruction Class Percent Usage

Loads 23.4
Stores 15.3
Subroutine calls and returns 13.0
Conditional branches 11.0
Unconditional branches and jumps 6.5
Compares and tests 6.2
Increments and decrements 6.1
Clear 4.4
Adds and subtracts 2.8
All others 1443

Table 1: 6800 instruction types based on
static analysis of 25,000 lines of 6800 source
code. In static analysis the actual number of
occurrences of each instruction is tallied
from program listings. In the alternate
technique, called dynamic analysis, the
number of occurrences of an instruction is
tallied while the program is running. An
instruction jnside a program loop would
therefore be counted more than once.

and returns with 13 percent, conditional
branches with 11 percent and unconditional
jumps and branches with 6.5 percent (see
table 1). Neither the arithmetic nor logical
instructions had as high a usage as might
have been expected. Clearly then, enhance-
ments that would improve the utility and
power of the data movements (such as load
and stores) would yield the largest return on
investment, followed by improvements to
subroutine linkage and parameter passing.

Further analysis indicated that the num-
ber of load and store index register instruc-
tions (16 bits) was too large to be attribu-
table solely to index register manipulation
or even to the lack of a second index register.
This information, combined with a rela-
tively high ratio between straight adds or
subtracts and adds with carry and sub-
tracts with borrow, indicated that quite a
few simple 16 bit operations were being
performed on existing 6800s.

It was therefore felt the M6809 must sup-
port the most common 16 bit operations on
the accumulators and index registers.

Perhaps the most interesting data was
that which pertained to addressing modes.
The six major 6800 addressing modes

Table 2: Size of offsets
used in 6800 indexed ad-
dressing, based on static
analysis of 25,000 lines
of 6800 source code.

Index Offset Percent Usage

0 40.0
1-31 53.0
3263 1.0
64—255 6.0

January 1979 © BYTE Publications Inc

(Direct, Extended, Immediate, Indexed,
Relative, Accumulator) had nearly equal
usage, which indicated that programmers
actually took advantage of the bytes to be
saved by direct (page zero) addressing and
indexed addressing. Furthermore the off-
sets for indexed instructions showed that
93 percent of the offsets were either 0 or
less than 32 (see table 2).

This information was used to greatly
expand the addressing modes (as discussed
later) without making the 6800 programs
require more code when converted to run
on the 6809. Also the number of increment
or decrement index register instructions in
loops indicated that autoincrementing and
autodecrementing would be beneficial.
Autodecrementing and autoincrementing are
similar to indexing except the index register
used is decremented before, or incremented
after, the addressing operation takes place.

As all programmers and even architects
like ourselves eventually learn, consistent
and uniform instruction sets are used more
effectively than instruction sets that treat
similar resources (IO, registers or data) in
dissimilar ways. For example, the least
used instructions on the 6800 were those
that dealt with the A accumulator in specific
ways that did not apply to the B accumulator
(eg: ABA: add B to A, CBA: compare B to
A). It’s not that these instructions are not
useful, it’s just that programmers will not
use inconsistent instructions or addressing
modes. Consistency became the battle cry
of the M6809 designers!

Customer Inputs

At the completion of the 6800 analysis
stage, the first preliminary design specifica-
tion for the 6809 was generated. This pre-
liminary specification was then taken to
about 30 customers who represented a
cross section of current 6800 users, as well
as some customers and consultants known
to be hostile to the 6800. With these cus-
tomer visits we hoped to resolve two major
questions about the 6809’s architecture:

1) Which architecture was more desirable,
8 bit or 16 bit?

2) Did 6809 compatibility with the 6800
need to occur at the object level or at
the source level?

Most customers felt that an 8 bit architec-
ture was adequate for their upcoming ap-
plications, and they did not want to pay the
price penalty for 16 bits as long as the 6809
included the most common 16 bit opera-
tions such as add, subtract, load, store, com-

28

r X INDEX REGISTER

L Y INDEX REGISTER

POINTER REGISTERS

[U USER STACK POINTER J

[S HARDWARE STACK POINTER J

| rc

I PROGRAM COUNTER

ACCUMULATORS

DP J DIRECT PAGE REGISTER

(e[e[u] []z]v]e]

CC-CONDITION CODE REGISTER

CARRY—BORROW

OVERFLOW

ZERO

NEGATIVE

INTERRUPT REQUEST MASK

HALF CARRY

FAST INTERRUPT REQUEST MASK

January 1979 © BYTE Publications Inc

ENTIRE STATE ON STACK

Figure 1: 6809 programming model.

pare and multiply. Many were interested,
though, in Motorola’s advanced 16 bit
processor (68000) for future 16 bit appli-
cations. From the very inception of the
6809 project it was a requirement that the
6809 would be compatible with the 6800.
Whether this compatibility needed to occur
at the object code level or at the assembly
language (source code) level was a question
we felt our customers should help us answer.
Virtually every customer indicated that
source compatibility was sufficient because
they would not try to use 6800 read only
memories in 6809 systems. Most customers
indicated that they would take advantage of
the 6800 compatibility in order to initially
convert running 6800 programs into running
6809 programs, and then modify the 6809
code to take advantage of the 6809’s features.

The decision not to be object code com-
patible was an easy one for us since it meant
that we could remap the 6800 op codes in a
manner guaranteed to produce more byte
efficient and faster 6809 programs. The re-
mapping of op codes was greatly affected by

the 6800 data analyses. Some low occurrence
6800 instructions were combined into con-
sistent 2 byte instructions, allowing the
more useful instructions to take fewer bytes
and execute faster. Also, some 6800 instruc-
tions were eliminated completely in favor of
2 instruction sequences. These sequences are
generated automatically by our 6809 as-
sembler when the 6800 mnemonic is re-
cognized. This remapping in favor of more
often used functions results in 6809 pro-
grams that require only one half to two
thirds as much memory as 6800 programs,
and run faster.

M6809 Registers

What, then, are the pertinent features that
make the 6809 a next generation processor?
In the following paragraphs we will attempt
to highlight the improvements made to the
6800. The programming model for the 6809
(figure 1) consists of four 8 bit registers and
five 16 bit registers.

The A and B accumulators are the same
as those of the 6800 except that they can
also be catenated into the A:B pair, called
the D register, for 16 bit operations.

The condition codes are similar to the
6800, with the inclusion of two new bits.
The F bit is the interrupt mask bit for the
new fast interrupt. The fast interrupt (FIRQ)
only stacks the program counter and condi-
tion code register when an interrupt occurs.
The interrupt routine is then responsible for
stacking any registers it uses. The E bit is set
when the registers are stacked during inter-
rupts if the entire register set was saved (as
in nonmaskable and maskable interrupts)
or cleared if the short register set was saved
(for a fast interrupt).

On the 6800, an instruction with direct
mode (or page zero) addressing consisted
of an op code followed by an 8 bit value
that defined the lower eight bits of an
address. The upper eight bits were always as-
sumed to be zero. Thus, direct addressing
could only address locations in the lowest
256 bytes of memory. The 6809 adds
versatility to this addressing mode by de-
fining an 8 bit direct page register that de-
fines the upper eight bits of address for all
direct addressing instructions. This allows
direct mode addressing to be used through-
out the entire address space of the machine.
To maintain 6800 compatibility, the direct
page register is set to O on reset.

Four 16 bit indexable registers are in-
cluded in the 6809. They are the X, Y, U
and S registers. The X register is the familiar
6800 index register, and the S register is the
hardware stack pointer. The Y register is a

Nonindirect Indirect
+ | + + +
Type Forms Source Post Byte ~ | # Source Post Byte ~ =
Constant no offset R 1RR00100 0|0 [,R] 1RR10100 3 0
offset from R 5 bit offset n,R ORRnnnnn 1 0 defaults to 8-bit
8 bit offset n,R 1RR01000 1 1 [n,R] 1RR 11000 4 1
16 bit offset n,R 1RR01001 4 | 2 [n,R] 1RR11001 7 2
Accumulator A register offset AR 1RR00110 1 0 [A,R] 1RR10110 4 0
offset from R B register offset B,R 1RR00101 1 0 [B,R] 1RR10101 4 0
D register offset D,R 1RR0O1011 4 [0 [D,R] 1RR11011 7 0
Autoincrement/ | increment by 1 R+ 1RR00000 2 0 not allowed
—decrement R increment by 2 R++ 1RR00001 3 0 [,R++] 1RR10001 6 0
decrement by 1 —R 1RR00010 2 0 not allowed
decrement by 2 - —R 1RR0O0011 B8 MO [——R]| 1RR10011 6 0
Constant offset 8 bit offset n, PCR | 1XX01100 1 1 [n, PCR]| 1XX11100 4 1
from program 16 bit offset n, PCR | 1XX01101 b2 [n, PCR]| 1XX11101 8 2
counter
Extended use nonindexed [n] 10011111 5 2

Table 3: Indexed addressing modes. All instructions with indexed addressing

+

have a base size and number of cycles. The = and ;; columns indicate the
number of additional cycles and bytes for the particular variation. The post
byte op code is the byte that immediately follows the normal op code.

30

January 1979 © BYTE Publications Inc

second index register; the U register is the
user stack pointer. All four registers can be
used in all indexing operations and the U
and S registers are also stack pointers. The
S register is used during interrupts and sub-
routine calls by the hardware to stack return
addresses and machine state.

The last 16 bit register is the program
counter. In certain 6809 addressing modes,
the program counter can also be used as an
index register to achieve position indepen-
dent code.

Addressing Modes

It was our opinion that the best way to
improve an existing architecture and main-
tain source compatibility was to add power-
ful addressing modes. In our view, the 6809
has the most powerful addressing modes
available on any microprocessor. Powerful
addressing modes helped us achieve our
goals of position independence, reentrancy,
recursion, consistency and easy imple-
mentation of block structured high level
languages.

All the 6800 addressing modes (Immedi-
ate, Extended, Direct, Indexed, Accumula-
tor, Relative and Inherent) are supported on
the 6809 with the direct mode of addressing
made more useful by the inclusion of the
direct page register (DPR).

The direct page register usage and direct
addressing need some explanation, since
they can be very effective when used cor-
rectly. For example, since global variables

are referenced frequently in high level lan-
guage execution, the direct page register can
be used to point to a page containing the
global variables while the stack contains the
local variables, which are also referenced fre-
quently. This creates very efficient code
which is safe since the compiler keeps track
of the direct page register. The direct page
register can also be used effectively and
safely in a multitasking environment where
the real time operating system allocates a
difference base page for each task.

On the other hand, it would be quite
dangerous to indiscriminately reallocate the
direct page register frequently, such as within
subroutines or loops, since it might become
very easy to lose track of the current direct
page register value. Therefore, even though
the direct page register is unstructured, we
included it because, when used correctly, the
byte savings are significant. Also, to make
direct addressing more useful, the read modi-
fy write instructions on the 6809 now have
all memory addressing modes: Direct, Ex-
tended and Indexed.

The major improvements in the 6809’s
addressing modes were made by greatly ex-
panding the indexed addressing modes as
well as making all indexable instructions
applicable to the X, Y, U and S registers (see
table 3).

Indexed addressing with an offset is
familiar to 6800 users, but the 6809 allows
the offset to be any of four possible lengths:
0, 5, 8 or 16 bits, and the offsets are signed
two’s complement values. This allows greater
flexibility in addressing while achieving maxi-
mum byte efficiency. The inclusion of the
16 bit offset allows the role of index register
and offset to be reversed ifdesired. A further
enhancement allows all of the above modes

32

January 1979 © BYTE Publications Inc

00001

NAM AUTOEX

00003 OPT LLEN=80

00004 ;

00005 LRSS R R R R R SRR RS AR R SRS XS R R AR RS R Rt R R R R

00006 * COMPARE STRINGS SUB

00007 .

00008 * FIND AN INPUT ASCII STRING POINTED TO BY THE
00009 * X-REGISTER IN A TEXT BUFFER POINTED TO BY THE
00010 * Y-REGISTER. THE BUFFER IS TERMINATED BY A
00011 * BYTE CONTAINING A NEGATIVE VALUE. ON ENTRY
00012 * A CONTAINS THE LENGTH OF THE INPUT STRING. ON
00013 * EXIT, Y CONTAINS THE POINTER TO THE START
00014 * OF THE MATCHED STRING + 1 IFF Z IS SET. IFF Z
00015 * ISNOT SET THE INPUT STRING WAS NOT FOUND.
00016 *

00017 * ENTRY: '

00018 : X POINTS TO INPUT STRING

00019 ¥ Y POINTS TO TEXT BUFFER

00020 * A LENGTH OF INPUT STRING

00021 * TEX|T:

00022 . IFF Z=1 THEN Y POINTS TO MATCHED STRING + 1
00023 ¥ IFF Z=0 THEN NO MATCH

00024 . X IS DESTROYED

00025 2 B IS DESTROYED

00026 :

00027 LR R R R R R R R R R R R R R R R

00028 *

00029 0100 ORG $100

00030 0100 E6 A0 6 CMPSTR LDB Y+ GET BUFFER CHARACTER
00031 0102 2A 01 3 BPL CMP1 BRANCH IF NOT AT BUFFER END
00032 0104 39 5 RTS NO MATCH, Z=0

00033 0105 E1 8 4 CMPI CMPB X COMPARE TO FIRST STRING CHAR.
00034 0107 26 F7 3 BNE CMPSTR BRANCH ON NO COMPARE
00035 * SAVE STATE SO SEARCH CAN BE RESUMED IF IT FAILS
00036 0109 34 32 * 9 PSHS ~ AX,Y

00037 010B 30 O1 5 LEAX 1,X POINT X TO NEXT CHAR
00038 010D 4A 2 CMP2 DECA ALL CHARS COMPARE?
00039 010E 27 0OC 3 BEQ CMPOUT IF SO, IT'S A MATCH, z=1
00040 0110 E6 A0 6 LDB Y+ GET NEXT BUFFER CHAR.
00041 0112 2B 08 3 BMI CMPOUT BRANCH IF BUFFER END, Z=0
00042 0114 E1 80 6 CMPB X+ DOES IT MATCH STRING CHAR?
00043 0116 27 F5 3 BEQ CMP2 BRANCH IF SO

00044 0118 35 32 9 PULS AX,Y SEARCH FAILED, RESTART SEARCH
00045 O011A 20 E4 3 BRA CMPSTR

00046 011C 35 B2 11 CMPOUT PULS AX,Y,PC FIXSTACK, RETURN WITH Z
00047 *

00048 0000 END

Listing 1: 6809 autoincrementing example. This subroutine searches a text buffer for the occur-
rence of an input string. In autoincrement mode, the value pointed to by the index register is
used as the effective address and the index register is then incremented.

to include an additional level of indirection.
Even extended addressing can be indirected
(as a special indexed addressing mode). Since
either stack pointer can be specified as a
base address in indexed addressing, the in-
direct mode allows addresses of data to be
passed to a subroutine on a stack as argu-
ments to a subroutine. The subroutine can
then reference the data pointed to with one
instruction. This increases the efficiency of
high level language calls that pass arguments
by reference.

M6800 data indicated that quite often
the index register was being used in a loop
and incremented or decremented each time.
This moved the pointer through tables or
was used to move data from one area of
memory to another (block moves). There-
fore, we implemented autoincrement and
autodecrement indexed addressing in the
M6809. In autoincrement mode the value
pointed to by the index register is used as
the effective address, and then the index

register is incremented. Autodecrement is
similar except that the index register is
first decremented and then used to obtain
the effective address. Listing 1 is an example
of a subroutine that searches a text buffer
for the occurrence of an input string. It
makes heavy use of autoincrementing.

Since the 6809 supports 8 and 16 bit
operations, the size of the increment or
decrement can be selected by the program-
mer to be 1 or 2. The post increment, pre-
decrement nature of this addressing mode
makes it equivalent in operation to a push
and pull from a stack. This allows the X and
Y registers to also be used as software stack
pointers if the programmer needs more than
two stacks. All indexed addressing modes
can also contain an extra level of post indi-
rection. Autoincrement and autodecrement
are more versatile than the block moves
and string commands available on other
processors.

Quite often the programmer needs to

00010
00011
00012
00013
00014
00015
00016

0100
0100
0104
0106
0108
0109
010B

calculate the offset used by an indexed in-
struction during program execution, so we
included an index mode that allows the A,
B, or D accumulator to be used as an offset
to any indexable register. For example, con-
sider fetching a 16 bit value from a two-
dimensional array called CAT with dimen-
sions: CAT (100,30). Listing 2 shows the
6809 code to accomplish this fetch. These
addressing modes can also be indirected.

Implementation of position independent
code was one of the highest priority design
goals. The 6800 had limited position inde-
pendent code capabilities for small programs,
but we felt the 6809 must make this type of
code so easy to write that most programmers
would make all their programs position inde-

ORG $100
108E 1000 4 LDY #CAT LOAD BASE ADDRESS OF ARRAY
96 32 4 LDA SUB1 GET FIRST SUBSCRIPT
C6 64 2 LDB #100 MULTIPLY BY FIRST DIMENSION
3D 11 MUL
D3 33 6 ADDD SUB2 ADD SECOND SUBSCRIPT
EC AB 9 LDD D,Y FETCHVALUE

Listing 2: Array subscript calculations. This 6809 program fetches a 16 bit
value from a two-dimensional array called CAT, with dimensions: CAT
(100,30).

34 January 1979 © BYTE Publications Inc

w

OUR LATEST
CATALOG

of miniature switches

Our 52 page catalog

describes and illustrates
the complete line of

The Primary Source Worldwide.

C&K Components, Inc.

15 Riverdale Avenue, Newton, MA 02158
Tel: (617) 964-6400, TELEX: 92-2546, TWX: 710-335-1163

switches, how-to-order information and a listing

C&K Components’
miniature switches.

. Itincludes toggle,
. rocker, and lever
handles, printed

: circuit mountings,
‘v . snap-acting and
; / A alternate action
o pushbuttons 6 AMP and 10 AMP
power, subminiature and
microminiature pushbuttons,
illuminated, slide and thumbwheel

of C&K distributors and international
representatives. Send for your free copy now!

ﬁl(

Circle 38 on inquiry card.

pendent. To do this, an additional long rela-
tive (16 bit offset) branch mode was added
to all 6800 branches as well as adding pro-
gram relative addressing. Program relative
addressing uses the program counter much
as indexing uses one of the indexable
registers. This allows all instructions that
reference memory to reference data relative
to the current program counter (which is
inherently position independent). Of course,
program relative addressing can be indirected.

The addressing modes of the 6809 have
created a processor that has been termed a
“programmer’s dream machine.” To date all
the benchmarks we have written for the
6809 are position independent, modular, re-
entrant and much smaller than comparable
programs on other microprocessors. It is
easier to write good programs on the 6809
than bad ones!

New or Innovative Instructions

The 6809 does not contain dozens of new
innovative instructions, and we planned it
that way. What we wanted to do was clean
up the 6800 instruction set and make it
more consistent and versatile. We do not
feel a processor with 500 different assembler
mnemonics for instructions is better than
one with 59 powerful instructions that
operate on different data in the same man-
ner. For example, the 6809 contains a trans-
fer instruction of the form TFR R1, R2 that
allows transfer of any like-sized registers.
There are 42 such valid combinations on the
6809, and clearly one TFR instruction is
easier to remember than 42 mnemonics of
the form: TAB, TBA, TAP, TXY, etc. Also
an exchange instruction (EXG) exists that
has identical syntax to the TFR instruction
and has 21 valid forms. In the time it took
to read three sentences you just learned
63 new 6809 instructions! As another
example, we combined the numerous
instructions that set and cleared condition
code bits on the 6800 into two 6809 instruc-
tions that AND or OR immediate data into
the condition code register.

Other significant new instructions include
the new 16 bit operations. The D register
can be loaded, stored, added to, subtracted
from, compared, transferred, exchanged,
pushed and pulled. All the indexable regis-
ters (16 bits) can be loaded, stored and
compared. The load effective address instruc-
tion can also be used to perform 8 or 16 bit
arithmetic on the indexable registers as
described later,

Two significant new instructions are the
multiple push and multiple pull instructions
on the 6809. With one 2 byte instruction,
any register or set of registers can be pushed

FFFF

SP (OR US)

0000

Figure 2: 6809 push/pull

and interrupt stacking
order.
36 January 1979 © BYTE Publications Inc

——»0,

6809 STACKING ORDER

PCL PUSH ORDER

PCh

u’s,

U/Sy

PULL FROM STACK
<«——TOP OF STACK
PUSH ONTO STACK

or pulled from either stack. These instruc-
tions greatly decrease the overhead associated
with subroutine calls in both assembly and
high level language programs. In conjunction
with instructions using autoincrement and
autodecrement, the 6809 can efficiently
emulate a stack computer architecture,
which means it should be efficient for
Pascal p-code interpreters and the like.

The order in which the registers are
pushed or pulled from the stacks is given
in figure 2. Note that not all registers need
to be pushed or pulled, but that the order
is retained if a subset is pushed. This stacking
order is also identical to the order used by
all hardware and software interrupts.

One new instruction in the 6809 is a
sleeper. The load effective address to index-
able register (LEA) instruction calculates
the effective address from the indexed
addressing mode and deposits that address
in an indexable register, rather than loading
the data pointed to by the effective address,
as in a normal load. This instruction was
originally created because we wanted a way
to let the addressing mode hardware already
present in the processor calculate the address
of a data object so that it could be passed to
a subroutine. After the index addressing

modes were completed it was realized the
LEA instruction had many more uses, and,
once again, allowed us to combine other
instructions into one powerful instruction.
For example, to add the D accumulator
to the Y index register, the instruction is:
LEAY D, Y; to add 500 to the U register:
LEAU 500, U; and to add 5 to the value
in the S register and transfer the sum to the
U register: LEAU 5, S.

In writing position independent read only
memory programs it is sometimes necessary
to reference data in a table within the same
read only memory. This is generally a
tedious process even in computers that claim
to support position independent code
because the register that points to the table
must eventually contain an absolute address.
The LEA instruction, in conjunction with
program counter relative addressing, makes
this possible with one instruction on the
6809. For example, to put the address of
a table DG located in a relative read only
memory into indexable register U: LEAU
DG, PCR; or, to find out where a position
independent read only memory is located:
LEAY *, PCR (or TFR PC, Y). Our bench-
marks show the LEA to be the most used
new 6809 instruction by far.

An unsigned 8 bit by 8 bit to 16 bit multi-
ply was provided for the 6809. The A accum-
ulator contains one argument and the B the
other. The result is put back onto the A:B
(D) accumulator. A multiply was added
because multiplies are used for calculating
array subscripts, interpolating values and
shifting, as well as for more conventional
arithmetic calculations. An unsigned multi-
ply was selected because it can be used to
form multiprecision multiplies.

Another facet of good programming
practice that we wanted to encourage was
the use of operating system calls or soft-
ware interrupts (SWI). The 6800 SWI has
been effectively used by 6800 support
software for breakpoints and disk operating
system calls. That’s nice, but unfortunately
there was only one software interrupt,
and since Motorola’s software used that one,
the customer found it difficult to share.
The 6809 provides three software interrupts,
one of which Motorola promises never to
use. It is available for user systems.

One new instruction on the 6809, SYNC,
allows external hardware to be synchronized
to the software by using one of the interrupt
lines. Using this instruction, very tight, fast
instruction sequences can be created when it
is necessary to process data from very fast
input and output devices. Listing 3 gives
an example of the use of SYNC. It is
assumed that the A side of the peripheral

Figure 3: The ASR (arith-
metic shift right) instruc-
tion is used as a “test and
clear” and ST (store) is
used for “unbusy.” These
primitive operations are
used for implementing
critical section exclusion
on the 6809.

00008 0100 ORG
00009 0100 B6 F002 5 LDA
00010 0103 84 F7 2 ANDA
00011 0105 B7 F002 5 STA
00012 0108 8E 3000 3 LDX
00013 010B C6 80 2 LDB
00014 010D 1A 50 3 ORCC
00015

00016 O010F 13 2 LOOP SYNC
00017 0110 B6 FO00 5 LDA
00018 0113 A7 80 6 STA
00019 0115 5BA 2 DECB
00020 0116 26 F7 3 BNE
00021 0118 B6 F002 5 LDA
00022 011B 8A 08 2 ORA
00023 011D B7 F002 53 STA

$100

PIABC LOAD PIA CONTROL REG. — SIDE B
#$F7 TURN OFF B-SIDE INTERRUPTS
PIABC

#BUFFER GET POINTER TO BUFFER

#128 GET SIZE OF TRANSFER

#$50 DISABLE INTERRUPTS

*WAIT FOR ANY INTERRUPT LINE TO GO LOW

SYNCHRONIZE WITH 1/0
PIAAD LOAD A-SIDE DATA; CLEAR INTERRU
X+ STORE IN BUFFER

DONE?
LOOP BRANCH IF NOT
PIABC TURN B-SIDE INTERRUPTS BACK ON
#$08
PIABC

Listing 3: Hardware process synchronization using SYNC, a new instruction in the 6809 pro-
cessor that allows external hardware to be synchronized to the software by using one of the
interrupt lines. Very fast instruction sequences can be created using SYNC when it is necessary
to process data from very fast input and output devices.

interface adaptor (PIA) is connected to a
high speed device that transfers 128 bytes of
data to a memory buffer. When the device
is ready to send a piece of data, it generates
a fast interrupt (FIRQ) from the A side of
the peripheral interface adaptor. Program
lines 12 and 13 set up the transfer; lines 16
through 20 are the synchronization loop.
On each pass through the loop, the program
waits at the SYNC instruction until any
interrupt line is pulled low. When the
interrupt line goes low, the processor exe-
cutes the next instruction. In order to use
SYNC, all other devices tied to any of the
interrupt lines must be disabled. For this
example it was assumed that the B side of
the peripheral interface adaptor also had
interrupts enabled; program lines 9 through
11 disable the interrupt and lines 21 through
23 reenable it. Line 14 is included to keep
the interrupt by the A side of the peripheral
interface adaptor from going to the interrupt
routine. Note that interrupts do not need
to be enabled for SYNC to work, and in
fact are normally disabled.

Another improvement to the instruction
set was brought about by inclusion of the

INSTRUCTIONS BEFORE AFTER
ASR 0 00000 OO I IooooooooJ m
NOT BUSY BUSY)
GRANTED
ASR 0 00000000 rooooooool E
)
BUSY BUSY]
NOT GRANTED”
LDA #I
o 000000O0DO ﬁoooooon]

BUSY

38 January 1979 © BYTE Publications Inc

NOT BUSY

hardware signal BUSY. BUSY is high during
read/modify/write types of instructions to
indicate to shared memory multiprocessors
that an indivisable operation is in progress.
As shown in figure 3 this fact can be used to
turn existing instructions into the LOCK and
UNLOCK necessary for mutual exclusion
of critical sections of the program, or for
allocation of resources.

And lastly, never let it be said the 6809
has no SEX appeal—sign extend, that is.
The SEX instruction takes an 8 bit two’s
complement value in the B accumulator and
converts it to a 16 bit two’s complement
value in the D accumulator by extending the
most significant bit (sign bit) of B into A.

Table 4 is a convenient way to look at
all the instructions available on the 6809.
The notation first page/second page/third
page has the following meaning: first page
op codes have only one byte of op code.
For example: load A immediate has an op
code of hexadecimal 86. All second page op
codes are preceded by a page op code of
hexadecimal 10. For example, the op code
for CMPD immediate is hexadecimal 1083
(two bytes). Similarily third page op codes
are preceded by a hexadecimal 11. A CMPU
immediate is 1183. Some instructions
are given two mnemonics as a programmer
convenience. For example, ASL and LSL
are equivalent. Notice that the long branch
op codes LBRA and LBSR were brought
onto the first page for increased code
efficiency.

Stacks

As mentioned previously, the 6809 has
many features that support stack usage.
Most modern block structured high level
languages make extensive use of stacks.
Even though stacks are useful in the typical

The complete Motorola
6809 instruction set will be
presented in part 2 of this
series.

textbook example of expression evaluation,
their major wusage in languages such as
Pascal is to implement control structures.
Microprocessor users already realize the
advantage of a stack in nesting interrupts
and subroutine calls. Most high level lan-
guages also pass data on the stack and
allocate temporary local variables from the
stack.

Listing 4 and figure 4 show an example
of a high level language subroutine linkage.
Before calling the subroutine the caller
pushes the addresses of two arguments and
the answer on the stack and then executes
the jump to subroutine which puts the
return program counter on the stack. The
subroutine then saves the old stack mark

pointer on the stack as well as reserving
space on the stack for the local variables
for the subroutine. In this example, six
locations are used by the subroutine body
during calculation. At this point the stack
mark pointer is set to a new value for this
subroutine. The stack mark pointer is
used because the S register may vary during
execution of the subroutine body due to
local subroutines, etc. It is much more
convenient for the compiler to generate
offsets to the parameters if the U is used
for this purpose instead of the S.

Once U is set it is used to fetch the two
arguments using indexed indirect addres-
sing. The subroutine body presumably
does something with the arguments and

Table 4: 6809 op code map and cycle counts. The numbers by each op code indicate the number of machine cycles required to
execute each instruction. When the number contains an | (eg: 4 + 1), an additional number of machine cycles equaling | may be
required (see table 3). The presence of two numbers, with the second one in parentheses, indicates that the instruction involves
a branch. The larger number applies if the branch is taken. The notation first page/second page/third page has the following
meaning: first page op codes have only one byte of op code (eg: load A immediate has an op code of hexadecimal 86). All page
2 op codes are preceded by a page op code of hexadecimal 10 (eg: the op code for CMPD immediate is hexadecimal 1083—
two bytes). Similarly third page op codes are preceded by a hexadecimal 11. A CMPU immediate is 1183. Some instructions are
given two mnemonics as a programmer convenience (eg: ASL and LSL are equivalent). Notice that the long branch op codes

LBRA and LBSR were brought onto the first page for increased code efficiency.

Most Significant Four Bits
DIR REL ACCA| ACCB | IND | EXT| IMM | DIR | IND | EXT | IMM | DIR | IND | EXT
0000 | 0001 0010 0011 | 0100 | 0101 | 0110 | 0111| 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
0 1 3 4 5 6 7 8 9 A B c D E F
6 | 3BRA 4+ 2 > 6+ 7 2 4 4+ 5 2 4 a4l 5
0000 O| NEG |PAGE2| LEAX NEG SUBA . susB 0
| 3BRN/ 4+ 7 4 aih sl 4 5
0001 1 PAGE3| 5LBRN LEAY - CMPA . 1
s SH 4 4 s 5 >
0010 2|7 LEAS | ‘ . sBea 2
4+ 2 7 6+ 7 |4,66+1,7/5,7,7+1,8/5,7,; 7
0011 3| C LEAU . eem SUBD CMPD/ CMPU , 3
5+1/by 5 0 6+l 7 2 4 ar 5
0100 4| LSR PSHS 4 LSR ANDA - 4
s 3BLO | 5+1/by 2 4 oAb 5
0101 5 ~ |7 | sBleiBCS) | PULS BITA
£ 6 15 | apBNE/ 5+1/by 2 2 6+ 7 2 4 4+ 5
©]0110 6| ROR | LBRA | 5(6)LBNE | PSHU ROR LDA
E 6 19 3BEQ/ 5+1/by 2 7 6+l 7 4 44 5
< [0111 7) ASR 5(B)LBEQ | PULU ASR SsTA e
8 6 ASL - 3BVC/ 2 2 Bl 7 2 4 a4 0. 5
£ | 1000 8| (LSL) 5(6)LBVC o ASL(LSL) " L EORA '
o 5 sl s 2 2 B 7 2 a3 A e o0 £
= 11001 9| RO 5(6)LBVS | RTS ROL Abca \
g s 3BPL/ 3 2 2 6+l 7 2 4 a4 5 2 5
1010 A| DEC |ORCC | 5(6)LBPL | ABX DEC oRA
. | 3BMmI/ 6/15 2 a4 5 2 5
1011 8] 77 ~ | s5(6)LBMI | RTI ADDA
6 - | 3BGE/ 20 2 2 6+l 7 |46,6+1,7/57,7+1,8/5,7,7+1,8 3 6
1100 C| INC | ANDCC| 5(6)LBGE | CWAI INC CMPX / CMPY / CMPS : ;)
6 |2 3BT/ 11 2 2 Gl 7 7 7+l 8 5 5 6
1101 D| TST |[SEX | 5(6)LBLT | MUL TST. BSR sR STD.
g g ol aRGT 3+ 4 1355t1,6 /[466+7 3,5,51,6 j/“,»4~,e,s+a,7
1110 E|JMP [EXG 5(6)LBGT : JVIP LDX /4 Ly LDU i iDbs
6 17 | 3BLE} 19/20/20 2 20 el 7 ! | 55416 /6,647 5,5+1,6 /6,6+1,7
1111 F{CLR |TFR | 5(6)LBLE | SWI/2/3 CLR T STX STY ST/ | STS

40 January 1979 © BYTE Publications

Inc

00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018

0500 34
0502 32
0504 1F
0506 EC
0509 AE

050C ED
050F AE
0511 EE
0513 32
0516 6E

D8
48
46
E8
84

FFFE Restart
FFFC NMI
Table 5: Hexadecimal ad- EEE Q IS&V(I)
a’ress'es of the 6809 restart FEF6 FIRQ
and interrupt vectors. FEF4 SWI2
FFF2 SWI3
FFFO Reserved

6 SUBR PSHS U
b

6
OE 10
0C 10

0A10
6
6
10 6
3

*

*

*

finishes with an answer in the D register.
The subroutine exit saves this value. It
then puts the return address in X and
restores the previous stack mark pointer.
The whole stack is then cleaned up (deleted)
and return is made to the caller.

Motorola 6800 users should note that the
stack pointers on the 6809 point to the last
value pushed on the stack rather than the
next free location, as on the 6800. This was
done so that autoincrement and autodecre-
ment would be equivalent to pulls and
pushes. For example: STA , -S is equivalent
to PSHS A; and LDA , S+ is equivalent to
PULS A. This also means the X and Y
registers can be used as stack pointers if the
programmer desires. For example: STA | -X
is a push on a stack defined by X. The
possible ambiguity between where the stack
pointer points on the 6800 and the 6809
may be less of a problem than it seems,
since the 6800’s TSX becomes the 6809’s
TFR S, X without adding 1 and TXS be-
comes a TFR XS without subtracting 1 —
think about it. The only danger is in pro-
grams that used the stack pointer as an
index register. In these programs the stack
pointer may point one location away from
where it did previously.

SAVE OLD STACK MARKER
LEAS 6,S RESERVE LOCAL STORAGE
TFR S,U GET NEW STACK MARKER
LDD [14,U] GET ARGUMENT 1

LDX [12,U] GET ARGUMENT 2

SUBROUTINE BODY

STD [10,U] SAVE ANSWER

LDX 8,U GET RETURN ADDRESS

LDU 6,U RESTORE U’

LEAS 16,8 POP EVERYTHING OFF STACK
JMP X RETURN

Listing 4: Use of stacks on the 6809 processor. In this typical high level
language subroutine example, U’ and S’ are the mark stack pointer and
hardware stack pointer, respectively, just prior to the call. U and S are the
same registers during execution of the subroutine body. Before calling the
subroutine the caller pushes the addresses of two arguments and the answer
on the stack and then executes the jump to subroutine which puts the return
program counter on the stack. The subroutine then saves the old stack mark
pointer on the stack as well as reserving space on the stack for the local
variables for the subroutine (see figure 4).

42)anuary 1979 © BY TE Publications Inc

l———— U
e Hf
ADDRESS
14 i OF ARGI]
ADDRESS J
12 i OF ARG2
OFFSET FROM ADDRESS
STACK MARK E 3
(u) 10 OF ANS
RETURN
8 i PC —G——S
OLD STACK
6 [mark ("]
9
3 £ =
3 LOCAL
2 i VARIABLES il
| =
(0] [—u— u
4 4
P ~
e

Figure 4: Illustration of the high level lan-
guage subroutine example in listing 1.

Interrupts

The 6809 has three fully vectored hard-
ware interrupts. The nonmaskable interrupt
(NMI) and maskable interrupt (IRQ) are the
same as the 6800’s NMI and IRQ. The new
interrupt is the fast maskable interrupt,
or FIRQ, that stacks the program counter
and condition code register only on inter-
rupt. Table 5 gives the addresses of the
interrupt vectors for the 6809.

A new signal (IACK) has been added that
is available anytime an interrupt vector is
fetched. This signal together with address
bus lines A1 through A3 can be used to
implement an interrupt scheme in which
each device supplies its own interrupt vector.

The interrupt control and prioritization
logic of the 6809 have been defined very
carefully — no redundant or indeterminate
conditions can exist when several inter-
rupts occur simultaneously. The details
of this interrupt structure are precisely
defined in Motorola documentation for the
6809.

Part 2, entitled “Instruction Set Dead-
Ends, Old Trails and Apologies,” will be
a question and answer discussion about the
design philosophy that went into the 6809.m

