Copyright 1978 by
Terry Ritter and Joel Boney

Photo 1: Layout. Layout
designer Tony Riccio adds
a line in a large layout cell.
The various colored lines
represent different types
of conductors (metal,
polysilicon, N+, etc) which
will be formed on the
integrated circuit. (The
yellow dots represent
problems to be corrected.)

32 February 1979 © BYTE Publications Inc

A Microprocessor

Part 2: Instruction Set Dead Ends,

Terry Ritter and Joel Boney
Motorola Inc

3501 Ed Bluestein Blvd
Austin TX 78721

In part 1 of this series (see January 1979
BYTE, page 14) we discussed the instruc-
tion set and other details of the Motorola
6809 processor. Part 2 is a question and
answer discussion of the design philosophy
that went into the 6809.

Any change from old to new inevitably
brings criticism from someone. Indeed,
any failure to change to include someone’s
pet ideas brings its own criticisms. We have
not been isolated from sometimes severe
criticism, nor from its political implications.

However, a number of our decisions have
been reasonably challenged, and here we
hope to present illumination and defense.
While we are aware of a number of improve-
ments which might have been included, the
whole point is to sell a reasonably sized (and
thus reasonably priced) integrated circuit.
We hope that architectural errors of com-
mission, as they are found, will be seen in
light of the complete design. We are not
aware of any such errors at this time.

Point 1:

The replaced instructions (PSHA/PULA,
TAB/TBA, INX/DEX) all take more cycles
and bytes than before. Why did you do such
a thing?

for the Revolution: The 6809

Old Trails and Apologies

Answer 1:

Consider: the question is not just PSHA/
PULA, but rather PSHA/PULA/PSHB/PULB/
PSHX /PULX/PSHY /PULY/PSHU/PULU,
etc, as well as similar op codes for the
other stack. There are only 256 1 byte op
codes. If the PUSHs and PULLs are made
1 byte, others must be made 2 byte, and
these will take more cycles and bytes than
before. And the macrosequenced PUSH
or PULL instructions are more efficient
than 1 byte op codes when more than one
register is involved.

Similarly, as more registers are added,
the number of possible transfer paths
become combinatorially larger. Do you
really want to give up that number of 1 byte
op codes?

As for INX/DEX, we find that these
were frequently used in 6800 code because
they were more convenient than any other
alternative. We now offer autoincrementing
and autodecrementing indexing as a viable
(ie: shorter, in cycles and bytes) alternative.
We also allow arbitrary additions to X, Y,
U and S.

Point 2:

| don’t see any facility for expanding the
64 K address space.

Answer 2:
True. Memory expansion is possible,

but consider this: microprocessors are
products of a mass production technology —

Photo 2: Breadboard de-
sign. After partitioning the
logic, the MOS (metal
oxide semiconductor) dia-
gram is translated to TTL.
The required ten boards
are then designed and
built. Meanwhile, Bill
Keshlear updates the logic
changes on the master
copy of the logic diagrams,
since they will imply
changes on the boards.

February 1979 © BYTE Publications Inc 33

34

February 1979 © BYTE Publications Inc

processor cost is no longer a system limiting
factor. It is generally inappropriate to use
a single $20 processor to control $10,000
worth of memory; the single processor
could use only a fraction of the bandwidth
resource available in that much memory
(here, bandwidth means the maximum pos-
sible rate of change of storage state under
processor control). A far more reasonable
approach is to place the same total store
on ten processors and give yourself the
possibility of major throughput improve-
ment. Naturally you’ll have to learn how to
control all this power, but if you're an
innovative systems designer, that’s exactly
your job.

There are two principal divisions of
multiprocessor systems, depending on the
degree of coupling between the processors.
Closely coupled processors usually com-
municate through some common memory;
loosely coupled processors communicate
through input/output ports, serial lines,
or other “slow” communications channels.
Loosely coupled systems can usually be
understood as networks of quasi-inde-
pendent processors.

Now, let’s consider a concept that we
call “smart memory.” One reason for
wanting more address space on a processor
is to randomly access a large store of on line
data. Most of your processing is spent cata-
loging data, storing data, moving, searching
and updating data. If you want to handle
more data, you put on more memory and
the system gets bigger and slower.

But suppose you put a processor on
each reasonable piece of memory (16 K
or whatever). Make the program for that
processor really dumb — make it just take
orders for data. Its whole purpose is to
handle data for the command processor;
it stores, moves, searches and updates.
But for now, it does only memory opera-
tions. Now hook a lot of these ‘“smart
memory’’ modules onto your system (the
IEEE 488 bus should work), and command
a search. All the modules search in parallel,
and if you grow and put on more modules,
you handle more data just as fast as ever!

The second major approach to multi-
processor systems is what we call shared
bus multiprocessing. Multiple micropro-
cessors are closely coupled through a com-
mon bus and a proper subset of their mem-
ory address space. It is crucial to see the
common bus as the bandwidth limiting
resource; each processor should use its own
local memory and stay off the common
bus until it needs access to the common
store.

Multiple requests for common memory

access might be issued by various processors
at exactly the same moment. It is there-
fore necessary to arbitrate among them,
switching exactly one processor onto the
common bus, and allowing it to proceed
with its memory access while the others
are held not-READY.

It should be clear that the same concept
(a common bus arbitration and switching
node) can be hierarchically extended.
Further, the addressing capability can be
expanded and possibly remapped at each
node to allow fast random access to huge
amounts of on line mass storage. Such
obvious extension is left as an exercise for
the serious student. Perhaps you are thinking
that you can build it, but nobody can write
the software to control it. We are not insen-
sitive to the problem, just unhappy with the
attitude. We worked hard to give you the
tool; all you have to do is learn to use it.
Every new technology is like this — our
scientists still don’t know how to fully con-
trol the atom, but that doesn’t stop atomic
fusion from being one of the most attractive
“games”’ around since the payoffs are huge.

Nobody has a chance to develop complex
multiprocessor software until she or he has
a real multiprocessor system. Now, for $500
and a little work, you’ve got the hardware.
It's time to start learning to control these
systems. If it's hard one way, do it another.
The power is there for use.

Point 3:

You still didn’t include block operations,
did you?

Answer 3:

No — and we could have. But have you
looked at how often block instructions
could really be used in your programs? And
how much code is needed to duplicate
them yourself? And how often they don’t
really do exactly what you wanted? And
how fast they would run compared to your
programmed version? Please do look. We
think the autoincrement and autodecrement
indexed addressing is a far more general
solution.

Point 4:
No bit manipulation, either.
Answer 4:
Are you really willing to pay 10 to 20

percent more just for bit manipulation?
Program coded bit manipulation takes a

Photo 3: Visual inspection. Some of the gross processing errors or problems
that occur with probing equipment can be detected visually. Here, lead
production operator Mary Celedon checks a 6802 wafer.

36

February 1979 © BYTE Publications Inc

little longer, but is more general, and prob-
ably is located in a very lightly used portion
of your program, thus having very little
effect on your total throughput or program
size.

Point 5:
Why no undefined op code trap?
Answer 5:

Because the machine is a random logic
implementation. The unused op codes are
used as ‘‘don’t cares” in derivation of
internal logic equations, thus allowing re-
duced logic and integrated circuit size.
Failure to include the don’t cares in the
logic equations would result in a larger and
more expensive circuit.

Point 6:

Some other processors allow both in-
dexed before indirect (indexed indirect)
operation and indirect before indexed
(indirect indexed) operation, but yours
does not. Why?

Answer 6:

First of all, we wanted our addressing
modes to operate on all of our memory
instructions. Secondly, indirect indexed
addressing has much lower utility than our
indexed indirect form. Thirdly, we didn’t
strip down our instruction set, so real
features were getting a little precious.
Everything has to fit on one chip, remember.

We had considered the possibility of
including a sort of chained addressing,
in which the memory data would be inter-
preted as a new indexed postbyte capable
of specifying a complete new addressing
operation. This sort of thing could continue
to indefinite levels, of course. But such an
instruction would then be executing data,
which is usually a bad idea (self-modifying
code) and is also the reason why we include
no EXEcute instruction. (Naturally, EXE-
cute can be emulated if you really need it,
but since EXEcute is usually used to make
up for the lack of powerful addressing
modes, it will not likely be missed from the
6809). Furthermore, this executed data
would almost certainly be discontiguous
in the memory space, making even the
analysis of the simple case (read only
memory) programs extremely difficult.
Placing such an uncontrollable gimmick
in a processor design would be like placing
a glittering knife in front of a baby, and
would be similarly irresponsible.

Point 7:

You have a MULtiply, but no DIVide.

Answer 7:

True enough. Multiply operations are
required in high level language subscript
array calculations, but how often do you
really need divide? Do you really want to
pay for something you will rarely use and
can do easily with a program? Additionally,
the unsigned multiply is easily capable
of extension into multiple precision arith-
metic. (Try that with a signed multiply!)
Divide does not decompose as nicely. This,
combined with the absence of similar
instructions in the machine (divide needs

24 bits of parameters, both in and out)
was enough to leave it out.

Point 8:
Your registers are all special purpose.
Answer 8:

Well, in a way, as we have 16 bits of
accumulator and 64 bits of usable pointers
plus some others. This basic dichotomy
of data and pointers to data exists in prac-
tice, and is therefore rarely a problem with
our implementation. But the EXG in-
struction allows convenient manipula-
tion between these groups in any unusual
circumstances.

Point 9:

Why did you include all those new
addressing modes? I'll never use them.

Answer 9:

We expect that you wi// use the new
addressing modes, and quite heavily. There
are a lot of different indexed options. But
notice that the large number of different
modes is a result of including all permuta-
tions of a few basic ideas.

Fundamentally, you can index from any
pointer register (x 4), use indexed indirect
access (x 2), and have accumulator offsets
(x 3) or constant offsets of up to 16 bits in
three versions (x 3) (see box at lower right).
But if you work in assembly language, you
don’t need to figure addresses, so the differ-
ent constant offset modes may be ignored.
And if you select an addressing mode which
is not available, the assembler will politely
inform you of your indiscretion.

Alternately, you can specify autoincre-
ment or autodecrement operations (x 2), by
either one or two (x 2), which may be in-
directed (x 1.5) (except there is no indexed
autoincrement and autodecrement by one
indirect — think about it). Finally, constant
offsets are allowed from the program
counter (x 3) and these may also be in-
directed (x 2).

There are a lot of modes, no doubt
about it. But relatively few new ideas are
required to gain full control over those
powerful new features.

Point 10:
I would have liked an operating system

call instruction which carried a parameter
to the operating system.

Answer 10:

So would we. Unfortunately, the location
| want to use for parameters may not (and
probably will not) be what you want to use.
It is desirable to allow both constant and
variable parameters to the operating system.
What you do get is two more trap-like
software interrupt (SWI) instructions; the
instructions SWI2 and SWI3 do not mask
interrupts as SWI does, thus allowing use
even in interrupt driven programs. Param-
eters may be passed in any register, or on
the stack, or as the next byte of in line
code. All of this will require some overhead,
but the scheme is far more general than a
trap that carries a parameter.

Point 11:

Tell me again about the stack pointers:
why two stack pointers?

Answer 11:

Good point. The original reason for
adding the user stack pointer was to facili-
tate the creation of a data stack in memory
that is separate from the program stack.
This avoids one of the serious problems
of using a second generation processor
in a modular programming environment —
that of returning parameters to a calling
routine. We want to pass parameters in a
position independent manner, of course,
but the return from subroutine (RTS)
instruction uses the top element of the
stack as a return address, and this address
is placed on the stack before the subroutine
is entered. On the 6800 there will be a lot
of stack rearrangement going on to get
around this problem. The user stack pointer
was created as a new stack unencumbered
with return addresses (or interrupt state
information) to allow data to be passed
between routines of different levels in a
reasonable manner. And since the new stack
works exactly like the old, there is rela-
tively small silicon cost involved.

We do suspect, however, that many pro-
grammers will elect to accept the overhead
involved with passing parameters on the
hardware stack (note that the overhead
problem is greatly reduced with the 6809).
These programmers will be concerned
with the access of parameters placed on the
stack by higher level routines. Notice that,
as more elements are added to the stack,
these same parameters are referred to by
varying offsets with respect to the stack
pointer itself: this is bad, since it becomes
difficult to analyze exactly which value is

The notation (x n)
means there are n ways
to perform that parti-
cular operation. (x 1.5)
means there are two
ways to perform that
operation but not every
addressing mode is
allowed. . . .RGAC

February 1979 © BYTE Publications Inc

37

Photo 4: Editing the lay-
out. Drafting manager
Wayne Bustield and senior
layout designer Rick
Secrist make changes indi-
cated by engineering
analysis. This iterative pro-
cess improves performance
and production yield, and
thus lowers cost.

38 February 1979 © BYTE Publications Inc

being accessed by any given subroutine.
Thus many programmers will use the U
register as a stack mark pointer, fixed at
some previous location of the stack pointer.
All lower level modules will then be able
to refer to the same data by identical off-
sets from the U register.

Point 12:

Why do the 6809 stack pointers point
to the last item on the stack rather than
the next free location, as on the 68007

Answer 12:

This architectural change was virtually
mandated by following the chain of logic
that resulted from extending the 6800 into
double byte, autoincrement and stack
indexable operations.

First, let us assume the above extensions
with a 6800 style stack: the stack pointer

thus points one byte below (lower in mem-
ory) the last byte deposited. Naturally the
other pointers should work similarly (allow-
ing their use as additional stacks, and re-
quiring no new understanding). This means
that the autoindex operations have to be
preincrement and postdecrement. Now,
suppose we have a stack or table of double
byte data; the data pointer must be set up
one byte below the data to prepare for
autoincrement (or pull) operations. To
access the first value, the expression
LDD ,+S must be used, while succeeding
operations appear to need LDD ,++S. This
result is not great for loops. Alternately,
the stack pointer could be made to point
two bytes above the stack for double byte
data only. This would require different
offsets from the stack pointer (to access,
say, the top of the stack) depending upon
the size of the data being accessed. Different
offsets would also be required, depending
on whether the data was just being used,

or being pulled from the stack. This is work-
able, but not great conceptually. Another
possibility is to form the effective address
from the value of the pointer after only
the first increment. This “‘kluge’” solution
would be hard to implement anyway, so
we changed the stacks.

This chain of reasoning is an example
of the difference between architectural
design and just slapping instructions
together.

Point 13:
Why not have more registers?
Answer 13:

Good designs are often the results of
engineering compromises. To meet product
size goals, only so many things can go on
an integrated circuit. You can have regis-
ters, or features, or some combination. The
6809 does have approximately 20 addressing
modes.

Registers for the sake of registers amount
to little more than separate, very expensive
and restricted memory areas. The register
resource is always insufficient to hold
temporary results in a large program, and
must be reallocated in various routines.
This allocation process is an error prone
programming overhead. A separate register
set for interrupt processing is suitable only
for one interrupt level and, otherwise, is
mostly wasted.

A few registers fully supported by fea-
tures are better than just having a lot of
registers.

Point 14:

Why no instructions to load or store
the direct page register?

Answer 14:

The direct page register is one of those
possibly dangerous features which was just
too good to pass up (in terms of substantial
benefits for minimum cost). The benefits
include an operation length reduction of
33 percent for instructions using absolute
addressing and a concurrent throughput
increase of 20 percent. It now becomes
possible to optimize code, perhaps allow-
ing an oversized program to fit within
discrete read only memory boundaries. The
direct page register may also be used in a
multitasking environment to allow single
copies of routines to operate with multiple
independent processes. However, providing
a separate stack area and having each routine

store local values on the stack may be a
better solution,

Because a number of 6809 instructions
(eg: INC/DEC, ASL/ASR/ROL/ROR/LSL,
TST/COM/CLR/NEG) operate directly on
memory, the direct page area may be used
very much like a processor with 256 8 bit
registers to hold counters, flags and serial
information. So, perhaps most importantly,
the direct page register relaxes the system
requirement for programmable memory at a
particular location (page 0) to use direct
addressing; the cost is a single 8 bit register
and no new instructions.

The programmer is cautioned to tread
carefully when using the direct page regis-
ter. All forms of absolute addressing for

Photo 5: First silicon engineering analysis. Logic and circuit design engineer
Bob Thompson tracks down a weak node in the first batch of 6801 chips.
The 6801 die is packaged, but not sealed, so that internal nodes may be
probed while in operation. Viewing through the microscope, a probe can be
placed at critical points equivalent to the layout plot. The chip itself is
running a modified EXORcisor system, and the scope actually displayed an
internal signal with excessively slow rise time.

February 1979 © BYTE Publications Inc 39

Table 1: 6809 instruction set.

40

Mnemonic

ABX

ADCA, ADCB
ADDA, ADDB
ANDA, ANDB
ANDCC

ASLA, ASLB, ASL
ASRA, ASRB, ARS
BITA, BITB

CLRA, CLRB, CLR
CMPA, CMPB
COMA, COMB, COM
DAA

DECA, DECB, DEC
EORA, EORB

EXG R1, R2

INCA, INCB, INC
LDA, LDB

LSLA, LSLB, LSL
LSRA, LSRB, LSR
MUL

NEGA, NEGB, NEG
ORA, ORB

ORCC

PSHS (register)§
PSHU (register)g
PULS (register)g
PULU (register)g
ROLA, ROLB, ROL
RORA, RORB, ROR
SBCA, SBCB

STA, STB

SUBA, SUBB
TSTA, TSTB, TST
TFR R1, R2

Mnemonic

ADDD

SUBD

LDD

STD

CMPD

LDX, LDY, LDS, LDU
STX, STY, STS, STU

CMPX, CMPY, CMPU, CMPS
LEAX, LEAY, LEAS, LEAU

SEX

TRR register, register
EXG register, register
PSHS (register)g
PSHU (register)g
PULS (register)§
PULU (register)g

8 BIT OPERATIONS
‘Description

Add B register to X register unsigned.

Add memory to accumulator with carry.
Add memory to accumulator.

And memory with accumulator.

And immediate with condition code register.
Arithmetic shift left accumulator or memory.
Arithmetic shift right accumulator or memory.
Bit test memory with accumulator.

Clear accumulator or memory.

Compare memory with accumulator.
Complement accumulator or memory.
Decimal Adjust A accumulator.

Decrement accumulator or memory.
Exclusive or memory with accumulator.
Exchange R1 with R2.

Increment accumulator or memory.

Load accumulator from memory.

Logical shift left accumulator or memory.
Logical shift right accumulator or memory.
Unsigned multiply (8 bit by 8 bit = 16 bit).
Negate accumulator or memory.

Or memory with accumulator.

Or immediate with condition code register.
Push register(s) on hardware stack.

Push register(s) on user stack.

Pull register(s) from hardware stack.

Pull register(s) from user stack.

Rotate accumulator or memory left.

Rotate accumulator or memory right.

Subtract memory from accumulator with borrow.

Store accumulator to memory.
Subtract memory from accumulator.
Test accumulator or memory.
Transfer register R1 to register R2.

16 BIT OPERATIONS
Description

Add to D accumulator.

Subtract from D accumulator.

L.oad D accumulator.

Store D accumulator.

Compare D accumulator.

Load pointer register.

Store printer register.

Compare pointer register.

Load effective address into pointer register.
Sign extend

Transfer register to register.
Exchange register to register.

Push register(s) onto hardware stack.
Push register(s) onto user stack.

Pull register(s) from hardware stack.
Pull register(s) from user stack.

February 1979 © BYTE Publications Inc

temporary values and parameters present
problems in the development of large pro-
grams. Attempts to enlarge the number
of direct locations by manipulating the
direct page register may be tricky. And
manipulation of the register by subrou-
tines may lead to errors which switch the
calling routines direct page in remote (ie:
subroutined) unobvious code. Therefore,
this register is made deliberately difficult
to play with. Typically, it should be set up
once and left there. To load the direct page
register you can proceed as follows:
EXG A,DP; LDA #NEWDP; EXG A,DP.
Alternately, the direct page register is also
available in PUSH/PULL instructions, but
misuse is discouraged through lack of
LDDP and STDP.

Point 15:

You preach consistency, yet you give us
LEA, an instruction with different condition
codes for different registers. Why is this so?

Answer 15:

The Z flag is unaffected by LEAS or
LEAU, but conditionally set by LEAX or
LEAY depending on the value loaded into
the register. This provides 6800 compati-
bility with INX/DEX (implemented as
LEAX 1,S or LEAX —1,X) and INS/DES
(implemented as LEAS 1,S and LEAS
—1,S), respectively.

Now clearly, if most 6800 programs
are going to run on the 6809, the use of
INX/DEX for event counts must be rec-
ognized. But in 6809 programs, releasing
local stack area before executing RTS
will be a very frequent action (LEAS —9,S;
RTS) “cleaning up the stack.” You do want
to return a previous condition code value
undamaged by the LEAS, so you get two
types of LEA.

Point 16:

What about position independent code?
Doesn’t the 6800 allow it, too?

Answer 16:

Position independent code is one crucial
factor in achieving low cost software. (Posi-
tion independent temporary storage and
input/output must also be available.) Only
read only memories which may be used in
arbitrary target systems are economically
viable in the context of mass production.
And only these read only memories can
result in low cost firmware for us all.

Table 1, continued:

42

Mmemonic

0,R
[0, R]

=R
n, P
[n, P]
A R
[A, R]
B,R
[B, RI]
D,R
[D, R]

Note: R=X, Y, U, or S; P=PC, X, Y, U, or S. Brackets indicate indirection. D

INDEXED ADDRESSING MODES

Description

Indexed with zero offset.
Indexed with zero offset indirect.
Autoincrement by 1.
Autoincrement by 2.
Autoincrement by 2 indirect.
Autodecrement by 1.
Autodecrement by 2.
Autodecrement by 2 indirect.

Indexed with signed n as offset (n=5, 8, or 16 bits).

Indexed with signed n as offset indirect.
Indexed with accumulator A as offset.
Indexed with accumulator A as offset indirect.
Indexed with accumulator B as offset.
Indexed with accumulator B as offset indirect.
Indexed with accumulator D as offset.
Indexed with accumulator D as offset indirect.

means use AB accumulator pair.

6809 RELATIVE SHORT AND LONG BRANCHES

Mnemonic

BCC, LBCC
BCS, LBCS
BEQ, LBEQ
BGE, LBGE
BGT, LBGT
BHI, LBHI

BHS, LBHS
BLE, LBLE
BLO, LBLO
BLS, LBLS
BLT, LBLT
BMI, LBMI

BNE, LBNE
BPL, LBPL
BRA, LBRA
BRN, LBRN
BSR, LBSR
BVC, LBVC
BVS, LBVS

Mnemonic

CWAI

NOP

JMP

JSR

RTI

RTS

SEX

SWI, SWI2, SWI3
SYNC

Description

Branch if carry clear.

Branch if carry set.

Branch if equal.

Branch if greater than or equal (signed).
Branch if greater (signed).

Branch if higher (unsigned).

Branch if higher or same (unsigned).
Branch if less than or equal (signed).
Branch if lower (unsigned).

Branch if lower or same (unsigned).
Branch if less than (signed).

Branch if minus.

Branch is not equal.

Branch if plus.

Branch always.

Branch never.

Branch to subroutine.

Branch if overflow clear.

Branch if overflow set.

6809 MISCELLANEOUS INSTRUCTIONS

Description

Clear condition code register bits and wait for
interrupt.

No operation.

Jump.

Jump to subroutine.

Return from interrupt.

Return from subroutine.

Sign extend B register into A register.
Software interrupts.

Syncrhonize with interrupt line.

February 1979 © BYTE Publications Inc

The 6800 is capable of position inde-
pendent code execution in relatively small
programs. Somewhere around a 4 K byte
limit, the program can no longer support all
control-transfer paths using branch instruc-
tions (even allowing the use of intermediate
branch “islands”). Either a long branch
subroutine must be used (at a cost of 100+
cycles for each LBSR) or the program must
be made position dependent.

Point 17:
What about dynamic memory?
Answer 17:

There are two problems associated with
dynamic memories: address bus multiplexing
and refresh. Address bus multiplexing is the
most severe problem but requires multi-
plexing 6+6 address lines (for 4 K memories)
or 7+7 lines (for 16 K memories); these
values are particularly inconvenient for 8 bit
processors (which usually multiplex address/
data). Thus, we have yet to see a processor
address this problem.

Microprocessors that automatically re-
fresh memory during most unused bus cycles
waste power on unnecessary refreshes and
unnecessarily increase bus activity. The 6809
can easily refresh dynamic memory in soft-
ware (a timer causes interrupt execution of
of FCB $10 63 times, then RTI), or can sup-
port hardware refresh (a direct memory
access [DMA] sequence, or isolated board
automatic refresh) at minimal cost.

Point 18:
What about price?
Answer 18:

The 6809 will be more expensive than
in-production second generation 8 bit de-
signs. For one thing, it is bigger and also new
— both reasons imply reduced yield com-
pared to older parts. A moderately higher
price should not be a problem, since the
processor cost is a very minor part of the
price of a whole system. The total 6809
system should be nearly as powerful and
much less expensive than 16 bit designs. The
cost of not using the 6809, on the other
hand, will likely be severe in terms of in-
creased programming error rates, larger read
only memories and decreased throughput.

In “Part 3: Final Thoughts” (March
1979 BYTE), we will conclude this series
with a discussion of clock speed, timing,
condition codes and software design philo-
sophy.m

