A Microprocessor for

Photo 1: Processing. Photosensitized wafers are exposed with a particular
mask pattern using ultraviolet light. The entire environment is otherwise
ultraviolet-free.

.

//// :
Z

//
P 2

Photo 2: Breadboard debug. The gate level TTL model of the processor
involves ten boards of 80 to 120 integrated circuits each. Many of the re-
quired 10,000 connections will be wrong. The system must be tested to find
and correct construction and logic errors.

Crowds are not unusual; here we have Don Tietjen, Katy Miller, James
Tietjen, Steve Messinger (almost hidden), Mike Shapiro and Bill Keshlear.

46 March 1979 © BYTE Publications Inc

Terry Ritter and Joel Boney P t 3.
Motorola Inc ar °
3501 Ed Bluestein Blvd

Austin TX 78721

Clock Speed

In part 3 we conclude our discussion of
the Motorola 6809 processor with some
thoughts on clock speed, timing signals,
condition codes and software design phi-
losophy for the 6809.

We expect that our logic and circuit
design cohorts will be able to get signifi-
cant production at a 2 MHz bus rate (and
possibly faster) with the 6809. But this
value alone means next to nothing as a
figure of processor merit (we did consider
using a very high frequency on chip oscil-
lator so we could win the clock rate race,
but decided at the last minute that a
resonant cavity would not be acceptable
to most users).

Other processors use an internal state
machine to implement the required in-
ternal operations. These processors fre-
quently require multiple states and multi-
ple clock edges to implement operations
which are done in one cycle on 6800 class
processors.

The 6800 class machines are all random
logic machines with multiple dynamic
sequencers. This method of microprocessor
design selects a different set of engineering
trade-offs as opposed to the state machine
approach. In particular, less critical timing
is necessary, but suspending the processor
for a long time is difficult. We provide two
external methods of stopping the machine:
DMAREQ (which has a maximum asyn-
chronous latency of 1.5 bus cycles, and
which will recover the bus from DMA (direct
memory access) periodically to allow the
dynamic microprocessor to perform a re-
fresh cycle) and HALT (which has a maxi-
mum latency of 21 cycles, but releases this
bus completely).

Signals

The 6809 processor will be made in two
versions: the on chip clock version (for small
systems) and the off chip clock version (with
extra signal lines for additional processor
status information). This will allow a cost-
effective utilization of pins for each pro-
posed market.

The bus timing signals are E and Q. E is

the Revolution: The 6809 Cepylin az2 ol

Final Thoughts

the same as on 6800 systems (previously
called ¥2), a square wave clock with a period
equal to one bus cycle. Q is the quadrature
clock, and leads E by one quarter bus
cycle. Good addresses should be available
from the processor on the leading edge of
Q; data is latched (by the processor or
selected memory or peripheral) on the
trailing edge of E.

Two signals are used for clock control
in the on chip clock version. DMAREQ
halts the processor internally (and puts the
output lines of the processor in the high
impedance state using three state circuitry)
but allows E and Q to continue to run to
provide system clocks for a DMA transfer.
MREADY being low extends a memory
access in increments of the high frequency
oscillator period until MREADY is brought
high.

If BA=0 (the processor is running) BS=1
means that a vector fetch is occurring
(IACK). This signal can be used to develop
vector-by-interrupting-device hardware that
transfers control directly into the desired
interrupt handler without polling.

Two signals are available in the off chip
clock version to assist in multiprocessor
systems. The last instruction cycle (LIC)
pin is high during the last execution cycle
of any instruction, thus giving bus arbitra-
tion a head start. BUSY is high during read
modify write, (from the read through to
modify) to indicate that memory exclusion
is required. Exclusion is required in multi-
processor systems.

Condition Codes

The 6809 condition code flags are the
same as those used in the 6800 (N, Z, V
and C), and are affected similarly by most
operations. Some exceptions are the double
byte operations, since the flags are always
set to represent the result of the entire
operation, whether single or double byte.
(This is implied by the fact that both data
length operations have the same root
mnemonics).

While very simple in concept (the con-
dition flags being mere by-products of
arithmetic and logic unit [ALU] operations),
their use with various data representations

Photo 3: Plotting the circuit layout. Huge precision plotters display the
computer data base which will become the chip. The layout plot is then
checked by circuit engineers both for proper interconnection and exact
transistor sizing. Any problems thus uncovered will be repaired by editing the
data base.

Photo 4: Digitizing. Computer aided design (CAD) technician Lisa Fink
enters a cell layout into the data base. The cursor on the light table is used to
transfer precision measurements to the computers. An already digitized cell is
shown on the video display.

March 1979 © BYTE Publications Inc 47

Photo 5: Diffusion. Into
the furnace goes another
batch of wafers in the
process of becoming inte-
grated circuits. Operating
near 1000° C, the quartz
liner glows incandescent.

48 March 1979 © BYTE Publications Inc

and the rich set of conditional branch con-
ditions can seem quite complex. First, we
will define the flags as follows.

N: set if and only if the most significant
bit of the result is set (this would be
the 2’s complement ‘“sign’ bit).

Z: set if and only if all bits of the result
are clear (the result is exactly 0). set

V: if and only if the operation causes
a 2's complement overflow. Notice
that the expression (N @ V) will give
the correct sign, even if the sign is
not properly represented in the result.

C: set if and only if the operation causes
a carry from the most significant bit
(for ADD, ADC) or,

set if and only if the operation
does not cause a carry from the most
significant bit of the arithmetic and
logic unit (for subtract-like opera-
tions — SUB, SBC, CMP — carry flag
represents a borrow) or,

set according to rules for rotate
or shifts or,

set if and only if bit 7 of the

result is set (for MUL).

@ Notice that the C flag is not the
simple result of the carry in the
8 bit arithmetic and logic unit,
but depends on the type of
operation performed.

® Notice also that the carry flag
represents a borrow after subtract-
like operations. This was done on
the 6800, for convenience.

Next, let’s define the use of the branches.
Simple conditional branches:

Test True False
Z=1 BEQ BNE
N=1 BMI BPL
C=1 BCS BCC
V=1 BVS BVC

Signed conditional branches:

Test True False
(N® V) A z=1 BGT BLE
N® V) =1 BGE BLT
Z=1 BEQ BNE
(N® V) Vz=1 BLE BGT
N® V) =1 BLT BGE

Unsigned conditional branches:

Test True False
C AZ=1 BHI BLS
c=1 BHS BLO
Z=1 BEQ BNE
N Z=1 BLS BHI
c=1 BLO BHS

Note: The unsigned branches are not, in
general, useful after INC, DEC, LD, ST,
TST, CLR or COM.

And finally, the flag results of known con-
ditions of comparison are as follows.
After SUB, SBC, CMP:

If register is less than memory value
(2's complement values) (N @ V)=1.
If register is lower than memory value

(unsigned values) C=1
If register is equal to memory value
(signed or unsigned) Z=1.

Because some instructions do not (and
should not) affect carry, only the equal and
not equal branch tests (BEQ, BNE) are use-
ful after these instructions (INC, DEC, LD,
ST, TST, CLR, COM) operate on unsigned
values. When operating on 2’s complement

Photo 6: Wafer probe.
Each circuit is separately
checked while still on the
wafer. This equipment
automatically steps to the
next chip after any bad
result or when all tests are
good. A production 6800
is shown.

values, all signed branches are correctly
available.

Some Software Design Philosophy

The design of successful software differs
from other types of engineering design in
that good software can be easily changed,
but is exceedingly unforgiving. The creation
of working software involves intimate con-
tact with quality.

Any program, working or unworking, is
a representative of the philosophy of truth;
the machine will execute the program,
good or bad. Only applicable programs are
useful, however, and utility is where we
encounter quality. Many individuals in-
doctrinated into a society founded upon
truth can scarcely understand why such
truthful programs do not work, for isn’t
one truth just as good as another?

Any program that is to be fixed or
changed must be analyzed: the written
code must be read and understood. Reading
is a problem — most computer languages
are very difficult to read simply because
so many options are possible from each
statement. Finding the coherent design
of a program is nearly impossible when,
as it is being read, thousands of options
exist. It is the paradox of programming
that a disciplined, restricted, structured
programming language gives programmers

50 March 1979 © BYTE Publications Inc

greater freedom to understand their
programs.

Consider the analysis of programs: any
program segment having multiple condi-
tional branches that cannot be separated
must be analyzed for all possible conditions
of input data before we can be assured that
the program will operate correctly.

Program segments having branch paths
that cross may be impossible to analyze
rigorously due to the combinatorially larger
number of paths that the program may ex-
ecute, Where control structures are always
properly nested, crossed branch paths can-
not occur and analysis is easier.

Programming structures which have basi-
cally one entry point and one exit are easily
detached from surrounding code and are
easier to understand and test. This is
the fundamental tenet of structured
programming,

Every attempt should be made to code
in modules. Modules are self-contained
entities (usually subroutines) which allocate
and deallocate their own local storage.
Naturally, the actual code should be heavily
commented to allow a reader to understand
what is being attempted. But one mark of a
good module is that it contains a header
block which fully describes a/l aspects of
the inputs to the module and results from
it. This description should be so detailed as
to allow the module to be totally recoded
from this information alone., We hope that
the description was arrived at before the
module was written. It is a mark of good
software design that the actual coding is
but a minor part of the project; it occurs
after all modules have been completely
described. The finished modules should
be individually tested for all possible input
values, and should demonstrate that error
handlers will operate when a supposedly
invalid input value occurs. Modules which
are recoded at a later date must pass the
original tests.

Software in the Revolution

The microprocessor revolution is fueled
by continual technical advancement that
produces hardware with ever higher capa-
bility and ever lower cost. Yet, it is a re-
quirement of the revolution that software
be written to make that cheap hardware
do anything,

Most present microprocessor software is
custom software written for a specific pro-
ject. Project specific software is rarely pub-
lished, partly in the (unreasonable) hope of
maintaining trade secret protection, and
partly because finished project software is
rarely of publication quality. Commercial
software is rare for a number of reasons:

=

EPROMs out at
the touch of a finger.

After programming a 2708 or 2716 EPROM you won't
need a screwdriver to pry it out of SSM’s new PB1 board
equipped with Textool sockets. Just flip the lever and lift it
out. And on the same board there are 4 sockets waiting for
2708 or 2716 EPROMs that can be independently addressed
to any 4k or 8k boundary above 8000 hex. Two boards in one.

PBI has two separate programming circuits so 2708 or
2716 (5v) type of EPROMs can be programmed without
modifying the board. Programming voltage is generated
on-board by a DC-DC converter; no need for an external
power supply. Programming sockets are Dip Switch
addressable to any 4k boundary. And complete software is
provided for programming and verifying EPROMs.

With our Magic Mapping™ feature, unused EPROM sockets
don'ttake memory space, so you are never committed to the
full 4k or 8k of memory. The board can be configured for 0 to
4 wait states. Use fast or slow EPROMs. All lines are butfered.

The PBI kit is available at over 150 retail locations or
directly from SSM for $139.95 (with Textool sockets) or
$119.95 (without Textool sockets). All SSM kits are backed
by a 90 day warranty. Assembled, one year warranty.

SSM manufactures a full line of S-100 boards, including
CPd, Video, 1/0, RAM, EPROM, Music, Prototyping,
Terminator, Extender and Mother boards. For complete
details just send for our new, free brochure.

PB1 2708/2716 Programmer & 4k/8k EPROM Board

Textool Programming LED indicating
programming sockets}\ protect switch ‘ ﬂrogramming mode

Al s
bz
Programming 4k/8k EPROM

power supply EPROM sockets addressing switches

== 2116 Walsh Ave., Santa Clara, CA 95050
e (082462707

We used to be Solid State Music. We still make the blue boards.

52 March 1979 © BYTE Publications Inc

Circle 335 on inquiry card.

there must be a market for the (machine
specific) software before the investment
in program development is made, but the
customer base may not exist until good
programs are available. It is also difficult
to consider investing in software that can
be so easily copied (stolen) and used.

The copying problem is not new;
musical reproductions have long coexisted
with the possibility of consumer recording
and reproduction for a close circle of
friends. This occasionally happens, but it is
usually too much bother to tape the music
you want (assuming that the original pro-
duct is available at a reasonable cost).
Software should be distributed as a reason-
ably priced physical product that is useful
to a broad consumer base.

This is an old idea, but it just hasn’t
worked. The problem is not in the idea, but
in the second generation microcomputer
architectures which limit the applicability of
any particular program read only memory.
The 6809 microprocessor is designed speci-
fically — through the use of position inde-
pendent code, stack indexing, and indirect
addressing — to allow the creation of stan-
dard program read only memories. This
creates a market opportunity for a brand
new standard software industry. We knew
this when we included these features; you're
welcome, entrepreneurs!

Summary

We wrote this series of articles not only
to disclose the 6809 but mainly to put
down in print the rationale and reasoning
behind the 6809. It would have benefited
us if the designers of the 6800 had docu-
mented their rationale. We would also like to
think we have stimulated some interest in
the personal computing community for
solutions to the software problem and for
the study of computer architecture. The big
challenge for architects in the next decade
and beyond will be to design computers that
can effectively utilize the huge number of
devices — 1,000,000 transistors by 1985 —
that semiconductor technology will be able
to put on one 25 mm?2 piece of silicon.

No computer is designed in a vacuum,
and we would like to thank all of our cus-
tomers and the people at Motorola who gave
us valuable input. Special thanks go to the
dozens of people — too many to enumerate
— who have been or are still actively in-
volved in the design, implementation and
production of the MC6809. Without their
individual talents and dedication to what
seemed to be impossible tasks and impos-
sible schedules, the MC6809 could not have
been realized.m

