{8 manual

Philipp Klaus Krause

2024-07-30

Chapter 1

Architecture

1.1 Introduction

Little-endian. Stack grows downward. 16-bit flat address space.

pc after reset: 0x4000. Other registers (including sp) after reset: unspeci-
fied. (P)ROM/Flash from 0x4000. RAM up to 0x3fff. I/O from 0x0000. Empty
PROM/Flash is logically 0x00 (to trigger trap). All instructions execute atom-
ically.

Safety features: trap on opcode 0x00. Trap on write to address 0x0000.

1.2 Registers

There is an 8-bit flag register £, which contains the half-carry flag h, the carry
flag c, the negative flag n, the zero flag z, the overflow / parity flag o, and three
reserved bits. Unless otherwise noted, instructions leave the reserved flags in an
undefined state. The reserved bits should not be written by the user except via
the xch £, (n, sp) instruction.

0 7

’h|C|n|Z|0|reserved‘

’Io‘here are a 16-bit program collsmter pc and a 16-bit stack pointer sp.

| Pe |

0 15

| " |

There are three 16-bit general-purpose registers, each consisting of two 8.bit
registers.

4 CHAPTER 1. ARCHITECTURE

0 78 15
X
x1 | xh
0 78 15
y
yl | yh
0 7 8 15
z
zl | zh

1.3 Instructions

There is the 8 lightweight instruction subset {8l.
Instructions have up to 3 source and up to 2 destination operands. At most
one source and one destination operand are in memory.
Each instruction is encoded by 1 to 3 bytes: an optional prefix byte is
followed by the opcode byte and 0 to 2 operand bytes.
There are 8 prefix bytes:
Prefix semantics group
swapop swap operands
altaccl alternative acumulator xh instead of x1
altacc2 alternative acumulator y1 instead of x1, z instead of y
altacc4 alternative acumulator yh instead of x1, z instead of y
altacc3 alternative acumulator z1 instead of x1, x instead of y
altacch alternative acumulator zh instead of x1

NN O

1.4 Addressing Modes

x1, xh, y1, yh, 21, zh, £ 8-bit register

X, Y, Z, Sp 16-bit register

#i 8-bit immediate

#ii 16-bit immediate

#d 8-bit immediate sign-extended to 16 bit
mm direct

(n, sp), (n, y) indexed with 8-bit offset

(nn, z) indexed with 16-bit offset

x), (y), (2 indirect

Chapter 2
Instructions

op8_2 Any of xh, y1, yh, z1, #i, mm, (n, sp), (nn, z).
op8_2ni Any of xh, y1, yh, z1, mm, (n, sp), (an, z).
altacc8 Any of x1, xh, y1, yh, z1, zh.

opl6_2 Any of x, #ii, mm, (n, sp).

opl6_2ni Any of x, mm, (n, sp).

altaccl6 Any of x, z.

op8_1 Any of x1, mm, (n, sp), (n, y).

opl6_1 Any of y, mm, (n, sp), (un, z).

2.1 8-bit two-operand instructions

Instructions where the location is used for altacc8 and op8 are not valid.

2.1.1 adc: 8-bit addition with carry

Assembler code Operation 81
adc x1, op8_2 x1 = x1 + op8_2 + ¢ Yes
adc altacc8, op8_2 altacc8 = altacc8 + op8_2 + ¢ Yes
adc op8_2ni, x1 op8_2ni = op8_2ni + x1 + c Yes
Affected Flags

hcnzo

2.1.2 add: 8-bit addition

Assembler code Operation {81

add x1, op8_2 x1 = x1 + op8_2 Yes
add altacc8, op8_2 altacc8 = altacc8 + op8_2 Yes
add op8_2ni, x1 op8_2ni = op8_2ni + x1 Yes

5

6 CHAPTER 2. INSTRUCTIONS

Affected Flags

hcnzo

2.1.3 and: 8-bit bitwise and

Assembler code Operation 81
and x1, op8_2 x1 = x1 & op8_2 Yes
and altacc8, op8_2 altacc8 = altacc8 & op8_2 Yes
and op8_2ni, x1 op8_2ni = op8_2ni & x1 Yes

Affected Flags

nz

2.1.4 cp: 8-bit comparison

Subtraction where the result is used to update the flags only.

Assembler code Operation f81
cp x1, op8_2 x1 + ~op8_2 + 1 Yes
cp altacc8, op8_2 altacc8 + ~op8_2 + 1 Yes
cp op8_2, x1 op8_2 + ~x1 + 1 No

Affected Flags

hcnzo

2.1.5 or: 8-bit bitwise or

Assembler code Operation f81
or x1, op8_2 x1 = x1 | op8_2 Yes
or altacc8, op8_2 altacc8 = altacc8 | op8_2 Yes
or op8_2ni, x1 op8_2ni = op8_2ni | x1 Yes

Affected Flags

nz

2.1.6 sbc: 8-bit subtraction with carry

Assembler code Operation f81
sbc x1, op8_2ni xl = x1 + ~op8_2ni + c Yes
sbc altacc8, op8_2ni altacc8 = altacc8 + ~op8_2ni + ¢ Yes
sbc op8_2ni, x1 op8_2ni = op8_2ni + ~x1 + c No

Affected Flags

hcnzo

2.2. 16-BIT 2-OPERAND-INSTRUCTIONS

2.1.7 sub: 8-bit subtraction

Assembler code
sub x1, op8_2ni

sub altacc8, op8_2ni

sub op8_2ni, x1

Affected Flags

hcnzo

Operation
xl = x1 + ~op8_2ni + 1

altacc8 = altacc8 + ~op8_2ni + 1

op8_2ni = op8_2ni + ~x1 + 1

2.1.8 xor: 8-bit bitwise exclusive or

Assembler code

xor x1, op8_2

xor altacc8, op8_2
xor op8_2ni, x1

Affected Flags

nz

Operation
x1 = x1 ~ op8_2

altacc8 = altacc8 ~ op8_2

op8_2ni = op8_2ni ~ x1

2.2 16-bit 2-operand-instructions

Todo: Document possible altacc prefixes.

2.2.1 adcw: 16 bit addition with carry

Assembler code

adcw x1, opl6_2

adcw opl6_2ni, x1
Affected Flags

cnzo

Operation
y =y +opl6_2 + c

opl6_2ni = opl6_2ni + y + c

2.2.2 addw: 16 bit addition

Assembler code

adcw x1, opl6_2

adcw opl6_2ni, x1
Affected Flags

cnzo

Operation f81
y =y + opl6_2 No
opl6_2ni = opl6_2ni + y No

81

Yes
Yes
Yes

81
No
No

81
Yes
Yes
No

8 CHAPTER 2. INSTRUCTIONS

2.2.3 orw: 16 bit bitwise or

todo: do we really want the effect on o here? If yes, why not on the 8-bit logic
ops?

Assembler code Operation £81

orw x1, opl6_2 y =y | opl6_2 No

orw opl6_2ni, x1 opl6_2ni = opl6_2ni | y No
Affected Flags

nzo

2.2.4 sbcw: 16 bit subtraction with carry

Assembler code Operation f81
sbcw x1, opl6_2ni y =y + ~opl6_2ni + ¢ No
sbcw opl6_2ni, x1 opl6_2 = ~opl6_2ni + y + ¢ No

Affected Flags

cnzo

2.2.5 subw: 16 bit subtraction

Assembler code Operation {81
subw x1, opl6_2ni y =y + ~opl6_2ni + 1 No
subw opl6_2ni, x1 opl6_2 = ~opl6_2ni + y + 1 No
Affected Flags

cnzo

2.2.6 xorw: 16 bit bitwise exclusive or

todo: do we really want the effect on o here? If yes, why not on the 8-bit logic
ops?

Assembler code Operation {81

xorw x1, opl6_2 y =y ~ opl6_2 No

xorw opl6_2ni, x1 opl6_ni2 = opl6_2ni =y No

Affected Flags

nzo

2.3. 8-BIT 1-OPERAND-INSTRUCTIONS

2.3 8-bit 1-operand-instructions

2.3.1 clr: 8-bit clear
Assembler code Operation f81

clr op8_1 op8 = 0x00 Yes, except (n, y)

clr altacc8 altacc8 = 0x00 Yes

Affected Flags

none

2.3.2 dec: 8-bit decrement

Assembler code Operation
dec op8_1 op8 = op8 + -1
dec altacc8 altacc8 = altacc8 + -1

Affected Flags

hcnzo

2.3.3 inc: 8-bit increment

£81
Yes, except (n, y)
Yes

Assembler code Operation £81
inc op8_1 op8 = op8 + 1 Yes, except (n, y)
inc altacc8 altacc8 = altacc8 + 1 Yes
Affected Flags
hcnzo
2.3.4 push: 8-bit push onto stack
Assembler code Operation £81
push op8_1 (--sp) = op8 Yes, except (n, y)
push altacc8 (--sp) = altacc8 Yes
Affected Flags
none
2.3.5 sll: 8-bit shift left logical
Assembler code Operation f81

s1ll op8_1 c = (op8 & 0x80) >> 7
op8 = op8 << 1

s1l altacc8 c = (op8 & 0x80) >> 7
altacc8 = altacc8 << 1

Yes, except (n, y)

Yes

10 CHAPTER 2. INSTRUCTIONS

Affected Flags

cz

2.3.6 srl: 8-bit shift right logical

Assembler code Operation 181

srl op8_1 c = op8 & 0x01 Yes (except (n, y)
op8 = op8 >> 1

srl altacc8 c = op8 & 0x01 Yes

altacc8 = altacc8 >> 1

Affected Flags

cz

2.3.7 rlc: 8-bit rotate left through carry

Assembler code Operation {81

rlc op8_1 tc = (op8 & 0x80) >> 7 Yes (except (n, y)
op8 = (op8 << 1) | ¢
c = tc

rlc altacc8 tc = (altacc8 & 0x80) >> 7 Yes
altacc8 = (altacc8 << 1) | ¢
c = tc

Affected Flags

cz

2.3.8 rrc: 8-bit rotate right through carry

Assembler code Operation £81
rrc op8_1 tc = op8 & 0x01 Yes (except (n, y)
op8 = (op8 >> 1) | (c << 7)
c = tc
rrc altacc8 tc = altacc8 & 0x01 Yes
altacc8 = (altacc8 >> 1) | (c << 7)
c = tc

Affected Flags

cz

2.4. 16-BIT 1-OPERAND-INSTRUCTIONS 11

2.3.9 tst: 8-bit test

Set n and z flags according to value of operand, o flag by parity, reset c.
Assembler code Operation {81
tst op8_1 op8 Yes (except (n, y)
tst altacc8 altacc8 Yes

Affected Flags

cnzo

2.4 16-bit 1-operand-instructions

2.4.1 adcw: 16 bit addition with carry

Assembler code Operation f81

adcw opl6_1 opl6 = opl6 + c No

adcw altaccl6 altaccl6 = altacclé + ¢ No
Affected Flags

cnzo

2.4.2 clrw: 16-bit clear
Assembler code Operation f81
clrw opl6_1 opl6 = 0x0000 Yes
clrw altaccld altaccl6 = 0x0000 Yes
Affected Flags

none

2.4.3 incw: 16-bit increment

Assembler code Operation £81
incw opl6_1 oplé = opl6 + 1 Yes
incw altaccl6 altaccl6 = altaccl6 + 1 Yes

Affected Flags

cnzo

2.4.4 pushw: 16-bit push onto stack

Assembler code Operation {81
pushw opl6_1 sp —= 2; (sp) = opl6 Yes
pushw altaccl6 sp -= 2; (sp) = altaccl6 Yes

12 CHAPTER 2. INSTRUCTIONS

Affected Flags

none

2.4.5 sbcw: 16-bit subtraction with carry

Assembler code Operation f81
sbcw opl6_1 opl6é = opl6 + Oxffff + ¢ No
sbcw altaccl6 altaccl6 = altaccl6 + Oxffff + ¢ No

Affected Flags

cnzo

2.4.6 tstw: 16-bit test

Set n and z flags according to value of operand, o flag by parity, set c.
Assembler code Operation 18]
tstw opl6_1 opl6 Yes
tstw altaccl6 altaccl6 Yes

Affected Flags

cnzo

2.5 8-bit loads

2.5.1 1d: 8-bit load from memory

Assembler code Operation £81
1d x1, #i x1 = #i Yes
1d altacc8, #i altacc8 = #i Yes
1d x1, mm x1 = mm Yes
1d altacc8, mm altacc8 = mm Yes
1d x1, (n, sp) x1 = (n, sp) Yes
1d altacc8, (n, sp) altacc8 = (n, sp) Yes
1d x1, (nn, z) x1 = (an, z) Yes
1d altacc8, (nn, z) altacc8 = (nn, z) Yes
1d x1, (y) xl = xh Yes
1d altacc8, (altaccl6) altacc8 = (altaccl6) Yes
1d x1, (n, y) x1 = (n, y) No
1d altacc8, (n, y) altacc8 = (n, y) No

Affected Flags

nz

2.5.

2.5.2

8-BIT LOADS

Assembler code

1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d

x1, xh

xh, x1

altacc8, xh

x1l, yl

yl, x1

altacc8, yl

xl, yh

yh, x1

altacc8, yh

x1, zl

zl, x1

altacc8, zl

x1, zh

zh, x1

altacc8, zh

mm, x1

mm, altacc8

(n, sp), x1

(n, sp), altacc8
(nn, z), x1

(nn, z), altacc8
(y), x1
(altacc16), altacc8
(n, y), x1

(n, y), altacc8

Affected Flags

none

2.5.

1d: 8-bit load from register

Operation

x1 = xh

xh = x1
altacc8 = xh
x1 =yl

yl =x1
altacc8 = yl
xl = yh

yh = x1
altacc8 = yh
x1 =zl

zl = x1
altacc8 = zl
x1 = zh

zh = x1
altacc8 = zh
mm = x1

mm = altacc8
(n, sp) = x1

(n, sp) = altacc8
(nn, z) = altacc8
(nn, z) = altacc8
(y) = x1

(altacc16) = altacc8
(n, y) = x1

(n, y) = altacc8

3 1di: 8-bit load with increment

Flags according to old (y).

Assembler code
1di (=), (¥ (z)
1di (z), (%) (2)

Affected Flags

nz

Operation {81

(y); z +=1; No
(x); z +=1; No

181

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

13

14

2.6

2.6.1

16-bit loads

CHAPTER 2. INSTRUCTIONS

ldw: 16-bit load from memory

Assembler code

1dw
1ldw
1dw
ldw
1dw
1dw
1ldw
1dw
ldw
ldw
1dw
1dw

y, #ii
altaccl6, #ii

y, mm

altaccl6, mm

y, (n, sp)
altaccl6, (n, sp)

y, (an, z)

altacci6, (nn, z)

y, (o, y)

altacc16, (n, y)

vy, (y)

altacc16, (altaccl6)

Affected Flags

nz

Operation

y = #ii

altaccl6 = #ii

y = mm

altaccl6 = mm

y = (n, sp)
altaccl6 = (n, sp)
y = (an, z)
altaccl6 = (an, z)
y = (n, y)
altaccl6 = (n, y)
y= O

altaccl6 = (altacci6)

81

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

Yes
Yes

2.6. 16-BIT LOADS

2.6.2 Idw 16-bit load from register

Assembler code

ldw y, x

ldw x, z

ldw y, #d

1ldw altaccl6, #d

ldw mm, y

1ldw mm, altaccl6

ldw (n, sp), y

ldw (n, sp), altaccl6é
ldw (on, z), y

ldw (an, z), altaccl6
ldw x, y

ldw z, y

ldw y, =z

ldw z, x

ldw (y), x

ldw (2), y

ldw (%), =z

law (y), z

ldw (n, y), x

ldw y, sp

ldw sp, y

ldw altaccl6, sp

ldw ((d, sp)), ¥y

ldw ((d, sp)), altaccl6

Affected Flags

none

Operation

y =X

X =z

y = #d

altaccl6 = #d

mm =y

mm = altaccl6

(n, sp) =y

(n, sp) = altaccl6
(nn, z) =y

(nn, z) altaccl6
x =

y
z=y
z
X

y =
z =
(y) = x
(z) =y
(x) =z
(y) =z
(n, y) =x

y = 8p

Sp =Y

altaccl6 = sp

(d, sp) =y

(d, sp) = altaccl6

2.6.3 1dwi: 16-bit load with increment

Flags according to old (y).

Assembler code Operation f81
ldwi (2), (y) (2) = (y); z += 2; No
ldwi (z), (x) (2) = (x); z +=2; No

Affected Flags

nz

f8l

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes

No

15

16 CHAPTER 2. INSTRUCTIONS

2.7 Other 8-bit instructions

2.7.1 bool: 8-bit cast to bool

Todo: Remove from {81 subset?
Assembler code Operation f81

bool x1 x1 = (bool)xl Yes
bool altacc8 altacc8 = (bool)altacc8 Yes

Affected Flags

z

2.7.2 cax: 8-bit compare and exchange

z is set according to the old value of (y) - zl.
Assembler code Operation 81
cax (y), z1, x1 if ((y) == zl) (y) = x1; else zl = (y); Yes
cax (y), zl1, xh if ((y) == zl1) (y) xh; else zl1 = (y); Yes
cax (y), zl, zh if ((y) == zl) (y) = zh; else z1 = (y); Yes

Affected Flags

zZ

2.7.3 da: decimal adjust

Decimal adjust for addition / subtraction - binary coded decimal semantics.

todo: describe details!
Assembler code Operation {81

da x1 Yes
da altacc8 Yes

Affected Flags

hcnzo

2.7.4 mad: multiply and add

Assembler code Operation {81
mad x, mm, yl x =mm * yl + xh + ¢ No
mad x, (n, sp), yl x (n, sp) * y1 + xh + ¢ No
mad x, (on, z), yl x (on, z) * y1L + xh + ¢ No
mad x, (z), yl X (z) * y1 + xh + ¢ No

Affected Flags

nz

2.7. OTHER 8-BIT INSTRUCTIONS 17

2.7.5 msk: mask
z flag set according to old value of (y) & ~#.

Assembler code Operation

msk (y), x1, #i (y) = x1 & #i | (y) & ~#i

msk (altaccl6), altacc8, #i (altaccl6) = altacc8 & #i | (altaccl6) & ~#i
Affected Flags

Z

2.7.6 pop: 8-bit pop from stack

Assembler code Operation £81
pop x1 x1l = (sp++) Yes
pop altacc8 altacc8 = (sp++) Yes

Affected Flags

none

2.7.7 push: 8-bit push onto stack

Ignores all flags, changes no flags, not even the reserved ones.
Assembler code Operation f81
push #i (--sp) = #i Yes

Affected Flags

none

2.7.8 rot: 8-bit rotate

Assembler code Operation f81
rot x1, #i x1 = (x1 << #i) | (x1 >> (8 - #i)) No
rot altacc8, #i altacc8 = (altacc8 << #i) | (altacc8 >> (8 - #i)) No

Affected Flags

none todo: do we want some flags to be affected?

2.7.9 sra: 8-bit shift right arithmetic

Assembler code Operation £81

sra x1 c = op8 & 0x01 Yes
x1 = (x1 > 1) | x1 & 0x80

sra altacc8 c = op8 & 0x01 Yes

altacc8 = (altacc8 >> 1) | altacc & 0x80

81
Yes
Yes

18

Affected Flags

CHAPTER 2. INSTRUCTIONS

cz

2.7.10 thrd

Get current hardware thread number.
Assembler code Operation £81
thrd x1 x1 = current hardware thread number Yes

thrd altacc8 altacc8 = current hardware thread number Yes

Affected Flags

Z

2.7.11 xch: 8-bit exchange

Assembler code

xch y1l, yh
xch x1, xh
xch z1, zh

xch x1, (n, sp)
xch altacc8, (n, sp)
xch x1, (y)

xch altacc8, (altaccl6)

xch £, (n, sp)

Affected Flags

Operation

t =yl; y1 = yh; yh = t

t =x1; x1 = xh; xh = t

t =2l1; z1 = zh; zh =t

t = (n, sp); (n, sp) = x1; x1 =t

t = (n, sp); (n, sp) = altacc8; altacc8 =t
t=(y); (y) =x1; x1 =t

t = (altaccl16); (altaccl6) = altacc8; altacc8 =t
t=(n, sp); (n, sp) =£f; £ =1t

All, including reserved ones (xch f, (n, sp)) or none (all others).

2.8 Other 16-bit instructions

2.8.1 addw: 16-bit addition

addw sp, #d ignores all flags, changes no flags, not even the reserved ones.

Assembler code
addw sp, #d

addw y, #d

addw altaccl6, #d

Affected Flags

Operation f81
sp = sp + #d Yes
y =y + #d Yes

altaccl6 = altaccl6 + #d Yes

none (addw sp, #d) or cnzo (all others).

81
Yes
Yes
Yes
No

Yes
Yes
Yes

2.8. OTHER 16-BIT INSTRUCTIONS

2.8.2 Dboolw: 16-bit cast to bool

Assembler code Operation {81
boolw y y = (bool)y No
boolw altaccl6 altaccl6 = (bool)altaccl6é No
Affected Flags

Z

2.8.3 caxw: 16-bit compare and exchange

z is set according to the old value of (y) - z.
Assembler code Operation

caxw (y), z, x if ((y) == 2) (y) = x; else z = (y);

Affected Flags

z

2.8.4 cpw: 16-bit comparison

Subtraction where the result is used to update the flags only.

Assembler code Operation {81
cpw y, #ii y + ~#ii + 1 No
cpw #ii, y #ii + ~y + 1 No

cpw altaccl6, #ii altaccl6é + ~#ii + 1 No

Affected Flags

cnzo

2.8.5 decw: 16-bit decrement

Assembler code Operation {81
decw (n, sp) (n, sp) = (n, sp) + -1 No

Affected Flags

cnzo

81
Yes

2.8.6 incnw: 16-bit increment without carry update

Ignores all flags, changes no flags (except possibly the reserved ones).

Assembler code Operation f81
incnw y y=y +1 No
incnw altaccl6 altaccl6 = altaccl6 + 1 No

19

20

Affected Flags

none

2.8.7 negw:

Assembler code

negw y
negw altaccl6

Affected Flags

cnzo

16-bit negation

Operation

y=-y+1
altaccl6 =

2.8.8 mul: multiplication

Clears carry.

Assembler code

mul y
mul x
mul z

Affected Flags

cnz

2.8.9 popw:
Assembler code
popw y
popw altaccl6

Affected Flags

none

Operation

y =yl *x yh
x = x1 *x xh
z =zl *x zh

81
No
No
No

CHAPTER 2. INSTRUCTIONS

181
No

~altaccl6 + 1 No

16-bit pop from stack

Operation

y = (sp); sp += 2

altaccl6 = (sp); sp += 2

81
Yes
Yes

2.8.10 pushw: 16-bit push onto stack

Assembler code
pushw #ii

Affected Flags

none

Operation

sp —= 2; (sp) = #ii

81
Yes

2.8. OTHER 16-BIT INSTRUCTIONS

2.8.11 rlcw: 16-bit rotate left through carry

Assembler code
rlcw y

rlcw (n, sp)

rlcw altaccl6

Affected Flags

cnz

2.8.12 rrcw

Assembler code
rrew y

rrcw (n, sp)

rrcw altaccl6

Affected Flags

cnz

Operation

tc = (y & 0x8000) >> 15

y=(y > 1) | (c << 15)

c = tc

tc = ((n, sp) & 0x8000) >> 15

(n, sp) = ((m, sp) > 1) | (c << 15)
c = tc

tc = (altaccl6 & 0x8000) >> 15
altaccl6 = (altaccl6 >> 1) | (c << 15)
c = tc

: 16-bit rotate right through carry

Operation f81
tc = y & 0x0001 No
y=(@Gg>1|c

c = tc

tc = (n, sp) & 0x0001 No
(n, sp) = ((n, sp) << 1) | ¢

c = tc

tc = altaccl6 & 0x0001 No

altaccl6 = (altaccl6 << 1) | ¢
c = tc

2.8.13 sex: sign-extend

No

21

Assembler code Operation 81
sex y, x1 y = (int8_t)x1l No
sex altaccl6, altacc8 altaccl6 = (int8_t)altacc8 No

Affected Flags

nz

22 CHAPTER 2. INSTRUCTIONS

2.8.14 sllw: 16-bit shift left logical

Assembler code Operation f81
sllw y c =y & (0x8000 >> 15); y =y << 1 No
sllw altaccl6 altaccl6 = altaccl6 << 1 No
sllw y, x1 c =y & (0x8000 >> 15); y =y << x1 No
sllw altaccl6, altacc8 altaccl6 = altaccl6 << altacc8 No

Affected Flags

cnz (sllw y and sllw altaccl6) or nz (others).

2.8.15 sraw: 16-bit shift right arithmetic

Assembler code Operation
sraw y c =y & 0x0001; y =y > 1 | y & 0x8000
sraw altaccl6 ¢ =y & 0x0001; altacclé = altaccl6 >> 1 | altaccl6 & 0x8000

Affected Flags

cnz

2.8.16 srlw: 16-bit shift right logical

Assembler code Operation {81
srlw y c =y & 0x0001; y =y >> 1 No
srlw altacclé c¢ = y & 0x0001; altaccl6 = altaccl6 >> 1 No

Affected Flags

cnz

2.8.17 xchw: 16-bit exchange

Assembler code Operation f81
xchw x, (y) t=x;x=(y); (y) =t Yes
xchw y, (2) t=y;7y=(@; (2 =t Yes
xchw z, (x) t=2z;z=(&)); x) =t Yes
xchw z, (y) t=2z;z=({y); (y) =t Yes
xchw y, (n, sp) t=y;y=(n, sp); (n, sp) =t No
xchw altacc16, (n, sp) t = altaccl6; altaccl6 = (u, sp); (u, sp) =t No

Affected Flags

none

81
No
No

2.9. BIT INSTRUCTIONS 23

2.8.18 zex: zero-extend

Assembler code Operation f81
zex y, x1 y = x1 No
zex altaccl6, altacc8 altaccl6 = altacc8 No

Affected Flags

Z

2.9 Bit Instructions

2.9.1 xchb: exchange bit

Exchange x1 with bit b at mm. z flag according to new value of xI.
todo: is it really worth having this?

Assembler code Operation 181
xchb x1, mm, #b t = mm >> #b No
mm = mm & ~(1 << #b) | (x1 << #Db)
x1 =t
xchb altacc8, mm, #b t = mm >> #b No

mm = mm & ~(1 << #b) | (altacc8 << #b)
altacc8 = t

Affected Flags

z

2.10 Relative Jumps

2.10.1 dnjnz
dnjnz yh, #d (2) ; decrement yh, without updating carry, jump if result is not

Zero.

Affected Flags

nz

2.10.2 jr

jr #d ignores all flags, changes no flags, not even reserved ones.
Assembler code Operation {81
jr #d pc += #d Yes

24

Affected Flags

none

2.10.3 jrc

Assembler code
jr #d

Affected Flags

none

2.10.4 jrgt

Assembler code
jrgt #d

Affected Flags

none

2.10.5 jrle

Assembler code
jrle #d

Affected Flags

none

2.10.6 jrn

Assembler code
jrn #d

Affected Flags

none

2.10.7 jrnc

Assembler code
jrnc #d

Affected Flags

none

Operation
if (c) pc += #d;

Operation

if (c && 'z) pc +=

Operation

if (lc || 2) pc +=

Operation
if (n) pc += #d;

Operation
if (lc) pc += #d;

CHAPTER 2. INSTRUCTIONS

81
Yes
81
#d; Yes
81
#d; Yes
18l
Yes
f81
Yes

2.10. RELATIVE JUMPS

2.10.8 jrnn

Assembler code
jrnn #d

Affected Flags

none

2.10.9 jrno

Assembler code
jrno #d

Affected Flags

none

2.10.10 jrnz

Assembler code
jrnz #d

Affected Flags

none

2.10.11 jro

Assembler code
jro #d

Affected Flags

none

2.10.12 jrsge

Assembler code
jrsge #d

Affected Flags

none

2.10.13 jrsgt

Assembler code
jrsgt #d

Operation

if (In) pc += #d;

Operation

if (lo) pc += #d;

Operation

if (!'n) pc += #d;

Operation
if (o) pc += #d;

Operation

81
Yes

81
Yes

81
Yes

181
Yes

£81

if (!(n ~ o)) pc += #d; Yes

Operation

if ('z & !'(n ~ 0)) pc += #d;

81
Yes

25

26 CHAPTER 2. INSTRUCTIONS

Affected Flags

none

2.10.14 jrsle

Assembler code Operation 81
jrsle #d if (z ||l (n = o)) pc += #d; Yes

Affected Flags

none

2.10.15 jrslt

Assembler code Operation {81
jrslt #d if (n ~ o) pc += #d; Yes

Affected Flags

none

2.10.16 jrz

Assembler code Operation £81
jrz #d if (2) pc += #d; Yes

Affected Flags

none

2.11 Other Instructions

2.11.1 call

Assembler code Operation f81
call #ii sp -= 2; (sp) = pc; pc = #ii Yes
call y sp = 2; (sp) = pc; pc =y Yes

call altaccl6 sp -= 2; (sp) = pc; pc = altaccl6é Yes

Affected Flags

none

2.11. OTHER INSTRUCTIONS

2.11.2 jp: jump

jp #ii ignores all flags, changes no flags, not even reserved ones.

Assembler code Operation 81
jp #ii pc = #ii Yes
py pc =y Yes

altaccl6 Yes

jp altaccl6 pc

Affected Flags

none

2.11.3 ret: return
Assembler code Operation {81

ret pc = (sp); sp += 2 Yes
Affected Flags

none

2.11.4 reti: return from interrupt

Ignores all flags, changes no flags, not even reserved ones.
Assembler code Operation {81
reti pc = (sp); sp += 2 Yes
Affected Flags

none

2.11.5 trap

Opcode 0x00. Trap reset.
Assembler code Operation {81
trap Trap reset Yes

28

CHAPTER 2. INSTRUCTIONS

Chapter 3

Opcode Map

todo - see opcodemap.ods for now.

29

30

CHAPTER 3. OPCODE MAP

Chapter 4

Peripherals

Unless otherwise noted, the vlaue of I/O registers on reset is unspecified.

4.1 Watchdog and Reset

The watchdog has an 8-bit configuration register and a 16-bit counter register.
When the watchdog is active, the system clock is divided by 16, and then
used to increment the counter register.
The system is reset when a power-on reset happens, the watchdog counter
register reaches Oxffff, the trap instruction is executed, or the byte at memory
address 0 is written.

Configuration Register

0 1 2 3 4 7

’dog active| dog reset |trap reset|nu11 reset| reserved

The lowest bit of the configuration register decides if the watchdog is active.
It is 0 on reset. The following three bits give the reason of the previous reset.
On a power-on-reset they are all 0.

4.2 Interrupt Controller

The interrupt controller has a 16-bit enable register, and a 16-bit active register.

0 1 15

}tm O| reserved

When an interrupt happens and the corresponding bit in the enable register
is set, the corresponding bit in the active register is set. When a bit in the
active register is set, and no interrupt routine is currently executing, the program

31

32 CHAPTER 4. PERIPHERALS

counter is put onto the stack and then set to 0x4004. From then on, an interrupt
routine is considered to be executing until the reti instruction is executed.

Bit 0 of the enable register indicates that timer 0 overflow interrupts are
enabled. Bit 0 of the active register indicates that a timer0 overflow interrupt is
active. Bit 1 of the enable register indicates that timer 0 compare interrupts are
enabled. Bit 1 of the active register indicates that a timer 0 compare interrupt
is active. These bits are 0 on reset. All other bits are reserved.

4.3 Timer

The timer has an 8-bit configuration register and 16-bit counter, reload and
comparison registers.

0 3 4 5 6

7

’ input clock | prescaler | reserved

The lowest 4 bits of the configurationr egister select the clock source (0 none,
1 system clock, 2 to 15 for other inputs), the next 2 select the prescaler factor
(0 for 1, 1 for 4, 2 for 16, 3 for 64). All 6 bits are 0 on reset.

The timer increments the 16-bit counter register. When incrementing from
Oxffff, a timer overflow interrupt happens, and the value from the reload register
gets loaded into the counter register instead. When the timer register gets
incremented to the value of the compare register, a timer compare interrupt
happens.

4.4 GPIO

The GPIO has (up to 16 bit) data direction, output data, input data, pull-up
registers.

	Architecture
	Introduction
	Registers
	Instructions
	Addressing Modes

	Instructions
	8-bit two-operand instructions
	adc: 8-bit addition with carry
	add: 8-bit addition
	and: 8-bit bitwise and
	cp: 8-bit comparison
	or: 8-bit bitwise or
	sbc: 8-bit subtraction with carry
	sub: 8-bit subtraction
	xor: 8-bit bitwise exclusive or

	16-bit 2-operand-instructions
	adcw: 16 bit addition with carry
	addw: 16 bit addition
	orw: 16 bit bitwise or
	sbcw: 16 bit subtraction with carry
	subw: 16 bit subtraction
	xorw: 16 bit bitwise exclusive or

	8-bit 1-operand-instructions
	clr: 8-bit clear
	dec: 8-bit decrement
	inc: 8-bit increment
	push: 8-bit push onto stack
	sll: 8-bit shift left logical
	srl: 8-bit shift right logical
	rlc: 8-bit rotate left through carry
	rrc: 8-bit rotate right through carry
	tst: 8-bit test

	16-bit 1-operand-instructions
	adcw: 16 bit addition with carry
	clrw: 16-bit clear
	incw: 16-bit increment
	pushw: 16-bit push onto stack
	sbcw: 16-bit subtraction with carry
	tstw: 16-bit test

	8-bit loads
	ld: 8-bit load from memory
	ld: 8-bit load from register
	ldi: 8-bit load with increment

	16-bit loads
	ldw: 16-bit load from memory
	ldw 16-bit load from register
	ldwi: 16-bit load with increment

	Other 8-bit instructions
	bool: 8-bit cast to bool
	cax: 8-bit compare and exchange
	da: decimal adjust
	mad: multiply and add
	msk: mask
	pop: 8-bit pop from stack
	push: 8-bit push onto stack
	rot: 8-bit rotate
	sra: 8-bit shift right arithmetic
	thrd
	xch: 8-bit exchange

	Other 16-bit instructions
	addw: 16-bit addition
	boolw: 16-bit cast to bool
	caxw: 16-bit compare and exchange
	cpw: 16-bit comparison
	decw: 16-bit decrement
	incnw: 16-bit increment without carry update
	negw: 16-bit negation
	mul: multiplication
	popw: 16-bit pop from stack
	pushw: 16-bit push onto stack
	rlcw: 16-bit rotate left through carry
	rrcw: 16-bit rotate right through carry
	sex: sign-extend
	sllw: 16-bit shift left logical
	sraw: 16-bit shift right arithmetic
	srlw: 16-bit shift right logical
	xchw: 16-bit exchange
	zex: zero-extend

	Bit Instructions
	xchb: exchange bit

	Relative Jumps
	dnjnz
	jr
	jrc
	jrgt
	jrle
	jrn
	jrnc
	jrnn
	jrno
	jrnz
	jro
	jrsge
	jrsgt
	jrsle
	jrslt
	jrz

	Other Instructions
	call
	jp: jump
	ret: return
	reti: return from interrupt
	trap

	Opcode Map
	Peripherals
	Watchdog and Reset
	Interrupt Controller
	Timer
	GPIO

