

ADVANCED SENSOR MODULE with IHM-A-1500

preliminary data sheet, version 2.3

1. Description

The fully calibrated advanced sensor module IMC-A-R0001 has been designed for all applications in which high currents, voltages and temperatures have to be measured. It contains a precision resistor with 100 µOhm, the ISA-ASIC and all analogue circuits for a complete 4-channel 16bit data acquisition system. The internal µC is supplying the clock and controls the measurements and communication with the ISA-ASIC. The module contains a RS232 interface which allows a simple integration into an external system.

2. Measurement functions

Current – by using the voltage drop over the shunt Voltage - by using an internal voltage divider

3. **Electrical characteristics**

Power supply	Min.	Max.	
Supply voltage	3.3 V	5.2 V	
Supply current	15 mA	25 mA	
Current measurement			
resistance value of the shunt	100 μΩ		
nominal current range ¹⁾	±300 A		
sampling rate (Dual mode)	900 S/sec		
error ²⁾	$\pm (0.05\% + 20 \text{ mA})$		
resolution ³⁾	10 mA		
temperature coefficient ⁴)	75 ppm/K		
max. current ⁵⁾	1500 A for 1 sec.		
Voltage measurement			
voltage range	±30 V		
error ¹⁾	$\pm (0.05 \% + 15 \text{ mV})$		
resolution ³⁾	1 mV		
max. input-voltage	80 V		
temperature coefficient 4)	50 ppm/K		
Interface: RS232			
baud rate: 250000 bits/sec, parity: none			
data bits: 8, stop bits: 1			
data format: ASCII			
number format: decimal			

¹⁾ absolute maximum current range ± 390 A

²⁾ at room temperature and external averaging over 100 values, at 900 S/sec the noise contribution is 100 mA resp 75 mV

³⁾ measuring resolution

⁴⁾ without TC calibration

5) for max. load capacity of shunt

Start-up and operation of the module 4.

After the connection of the module acc. to the following table 5 the module automatically starts to sent the following string via the RS232 :

IMC-A-R0001

'firmware version=1.02'&CR&LF&'IHM-A-1500 serial number = xxxxxxx

After this message the IMC-A-R0001 continually transmits the measurement results:

Current value in mA&Tab&voltage value in mV&CR&LF& Current value in mA&Tab&voltage value in mV&CR&LF& Current value in mA&Tab&voltage value in mV&CR&LF ...

Remark: It is very important that the buffer of the serial interface is big enough to store the data for the selected time frame.

Pin configuration (left to right)

SIL-type connector 14 PINs, spacing 1.27 mm solder pads with through connections

PIN number	function
1	unused
2	unused
3	$V_x^{(1)}$
4	GND
5	VCC ²⁾
6	$TxD^{3,4)}$
7	RxD ^{3,5)}
8	NC
9	unused
10	unused
11	unused
12	unused
13	unused
14	RESET

Notes:

¹⁾ input for the unknown voltage V_x with reference to GND

²⁾ supply voltage input +3.3 V or +5 VDC

³⁾ RS232, +3.3 V or +5 V level (depending on power supply voltage) ⁴⁾ output / ⁵⁾ input

All pins which are unused should be connected to GND.

6. Additional information

For special applications other resistance value resp. other current and voltage ranges as well as temperature and differential voltage measurement in the mV-range can be offered. For these applications special firmware versions are available to allow very flexible parameter settings for sampling rate, gain and the selection of the measurement functions.

IMC-A-R0001 ISABELLENHÜTTE Heusler GmbH & Co. KG	Dillenburg, 15.12.2008, jh/he/bs
--	-------------------------------------

ADVANCED SENSOR MODULE with IHM-A-1500

preliminary data sheet, version 2.3

IMC-A-R0001

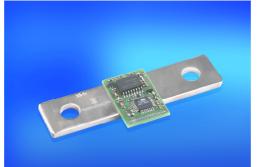
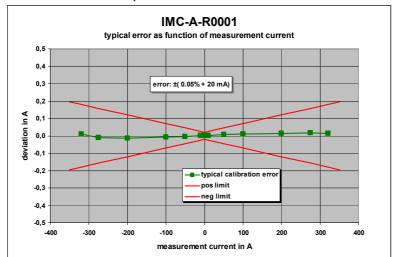
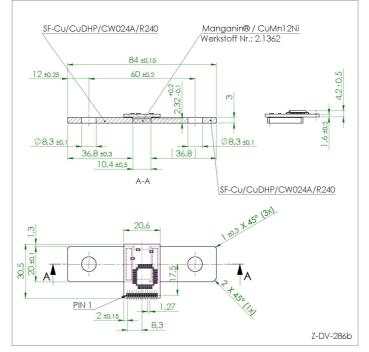




photo of the IMC-A-R0001

typical measurement error at room temperature

shunt drawing

IMC-A-R0001	ISABELLENHÜTTE Heusler GmbH & Co. KG	Dillenburg, 15.12.2008, jh/he/bs
-------------	--------------------------------------	-------------------------------------