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Introduction
Buck-boost (step-down and step-up) converters are 
widely used in industrial personal computers (IPCs), 
point-of-sale (POS) systems, and automotive start-stop 
systems. In these applications, the input voltage could be 
either higher or lower than the desired output voltage. A 
basic inverting buck-boost converter has a negative output 
voltage with respect to ground. The single-end primary 
inductor converter (SEPIC), Zeta converter, and two-
switch buck-boost converters have positive or non-inverting 
outputs. However, compared with a basic inverting buck-
boost converter, all three non-inverting topologies have 
additional power components and reduced efficiency. This 
article presents operational principles, current stress and 
power-loss analysis of these buck-boost converters, and 
presents design criteria for an efficient non-inverting 
buck-boost converter.

Inverting buck-boost converter
Figure 1 shows the schematic of a basic inverting buck-
boost converter, along with the typical voltage and current 
waveforms in continuous conduction mode (CCM). In 
addition to input and output capacitors, the power stage 
consists of a power metal-oxide semiconductor field-effect 
transistor (MOSFET), a diode, and an inductor. When the 
MOSFET (Q1) is ON, the voltage across the inductor (L1) 
is VIN, and the inductor current ramps up at a rate that is 
proportional to VIN. This results in accumulating energy in 

the inductor. While Q1 is ON, the output capacitor sup-
plies the entire load current. When the Q1 is OFF, the 
diode (D1) is forward-biased and the inductor current 
ramps down at a rate proportional to VOUT. While Q1 is 
OFF, energy is transferred from the inductor to the output 
load and capacitor. 

The voltage conversion ratio of an inverting buck-boost 
in CCM can be expressed as:
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where D is the duty cycle of Q1 and is always in a range of 
0 to 1. Equation 1 indicates that the magnitude of output 
voltage could be either higher (when D > 0.5) or lower 
(when D < 0.5) than the input voltage. However, the 
 output voltage always has an inverse polarity relative to 
the input.

Conventional non-inverting buck-boost 
converters
The inverting buck-boost converter does not serve the 
needs of applications where a positive output voltage is 
required. The SEPIC, Zeta, and two-switch buck-boost 
converter are three popular non-inverting buck-boost 
topologies. The Zeta converter, also called inverse SEPIC, 
is similar to SEPIC, but less attractive than SEPIC since it 
requires a high-side driver that increases the circuit 
complexity.

Figure 1. Inverting buck-boost converter
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A SEPIC converter and its ideal waveforms in CCM are 
shown in Figure 2. The voltage conversion ratio of a 
SEPIC converter is:
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Equation 2 indicates a positive output voltage and the 
buck-boost capability. 

Like an inverting buck-boost converter, a SEPIC con-
verter has a single MOSFET (Q1) and a single diode (D1). 
The MOSFET and diode in a SEPIC converter have voltage 
and current requirements similar to their counterparts in 
an inverting buck-boost converter. As such, the power 
losses of the MOSFET and diode are similar. On the other 
hand, a SEPIC converter has an additional inductor (L2) 
and an additional ac-coupling capacitor (CP). 

In a SEPIC converter, the average inductor current of 
L1 equals the input current (IIN), whereas the average 

inductor current of L2 equals the output current (IOUT). In 
contrast, the single inductor in an inverting buck-boost 
converter has an average current of IIN + IOUT. The coupling 
capacitor sees significant root-mean-square (RMS) current 
relative to both input current and output current, which 
generates extra power loss and reduces the converter’s 
overall efficiency. 

To reduce power loss, ceramic capacitors with low 
equivalent series resistance (ESR) are desired, which 
 usually leads to higher cost. The additional inductor of a 
SEPIC converter, coupled with the extra coupling capaci-
tor, increases printed circuit board (PCB) size and total 
solution cost. A coupled inductor can be used to replace 
two separate inductors to reduce PCB size. However, the 
selection of off-the-shelf coupled inductors are limited 
when compared to separate inductors. Sometimes a 
 custom design will be required, which increases cost and 
lead time.

Figure 2. SEPIC converter

+
–

L1
CP D1

IOUT

L2

I + IIN OUT

–IOUT

VIN

IIN

Q1

VIN

IOUT

V + VIN OUT

V + VIN OUT

–VOUT

I + IIN OUT

+

–
VOUT

VIN

IIN

IIN–VOUT

http://www.ti.com/aaj


Texas Instruments 22	 AAJ 3Q 2014

IndustrialAnalog Applications Journal

A conventional two-switch buck-boost converter uses a 
single inductor (Figure 3). However, it has an additional 
MOSFET (Q2) and an additional diode (D2) compared to 
an inverting buck-boost converter. By turning Q1 and Q2 
ON and OFF simultaneously, the converter operates in 
buck-boost mode, and the voltage conversion ratio also 
complies with Equation 2. This confirms that the two-
switch buck-boost converter performs a non-inverting 
conversion. The ideal waveforms of a two-switch buck-
boost converter operating in buck-boost mode and CCM 
are shown in Figure 3. Q1 and D1 both see a voltage stress 
of VIN, while Q2 and D2 both see a voltage stress of VOUT. 
Q1, Q2, D1, D2, and L1 all see a current stress of IIN + IOUT 
with inductor ripple current neglected. The relatively large 

number of power devices and high-current stress in buck-
boost mode prevent the converter from being very 
efficient.

Operating-mode optimization of a two-switch 
buck-boost converter
The two-switch buck-boost converter is a cascaded combi-
nation of a buck converter followed by a boost converter. 
Besides the aforementioned buck-boost mode, wherein Q1 
and Q2 have identical gate-control signals, the two-switch 
buck-boost converter also can operate in either buck or 
boost mode. By operating the converter in buck mode 
when VIN is higher than VOUT, and in boost mode when VIN 
is lower than VOUT, the buck-boost function is then realized.

Figure 3. A two-switch buck-boost converter in buck-boost mode of operation
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In buck mode, Q2 is controlled to be always OFF, and 
output voltage is regulated by controlling Q1 as in a typi-
cal buck converter. The equivalent circuit in buck mode 
and corresponding ideal waveforms in CCM are shown in 
Figure 4. The voltage conversion ratio is the same as that 
of a typical buck converter:
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where D is the duty cycle of Q1. In buck mode, the output 
voltage is always lower than the input voltage since D is 
always less than one.

Higher efficiency is possible in buck mode compared to 
the buck-boost mode for three reasons. First of all, Q2 is 
always OFF in buck mode, which means there is no power 
dissipated in it. Second, Q1, D1, and L1 see a lower cur-
rent stress of only IOUT in buck mode compared to IIN + 
IOUT in buck-boost mode, which potentially reduces power 
loss. Third, although conduction loss of D2 stays the same, 

the reverse recovery loss is eliminated in the buck mode 
because D2 always conducts.

By keeping Q1 always ON, D1 is reverse biased and 
stays OFF, and the two-switch buck-boost converter then 
operates in boost mode. Similar to the typical boost con-
verter, the output voltage is regulated by controlling Q2. 
The equivalent circuit in boost mode and corresponding 
ideal waveforms in CCM are shown in Figure 5. The volt-
age conversion ratio is the same as that of a typical boost 
converter:

 
M

V

V D
OUT

IN
= =

−
1

1
,
 

(4)

where D is the duty cycle of Q2. In boost mode, the output 
voltage is always greater than the input voltage because D 
is always greater than zero. Similarly, higher efficiency 
could be achieved in boost mode than in buck-boost  
mode due to fewer operating power devices and lower 
current stress.

Figure 4. Buck-mode operation of the two-switch buck-boost converter
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Figure 5. Boost-mode operation of the two-switch buck-boost converter
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Implementation of an efficient two-switch buck-
boost converter
The two-switch buck-boost converter can function in 
buck-boost, buck or boost modes of operation. Various 
combinations of operating modes can be used to accom-
plish both a step-up and step-down function. Appropriate 
control circuitry is required to ensure the desired modes 
of operation. Table 1 summarizes a comparison between 
four different combinations of operating modes. The buck-
boost mode alone features the simplest control, but has 
low efficiency for both step-up and step-down conversion 
over the VIN range. 

The combination of buck, buck-boost and boost modes 
has the potential to achieve high efficiency over the VIN 
range. However, its control is very complicated due to 
multiple modes of operation and the resulting transitions 
between different modes. In many applications, the input 
voltage usually drops below output for only a short period 
of time. In such applications, the efficiency of step-up con-
version is not as critical as step-down conversion. As such, 
the combination of buck and buck-boost modes is a good 
trade-off between control complexity and efficiency.

Figure 6 shows a practical implementation of a two-
switch buck-boost converter that uses the LM5118 dual-
mode controller from Texas Instruments. This converter 
acts as a buck converter when the input voltage is above 
the output voltage. As the input voltage decreases and 
falls below the output voltage, it transits to buck-boost 
mode. There is a short gradual transition region between 
buck mode and buck-boost mode to eliminate distur-
bances at the output during transitions. 

In this example, the nominal output voltage is 12 V. 
When VIN is above 15.5 V, the converter operates in buck 
mode. When VIN falls below 13.2 V, the converter operates 

Figure 6. Two-switch buck-boost converter features buck and 
buck-boost operating modes
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Table 1. Comparison of operating modes

OPERATION MODES
CONTROL 

COMPLExITY
EFFICIENCY 
(VIN > VOUT)

EFFICIENCY 
(VIN < VOUT)

Buck-boost Simple Low Low

Buck and buck-boost Moderate High Low

Buck-boost and boost Moderate Low High

Buck, buck-boost, and 
boost Complicated High High
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Figure 7. Voltage waveforms at switch nodes
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Figure 8. Efficiency with respect to the input voltage
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in buck-boost mode. When VIN is between 15.5 V and 13.2 
V, the converter operates in the transition mode. Figure 7 
shows voltage waveforms of switch node 1 (SW1) and 
switch node 2 (SW2). In buck mode (VIN = 24 V), SW2 
voltage stays constant which suggests that Q2 is kept OFF. 
In contrast, Q2 as well as Q1 are switching in buck-boost 
mode (VIN = 9 V). Figure 8 shows the efficiency with 
respect to input voltage at 3 A of load current. The 
improved efficiency for step-down conversion is achieved 
by operating the converter in buck mode. 

Conclusion 
SEPIC, Zeta, and two-switch buck-boost converters are 
three popular non-inverting buck-boost topologies that 
provide a positive output as well as a step-up/down func-
tion. When operating in the buck-boost mode, all three 
converters can experience high-current stress and high-
conduction loss. However, by operating the two-switch 
buck-boost converter in either buck mode or boost mode, 
the current stress can be reduced and the efficiency can 
be improved.
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