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Abstract: Electrochemical impedance spectroscopy (EIS) is a well-established method of battery
analysis, where the response of a battery to either a voltage or current excitation signal spanning
a wide frequency spectrum is measured and analyzed. State-of-the-art EIS analysis is limited to
high-precision measurement systems within laboratory environments. In order to be relevant in
practical applications, EIS analysis needs to be carried out with low-cost sensors, which suffer from
high levels of measurement noise. This article presents an approach to estimate the equivalent circuit
model (ECM) parameters of a Li-Ion battery pack based on EIS measurements in the presence of high
levels of noise. The proposed algorithm consists of a fast Fourier transform, feature extraction, curve
fitting, and least-squares estimation. The results of the proposed parameter-estimation algorithm
are compared to that of recent work for objective performance comparison. The error analysis of the
proposed approach, in comparison to the existing approach, demonstrated significant improvement
in parameter estimation accuracy in low signal-to-noise ratio (SNR) regions. Results show that the
proposed algorithm significantly outperforms the previous method under high-measurement-noise

scenarios without requiring a significant increase in computational resources.

Keywords: Li-ion batteries; battery management system; equivalent circuit model; impedance;
electrochemical impedance spectroscopy (EIS); least squares estimation

1. Introduction

Li-ion batteries (LIBs) have seen widespread adoption due to their higher energy
and power densities along with longer lifespan [1]. They are widely used in electrified
vehicles, consumer electronics, and stationary energy-storage systems. However, their
performance is highly dependent on operating conditions (i.e., temperature, load current,
etc.). Meanwhile, one of the key challenges in an energy-storage system [2] is to understand
the system’s availability from the end-user perspective; this requires knowledge of different
battery parameters to monitor, control, and forecast the system’s behaviour [3,4]. Batteries
are managed with battery management systems (BMS), which are designed to enhance
their performance, prolong their lifespan, and ensure their safety. The performance of a
BMS depends largely on its ability to estimate equivalent-circuit-model (ECM) parameters,
which characterize the battery behaviour. Estimated battery characterization parameters
are useful in determining the state of health (SOH) and remaining useful life (RUL), which
characterize battery performance [5,6]. For battery fuel gauging, parameters such as open-
circuit voltage (OCV), state of charge (SOC), depth of discharge (DOD), and capacity need to
be estimated [7]. The BMS uses the measured voltage, current and temperature information
to keep the battery within safe limits by the online estimation of ECM parameters [8].

The state and parameter estimation of LIB is based on a battery model. In practice,
ECMs are the most commonly used battery models because of their simple structure and
the availability of computationally efficient approaches to estimate their parameters [9]. In
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these models, electric circuit elements, such as resistance, capacitance and voltage source,
are used to represent the electrical characteristics of LIBs [10,11]. Widely used ECMs include
the R-int model, RC model, Thevenin model, enhanced Thevenin model, PNGV model and
a plethora of combined models featuring RC circuits of different orders [12,13].

The ECM parameter-estimation approaches fall into two categories; time-domain and
frequency-domain approaches. Time-domain approaches [7,14] use the available voltage
and current measurements during battery usage to extract the ECM parameters. Conse-
quently, time-domain approaches are suitable for real-time parameter estimation [15]. On
the other hand, frequency-domain approaches require special excitation signals spanning a
wide range of frequencies. These signals can be superimposed on existing currents during
charging as well as discharging. Electrochemical impedance spectroscopy (EIS), introduced
by Heaviside in 1894 [16], is a widely studied frequency-domain approach to characterize
the electrical and electrochemical behaviour of batteries [17]. The measured voltage and cur-
rent signals are converted to the frequency domain through the fast Fourier transform (FFT)
technique to compute the frequency response, generally known as a Nyquist plot [18,19] of
the battery impedance, where the real and imaginary parts of the impedance are plotted
on the x-axis and y-axis, respectively. Fitting the Nyquist plot from EIS to a LIB ECM
allows the battery kinetic processes to be modelled [20]. In the literature [5,21], the adaptive
Randles ECM (AR-ECM) is the most commonly used circuit model for the derivation and
interpretation of impedance spectrum from EIS [22].

Significant work has been performed in the literature utilizing the EIS approach for
battery state and parameter estimation. Pattipati et al. [23] used a frequency-selective
nonlinear least squares estimation technique to estimate the Randles circuit parameters
from the EIS data. They also used support vector machines (SVMs) to characterize the SOH
and estimate the SOC of the battery. The algorithm proposed in [24] uses the EIS technique
to identify and quantify the battery aging process over time. The method is applied
to four parallelized Lithium-ion cells for 500 cycles. The parameter estimation strategy
proposed in [18] used a frequency sweep method for input excitation. It employed precise
impedance measurement techniques, consisting of offset clipping, amplifying circuits, FFT,
peak amplitude computation, and phase difference estimation.

In [25], the authors presented an online approach to estimate the uncertainty in
parameter estimation using the EIS measurements. A complex nonlinear least squares
method was applied to the EIS measurements in [26], to determine the ECM parameters
that best fit the measurements. In [27], the authors proposed a distribution-of-relaxation-
time-based method to merge the time- and frequency-domain analysis. It was described
that the dependency of the estimation algorithm on boundary conditions and initial starting
values was alleviated using this approach. Another work proposed the use of a recursive
least square algorithm for estimating the equivalent circuit model parameters [28]. In [29],
a simplified model from the low-frequency region was considered for simpler online
estimation of battery ECM parameters. Optimization-based algorithms were used in [30]
to estimate the parameters of a second-order RC model. However, the algorithms did not
consider measurement noise and the estimation was performed for the entire SOC region.
Thus, the effect of the variation in the parameters with SOC was not taken into account
in this work. A polynomial fitting of parameters on the EIS data was used to determine
the SOC effect on ECM parameter estimation in [31]. Islam et al. [22,32] presented a
circuit parameter-extraction algorithm for an LIB charging system using online EIS [22]
and compared their method with a hysteresis-free ECM parameter algorithm in [32]. None
of the existing work considered the effect of measurement noise on the performance of the
ECM parameter estimation algorithm. The focus of the present work is to develop ECM
parameter-estimation algorithms which are robust against measurement noise.

In this paper, an improved online method for ECM parameter estimation based on
the Nyquist plot is presented. The key contributions of this paper are as follows. First,
various factors affecting the accuracy of frequency-domain ECM parameter estimation are
discussed. Specifically, it is demonstrated that the ECM parameter-estimation accuracy



Energies 2022, 15, 9251

30f26

deteriorates with increased measurement noise. Then, novel approaches are developed to
estimate each parameter representing the AR-ECM of a battery. A systematic performance
comparison is performed, in terms of the percent of error versus SNR, for each parameter
to be estimated. The proposed approach showed significant performance improvement
over the existing method.

The remainder of this paper is organized as follows: Section 2 describes the EIS param-
eter approach proposed in [22]. Section 3 analyzes how approximation and measurement
noise affect the EIS parameter-estimation accuracy. Section 4 presents an improved method
for parameter estimation in the presence of measurement noise. Section 5 shows how
feature points are extracted. The results from the proposed approach and the existing
approach in [22] are compared in Section 6. The paper concludes in Section 7, and future
research directions are explained in Section 8.

2. Impedance Response of an LIB

Randles circuit models are one of the widely used ECM in battery analysis [33].
Figure 1a shows a diagram of the AR-ECM . This model consists of the following ele-
ments [22]:

*  Voltage source, Eq)

¢  Stray inductance, L

¢ Ohmic resistance, R

e Solid electrolyte interface (SEI) resistance, Rggg
*  SEI capacitance, Cggy

*  Charge-transfer(CT) resistance, Rct

*  Double-layer (DL) capacitance, Cpr

*  Warburg impedance, Zy,

where the Warburg impedance [34], defined as

Zu(jew) = (1= ) 7= M
describes a phenomenon observed at very low frequencies. It can be noticed that as the fre-
quency decreases, the Warburg impedance increases. When there is a significant frequency
in the system, which is the case in practical applications, the Warburg impedance effectively
becomes zero. On the other hand, at low frequencies, only the effects of resistors and the
Warburg element remain. The impedance spectrum also marks the following frequencies
at critical points: wyy, wi1, Wio, wis, and wyy. The lowest and highest frequencies of the
spectrum are wyy and wyq, respectively. The frequency wy; denotes the point where the
diffusion arc meets the CT arc; wy, denotes the point where CT Arc meets the SEI arc; and
wy3 denotes the point where RL arc meets the SEI arc.
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Figure 1. AR-ECM and related impedance spectrum. (a) Adaptive Randles equivalent circuit model
(AR-ECM). (b) Impedance spectrum (Nyquist Plot).

In EIS, an AC perturbation signal (current or voltage) is applied to a battery and its
response (voltage or current) is recorded; by jointly analyzing the applied signal and its
response, the parameters of the battery ECM can be estimated. Figure 1b shows the typical
response of a battery in the frequency domain—this impedance plot is generally known
as the Nyquist plot. In order to compute the Nyquist plot, the voltage and current signals,
measured in the time domain, are converted to the frequency domain through the discrete
Fourier transform (DFT) technique. Let us assume that z,(t) and z.(t) are the measured
voltage and current, respectively, from the battery over a certain time window L, i.e.,

zy(t) =v(t) +n,(t), t=1,2,...,L
ze(t) = i(t) +ne(t), t=1,2,...,L

where t indicates time, v(t) is the true voltage, and i(t) is the true current. The voltage
and current measurement noise 1, (t) and n.(t) are assumed to be zero-mean i.i.d. with

@
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standard deviation ¢, and o, respectively. The Fourier transform of the voltage and
current measurements in (2) are defined as

Ze(fo) = FFT(ze(k) = ¥ zo(k)e 222 .,
k=1
= I(fw) + Ne(fw)
S iz
Zo(fw) = FFT(zo(k)) = ;El zo(k)e T “

= V(fw) + No(fo

where Z,(f,) and Z.(f,) are voltage and current measurement in the frequency domain
at the frequency f,,. Here, V(f,,) and I( f,,) indicate the Fourier transforms of the noiseless
voltage and current, respectively. The Fourier transforms of the voltage and current
measurement noises are given by Ny(fw) and N(fw), respectively. The impedance at
frequency f, is now written as

_ Zo(fw)  V(fw)+ No(fw)
2U0) = 7050 = 1) + Nel)

= (V(fo) +Nv(fw))(W>

The term (m) will be expanded using Taylor’s series expansion, i.e., for any
f(x + h), the Taylor’s series expansion about ‘4’ is given by

2 3
Flxh) = F2) 1) oS () + o f )

Using first-order Taylor’s expansion for (m), where, f(x+h) = (m) ,
f(x) = +2~, and h = N,(f.), it could be written as

T 1(fw)
1 ~ 1 N¢(fw) 5)
I(fo) + Ne(fo) — I(fo)  I(fw)?
Z(fw) is now
2(fa) = V() + Nolho)) (7055 — 70052 ) ©
Expanding the terms in impedance in (6)
_ V(fw)  V(fw)Nc(fw) | No(fw)  No(fw)Ne(fw)
ol =00 ~ a2 TG 12
This is re-written in the following format:
2(fa) = 705+ Nilf) ?
where
_ V(fw)Ne(fw) | No(fw)  No(fw)Ne(fw)
MU= T e 12

where it can be shown that the noise N, (f,,) is zero-mean.
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Remark 1. The voltage and current measurements in (2) are assumed to represent the AC compo-
nents. It is also assumed that the DC component remains the same during the FFT. That is, the DC
component is assumed to be the same for t = 1,..., L. Under this assumption, the effect of the DC
component can be simply removed by subtracting the mean before performing the FFT. In realistic
application, this assumption may not hold, i.e., the value of the DC component may not remain the
same for all values for t = 1,..., L. The result of this violation becomes an estimation error. This is
demonstrated later using experimental studies.

Using the AR-ECM shown in Figure 1, the AC impedance Z( f,,) can be written as

Z(fo) £ Z(jw) = jwL+Ra+ 41—

Rggy T/CsEl
T
Rer T Zw () T1@CoL . (8)
_ SEI
= jwL+Rq +, 1+jwRgg1CsEy
_ Rer+Zw (jw)
1+jw(Rer+Zw(jw))CoL

where the parameters are as indicated in Figure 1a. Likewise, the qualitative impedance
plot shown in Figure 1b has four branches associated with four specific electrochemical
processes [10]. In the first branch, denoted in this paper as the ‘RL Arc’, the effect of the
inductive behaviour at high frequencies (w > wy,) as well as the ohmic resistance (Rq)
can be seen. The second branch (wy, < w < wy,) consists of a semi-circle, denoted in
this paper as the ‘SEI Arc’, related to the SEI The effect of the DL capacitance and CT
resistance at the electrodes represents the second semi-circle (denoted as ‘CT Arc’) in the
third branch (wy, < w < wy,). Finally, the constant slope (denoted as ‘Diffusion Arc’) in the
impedance plot in the last branch represents the diffusion processes in the active material
of the electrodes; it has a significant effect at very low frequencies (wy < w < wy,) only.

For fast interpretation of the impedance spectrum, an algorithm is proposed in [32]
that obtains the AR-ECM parameters from an impedance spectrum. The remainder of this
section summarizes the EIS approach presented in [32].

3. Nonlinear LS Approach for ECM Parameter Estimation

The ECM parameter estimation in the frequency domain can be formally stated as
follows: given the frequency response of the system Z( f,,) at the frequencies w1, wo, ..., wr,
the ECM parameters that minimize the following cost function are estimated:

@:argngnHZ(wi)—Z(wi)‘z, i=1,...,L ©)
where ||-|| denotes the second norm and
© = {Rq, L, Rsec, Csec, Rer, Cor, Zw } (10)

The above optimization can be solved using a non-linear least squares approach. In this paper,
the Matlab command ‘Isqnonlin” was used to perform non-linear least squares optimization.

4. Prior Approach for ECM Parameter Estimation

This section summarizes a previous approach presented in [32] for ECM parameter
estimation using EIS measurements.

Consider the impedance in (8) at very high frequencies w > ws. The capacitive
reactance approaches zero at very high frequencies and only the inductive and ohmic
resistance remain dominant. Hence, one can write

Z(w) = jwL+Ra w > wy, (11)
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From this, the estimates of L and R can be obtained as

Ra = min(z,(k)) k> k3 (12)
I = Wfﬁ;}w k> ks (13)

At very low frequencies, the Warburg impedance (1) becomes dominant. The resistive part
of the Warburg impedance is written as

o
Ry = ﬁ (14)

Consequently, the real part of Z(w), when w < wy,, can be written as
zr(k) ~ Ra + Rsgr + Rer + Rw k< kg (15)

From (15), o can be calculated as the slope of z, (k) versus ﬁk such that k < k;. To compute

o, two low frequencies are chosen and the corresponding resistance value is taken from the
impedance plot. Let us select these two frequencies as follows

W, = wy (16)
wp =w st w<w<w (17)

Then, the Warburg coefficient can be written as follows:

(/@ @%) (2+(a) — 2 (b))
Vs —

Now, let us consider the two arcs (SEI Arc and CT Arc) in the Nyquist plot to determine
the value of Rggy, Csgr, Ret and Cpyp. First, consider the CT Arc which occurs in lower
frequencies, i.e., wy, < w < wg,. The (Faradaic) impedance due to Rct and Cpy, in this
region, is

o=

(18)

Zp(w) = -1
) 7RCT+1ZW (/w) +]OJCDL
1 7]'(4JCDL (19)

RCT+Zw(fw)
= Wi, <w < w
T 21202 ky ky
(RCT+ZW<fw)) +w C DL

By ignoring the effect of Warburg impedance, the impedance corresponding to the CT Arc
can be written as

1 .
R —JwCoL

1 2 202
(TU) + w-CpL

Zer(w) =~ wy, < w < wy, (20)

At the peak of CT Arc, one can observe (see Figure 1b)

1
wCoL Rer  atw = wegpeak (21)
1
m(Zcr(w))] = 5Rer - atw = wer peak (22)

and the following two estimates can be obtained:
Rer = 2[Im(Zer(w))] - at w = 27 fetpeak (23)

1
CDL = ~ atw = 277'—jL‘CT,peal< (24)
wRer
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where fcrpeak denotes the frequency corresponding to the peak of the CT Arc. Let us
now consider the SEI Arc in the range of wy, < w < wy,. In this region, the impedance is
given by

Zspi(w) = 1
ﬁﬂwcsm
R —j«wCsr (25)
== W, <w < wg
L gy ky 3
ResEr

At the peak of SEI Arc, we have

1
wCspr

= Rgp1  at w = wggy peak (26)
Based on the above observation, we have

1
Im(Zsgr(w))| = 5 Rser - at @ = Wkt peak (27)

and the following two estimates can be obtained:

Regr = 2[Im(Zsgr (w))| - at w = 271 fgr peak (28)

A 1

Copr = —=—  at w = 27T fsp peak (29)
wRsEr

where fsgy peak denotes the frequency corresponding to the peak of the SEI Arc. Despite
its simplicity and low processing time, the algorithm reviewed in this section has some
drawbacks due to the effect of approximation and due to effect of measurement noise.
These effects are described next. Despite its simplicity and low processing time, the
algorithm reviewed in this section has some drawbacks, which will be analyzed in the
next section.

In this section, a previous approach presented in [32] to estimate the ECM parameters
of a battery based on the EIS Nyquist spectrum was reviewed. The reviewed approach ex-
ploits the geometric properties of the Nyquit spectrum for parameter estimation. However,
the existing approach relies on identifying feature points, such as the peak of the SEI Arc,
for parameter estimation. This approach is likely to suffer when there is significant mea-
surement noise. The next section discusses how the performance of the existing approach
may degrade in the presence of measurement noise.

5. Performance Analysis
5.1. Effect of Approximation

In Section 2, peak values of SEI Arc and CT Arc are found and the value of RC elements
are calculated using (22) to (29). However, it should be noted that, for these calculations,
the effect of estimated Warburg impedance on CT Arc is neglected. Figure 2 illustrates how
this approximation will affect the parameter estimation. For the case shown in Figure 2,
the frequency at which the CT Arc reaches its maximum value is changed by more than
50 percent (from 0.59 to 0.91); that will affect the values of Rt and Cpy, according to (23).
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Figure 2. Effect of approximation on performance. The red line shows the Nyquist plot in the absence

of Warburg impedance and the dashed line shows it when the Warburg impedance is present. The
presence of Warburg impedance affected the frequency at the peak; this will affect the estimated
value of Rer and Cpy. (see (24)).

5.2. Effect of Measurement Noise

With increasing levels of measurement noise, the approach summarized in Section 2
becomes less accurate. In order to analyze the performance, let us first define the SNR as

SNR = 10log ( Poignal > (30)
Noise

where the unit of SNR is decibels (dB). Figure 3 shows the Nyquist plots at four different

SNR values (0, 5, 15, 30 dB). The algorithm summarized in Section 2 is applied to estimate

the AR-ECM parameters in each case. The estimated parameters are then used to generate

the Nyquist plot. Ideally, both plots should coincide. It can be noticed that with increasing

noise, the discrepancies become prominent.

This section discussed the difficulties of applying geometric approaches, reviewed in
Section 4, for ECM parameter estimation when there is significant measurement noise. It
is shown that noise affects the accuracy of feature-point detection needed for parameter
estimation. This section also introduced SNR as a tool to objectively quantify the level of
measurement noise in practical applications.
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Figure 3. Effect of measurement noise on performance. Blue *.” marks show the impedance measure-
ment at various SNR levels. The dashed line shows the re-created Nyquist plot using the estimated
values based on the previous approach (Section 4).

6. Improved Approach for Parameter Estimation

Let us denote the real and imaginary parts of the frequency response at wy as

zr(k) = zr(wy) = Re(Z(wy))
zi(k) = zi(wy) = Im(Z(wy))

The frequencies at different branches of the Nyquist plot are defined as follows:

(31)

*  Warburg: wy, wy,...,wy
b CT: Wiy +1r Wiy 427+« Wiy
o SEI: Wiy +1r Why42, + s Wi
° RL: wk3+1,wk3+2, cee, Wi

1

3
4

That is, in total, there are k4 frequency pairs at which the impedance measurements
were computed. The real and imaginary parts of the impedance measurements at each of
the above frequencies are denoted as follows:

e Warburg:
[2:(0),2i(0)], [z:(1), zi(1)], - .., [zr (K1), zi (k1)] (32)
. CT:
2 (ky + 1),z (ky + 1)), (20 (k1 +2), 2i(ky +2)], ..., [20(k2), zi (k2)] (33)
 SEL

[Zy(kZ + 1),Zi(k2 + 1)], [Zr(kz + 2),Zl‘(k2 + 2)], ey [zr(k3),zi(k3)] (34)
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e RL:
[zr (ks + 1), zi(ks + 1)), [zr (ks +2), zi(ks +2)], . .., [z (ks), zi(ks)] (35)
6.1. Estimation of Warburg Coefficient
Several frequencies in the Diffusion Arc can be written as
1 1
0)—z(k1) =0 — —
Zr( ) Zr( 1) v ( \/CLTO \/Tk]>
1 1
zr(1) —z; (kg — 1) :a< — )
vV wkl vV (Uk1,1 (36)

zr(n) —zr(ky —n) = C’(\/i]—n - %)

where 1 < k1 /2. The observations in (36) were selected in such a way that the quantity
z,(i) — z,(j) could be as high as possible—this strategy is designed to reduce the effect of
noise in the observations.

The observations (36) can be written in matrix form as

Z=Dbc (37)
where
- <1 - ) -
20(0) ~ 2(k) v
zr(1) —zp (k1 — 1 -
o |7 ,’( =1 , b= ( “iy “’k11> (38)
zr(n) — zy(ky — n) ) ' )
L (\/“Jiﬂ - wkl—n )
The least-square estimate of ¢ is
;- (b2) (39)
o =
(b"D)
6.2. Estimation of CT Components
Let us denote an impedance measurement in the CT Arc as
Zy = Z;»(k) stk <k<k (40)
Zj = Zi(k) s.t. k1 <k <k
The measurements in (40) will satisfy the following circular equation
24 2 b=0
zy + z§ + azy + - (1)

(Zr+%)2+212:z*b

where it was assumed that the center of the circle lies on the real axis (see Figure 1). The
center of the circle (41) is denoted as (xcr, 0) where

a
XCcT = _E (42)
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and the radius of the circle (41) is

112
rect = Z —-b (43)

Based on (41), one can notice that the argument of the square root is always positive. It is
now easy to see that the estimate of the resistance Rt is

2 a2
Rer =24/ — —
CT 4

SH

(44)

where 4 and b are estimates of a and b, respectively.
In order to estimate 2 and b, the pairs of impedance measurements shown in (33) can
be substituted in (41) to obtain the following sets of equations

—(Zr(kl + 1)2 +Z,‘(k1 + 1)2) = azr(kl + 1) +b
—(Zr(kl +2)2 + Zi(kl +2)2) = Ler(kl +2) +b

(45)
—(2¢(k2)? + zi(ka)?) = az (k2) + b
and the above can be written in matrix form as
z = Bxcr (46)
where
—(zy(ky + 1)2 +zi(ky + 1)2) z(kp+1) 1
, —(z¢ (k1 +2) :+zl-(k1+2) ) B zr(k1:+2) 1 xer = [Z] )
(k) + 2i(k2)?) o) 1

The least-square estimate of xcr is

-1
Rep = (BTB) BTz (48)
and the estimates of 2 and b are
a=xcr(1) (49)
b= xcr(2) (50)

which will be substituted in (44) to estimate Rct. Then, for estimating Cpy, the inverse of
(19) is calculated as:

1 1
Zi@) Rt e)
— + 'LUCDL
CT o /G .
= — e Y 4 jwCpL

(Rert )+

JjwCpL

Hence,

o

o G Ve + wCpy. (52)
Zy o 2 o2

(Rer+5) + €
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and by substituting the estimate of Rct we obtain (for w = wy)
CDL (k) = L Im 1 — VO
Wk (ZF(wk)) (RCT+\/LW7>2+Z}7§ (53)
k=ki+1,k1+2,...,k»
Finally, all estimates of Cpy (k) are averaged to obtain
A 1 i L ()
CpL=7—F Cpr(k (54)
ko =k k=k;+1
6.3. Estimation of SEI Components
Let us denote an impedance measurement in the SEI Arc as
A
=z,(k) sthky<k<k
Yr R r( ) 2 > K3 (55)
Yyi = Zi(k) st ky <k <kj
The measurements in (55) will satisfy the following circular equation
VY ey +d=0 (56)

where it is assumed that the center of the circle lies on the real axis (see Figure 1). The
center of the circle (41) can be denoted as (xggg, 0), where

C
XsE1 = — 5 (57)

and the radius of the circle (41) is

e d 58
T = _——
SEI 1 (58)
By the same reasoning in Section 6.2, the argument of the square root can be shown to be

always positive. It now is easy to see that the estimate of the resistance Rcr is

A2 "
SEI = 24/ CZ —d (59)

where ¢ and d are estimates of ¢ and d, respectively.
In order to estimate c and d, the pairs of impedance measurements shown in (34) can
be substituted in (56) to obtain the following sets of equations

=

—(yr(ko + 12 +yilka + 1)) = cyr(ka + 1) +d

—(yr(ka +2)* +yi(ka +2)%) = cyr(ko +2) +d
(60)

—(yr(k3)? + yi(ks)?) = cyr(k3) +d

The above can be written in matrix form as

y = AXsgr (61)
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where

—(yr(k2 + 1) + yi(ka +1)%)
—(yr(k2 +2)? + yi(k2 +2)%)

y= . ’
—(yr(k3)* + yi(ks)?) ©2)
vk +1) 1
Yr (k2 + 2) 1 C
- . s XSEI = |:d:|
yr(k3) 1
The least-square estimate of xgg; is
—1
xse1 = (ATA) ATy (63)
and the estimates of c and d are
¢ = %sg1(1) (64)
d = gp1(2) (65)

which will be substituted in (59) to estimate Rggr. Then, Cggy is simply driven from the
inverse of (25):

1 1
— = — + jwC 66
Zsgi(w)  Rsgr JwtsH (66)

From the above, we obtain (for w = wy)

Csgr(wy) = (Cik)lm(zsml(wk)) (67)

Finally, all possible estimates of Csgy are averaged to obtain

2 1 ks _
Csm=7—— 3 Csmrl(k) (68)
ks —ka k=kp+1

6.4. Estimation of Resistance and Inductance

Finally, for a better estimation of the ohmic impedance and the inductance, the values
are averaged over a range of high frequencies (wy, < w < wy,).

A 1 ﬁ ®

Rq = zr(k (69)
ks — ks k=k3+1

R 1 b2k

L= i (70)

in which z,(k) = Re(Z(wy)) and z;(k) = Im(Z(wy)).

7. Feature-Point Extraction

This section presents robust approaches to estimate the feature points kq, k>, and k3
(see Figure 1).
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7.1. Estimation of kq

Starting from k, the Nyquist plot changes from Diffusion Arc to CT Arc. In order to
estimate ky, the fact that the Diffusion Arc is (approximately) linear is considered. Thereby,
the impedance measurements satisfy a linear model

Zj(k) = El()Zr(k) +a1 0<k<k (71)
By considering k 4+ 1 measurements, (71) can be written in vector form as follows

Zk = [Z}; 1]bd

i
Z;( = A]{;bd (72)

where subscript d denotes the Diffusion Arc and

Zi((l)) Zr((l)) 1
o zl'(:),z,;: er),lz ?,bd_[zﬂ (73)
zi(k) zr (k) 1

The least-square estimate of b, is obtained as

b= 9] = ((a1)a8) " (12)"4 o

The sum of fitting error squares is
k i 2
sy = ) (zi(n) — dy — doz,(n)) (75)

n=0

The sum of error squares around the mean is
k u 2
s = ) (zi(n) — z) (76)
n=0

= 1 k
where Z; = 57 X0 zi(n).

The correlation of fitting is given by

(77)

Figure 4 shows r* against k for two different cases of SNR.

It must be expected that r* starts to drop for k > k; because the linearity is lost after
k > kq. Considering the fact that r* demonstrates how the data fit the selected model, a
threshold of 98% on 7¥ is used to estimate the value of k.
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k; point extraction; SNR = 0 dB k; point extraction; SNR = 30 dB
5 095¢ % 095
%‘3 0.9 %D 0.9
pe] pe]
& 0.85F = 0.85F
K B
o 08f i = 08F i
9 ———Correlation of linear fit =] : —— Correlation of linear fit
= 0757 -~ Threshold (0.98) = 075" -~ Threshold (0.98)
= 07t selected & — selected
8 : X k1 8 0.7r X k1
0.65 i i i ] | | | |
200 400 600 800 200 400 600 800
Number of data points, k Number of data points, k
Diffusion Arc detection; SNR = 0 dB Diffusion Arc detection; SNR = 30 dB
0121
o1y 0.1
0.08 1
N N
= 008] =
T 0.04} T 005¢
0.02 ]
—All data —All data
0 ——Selected data| ] 0 ——Selected data| -
0.55 0.6 0.65 0.7 0.75 0.8 0.6 0.65 0.7 0.75 0.8
Re(Z) Re(Z)
(a) (b)

Figure 4. Diffusion-arc detection. The top plots show the correlation of fitting (77) along with the
threshold. The plots at the bottom show the detected Diffusion Arc in red. (a) Low SNR. (b) High SNR.

7.2. Estimation of k

The next change in the Nyquist plot occurs between CT Arc and SEI Arc at wy,. When
estimating ky, the semicircle nature of the CT Arc is taken into account. Accordingly, the
impedance measurements are in agreement with the following quadratic formula

22 (k) = apz2(k) + a1z, (k) +az ki <k <k (78)

By considering k + 1 measurements, (78) can be written in vector form as follows

o= |() o e )

z;‘ = Afb,
where subscript ¢ denotes the CT Arc and
z;(0) z;(0) 1
zi(1) zr(1) 1 o
=" A= 1= |, be= |m (80)
: : : 1,
z;(k) zy (k) 1

The least-square estimate of b, is obtained as

— <(A’§)TA’;> o (A’g) T (81)

oY
S
I
> D D

N
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The sum of fitting error squares is
F_v (2 20,1)?
sk =3 (2(n) - dy — dizo(n) — dgz2(n)) (52)
n=0

The sum of error squares around the mean is

&=y (200 - @)’ )

i=0

where (z;)2 = ki—l Zﬁzo z3(n).
The correlation of fitting is given by

(84)

Figure 5 shows r* against k for two different cases of SNR.

ky point extraction; SNR = 0 dB

ky point extraction; SNR = 30 dB

0.95 0.99

0.98 |

= Correlation of circ. fit
Correlation of circ. fit (polynomial approx.) | |

Correlation of circ. fit

Correlation of fitting (r*)
o
o
Correlation of fitting (r")

Ll Correlation of circ. fit (polynomial approx.)
0.85 * Kojow 0.97 | * Kajow
ok ok,
o) S S S S
100 200 300 400 500 600 700 100 200 300 400 500 600 700
Number of data points, k Number of data points, k
CT Arc detection; SNR = 0 dB CT Arc detection; SNR = 30 dB
0.12 1
At
0 0.1+
0.08 -
S 006 =
T 004! ——All data ] 7 0.057 —All data
’ —— Selected data —— Selected data
0.02 1 * k2,Iow il * k2,Iow
0 ok, 0 o ky
0.55 0.6 0.65 0.7 0.75 0.8 0.6 0.65 0.7 0.75 0.8
Re(Z) Re(Z)
(a (b)

Figure 5. CT Arc detection. The top plots show the correlation fitting of the (84) along with threshold.
The plots at the bottom show the detected CT arc in red. (a) Low SNR. (b) High SNR.

It is obvious that at the first data points on the left side of the k; point in the Nyquist
plot, the measured data does not fit a circular model. The point at which r* starts to increase
is approximately where the CT Arc fits a circular model and is labelled as kj jo;,. In addition,
it must be expected that ¥ starts to drop for k > k; because the CT Arc semi-circle ends at
ko. With this consideration, k; is estimated. The points between k; ;,,, and k, are used for
CT-Arc parameter estimation.
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7.3. Estimation of ks, ky

Here, k3 is easily found as the x-intercept of the Nyquist plot, i.e, if z;(k) > 0 and
zi(k+1) < 0 then k = ks.

Finally, considering the fact that wy, is the maximum frequency used in the Nyquist
plot, k4 will be the number of frequencies through which the Nyquist plot is made. Figure 6
shows how the extracted k3 and k4 are used to detect the SEI Arc and the RL Arc.

SEI Arc detection; SNR = 0 dB SEI Arc detection; SNR = 30 dB
0.12
A
0 0.1
0.08 1
= 0.06 =
T o004l —— All data | Toosf ——All data
’ —— Selected data —— Selected data
0.02 1 o k, 1 o Kk,
0 O kg ] 0 O Ky
0.55 0.6 0.65 0.7 0.75 0.8 0.6 0.65 0.7 0.75 0.8
Re(Z) Re(Z)
RL Arc detection; SNR = 0 dB RL Arc detection; SNR = 30 dB
0.12
A
0 0.1
0.08 +
= 0.06 S
T 004! ——All data T 0.05F —— All data
’ Selected data Selected data
0.02} O K : O K
0 O k4 0 O k4
0.55 0.6 0.65 0.7 0.75 0.8 0.6 0.65 0.7 0.75 0.8
Re(Z) Re(Z)
(a) (b)

Figure 6. SEI Arc and RL Arc detection. The top plots show the detected SEI arc. The plots at the
bottom depict the detected RL arc. (a) Low SNR. (b) High SNR.

In summary, this section presented the details of the proposed approach in this paper
for ECM parameter estimation based on EIS. Here, curve-fitting approaches are used to
detect specific geometric sections of the Nyquit spectrum and to estimate ECM parameters.
The next section presents detailed performance analysis of the proposed approach through
objective comparisons.

8. Results
8.1. Demonstration Using Simulated Data

In order to obtain the impedance spectrum, simulation was performed for a 1000mAh
lithium-ion battery, the parameters of which are taken from [22]. For a better comparison
with the previous approach [22], a 200 mA (C/5 Rate) DC charging current and an AC
perturbation current with a peak of 70 mA were used to be the same as that used in [22].
Perturbation signals can be in different forms, e.g., square wave, multi-sine wave, linear or
logarithmic chirps. In this paper, a series of 901 single-sine waves was used with different
frequencies in the range of 0.01 Hz to 10 kHz (k = 901 frequencies) for better resolution and
a more precise demonstration of an industrial LIBs. The battery charging current, I(t), is
represented as
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Iqc + Imsin(wlt), t<t
Iqc + Imsin(wzt), h<t<t

Ig(t) = (85)

Igc + Imsin(wit), g << i

where Iy is the DC current, Iy, is the peak of the perturbation current and each ¢ is selected
such that t, —t_1 = ﬁ, i.e., each frequency is made to have one full cycle of data.

To measure the noise effects, it is assumed that the measured current and voltage are
corrupted with Gaussian noise of the same noise variances, i.e.,

0o = 0 = I,10(-%") (86)
where SNR varies from 0 to 50 dB (0, 10, 20, 30, 40, 50 dB). The Nyquist plot was derived
for each case (each level of noise) and both the previous approach [32] and the proposed
algorithm in this article were applied to estimate the ECM parameters. The performance
of each algorithm is quantified in terms of the normalized percentage mean square error,
simply referred to hereafter as Error (%). For example, the Error (%) of estimating the
Ohmic resistance by the proposed approach is defined as

The Nyquist plot is derived for each case (each level of noise) and algorithms explained
in Sections 3, 4 and 6 are applied to estimate ECM parameters. The performance of each
algorithm is quantified in terms of the normalized percentage mean square error, simply
referred to hereafter as Error%. For example, the Error (%) of estimating the Ohmic
resistance by the proposed approach is defined as

Fa—Ra

Error(%) = 100 (87)
Ra

Each reported error measure was averaged over 100 Monte-Carlo runs.

The results of the approach proposed in this paper is compared with the previous
approach, presented in [32]. This approach is briefly described in Section 4. In the comparison
figures presented in this section, the previous approach [32] is labelled as “Previous Approach”.

Figures 7-10 present the percentage error for each of the approaches discussed in
this paper. Figure 7 compares the performance in estimating the Warburg coefficient (c).
It shows that the proposed algorithm performs better than the previous approach and
non-linear LS estimation at all SNR values. An explanation of the performance loss by
the previous approach could be that it used only two points to find the slope of a line to
estimate 0. On the other hand, the proposed algorithm used many pairs of points and
resulted in improved estimation errors. Moreover, the non-linear LS approach shows a
significant increase in error with respect to SNR. The reason for the failure of the non-linear
LS approach could be attributable to the severe non-linearity in the model when it comes
to estimating the Warburg coefficient. In addition, it is worth mentioning that the previous
approach’s performance in estimating ¢ is highly dependent on the arbitrary frequency
selected, but the proposed algorithm is more stable.

Figure 8a summarizes the performance comparison for estimating Rct. The proposed
algorithm not only outperforms the previous approach at low SNRs but also shows about
10% lower error at high-SNR regions. Once again, a possible explanation for the loss of
performance by the previous approach is that it relied on peak detection and just one
single data point for the estimation of two parameters. Figure 8a shows the non-linear
LS approach outperforming both the previous approach and the proposed approach in
estimating Rct and Cpr. However, when seen as a whole, the advantage of the non-linear
LS algorithm is severely lost in the estimation of some other parameters.
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Figure 7. Parameter estimation of the Diffusion Arc. Blue line shows the % error in parameters
estimation using previous approach. % error in parameters estimation using the proposed approach
and non-linear approach is shown in red and yellow.

Rer CpL
40 u u 50 T T u u
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——Proposed Algorithm ——Proposed Algorithm
Non-linear 40 Non-linear
301 1
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= 3
= = 20+
10+
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Figure 8. Parameter estimation of the CT Arc. Blue line shows the % error in parameters estimation
using previous approach. % error in parameters estimation using the proposed approach and non-
linear approach is shown in red and yellow.(a) Charge transfer (CT) resistance. (b) Double-layer
(DT) capacitance.

Figure 9a shows that, despite the high accuracy of the previous approach in estimating
Rsgr at high SNRs, it severely lags behind the proposed algorithm in the presence of a high
level of noise. The proposed algorithm estimates Cggy with lower errors when the SNR is
less than 10 dB compared to the previous approach. When the SNRs are higher, however,
the methods are very close. This is illustrated in Figure 9b. Moreover, the non-linear LS
approach performs poorly in estimating Rgg;. However, the non-linear LS algorithms
perform exceptionally well in the estimation of Cggy compared to both the previous and the
proposed approaches.

All the algorithms have excellent performance (error rate lower than 1%) in estimating
Rqn. However, the proposed approach has even better performance at lower SNR (error
rate lower than 0.2%) compared to the previous approach. The non-linear LS approach
performs the same at all SNRs, making it best at lower SNR and worst at higher SNR.
Although the proposed algorithm uses the same concept from the previous approach in
estimating RL Arc parameters, the reason it works better than the previous approach is the
simple averaging of the data between k3 and k4. This is also obvious from Figure 10b, which
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shows that in the presence of a high level of noise, the proposed algorithm performs much
better than the previous approach; however, both approaches are affected by estimation
bias at high SNR.

C
Rgpr ‘ e :
‘ 21 —e— Previous Approach | |
5L 1 —=o— Proposed Algorithm
Non-linear
4 4 6F
—e&— Previous Approach
3L —— Proposed Algorithm | |
Non-linear

log(error(%))
log(error(%))
o

I
T

0 10 20 30 40 50 0 10 20 30 40 50

SNR (dB) SNR (dB)
(a) (b)

Figure 9. Parameter estimation of the SEI Arc. Blue line shows the % error in parameters esti-
mation using previous approach. % error in parameters estimation using the proposed approach
and non-linear approach is shown in red and yellow.(a) Solid electrolyte interface (SEI) resistance.
(b) SEI capacitance.

’ Rq L
—=&— Previous Approach —o— Previous Approach
—o—Proposed Algorithm 20t —&— Proposed Algorithm | |
Non-linear R Non-linear
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5
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5 —— 4 $ %
— ————
\ \ l | . .
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SNR (dB) SNR (dB)
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Figure 10. Parameter estimation of the RL Arc. Blue line shows the % error in parameters estimation
using previous approach. % error in parameters estimation using the proposed approach and
non-linear approach is shown in red and yellow.(a) Ohmic resistance. (b) Stray inductance.

For a better comparison, the extracted parameters from each method were used to gen-
erate the Nyquist plot, in order to compare how well the two methods perform in following
the measurements. Figure 11a compares the performance of the previous approach and
the proposed algorithm in estimating the Nyquist plot at high SNR (SNR = 30 dB). It can
be seen clearly that although the previous method (solid blue line) estimated the battery
parameters in an acceptable range, the Nyquist plot from the proposed approach (red line)
is much closer to the measurement (purple line). However, what makes the proposed
method surpass the previous approach is its accuracy in estimating the battery parameters
in the presence of a high level of measurement noise. As shown in Figure 11b, the pro-
posed algorithm (red line) performed impressively in estimating the battery parameters
from severely corrupted signals (purple line), whereas the Nyquist plot generated by the
previous method (blue line) failed to follow the measurement (purple line). In the presence
of a high level of noise, the previous approach not only estimates the Warburg and CT Arc
with high error rates but also fails to detect the SEI Arc, a lack of which can be observed in
Figure 11b (dashed red line).
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Figure 11. Performance comparison.(Estimated parameters are used to reconstruct Nyquist plot).
(a) High SNR. (b) Low SNR.

8.2. Demonstration Using Real Data

Figure 12 shows the experimental setup consisting of an Arbin battery cycler with
Gamry interface 5000P EIS device. A relatively new cylindrical LIB (LG INR18650 M]1)
is used in the experiment. The specifications of the battery are shown in Table 1. The
SOC of the battery was nearly empty when the experiment was performed. The Gamry
EIS devise used zero DC current with a 50mA sinusoid superimposed on it. In a second
experiment, right after the first experiment, the experiment was repeated with a 200 mA
charging current and a 50 mA sinusoid superimposed on it. The output of the Gamry
EIS device is the real and imaginary values of the measured impedance, as shown in
Figure 13. The parameter-estimation algorithm proposed in Sections 3 and 6 was applied
to the impedance measurement to estimate the battery AR-ECM parameters. Table 2 shows
the estimated values of the AR-ECM parameters based on the nonlinear LS approach. It can
be seen in Table 2 that the estimated parameters are slightly different when there is a DC
current compared to the zero-mean current experiment. It can also be concluded that the
estimates with DC current could be closer to the true value. However, simulation studies
showed the ineffectiveness of the nonlinear LS algorithm in the estimation of some of the
ECM parameters. Table 3 summarizes the results of ECM parameter estimation using the
approach proposed in this paper. As expected, the estimated values are closer to the ones
obtained through the nonlinear LS approach.

Figure 12. Experimental setup.
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Figure 13. Nyquist plot for a real battery. The Nyquist plot in red depicts the impedance response
of the battery with 0.2 A DC current. The impedance response of the battery with 0 DC current is

shown in blue.

Table 1. Battery specifications.

Specification Value (unit)
Nominalcapacity 3500 mAh
Max.current 10A
Nominal voltage (Vnom) 37V
Height 65 mm
Diameter 18 mm
Weight 465 g

Table 2. Estimated parameters (nonlinear LS).

Paramter Value (0 DC current) Value (—0.2 DC current)
R 412.5 mQ) 411.3 mQ)
Rer 2.6848 mQ) 3.22 mQO)
CpL 1.000 F 1.000 F
L 1.1588 x 10~° H 1.1534 x 107 H
o 0.0584 0.0656

Table 3. Estimated parameters (proposed approach).

Paramter Value (0 DC current) Value (—0.2 DC current)
Rp 410.7 mQ) 409.7 mQ)
Rer 3.1 mQ) 3.3 m()
CpoL 1.0278 F 0.8740 F
L 1.1142 x 107 H 1.1107 x 107 ° H
o 0.0020 0.0041

Figure 14 compares the Nyquist plots of the estimated parameters from the proposed
and non-linear approaches to the real data collected at zero-DC current and nonzero-

DC current.
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Figure 14. (a) Zero DC current: This figure compares the Nyquist plots of estimated parameters
from the proposed and non-linear approaches to the real data (b) Nonzero DC current : this figure
compares the Nyquist plots of estimated parameters from the proposed and non-linear approaches to
the real data.

8.3. Discussion of Computational Complexity

In this section, the computational performance of the proposed algorithm is discussed.
The algorithms were implemented on a Ryzen 7 5800H 8-core CPU which had 4.4 GHz max
speed. The operating system was Windows 11. Table 4 shows the average computation time
taken by the non-linear LS, previous approach and proposed approach for one run. Given
the Nyquist plot, Table 4 shows the time taken by the respective algorithms to compute
the parameters.

Table 4. Comparison of computational time.

Non-Linear LS (Section 3) Previous (Section 4) Proposed (Section 6)
2.188 0.051 0.081

9. Conclusions

This paper presented an approach to estimate the equivalent-circuit-model (ECM) pa-
rameters of a battery based on electrochemical impedance spectroscopy (EIS). The proposed
approach exploits the expected geometric features of the Nyquist plot of battery impedance
for ECM parameter estimation. The Nyquist plot of the battery is divided into four sections,
namely, the ‘Diffusion Arc’, ‘CT Arc’, ‘SEI Arc’ and the ‘RL Arc’; each arc is shown to
correspond to different ECM parameters. First, an approach based on the correlation of
curve fitting was used to detect the boundaries of each of these four arcs in the Nyquist
plot. Once these arcs are detected, specific parameter-estimation approaches, based on
least squares estimation, was used to estimate the ECM parameters of the battery. The
proposed approach was shown to be superior to an existing method. Further, a non-linear
least squares estimation approach was implemented to evaluate the proposed approach.
Compared to the non-linear estimation approach, the proposed approach was found to
have comparable performance, robustness, and computational simplicity.

There are several limitations in the present work which need to be addressed by future
researchers. First, the performance of the present work was not compared against any
theoretical error bounds. Indeed, a theoretical performance bound for the ECM parameters
of a battery based on EIS is still to be derived. One of the observations from the present
work is that the non-linear estimation approaches offer better estimation accuracy for
some parameters, whereas the proposed approach offers robustness. Hence, a hybrid
approach could be developed to combine the benefits of both a non-linear approach and
the proposed linear approach in this paper. Further, EIS techniques, in general, are time-
consuming, especially at the low-frequency spectrum, i.e., in estimating the parameters
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of the Diffusion Arc; hence, further techniques must be explored to rapidly estimate the
parameters of the diffusion arc. One of the advantages of the proposed approach is that
the parameter estimation for each arc can be performed separately; for this, an approach
must be developed to detect each arc of the Nyquist plot separately so that the parameter-
estimation approach can be decoupled.
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