

晶采光電科技股份有限公司 AMPIRE AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AC-202A
APPROVED BY	
DATE	

AMPIRE CO., LTD. TOWER A, 4F, No.114, Sec. 1, HSIN-TAI 5th RD., HIS-CHIH, TAIPEI HSIEN, TAIWAN(R.O.C.)

台北縣汐止鎮新台五路一段114號4樓(東方科學園區A棟) TEL:886-2-26967269, FAX:886-2-26967196 or 886-2-26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

AMPIRE CO., LTD. Date: 2001/12/12

RECORD OF REVISION

Revision Date	Page	Contents
1999/9/1	-	New Release
2000/10/5	14	Modify Sampling Plan
2000/10/27	3, 6	Add Blue LED Back-light.
2001/5/7	5	Correct the LED forward current (500 > 210 mA)
2001/12/12		Modify LED characteristic

1 FEATURES

(1) Display format : 20 characters \times 2 lines

(2) Construction: STN LCD panel, Bezel, Zebra and PCB.

(3) Option: Array / Edge LED or EL back-light.

(4) Controller: KS0066U or Equivalent.

(5) 5V or 3.3V single power input. Built-in DC/DC converter.

(6) Normal / Extended temperature type.

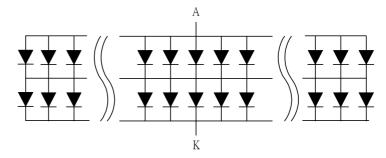
(7) Excellent LC: VOP maintains at 5V for whole temp. range, no need extra temp. compensation circuit.

2 NUMBERING SYSTEM

No	Code Value	Description	Remark
1	G	STN gray type LCD	LCD Type
	Y	STN yellow green type LCD	
	S	STN negative type LCD	
2	A	Reflective type / 6:00 view	Polarizer / Viewing Angel
	В	Reflective type / 12:00 view	
	I	Transflective type / 6:00 view	
	J	Transflective type / 12:00 view	
	Т	Negative type / 6:00 view	
	U	Negative type / 12:00 view	
3	None	Without backlight	Backlight type
	Q	Edge type LED	
	L	5V LED	
	Е	EL	
4	None	Without backlight	Backlight color
	Y	Yellow-green (LED)	
	В	Blue (EL/LED)	
	W	White (EL/LED)	
5	None	Normal temperature type	LCM temperature type
	Н	Extended temperature type	

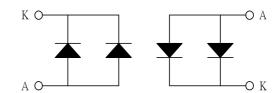
3 MECHANICAL DATA

Parameter	Stand Value	Unit
Dot size	$0.60(W) \times 0.65(H)$	mm
Dot pitch	$0.65(W) \times 0.70(H)$	mm
Character size	3.20(W) × 5.55(H)	mm
Viewing area	83.0(W) × 18.5(H)	mm
Module size	116.0(W) ×37.0(H) × 10.0max (T)	mm
Module size (w/ LED back-light)	$116.0(W) \times 37.0(H) \times 14.5 max (T)$	mm


4 ABSOLUTE MAXIMUM RATINGS

Para	meter	Symbol	Min	Max	Unit
Logic Circuit Supply Voltage		VDD-VSS	-0.3	7.0	V
LCD Driv	VDD-VO	-0.3	10.0	V	
Input Voltage		VI	-0.3	VDD+0.3	V
Normal temp. type	Operating Temp.	ТОР	0	50	°C
	Storage Temp.	TSTG	-20	70	°C
Extended temp. type Operating Temp.		ТОР	-20	70	°C
	Storage Temp.	TSTG	-30	80	°C

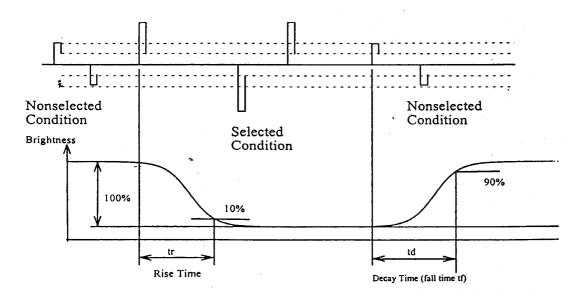
5 ELECTRO-OPTICAL CHARACTERISTICS


Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note	
	,	Electro	nic Chara	cteristics				
Logic Circuit Supply Voltage	VDD-VSS		4.5	5.0	5.5	V		
LCD Driving	VDD-VO	-20 °C	4.75	5.0	5.25	V	$0 \sim 50$ °C for	
Voltage		0 °C	4.75	5.0	5.25	•	Normal Temp.	
		25 °C	4.75	5.0	5.25	•	type $-20 \sim 70$ °C for	
		50 °C	4.75	5.0	5.25	•	Extended Temp.	
		70 °C	4.75	5.0	5.25	•	type	
Input Voltage	VIH		0.7 VDD		VDD	V		
	VIL		VSS		0.3 VDD	V		
Logic Supply Current	IDD	VDD = 5V		1.2	1.7	mA		
		Optica	al Charact	eristics -				
Contrast	CR	25°C		5			Note 1	
Rise Time	tr	25°C		200	300	ms	Note 2	
Fall Time	tf	25°C		200	300	ms		
Viewing Angle	θf	25°C &		40			Note 3	
Range	θЬ	CR≥2		35		Deg.		
	θ1			35				
	θr			35				
Frame Frequency	fF	25°C		64		Hz		
Yellow-green LED Back-light Characteristics								
Forward Voltage	VF			4.05	4.3	V	Supply Voltage between A&K	
Forward Current	IF	VF=4.05V		210		mA		
LCM Luminou	s intensity	VF=4.05V		35		cd/m ²		

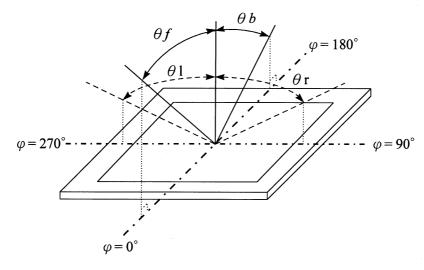
* LED Dice number = $2 \times 21 = 42$

Blue edge LED Back-light Characteristics							
Forward Voltage	VF		1	3.6	4.3	V	Supply Voltage between A&K
Forward Current	IF	VF=3.6V		80		mA	
LCM Luminou	s intensity	VF=3.6V		12		cd/m ²	

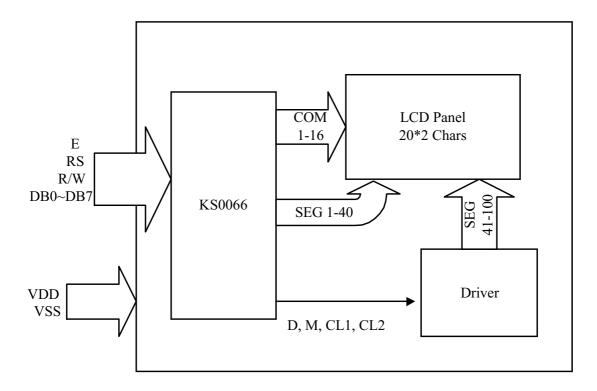
^{*} LED Dice number = $2 \times 2 = 4$



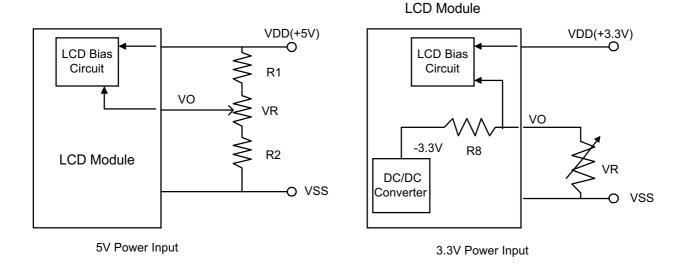
EL Back-light Characteristics						
Parameter Min Typ Max Unit Note						
Driving Voltage		110		Vrms		
Frequency		400		Hz		
LCM Luminous intensity		15		cd/m ²		

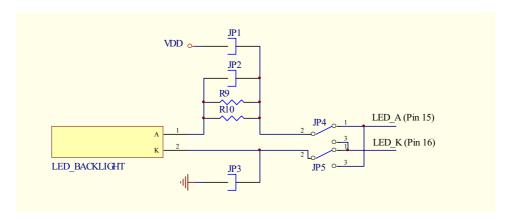

(NOTE 1) Contrast ratio:

CR = (Brightness in OFF state) / (Brightness in ON state)

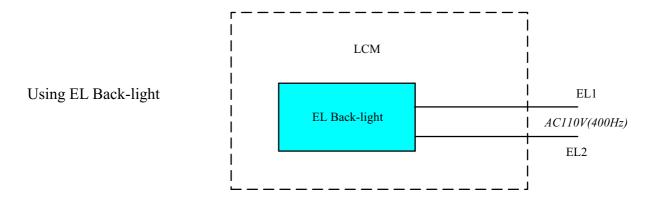

(NOTE 2) Response time :

(NOTE 3) Viewing angle

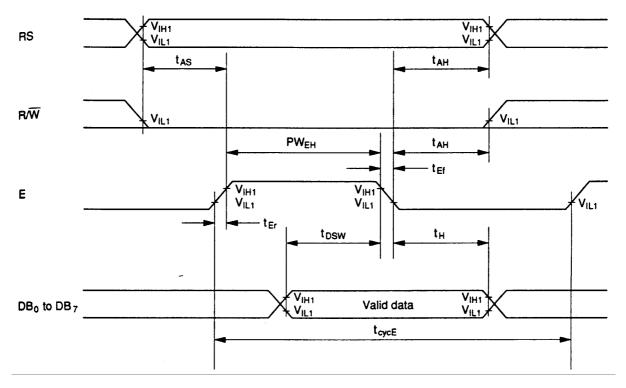



6 BLOCK DIAGRAM & INTERFACE

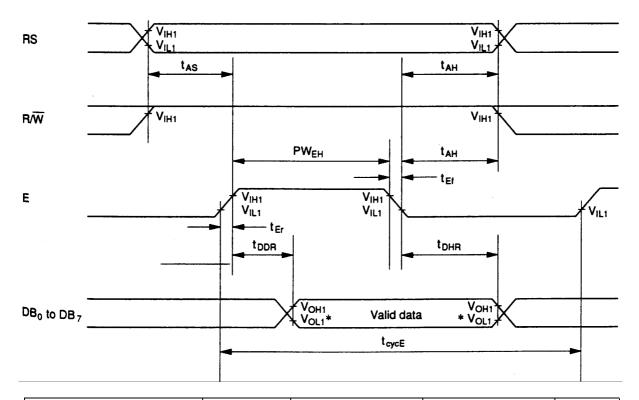
No.	Symbol	Function
1	VSS	Ground (0V)
2	VDD	Supply Voltage for Logic (+5V or +3.3V)
3	VO	Contrast Adjustment
4	RS	Data/Instruction Select
5	R/W	Read/Write Select
6	Е	Enable Signal
7	DB0	Data Bus
8	DB1	Data Bus
9	DB2	Data Bus
10	DB3	Data Bus
11	DB4	Data Bus
12	DB5	Data Bus
13	DB6	Data Bus
14	DB7	Data Bus
15	LED_A	LED Power Supply + (5V)
16	LED_K	LED Power Supply - (5V)


7 POWER SUPPLY

There are four methods to light up the LED back-light: (Please indicate while ordering.)


- (1) Built-in current-limit resistor(R9/R10). Add +5V between Pin15&16. (Default)
- (2) Add +4.05V between LED A & K directly.
- (3) Short JP2 and add +4.05V between Pin15&16.
- (4) Built-in current-limit resistor(R9/R10) and short JP1&JP3. Use the same power (+5V) with the logic circuit.

Date: 2001/12/12 AMPIRE CO., LTD.


8 TIMING CHARACTERISTICS

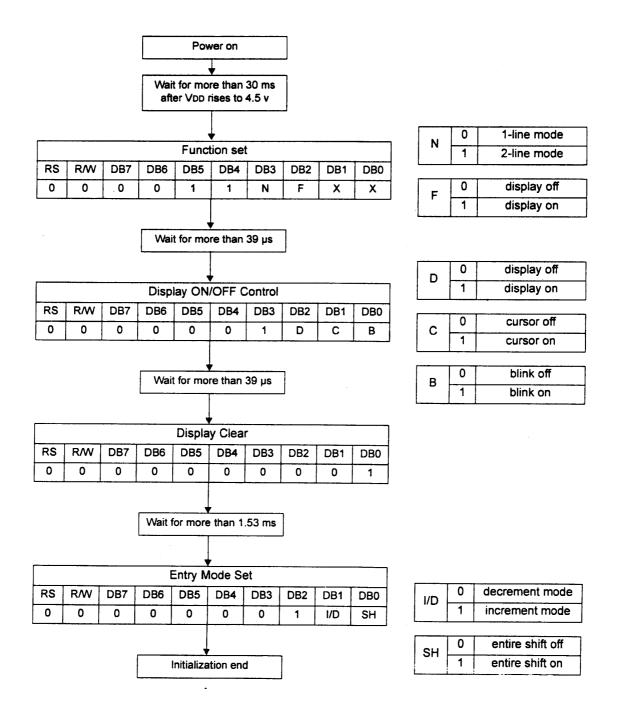
Write Operation

Item	Symbol	VDD=5V		VDD=	=3.3V	Unit
		Min	Max	Min	Max	
Enable cycle time	tcycE	500		1000		ns
Enable pulse width	PWEH	230		450		
Enable rise/fall time	tEr,tEf		20		25	
Address set-up time (RS, R/W to E)	tAS	40		60		
Address hold time	tAH	10		20		
Data set-up time	tDSW	80		195		
Data hold time	tH	10		10		

Read Operation

Item	Symbol	VDD=5V		VDD=	=3.3V	Unit
		Min	Max	Min	Max	
Enable cycle time	tcycE	500		1000		ns
Enable pulse width	PWEH	230		450		
Enable rise/fall time	tEr,tEf		20		25	
Address set-up time (RS, R/W to E)	tAS	40		60		
Address hold time	tAH	10		20		
Data delay time	tDDR		120		360	
Data hold time	tDRH	5		5		

9 INSTRUCTION SET


Instruction	Code										Description	E.T.(fosc
	RS	R/ W	D7	D6	D5	D4	D3	D2	D1	D0		=270 KHZ)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write"20H" to DDRAM and set DDRAM address to "00H" from AC	1.53 ms
Return Home	0	0	0	0	0	0	0	0	1	-	Sets DD RAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53 ms
Entry Mode SET	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	39 μS
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and blink of cursor (B) on/off control bit.	39 μS
Cursor or Display Shift	0	0	0	0	0	1	S/ C	R/ L			Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39 μS
Function Set	0	0	0	0	1	DL	N	F			Sets interface data length (DL:8-bit/4-bit), number of display lines (N:2-line/1-line) and , display font type (F:5x11dots/5x8 dost).	39 μS
Set CG RAM Address	0	0	0	1	AC 5	AC 4	AC 3	AC 2	AC 1	AC 0	Sets CG RAM address in address counter.	39 μS
Set DD RAM Address	0	0	1	AC 6	AC 5	AC 4	AC 3	AC 2	AC 1	AC 0	Sets DD RAM address in address counter.	39 μS
Read Busy Flag and Address	0	1	BF	AC 6	AC 5	AC 4	AC 3	AC 2	AC 1	AC 0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 μS
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Writes data into internal RAM (DD RAM /CG RAM).	43 μS
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Reads data from internal RAM (DD RAM /CG RAM).	43 μS

^{* &}quot;--": don't care

Date: 2001/12/12

Note: When an MPU program with checking the Busy Flag(DB7) is made, it must be necessary 1/2Fosc is necessary for executing the next instruction by the falling edge of the 'E' signal after the Busy Flag(DB7) goes to "LOW".

10 INITIALIZATION SEQUENCE

11 DD RAM ADDRESS

CHAR.	1	2	3	•••	18	19	20
LINE 1	00	01	02	•••	11	12	13
LINE 2	40	41	42	•••	51	52	53

12 FONT TABLE

Upper 4bit Lower 4bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	гннг	гинн	HLLL	нлн	ніні	нгин	ннгг	нлин	нинт.	нннн
LLLL	CG RAM (1)															
LLLH	(2)															
LLIIL	(3)															
LLIIII	(4)															
LHLL	(5)															
LHLH	(6)															
ГННГ	(7)				ECC33					000000000000000000000000000000000000000						
ГННН	(8)															
HLLL	(1)									00000 00000 00000 00000 00000 00000 0000						
HLLH	(2)	55555							CCC00 CC00 CC0 CC00 C00 CC0 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC0 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC0 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC00 CC0 C0							
HLHL	(3)	66833			88888											
нінн	(4)									22222						
HHLL					-0000 -0000 -0000											
ннін			00000 00000 00000 00000 00000													
нии	1															
нннн	(8)															

13 QUALITY AND RELIABILITY

13.1 TEST CONDITIONS

Tests should be conducted under the following conditions:

Ambient temperature : 25 ± 5 °C

Humidity : $60 \pm 25\%$ RH.

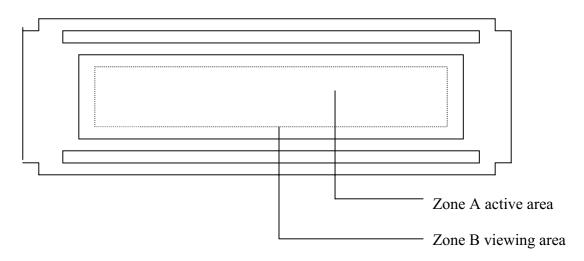
13.2 SAMPLING PLAN

Sampling method shall be in accordance with MIL-STD-105E, level II, normal single sampling plan.

13.3 ACCEPTABLE QUALITY LEVEL

A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation.

13.4 APPEARANCE


Date: 2001/12/12

An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under flourescent light. The inspection area of LCD panel shall be within the range of following limits.

15

13.5 INSPECTION QUALITY CRITERIA

Item	Description	of de	fects		Class of Defects	Acceptable level (%)		
Function	Short circuit o	Major	0.65					
Dimension	Deviation from	Deviation from drawings						
Black spots	Ave . dia . D	area A	A	area B	Minor	2.5		
	D≤0.2	Г	isrega	ard	Ī			
	0.2 <d≤0.3< td=""><td>3</td><td></td><td>4</td><td>Ī</td><td></td></d≤0.3<>	3		4	Ī			
	0.3 <d≤0.4< td=""><td>2</td><td colspan="2">3</td><td>Ī</td><td colspan="3"></td></d≤0.4<>	2	3		Ī			
	0.4 <d< td=""><td>0</td><td></td><td>1</td><td>1</td><td></td></d<>	0		1	1			
Black lines	Width W, Length	Ĺ	A	В	Minor	2.5		
	W≤0.03		dis	regard				
	0.03 <w≤0.05< td=""><td></td><td>3</td><td>4</td><td></td><td></td></w≤0.05<>		3	4				
	0.05 <w≤0.07, l≤3<="" td=""><td>3.0</td><td>1</td><td>1</td><td></td><td></td></w≤0.07,>	3.0	1	1				
	See line	criteria		•	1			
Bubbles in	Average diameter D	0.2 < I	0 < 0.1	5 mm	Minor	2.5		
polarizer	for $N = 4$, $D >$	0.5 for	N = 1					
Color uniformity	Rainbow color o	r newto	n ring		Minor	2.5		
Glass	Obvious visib	ole dama	age.		Minor	2.5		
Scratches								
Contrast	See no		Minor	2.5				
ratio								
Response	See no	ote 2		Minor	2.5			
time								
Viewing angle	See no	Minor	2.5					

13.6 RELIABILITY

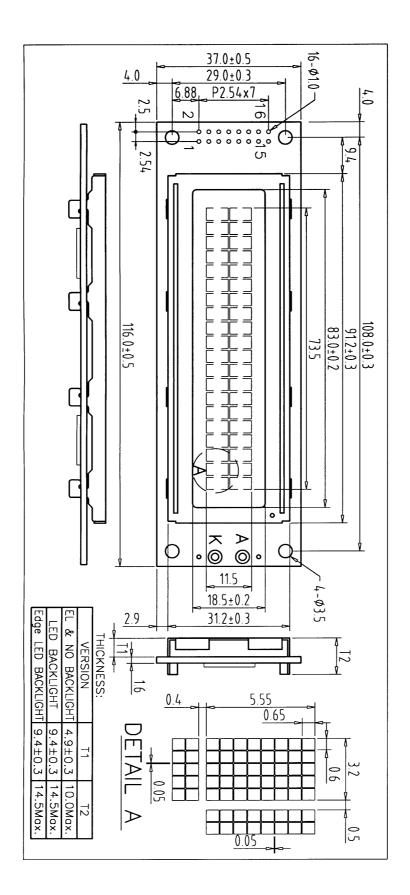
	Test Conditions								
Test Item	Normal Temp. type	Extended Temp. type	Note						
High Temperature Operation	50±3°C, t=96 hrs	70±3°C, t=96 hrs							
Low Temperature Operation	0±3°C, t=96 hrs	-20±3°C, t=96 hrs							
High Temperature Storage	70±3°C, t=96 hrs	80±3°C, t=96 hrs	1,2						
Low Temperature Storage	-20±3°C, t=96 hrs	-30±3°C, t=96 hrs	1,2						
Temperature Cycle	-20°C ~ 25°C ~ 70°C 30 m in. 5 min. 30 min. (1 cycle) Total 5 cycle		1,2						
Humidity Test	40 °C, Humidity 90%, 96 hrs								
Vibration Test (Packing) Sweep frequency: 10 ~ 55 ~ 10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis									

Note 1: Condensation of water is not permitted on the module.

Note 2: The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.


14 HANDLING PRECAUTIONS

- (1) A LCD module is a fragile item and should not be subjected to strong mechanical shocks.
- (2) Avoid applying pressure to the module surface. This will distort the glass and cause a change in color.
- (3) Under no circumstances should the position of the bezel tabs or their shape be modified.
- (4) Do not modify the display PCB in either shape or positioning of components.
- (5) Do not modify or move location of the zebra or heat seal connectors.
- (6) The device should only be soldered to during interfacing. Modification to other areas of the board should not be carried out.
- (7) In the event of LCD breakage and resultant leakage of fluid do not inhale, ingest or make contact with the skin. If contact is made rinse immediately.
- (8) When cleaning the module use a soft damp cloth with a mild solvent, such as Isopropyl or Ethyl alcohol. The use of water, ketone or aromatic is not permitted.
- (9) Prior to initial power up input signals should not be applied.

Date: 2001/12/12

(10) Protect the module against static electricity and observe appropriate anti-static precautions.

15 OUTLINE DIMENSION

