
Nutzung der SPI-Hardware im PIC24 zur Steuerung des 1-Wire-Bus (Temperatursensoren).

Zur Steuerung wird die Hardwareeinheit SPI des PIC24 eingesetzt, diese formt das Signal und Timing autark mit der
Hardware, nach jedem Symbol-Rahmen wird ein Interrupt (Rx) ausgelöst und die weitere Abfolge per Software
gesteuert.
Vorteil, Zeitkritische Anteile des Signals werden per Hardware erzeugt, verbraucht auch keine CPU-Rechenleistung.
Wenn dann nicht die zeitkritische Aneinanderreihung per Software gesteuert wird, können andere zeitkritische
Aufgaben der CPU in höher priorisierten Interrupts abgearbeitet werden.

SPI-Config:
Pin Config: SDOx und SDIx an selben RPx-Pin; OpenDrain = 1; (extern Pull-Up an Pin; 4,7k); SCKx und CS not used;
Mode: 16-Bit; SDOx: CKE = 0; CKP = 0; Input-Sample SDIx: SMP = 0; (Wichtig, da sonst der IRQ SRMT zu früh
ausgelöst wird!)
Baudrate-Generator (BRG) = 548 für Reset-Signal; 36 für DataBits-Signal (Basis 16 MHz CPU-Clock)
SPI-Send-Data für Reset-Signal: 0b0000000011111111 = 0x00FF (16-Bit)
SPI-Send-Data für Write-0-Signal: 0b0000000000000111 = 0x0003 (16-Bit)
SPI-Send-Data für Write-1-Signal: 0b0011111111111111 = 0x3FFF (16-Bit)
Zum Lesen vom 1-Wire-Bus wird auch ein Write-1-Signal gesendet und dann das gesampelte Bit-12 ausgewertet.
Der Präsens-Impuls wird in Bit 6 und 7 (mind. 1 der beiden auf Low) gelesen.

Reset

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

BRG: 548
1 Bit ≙ 68,625 µs
7 Bit ≙ 480,375 µs
8 Bit ≙ 549 µs

BRG: 549 (Alternative zum Testen)

1 Bit ≙ 68,75 µs
7 Bit ≙ 481,25 µs
8 Bit ≙ 550 µs

Write-0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Write-1 / Read-x

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BRG: 36
1 Bit ≙ 4,625 µs
2 Bit ≙ 9,25 µs
3 Bit ≙ 13,875 µs
13 Bit ≙ 60,125 µs

BRG: 37 (Alternative zum Testen)

1 Bit ≙ 4,75 µs
2 Bit ≙ 9,5 µs
3 Bit ≙ 14,25 µs
13 Bit ≙ 61,75 µs

Master (vom SPI-Modul generiert):
Slave (vom Slave-Device / Temperatursensor generiert):

Sample (End of Bit 3)

SlaveData

Sample (End of Bit 6 / 7)

Presenspuls

550µs

480µs 480µs

60µs

13,8µs

9µs

Code for usage with DS18B20 Temperaturesensor:

#define C_SPI_1W_Reset_BRG 548 // 7 LowBits = 480us; => 14583Hz => 16MHz / 14583Hz = 1097; Div2 -1 => 548
#define C_SPI_1W_Data_BRG 36 // 13 LowBits = 60us; => 216666Hz => 16MHz / 216666Hz = 74; Div2 -1 => 36
#define C_SPI_1W_Reset 0b1000000011111111
#define C_SPI_1W_Write_0 0b1000000000000011
#define C_SPI_1W_Write_1 0b1001111111111111

 typedef union __attribute__((packed))
 {
 uint8_t Val;

 struct __attribute__((packed))
 {
 uint8_t b0 : 1;
 uint8_t b1 : 1;
 uint8_t b2 : 1;
 uint8_t b3 : 1;
 uint8_t b4 : 1;
 uint8_t b5 : 1;
 uint8_t b6 : 1;
 uint8_t b7 : 1;
 }
 bits;
 }
 UINT8_VAL;

 typedef union __attribute__((packed))
 {
 uint16_t Val;
 uint8_t v[2];

 struct __attribute__((packed))
 {
 uint8_t LB;
 uint8_t HB;
 }
 byte;

 struct __attribute__((packed))
 {
 uint8_t b0 : 1;
 uint8_t b1 : 1;
 uint8_t b2 : 1;
 uint8_t b3 : 1;
 uint8_t b4 : 1;
 uint8_t b5 : 1;
 uint8_t b6 : 1;
 uint8_t b7 : 1;
 uint8_t b8 : 1;
 uint8_t b9 : 1;
 uint8_t b10 : 1;
 uint8_t b11 : 1;
 uint8_t b12 : 1;
 uint8_t b13 : 1;
 uint8_t b14 : 1;
 uint8_t b15 : 1;
 }
 bits;
 }
 UINT16_VAL;

 typedef union __attribute__((packed))
 {

 struct
 {
 uint8_t Val[11];
 uint8_t BufferLen;
 uint8_t BufferIdx;
 uint8_t BitCount;
 UINT8_VAL TxByte;
 UINT8_VAL RxByte;
 uint8_t OW_Reset;
 uint8_t PresencePulse;
 uint8_t Result; // 0:Runing; 1:Ready; 0xff:Error;
 };

 struct
 {
 uint8_t ROM_CMD;
 uint8_t Function_CMD;
 uint8_t Temp_LSB;
 uint8_t Temp_MSB;
 uint8_t Temp_H;
 uint8_t Temp_L;
 uint8_t Config;
 uint8_t Res[3];
 uint8_t CRC;
 } CC_Read;

 struct
 {
 uint8_t ROM_CMD;
 uint8_t Function_CMD;
 uint8_t Temp_H;
 uint8_t Temp_L;
 uint8_t Config;
 } CC_Write;

 }
 t_1WireBuffer;

Hardware-Setup:

 ODCxbits.ODCxy = 1;
 LATxbits.LATxy = 1;
 TRISxbits.TRISxy = 0;
 _RPx = _RPOUT_SDO1; // SDO1 and SDI1 on same Pin.
 _SDI1R = x; // SDO1 and SDI1 on same Pin.

 // SPI Config; used for 1-Wire-Bus
 SPI1CON1 = 0;
 SPI1CON1Lbits.ENHBUF = 0; // Enhanced Buffer mode is disabled
 SPI1CON1Lbits.MCLKEN = 0; // Peripheral clock is used by the BRG
 SPI1CON1Lbits.DISSCK = 1; // SCKx pin is not used by the module; pin is controlled by the port function
 SPI1CON1Lbits.MSTEN = 1; // Host mode
 SPI1CON1Lbits.SSEN = 0; // SSx pin is not used by the macro (SSx pin will be controlled by the port I/O)
 SPI1CON1Lbits.CKE = 0; // Transmit happens on transition from Idle clock state to active clock state
 SPI1CON1Lbits.SMP = 0; // Input data are sampled at the middle of data output time
 SPI1CON1Lbits.MODE = 0b01; // 16-Bit;
 SPI1CON1H = 0;
 SPI1CON1Hbits.FRMEN = 0; //Framed SPI support is disabled
 SPI1CON1Hbits.IGNTUR = 1; // A Transmit Underrun (TUR) is NOT a critical error and data indicated by URDTEN are transmitted until
the SPI1TXB is not empty
 SPI1CON1Hbits.IGNROV = 1; // A Receive Overflow (ROV) is NOT a critical error; during ROV, data in the FIFO are not overwritten
by the receive data
 SPI1CON1Hbits.AUDEN = 0; // Audio protocol is disabled
 SPI1CON2L = 0; // See MODE[32,16] bits in SPI1CON1L[11:10]
 SPI1STATL = 0;
 SPI1STATH = 0;
 SPI1BRGL = C_SPI_1W_Reset_BRG;
 SPI1IMSKL = 0;
 SPI1IMSKLbits.SRMTEN = 1; // Shift Register Empty (SRMT) generates interrupt events
 SPI1IMSKLbits.SPIRBFEN = 1; // SPI receive buffer full generates an interrupt event
 SPI1IMSKH = 0;
 SPI1URDTL = 0;
 SPI1URDTH = 0;
// SPI1CON1Lbits.SPIEN = 1;
 _SPI1IP = 1; // Priority 1
 _SPI1IF = 0;
 _SPI1IE = 1;
 _SPI1RXIP = 7; // Priority 7, Achtung hier hohe Priorität, es wird nur 1 ConfigBit gesetzt und Irq-Flag gelöscht. Siehe Irq-
Function
 _SPI1RXIF = 0;
 _SPI1RXIE = 1;

Helper Function:

//CRC

int calc_crc(int data_byte, int crc)
{
 int bit_mask = 0, carry_check = 0, temp_data = 0;
 temp_data = data_byte;
 for (bit_mask = 0; bit_mask <= 7; bit_mask++)
 {
 data_byte = data_byte ^ crc;
 crc = crc / 2;
 temp_data = temp_data / 2;
 carry_check = data_byte & 0x01;
 if (carry_check)
 {
 crc = crc ^ 0x8C;
 }
 data_byte = temp_data;
 }
 return (crc);
}

//==
//calculates checksum for n bytes of data
//and compares it with expected checksum
//input: data[] checksum is built based on this data
//
// nbrOfBytes checksum is built for n bytes of data checksum
//return: error:
// expected checksum CHECKSUM_ERROR = checksum does not match 0 = checksum matches
//==
uint8_t CheckCrc(uint8_t data[], uint8_t nbrOfBytes, uint8_t checksum)
{
 uint8_t crc = 0, i;
 for (i = 0; i < nbrOfBytes; i++)
 {
 crc = calc_crc(data[i], crc);
 }
 if (crc != checksum)
 {
 return 1;
 }
 else
 {
 return 0;
 }
}

Interrupt-Function:

volatile t_1WireBuffer Ch1_1WireBuffer;

void __attribute__((__interrupt__, no_auto_psv)) _SPI1RXInterrupt(void)
{
 SPI1CON1Lbits.DISSDO = 1;
 _SPI1RXIF = 0;
}

void __attribute__((__interrupt__, no_auto_psv)) _SPI1Interrupt(void)

{
 _SPI1IF = 0;

 t_UINT16_VAL RxBuff = {.Val = SPI1BUFL};
 SPI1STATL = 0;
 if (Ch1_1WireBuffer.OW_Reset)
 { // OW Reset
 Ch1_1WireBuffer.OW_Reset = 0;
 Ch1_1WireBuffer.RxByte.Val = 0;
 Ch1_1WireBuffer.TxByte.Val = Ch1_1WireBuffer.Val[0];
 Ch1_1WireBuffer.BitCount = 7;
 Ch1_1WireBuffer.BufferIdx = 0;
 Ch1_1WireBuffer.PresencePulse = (!RxBuff.bits.b6) || (!RxBuff.bits.b7);
 if (Ch1_1WireBuffer.PresencePulse)
 {
 SPI1CON1Lbits.SPIEN = 0;
 SPI1BRGLbits.BRG = C_SPI_1W_Data_BRG;
 _SPI1IE = 0;
 SPI1CON1Lbits.SPIEN = 1;
 if (Ch1_1WireBuffer.TxByte.bits.b0 & 0x01)
 {
 _GIE = 0;
 SPI1BUFL = C_SPI_1W_Write_1;
 SPI1CON1Lbits.DISSDO = 0;
 _GIE = 1;
 }
 else
 {
 _GIE = 0;
 SPI1BUFL = C_SPI_1W_Write_0;
 SPI1CON1Lbits.DISSDO = 0;
 _GIE = 1;
 }
 _SPI1IF = 0;
 _SPI1IE = 1;
 }
 else
 {
 Ch1_1WireBuffer.Result = 0xff;
 }
 }
 else
 { // DataTransfer
 // int8_t i = 0; // Alternativ kann über 3 Bits bei verrauschten Leitungen das Bit ermittelt werden.
 // if (RxBuff.bits.b12)
 // {
 // i++;
 // }
 // else
 // {
 // i--;
 // }
 // if (RxBuff.bits.b11)
 // {
 // i++;
 // }
 // else
 // {
 // i--;
 // }
 // if (RxBuff.bits.b10)
 // {
 // i++;
 // }
 // else
 // {
 // i--;
 // }
 // RxBuff.bits.b3 = (i > 0);
 Ch1_1WireBuffer.RxByte.Val >>= 1;
 Ch1_1WireBuffer.RxByte.bits.b7 = RxBuff.bits.b12;
 if (Ch1_1WireBuffer.BitCount)
 {
 Ch1_1WireBuffer.BitCount--;
 Ch1_1WireBuffer.TxByte.Val >>= 1;
 if (Ch1_1WireBuffer.TxByte.bits.b0 & 0x01)
 {
 _GIE = 0;
 SPI1BUFL = C_SPI_1W_Write_1;
 SPI1CON1Lbits.DISSDO = 0;
 _GIE = 1;
 }
 else
 {
 _GIE = 0;
 SPI1BUFL = C_SPI_1W_Write_0;
 SPI1CON1Lbits.DISSDO = 0;
 _GIE = 1;
 }
 }
 else
 { // Check Next Byte
 Ch1_1WireBuffer.Val[Ch1_1WireBuffer.BufferIdx] = Ch1_1WireBuffer.RxByte.Val;
 Ch1_1WireBuffer.BufferIdx++;
 if (Ch1_1WireBuffer.BufferIdx < Ch1_1WireBuffer.BufferLen)
 {
 Ch1_1WireBuffer.BitCount = 7;

 Ch1_1WireBuffer.TxByte.Val = Ch1_1WireBuffer.Val[Ch1_1WireBuffer.BufferIdx];
 if (Ch1_1WireBuffer.TxByte.bits.b0 & 0x01)
 {
 _GIE = 0;
 SPI1BUFL = C_SPI_1W_Write_1;
 SPI1CON1Lbits.DISSDO = 0;
 _GIE = 1;
 }
 else
 {
 _GIE = 0;
 SPI1BUFL = C_SPI_1W_Write_0;
 SPI1CON1Lbits.DISSDO = 0;
 _GIE = 1;
 }
 }
 else
 { // transfer complete
 if (CheckCrc((uint8_t*) & Ch1_1WireBuffer.Val[2], 8, Ch1_1WireBuffer.CC_Read.CRC))
 // if (CheckCrc((uint8_t*) & Ch1_1WireBuffer.Val[2], Ch1_1WireBuffer.BufferLen - 3,
Ch1_1WireBuffer.CC_Read.CRC)) todo
 { // CRC Error
 Ch1_1WireBuffer.Result = 0xfe;
 }
 else
 { // CRC OK
 Ch1_1WireBuffer.Result = 0x01;
 }
 }
 }
 }
}

Control-Function:

void OW_Ch1_TransferBuffer(uint8_t Read1Bit)
{
 Ch1_1WireBuffer.Result = 0;
 if (Read1Bit)
 {
 Ch1_1WireBuffer.OW_Reset = 0;
 Ch1_1WireBuffer.RxByte.Val = 0;
 Ch1_1WireBuffer.TxByte.Val = 0;
 Ch1_1WireBuffer.BitCount = 0;
 Ch1_1WireBuffer.BufferIdx = 0;
 Ch1_1WireBuffer.BufferLen = 0;
 _GIE = 0;
 SPI1BUFL = C_SPI_1W_Write_1;
 SPI1CON1Lbits.DISSDO = 0;
 _GIE = 1;
 }
 else
 {
 SPI1CON1Lbits.SPIEN = 0;
 SPI1BRGLbits.BRG = C_SPI_1W_Reset_BRG;
 _SPI1IE = 0;
 SPI1CON1Lbits.SPIEN = 1;
 Ch1_1WireBuffer.OW_Reset = 1;
 SPI1BUFL = C_SPI_1W_Reset;
 SPI1CON1Lbits.DISSDO = 0;
 _SPI1IF = 0; // Nach SPIEN = 1; wird das IRQ-Flag gesetzt, muss gelöscht werden da IRQ erst nach übertragung der Buffer Daten
ausgelöst werden soll.
 _SPI1IE = 1;
 }
}

Usage:
Set Ch1_1WireBuffer then call OW_Ch1_TransferBuffer(0); and Wait for Completition of BufferTransfer
(Ch1_1WireBuffer.Result != 0) 1=OK; 0xff= Error

 memset(Ch1_1WireBuffer.Val, 0xff, sizeof(Ch1_1WireBuffer.Val));
 Ch1_1WireBuffer.CC_Write.ROM_CMD = 0xcc; // SKIP ROM COMMAND
 Ch1_1WireBuffer.CC_Write.Function_CMD = 0x44; // CONVERT TEMPERATURE
 Ch1_1WireBuffer.BufferLen = 2;
 OW_Ch1_TransferBuffer(0);

Wait for (Ch1_1WireBuffer.Result == 1) and Conversion-Time of Sensor (750ms)

 memset(Ch1_1WireBuffer.Val, 0xff, sizeof(Ch1_1WireBuffer.Val)); // 0xff in all „read-Byte“ is necessary!
 Ch1_1WireBuffer.CC_Write.ROM_CMD = 0xcc; // SKIP ROM COMMAND
 Ch1_1WireBuffer.CC_Write.Function_CMD = 0xBE; // READ SCRATCHPAD
 Ch1_1WireBuffer.BufferLen = 2;
 OW_Ch1_TransferBuffer(0);

Wait for (Ch1_1WireBuffer.Result == 1)
Temp = Ch1_1WireBuffer.CC_Read.Temp.Val;
if(Ch1_1WireBuffer.Result == 0xff) => NoResult / No Sensor or Error / invalid Value
if(Ch1_1WireBuffer.Result == 0xfe) => CRC-Error / invalid Value

If no Time-Wait is used, the Sensor will indicate when ready with conversion.
Then after Conversion-CMD (0x44), repeatly use:
 OW_Ch1_TransferBuffer(1); (read only 1 Bit)
and Wait for (Ch1_1WireBuffer.Result == 1)
In Ch1_1WireBuffer.Val[0] ist the Status-Bit from TempSensor.

