Nutzung der SPI-Hardware im PIC24 zur Steuerung des 1-Wire-Bus (Temperatursensoren).

Zur Steuerung wird die Hardwareeinheit SPI des PIC24 eingesetzt, diese formt das Signal und Timing autark mit der
Hardware, nach jedem Symbol-Rahmen wird ein Interrupt (Rx) ausgelost und die weitere Abfolge per Software
gesteuert.

Vorteil, Zeitkritische Anteile des Signals werden per Hardware erzeugt, verbraucht auch keine CPU-Rechenleistung.
Wenn dann nicht die zeitkritische Aneinanderreihung per Software gesteuert wird, konnen andere zeitkritische
Aufgaben der CPU in hoher priorisierten Interrupts abgearbeitet werden.

SPI-Config:

Pin Config: SDOx und SDIx an selben RPx-Pin; OpenDrain = 1; (extern Pull-Up an Pin; 4,7k); SCKx und CS not used,;
Mode: 16-Bit; SDOx: CKE = 0; CKP = 0; Input-Sample SDIx: SMP = 0; (Wichtig, da sonst der IRQ SRMT zu frith
ausgelost wird!)

Baudrate-Generator (BRG) = 548 fiir Reset-Signal; 36 fiir DataBits-Signal (Basis 16 MHz CPU-Clock)

SPI-Send-Data fiir Reset-Signal: 0b0000000011111111 = 0x00FF (16-Bit)

SPI-Send-Data fiir Write-0-Signal: 0b0000000000000111 = 0x0003 (16-Bit)

SPI-Send-Data fiir Write-1-Signal: 0b0011111111111111 = 0x3FFF (16-Bit)

Zum Lesen vom 1-Wire-Bus wird auch ein Write-1-Signal gesendet und dann das gesampelte Bit-12 ausgewertet.

Der Présens-Impuls wird in Bit 6 und 7 (mind. 1 der beiden auf Low) gelesen.

550ps
480ps

v

Reset «

P
<

480ps

A\ 4
A
v

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13| 14 | 15

/N1
paal 0 [0 [o[oo ofo

Sample (End of Bit 6 / 7)
Presenspuls

o |t 1]t]t 1] 1]|
BRG: 548

BRG: 549 (Alternative zum Testen)

1 Bit £ 68,625 us
7 Bit £ 480,375 us
8 Bit & 549 ps

1 Bit & 68,75 ps
7 Bit £ 481,25 ys
8 Bit £ 550 us

Write-0 60ps

Bl o | 1] 2]3]4]s 7]l s8]l o|w]u]r[i]u]is
D;roooooo oJoJofofo]Jo]1f[1]1
Write-1/ Read-x

P 13,8}15‘

9ps

Be| o | 1] 2]3]4]s 78] o |wof[uf[w2]|4]is

De:ro 0(1 it]]

Sample (End of Bit 3)
SlaveData

BRG: 36

1 Bit 2 4,625 us

2 Bit £ 9,25 us

3 Bit £ 13,875 us
13 Bit 2 60,125 ps

BRG: 37 (Alternative zum Testen)

1 Bit 2 4,75 us

2 Bit 2 9,5 us

3 Bit £ 14,25 ys
13 Bit 2 61,75 s

Master (vom SPI-Modul generiert):
Slave (vom Slave-Device / Temperatursensor generiert): s

Code for usage with DS18B20 Temperaturesensor:

#define C_SPI_1W Reset BRG 548 // 7 LowBits = 480us; => 14583Hz => 16MHz / 14583Hz = 1097; Div2 -1 => 548
#define C_SPI_1W _Data_BRG 36 // 13 LowBits = 60us; => 216666Hz => 16MHz / 216666Hz = 74; Div2 -1 => 36
#define C_SPI_1W Reset 0b1000000011111111
#define C_SPI_1W Write 0 0b1000000000000011
#define C_SPI_1W Write 1 0b1001111111111111

typedef union _ attribute_ _ ((packed))

{
uint8 t Val;

struct _ attribute__ ((packed))

{
uint8_t b0
uint8_t bl
uint8_t b2
uint8_t b3
uint8_t b4
uint8_t b5
uint8_t b6
uint8_t b7

[N e e

}
bits;
}
UINT8 VAL;

typedef union __ attribute_ ((packed))
{

uintlé6_t val;

uint8_t v[2];

struct _ attribute ((packed))
{
uint8 t LB;
uint8_t HB;
}
byte;

struct _ attribute__ ((packed))

{
uint8_t b0
uint8_t bl
uint8_t b2
uint8_t b3
uint8_t b4
uint8_t b5
uint8_t b6
uint8_t b7
uint8_t b8
uint8_t b9 :
uint8_t bl0
uint8_t bll
uint8_t bl2
uint8_t bl3
uint8_t bl4
uint8_t bl5

[N B = S S SO SR

[

}

bits;
}
UINT16_VAL;

typedef union __ attribute_ ((packed))
{

struct

{
uint8_t Val[ll];
uint8_t BufferLen;
uint8_t BufferIdx;
uint8_t BitCount;
UINT8_ VAL TxByte;
UINT8_VAL RxByte;
uint8_t OW_Reset;
uint8_t PresencePulse;
uint8_t Result; // 0:Runing; 1:Ready; Oxff:Error;

}i

struct

{
uint8 t ROM CMD;
uint8_t Function_ CMD;
uint8_t Temp LSB;
uint8_t Temp MSB;
uint8_t Temp H;
uint8_t Temp L;
uint8 t Config;
uint8_t Res[3];
uint8_t CRC;

} CC_Read;

struct

{
uint8_t ROM_CMD;
uint8_t Function CMD;
uint8_t Temp_ H;
uint8_t Temp_ L;
uint8_t Config;

} CC_Write;

}
t_1WireBuffer;

Hardware-Setup:

ODCxbits.ODCxy = 1;

LATxbits.LATxy = 1;

TRISxbits.TRISxy = 0;

_RPx = RPOUT_SDO1; // SDO1 and SDI1 on same Pin.
_SDIIR = x; // SDOl and SDI1 on same Pin.

// SPI Config; used for l-Wire-Bus

SPI1CON1 = 0;

SPI1CON1Lbits.ENHBUF = 0; // Enhanced Buffer mode is disabled
SPI1CON1Lbits.MCLKEN = 0; // Peripheral clock is used by the BRG
SPI1CON1Lbits.DISSCK = 1

SPI1CON1Lbits.MSTEN = 1; // Host mode

SPI1CON1Lbits.SSEN = 0; // SSx pin is not used by the macro (SSx pin will be controlled by the port I/0)
SPI1CON1Lbits.CKE = 0; // Transmit happens on transition from Idle clock state to active clock state
SPI1CON1Lbits.SMP = 0; // Input data are sampled at the middle of data output time

SPI1CON1Lbits.MODE = 0b01l; // 16-Bit;
SPI1CON1H = 0;

SPI1CON1Hbits.FRMEN = 0; //Framed SPI support is disabled

; // SCKx pin is not used by the module; pin is controlled by the port function

SPI1ICON1Hbits.IGNTUR = 1; // A Transmit Underrun (TUR) is NOT a critical error and data indicated by URDTEN are transmitted until

the SPIITXB is not empty

SPI1CON1Hbits.IGNROV = 1; // A Receive Overflow (ROV) is NOT a critical error;
by the receive data

SPI1CON1Hbits.AUDEN = 0; // Audio protocol is disabled

SPI1CON2L = 0; // See MODE[32,16] bits in SPI1CON1L[11:10]

SPI1STATL = 0;

SPI1STATH = 0;

SPI1BRGL = C_SPI_1W Reset BRG;

SPI1IMSKL = 0;

SPI1IMSKLbits.SRMTEN = 1; // Shift Register Empty (SRMT) generates interrupt events
SPI1IMSKLbits.SPIRBFEN = 1; // SPI receive buffer full generates an interrupt event

SPI1IMSKH = 0;
SPI1URDTL =
SPI1URDTH = 0;
// SPI1CON1Lbits.SPIEN = 1;
_SPI1IP = 1; // Priority 1
_SPILIF = 0;
_SPILIE = 1;
_SPIIRXIP =
Function
_SPIIRXIF = 0;
_SPIIRXIE = 1;

Helper Function:

//CRC

int calc_crc(int data_byte, int crc)
{
int bit_mask = 0, carry check = 0, temp_data = 0;
temp data = data byte;
for (bit_mask = 0; bit mask <= 7; bit_mask++)
{

data_byte = data_byte "~ crc;
crc = crc / 2;
temp_data = temp_data / 2;

carry_check = data_byte & 0x01;
if (carry_ check)
(crc = crc *~ 0x8C;
éata_byte = temp_data;
ieturn (crec);

}

//
//calculates checksum for n bytes of data

//and compares it with expected checksum

//input: data[] checksum is built based on this data

//

// nbrOfBytes checksum is built for n bytes of data checksum

//return: error:

// expected checksum CHECKSUM ERROR = checksum does not match 0 = checksum matches
//
uint8_ t CheckCrc(uint8_ t datal[], uint8_t nbrOfBytes, uint8_ t checksum)
{

uint8_t crc = 0, i;
for (1 = 0; 1 < nbrOfBytes; i++)
{
crc = calc_crc(data[i], crc);
}
if (crc != checksum)
{
return 1;
}
else
{
return 0;

}

7; // Priority 7, Achtung hier hohe Prioritdt, es wird nur 1 ConfigBit gesetzt und Irg-Flag geldscht.

during ROV, data in the FIFO are not overwritten

Siehe Irg-

Interrupt-Function:

volatile t_1Wi

void _ attribute__ ((__interrupt__, no_auto_psv)) _SPI1RXInterrupt (void)

{

reBuffer Chl_lWireBuffer;

SPI1CON1Lbits.DISSDO = 1;

_SPI1RXIF
}

= 0;

void _ attribute__ ((__interrupt__, no_auto_psv)) _SPIlInterrupt(void)

{
_SPILIF =

0;

t_UINT16_VAL RxBuff = {.Val = SPI1BUFL};

SPI1STATL

= 0;

if (Chl_1WireBuffer.OW Reset)

{ // OW Re

set

Chl_lWireBuffer.OW_Reset = 0;
Chl_lWireBuffer.RxByte.val = 0;

Chl 1WireBuffer.TxByte.Val = Chl 1WireBuffer.val[O0];
Chl_1WireBuffer.BitCount = 7;
Chl_1WireBuffer.BufferIdx = 0;

Chl_l1WireBuffer.PresencePulse = (!RxBuff.bits.b6) || (!RxBuff.bits.b7);

if (Ch

{
sp
sp
s
sp
if
{

}
el
{

}
_S
_S
}
else
{
Ch
}
}
else
{ // DataT
//

1_1wireBuffer.PresencePulse)

I1CON1Lbits.SPIEN = 0;

I1BRGLbits.BRG = C SPI 1W Data BRG;

PI1IE = 0;

I1CON1Lbits.SPIEN = 1;
(Chl_1wireBuffer.TxByte.bits.b0 & 0x01

_GIE = 0;
SPI1BUFL = C_SPI_IW Write 1;
SPI1CON1Lbits.DISSDO = 0;

_GIE = 1;
se
_GIE = 07
SPI1BUFL = C_SPI_1W Write 0;
SPI1CON1Lbits.DISSDO = 0;
_GIE = 1;
PILIF = 0;
PI1IE = 1;
1_1WireBuffer.Result = Oxff;

ransfer

int8_t i = 0; // Alternativ kann {iber 3 Bits bei verrauschten Leitungen das

if (RxBuff.bits.bl2)

RxBuff.bits.b3 = (i > 0);

Chl_lWireBuffer.RxByte.Val >>= 1;
Chl_1WireBuffer.RxByte.bits.b7 = RxBuff.bits.bl2;

if (Ch
{
Ch
Ch
if
{

}
el
{

}

else

{// ¢
Ch
Ch
if
{

1 _1wWireBuffer.BitCount)

1_1wireBuffer.BitCount--;

1 _1wWireBuffer.TxByte.Val >>= 1;
(Chl_1wireBuffer.TxByte.bits.b0 & 0x01)
_GIE = 0;

SPI1BUFL = C_SPI 1W Write 1;
SPI1CON1Lbits.DISSDO = 0;
_GIE = 1;

se

_GIE = 0;
SPI1BUFL = C_SPI_1W Write 0;
SPI1CON1Lbits.DISSDO = 0;
_GIE = 1;

heck Next Byte

1 1WireBuffer.Val[Chl 1WireBuffer.BufferIdx] = Chl_lWireBuffer.RxByte.Val;

1_1wireBuffer.BufferIdx++;
(Chl_1wireBuffer.BufferIdx < Chl_1WireBuffer.BufferLen)

Chl_lWireBuffer.BitCount = 7;

Bit ermittelt werden.

Chl_1WireBuffer.TxByte.Val = Chl_I1WireBuffer.Val[Chl_1WireBuffer.BufferIdx];
if (Chl_lwWireBuffer.TxByte.bits.b0 & 0x01
{
_GIE = 0;
SPI1BUFL = C_SPI_1W Write 1;
SPI1CON1Lbits.DISSDO = 0;
_GIE = 1;
}
else
{
_GIE = 0;
SPI1BUFL = C_SPI_1W Write 0;
SPI1CON1Lbits.DISSDO = 0;
_GIE = 1;

}
else
{ // transfer complete
if (CheckCrc((uint8_t*) & Chl_1WireBuffer.vVal[2], 8, Chl_lWireBuffer.CC_Read.CRC))
// if (CheckCrc((uint8_t*) & Chl_1WireBuffer.val[2], Chl_1WireBuffer.BufferLen - 3,
Chl 1WireBuffer.CC_Read.CRC)) todo
{ // CRC Error
Chl_lwWireBuffer.Result = Oxfe;
}
else
{ // CRC OK
Chl_lWireBuffer.Result = 0x01;
}

Control-Function:

void OW_Chl_TransferBuffer (uint8_ t ReadlBit)
{
Chl_lWireBuffer.Result = 0;
if (ReadlBit)
{
Chl_lWireBuffer.OW_Reset = 0;
Chl_lWireBuffer.RxByte.vVal = 0;
Chl_l1WireBuffer.TxByte.Val =
Chl 1WireBuffer.BitCount = 0;
Chl_1WireBuffer.BufferIdx = 0;
Chl_l1WireBuffer.BufferLen = 0
_GIE = 07
SPI1BUFL = C_SPI_1W Write 1;
SPI1CON1Lbits.DISSDO = 0;
_GIE = 1;
}
else
{
SPI1CON1Lbits.SPIEN = 0;
SPI1BRGLbits.BRG = C_SPI 1W Reset BRG;
_SPILIE = 0;
SPI1CON1Lbits.SPIEN = 1;
Chl_lWireBuffer.OW_Reset = 1;
SPI1BUFL = C_SPI_1W Reset;
SPI1CON1Lbits.DISSDO = 0;
_SPI1IF = 0; // Nach SPIEN = 1; wird das IRQ-Flag gesetzt, muss geldscht werden da IRQ erst nach ibertragung der Buffer Daten
ausgeldst werden soll.
_SPI1IE = 1;
}

Usage:
Set Ch1_1WireBuffer then call OW_Ch1_TransferBuffer(0); and Wait for Completition of BufferTransfer

(Chl 1WireBuffer.Result _!=) 1=0K; 0xff= Error

memset (Chl_1WireBuffer.val, Oxff, sizeof(Chl_1WireBuffer.val));

Chl_ 1WireBuffer.CC Write.ROM CMD = Oxcc; // SKIP ROM COMMAND

Chl 1WireBuffer.CC Write.Function CMD = 0x44; // CONVERT TEMPERATURE
Chl:lwireBuffer.BufferLen = 2; B

OW_Chl_TransferBuffer (0) ;

Wait for (Chl 1WireBuffer.Result == 1) and Conversion-Time of Sensor (750ms)

memset (Chl_1WireBuffer.val, Oxff, sizeof(Chl_lWireBuffer.val)); // 0xff in all ,read-Byte"“ is necessary!
Chl 1WireBuffer.CC Write.ROM CMD = Oxcc; // SKIP ROM COMMAND

Chl 1WireBuffer.CC Write.Function CMD = OxBE; // READ SCRATCHPAD

Chl_lWireBuffer.BufferLen = 2;

OW_Chl_TransferBuffer (0) ;

Wait for (Chl 1WireBuffer.Result == 1)

Temp = Chl:lwireBuffer.CC_Read.Temp.Val;

if (Chl 1WireBuffer.Result == 0xff) =>NoResult/No Sensor or Error/ invalid Value
if (Chl 1wWireBuffer.Result == 0xfe) => CRC-Error/invalid Value

If no Time-Wait is used, the Sensor will indicate when ready with conversion.
Then after Conversion-CMD (0x44), repeatly use:
OW_Chl TransferBuffer (1) ; (read only 1 Bit)
and Wait for (Chl 1WireBuffer.Result == 1)
InChl 1WireBuffer.Vval[0] istthe Status-Bit from TempSensor.

