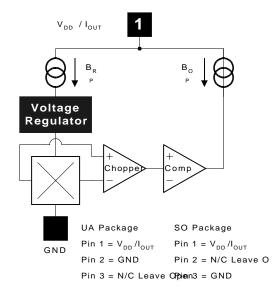


Features and Benefits

- Two wire operation
- CMOS for optimum stability, quality and cost
- New miniature package / thin, high reliability package
 - Operation down to 3.5V

Applications


Automotive reed switch replacement

- Solid state switch
- Speed sensing

Ordering Information

Part Number Temperature Suffix Package Suffix SO or UA Temperature Range SO or UA Temperature Range -40 to 85°C Extended

Functional Block Diagram

Description

The MLX90223ESO and MLX90223EUA are Hall effect switches, configured to use two wires rather than three, by combining the leads for power supply and output. The power supply current increases by ~ 10 mA in the Bop state.

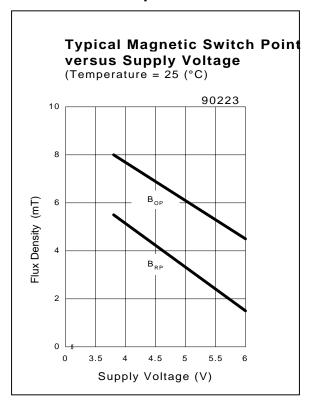
With no magnetic field present, the supply current is ~ 5 mA. In the presence of a sufficiently strong North magnetic flux (>10 mT) to the marked face of the UA package, the device will enter the B_{OP} state and the supply current will increase to I5 mA. Decreasing the flux to 3 mT or less will put the device in the B_{RP} state. The SOT device responds to a magnetic field opposite to that of the UA package. In the presence of a sufficiently strong South pole magnetic field at the marked face of the device, the SOT-23 unit will enter the B_{OP} state and the supply current will increase to I5 mA.

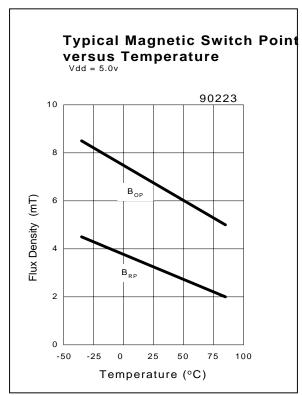
Note: Static sensitive device; please observe ESD precautions.

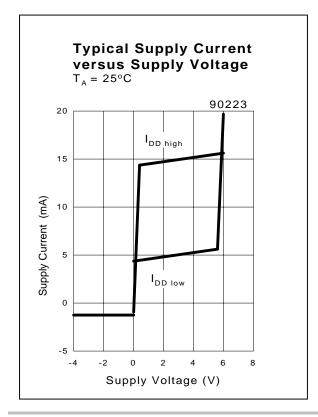
MLX90223 Electrical Specifications DC Operating Parameters: $T_A = -40$ to 85° C, $V_{DD} = 3.75$ to $6.0V_{DC}$ (unless otherwise specified).

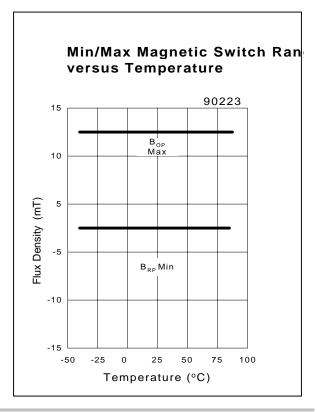
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Supply Voltage	V_{DD}	Operating	3.75	5.0	6.0	V
Operating Current High	$I_{DD \; high}$	B>B _{OP}	11	15	19.4	mA
Operating Current Low	$I_{DD low}$	B <b<sub>RP</b<sub>	3.9	5	6.9	mA
Data Valid Delay	T _{DLY}	DB>B _{hys}			25	ms
Thermal Resistance	R_{TH}	Operating SO Package		575		°C/W
Thermal Resistance	R_{TH}	Operating UA Package		206		°C/W

MLX90223 Magnetic Specifications DC Operating Parameters: $T_A = -40$ to 85° C, $V_{DD} = 3.75$ to $6.0V_{DC}$ (unless otherwise specified).

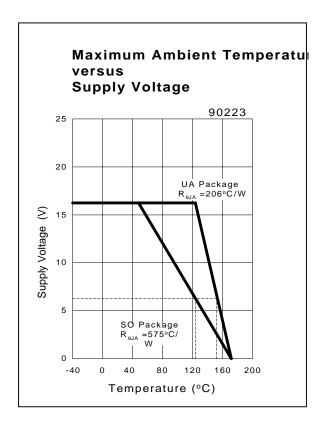

Parameter	Symbo	l Test Conditions	Min	Тур	Max	Units
Operating Point	Bop			6.0	12.5	mT
Release Point	B _{RP}		-0.5			mT
Hysteresis	B _{hys}			3.0		mT
Operating Point	B _{OP}	$V_{DD} = 5.0 \ V_{DC}$		6.0	8.5	mT
Release Point	B _{RP}	$V_{DD} = 5.0 V_{DC}$	1.0			mT


Note: 1 mT = 10 Gauss.

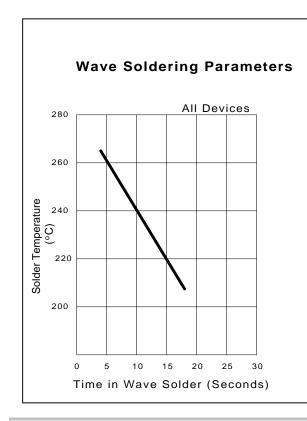

Melexis Inc. reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Melexis does not assume any liability arising from the use of any product or application of any product or circuit described herein.



Performance Graphs



Unique Features


The key feature of the MLX90223LSO is the SOT-23 miniature package, which is made possible by MELEXIS' small Hall IC chip. The chip size is made possible by analog CMOS process and chopper stabilized circuit design. Due to the self heating caused by the 15 mA I_{DD high} current, the ambient temperature is limited by the power dissipation of 90mW @ 6V. For example, the graph entitled "Maximum Ambient Temperature vs Supply Voltage" shows that, in a 5V controller application (6V on the graph), the maximum ambient Temperature is 123°C for the SOT package and 156°C for the UA package.

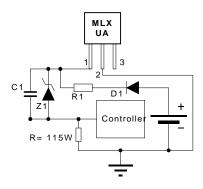
Maximum Ambient Temperature for the SOT Package:

From: $T_J = T_A + q_{J-C}$ (PD), $T_A = T_J - q_{J-C}$ ($V_{DD} \times I_{DD}$). $T_A = 175^{\circ}\text{C} - 575^{\circ}\text{C/W}$ (6V x 15mA). $T_A = 175^{\circ}\text{C} - 52^{\circ}\text{C} = 123^{\circ}\text{C}$.

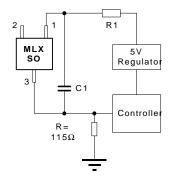
Maximum Ambient Temperature for the UA Package:

From: $T_J = T_A + q_{J-C}$ (PD), $T_A = T_J - q_{J-C}$ (V_{DD} x I_{DD}). $T_A = 175^{\circ}\text{C} - 206^{\circ}\text{C/W}$ (6V x 15mA). $T_A = 175^{\circ}\text{C} - 19^{\circ}\text{C} = 156^{\circ}\text{C}$.

Absolute Maximum Ratings

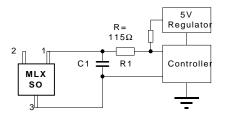

Supply Voltage (Operating)	16V		
Reverse Voltage Protection	-12V		
Supply Current, I _{DD}	-50mA		
Power Dissipation, P _D	See Graph		
Operating Temperature Range, T _A	-40 to 85°C		
Storage Temperature Range, T _S	-65 to 150°C		
Maximum Junction Temp, T _J	175°C		
ESD Sensitivity	+/- 5KV		

Applications Examples


The 2 wire Hall device output / V_{DD} lead must be connected to a controller configured to measure current. The MLX90223ESO is intended to replace reed switches on an automotive interior wall. It was designed to operate with a 5V microcontroller from 3.75 to $5.25V_{DC}$ and -40 to +85°C.

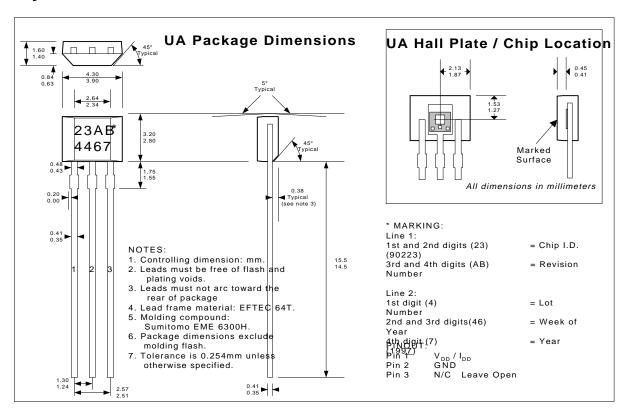
12V Battery Application UA Package

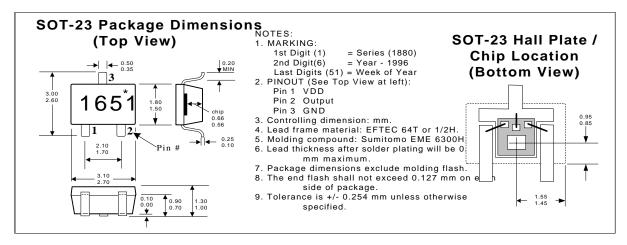
D1 Used for Reverse Voltage Protection, -24v, -150V impli Z1 Used for over voltage Protection such as +24V, 150V in R1, C1 Work with the diodes and provide conducted and ra EMC filtering.


5V Microcontroller Application SOT-23 Package

R1,C1Provide Radiated EMC filtering. Values depend on many factors. The following are suggested values.Optimum values may be determined from EMC testing. R1= 100Ω

 $C1 = 0.001 \mu f$


5V Microcontroller Application SOT-23 Package



R1,C1Provide Radiated EMC filtering. Values depend on many factors. The following are suggestalues. Optimum values may be determined from EMC test R1=100 Ω C1= 0.001 μ f

Physical Characteristics

For more information, please contact:

Melexis, Inc.

41 Locke Road Concord, NH 03301

Phone: (603) 223-2362 Fax: (603) 223-9614

E-mail: sales@melexis.com Web: www.melexis.com

