Signetics

Application Specific Products • Series 24

DESCRIPTION

The PLS163 is a bipolar, Field-Programmable Address Decoder. The device consists of nine AND/NAND gates which share 12 common inputs. The type of gate is selected by programming the output as active-High (H) or active-Low (L). Each of the 12 inputs $I_0 - I_{11}$ can be programmed to provide the True (H), Complement (L), or Don't Care (-) state to each of the nine AND/NAND gates. OR/NOR logic functions can also be implemented by complementing the inputs and outputs via on-chip inverting buffers.

The device is field programmable, which means that custom patterns are immediately available.

The PLS163 includes chip-enable control for output strobing and inhibit. It features 3-State outputs for ease of expansion of input variables and application in bus-organized systems.

Order codes are listed in the Ordering Information Table.

⊳

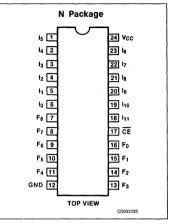
Fusible Ni-Cr links are initially intact at all array cross-points.

FUNCTIONAL DIAGRAM

<u>ю</u> п

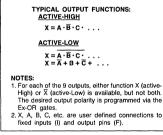
111

Signetics Programmable Logic Product Specification


FEATURES

- Field-Programmable (Ni-Cr link)
- 12 input variables
- 9 output functions
- Chip Enable input
- I/O propagation delay: 30ns (max.)
- Power dissipation: 600mW (typ.)
- Input loading: -100µA (max.)
- o 3-State outputs
- Output disable function: Hi-Z
- Fully TTL compatible

APPLICATIONS


- Random logic
- Address decoders
- Code detectors
- Peripheral selectors
- Fault monitors
- Machine state decoders

PIN CONFIGURATION

LOGIC FUNCTION



May 11, 1988

Field-Programmable Address Decoder (12 imes 9)

FPAD LOGIC DIAGRAM

PLS163

Field-Programmable Address Decoder (12 imes 9)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300mil-wide	PLS163N

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATINGS	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-State	+ 5.5	V _{DC}
l _{IN}	Input current	± 30	mA
lout	Output current	+ 100	mA
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

NOTE:

 Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75 \le V_{CC} \le 5.25V$

	PARAMETER			LIMITS		
SYMBOL		TEST CONDITION	Min	Typ ²	Max UN	
Input volta	ige					
V _{IH} V _{IL}	High ¹ Low ¹ Clamp ^{1,3}	$V_{CC} = Max$ $V_{CC} = Min$	2.0	0.0	0.8 -1.2	V V V
V _{IC} Output vol		$V_{CC} = Min, I_{IN} = -12mA$		-0.8	-1.2	v
V _{OH} V _{OL}	High ^{1,5} Low ^{1,4}	$V_{CC} = Min$ $I_{OH} = -2mA$ $I_{OL} = 15mA$	2.4	0.35	0.5	v v
Input curre	ent					
l _{IH} l _{IL}	High Low	$V_{CC} = Max$ $V_{IN} = 5.5V$ $V_{IN} = 0.45V$		< 1 - 10	40 100	μΑ μΑ
Output cur	rrent					
I _{O (OFF)} I _{OS}	Hi-Z state ⁶ Short circuit ^{3,7}	$V_{CC} = Max$ $V_{OUT} = 5.5V$ $V_{OUT} = 0.45V$ $V_{OUT} = 0V$	V _{OUT} = 5.5V 1 2 V _{OUT} = 0.45V -1 -1		40 -40 -70	μA μA mA
Icc	V _{CC} supply current ⁸	V _{CC} = Max 120 1		155	mA	
Capacitanc	e					
C _{IN} C _{OUT}	Input Output ⁶	$V_{CC} = 5.0V$ $V_{IN} = 2.0V$ $V_{OUT} = 2.0V$		8 15		pF pF

Notes on following page.

PLS163

Field-Programmable Address Decoder (12 imes 9)

PLS163

AC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +75°C, 4.75 \leq V_{CC} \leq 5.25V, R₁ = 470 Ω , R₂ = 1k Ω

SYMBOL	PARAMETER	то	FROM	TEST CONDITION	LIMITS			
					Min	Typ ²	Max	UNIT
t _{PD}	Propagation delay	Output	Input	C _L = 30pF		20	30	ns
t _{CE}	Chip enable	Output	Chip enable	C _L = 30pF		20	30	ns
t _{CD}	Chip disable	Output	Chip enable	$C_L = 5pF$		20	30	ns

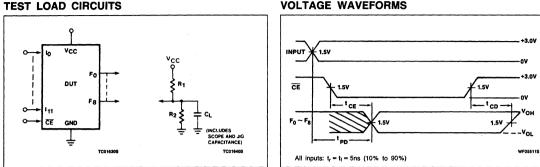
NOTES:

1. All voltage values are with respect to network ground terminal.

2. All typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

3. Test each pin one at a time.

4. Measure with a programmed logic condition for which the output under test is at low logic level. Output sink current is supplied through a resistor to V_{CC}.


5. Measured with V_{IL} applied to \overline{CE} and logic high at the output.

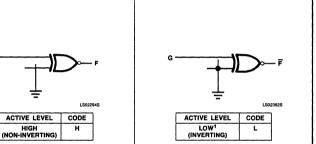
6. Measured with V_{IH} applied to \overline{CE} .

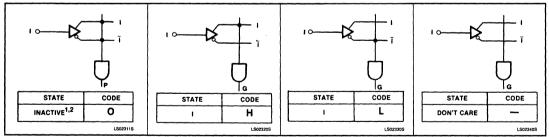
7. Duration of short circuit should not exceed 1 second.

8. I_{CC} is measured with the outputs open.

Field-Programmable Address Decoder (12 \times 9)

LOGIC PROGRAMMING


PLS163 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.


PLS163 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to gualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, IN-ACTIVE, PRESET, etc., are defined below.

"AND" ARRAY - (I)

4-62

NOTES:

1. This is the initial unprogrammed state of all links.

2. Any gate Gn will be unconditionally inhibited if both the True and Complement fuses of any input (I) are left intact.

VIRGIN DEVICE

The PLS163 is shipped in an unprogrammed state, in which:

- 1. All Pn terms are disabled. (Inactive).
- 2. All Pn terms are active on all outputs.
- 3. All outputs are active-Low.

PLS163

Product Specification