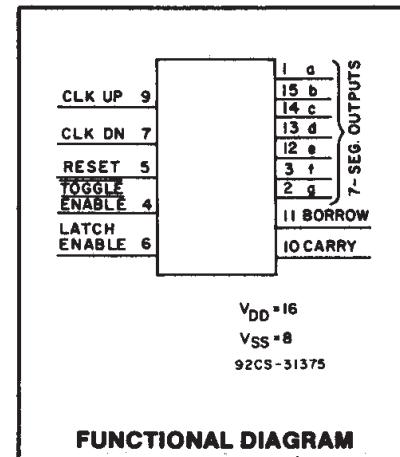


CMOS Decade Up-Down Counter/Latch/Display Driver


High-Voltage Type (20-V Rating)

92CS-31380

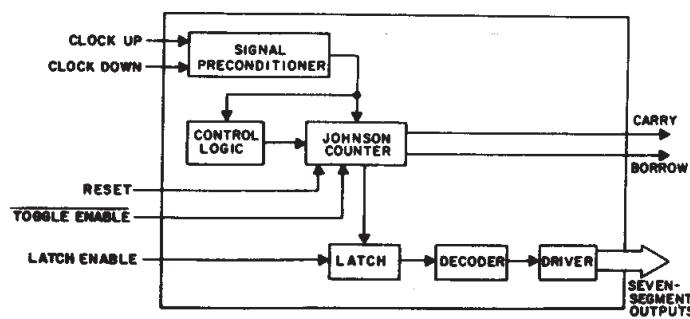
Features:

- Separate clock-up and clock-down lines
- Capable of driving common cathode LEDs and other displays directly
- Allows cascading without any external circuitry
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μ A at 18 V over full package-temperature range; 100 nA at 18 V and 25°C

■ CD40110B is a dual-clocked up/down counter with a special preconditioning circuit that allows the counter to be clocked, via positive going inputs, up or down regardless of the state or timing (within 100 ns typ.) of the other clock line.

The clock signal is fed into the control logic and Johnson counter after it is preconditioned. The outputs of the Johnson counter (which include anti-lock gating to avoid being locked at an illegal state) are fed into a latch. This data can be fed directly to the decoder through the latch or can be strobed to hold a particular count while the Johnson counter continues to be clocked. The decoder feeds a seven-segment bipolar output driver which can source up to 25 mA to drive LEDs and other displays such as low-voltage fluorescent and incandescent lamps.

A short durating negative-going pulse appears on the BORROW output when the count changes from 0 to 9 or the CARRY output when the count changes from 9 to 0. At the other times the BORROW and CARRY outputs are a logic 1.


The CARRY and BORROW outputs can be tied directly to the clock-up and clock-down lines respectively of another CD40110B for easy cascading of several counters.

- Noise margin (full package-temperature range) = 1 V at $V_{DD} = 5$ V
2 V at $V_{DD} = 10$ V
2.5 V at $V_{DD} = 15$ V
- 5 V, 10 V and 15 V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices".

Applications:

- Rate comparators
- General counting applications where display is desired
- Up-down counting applications where input pulses are random in nature

The CD40110B types are supplied in 16-lead dual-in-line ceramic packages (D and F suffixes), and 16-lead dual-in-line plastic package (E suffix), and also available in chip form, (H suffix).

92CS-29200RI

Fig. 1 - Functional diagram.

CD40110B Types

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (V_{DD})

Voltages referenced to V_{SS} Terminal) -0.5V to +20V

INPUT VOLTAGE RANGE, ALL INPUTS

..... -0.5V to V_{DD} +0.5V

DC INPUT CURRENT, ANY ONE INPUT

..... ±10mA

POWER DISSIPATION PER PACKAGE (P_D):

For T_A = -55°C to +100°C 500mW

For T_A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW

DEVICE DISSIPATION PER OUTPUT TRANSISTOR

FOR T_A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) 100mW

OPERATING-TEMPERATURE RANGE (T_A)

..... -55°C to +125°C

STORAGE TEMPERATURE RANGE (T_{STG})

..... -65°C to +150°C

LEAD TEMPERATURE (DURING SOLDERING):

At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max +265°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	V _{DD} V	LIMITS		UNITS
		MIN.	MAX.	
Supply-Voltage Range (For T _A = Full Package Temperature Range)	—	3	18	V
Clock Input Frequency f _{CL} (Sum of CL _{UP} & CL _{DN} Freqs.)	5 10 15	—	1 3 5	MHz
Clock Pulse Width t _W	5 10 15	110 40 30	—	—
Latch Enable Pulse Width	5 10 15	110 30 24	—	ns
Reset Removal-Time	5 10 15	550 200 130	—	—
Reset Pulse Width	5 10 15	350 170 120	—	—

CD40110B Types

STATIC ELECTRICAL CHARACTERISTICS

Characteristic	Conditions				LIMITS AT INDICATED TEMPERATURES (°C)							Units	
	I_{OH} (mA)	V_{OH} (V)	V_{IN} (V)	V_{DD} (V)	+25				Min.	Typ.	Max.		
					-55	-40	+85	+125					
Quiescent Device Current Max. I_{DD}	—	—	—	5	5	5	150	150	—	0.04	5	μA	
	—	—	—	10	10	10	300	300	—	0.04	10		
	—	—	—	15	20	20	600	600	—	0.04	20		
	—	—	—	20	100	100	3000	3000	—	0.08	100		
Output Voltage Low-Level Max. V_{OL}	—	—	0.5	5	0.05				—	0	0.05	V	
	—	—	0.10	10	0.05				—	0	0.05		
	—	—	0.15	15	0.05				—	0	0.05		
High-Level Min. V_{OH}	—	—	0.5	5	—	—	—	—	—	4.55	—	V	
	—	—	0.10	10	—	—	—	—	—	9.55	—		
	—	—	0.15	15	—	—	—	—	—	14.55	—		
Input Low Voltage Max. V_{IL}	—	0.5, 3.8	—	5	1.5				—	—	1.5	V	
	—	1, 8.8	—	10	3				—	—	3		
	—	1.5, 13.8	—	15	4				—	—	4		
Input High Voltage Min. V_{IH}	—	0.5, 3.8	—	5	3.8				3.5	—	—	V	
	—	1, 8.8	—	10	7				7	—	—		
	—	1.5, 13.8	—	15	11				11	—	—		
7-Segment Outputs Output Drive Voltage, High Min. V_{OH}	■	—	—	5	3.9	4	3.9	4.5	—	V			
	-5	—	—		3.65	3.7	3.7	4.3	—				
	-10	—	—		3.55	3.65	3.65	4.25	—				
	-15	—	—		3.5	3.5	3.6	4.15	—				
	-20	—	—		3.45	3.35	3.45	4	—				
	-25	—	—	10	3.4	3.3	3.4	3.9	—				
	■	—	—		8.75	8.85	8.75	9.5	—				
	-5	—	—		8.45	8.55	8.55	9.3	—				
	-10	—	—		8.42	8.5	8.5	9.25	—				
	-15	—	—		8.4	8.47	8.47	9.2	—				
	-20	—	—	15	8.4	8.40	8.45	9.1	—				
	-25	—	—		8.3	8.25	8.3	9	—				
	■	—	—		13.8	13.9	13.8	14.5	—				
	-5	—	—		13.65	13.75	13.75	14.35	—				
	-10	—	—		13.6	13.72	13.72	14.3	—				
	-15	—	—	25	13.6	13.7	13.7	14.2	—				
	-20	—	—		13.6	13.6	13.65	14.1	—				
	-25	—	—		13.3	13.25	13.3	14.0	—				
7-Segment Outputs Output Low (Sink) Current Min. I_{OL}	—	0.4	0.5	5	1.28	1.22	0.84	0.72	1	2	—	mA	
	—	0.5	0.10	10	3.2	3	2.2	1.8	2.6	5.2	—		
	—	1.5	0.15	15	8.4	8	5.6	4.8	6.8	13.6	—		
Carry Outputs Output Low (Sink) Current Min. I_{OL}	—	0.4	0.5	5	0.64	0.61	0.42	0.36	0.51	1	—	mA	
	—	0.5	0.10	10	1.6	1.5	1.1	0.9	1.3	2.6	—		
	—	1.5	0.15	15	4.2	4	2.8	2.4	3.4	6.8	—		
Output High (Source) Current Min. I_{OH}	—	4.6	0.5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	—		
	—	2.5	0.5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	—		
	—	9.5	0.10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	—		
	—	13.5	0.15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	—		
Input Current Max. I_{IN}	—	0.18	0.18	18	± 0.1	± 0.1	± 1	± 1	—	$\pm 10^{-5}$	± 0.1	μA	

■ 0(10 μA)

CD40110B Types

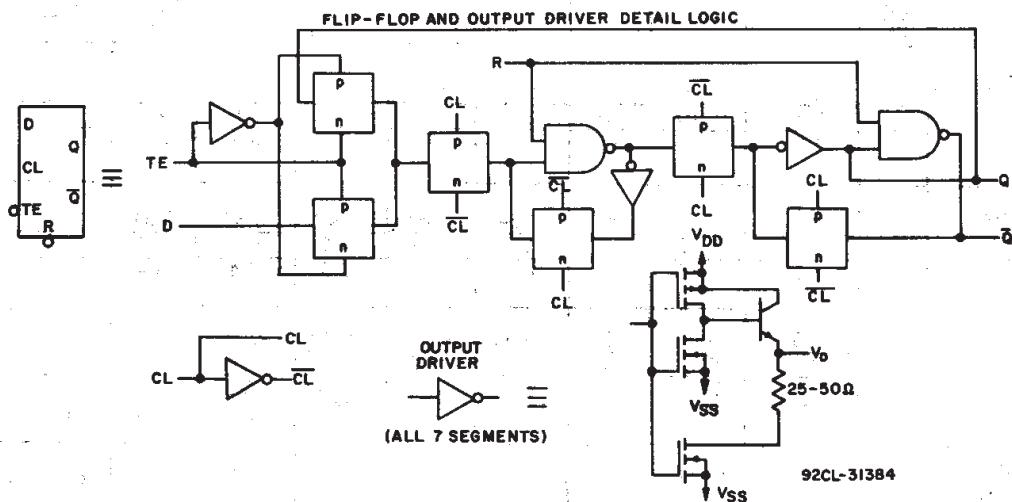
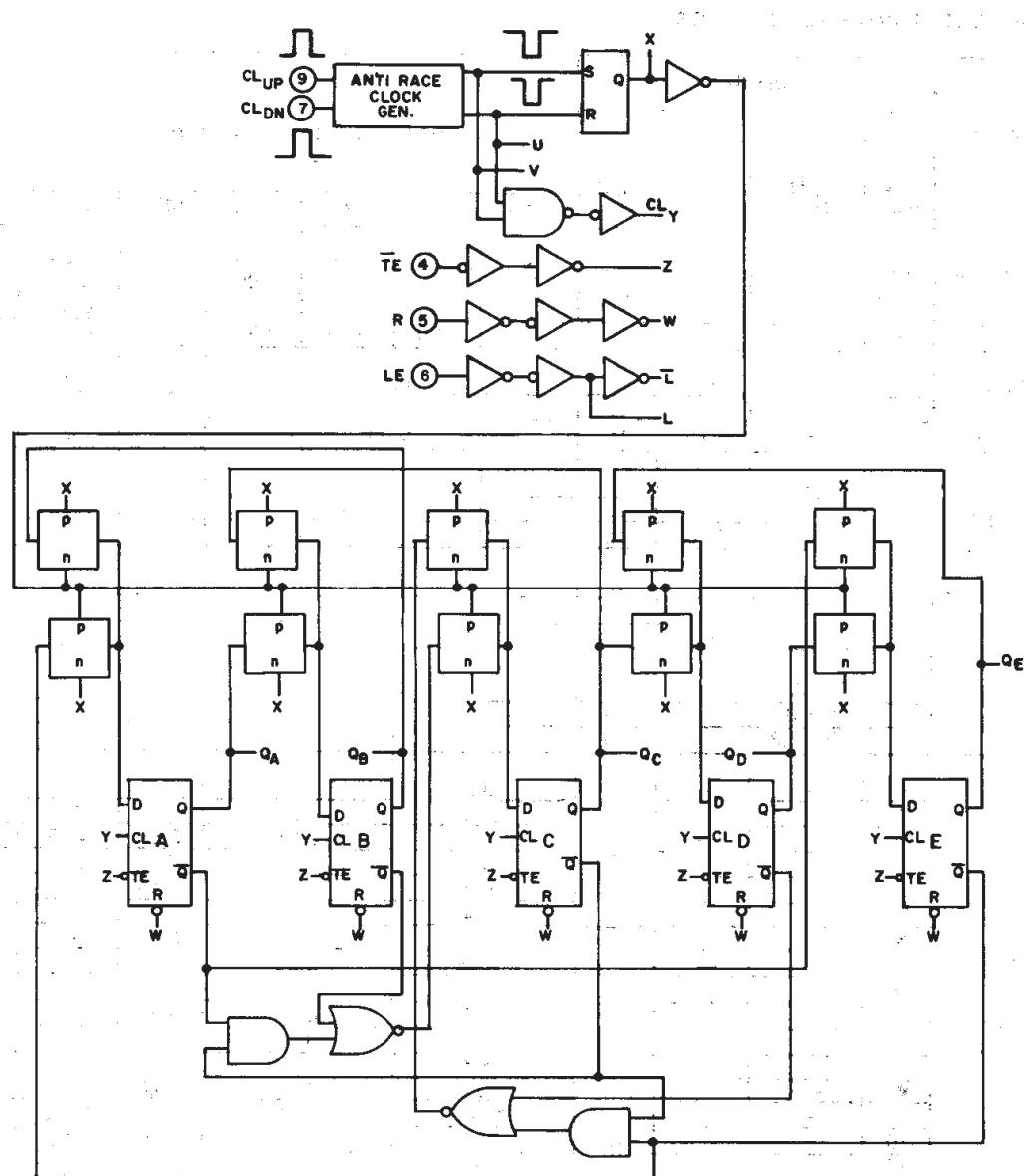
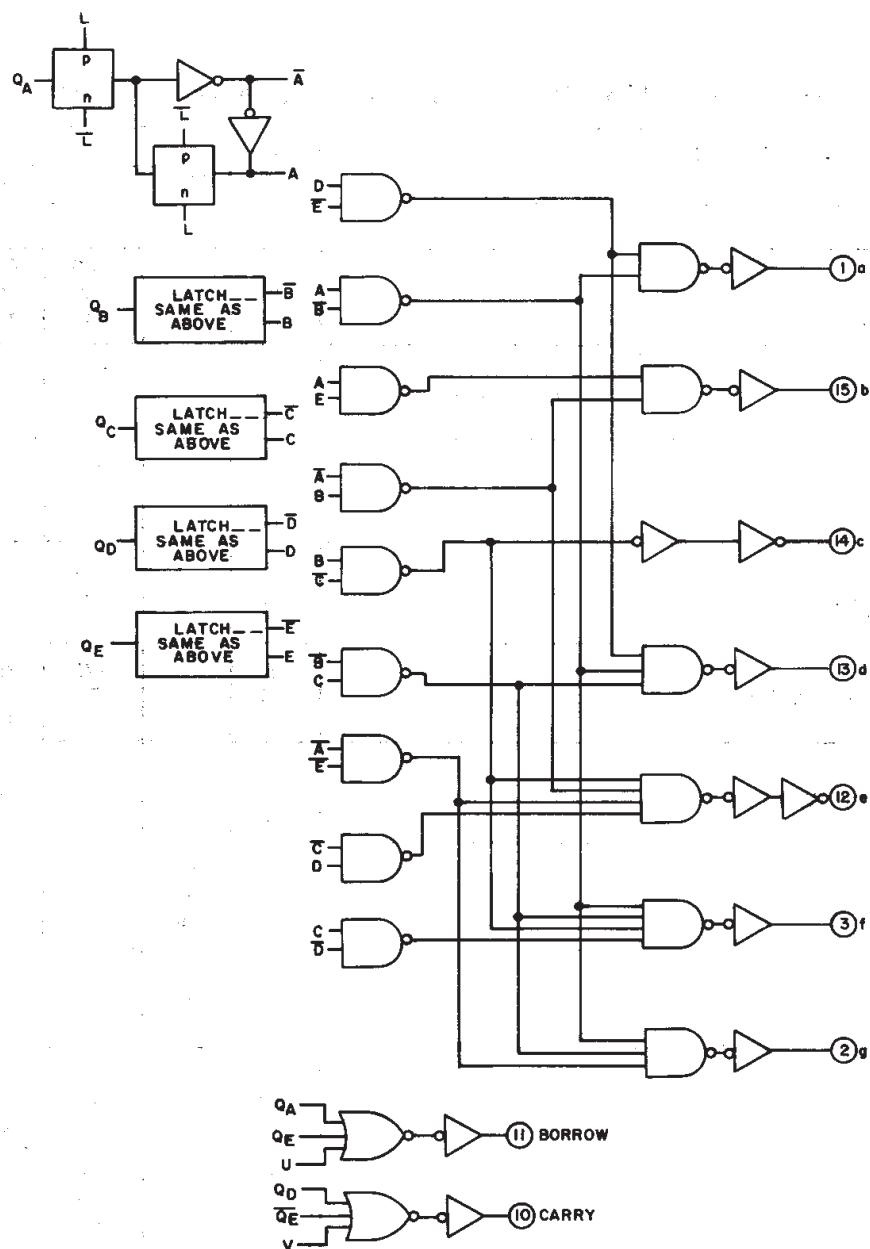
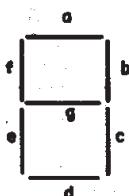
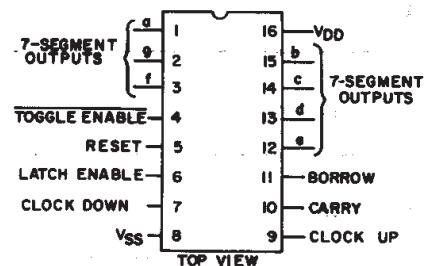




Fig. 2 - Logic diagram with flip-flop and output-driver details.
(cont'd on page 5)

CD40110B Types


3

COMMERCIAL CMOS
HIGH VOLTAGE ICs


Fig. 2 - Logic diagram with flip-flop and output-driver details.

TERMINAL ASSIGNMENT

DISPLAY SEGMENTS

92CS-31376

92CS-31377

CD40110B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = 25^\circ C$, Input $t_r, t_f = 20 \text{ ns}$, $C_L = 50 \text{ pF}$, $R_L = 200 \text{ k}\Omega$

CHARACTERISTIC	V _{DD} (V)	LIMITS			UNITS
		MIN.	TYP.	MAX.	

Clock Up/Clock Down

Propagation Delay Time: Clock to Carry or Borrow	t _{PLH} , t _{PHL}	5 10 15	— — —	300 100 70	600 200 140	ns
Clock to Segment	t _{PLH} , t _{PHL}	5 10 15	— — —	925 360 250	1850 720 500	
Minimum Clock Pulse Width		5 10 15	— — —	55 20 15	110 40 30	
Maximum Clock Input Frequency (Sum of CL _{UP} & CL _{DN} F)	f _{CL}	5 10 15	1 3 5	2.5 6 8.5	— — —	
Minimum Toggle Enable Pulse Width		5 10 15	— — —	175 75 55	350 150 110	
Minimum Latch Enable Pulse Width		5 10 15	— — —	55 15 12	110 30 24	
Output Pulse Width: Carry		5 10 15	115 60 40	230 120 75	— — —	
Borrow		5 10 15	140 65 45	275 130 85	— — —	
Transition Time: Carry or Borrow	t _{TLH} , t _{THL}	5 10 15	— — —	85 45 30	170 90 60	
Minimum Delay Time Between CL _{UP} & CL _{DN}		5 10 15	— — —	100 80 60	— — —	
Maximum Clock Rise or Fall Time	t _{rCL} , t _{fCL}	5 10 15	— — —	— — —	15 15 15	μs

Reset

Propagation Delay Time Reset to Output	t _{PLH} , t _{PHL}	5 10 15	— — —	650 350 160	1300 700 320	ns
Minimum Reset Removal Time		5 10 15	— — —	-275 -100 -65	0 0 0	
Minimum Reset Pulse Width		5 10 15	— — —	175 85 60	350 170 120	

CD40110B Types

TRUTH TABLE

CLOCK UP *	CLOCK DOWN *	LATCH ENABLE	TOGGLE ENABLE	RESET	COUNTER	DISPLAY
	X	0	0	0	Increments by 1	Follows Counter
X		0	0	0	Decrements by 1	Follows Counter
		X	X	0	No Change	No Change
X	X	1	X	1	Goes to 00000	Remains Fixed
X	X	0	X	1	Goes to 00000	Follows Counter (Display = <u> </u>)
X	X	X	1	0	Inhibited	Remains Fixed
	X	1	0	0	Increments by 1	Remains Fixed
X		1	0	0	Decrements by 1	Remains Fixed

X = Don't Care

1 = High State

0 = Low State

* Typically 100 ns between clock-up and clock-down positive transitions are required to ensure proper counting.

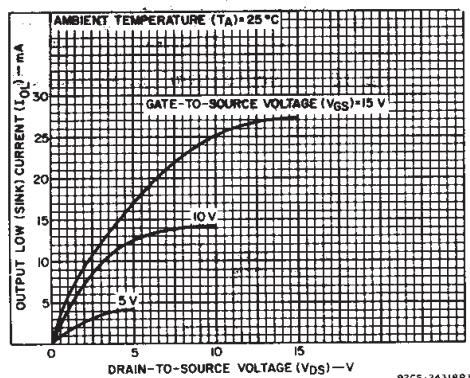


Fig. 3 - Typical carry or borrow output low (sink) current characteristics.

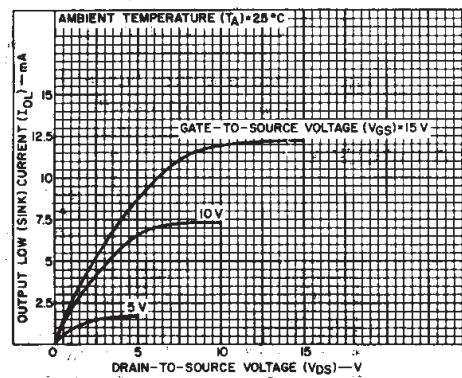


Fig. 4 - Minimum carry or borrow output low (sink) current characteristics.

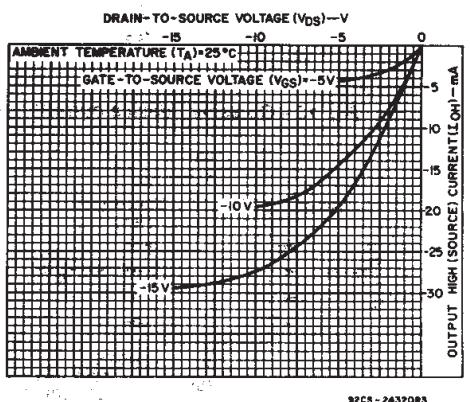


Fig. 5 - Typical carry or borrow output high (source) current characteristics.

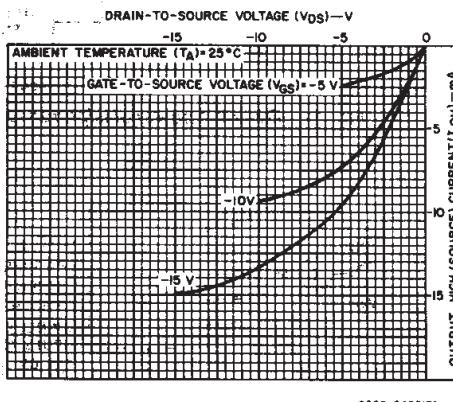


Fig. 6 - Minimum carry or borrow output high (source) current characteristics.

CD40110B Types

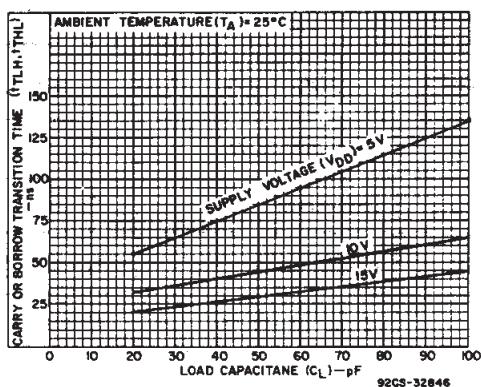


Fig. 7 - Typical carry or borrow transition time vs. load capacitance.

Fig. 8 - Typical carry or borrow propagation delay time vs. load capacitance.

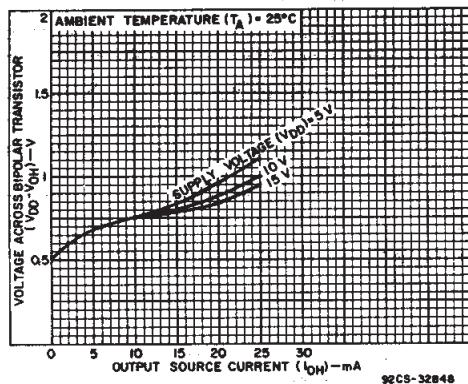


Fig. 9 - Voltage across bipolar transistor vs. output source current.

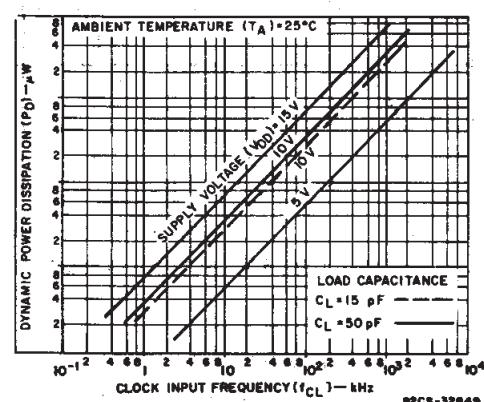


Fig. 10 - Typical dynamic power dissipation vs. frequency.

TEST CIRCUITS

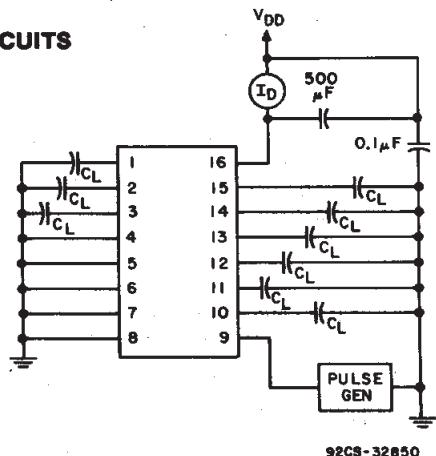


Fig. 11 - Dynamic power dissipation test circuit.

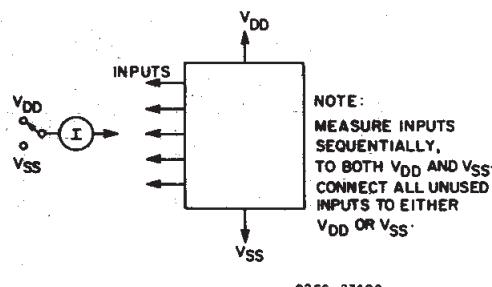


Fig. 12 - Quiescent device current.

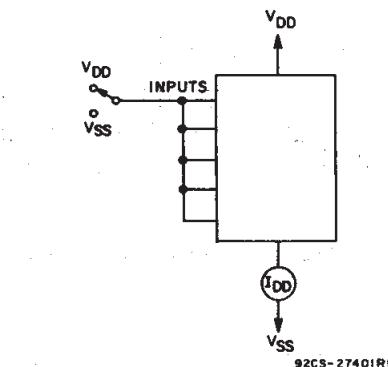
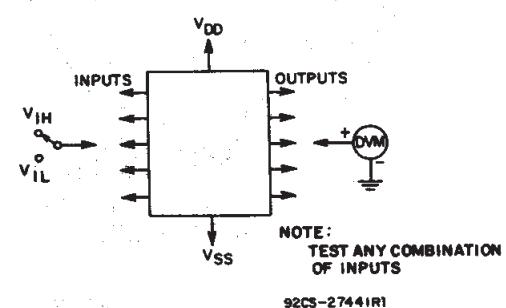
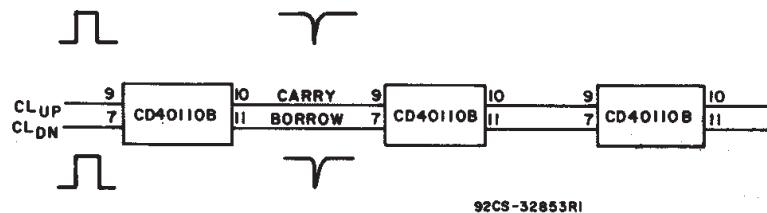
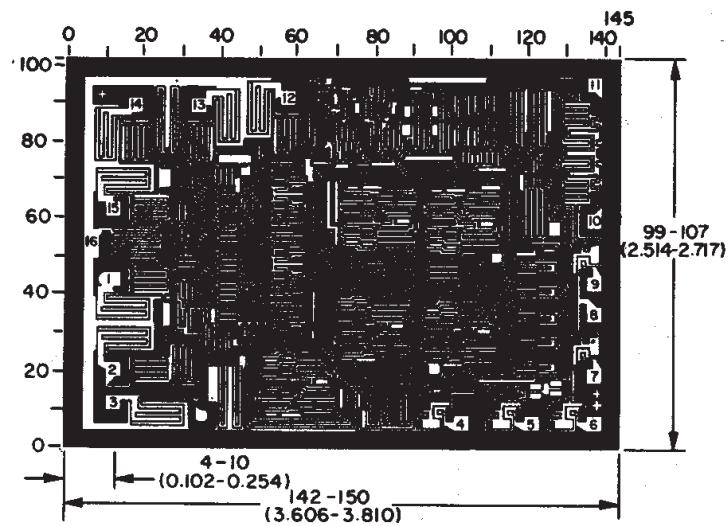


Fig. 13 - Input current.


Fig. 14 - Input voltage.

CD40110B Types

92CS-32853RI

Fig. 15 - Cascading diagram.

92CS-34617

Dimensions and pad layout for CD40110B.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

PACKAGING INFORMATION

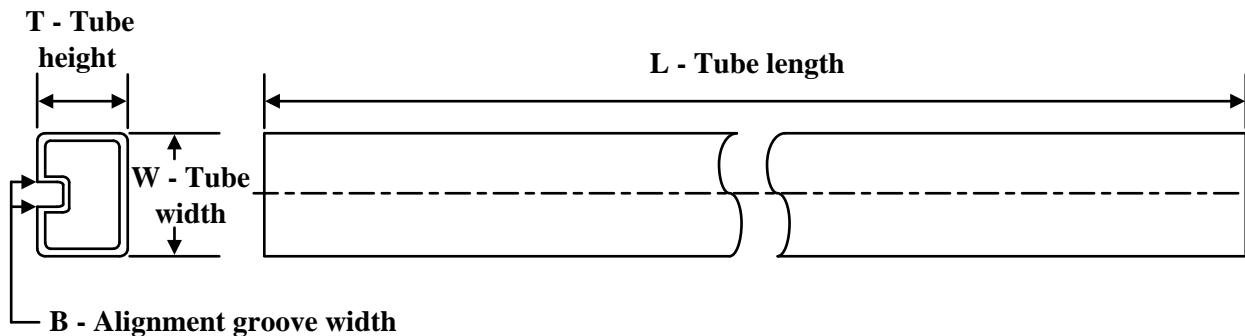
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
CD40110BE	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD40110BE

(1) **Status:** For more details on status, see our [product life cycle](#).

(2) **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

(3) **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

(4) **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


(5) **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

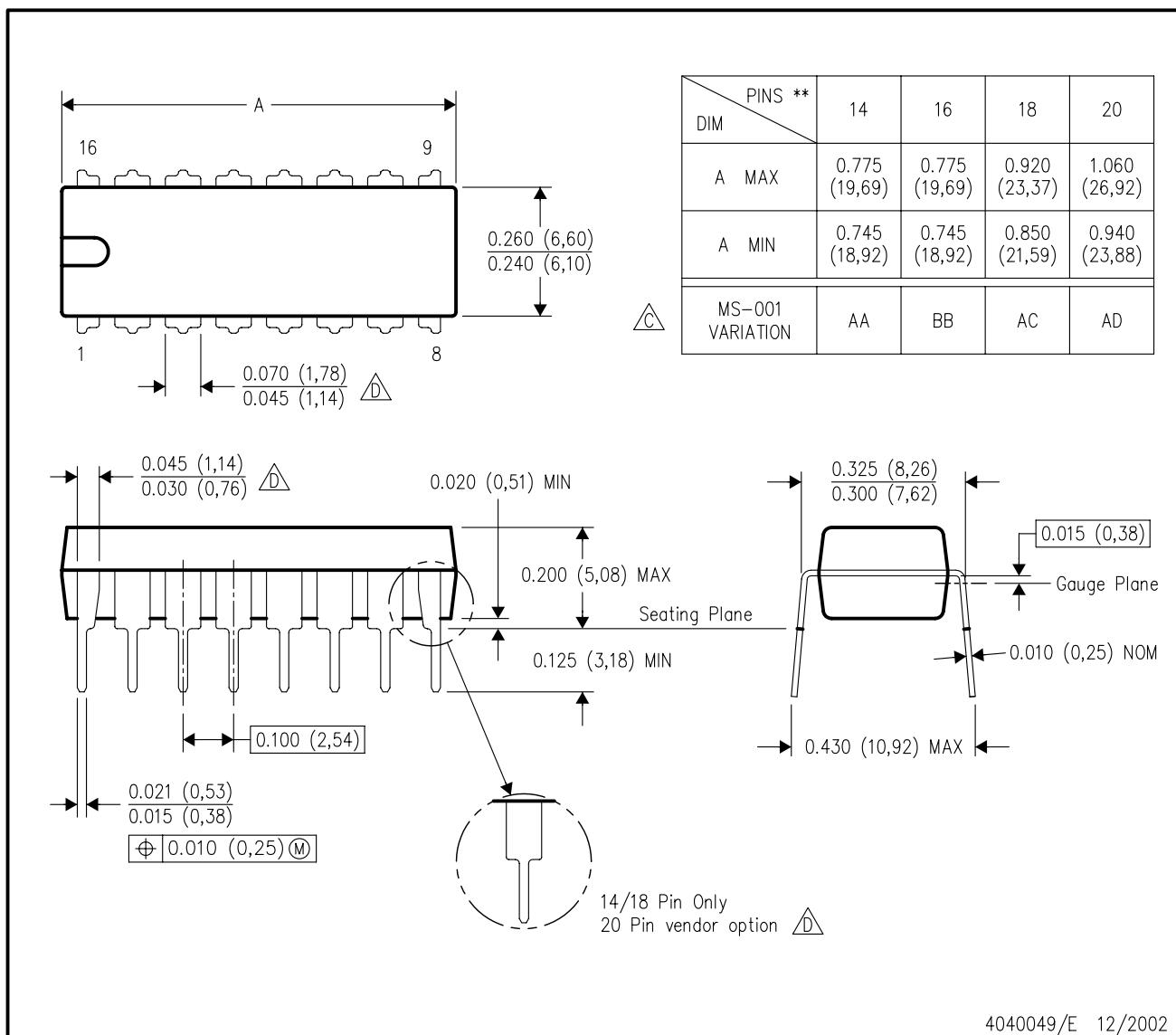
(6) **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TUBE


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
CD40110BE	N	PDIP	16	25	506	13.97	11230	4.32
CD40110BE	N	PDIP	16	25	506	13.97	11230	4.32

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.

△ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

△ The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated