

Stand 5.2019

EA DOGM204-A

INKL. KONTROLLER SSD1803A FÜR 4-/8-BIT, SPI, I2C

TECHNISCHE DATEN

- * KONTRASTREICHE LCD-SUPERTWIST ANZEIGE
- * OPTIONALE LED-BELEUCHTUNGSKÖRPER IN VERSCHIEDENEN FARBEN
- * 4x20 ZEICHEN MIT 4,8 mm SCHRIFT
- * KONTROLLER SSD1803A FÜR 4-/8-BIT, SPI (2-/3-/4-DRAHT) UND I2C (2-DRAHT) INTERFACE
- * SPANNUNGSVERSORGUNG +3,3V SINGLE SUPPLY (typ. 250µA)
- * KEINE ZUS. SPANNUNGEN ERFORDERLICH
- * BETRIEBSTEMPERATURBEREICH -20..+70°C (LAGERTEMPERATUR -30..+80°C)
- * LED-HINTERGRUNDBELEUCHTUNG 3..80mA@3.3V
- * KEINE MONTAGE ERFORDERLICH: EINFACH NUR IN PCB EINLÖTEN
- * 3 UNTERSCHIEDLICHE ZEICHENSÄTZE (KYRILLISCH, ENGLISCH-JAPANISCH, EUROPÄISCH) IM CONTROLLER INTEGRIERT
- * 2 EINBAURICHTUNGEN MÖGLICH (6-UHR UND 12-UHR)

BESTELLBEZEICHNUNG

LCD-MODUL 4x20 - 4.8 mm EA DOGM204x-A

 $x: B = blauer\ Hintergrund\ transflektiv$ W = weisser Hintergrund transflektiv

S = schwarzer Hintergrund transmissiv

N = weisser Hintergrund nicht beleuchtbar reflektiv

EA LED66X40-W LED-BELEUCHTUNG WEISS LED-BELEUCHTUNG AMBER **EA LED66X40-A** I FD-BFI FUCHTUNG GRÜN/ROT EA LED66X40-GR

ZUBEHÖR

USB-TESTBOARD FÜR PC (WINDOWS) **EA 9780-4USB** BUCHSENLEISTE 4,8mm HOCH (2 STÜCK ERFORDERLICH) EA FL-22P

EA DOG SERIE

Mit der EA DOG-Serie präsentiert ELECTRONIC ASSEMBLY die weltweite 1. Displayserie, welche ohne zusätzlicher Hilfsspanung an 3,3V Systemen lauffähig sind.

Anders als bei üblichen LCD-Modulen bestellen Sie hier die Anzeige und die entsprechende Beleuchtung separat. Dadurch ergeben sich mannigfaltige Kombinationsmöglichkeiten.

Konzipiert für kompakte Handgeräte bietet diese moderne LCD-Serie mit und ohne Beleuchtung eine Reihe echter Vorteile:

- extrem kompakt mit 66x40mm bei marktüblicher Schriftgröße von 4,8mm (4x20)!
- superfach mit 2,0mm unbeleuchtet bzw. 5,8mm inkl. LED-Beleuchtung
- * 4-Bit, 8-Bit, SPI (3-/4-Draht) und I2C (2-Draht) Interface
- nur typ. 250µA Stromverbrauch in vollem Betrieb (LED-Beleuchtung weiss ab 3mA)
- simple Montage durch einfaches Einlöten
- verschiedenste Designvarianten ab 1 Stück lieferbar
- 3 unterschiedliche Testprogramme eingebaut

LED-BELEUCHTUNGEN

Zur individuellen Hintergrundbeleuchtung sind 3 verschiedene Varianten erhältlich: weiss, amber und grün/rot

Bei den monochromen Beleuchtungen stehen jeweils 3 separate LED-Pfade zur Verfügung, welche zur optima-

len Anpassung an die Systemspannung parallel oder in Serie geschaltet werden können. Dadurch sind alle Beleuchtungen alternativ mit 3,3V oder einer höheren Spannung zu betreiben!

Der Betrieb der Hintergrundbeleuchtung erfordert einen externen Vorwiderstand zur Strombegrenzung. Dieser errechnet sich aus R=U/I; die Werte entnehmen Sie aus den Tabellen nebenan. Für eine optimale Lebensdauer empfehlen wir den Einsatz einer Stromquelle.

Die Lebensdauer der amber-farbigen Beleuchtung beträgt je nach Strom und Temperatur 100.000 Stunden. die der weißen Beleuchtung bei >50.000 Stunden.

Achtung: Betreiben Sie die Beleuchtung nie direkt an 5V/3,3V; das kann zur sofortigen Zerstörung der LED's führen!

Beachten Sie unbedingt ein Derating bei Temperaturen >25°C.

amber	Forward	Current	Limiting resistor			
EA LED66x40-A	voltage	max.	@ 3,3 V	@ 5 V		
Connected in parallel	2,1 V	72 mA	18 ohm	47 ohm		
Connected in series	6,3 V	24 mA	-	-		

white	Forward	Current	Limiting resistor			
EA LED66x40-W	voltage	max.	@ 3,3 V	@ 5 V		
Connected in parallel	3,2 V	90 mA	1,2 ohm	24 ohm		
Connected in series	9,6 V	30 mA	-	-		

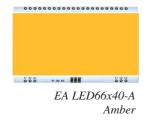
green/red	Forward	Current	Limiting resistor			
EA LED66x40-GR	voltage	max.	@ 3,3 V	@ 5 V		
red path (ARG/CR)	2,1 V	80 mA	24 ohm	48 ohm		
green path (ARG/CG)	2,1 V	80 mA	18 ohm	39 ohm		

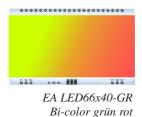
Montage

Zuerst werden das Display und der jeweilige Beleuchtungskörper aufeinandergesteckt. Dann wird die gesamte Einheit einfach in eine Platine gesteckt und dort verlötet. Bitte beachten Sie, dass die 6 Pins für die Beleuchtung auch von oben verlötet werden müssen.

Achtung: Auf dem Display befinden sich 1-2 Schutzfolien (oben und/oder unten) und auf der Beleuchtung jeweils eine Schutzfolie. Diese müssen während oder nach der Fertigung entfernt werden.

4 VERSCHIEDENE TECHNOLOGIEN


Als Standard sind 4 verschiedene Technologien in STN und FSTN lieferbar:


Displaytyp	Technologie	optionale Beleuchtung	Lesbarkeit	Displayfarbe unbeleuchtet	Displayfarbe mit Beleuchtung	empfohlene Beleuchtung
EA DOGM204W-A FSTN positiv white LED transflective	FSTN pos. transflektiv	mit und ohne Beleuchtungskörper zu verwenden	auch bei abgeschalteter Beleuchtung lesbar	schwarz auf weiß	schwarz auf Beleuchtungsfarbe	alle
EA DOGM204B-A STN negativ blue white LED transmissive	STN neg. blau transmissiv	nur beleuchtet zu verwenden			Beleuchtungsfarbe auf blauem Hintergrund	weiß
EA DOGM204S-A FSTN negativ White LED transmissive	FSTN neg. transmissiv	nur beleuchtet zu verwenden			Beleuchtungsfarbe auf schwarzem Hintergrund	alle
EA DOGM204N-A FSTN positiv reflective no backlight	FSTN pos. white reflektiv	keine Beleuchtung möglich	ohne Beleuchtung bestens lesbar	schwarz auf weiß		

3 VERSCHIEDENE BELEUCHTUNGEN

Zur Anpassung an unterschiedlichste Designs stehen 3 verschiedene Beleuchtungsfarben zur Auswahl. Die effektivste und gleichzeitig hellste Beleuchtung ist die weiße EA LED66x40-W.

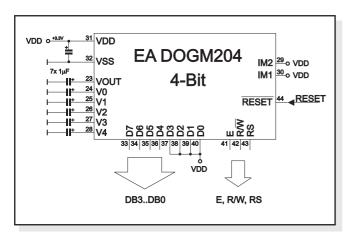
Wenn Sie auf dieser Seite nur schwarz/weiß Darstellungen sehen: das farbige Datenblatt finden Sie im Internet unter http://www.lcd-module.de/deu/pdf/doma/dogm204.pdf

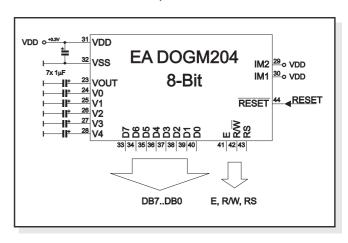
USB-TESTBOARD EA 9780-4USB

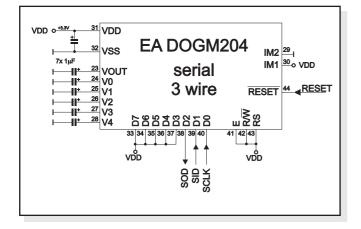
Zum einfachen Start ist ein USB-Testboard für den Anschluss an einen PC erhältlich. Im Lieferumfang ist ein USB-Kabel, sowie eine Windows-Software enthalten. Hierüber können auch eigene Texte direkt am angeschlossenen Display dargestellt werden.

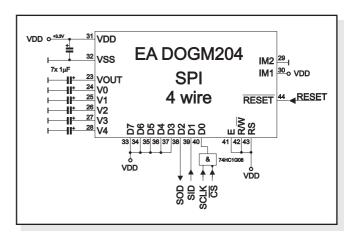
SIMULATION UNTER WINDOWS

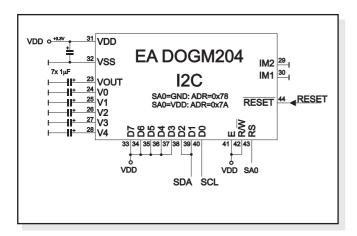
Ohne vorab ein Display zu kaufen, können mit einem Simulator alle Versionen und Farben auf dem PC dargestellt werden. Die Software steht auf unserer Website kostenfrei zum Download bereit: http:// www.lcd-module.de/deu/disk/startdog V33.zip

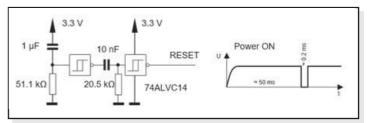



APPLIKATIONSBEISPIELE


Je nach Interface ist eine individuelle Beschaltung zu wählen.


Bitte beachten Sie, dass aufgrund der COG-Technik die Strombelastbarkeit der Ausgänge begrenzt ist. Es kann dadurch bei größerer Buslast zu Signalverschleifungen und unsauberen Pegeln kommen. Im Zweifelsfall sind zusätzliche Pull-Down Widerstände (8051) erforderlich, oder es müssen zusätzliche Waits/NOP's eingefügt werden.


Bitte haben Sie ein besonderes Augenmerk bei der I2C-Bus Anbindung auf die Auswahl der Pull-up Widerstände. Die Anschlusspins SDA+SCK haben einen Innenwiderstand von ca. 600..1000 Ohm. evtl. auch mehr (betrifft LO-Pegel beim Lesen von Daten bzw. dem ACK-Bit).



Um eine fehlerfreie Funktion und Initialisierung des Displays zu gewährleisten, empfehlen wir den Reset aktiv zu bedienen. Dies kann entweder über einen Port des Mikrokontrollers geschehen oder mittels Resetschaltung. Hier ein Applikationsbeispiel:

INITIALISIERUNGSBEISPIELE

			Init	ializ	zati	on	Exa	amp	le 8	8-B	it, S	SPI and I2C
Command	RS	R/W	DB7	DB6	DB5	DB5 DB4		DB2	DB1	DB0	Hex	Remark
Function Set	0	0	0	0	1	1	1	0	1	0	\$3A	8 bit data length extension Bit RE=1; REV=0
Extended function set	0	0	0	0	0	0	1	0	0	1	\$09	4 line display
Entry mode set	0	0	0	0	0	0	0	1	1	0	\$06	bottom view
Bias setting	0	0	0	0	0	1	1	1	1	0	\$1E	BS1=1
Function Set	0	0	0	0	1	1	1	0	0	1	\$39	8 bit data length extension Bit RE=0; IS=1
Internal OSC	0	0	0	0	0	1	1	0	1	1	\$1B	BS0=1 -> Bias=1/6
Follower control	0	0	0	1	1	0	1	1	1	0	\$6E	Devider on and set value
Power control	0	0	0	1	0	1	0	1	1	1	\$57	Booster on and set contrast (DB1=C5, DB0=C4)
Contrast Set	0	0	0	1	1	1	0	0	1	0	\$72	Set contrast (DB3-DB0=C3-C0)
Function Set	0	0	0	0	1	1	1	0	0	0	\$38	8 bit data length extension Bit RE=0; IS=0
Display On	0	0	0	0	0	0	1	1	1	1	\$0F	Display on, cursor on, blink on

			Ini	itial	iza	tior	ı Ex	cample 4-Bit
Command	RS	R/W	DB7	DB6	DB5	DB4	Hex	Remark
Synchronize 1	0	0	0	0	1	1	\$33	Make sure to switch to 8 bit data length
Synchronize 2	0	0	0	0	1	1 0	\$32	Switch to 4 bit data length
Function Set	0	0	0	0	1	0	\$2A	4 bit data length extension Bit RE=1; REV=0
Extended funcion set	0	0	0	0	0	0	\$09	4 line display
Entry mode set	0	0	0	0	0	0	\$06	bottom view
Bias setting	0	0	0	0	0	1 0	\$1E	4 bit data length extension Bit RE=0; IS=1
Function Set	0	0	0	0	1 0	0	\$29	4 bit data length extension Bit RE=0; IS=1
Internal OSC	0	0	0	0	0	1	\$1B	4 bit data length extension Bit RE=0; IS=1
Follower control	0	0	0	1	1	0	\$6E	Devider on and set value
Power control	0	0	0	1	0	1	\$57	Booster on and set contrast (DB1=C5, DB0=C4)
Contrast Set	0	0	0	1 0	1	1 0	\$72	Set contrast (DB3-DB0=C3-C0)
Function Set	0	0	0	0	1 0	0	\$28	4 bit data length extension Bit RE=0; IS=0
Display on	0	0	0	0	0	0	\$0F	Display on, cursor on, blink on

12:00 BLICKWINKEL, TOP VIEW EINBAULAGE

Wird das Display überwiegend von oben abgelesen (z.B. in der Front eines Labornetzteils), kann der Vorzugsblickwinkel auf 12:00 Uhr eingestellt werden. Dazu wird das Display um 180° gedreht eingebaut und geringfügig anders initialisiert:

	Change view												
Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Remark	
Function Set	0	0	0	0	1	1	1	0	1	0	\$3A	8-Bit data length extension Bit RE=1; IS=0	
Entry Mode	0	0	0	0	0	0	0	1	BDC	BDS	\$0X	\$06=bottom view; \$05 = top view	
Function Set	0	0	0	0	1	1	1	0	0	0	\$38	8-Bit data length extension Bit RE=0; IS=0	

Einbaulage 6:00 (Bottom View)

Einbaulage 12:00 (Top View)

KONTRAST EINSTELLUNG

Der Displaykontrast ist per Befehl einstellbar. Dies erfolgt über die Bits C0..C5 in den Befehlen "Contrast Set" und "Power/Icon Control/Contrast Set". In der Regel wird der Kontrast einmalig eingestellt und wird dann, dank integrierter Temperaturkompensation, über den gesamten Betriebstemperaturbereich (-20..+70°C) konstant gehalten.

	Contrast set (8-Bit)													
Command RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Hex Remark										Remark				
Function Set	0	0	0	0	1	1	1	0	0	1	\$39	8-Bit data length extension Bit RE=0; IS=1		
Power control	0	0	0	1	0	1	0	1	1	1	\$57	Booster on and set contrast (DB1=C5, DB0=C4)		
Contrast Set	0	0	0	1	1	1	0	0	1	0	\$72	Set contrast (DB3-DB0=C3-C0)		
Function Set	0	0	0	0	1	1	1	0	1	0	\$38	8-Bit data length extension Bit RE=0; IS=0		

Further information about the commadns of the SSD1803A, please refer to the datasheet http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/ssd1803a_2_0.pdf

ZEICHENSATZ

Es sind 3 unterschiedliche Zeichensätze definiert. Mit dem Befehl ROM-Selection im erweiterten Commandoset können die unterschiedlichen Zeichensätze ausgewählt werden:

ROM A

ROM B

L 10 0	_															
b7-4	0	1	2	3	4	5	6	7 8	8 9	9 /	4	В	С	D	Ε	F
00																
10	ŀ															
20						X										
30	0	1	2	3	4	5	6	r	8	9		•	X.			
40			mm:		<u> </u>		шш	LOSS .	ш	LEED!	шш		-	2000	01110	
50	P	Q	R	5	I		W	W	X	¥	Z					
60																O
70																
80		ш		ш		шш	ш		ш	ш	ш.	ш	ш	ш.	ш.	
90																
Α0	Ă	A	Ó	Ö	Ď	Ě	Ę	Ğ	ğ		İ	ŧ	Ń	Ň	Ö	Ř
B0	Š	\$	\$	Š	Ţ	Ť	Ü	Ű	Ź	Ż	Ž					
C0	À	Á	Å	Ā	Ä	À	Æ		È	É	Ě	Ë	Ì	Ĭ	Î	
D0	Ð	Ñ	Ò	Ó	Ô	Ö	Ö	×	0	Ù	Ú	ů		¥	þ	ß
E0									шш	шш	шш			шш		
F0	ð	ñ	Ò	Ö	Ö	Ö	Ö		Ø		Ú	ű	Ü		Þ	

ROM C

<u>NOIVI C</u>
0123456789ABCDEF
00
10 ΜΤΕΠΓΙΘΑΞΠΣΥΦΨΩα
20 ! "井事潔& 2 () 半十 3 一 。 /
300123456789: \$ <=>?
40 DABCDEFGHIJKLMNO
50 PQRSTUUWXYZ[¥]^_
60 abcdef9hijklmno
70P9PStuvwx9Z{ }**
80 Güéääääseeeiiiää
90 É 2 (E 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
A0 a 「 」、・ヲァィウェオヤュヨッ
во-アイウエオカキクケコサシスセリ
COタチツテトナニヌネノバヒフへホマ
DO ≣Ġ∦₩₽₽⊒⋽IJſſſĸſſŢŢŶ°°
EOÁÍÁÚÍL¥RFIÄÄÖÖØØ
F0

	Change character table													
Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Remark		
Function Set	0	0	0	0	1	1	1	0	1	0	\$3A	8-Bit data length extension Bit RE=1		
ROM Selection	0	0	0	0	0	0	1	0	0	1	\$72	ROM selection double byte command		
	1	0	0	0	0	0	R2	R1	0	0	\$0X	\$00 = ROMA; \$04=ROMB; \$0C=ROMC		
Function Set	0	0	0	0	1	1	1	0	0	0	\$38	8-Bit data length extension Bit RE=0		

Beispielcode

EIGENE ZEICHEN

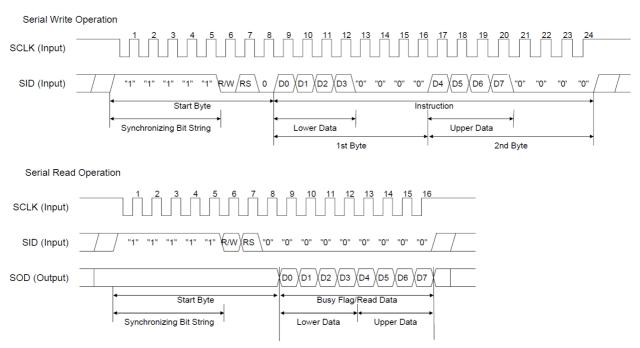
Es ist möglich, neben den fest im ROM gespeicherten Zeichen, bis zu 8 Weitere frei zu definieren (ASCII Codes 0..7). Voraussetzung für die Definition ist RE- und IS-Bit auf 0

- 1.) Mit dem Kommando "CG RAM Address Set" wird der ASCII Code (Bit 3,4,5) und die entsprechende Pixelzeile (Bit 0,1,2) des Zeichens angewählt. Im Beispiel wird ein Zeichen mit dem Code \$00 definiert.
- 2.) Mit dem Befehl "Data Write" wird nun Pixelzeile für Pixelzeile das Zeichen in das CG RAM geschrieben. Ein Zeichen benötigt 8 Schreiboperationen, wobei die 8. Zeile der Cursorzeile entspricht.
- 3.) Das neu definierte Zeichen wird genauso behandelt wie ein "normales" ASCII Zeichen (Verwendung: "DD RAM Address Set", "Data Write")

		(Cha	ırac	ter-	dat	a	
7	6	5	4	3	2	1	0	Hex
			0	0	•	0	0	\$04
			0	0	1	0	0	\$04
			0	0	1	0	0	\$04
~	Х	~	0	0	7	0	0	\$04
^	^	^	-	0	1	0	-	\$15
			0	1	1	1	0	\$0E
			0	0	7	0	0	\$04
			0	0	0	0	0	\$00

						De	fine	e ov	vn (cha	rac	ter
Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Remark
CG-RAM address set	0	0	0	1	AC5	AC4	АС3	AC2	AC1	AC0	\$40	Set address of character \$40=0; \$48=1;
						0	0	1	0	0	\$04	first line
						0	0	1	0	0	\$04	second line
						0	0	1	0	0	\$04	third line
Character-data	1	0	х	х	х	0	0	1	0	0	\$04	fourth line
						1	0	1	0	1	\$15	fifth line
						0	1	1	1	0	\$0E	sixth line
						0	0	1	0	0	\$04	seventh line
						0	0	0	0	0	\$00	eighth line, cursor line

SERIAL INTERFACE (SPI)

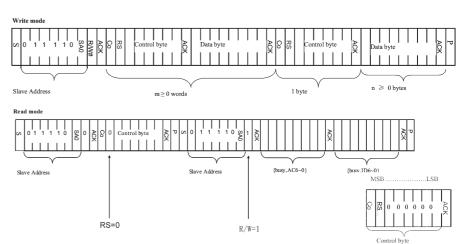

Das serielle Interface benötigt immer ein Synchronisationsbyte. Beim Schreiben der Daten muss das zu sendende Byte in zwei Byte aufgeteilt werden, in "lower data" und "upper data". Vgl. hierzu das Timingdiagramm unten. Die maximale Taktfrequenz für SCLK beträgt 1 MHz.

SPI. 2-/3-Wire

Mit nur 2 bis 3 Leitungen SCLK, SID und ggfls. SOD kann das EA DOGM204-A direkt an das SPI Interface eines uC angeschlossen werden.

SPI, 4-Wire

Werden mehrere Bausteine am SPI betrieben, ist zusätzlich ein "Chipselect" erforderlich. Dies erfordert ein UND-Gatter (z.B. 74HC1G08) am Pin SCLK. Die Logik an diesem Pin CS ist H-aktiv. Ein Applikationsbeispiel finden Sie auf der Seite 4.


I²C INTERFACE

Dem Display kann entweder die SlaveAdresse 0x78 bzw. 0x3C (SA0=VSS) oder 0x7A bzw. 0x3D (SA0=VDD) zugeordnet werden.

Nach dem Übertragen der Startcondition muss im ersten Byte die per Hardware eingestellte Slaveadresse übertragen werden, ebenso wie das Read(1)/Write(0) Bit. Beim schreibenden Zugriff folgt auf die Adresse immer ein Controlbyte mit der Information Data(1) oder Command(0), sowie dem

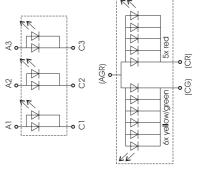
sogenannten Continuation bit. Wird das Continuation bit auf 0 gesetzt folgen bis zur Stop condition nur noch daten bytes. Die maximale Busfrequenz beträgt 400 kHz.

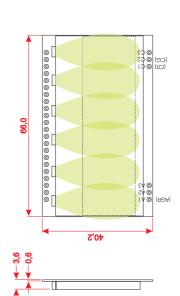
Beachten Sie bei der Auswahl der Pull-up Widerstände, dass die Anschlusspins SDA+SCK einen Innenwiderstand von ca. 600..1000 Ohm, evtl. auch mehr haben (betrifft LO-Pegel beim Lesen von Daten bzw. dem ACK-Bit).

Further information about the interfaces and the timing of the SSD1803A, please refer to the datasheet http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/ssd1803a_2_0.pdf

2,46 → ★ 0.015

-2.976


Hinweis: - LC-Displays sind generell nicht geeignet für Wellen- oder Reflowlötung. Temperaturen über 80°C können bleibende Schäden


hinterlassen.
- Die Oberflächen der Displays und Beleuchtungen sind durch selbsklebende Schutzfolien vor dem Verkratzen geschützt. Bitte vor der Montage entfernen.

Pin	Symbol	Symbol Level Function	Pin	Symbol	Level	Symbol Level Function
-	S	(A1+: LED backlight)	23	VOUT		Voltage converter outp
7	2	(A2+: LED backlight)	24	0/		Regulated voltage out
က	S	(A3+: LED backlight)	25	7		Regulated voltage out
4			56	۸5	,	Regulated voltage out
ß			27	۸3		Regulated voltage out
9			28	۷4		Regulated voltage out
7			29	IM2	H/L	Interface mode select
8			30	IM1	H/L	Interface mode select
6			31	QQA	Н	Power Supply +2.4+3
10			32	SSA	٦	Power Supply 0V
11			33	2 0	H/L	Data
12			34	De	H/L	Data
13			35	DS	H/L	Data
14			36	D4	H/L	Data
15			37	D3	H/L	Data
16			38	D2	H/L	Data / SOD / SDAout
17			39	D	H/L	Data / SID / SDAin
18			40	00	H/L	Data / SCLK / SCL
19			41	В	Н	Enable (falling edge)
20	NC	(C1-: LED backlight)	42	R/W	H/L	L= Write, H=Read
21	NC	(C2-: LED backlight)	43	RS	H/L	L=Cmd, H=Data / SA0
22	NC NC	(C3-: LED backlight)	44	RESET	7	Reset

put tput tput tput tput tput 1 1 3,6V

<u>Hinweis:</u> Die 4 LED-Pins A1, C1, A2 und C2 (bzw. AGR, CG, CR) müssen von oben verlötet werden, damit ein einwandfreier Kontakt gewährleistet ist. Bitte verwenden Sie dazu wenig Zinn.

Fon: +49 (0)8105-778090 Fax: +49 (0)8105-778099 e-Mail: info@lcd-module.de Web: www.lcd-module.de

alle Maße in mm

ABMESSUNGEN