
Copyright © October 2013 Lattice Semiconductor Corporation.

Timing Closure

Introduction
Every design has to run at a certain speed based on the design requirement.
There are generally three types of speed requirement in an FPGA design:

 Timing requirement – how fast or slow a design should run. This is defined
through the target clock period (or clock frequency) and a few other
constraints.

 Throughput – the average rate of the valid output delivered per clock cycle

 Latency – the amount of the time required when the valid output is
available after the input arrives, usually measured in the number of clock
cycles

Throughput and latency are usually related to the design architecture and
application, and they need to be traded off between each other based on the
system requirement. For example, high throughput usually means more
pipelining, which increases the latency; low latency usually requires longer
combinatorial paths, which removes pipelines, and this can reduce the
throughput and clock speed.

More often, FPGA designers deal with the timing requirement to make sure
that the design runs at the required clock speed. This can require hard work
for high-speed design in order to close timing using various techniques
(including the trade-off between throughput and latency, appropriate timing
constraint adjustments, etc.) and running through multiple processing
iterations including Synthesis, MAP and PAR.

This document focuses on the timing requirement; it explains the timing-
driven FPGA implementation processes and shows how to tackle timing
issues when timing closure becomes problematic.

Introduction

2 Timing Closure

Timing Requirements and Constraints
Several types of timing requirement are commonly used in FPGA designs and
can be specified in Diamond through constraints and preferences. These are
applied to the FPGA implementation processes, including Synthesis, MAP
and PAR, as explained in the following sections.

Clock Period/Frequency
Usually the maximum delay (or the most critical path) between any two
sequential elements (e.g. registers) in a clock domain determines that clock’s
maximum frequency. In order to ensure that a design can run at the required
speed, the clock period or frequency should be defined as a constraint for the
timing-driven process so that the implementation process considers the
requirement and ensures that the maximum delay is no larger than the clock
period defined.

If a design includes multiple clock domains, each clock should be
appropriately constrained.

Figure 1 illustrates the following timing preference:

FREQUENCY PORT “CLK” <Frequency> MHZ

It illustrates an ideal clock, its period and frequency definitions. In this
diagram, the circuit will operate correctly if the data leaving FF_S (which is
created by the first clock edge) arrives at FF_D prior to the second clock
edge. The Period (or Frequency) defines how far apart these two clock edges
are in time.

Relating Two Clocks for Period/Frequency
If a data path crosses between two clock domains, the edge relationship
between those two clocks must be known to analyze the timing. For example,
if both clocks run with the same period P but there is skew between them, the
data path timing must meet a different constraint than T.

Figure 1: Period and Frequency of an Ideal Clock

Introduction

Timing Closure 3

If the relationship is not known, then the data path will not be constrained.

Synthesis tools such as Synplify Pro must be told of these relationships. If
Synplify Pro constraint is used, this is done by defining two clocks with the
same clock group name using define_clock constraints, at the same time, by
defining clock skew using define_clock_delay constraint.

The FPGA implementation tools such as MAP, PAR and TRACE usually can
determine the timing relationship between two clocks (e.g. they both come
from the same PLL). However, if both clocks come from external pins, the
user must specify their relationship. This is done using the CLKSKEWDIFF
preference.

Figure 2 illustrates the following timing parameter:

CLKSKEWDIFF CLKPORT "CLK2" CLKPORT "CLK1" <clkskewdiff_value>
NS;

CLKSKEWDIFF is used to relate two otherwise unrelated clocks, for example,
two top-level clocks. TRACE will not analyze cross-domain paths between
unrelated clocks. You can establish a relationship between two unrelated
clocks by specifying the amount of clock skew between these clocks using the
CLKSKEWDIFF preference, as illustrated in Figure 2.

Figure 2: Using CLKSKEWDIFF

Introduction

4 Timing Closure

Input/Output Timing
FPGA IO timing basically looks at one part of the register-register timing
analysis of the simple Period/Frequency case in Figure 2. The goal is to be
able to analyze register-to-register paths that cross between two devices, but
focus the analysis on the FPGA device and model the other device within the
FPGA board timing environment.

 “Input” case – when the FPGA is receiving data from a “source” device (as
input)

In this case, the timing data of when the other device (and board)
guarantees to provide data to the FPGA pins is provided to the analysis as
a constraint.

 “Output” case – when the FPGA is sending data to a “destination device”
(as output)

In this case, the timing data of when the other device (and board) needs
the data emerging from the FPGA pins is provided to the analysis as a
constraint.

Input Setup/Input Delay
Input setup is the time difference between when the data arrives at its FPGA
input pin, and when the next clock edge arrives as its FPGA pin. Input setup is
a positive value if the data arrives before this clock edge. The input setup
value is a function of the clock speed, source device timing (clock to out
value) and board timing. This is the time available (i.e. constraint) to the timing
of the data and clock paths within the FPGA to meet the internal device timing
requirements.

The detailed timing example below shows the components of the two options
to define input IO timing constraint: Input setup and Input delay.

The external environment is given: a clock period of 20 ns, board clock skew
of 1ns, board trace of 8 ns, and the source device’s clock to out spec of 7 ns.
This causes the data to arrive at its FPGA data pin at least 4 ns before its

Figure 3: Input/Output Timing

Introduction

Timing Closure 5

capture clock edge arrives at its FPGA pin – this is the input setup constraint
the FPGA internal timing must work within to meet the internal register setup
time of 0.50 ns.

Input delay is the time between when the previous capture clock edge arrived
as its FPGA pin and when the data arrives at its FPGA input pin. Input delay is
a positive value if the data arrives after this clock edge.

Input setup and input delay are two different ways of looking at the same thing
(if you know one, you know the other).

Input setup + Input delay = clock period.

Both input setup and input delay forms are specified using the INPUT_SETUP
preference.

The HOLD time (in the INPUT_SETUP preference) represents how long the
data is valid at the FPGA input pin after the clock edge used for input setup
arrives at its FPGA pin. It is used to test for board level hold time violations.

The Hold time is how long the data will remain constant at the FPGA input pin
after the clock edge arrives at its FPGA pin.

Note

The input setup constraint value depends on the clock period value. Thus, if the clock
period constraint changes, the input setup constraint should also change.

Note

The input delay value does not depend on the clock period value. Thus, if the clock
period constraint changes, the input delay constraint does not change.

Figure 4: Input Case

Introduction

6 Timing Closure

The following shows how Input setup and Input delay forms are specified in
the preference language. See the diagram in Figure 6 for reference:

Input_setup (form)
INPUT_SETUP PORT “INPUT” <INPUT_SETUP_value>
HOLD <HOLD_value> CLKPORT “CLK”

Input_delay (form)
INPUT_SETUP PORT “INPUT” INPUT_DELAY
<INPUT_DELAY_value> HOLD <HOLD_value> CLKPORT “CLK”

It shows a no-skew clock with its period/frequency, and an input with its input
setup, input delay and hold time. This also shows how the sum of input setup
time and input delay is the clock period, so that when one value is known, the

Figure 5: Input Timing

Introduction

Timing Closure 7

other one can be easily calculated by subtracting the known value from the
clock period.

Clock to Output
Clock_to_Out is the time difference between when the launch clock edge
arrives at the FPGA input pin, and when the resulting data signal departs the
FPGA (pin). The clock to out timing constraint value is when the FPGA must
provide the data to meet the board timing and downstream device
requirements. It is a function of the clock speed, destination device timing (its
input setup requirement) and board timing. The FPGA meets this timing
through the choice of the internal clock and data paths used.

The detailed timing example below shows the components of the two options
to define output IO timing constraint: clock to out and output delay.

The external environment is given: a clock period of 20 ns, board clock skew
of 1ns, board trace of 6 ns, and the destination device’s input setup
requirement of 5.5ns. This leaves at most 7.5 ns for the FPGA’s clock to out
timing.

Output delay is the portion of the clock period used by the environment
outside of the FPGA. It includes the time for the signal to travel from the
FPGA to the destination device (board trace), the input setup time required by

Figure 6: Input Setup/Input Delay

Note

The clock to out value depends on the clock period value; if the clock period constraint
changes, the clock to out constraint should also change.

Introduction

8 Timing Closure

the destination device, and any time lost to board clock skew between the
launch and capture clocks.

Clock to output and output delay are two different ways of looking at the same
thing (if you know one, you know the other).

Clock to output + Output delay = clock period.

Both clock to out and output delay forms are specified using the
CLOCK_TO_OUT preference.

The MIN time (in the CLOCK_TO_OUT preference) represents the smallest
time for clock to out that will not result in a board level hold time violation.

The following shows how clock to out and output delay forms are specified in
the preference language. See the diagram in Figure 9 for reference:

Clock to out (form)
CLOCK_TO_OUT PORT “OUTPUT” <clock_to_out value>
MIN <HOLD_value> CLKPORT “CLK”

Output delay (form)
CLOCK_TO_OUT PORT “OUTPUT” OUTPUT_DELAY <output_delay value>
MIN <HOLD_value> CLKPORT “CLK”

Note

The output delay value does not depend on the clock period value; if the clock period
constraint changes, the output delay constraint does not change.

Figure 7: Output Case

Introduction

Timing Closure 9

Figure 8: Output Timing

Figure 9: Clock to Output

Introduction

10 Timing Closure

Maximum Delay
Every net has a delay. The Maximum Delay constraint defines the maximum
total time required for a net, bus or path, from a start point to an end point.

It illustrates the following timing preference:

MAXDELAY FROM <Start point> TO <End point> <t2-t1> ns

Exceptions
It can be necessary to specify exceptions to the standard timing analysis.
These timing exceptions / modifications are considered timing requirements
and captured in the timing constraints.

MULTICYCLE
Generally, in a synchronous design, a receiving register captures data using
the next active clock edge after the edge that launched the data from the
launching register. If both registers are clocked using the same clock signal,
then this is one clock cycle. There are cases where the designer intends the
time from a launching register to a receiving register to be different than this
general case. The MULTICYLCE preference allows the designer to specify a
timing requirement that is different than what the general/default case would
use.

A MULTICYCLE constraint is a relaxation of the clock period / frequency
analysis, and therefore only applies to paths covered by a clock period or
frequency constraint. The launching register and the receiving register can be
clocked by the same clock or different clocks. If driven by different clocks,
these clocks must be related (if they are unrelated, the period / frequency will
not be analyzed for the paths the cross between the clock domains).

The diagram in Figure 11 illustrates the following timing preference:

MULTICYCLE FROM <Source Register> CLKNET “CLK” CLKEN_NET “CE”
TO <Destination Register> CLKNET “CLK” 2 X

It illustrates a portion of a clock domain where a clock enable (CE) is running
at half the speed of the clock and therefore slows the actual clock domain’s

Figure 10: Maximum Delay

Introduction

Timing Closure 11

effective frequency and allowing the data path more time to reach the capture
register. If the clock was constrained to have a period of P, the MULTICYCLE
constraint could then be used to constrain the data path D at 2 x P.

The diagram in Figure 12 illustrates the following timing preference:

MULTICYCLE FROM <Source Register> CLKNET “CLK_S” TO <Destination
Register> CLKNET “CLK_D” 1X

It shows a data transfer from a clock domain to a clock domain running at half
the speed (there is no skew between the clock domains). The default
analysis will determine if the data path D’s time meets the period of the faster
clock. MULTICYCLE can be used to constrain the data path to use the period
of the slower clock.

Figure 11: Clock Domain

Figure 12: Data Transfer

Introduction

12 Timing Closure

False Paths/Block
There can be paths in the design that are by default analyzed for timing, but
their timing has no impact on the operation of the circuit. A simple example is
an input that is tied to a constant VCC or GND on the board. During operation,
there is no value transferred from the start of the path to the end, so its timing
is not relevant.

Users can specify these paths to the tools using false path (synthesis
constraint) and BLOCK (FPGA preference) to keep the flow from working on
areas that have no impact.

Example: Calculate Timing
Requirement
Understanding the system/board level timing and constraints is the primary
requirement for producing a complete FPGA design timing requirement. The
example shown in Figure 13 shows how to extract timing requirements from
system conditions.

In this example, several parameters have already been provided:

 System clock period: P = 30 ns

 Comp1

 maximum output propagation delay (clk_to_out): PDMAXp = 18 ns;

 minimum output propagation delay (clk_to_out): PDMINp = 3 ns

 Comp1 input setup: TSp = 5 ns

 Comp1 input hold specification: THp = 3 ns

 Maximum board propagation delay: PDMAXb = 2 ns

 Minimum board propagation delay: PDMINb = 1 ns

 Clock skew: clock arrives 1ns earlier at FPGA than it arrives at Comp1.

Figure 13: Calculate Timing Requirement

Timing-Driven Flow Using Lattice Diamond Design Software

Timing Closure 13

 Clock skew of Comp1 to the FPGA device Tskew = 1 ns

From the information provided, we can capture the following timing
requirements for the FPGA (each is written in the Lattice Preference language
used for the backend tools):

 Clock period P = 30ns, or the frequency is 33.33MHz.

FREQUENCY PORT "clk" 33.33 MHz;

 Input setup = P - PDMAXp - PDMAXb - Tskew = 30 - 18 - 2 - 1 = 9 ns

INPUT_SETUP ALLPORTS 9 ns CLKPORT "clk" ;

 Input hold = PDMINp + PDMINb + Tskew = 3 + 1 + 1 = 5ns

INPUT ALLPORTS SETUP 9 ns HOLD 3 ns CLKPORT "clk" ;

 Output maximum propagation delay = P - TSp - PDMAXb + Tskew = 30 - 5
- 2 -+ 1 = 24 ns

CLOCK_TO_OUT ALLPORTS 24 ns CLKPORT “clk” ;

 Output minimum propagation delay = THp - PDMINb + Tskew = 3 - 1 + 1 =
3 ns

CLOCK_TO_OUT ALLPORTS MAX 24 ns MIN 3 ns CLKPORT “clk”;

Timing-Driven Flow Using Lattice Diamond Design
Software

Every design has a timing requirement, no matter how fast or slow it runs. You
should always constrain your design with a timing requirement and examine
the static timing analysis results to ensure that your design functions correctly
across the production silicon. In addition, you should understand how a
timing-driven process works and how to interpret the timing-related process
reports so that you can identify and fix potential timing issues.

The diagram in Figure 14 shows various places in the Lattice Diamond design
flow where a user might need to pay attention and take action in order to
achieve timing closure.

As shown in the diagram, each step in the process uses the timing
requirements. It is possible to supply different timing requirements to
Synthesis and the MAP/PAR processes. MAP/PAR always uses the same
timing requirements. The general steps for each process include:

1. Gather timing requirements (as explained in “Example: Calculate Timing
Requirement” on page 12) and define timing constraints.

a. These must be captured in LPF format for the MAP/PAR processes to
use.

b. Optionally, these can also capture preferences in SDC format for the
synthesis process.

2. Run the synthesis process. It is possible to run synthesis in a mode that
ignores the SDC timing constraints. If you have defined SDC timing

Timing-Driven Flow Using Lattice Diamond Design Software

14 Timing Closure

constraints and want them used, see “Timing-Driven Synthesis and
Constraints” on page 15.

3. Run MAP and PAR, run TRACE (static timing analysis).

4. Review the process report. Also review the TRACE report, if applicable,
and identify timing issues.

5. Based on the observations made in step 4, make adjustments to the RTL,
strategy, or timing constraints.

6. Repeat the process until all timing issues are resolved.

7. Move to the next step.

Figure 14: Diamond Timing-Driven Flow

Timing-Driven Flow Using Lattice Diamond Design Software

Timing Closure 15

Identifying and addressing timing issues at an early stage such as MAP rather
than a later stage such as PAR will save a lot of time. Later processes in the
flow usually take longer to run, so doing analysis and debug earlier in the flow
provides a faster loop to make changes and see results. At MAP, you can
easily see an issue with having much too many levels of logic on a path for
the target FMax required and can avoid running PAR to see it.

Timing-Driven Synthesis and
Constraints
Synthesis usually runs in a mode that it will use any supplied timing
constraints. It is possible to set it up so that timing constraints, even when
supplied by the user, get ignored. This section explains how to constrain and
run logic synthesis tools, including Synplify Pro and Lattice Synthesis Engine
(LSE), so that they do not ignore the supplied constraints.

Synplify Pro
To run Synplify Pro so that it uses timing constraints (timing driven mode), you
need to properly set up the active Strategy and define timing constraints.
Strategy Settings for Timing-Driven Mode Synthesis

Synplify Pro will use timing constraints if active Strategy has the “Area” setting
= “False”, as illustrated in Figure 15. To accomplish this, you can use the
predefined strategy called Timing, or you can make this setting in your own
custom Strategy settings.

Note

By default, the Map process ignores preference errors when it encounters them. To
change this so that Map terminates and issues an error message whenever it
encounters preference errors, set the “Ignore Preference Errors” option to “False” in
the Map Design section of the active strategy or use the -pe option from the command
line.

Figure 15: Strategy – Changing Area Strategy for Synplify Pro

Timing-Driven Flow Using Lattice Diamond Design Software

16 Timing Closure

Specify Clock Frequency Timing Constraints Setting
You may also need to change the target frequency to the required value for
your design, as shown in Figure 16. The default value for this is 200MHz. If
you specify all the frequency/period requirements for your clocks in your SDC
file, this value will be ignored.

Other Timing Related Strategies
You can use other strategy settings to improve your design’s performance.
Depending on the actual design and preliminary synthesis result, you might
want to use the following strategy settings:

 Pipelining and retiming – allows Synplify Pro to move registers into
combinatorial logic or create pipelines for multipliers in order to improve
performance. By default, this option is turned off.

Synthesis retiming usually works better around DSP and EBR blocks;
because synthesis timing model is not aligned with PAR, it might not work
well in all cases

 Resource sharing – allows Synplify Pro to reduce area by sharing certain
resources. Turning this off can improve the performance but at the
expense of increased area

Timing Constraints
You can use two types of constraint to define your timing requirements:

 Synplify Design Constraints (Synplify SDC)

 Synopsys Design Constraints (Synopsys SDC)

The two types of constraint cannot be mixed and used together. They cannot
be used in the same constraint file (.sdc) or in separate multiple constraint
files. You need select one type to drive the Synplify Pro process in timing-
driven mode.

Remember that Synplify Pro must be in timing-driven mode in order to have
your timing constraints applied to the synthesis process; otherwise, your
timing constraints might be ignored.

For detailed information about using timing constraints through Synplify SDC
and Synopsys SDC, refer to the Synopsys FPGA Synthesis User Guide and
Synopsys FPGA Reference Manual.

Figure 16: Strategy – Setting Frequency for Synplify Pro

Timing-Driven Flow Using Lattice Diamond Design Software

Timing Closure 17

Understanding the Synplify Pro Timing Report
With the appropriate synthesis strategies and timing constraints, you can start
the Synplify Pro synthesis process. The synthesis report includes timing-
related information and can be viewed in the Diamond Report View. You can
also access the report through the Synplify Pro user interface. Refer to
Synopsys FPGA Synthesis User Guide and Synopsys FPGA Reference
Manual)

In the report, look at the section enclosed between these 2 lines:

START OF TIMING REPORT #####[
……
END OF TIMING REPORT #####]

A few places where you need to pay attention:

 The summary at the top, as shown in the following example. Ensure that
the appropriate SDC file was used and that the required frequency and
other timing constraints defined in the SDC file were included.

Top view: demo
Requested Frequency: 25.0 MHz
Wire load mode: top
Paths requested: 3
Constraint File(s): C:\projects\demo\demo.sdc

 Performance summary, which gives the worst slack in the design:

 Clock relationship, which shows register-to-register slacks. If your design
includes multiple constrained clocks, they will be all included here:

 Interface information, which shows input setup and clock to output timing
information and slacks.

Figure 17: Synthesis Report in Lattice Diamond

Performance Summary

Worst slack in design: 14.892

Starting Requested Estimated Requested Estimated Clock Clock
Clock Frequency Frequency Period Period Slack Type Group

clk 25.0 MHz 97.9 MHz 40.000 10.217 14.892 inferred clkgroup

Timing-Driven Flow Using Lattice Diamond Design Software

18 Timing Closure

For complete information about the Synplify Pro report, refer to the Synopsys
FPGA Synthesis User Guide and Synopsys FPGA Reference Manual.

Remember that the Synplify Pro timing report is generated from the synthesis
result, which does not have any placement and routing information. To get the
highly accurate timing analysis result, run PAR TRACE, as explained in the
section “PAR TRACE” on page 32.

LSE
To run LSE so that it uses timing constraints (timing-driven mode), you need
to properly set up the active strategy and define timing constraints.

Strategy Settings for Timing-Driven Mode Synthesis
LSE will use timing constraints if the active strategy has the “Optimization
Goal” setting = “Timing,” as illustrated in Figure 18.

To accomplish this, you can use the predefined strategy called Timing, or you
can make this setting in your own custom strategy settings.

Specify Clock Frequency Timing Constraint Setting
You might also need to change the target frequency to the required value for
your design, as shown in Figure 19. The default value for this is 200MHz.

Other Timing Related Strategies
Other strategy settings for LSE may improve your design’s performance.
Depending on the actual design and preliminary synthesis result, you can
change these strategy settings, but remember that all the following suggested
settings are at the expense of increased area:

Clocks | rise to rise | fall to fall | rise to fall | fall to rise
--
Starting Ending |constraint slack |constraint slack |constraint slack |constraint
slack
--
-clk clk | 40.000 30.187 | 40.000 37.483 | 20.000 14.892 | 20.000
16.099

Figure 18: Setting LSE Optimization Goal

Timing-Driven Flow Using Lattice Diamond Design Software

Timing Closure 19

 Use “one hot” state machine encoding style if your design includes state
machines.

 Reduce “max fanout limit” to a reasonable number or minimum.

 Disable “Remove Duplicate Registers.”

 Turn off Resource sharing. Resource sharing, when enabled, allows LSE
to reduce area by sharing certain resources. Turning this off might
improve the performance.

Timing Constraints
LSE supports Synopsys Design Constraints for timing-driven logic synthesis.
LSE supports the following Synopsys Design Constraints:

 create_clock

 set_input_delay

 set_output_delay

 set_max_delay

 set_multicycle_path

 set_false_path

Your constraints must be written in an LSE Design Constraint file (.ldc) that is
included and set as the active synthesis constraint file in your implementation.

Remember that you must enable timing-driven mode for LSE in order to have
your timing constraints (.ldc) applied to the synthesis process; otherwise, your
timing constraints will be ignored.

Understanding the LSE Timing Report
With the appropriate synthesis strategies and timing constraints, you can start
the LSE synthesis process. The synthesis report includes timing-related
information, and it can be viewed in the Diamond Report View, as shown in
Figure 20.

Make sure that the report includes all of your defined timing constraints. In this
example, we can see that all the requirements (clock period, input setup and
output delay) are met.

You can also view the detailed LSE synthesis timing report. The detailed
timing report is written in a file in the implementation directory, with the file

Figure 19: Setting LSE Clock Frequency

Timing-Driven Flow Using Lattice Diamond Design Software

20 Timing Closure

name convention <prj_name>_lse.twr, where <prj_name> is the project
name. You can view this file in any text editor.

Remember that the LSE timing report is generated from the synthesis result,
which does not have any placement and routing information. To get the
accurate timing analysis result, run PAR TRACE, as explained in “PAR
TRACE” on page 32.

Understanding TRACE
TRACE is the static timing analysis tool in Diamond.

Static timing analysis (STA) is a fast and powerful verification technique for
validating design performance. It is one of the most important steps in the
design flow, and it should be considered as important as the functional
verification performed with a logic simulator. TRACE verifies circuit timing by
totaling the propagation delays along paths between clocked or combinational
elements in a circuit. TRACE determines and reports timing data, such as the
critical path, setup time and hold time, and the maximum frequency.

You can run TRACE on mapped designs or on completely placed and routed
designs.

TRACE enables you to do the following:

 Confirm that the timing constraints supplied to timing-driven MAP and
PAR have been met.

 Examine the timing of any part of the design

 Perform what-if scenarios with different device speed grades or timing
objectives

TRACE provides the primary-input-to-primary-output timing analysis, i.e.,
maximum delay, as well as the following types of setup time analysis, together
with the hold time analysis:

 From FPGA input to register, i.e., input setup time (INPUT_SETUP)

Figure 20: LSE Timing Report

Timing-Driven Flow Using Lattice Diamond Design Software

Timing Closure 21

 From register to register, i.e., maximum clock frequency or minimum
period (FREQUENCY or PERIOD)

 From register to output, i.e., clock to output (CLOCK_TO_OUT)

TRACE performs two types of timing analysis: Setup and Hold. Setup time
analysis ensures that the data arrives at the receiving registers before the
next capturing clock edge. Hold time analysis ensures that the data does not
arrive at the receiving registers too early, thus is captured by the clock edge
prior to the intended capture edge. The examples from Table 1 explain this in
detail.

TRACE uses different performance grades and conditions when doing Setup
time vs. Hold time analysis. Table 2 has more details. Although Place and
Route (PAR) runs as a single process, there are two distinct steps: (1) Meet
setup, (2) Meet hold (done via the Hold Time Correction sub-step). The table
also summarizes the behaviors of these two steps.

Table 1: Setup and Hold Timing Analysis

constraints setup timing analysis hold timing analysis

FREQUENCY/PERIOD Does the data from the source register
arrive at the destination register early
enough relative to the capture clock edge to
meet the setup time of the destination
register?

Does the data from the source register not
arrive at the destination register so early
relative to the capture clock edge that it will
be clocked by the clock edge prior to the
capture clock edge?

INPUT_SETUP Knowing that the data arrives at the device
pin no later than 10ns before its capture
clock edge, does the data then arrive at the
internal register early enough relative to the
capture clock edge to meet the setup time
of the internal register?

INPUT_SETUP ALLPORTS 10ns HOLD
2ns CLKPORT “clk”;

Knowing the time that the data will hold its
value (and not transition to new data) at the
device pin at least 2ns after its capture
clock edge, does the data then arrive so
early at the internal register relative to the
capture clock edge that it will be clocked by
the clock edge prior to the capture clock
edge?

INPUT_SETUP ALLPORTS 10ns HOLD
2ns CLKPORT “clk”;

CLOCK_TO_OUT Does the data meet the board level setup
time by leaving the output pin 10ns (or
earlier/less) after the reference clock edge
arrives at the pin?

CLOCK_TO_OUT ALLPORTS MAX 10ns
MIN 2ns CLKPORT “clk”;

Does the data meet the board level hold
time by leaving the output pin 2ns (or later/
more) after the reference clock edge arrives
at the pin?

CLOCK_TO_OUT ALLPORTS MAX 10ns
MIN 2ns CLKPORT “clk”;

Table 2: Performance Grades and PAR Behavior

setup timing analysis hold timing analysis

Default performance grade used (can
be changed by the end user)

Performance grade of the target
device; for example, 6

-m

Worst case conditions used (from
data in speed grade file)

 Slow/max data

 Fast/min clock

 Fast/min data

 Slow/max clock

Timing-Driven Flow Using Lattice Diamond Design Software

22 Timing Closure

The performance grade -m represents the fastest possible PVT corner. The
voltage used for this option is 5% above the nominal value, and the
temperature used is -40C.

For register-to-register timing analysis, the default grades used represent the
“worst” case for the setup analysis and the hold time analysis.

For FPGA I/O timing analysis, meaning INPUT_SETUP and
CLOCK_TO_OUT, it is possible that the default grades used will not represent
the worst case. The worst case depends on your design and the final placed
and routed design. If PAR TRACE reports no timing errors, you should still run
I/O timing analysis to sweep across speed grades faster than your target
speed grade to ensure that I/O timing is satisfied. Refer to the section “I/O
Timing Analysis” on page 33 for the details.

TRACE can be run on a post MAP netlist prior to place and routed where
routing delay is an estimate, or after place and route (see “Understanding the
PAR and PAR TRACE Reports” on page 32).

The MAP TRACE and PAR TRACE Reports
The MAP TRACE and PAR TRACE reports do the same analysis, but they
are generated independently at different stages of the design flow. The MAP
TRACE report can be created earlier and faster, but is less accurate. It is ideal
for identifying basic problems with the design constraints or the design itself.
The PAR TRACE report is used for detailed timing analysis and signoff.

The two reports are generated in a very similar manner.

You can enable MAP TRACE and PAR TRACE (the GUI labels it as “Place &
Route Trace”) in Diamond Process window, as shown in Figure 21, so that as
soon as the MAP (or PAR) process finishes successfully, MAP (or PAR)
TRACE starts automatically. You can also run MAP (or PAR) TRACE by
double-clicking it in the same window.

PAR step – meet setup Timing score is based on setup
violations. PAR Works to make timing
score (accumulated setup time
negative slacks) zero

Ignored

 PAR step – meet hold (via hold time
correction (HTC))

Ignored Delay is added to datapath to fix any
hold time violations. Does not add
more delay than the minimum
required, to avoid creating a setup
violation, but a setup violation might
be created.

Table 2: Performance Grades and PAR Behavior (Continued)

setup timing analysis hold timing analysis (Continued)

Timing-Driven Flow Using Lattice Diamond Design Software

Timing Closure 23

You can specify a few options in the MAP TRACE Strategy settings to control
the MAP TRACE process.

Figure 21: Map Trace and PAR Trace Processes

Figure 22: MAP TRACE Strategy Settings

Timing-Driven Flow Using Lattice Diamond Design Software

24 Timing Closure

These settings can help you quickly identify any timing issues that might exist
in your design:

 Check Unconstrained Connections – Setting this to True will list the paths
that are not covered by any timing preference.

 Check Unconstrained Paths – Setting this to True will report the paths that
are not constrained and shows the start point and end point of each path.
TRACE will suggest some timing preferences to constrain the given paths.
The unconstrained paths are shown only in the “setup” timing check report
to avoid duplication of these same paths in the “hold” timing check report.

Based on the design and the required performance, only necessary paths
should be constrained so that PAR focuses only on the optimization of the
important paths. However, the Unconstrained Paths section of the TRACE
report is very useful for identifying whether any missing timing constraints
are really important to the design. This option does not require you to add
more preferences in an attempt to constrain all paths. Instead, it serves as
a reminder that there might be a necessary preference that is missing,
which could impact the desired performance of the design.

 Full Name – Setting this to True causes TRACE to report full-length
component names instead of the truncated names. This enables you to
find a specific path easily. Turning this on might, however, cause format
alignment issues in the report when names are long.

 Report Style – Set this option to “Error Timing Report” so that TRACE only
reports paths and nets that have timing errors. This allows you to identify
any timing issue quickly.

You can also specify a few PAR TRACE options through the Strategy settings
to control the PAR TRACE process, with the following differences:

 Speed for Hold Analysis – You can select the speed grade for the hold
analysis By default, this value is set to “m”, or “minimum”, which
represents the virtual silicon that is faster than the fastest speed grade of
the device available. If the analysis result reveals no hold time violation
using the value “m”, then it guarantees there will be no hold time violation
for all speed grades, including the one you selected for your project.
There are some cases of hold time violations with the use of “m”, but there
might be no violation for the speed grade you selected for your project. If
being able to migrate to a faster speed grade is not your concern, you can
set this value to the actual number selected for your project.

 Speed for Setup Analysis – You can select the speed grade for the setup
analysis. By default, this value is set to “default”, which is the speed grade
you selected for your project.

Note

The Check Unconstrained Connections option will be discontinued after the next
two Diamond releases.

Note

The Check Unconstrained Paths option cannot be used with the -allprefpath
command-line option.

Timing-Driven Flow Using Lattice Diamond Design Software

Timing Closure 25

The MAP TRACE and PAR TRACE reports have the same format. Table 3
shows a summary of their differences.

The TRACE report can be viewed in the Diamond Report View, as shown in
Figure 24. You can also view the TRACE report files in the implementation
directory using a text editor. Both reports use the same naming convention for
the prefix and use a different file extension (see table above). The naming
convention for the prefix is <prj_name>_<impl_name>, where <prj_name> is
your project name and <impl_name> is the implementation name.

Based on the type of analysis (setup, hold, etc.) set through the Analysis
Options in the MAP TRACE (or PAR TRACE) strategy settings, you might see
the report information differently. In the example shown above, the result of
setup time and hold time analysis can be examined. You can quickly jump to a
few areas to see if the result meets your timing requirements (preferences), or
to find more information about your design, as follows:

Figure 23: PAR TRACE Strategy Settings

Table 3: TRACE Report Differences

MAP TRACE PAR TRACE

Report filename extension .tw1 .twr

Routing timing Estimated Based on actual placed
and routed path

Netlist used NCD that has not been
placed or routed

NCD that has been placed
and routed

Best used for  Quickly identifying
issues with constraints
(.e.g, syntax errors)

 Quickly finding timing
issues with too many
logic levels

 Detailed timing
analysis and signoff

Timing-Driven Flow Using Lattice Diamond Design Software

26 Timing Closure

 Timing summary at the top – This section summarizes the total number of
timing errors and timing scores for both setup time analysis and hold time
analysis.

 Following is separate Setup and Hold analysis sections. They have the
same format.

 Preference Summary – This section lists your timing requirements and
the actual results. It lists the timing preferences and the corresponding

Figure 24: TRACE Report

Figure 25: TRACE Report Preference Summary

Timing-Driven Flow Using Lattice Diamond Design Software

Timing Closure 27

setup or hold analysis results (whichever is appropriate for the report)
for defined clock FREQUENCY/PERIOD, MULTICYCLE, MAXDELAY,
INPUT_SETUP and CLOCK_TO_OUT preferences. Timing errors are
highlighted in red.

 Clock Domains Analysis – this section summarizes the clock domains
in your design (e.g. number of loads for each), and the number of
transfers between any two clock domains. It also summarizes if or
how they are constrained (e.g. FREQUENCY, MULTICYCLE). Missing
constraints are reported. The following is an example report:

Clock Domains Analysis

Found 2 clocks:
Clock Domain: clk1_c Source: clk1.PAD Loads: 2
 Covered under: FREQUENCY PORT "clk1" 300.000000 MHz PAR_ADJ 3.000000 ;
 Data transfers from:
 Clock Domain: clk2_c Source: clk2.PAD
 Covered under: MULTICYCLE FROM CLKNET "clk2_c" TO CLKNET "clk1_c" 2.000000 ns ;
Transfers: 1

Clock Domain: clk2_c Source: clk2.PAD Loads: 2
 Covered under: FREQUENCY PORT "clk2" 150.000000 MHz ;
 Data transfers from:
 Clock Domain: clk1_c Source: clk1.PAD
 Covered under: MULTICYCLE FROM CLKNET "clk1_c" TO CLKNET "clk2_c" 3.000000 ns ;
Transfers: 1

In this example, there are two clock domains: “clk1” and “clk2”. Both of these
clock domains are covered by their own FREQUENCY preferences. In
addition, there are cross-domain paths between these two clocks, and they
are covered by their own MULTICYCLE preferences.

Remember that MAP TRACE runs on the mapped result, which does not
have any placement and routing information; instead, MAP TRACE uses the
“Route Estimation Algorithm” defined through the MAP TRACE strategy
settings to estimate routing delays. To get the accurate timing analysis result,
run PAR TRACE, as explained in “PAR TRACE” on page 32.

MAP Process and Constraints
MAP takes constraints as input, and passes many through (sometimes in a
modified form) to the next step, PAR.

There is some information in the constraints that MAP does use to alter the
netlist it creates. For example, buffer type and other configuration settings for
IO can be specified in the constraints, and MAP will set these up in the netlist
that it creates for PAR.

Timing-Driven Flow Using Lattice Diamond Design Software

28 Timing Closure

Constraints
There are two types of constraints. Timing constraints are timing goals that
the design is to meet. Placement constraints directly affect the physical layout
of the netlist when it is put into the device. An example of a placement
constraint is assigning a design’s top level port to a specific device pin.
Constraints passed to MAP can come from two different sources:

 Entered in the HDL and passed to MAP inside the NGD file

 Entered in the Lattice Preference File (LPF)

There are a few ways to create constraints in an LPF file:

 Use the Spreadsheet View (timing preferences are held in the Timing
Preferences sheet),

 Text edit the LPF file.

 Instruct the synthesis process to write synthesis timing constraints into an
LPF file. The contents of that file can then be copy/pasted into the active
LPF using a text editor. You need to enable the option “Output Preference
File” in the synthesis strategy settings to instruct the synthesis process to
generate an LPF file. By default, this option is turned off.

You can use the following preference commands to define your timing
constraints in LPF:

 FREQUENCY/PERIOD

 INPUT_SETUP

 CLOCK_TO_OUT

 MULTICYCLE

 MAXDELAY

 CLKSKEWDIFF

 BLOCK

 OFFSET

See “Timing Requirements and Constraints” on page 2 for commonly used
timing constraints.

Timing-Driven MAP Strategy
The relatively high granularity of the FPGA architecture limits the impact that
the MAP process can have on timing results. The final timing achieved by a
given HDL design is mainly influenced by Synthesis (which can optimize the
netlist over a large scope) and PAR (which can do detailed placement and
routing).

However, there are a few timing related options in the MAP strategy settings
that you can turn on to drive the MAP process. By default, they are turned off
and this should be sufficient for most designs. Turning on the following
options, in some cases, will be helpful if your design has difficulty meeting the
timing requirement. If enabled, these consider the timing constraints input to
MAP.

Timing-Driven Flow Using Lattice Diamond Design Software

Timing Closure 29

 Register Retiming –Turning on this option instructs the MAP process to
move registers across combinatorial logic to balance timing according to
the INPUT_SETUP, CLOCK_TO_OUT, and FREQUENCY constraints.
You must have these constraints defined to ensure this option works
correctly.

MAP retiming usually works better for congested designs. However,
because the MAP timing model is not the same as PAR, it may not work
well all the time.

 Timing Driven Mapping – Turning on this option instructs the MAP process
to calculate the slack time for all constrained paths and optimize the
critical paths based on the slack distributions.

 Timing Driven Node Replication – Turning on this option instructs the MAP
process to replicate a LUT4 that has multiple-fanout flip-flops. It adds a
LUT for each flip-flop when the LUT belongs to the timing path, thus
packing LUT/FF in the same slice for all flip-flops.

 Timing Driven Packing – Turning on this option instructs the MAP process
to do timing -driven packing of LUT/FF, FF/LUT, and LUT/LUT in the same
slice

MAP TRACE
The content of the MAP TRACE report, and how it is generated, is described
in the section “The MAP TRACE and PAR TRACE Reports” on page 22. It can
be generated right after the MAP step, and by avoiding the PAR step, to more
quickly see if there are gross issues with the defined timing constraints or the
design itself.

PAR Process and Constraints
This section explains how to constrain and run PAR in timing-driven mode.

Understanding PAR
PAR performs the following tasks:

 It takes a mapped physical design (.ncd file) and a preference file (.prf) as
input files. The .ncd file and .prf file are the outputs of the MAP process.
See Preferences and Processes.

 It uses its timing driven engine to place and route the design with the goal
of meeting the placement constraints and the timing preferences defined
in the input .prf file. As explained in the second table in the section
Understanding TRACE, PAR first works to make the setup timing score
zero. If auto hold time correction is enabled in PAR, PAR then works to
correct hold time violations. Auto Hold Timing Correction is enabled
through the PAR strategy settings, as explained in PAR (Place & Route
Design) Settings in Strategy for Timing Closure. For releases prior to
Diamond 2.0, this must be enabled by the user (i.e. default setting was
disabled)

Timing-Driven Flow Using Lattice Diamond Design Software

30 Timing Closure

 When PAR finishes successfully, it creates a placed and routed physical
design file (.ncd file) that can be processed by the Diamond BITGEN tool.

Placement
The PAR process places the mapped physical design (.ncd file) in two stages:
constructive placement and optimizing placement. PAR writes the physical
design after each of these stages is complete.

During constructive placement, PAR places components into sites based on
factors such as the following:

 Constraints specified in the input file. For example, certain components
must be in certain locations.

 The length of connections

 The available routing resources

 Cost tables that assign random weighted values to each of the relevant
factors. There are 100 possible cost tables, and they can be set through
PAR strategy settings.

Constructive placement continues until all components are placed.

Optimizing placement is a fine-tuning of the results of the constructive
placement.

Routing
Routing is also done in two stages: iterative routing and delay reduction
routing (also called cleanup). PAR writes the physical design (.ncd file) only
after iterations where the routing score (accumulated setup timing slacks) has
improved.

During iterative routing, the router attempts to converge on a solution that
routes the design to completion or minimizes the number of unrouted nets.

During delay-reduction routing, the router takes the results of iterative routing
and reroutes some connections to minimize the signal delays within the
device. Two types of delay-reduction routing are performed:

 A faster cost-based cleanup routing, which makes routing decisions by
assigning weighted values to the factors (such as the type of routing
resources used) that affect delay times between sources and loads

 A more CPU-intensive, delay-based cleanup routing, which makes routing
decisions on the basis of computed delay times between sources and
loads on the routed nets

Timing-Driven PAR Process
If PAR finds timing preferences in the preference file, timing-driven placement
and routing is automatically invoked. It is extremely important to include timing
preferences.

The timing-driven PAR process uses the TRACE static timing analysis engine.
PAR works to meet the specified timing preferences.

Timing-Driven Flow Using Lattice Diamond Design Software

Timing Closure 31

PAR can run in two basic modes. The mode is set via the Auto Hold-Time
Correction setting in the PAR (Place & Route Design) section of the active
Strategy being used.

 Meet setup and hold. Auto Hold-Time Correction = On. This is the
recommended mode. PAR will work to meet both setup and hold time so
that there are no violations. This is the default mode for Diamond release
2.0 and later. Therefore, users must turn this mode on in prior releases.

 Meet setup (and report on hold). Auto Hold-Time Correction = Off. This is
not the recommended mode. PAR will work to meet setup only. If there are
hold time violations, PAR will not attempt to correct them. This is the
default mode for Diamond releases prior to 2.0. This mode may be useful
early in the design closure process when the focus is on meeting setup
time, and user wants to save runtime.

In either mode, Trace report will include setup and/or hold analysis – whatever
the user chooses (default is for both) in the Analysis Options of the Trace
report Strategy settings. Any violations will be reported. You should examine
the PAR TRACE report for setup and hold-time analysis results.

PAR (Place & Route Design) Settings in Strategy for
Timing Closure
These settings are set in the active Strategy, under the Place & Route Design
section. Most of them are turned off by default because they are not needed
for most designs. There are some cases, though, where turning on the
following options will be helpful if your design has difficulty meeting the timing
requirements.

 Auto Hold Time Correction – this is described in the preceding section.

 Clock Skew Minimization -- If there is any clock signal that is not assigned
to the global clock tree, enabling this option will allow PAR to balance
routing to reduce clock skews.

 Disable Timing Driven – By default, this option is off, which means that
PAR runs timing-driven placement and routing based on your timing
constraints. You might want to disable timing-driven PAR on those
occasions where you want to have a quick PAR run and get a rough idea
of the difficulty of placing and routing your design.

 Path Based Placement – Turning on this option allows PAR to do path-
based placement, which usually yields better performance.

 Routing Method – Setting this option to NBR instructs PAR to use an
iterative routing algorithm that could produce better results in performance
and some other areas. This is on by default.

Timing Constraints
PAR (as with MAP) takes constraints as input. These constraints are passed
to PAR from MAP in a file referred to as the Physical Preference File (PRF,
has file extension .prf). The PRF is not a user created file. User puts
constraints into the LPF file, MAP then generates the PRF from the LPF, and

Timing-Driven Flow Using Lattice Diamond Design Software

32 Timing Closure

then PAR runs against the PRF. User edits made directly to the PRF will be
lost if/when MAP is run. Therefore, the PRF should not be edited. PRF is not
accessible from the Diamond GUI.

PAR TRACE
The content of the PAR TRACE report, and how it is generated, is described
in the section The MAP TRACE and PAR TRACE Reports. It can be
generated right after the PAR step; it holds the final timing for the design.

Understanding the PAR and PAR TRACE Reports
With the appropriate PAR TRACE strategies and timing constraints, you can
start the PAR and PAR TRACE processes.

The quickest way to find out if the final PAR result meets the timing
requirement is to look at the Timing Score reported in the PAR report, as
shown in Figure 26.

In the Cost Table Summary, the Timing Score reported is the sum of all the
negative slacks related to setup timing requirements. Therefore, if the number
reported is 0, it means that the timing-driven PAR process finished
successfully without finding any setup timing issues. The hold timing score is
reported by PAR only if Auto Hold-Time Correction is ON in the active
Strategy. It can be found later in the PAR report, for example:

Hold time optimization iteration 0:
There are 6 hold time violations, the optimization is running
...
End of iteration 0
17 successful; 0 unrouted; real time: 24 secs

Hold time optimization iteration 1:
There are 4 hold time violations, the optimization is running
...
End of iteration 1
17 successful; 0 unrouted; real time: 24 secs

Figure 26: PAR Cost Table Summary

Timing-Driven Flow Using Lattice Diamond Design Software

Timing Closure 33

Hold time optimization completed
All hold time violations have been successfully corrected in
speed grade M

The PAR TRACE report includes timing scores for both setup and hold if both
setup and hold are chosen in the Analysis Options (i.e. Standard Setup and
Hold Analysis). This report includes the detailed timing analysis of the design
against the constraints. It reports what constraints have been considered,
whether they have been met, and the failing paths wherever a constraint has
not been met. See the section “The MAP TRACE and PAR TRACE Reports”
on page 22 for more info on the format of the TRACE report.

I/O Timing Analysis
If the PAR process finishes successfully, you can also run I/O Timing Analysis
from the Process window. This enables you to examine the worst case I/O
timing results across performance grades of the selected device for setup
time and hold time and verify that your board timing complies. You can access
the I/O Timing Analysis report in the Report View.

As explained in the section “Understanding TRACE” on page 20, by default,
PAR TRACE uses the chosen performance grade of the target device for
setup timing analysis, and it uses the “-m” performance grade, which is the
virtual performance grade that represents the fastest (i.e., with minimum
delay), for the hold timing analysis.

These default performance grades used are the “worst” case performance
grades for register-to-register timing analysis. However, for FPGA I/Os, it is
possible for “worst” case condition to be different. This depends on your
design and the final placed and routed design. You should always run I/O
Timing Analysis to sweep across performance grades and ensure that I/O
timing is satisfied, even if the default PAR TRACE reports no timing error.
(Note that you can also use Timing Analysis View to run PAR TRACE on all
these different performance grades. Timing Analysis View allows you to do
this without re-running PAR.)

For example, suppose that the chosen performance grade of the target device
is “6”, and you use the default performance grades to run PAR TRACE, i.e.,
grade “6” to do setup timing analysis, and grade “-m” to do hold timing
analysis.

Assume PAR TRACE reports no error, so to ensure that I/O timing is satisfied,
you run I/O Timing Analysis, and the I/O Timing Analysis produces the
following report.

Part 1: The I/O Timing Analysis Report – Summary Section

Part 2: The I/O Timing Analysis Report – detail section for Performance grade
M

Timing-Driven Flow Using Lattice Diamond Design Software

34 Timing Closure

......
I/O Timing Report (All units are in ns)

Worst Case Results across All Performance Grades (M, 9, 8, 7, 6, 6L, 7L, 8L):

// Input Setup and Hold Times

Port Clock Edge Setup Performance_Grade Hold Performance_Grade
--
data1 clk1 R 0.469 6 1.180 6
data2 clk2 R 0.596 6 1.087 M
rst clk1 R 0.458 M 0.437 6
rst clk2 R 0.514 6 0.245 6
......

// Input Setup/Hold Times (Performance Grade: M)

Port Clock Edge Setup Hold
--
data1 clk1 R 0.129 1.145
data2 clk2 R 0.183 1.087
rst clk1 R 0.458 0.195
rst clk2 R 0.512 0.137
......

General Considerations and Practices for Timing Closure

Timing Closure 35

In this example, from the summary section, the worst-case hold time minimum
requirement of the port “data1” is 1.180 ns using performance grade “6”
instead of the performance grade “-m”.

As explained previously, PAR TRACE actually uses the speed grade “-m” for
the hold timing analysis. In this case, the hold time minimum requirement is
1.145 ns, as shown in the detail section for performance grade M, which is
less than 1.180 ns.

When you actually ran PAR TRACE, if the hold time requirement of “data1”
that was written in the LPF is less than 1.180 ns but greater than 1.145 ns, it
actually reveals reveal an I/O timing problem in your design. If the hold time
requirement written in the LPF is greater than 1.180 ns, then your design is
fine.

The same situation applies to the setup timing analysis as well.

Timing Analysis View
Timing Analysis View is a “what-if” tool in Diamond that allows you to apply
different hypothetical timing constraints to see how they would affect your
design. These timing constraints are written to a flow-independent timing
preference file (TPF file, with the extension .tpf). Timing Analysis View applies
the TPF preferences to the PAR result, runs the static timing analysis, and
reports the result for you to analyze.

Timing Analysis View has a simplified Spreadsheet View for creating and
editing timing preferences in the TPF file. The view includes Path Tables,
which enable you to select a timing preference and see the delay, slack, and
other aspects of timing on particular paths. Timing Analysis View allows you to
cross probe to Floorplan View or Physical View to see where these paths exist
on the chip and what they look like.

To learn more about Timing Analysis View, refer to the Diamond online Help.

General Considerations and Practices for Timing
Closure

Steps to Close Timing
There are a few general considerations and trade-offs you need to
understand when working with the timing-driven flow using Diamond.

Let us start with some general recommendations:

1. Begin with the creation of meaningful and efficient HDL code. For
information about coding techniques for FPGA designs, see the section
“HDL Coding Guidelines.”

General Considerations and Practices for Timing Closure

36 Timing Closure

2. Along with the FPGA-friendly code, use the appropriate and sufficient
timing constraints (preferences) to drive synthesis, MAP and PAR. A good
set of FPGA timing requirements are crucial for meeting timing goals.

3. Run an initial design process including synthesis, MAP, MAP TRACE,
PAR and PAR TRACE. If you have a high performance requirement,
select timing-driven placement and specify a low placement effort level for
this first PAR process through PAR strategy settings.

Rule of Thumb: When a timing issue is reported by MAP TRACE, usually
it is an RTL issue, and you should correlate the issue in your HDL code.
You can save time by using the MAP TRACE report to fix these issues
instead of trying to resolve them by needlessly running PAR and PAR
TRACE.

4. Examine the MAP report, MAP TRACE report, PAR report, PAR TRACE
and PAD report, and analyze the timing information.

5. If necessary, modify timing constraints and preferences. If applicable,
assign primary and secondary clocks, tune I/O timing with PLLs, and
group components along critical paths.

6. Run a second processing iteration. For PAR, change its strategy settings
to use timing-driven placement, and then experiment with increased
placement effort and multiple routing passes.

7. Analyze timing again, identifying high-fanout nets, critical path nets, and
long delay paths, etc.

8. If necessary, do some floorplanning to direct the physical layout of the
circuit. For designs that do not meet performance goals, use groups and
regions to place components closer together and shorten routing
distances. Use reiterative floor planning, repeating steps 6 through 8 until
performance goals are achieved

Synthesis Timing Closure Techniques

General Considerations

1. Use timing-driven mode or not.

The first decision you might need to make is whether to use timing-driven
synthesis.

Using timing-driven synthesis mode usually yields better performance, but
it increases the resource usage at the same time. If your design has a
high resource usage ratio in term of the available resource from the
chosen device, the increased resource usage might have negative impact
on the actual performance and can cause other problems such as
congestion and long-path routing, which actually introduce timing
problems.

If your design runs at a low speed, or the timing requirements can be
achieved easily, running synthesis in timing-driven mode might not be
necessary. In this case, you simply run the synthesis in non-timing-driven

General Considerations and Practices for Timing Closure

Timing Closure 37

mode, examine the timing report, and proceed to the next process if the
estimated performance meets your requirement.

2. Provide sufficient and appropriate timing constraints.

To ensure that timing-driven synthesis works correctly, you must provide
appropriate and sufficient timing constraints in the synthesis constraints
file. The essential timing constraint is the clock period or frequency. If you
do not provide clock requirements, by default 200MHz will be used for
timing-driven synthesis. This can be seen and modified through the
synthesis strategy, as explained in “Timing-Driven Synthesis and
Constraints” on page 15. If you have multiple clocks, make sure that all of
them are constrained with the appropriate values. Other timing
constraints, such as setup time, clock to output, etc., should be provided if
available.

3. Interpret the synthesis timing report.

Since Synplify Pro does not have place-and-route information, its timing
report is usually aggressive and inaccurate. You should use its timing
report as a reference. Usually you can reduce the reported speed by one
third to a half.

On the other hand, LSE is more conservative, and the reported maximum
frequency (Fmax) value is usually within 10% of the actual value from the
placed and routed result.

4. Over-constrain or not

There are some common practices suggesting that you should over-
constrain the synthesis process in order to get a result with a better
performance. This is not always the case, since over-constraining a
design can unnecessarily increase the resource usage, and this might not
be what you expect. A decision must be made to balance the performance
and size of your design.

Using Dedicated GSR Resource for Fmax
Improvement
If your design contains high fanout nets of set/reset, it is recommended that
you use the dedicated hardwired GSR resource. This will result in less routing
congestion and could improve route ability and performance. Otherwise, the
design will use the resources of the local set/reset that could be used for other
purposes.

MAP sees the whole design and is capable of seeing a large fanout reset net
and implementing it on the GSR resource rather than the general routing
resource. MAP will do this if the MAP strategy has the “infer GSR” option set
to true (which is the default) and synthesis has not already inferred GSR.

Synthesis can also automatically infer GSR:

 When you use Synplify, the default setting is off, which is recommended.
You should let MAP infer GSR for the best result.

 When you use the Lattice Synthesis Engine (LSE), the default setting is
auto, which allows LSE to decide. This is also the recommended setting.

General Considerations and Practices for Timing Closure

38 Timing Closure

Using I/O Register to Improve I/O Timing
You can improve the input setup (tSU) and clock to output (tCO) timing by
turning on the use of the I/O register. Turning on the input register can
improve the input setup time. Turning on the output register can improve the
clock to output time.

To use I/O register, there are several options:

 Use synthesis attributes and directives in the RTL code to control each
individual port, or apply globally to all top level I/Os. This works for both
Synplify Pro and LSE.

For example, in Verilog:

output [15:0] q; // synthesis syn_useioff = 1

or

module test (a, b, clk, rst, d) /* synthesis syn_useioff
= 1 */;

in VHDL:

attribute syn_useioff : boolean;
attribute syn_useioff of data_in : signal is true; --
data_in is an I/O port

 If you use Synplify Pro, you can use synthesis constraints in the active
Synplify Design Constraints file. You can control each individual port, or
apply globally to all I/Os:

define_attribute {z[3:0]} syn_useioff {1}
define_global_attribute syn_useioff {1}

 If you use LSE, you can set the synthesis strategy option “Use IO
Registers” to true. This will globally applies the option to all I/Os.

After turning on the use of the I/O register, ensure that the timing can still meet
setup time and the Fmax requirements. Using the I/O register helps I/O
timing, but it could potentially affect internal Fmax and cause an I/O hold time
issue. There are some good cases where register duplication is used to help
both I/O and Fmax; for example, the case of a counter with output going off
chip, as illustrated in Figure 27.

Note that not all FPGA devices facilitate I/O registers. Refer to the hardware
datasheet of your target device.

Figure 27: Counter with Output Going Off Chip

General Considerations and Practices for Timing Closure

Timing Closure 39

Adding Delays to Input Registers
Designs that have registered inputs can incur hold-time violations if the data
path is too fast. For devices that have an edge clock resource, such as ECP3
or XO2 devices, the use of the edge clock usually balances the data and clock
to avoid hold time issues. The auto hold time correction after PAR might also
help solve any hold time violations.

On the other hand, certain devices have a feature of programmable delay
elements built in the silicon to give fixed or dynamic delays on the input
registers. This reduces input register hold time requirements when a global
clock (i.e., non-edge) is used. The diagram in Figure 28 shows an XO2 input
register block diagram for PIOs on the left, top and bottom edges, which
includes a programmable delay cell. Note that not all Lattice devices have this
feature. Refer to the datasheet of your target device for details.

To use this feature, you have the following options. Note that using these
elements will compensate input hold time requirements by adding a specific
amount of delay in the data input path. At the same time, it will affect the setup
time with the same amount of delay value.

 Set the synthesis attribute “FIXEDDELAY” to “true” to add a fixed delay.
This is supported by ECP/EC, ECP3, XO and XP2 devices. For example,
in Verilog:

input [15:0] data_in; // synthesis syn_useioff = 1
FIXEDDELAY=true

in VHDL:

attribute syn_useioff : boolean;
attribute syn_useioff of data_in : signal is true; --data_in
is an I/O port
attribute FIXEDDELAY of data_in: signal is “TRUE”;

The delay value added depends on the device used. For example, for
ECP3 speed grade -9 or -8, this value is 1.3ns. For other devices, refer to
their datasheets.

Figure 28: MachXO2 Input Register

General Considerations and Practices for Timing Closure

40 Timing Closure

 If you use ECP3 devices, you can instantiate a “DELAYC” element in the
HDL to add a fixed delay. The amount of delay added is the same as
using “FIXEDDELAY”. For example:

input b0;
wire bx, b_temp;
DELAYC myDelay1(.Z(b_temp), .A(b0));
IFS1P3IX b0_reg(.Q(bx), .SP(1'b1), .CD(rst), .SCLK(clk),
.D(b_temp));

 If you use ECP3, XP2 or ECP2/M devices, you can instantiate a
‘DELAYB” element in the HDL to add a user-specified amount of delay; for
example:

input b0;
wire bx, b_temp;
DELAYB
myDelay(.Z(b_temp),.DEL3(1'b0),.DEL2(1'b0),.DEL1(1'b0),.DEL0
(1'b1),.A(b0));
IFS1P3IX b0_reg(.Q(bx), .SP(1'b1), .CD(rst), .SCLK(clk),
.D(b_temp[0]));

The amount of delay value added is defined by the value of DEL[3:0]; This
allows you to choose a delay from one of the 16 values. For ECP3
devices, the value increment is 35ps.

 If you use XO2 devices, you can instantiate either a “DELAYE” element
(all sides) in the HDL to add a user-specified amount of delay, or a
“DELAYD” element (bottom side) in the HDL to add a dynamic delay. For
example:

component DELAYE
generic(DEL_MODE: in String;

DEL_VALUE: in String);
port (A: in std_logic;

Z : out std_logic);
end component;
......
inst1: DELAYE

generic map (DEL_MODE=> "SCLK_ZEROHOLD",
DEL_VALUE=> "DELAY31")

port map (A => IN1,
Z => insig);

The amount of delay added in this example is defined by “DEL_VALUE”.
For details, refer to the XO2 datasheet.

Maximum Fanout Control for Fmax Improvement
Maximizing fanout is a technique of duplicating a driver. This allows less skew
on a global signal, because it can be routed within a smaller area. This
technique makes it easier to close timing and is usually good for non-clock
signals such as clock enables.

You can use the maximum fanout attribute in your HDL code and selectively
apply it to the critical path in order to reduce fanout. In most cases, registers
are duplicated to reduce the maximum fanout, and it will increase the register
count in the design.

General Considerations and Practices for Timing Closure

Timing Closure 41

Note that this attribute in the HDL code will override the global maximum
fanout control. To use the attribute in your code, in Verilog:

input [31: 0] data_ in /* synthesis syn_ maxfan= 1000 */;

in VHDL:

attribute syn_maxfan : integer;
attribute syn_maxfan of data_in : signal is 1000;

Clock-Enable Control for Fmax Improvement
The clock enable net is typically a high fanout net driving several D flip-flops.

The placement and routing process uses the fanout to decide whether to
implement the clock enable by using a secondary clock resource, which
sometimes incurs a larger delay (approximately 3 ns). You can specify a
constraint to avoid using the secondary clock.

If some clock enables are in the critical path, you can identify them in the HDL
code and set the clock enable to off to avoid a delay. You can do this by
setting the attribute “syn_useenables” to 0, as shown below, in Verilog:

reg [3: 0] q /* synthesis syn_useenables = 0 */;
always @(posedge clk)
if (enable)
q <=d;

in VHDL:

signal q_int : std_logic_vector(3 downto 0);
Attribute syn_useenables : boolean;
attribute syn_useenables of q_int : signal is false;
process(clk)
begin

if (clk'event and clk = '1') then
if (enable = '1') then

q_int <= d;
end if;

end if;
end process;

Assigning Black Box Timing
If you instantiate a large embedded block like DSP or EBR, synthesis will treat
the large block as a black box. The timing information is usually ignored, and
sometimes a warning message will be displayed during synthesis.

If the large block is part of the critical path, you should use synthesis
directives to assign timing delay properties to them so that the synthesis tool
can apply the correct timing for the synthesis. A few Synplify Pro synthesis
directives are:

 syn_isclock – specifies a clock port on a black-box

 syn_tpd<n> – timing propagation for combinational delay through the
black box

General Considerations and Practices for Timing Closure

42 Timing Closure

 syn_tsu<n> – timing setup delay required for input pins relative to the
clock

 syn_tco<n> – timing clock to output delay through the black-box

For example, if you use VHDL:

COMPONENT spr16x4a
PORT(
di0 : IN std_logic;
di1 : IN std_logic;
di2 : IN std_logic;
di3 : IN std_logic;
ck : IN std_logic;
wre : IN std_logic;
ad0 : IN std_logic;
ad1 : IN std_logic;
ad2 : IN std_logic;
ad3 : IN std_logic;
do0 : OUT std_logic;
do1 : OUT std_logic;
do2 : OUT std_logic;
do3 : OUT std_logic);
END COMPONENT;
attribute syn_tpd1 of rcf16x4z : component is "ado,ad1,ad2,ad3
-> do0,do1,do2,do3 = 1.1";
attribute syn_tsu1 of rcf16x4z : component is "ado,ad1,ad2,ad3
-> ck = 0.5";
attribute syn_tsu2 of rcf16x4z : component is "wre -> ck =
0.5";

If you use Verilog:

module SPR16X4A (DI0, DI1, DI2, DI3, AD0, AD1, AD2, AD3, WRE,
CK,DO0, DO1, DO2, DO3)
/* synthesis black_box syn_tpd1="AD0,AD1,AD2,AD3-
>DO0,DO1,DO1,DO3 =1.4" syn_tsu1="AD0,AD1,AD2,AD3->CK = 0.5"
syn_tsu2="WRE->CK = 0.5" */;
input AD0,AD1,AD2,AD3,DI0, DI1, DI2, DI3, CK, WRE;
output DO0, DO1, DO2, DO3;

Reviewing Synthesis Strategies
Synthesis strategies, which are synthesis optimization options, sometimes
have great impact on the final timing result. When applying different synthesis
strategies, you should examine the timing report to make sure that there is no
negative timing impact on your design.

State Machine Encoding
One-hot state machine encoding is recommended for high-speed designs.
However, using one-hot encoding increases resource usage and power
consumption.

General Considerations and Practices for Timing Closure

Timing Closure 43

Resource Sharing
Resource sharing usually increases the number of logic levels, thus
introducing additional delays to a path. Synthesis tools usually do a good job
of resource sharing if the path is not critical, but this is not always the case.
You should examine the critical paths to make sure that resource sharing
does not cause any timing issues.

Pipeline and Retiming
Turning on this option allows synthesis tools to rebalance the timing by
moving registers forward or backward through a path. Since synthesis tools
do not have placement and routing information, the rebalancing is done based
on the logic delays. Therefore, you should carefully examine the synthesis
report to ensure that it has been done appropriately; otherwise, it ,might
introduce timing problems after PAR.

MAP and PAR Timing Closure
Techniques

General Strategy Guidelines

1. For timing closure purposes, you should first examine the results of the
MAP TRACE report before continuing on to placement and routing.
Considerations include the following:

a. Warnings and errors related to invalid preferences

Make sure that you correct them to avoid future confusion. (See
Ensure a Clean LPF and Avoid Any Error in the Design Planning
document.)

b. Warnings, errors and potential design issues

For example, a high number of logic levels might severely restrict
design performance, and performance might benefit from a different
partitioning or pipelining.

c. Clock domain analysis

Check the report and ensure that all clocks are constrained See
“Understanding the PAR and PAR TRACE Reports” on page 32.

d. Clock frequency

Since no routing exists yet between logical connections, by default the
MAP TRACE uses route delay estimation based on a suite of Lattice
benchmark designs. You can overwrite the default behavior by
specifying logic delay as a percentage of the overall path delay, where
the total delay is the sum of logic and route delays. You can do this
through the MAP TRACE strategy settings, as illustrated in Figure 29

e. Logic depth

General Considerations and Practices for Timing Closure

44 Timing Closure

Check the logic depth in the report and determine if HDL design
changes are required. A typical design change example is pipelining,
or registering, the data path. This technique might be the only way to
achieve high internal frequencies if the design’s logic levels are too
deep.

2. Perform placement and routing early in the design phase, using a
preliminary preference file, to gather information about the design.

3. Tune up your preference file to include all I/O and internal timing paths, as
appropriate. Establish the pinout in the preference file. Check the
preference coverage through the TRACE report and ensure that your
design is fully covered by the timing requirement.

4. Push PAR, when necessary, by running multiple routing iterations and
multiple placement iterations.

5. Revise the preference file as appropriate; use MULTICYCLE opportunities
when possible.

6. Floorplan your design if necessary.

Use Preferences to Improve Timing

General Consideration
Providing appropriate and sufficient preferences is the key to a successful
design. The following recommendations help you avoid over-constraining or
under-constraining your design.

Under-Constraining
If a design is under-constrained compared to real system requirements, real
timing issues not previously seen during dynamic timing simulations and
static timing analysis could appear. These potential problems can be
observed on a test board or during production.

Common causes of under-constrained timing preferences:

 No clock preference

 Unexpected data path between unrelated clock domains

Figure 29: MAP TRACE Strategy Settings

General Considerations and Practices for Timing Closure

Timing Closure 45

 Undefined I/O specifications

 Asynchronous logic without MAXDELAY preferences

 Internally generated or unintentional clocks not specified in the preference
file

 Critical paths blocked

These problems can usually be identified in the Clock Domain Analysis
section in the TRACE report. See “Understanding the PAR and PAR TRACE
Reports” on page 32.

To make sure that no critical paths were left out because of under-
constraining, you should check for preference coverage at the end of a
TRACE report (.twr) file. An example of such an output is shown below:

Timing summary:

Timing errors: 4906 Score: 25326584
Constraints cover 36575 paths, 6 nets, and 8635 connections
(99.0% coverage)

This example shows 99.0% coverage.

To find unconstrained paths, enable the “Check Unconstrained Paths” option
in MAP TRACE and PAR TRACE strategy settings, as shown in Figure 30.

This option gives a list of all of the signals that are not covered under timing
analysis. In some designs, many of these signals are a common ground net
that indeed does not need to be constrained. You should understand this and

Figure 30: Unconstrained Paths Strategy Option

General Considerations and Practices for Timing Closure

46 Timing Closure

use TRACE to check unconstrained paths and ensure that no timing-critical
design paths are being missed.

Also, note the timing score shown in the example report. The timing score
shows the total amount of negative slacks, in picoseconds, for all timing
preferences constraining the design. Remember that PAR always attempts to
minimize the timing score. PAR does not directly attempt to maximize
frequency, but it indirectly tries to improve Fmax by reducing timing score. A
higher timing score does not necessarily mean a larger gap to your system
performance goals; for example, certain timing issues might be resolved by
using simple fixes such as HDL modification, preference refinement or
process strategy change, while a result with lower timing score might require
more efforts to correct the timing problems.

Over-Constraining
If the constraints are tighter than the system requirements, the design will
become over-constrained. This can actually lead to worse results as scarce
resources are diverted away from their best use. In addition, this will increase
core-processing runtime unnecessarily.

Common causes of over-constrained timing preferences include the following:

 Unspecified multi-cycle paths

 Multi-cycle paths to or from I/Os with different specifications

 FREQUENCY/PERIOD requirements that have been purposely set tighter
than the actual device speed

It is always a good practice to constrain your design with the actual timing
requirements. But sometimes you might want to experiment with over-
constraining your design to determine your best constraint settings for
achieving the desired results. In this case, instead of purposely over-
constraining your design, you should use the PAR_ADJ option when you
define your clock period or frequency. The PAR_ADJ keyword allows you to
tighten requirements for PAR, but at the same time, preserve the
requirements reported by TRACE.

Preferences and Processes
MAP and PAR processes require effective constraints in order to optimize the
usage of resources. As explained in the section “Timing-Driven Flow Using
Lattice Diamond Design Software” on page 13, for MAP and PAR, the design
constraints, or preferences, are provided in an LPF file. You can set and edit
design preferences at multiple points in the FPGA design flow.

For detailed information on creating preferences, and how they work in the
design process, refer to “Preference Flow in Diamond” in the Design Planning
chapter.

Writing Effective Timing Constraints
Understanding which preferences can be used to drive the timing-driven MAP
and PAR is easy. Writing these preferences based on your design’s timing
requirement also is not difficult, as long as you understand your design and its
requirement.

General Considerations and Practices for Timing Closure

Timing Closure 47

However, creating appropriate timing preferences that can efficiently drive
MAP and PAR requires that you fully understand how the timing-driven engine
utilizes your constraints and applies them to the MAP and PAR processes and
your design. Inappropriate timing preferences usually cause the timing-driven
engine to be over-constrained, under-constrained, or both.

This section walks you through a simple example using a systematic
approach, starting with no user-defined timing preferences at all and ending
with all the timing requirements provided. It includes a few case studies to
help you fully understand the timing-driven engine. You should go through and
carefully examine all the cases in sequence to learn how to appropriately
constrain your design and efficiently drive the timing-driven MAP and PAR
processes.

Case Study 1 – No user-defined timing constraint
By default, when you start a new Diamond project and implementation,
Diamond will automatically create an LPF file using the implementation’s
name. This file can be found in the File List view in the LPF Constraint Files
section, and it is set as the active LPF file, which means that it will be used to
drive the MAP and PAR processes. The file includes the following BLOCK
preferences by default:

BLOCK RESETPATHS;
BLOCK ASYNCPATHS;

BLOCK RESETPATHS is a global preference that blocks all asynchronous set
and reset paths that are through an asynchronous set and reset pin of your
design.

BLOCK ASYNCPATHS is a global preference. If this preference is not in the
LPF file, TRACE will analyze all input-to-register paths (that are not covered
by an INPUT_SETUP preference) to see if they are longer than the period of
the associated clock. The clock must have a PERIOD or FREQUENCY
preference defined to get the period value. This is not very useful analysis,
because few inputs will have the entire clock period from the device pin. We
recommend that users define INPUT_SETUP preferences for all inputs that
accurately reflect the actual board level timing. (See “Case study 4 -
INPUT_SETUP” on page 56). The BLOCK ASYNCHPATHS preference is
included in the LPF by default so that the less useful analysis is not included
in the TRACE report.

If there are absolutely no timing constraints defined in your LPF or HDL
(whether or not the two BLOCK preferences in the default LPF are present),
then MAP TRACE will automatically generate a FREQUENCY preference for
each of the identified clocks in your design. See “Case study 10 – Use PLL
FREQUENCY Settings” on page 72 for an example of FREQUENCY defined
in the HDL.

The calculation of the auto-generated FREQUENCY preference is based on
the logic levels and the hardware recommended routing delay estimation
algorithm for the target device. For different devices, the recommended
routing delay estimation algorithms might be different. The estimated
FREQUENCY number calculated is the fastest one that can be achieved
based on your design’s longest path.

General Considerations and Practices for Timing Closure

48 Timing Closure

The automatically generated FREQUENCY preferences are used to drive the
timing-driven engine of the MAP and PAR process, and the reports from MAP
TRACE, PAR and PAR TRACE summarize the timing requirements and the
actual timing results.

To further understand this, examine the following example that uses the HDL
code:

module example(clk1, clk2, data1, data2, rst, cout);
input clk1, clk2, data1, data2, rst;
output cout;
reg reg11, reg12, reg13;
reg reg21, reg22, reg23;

always @ (posedge clk1)
begin
 if (rst)
begin
 reg11<=1'b0;
 reg12<=1'b0;
 reg13<=1'b0;
end
 else
 begin
 reg11<=data1;
 reg12<=reg11;
 reg13<=reg22;
 end
end

always @ (posedge clk2)
begin
 if (rst)
begin
 reg21<=1'b0;
 reg22<=1'b0;
 reg23<=1'b0;
end
 else
 begin
 reg21<=data2;
 reg22<=reg21;
 reg23<=reg12;
 end
end

assign cout = reg13 & reg23;

endmodule

Note

The HDL code and timing constraint examples shown throughout all case
studies are solely for explaining the timing constraint concept and are not to
be considered as recommended HDL coding practice.

General Considerations and Practices for Timing Closure

Timing Closure 49

In this example, there are two external, unrelated clocks: “clk1” and “clk2.”
This can be examined in the Clock Domains Analysis section of the MAP
TRACE or PAR TRACE report:

If there is no FREQUENCY or PERIOD preference defined in your LPF or
HDL, estimated FREQUENCY preferences will be automatically generated for
both “clk1” and “clk2”, and these will be used to drive MAP and PAR. This can
be examined in the Clock Domains Analysis section of the TRACE report as
shown above, as well as the Preference Summary section in the TRACE
reports:

 MAP TRACE report:

Preference Summary
• FREQUENCY NET "clk1_c" 1349.528000 MHz (1 errors)
 1 item scored, 1 timing error detected.
Warning: 895.255MHz is the maximum frequency for this
preference.

• FREQUENCY NET "clk2_c" 1349.528000 MHz (1 errors)
 1 item scored, 1 timing error detected.
Warning: 895.255MHz is the maximum frequency for this
preference.

Report Type: based on TRACE automatically generated
preferences
BLOCK ASYNCPATHS
BLOCK RESETPATHS
--

 PAR TRACE report:

Preference Summary
• FREQUENCY NET "clk1_c" 1349.528000 MHz (1 errors)

Clock Domains Analysis

Found 2 clocks:

Clock Domain: clk1_c Source: clk1.PAD Loads: 2
 Covered under: FREQUENCY NET "clk1_c" 1349.528000 MHz ;

 Data transfers from:
 Clock Domain: clk2_c Source: clk2.PAD
 Not reported because source and destination domains are unrelated.
 To report these transfers please refer to preference CLKSKEWDIFF to define
 external clock skew between clock ports.

Clock Domain: clk2_c Source: clk2.PAD Loads: 2
 Covered under: FREQUENCY NET "clk2_c" 1349.528000 MHz ;

 Data transfers from:
 Clock Domain: clk1_c Source: clk1.PAD
 Not reported because source and destination domains are unrelated.
 To report these transfers please refer to preference CLKSKEWDIFF to define
 external clock skew between clock ports.

General Considerations and Practices for Timing Closure

50 Timing Closure

 1 item scored, 1 timing error detected.
Warning: 771.010MHz is the maximum frequency for this
preference.
• FREQUENCY NET "clk2_c" 1349.528000 MHz (1 errors)
 1 item scored, 1 timing error detected.
Warning: 955.110MHz is the maximum frequency for this
preference.
Report Type: based on TRACE automatically generated
preferences
BLOCK ASYNCPATHS
BLOCK RESETPATHS
--

The text in red illustrates the calculated FREQUENCY preferences for both
clocks. These preferences are used to drive the MAP and PAR process, and
they are also used for the MAP TRACE and PAR TRACE static timing
analysis. The “Report Type” highlighted in blue clearly states that the
preferences are generated automatically by TRACE.

The warning messages in blue are the actual maximum speed of your design
for each clock domain, based on the calculated FREQUENCY preferences.

Also noticeable in this particular example is that, from the HDL code, we know
that “clk1” and “clk2” are unrelated. This fact is further proved in the Clock
Domain Analysis section. TRACE will not analyze cross-domain paths driven
by unrelated clocks, because it cannot determine the relationship between
them. This might make your design under-constrained. To relate two clocks,
use CLKSKEWDIFF See “Case Study 6 – CLKSKEWDIFF” on page 60.

From the TRACE report, it can also be seen that since there are no user-
defined timing constraints in the LPF or the HDL, the two default BLOCK
preferences are used, whether or not the two BLOCK preferences are present
in the default LPF file.

What is Learned from Case Study 1
From this case study, the following points are learned:

 To avoid over-constraining the engine with the auto-generated
FREQUENCY preferences, you should specify a FREQUENCY
preference for each clock in you design, based on your design’s
requirement.

 On the other hand, you can use this case as an experimental process to
estimate how fast or slow you design can run:

 If the actual maximum frequency reported by PAR TRACE is higher
than what your design requires, you can use your actual
FREQUENCY requirement to relax the engine to easily achieve your
goal. At the same time, this might result in less resource usage

 If the calculated or the actual FREQENCY is lower than what you
design requires, you might need to examine your code for coding or
architect improvement.

 If there are no user-defined timing preferences in the LPF or the HDL, the
two default BLOCK preferences will be used, whether or not they are
present in the active LPF file.

General Considerations and Practices for Timing Closure

Timing Closure 51

Case Study 2 – Insufficient FREQUENCY preference
Using the same HDL code used in “Case Study 1 – No user-defined timing
constraint” on page 47, we now include a FREQUENCY preference, but only
for one of the two clocks; for example, “clk1”:

BLOCK RESETPATHS ;
BLOCK ASYNCPATHS ;
FREQUENCY PORT "clk1" 300.000000 MHz ;

Here clock “clk1” is constrained, but clock “clk2” is not.

Since only one of the clocks is constrained, the Clock Domains Analysis
section of the TRACE report now shows different information compared to
that of “Case Study 1 – No user-defined timing constraint” on page 47:

Clock Domains Analysis

Found 2 clocks:

Clock Domain: clk1_c Source: clk1.PAD Loads: 2
 Covered under: FREQUENCY PORT "clk1" 300.000000 MHz ;

 Data transfers from:
 Clock Domain: clk2_c Source: clk2.PAD
 Not reported because source and destination domains
are unrelated.
 To report these transfers please refer to preference
CLKSKEWDIFF to define
 external clock skew between clock ports.

Clock Domain: clk2_c Source: clk2.PAD Loads: 2
 No transfer within this clock domain is found

From this report, we can see that clock “clk1” is now constrained but clock
“clk2” is not. This reveals the fact—an important engine behavior—that if your
design has more than one clock, and if only some but not all of them are
constrained, the engine will not automatically calculate and generate
FREQUENCY preferences for those clocks that you did not constrain.

This fact can also be observed in the Preference Summary section of the
MAP TRACE and PAR TRACE reports:

 MAP TRACE report:

Preference Summary
• FREQUENCY PORT "clk1" 300.000000 MHz (0 errors)
1 item scored, 0 timing errors detected.
Report: 895.255MHz is the maximum frequency for this
preference.

BLOCK ASYNCPATHS
BLOCK RESETPATHS
--

 PAR TRACE report:

Preference Summary
• FREQUENCY PORT "clk1" 300.000000 MHz (0 errors)
1 item scored, 0 timing errors detected.

General Considerations and Practices for Timing Closure

52 Timing Closure

Report: 765.697MHz is the maximum frequency for this
preference.

BLOCK ASYNCPATHS
BLOCK RESETPATHS
--

Both the MAP TRACE report and the PAR TRACE report clearly show that
only one clock FREQUENCY preference is defined. Note that the MAP
TRACE report does not have “Report Type” that was shown in “Case Study 1
– No user-defined timing constraint” on page 47. This user-defined preference
is the only FREQUENCY requirement driving the engine, and there is no
automatically generated FREQUENCY preference for clock “clk2”; thus “clk2”
is not constrained now.

Upon further examination of either the MAP TRACE report or the PAR TRACE
report, the low percentage of the preference coverage (17.6%) should imply
the problem as well:

Timing summary (Setup):

Timing errors: 0 Score: 0
Cumulative negative slack: 0
Constraints cover 1 paths, 1 nets, and 3 connections (17.6%
coverage)
--

There is one more fact you should be aware of: if there is a FREQUENCY
preference defined in your LPF, then including or excluding the two default
BLOCK preferences will be different. Suppose that we now have the following
LPF preferences:

#BLOCK RESETPATHS ;
#BLOCK ASYNCPATHS ;
FREQUENCY PORT "clk1" 300.000000 MHz ;

Note that the two BLOCK preferences are commented out and will not be in
effect. Now look at the Preference Summary section in the PAR TRACE
report:

Preference Summary
• FREQUENCY PORT "clk1" 300.000000 MHz (0 errors)
4 items scored, 0 timing errors detected.
Report: 457.666MHz is the maximum frequency for this
preference.
--

It is clear that the two BLOCK preferences are not shown in the summary.
Interestingly, you might also notice that the maximum frequency
(457.666MHz) is different now from the previous one (765.697MHz) where
the two BLOCK preferences were used. Because “BLOCK ASYNCPATHS” is
not present in the latter case, TRACE will analyze input-to-register paths that
are covered by a FREQUENCY or a PERIOD preference but not covered by
an INPUT_SETUP preference, and the input-to-register paths’ timing
requirements will be calculated automatically and used to drive the engine.
The calculated value usually equals a clock cycle defined by the
FREQUENCY preference. Most of the time, apparently, this value will under-

General Considerations and Practices for Timing Closure

Timing Closure 53

constrain the engine. We will look into this in “Case study 4 - INPUT_SETUP”
on page 56.

What is Learned from Case Study 2
From this case study, the following points are learned:

 You should have all clocks in your design appropriately constrained, either
through your HDL or through FREQUENCY preferences defined in the
LPF. Otherwise, your design is under-constrained, and you might miss
many timing problems in your design.

The TRACE reports are helpful for finding any unconstrained clocks:

 The Clock Domains Analysis section should list the total number of
clocks identified in your design.

 The Preference Summary lists all clocks that had been constrained.

 In addition, the preference coverage reported in the Timing Summary
section should help explain whether your design is under-constrained.

 Since PAR TRACE is generated after PAR, which usually takes more
runtime, you should carefully examine the MAP TRACE report and correct
as many issues as possible before running PAR.

 When there is a valid FREQUENCY or PERIOD preference defined in the
LPF, TRACE will behave differently if you include or exclude two default
BLOCK preferences. This behavior is different from that shown in “Case
Study 1 – No user-defined timing constraint” on page 47, and excluding
the two BLOCK preferences might over-constrain your design.

Case study 3 – Sufficient FREQUENCY preference
Using the same HDL code in “Case Study 1 – No user-defined timing
constraint” on page 47, we now include FREQUENCY preferences for both
clocks:

BLOCK RESETPATHS ;
BLOCK ASYNCPATHS ;
FREQUENCY PORT "clk1" 300.000000 MHz ;
FREQUENCY PORT "clk2" 350.000000 MHz ;

Now let us examine the reports from MAP TRACE, PAR, and PAR TRACE.

 Clock domains analysis:

Clock Domains Analysis

Found 2 clocks:

Clock Domain: clk1_c Source: clk1.PAD Loads: 2
 Covered under: FREQUENCY PORT "clk1" 300.000000 MHz ;

 Data transfers from:
 Clock Domain: clk2_c Source: clk2.PAD
 Not reported because source and destination domains
are unrelated.
 To report these transfers please refer to preference
CLKSKEWDIFF to define
 external clock skew between clock ports.

General Considerations and Practices for Timing Closure

54 Timing Closure

Clock Domain: clk2_c Source: clk2.PAD Loads: 2
 Covered under: FREQUENCY PORT "clk2" 350.000000 MHz ;

 Data transfers from:
 Clock Domain: clk1_c Source: clk1.PAD
 Not reported because source and destination domains
are unrelated.
 To report these transfers please refer to preference
CLKSKEWDIFF to define
 external clock skew between clock ports.

 MAP TRACE report:

Preference Summary
• FREQUENCY PORT "clk1" 300.000000 MHz (0 errors)
 1 item scored, 0 timing errors detected.
Report: 895.255MHz is the maximum frequency for this
preference.

• FREQUENCY PORT "clk2" 350.000000 MHz (0 errors)
 1 item scored, 0 timing errors detected.
Report: 895.255MHz is the maximum frequency for this
preference.

BLOCK ASYNCPATHS
BLOCK RESETPATHS
--

 PAR TRACE report:

Preference Summary
• FREQUENCY PORT "clk1" 300.000000 MHz (0 errors)
 1 item scored, 0 timing errors detected.
Report: 667.557MHz is the maximum frequency for this
preference.

• FREQUENCY PORT "clk2" 350.000000 MHz (0 errors)
 1 item scored, 0 timing errors detected.
Report: 919.118MHz is the maximum frequency for this
preference.

BLOCK ASYNCPATHS
BLOCK RESETPATHS
--

Clock Domains Analysis now reports that there are two clocks and that both of
them were constrained. This is also confirmed in the Preference Summary of
the MAP TRACE report and the PAR TRACE report. Furthermore, the
percentage of the preference coverage is doubled compared with that of
“Case Study 2 – Insufficient FREQUENCY preference” on page 51, as shown
below:

Timing summary (Setup):

Timing errors: 0 Score: 0
Cumulative negative slack: 0

Constraints cover 2 paths, 2 nets, and 6 connections (35.3%
coverage)
--

General Considerations and Practices for Timing Closure

Timing Closure 55

However, the 35.3% coverage is still poor, and apparently the design is still
under-constrained and the constraints need to be improved. We will cover
that in later case studies.

Similar to “Case Study 2 – Insufficient FREQUENCY preference” on page 51,
if we remove the default BLOCK preferences in the active LFP, we have the
following:

#BLOCK RESETPATHS ;
#BLOCK ASYNCPATHS ;
FREQUENCY PORT "clk1" 300.000000 MHz ;
FREQUENCY PORT "clk2" 350.000000 MHz ;

The input-to-register paths covered by both “clk1” and “clk2” will be analyzed
by TRACE using the automatically calculated timing requirement, meaning
one clock cycle. In this example, the input setup timing requirement for all
input-to-register paths in clock domain “clk1” is 3.333ns, based on the “clk1”
300MHz FREQUENCY preference. The input setup timing requirement for all
input-to-register paths in clock domain “clk2” is 2.857ns, based on the “clk2”
350MHz FREQUENCY preference. This apparently increases the preference
coverage from 35.3% to 70.6%, as reported in the Timing Summary section:

Timing summary (Setup):

Timing errors: 0 Score: 0
Cumulative negative slack: 0

Constraints cover 8 paths, 2 nets, and 12 connections (70.6%
coverage)
--

However, a one-clock-cycle input setup timing requirement is usually not
realistic, according to your PCB board-timing requirement, and it might have
your design under-constrained. You should use an appropriate
INPUT_SETUP preference to constrain all inputs of your design. This will be
covered in “Case study 4 - INPUT_SETUP” on page 56.

To further define proper timing preferences, you should understand another
engine behavior: if you only have your design’s clocks constrained, either in
the HDL or through a FREQUENCY or PERIOD preference in the LPF, the
following paths will not be covered and your design might be under-
constrained:

 Register to output paths

 Input to output paths

 Multi-cycle paths

 False paths

 Cross-domain paths that are between unrelated clocks

This can be observed in the Clock Domains Analysis section of the
TRACE reports.

Cross-domain paths that are between related clocks will be covered, though.
Related clocks are those clocks whose relationships the engine is able to

General Considerations and Practices for Timing Closure

56 Timing Closure

determine. Examples are those clocks internally generated, such as the
following:

 A derived clock from a clock divider

 Clocks generated from PLLs

Not all internally generated clocks can be explicitly related. One example of
this is a gated clock.

If your design includes cross-domain paths that are between unrelated clocks,
you should establish the relationship between the clocks; otherwise, your
design will be under-constrained. This will be covered in “Case Study 6 –
CLKSKEWDIFF” on page 60.

What is Learned from Case Study 3
From this case study, the following points are learned:

 Each clock in your design should be appropriately constrained in either
the HDL or the LPF file, no matter whether the clock is an external one or
one that is internally generated.

 The engine is capable of determining certain types of related clocks, such
as a derived clock from a clock divider or a PLL. For some other internally
generated clocks, you need be very careful to ensure that they are
constrained and that the relationships are established. The Clock
Domains Analysis section in the TRACE report should help identify all
clocks in your design.

 If timing preferences only cover clocks, meaning if only FREQUENCY or
PERIOD are defined, the engine will not be able to cover many types of
paths and the design will be very under-constrained.

 The two default BLOCK preferences should always be included in your
active LPF file to avoid less useful analysis by TRACE

Case study 4 - INPUT_SETUP
In previous case studies, we explained an important engine behavior: that
input-setup time will automatically be calculated from a PERIOD or
FREQUENCY preference if no INPUT_SETUP preference is defined and if
BLOCK ASYNCPATHS is not present in the LPF. This will have your design
under-constrained. To specify the accurate requirements, you should use the
INPUT_SETUP preference with the appropriate values. The value of
INPUT_SETUP should be calculated based on your PCB timing requirement.
See “Example: Calculate Timing Requirement” on page 12.

Using the same design in the previous case studies, the following preferences
are defined:

BLOCK RESETPATHS ;
BLOCK ASYNCPATHS ;
FREQUENCY PORT "clk1" 300.000000 MHz ;
FREQUENCY PORT "clk2" 350.000000 MHz ;
INPUT_SETUP PORT "data1" 2.000000 ns CLKPORT "clk1" ;
INPUT_SETUP PORT "data2" 1.500000 ns CLKPORT "clk2"
CLK_OFFSET 1.500000 X ;

General Considerations and Practices for Timing Closure

Timing Closure 57

Now the input “data1” has a 2ns INPUT_SETUP requirement instead of
3.333ns, which would otherwise be calculated from the 300MHz
FREQUENCY requirement of the reference clock net “clk1.” The reference
clock net is defined through CLKPORT in the INPUT_SETUP preference, as
shown in the example.

Similarly, the input “data2” has a 1.5ns INPUT_SETUP requirement instead of
2.857ns, which is one clock cycle defined by 350MHz FREQUENCY of the
reference clock “clk2”. In addition, CLK_OFFSET is defined along with the
INPUT_SETUP. CLK_OFFSET adjusts the timing analysis by a multiple factor
of the clock period. In this example, the factor is 1.5, so the input-setup-time
requirement for “data2” is as follows:

1.5ns + PERIOD * factor = 1.5 + 2.857 * 1.5 = 5.785ns

This can be observed in the TRACE report:

The CLK_OFFSET factor can be a floating-point number, and it might be
useful to pick the opposite clock edge for the analysis by defining the
multiplier factor as 0.5.

The preference coverage is also increased and can be observed from the
Timing Summary:

Timing summary (Setup):

Timing errors: 0 Score: 0
Cumulative negative slack: 0
Constraints cover 4 paths, 2 nets, and 8 connections (47.1%
coverage)
--

Instead of 35.3% percentage of the coverage shown in the previous case
study, now it is 47.1%. However, we still need to improve it.

==
Preference: INPUT_SETUP PORT "data2" 1.500000 ns CLKPORT "clk2" CLK_OFFSET 1.500000 X
;
 1 item scored, 0 timing errors detected.
--
Passed: The following path meets requirements by 5.197ns
 Logical Details: Cell type Pin type Cell/ASIC name (clock net +/-)
 Source: Port Pad data2
 Destination: FF Data in reg21_0io (to clk2_c +)
 Max Data Path Delay: 0.508ns (100.0% logic, 0.0% route), 1 logic levels.
 Min Clock Path Delay: 1.213ns (37.7% logic, 62.3% route), 1 logic levels.
IOL_L27A attributes: FINE=FDEL0
 Constraint Details:
 0.508ns delay data2 to data2_MGIOL less
 5.785ns offset data2 to clk2 (totaling -5.277ns) meets
 1.213ns delay clk2 to data2_MGIOL less
 1.293ns DI_SET requirement (totaling -0.080ns) by 5.197ns
Physical Path Details:
......

General Considerations and Practices for Timing Closure

58 Timing Closure

What is Learned from Case Study 4
From this case study, the following points are learned:

 Accurate INPUT_SETUP needs to be defined according to the design’s
timing requirement. Otherwise, the input setup time will be calculated
automatically from FREQUENCY (if BLOCK ASYNCPATHS is not
defined), or INPUT_SETUP will not be analyzed (if BLOCK
ASYNCPATHS is defined). In both cases, your design is under-
constrained

 You can use additional options to define INPUT_SETUP, such as
CLK_OFFSET. For detailed information, refer to the Constraints
Reference Guide in the Diamond online Help

Case Study 5 - CLOCK_TO_OUT
In “Case study 3 – Sufficient FREQUENCY preference” on page 53, we
explained an important engine behavior: that register-to-output paths and
some other types of paths will not be covered if only PERIOD or
FREQUENCY preferences are defined. This can cause your design to be
under-constrained. To specify the accurate requirements, you should use the
CLOCK_TO_OUT preference. The value of CLOCK_TO_OUT should come
from your PCB timing requirement. See “Example: Calculate Timing
Requirement” on page 12.

Using the same example in the previous case studies, we add the
CLOCK_TO_OUT preference:

BLOCK RESETPATHS ;
BLOCK ASYNCPATHS ;
FREQUENCY PORT "clk1" 300.000000 MHz ;
FREQUENCY PORT "clk2" 350.000000 MHz ;
INPUT_SETUP PORT "data1" 2.000000 ns CLKPORT "clk1" ;
INPUT_SETUP PORT "data2" 1.500000 ns CLKPORT "clk2"
CLK_OFFSET 1.500000 X ;
CLOCK_TO_OUT PORT "cout" 1.000000 ns CLKPORT "clk1" ;

The CLOCK_TO_OUT preference constrains the clock-to-output timing
requirement of the output “cout” to be 1ns, referencing the clock “clk1.” This is
illustrated in the diagram in “Clock to Output” on page 7.

When all register-to-output paths are constrained, the preference coverage is
increased. This can be observed in the TRACE report:

Timing summary (Setup):

Timing errors: 1 Score: 4298
Cumulative negative slack: 4298
Constraints cover 5 paths, 2 nets, and 10 connections (58.8%
coverage)
--

Now we have 58.8% coverage, compared with 47.1% in the previous case
study.

When defining the CLOCK_TO_OUT preference, you can use a clock output,
if your design has one, as the reference clock. For example:

General Considerations and Practices for Timing Closure

Timing Closure 59

CLOCK_TO_OUT "cout" 1.0 ns CLKPORT "clk" CLKOUT PORT
"clkout";
CLOCK_TO_OUT "cout" 2.0 ns CLKPORT "clk" FROM "c2" CLKOUT
PORT "clkout";

This first CLOCK_TO_OUT preference constrains the clock-to-output timing
requirement of all the output paths to “cout” to be 1ns, referencing the clock
output “clkout,” where “clkout” is an output driven by the derived clock net
“clk_derived_clock.” However, the second preference is more specific than
the first one and requires that the clock-to-output timing requirement of the
path “c2” to “cout” to be 2ns, referencing the clock output “clkout”.

These preferences and the relationship of the output and the reference clock
are illustrated in Figure 31.

It is important to notice that the second CLOCK_TO_OUT preference is more
specific than the first CLOCK_TO_OUT preference. The path driven by “c1”
has a 1ns requirement, and the path driven by “c2” has a 2ns requirement;
otherwise, both the paths would have 1ns requirement.

What is Learned from Case Study 5
From this case study, the following is learned:

 Accurate and sufficient CLOCK_TO_OUT preferences need to be defined
according to the PCB timing requirement. Otherwise, the register-to-

Figure 31: Output and Reference Clock

General Considerations and Practices for Timing Closure

60 Timing Closure

output paths will not be covered, and this can cause your design to be
under-constrained.

For detailed information on the CLOCK_TO_OUT preference and available
options, refer to the Constraints Reference Guide in the Diamond online Help.

Case Study 6 – CLKSKEWDIFF
Sufficient FREQUENCY, INPUT_SETUP and CLOCK_TO_OUT preferences
should cover most of the paths in a simple design, especially those designs
that only have one clock domain or that have multiple clock domains with no
cross-domain paths.

More often, your design will have many paths crossing multiple clock
domains, where multiple clock domains have one or both of the following two
types:

 Clock domains that are related – For example, when you use a clock
divider, PLLs, and certain types of derived clocks, the engine is able to
determine the relationship between clock domains.

 Clock domains that are unrelated – for example, when your designs have
multiple top-level clock inputs

The example used in the previous case studies shows a typical design that
includes unrelated clock domains with paths crossing them. Since the engine
is unable to determine the relationship between clock domains, the paths
across these domains will not be analyzed; therefore, your design is under-
constrained. This fact can be observed in the Clock Domains Analysis section
in the TRACE reports:

The low percentage of the preference coverage reported by TRACE also
reveals that there are many paths not covered.

Clock Domains Analysis

Found 2 clocks:

Clock Domain: clk1_c Source: clk1.PAD Loads: 2
 Covered under: FREQUENCY PORT "clk1" 300.000000 MHz ;

 Data transfers from:
 Clock Domain: clk2_c Source: clk2.PAD
 Not reported because source and destination domains are unrelated.
 To report these transfers please refer to preference CLKSKEWDIFF to define
 external clock skew between clock ports.

Clock Domain: clk2_c Source: clk2.PAD Loads: 2
 Covered under: FREQUENCY PORT "clk2" 350.000000 MHz ;

 Data transfers from:
 Clock Domain: clk1_c Source: clk1.PAD
 Not reported because source and destination domains are unrelated.
 To report these transfers please refer to preference CLKSKEWDIFF to define
 external clock skew between clock ports.

General Considerations and Practices for Timing Closure

Timing Closure 61

As suggested in the Clock Domains Analysis, you should establish the
relationship between the two clock domains using the CLKSKEWDIFF
preference. For example:

CLKSKEWDIFF CLKPORT "clk1” CLKPORT "clk2" 0.5 ns;

This preference informs the engine that “clk1” arrives at the clock input later
than “clk2” by 0.5ns.

Now that the relationship between “clk1” and “clk2” is established, the engine
will cover the paths crossing these two clock domains, as shown in the Clock
Domain Analysis of the TRACE reports:

Subsequently, the preference coverage percentage is increased as well:

Timing summary (Setup):

Timing errors: 2 Score: 9839
Cumulative negative slack: 9839

Constraints cover 7 paths, 2 nets, and 12 connections (70.6%
coverage)
--

Remember that CLKSKEWDIFF only applies to the top-level clocks, so you
need “CLKPORT” to identify a top-level clock and use the clock port name
instead of the clock net name. If the clock defined does not exist in your
design, the preference will be ignored. You should examine the report to see if
this is the case.

For detailed information about the CLKSKEWDIFF preference, refer to the
section Constraints Reference Guide in the Diamond online Help.

Clock Domains Analysis

Found 2 clocks:

Clock Domain: clk1_c Source: clk1.PAD Loads: 2
 Covered under: FREQUENCY PORT "clk1" 300.000000 MHz ;

 Data transfers from:
 Clock Domain: clk2_c Source: clk2.PAD
 Covered under: FREQUENCY PORT "clk1" 300.000000 MHz ; Transfers: 1

Clock Domain: clk2_c Source: clk2.PAD Loads: 2
 Covered under: FREQUENCY PORT "clk2" 350.000000 MHz ;

 Data transfers from:
 Clock Domain: clk1_c Source: clk1.PAD
 Covered under: FREQUENCY PORT "clk2" 350.000000 MHz ; Transfers: 1
--

General Considerations and Practices for Timing Closure

62 Timing Closure

CLKSKEWDISABLE
When calculating the slacks of paths, including those paths between the
same clock domain or those paths between cross-domains of the related
clocks, clock skews are also taken into account, as shown in the following
TRACE report:

“0.099” clock skew is calculated by:

<source clock delay> - <destination clock delay> = 1.183 -
1.084 = 0.099ns

For cross-domain paths, you can use the CLKSKEWDISABLE preference to
explicitly exclude clock skews from the slack calculation, as shown in the
following example:

CLKSKEWDISABLE CLKNET "clk1_c" CLKNET "clk2_c";

If two clocks are related, this preference excludes clock skews from the slack
calculation when scoring cross-domain paths from the “clk1_c” domain to the
“clk2_c” domain.

==
Preference: FREQUENCY PORT "clk1" 500.000000 MHz ;
 1 item scored, 0 timing errors detected.
--
Passed: The following path meets requirements by 0.701ns
 Logical Details: Cell type Pin type Cell/ASIC name (clock net +/-)
 Source: FF Q reg11_0io (from clk1_c +)
 Destination: FF Data in reg12 (to clk1_c +)
 Delay: 1.047ns (19.2% logic, 80.8% route), 1 logic levels.
 Constraint Details:
 1.047ns physical path delay data1_MGIOL to SLICE_0 meets
 2.000ns delay constraint less
 0.099ns skew and
 0.153ns M_SET requirement (totaling 1.748ns) by 0.701ns
 Physical Path Details:
 Data path data1_MGIOL to SLICE_0:
 Name Fanout Delay (ns) Site Resource
C2OUT_DEL --- 0.201 IOL_L26A.CLK to IOL_L26A.INB data1_MGIOL (from clk1_c)
ROUTE 1 0.846 IOL_L26A.INB to R27C2C.M0 reg11 (to clk1_c)

 1.047 (19.2% logic, 80.8% route), 1 logic levels.
 Clock Skew Details:
 Source Clock Path clk1 to data1_MGIOL:
 Name Fanout Delay (ns) Site Resource
ROUTE 2 1.183 K3.PADDI to IOL_L26A.CLK clk1_c

 1.183 (0.0% logic, 100.0% route), 0 logic levels.
 Destination Clock Path clk1 to SLICE_0:
 Name Fanout Delay (ns) Site Resource
ROUTE 2 1.084 K3.PADDI to R27C2C.CLK clk1_c

 1.084 (0.0% logic, 100.0% route), 0 logic levels.

Report: 769.823MHz is the maximum frequency for this preference.

General Considerations and Practices for Timing Closure

Timing Closure 63

Where two clocks are unrelated, this preference also establishes the
relationship from the source domain “clk1” to the destination domain “clk2.”
This is similar to the CLKSKEWDIFF preference, which also establishes the
relationship between two clock domains. The difference is that
CLKSKEWDIFF establishes the relationship in both domain-to-domain
directions, while CLKSKEWDISABLE only establish the relationship in one
direction. So to build the cross-domain relationship from the “clk2” domain to
“clk1” domain, another CLKSKEWDISABLE preference can be used:

CLKSKEWDISABLE CLKNET "clk2_c" CLKNET "clk1_c";

What is Learned from Case Study 6
From this case study, the following points are learned:

 If your design has multiple clock domains, you should carefully examine
your design and the TRACE reports to see if there are cross-domain paths
and to ensure that cross-domain paths are covered by the engine.

 When your design has multiple top-level clocks, they are usually
unrelated. The relationship between unrelated clocks must be established
by using the CLKSKEWDIFF preference. Otherwise, cross-domain paths
will not be analyzed and your design might be under-constrained.

 Clock skews are usually included and considered by the engine if—and
only if—clocks are related

Case Study 7 – Timing Exception 1 – MULTICYCLE

Timing Exceptions
Timing exceptions are preferences that describe the special behavior of
certain design paths. Most designs contain paths that require these additional
preferences to relax the default timing constraint used by the engine. Without
timing exceptions, the static timing analysis performed by TRACE will likely
assume worst-case timing scenarios and report lower design performance,
and PAR will spend an undue amount of effort optimizing the path. With timing
exception preferences that can represent the actual design behavior, the
engine will be relaxed.

Two common path types require timing exceptions: multi-cycle paths and
false paths. We will discuss multi-cycle in this case study.

Multi-Cycle Paths
In most synchronous circuits, the receiving register captures data launched by
a launching register that uses the next active clock edge of the receiving
register. This behavior, which is single-cycle behavior, is assumed as the
default behavior by TRACE and PAR, and the timing constraint is calculated
and used as the default by TRACE and PAR.

Note

Clock skews for data paths that have the same source and destination clock
nets cannot be disabled by using this preference.

General Considerations and Practices for Timing Closure

64 Timing Closure

 If the launching register and the receiving register of a path use the same
clock, then the default timing constraint is one clock cycle. See Multi-
Cycle Within the Same Clock Domain.

 If the launching register and the receiving register of a path use two
different clocks and these two clocks are related, then the default timing
constraint is the worst-case edge pair, which depends on the period of the
two clocks. See Multi-Cycle Across Clock Domains.

A multi-cycle path refers to cases where this relationship is different. Since
single-cycle behavior is assumed by PAR and TRACE, a multi-cycle type of
preference, MULTICYCLE, is used to express the relationship and relax the
engine.

MULTICYLE preferences only apply to paths that are within a clock domain or
across clock domains that are related. A clock domain is established by
defining a FREQUENCY or PERIOD preference. MULTICYLE preferences
are used to relax timing requirements on those paths.

Multi-Cycle Within the Same Clock Domain
If the launching and the receiving registers of a path use the same clock, this
path is said to be in the same clock domain or to be transferred within the
same clock domain.

Since the launching and the receiving registers use the same clock, the
default timing constraint is one clock cycle of the clock, which means that the
path from the launching register to the receiving register requires one clock
cycle. This will be used as the default by TRACE and PAR.

If the default is not appropriate for the path, then you must use the
MULTICYCLE preference to change the default timing constraint and relax
the engine.

The example in Figure 32 illustrates a single-cycle versus a multi-cycle
relationship within the same clock domain. In this example, both the
Launching Register and the Receiving Register use the same clock “clk.” By
default, the timing requirement for the path between two registers is one clock
cycle, and the MULTICYCLE preference will change this behavior.

For the multi-cycle timing relationship, the amount of time taken by the data to
reach the receiving register can be indicated by a multiplier factor. For
example:

FREQUENCY PORT "clk" 200 MHZ;
MULTICYCLE FROM CELL "FF_S" TO CELL "FF_D" 2 X;

In the example, a multiplier factor of “2 X” is used to inform TRACE and PAR
that the data transferred from FF_S to FF_D requires an additional clock
cycle.

If a multiplier factor is used in the MULTICYCLE preference, by default this
factor will apply to the receiving clock period (destination). You can specify

General Considerations and Practices for Timing Closure

Timing Closure 65

whether the launching register’s clock period (source) or the receiving
register’s clock period (destination) should be applied. For example:

MULTICYCLE FROM CELL "FF_S" TO CELL "FF_D" 2 X_DEST;
MULTICYCLE FROM CELL "FF_S" TO CELL "FF_D" 2 X_SOURCE;

The calculation formula of the timing requirement for the receiving register is
as follows:

<default delay calculated> + (n - 1) * <multiplier factor
applied clock period>

Here “n” is the multiplier factor. The default delay, or the default timing
requirement, is the default register-to-register timing requirement. Since both
of the registers are clocked by the same clock, the default delay calculated
will be one clock cycle.

In this example, since both “FF_S” and “FF_D” are clocked by CLK, different
options will make no difference. The timing requirement from “FF_S” to
“FF_D” is calculated by the following:

5ns + (2 - 1) * 5ns = 10ns

This is two clock cycles. So the timing requirement for the path from FF_S to
FF_D is two clock cycles (which is 10ns based on the 200MHz FREQUENCY
preference) instead of one clock cycle (which is 5ns) that would otherwise be
used as the default timing constraint by TRACE and PAR.

Multi-Cycle Across Clock Domains
The example used in the previous case studies has two clock domains and
two cross-domain paths, as seen in Figure 33.

Figure 32: Single-cycle vs. Multi-cycle Relationship Within the Same Clock Domain

General Considerations and Practices for Timing Closure

66 Timing Closure

Cross-domain paths include those from the “clk1” domain to the “clk2”
domain, i.e., “reg12” to “reg23,” and those from the “clk2” domain to the “clk1”
domain, i.e., “reg22” to “reg13.”

In this example, the clocks “clk1” and “clk2” are unrelated. By default, the
engine does not cover paths that are transferred between unrelated clock
domains. In “Case Study 6 – CLKSKEWDIFF” on page 60, we use the
CLKSKEWDIFF preference and establish the relationship between two clock
domains; therefore, the paths between them will be analyzed.

Assume that the clock period of the launching register FF_S is PL, and that
the clock period of the receiving register FF_D is PR. When analyzing paths
crossing these two clock domains, the engine uses the following approach to
calculate and apply the default timing requirement:

1. Align both clocks’ first active edge at time tp0 = 0, which means that at
time tp0, the time different between two active clock edges td0 = 0ns.

By doing this, we will know that at time tpN = N * LCM(PL, PR), the 2
clocks’ active edge will be aligned again. Here N is any integer, and LCM
is “least common multiple”. For example, if PL is equal to 2 and PR is
equal to 3, then LCM(PL, PR) is 6.

2. Between the time tp0 = 0 and tp1 = 1 * LCM(PL, PR) = LCM(PL , PR),
find two positive integers m and n, where m and n meet the following
criteria:

a. tp0 <= m * PL < n * PR <= tp1, that is, 0 <= m * PL < n * PR <= LCM
(PL, PR)

b. the value of tmin is the smallest possible number of t, where

t = (n * PR) - (m * PL)

3. The value of tmin is the default timing requirement from the launching
register FF_S to the receiving register FF_D.

Figure 33: Multi-Cycle Across Clock Domains

General Considerations and Practices for Timing Closure

Timing Closure 67

For example, if we have the following preferences defined in the LPF:

BLOCK RESETPATHS ;
BLOCK ASYNCPATHS ;
FREQUENCY PORT "clk1" 500.000000 MHz ;
FREQUENCY PORT "clk2" 333.000000 MHz ;
INPUT_SETUP PORT "data1" 2.000000 ns CLKPORT "clk1" ;
INPUT_SETUP PORT "data2" 1.500000 ns CLKPORT "clk2"
CLK_OFFSET 1.500000 X ;
CLOCK_TO_OUT PORT "cout" 1.000000 ns CLKPORT "clk1" ;
CLKSKEWDIFF CLKPORT "clk1" CLKPORT "clk2" 0.500000 ns ;

For the cross-domain paths that are from “clk1” domain to “clk2” domain, i.e.,
“reg12” to “reg23”:

 PL = 2ns, PR = 3ns

 The smallest t is:

tmin = min (t) = min ((n * PR) - (M*PL)) = 1 * 3 - 1 * 2 = 1ns

By default, 1ns is the timing requirement for these cross-domain paths, as
illustrated in Figure 34.

Figure 34: Timing Requirement for Cross-Domain Paths

General Considerations and Practices for Timing Closure

68 Timing Closure

This can also be found in the TRACE report, as 1ns was reported as the delay
constraint.

Similarly, for the cross-domain paths that are from the “clk2” domain to the
“clk1” domain, i.e., “reg22” to “reg13”:

 PL = 3ns, PR = 2ns

 The smallest t is:

tmin = min (t) = min ((n * PR) - (M*PL)) = 2 * 2 - 1 * 3 = 1ns

By default, 1ns is also the timing requirement for these cross-domain paths,
as illustrated in Figure 35.

For cross-domain paths, using the default calculated minimum delay between
two active clock edges as the timing requirement might not reflect the actual
design behavior; and, in most cases, it will have your design and the engine
over-constrained. This usually has two side effects:

 TRACE will probably report many timing errors.

Error: The following path exceeds requirements by 0.609ns (weighted slack = -
1.827ns)
 Logical Details: Cell type Pin type Cell/ASIC name (clock net +/-)
 Source: FF Q reg12 (from clk1_c +)
 Destination: FF Data in reg23 (to clk2_c +)
 Delay: 0.956ns (31.7% logic, 68.3% route), 1 logic levels.
 Constraint Details:
 0.956ns physical path delay SLICE_0 to SLICE_1 exceeds
 (delay constraint based on source clock period of 2.000ns and destination
clock period of 3.003ns)
 1.000ns delay constraint less
 0.500ns skew and
 0.153ns M_SET requirement (totaling 0.347ns) by 0.609ns
 Physical Path Details:
......

Figure 35: Timing Requirement for Cross-Domain Paths

General Considerations and Practices for Timing Closure

Timing Closure 69

 The timing-driven PAR engine will spend a lot of runtime trying to meet the
unrealistic requirements, while the true critical paths might be under-
covered.

To overcome this issue, you should use the MULTICYCLE preference to
describe the relationship of the two clock domains.

As described in Multi-Cycle Within the Same Clock Domain, you can use the
multiplier factor when defining MULTICYCLE preferences. For example:

BLOCK RESETPATHS ;
BLOCK ASYNCPATHS ;
FREQUENCY PORT "clk1" 500.000000 MHz ;
FREQUENCY PORT "clk2" 333.000000 MHz ;
INPUT_SETUP PORT "data1" 2.000000 ns CLKPORT "clk1" ;
INPUT_SETUP PORT "data2" 1.500000 ns CLKPORT "clk2"
CLK_OFFSET 1.500000 X ;
CLOCK_TO_OUT PORT "cout" 1.000000 ns CLKPORT "clk1" ;
CLKSKEWDIFF CLKPORT "clk1" CLKPORT "clk2" 0.500000 ns ;
MULTICYCLE FROM CLKNET "clk1_c" TO CLKNET "clk2_c" 2 X;
MULTICYCLE FROM CLKNET "clk2_c" TO CLKNET "clk1_c" 2 X;

Then the engine will use the following formula to calculate the timing
requirement:

<default delay calculated> + (n - 1) * <multiplier factor
applied clock period>

In this example, for the path from “clk1” domain to “clk2” domain, the timing
requirement is as follows:

1ns + (2 - 1) * 3ns = 4ns

Similarly, for the path from “clk2” domain to “clk1” domain, the timing
requirement is as follows:

1ns + (2 - 1) * 2ns = 3ns

In addition to using the multiplier factor, you can use an absolute delay value,
in nanoseconds, when defining MULTICYCLE preferences. For example:

MULTICYCLE FROM CLKNET "clk1_c" TO CLKNET "clk2_c" 3.000000
ns ;
MULTICYCLE FROM CLKNET "clk2_c" TO CLKNET "clk1_c" 2.000000
ns ;

Defining MULTICYCLE using clock names will have the constraints apply to
all paths covered by the clocks. To specify MULTICYCLE for a specific path,
you can use the format of the following example:

MULTICYCLE FROM CELL "reg12" TO CELL "reg23" 3.000000 ns ;
MULTICYCLE FROM CELL "reg22" TO CELL "reg13" 2.000000 ns ;

For detailed information about MULTICYCLE, its syntax and usage, refer to
the Constraints Reference Guide in the Diamond online Help.

General Considerations and Practices for Timing Closure

70 Timing Closure

What is Learned from Case Study 7
From this case study, the following points are learned:

 The timing requirements for cross-domain paths between related clocks
can be relaxed by using MULTICYCLE preferences. Otherwise, the
engine will use the default calculated timing delay requirement, which is
the worst case edge-to-edge delay of the two clocks, and this will cause
the engine to be over-constrained in most instances.

 When a multiplier factor is used in a MULTICYCLE preference, the timing
requirement calculation formula is as follows:

<default delay calculated> + (n - 1) * <multiplier factor
applied clock period>

In order to relax the engine, the multiplier factor “n” must be greater than
1. If it is equal to 1, which is the default, the engine will behave as if the
MULTICYCLE preference has not been defined. If it is less than 1, the
engine will be even more over-constrained, which is not what you expect.
Diamond does not issue a warning when the multiplier factor is less than
or equal to 1.

Case study 8 – Clock Over-Constrained
Over-constraining clocks in your design might work for some designs, but you
should not use it as a “cure-all” practice, because it can introduce side effects.
For those designs that only have a single clock domain, or that have multiple
unrelated clock domains, the side effects introduced are not very obvious. But
for designs that have multiple clock domains and where cross-domain paths
do exist, you should be especially careful. In this case, if cross-domain paths
are not appropriately constrained, you can actually drive the engine
incorrectly. The engine will then spend a huge amount of time trying to meet
the unrealistic timing requirements and eventually fail with a large amount of
timing errors.

For example, as explained in “Case Study 7 – Timing Exception 1 –
MULTICYCLE” on page 63, for the following FREQUENCY preferences:

FREQUENCY PORT "clk1" 300.000000 MHz ;
FREQUENCY PORT "clk2" 150.000000 MHz ;

The default delay requirement will be 3.333ns for all cross-domain paths from
the “clk1” domain to the “clk2” domain.

Now instead of defining 300MHz for the “clk1,” we over-constrain it by 3MHz
through the following preference (similarly, “clk1” can be over-constrained by
a few):

FREQUENCY NET "clk1" 303.000000 MHz;
FREQUENCY NET "clk2" 150.000000 MHz;

General Considerations and Practices for Timing Closure

Timing Closure 71

The default delay requirement from the “clk1” domain to the “clk2” domain will
become 0.066ns, which is the worst-case edge-to-edge delay. This result can
be observed in the TRACE report:

The delay constraint calculated decreased dramatically from 3.333ns in the
previous cases to 0.066ns, which is apparently unrealistic. The engine is
over-constrained well beyond the 3MHz specified in the LPF, which you would
probably never expect.

The reason for a “0.066ns” delay constraint is that the engine uses the closest
edge gap between two clocks, which is the worst case, as the constraint for
the paths crossing multiple domains. As explained in “Case Study 7 – Timing
Exception 1 – MULTICYCLE” on page 63, this behavior should be guided with
a MULTICYCLE preference.

Using PAR_ADJ
A similar situation could happen if you use “PAR_ADJ” when defining a
FREQUENCY or PERIOD preference where the related cross-domain paths
are not well constrained. The PAR_ADJ keyword allows you to tighten
requirements for PAR while preserving the requirements reported by TRACE.
This allows you to over-constrain PAR. For example:

FREQUENCY NET "clk1" 300.100000 MHz PAR_ADJ 3;

This preference instructs the PAR engine to use 303MHz as the “clk1”
FREQUENCY requirement. At the same time, TRACE still uses 300MHz for
static timing analysis.

Since the TRACE reports still use the defined FREQUENCY or PERIOD for
static timing analysis, you might not notice anything going on incorrectly. But
the timing-driven PAR might have completely different numbers to drive itself
and spend a huge amount of time trying to meet the timing.

==
Preference: FREQUENCY PORT "clk2 " 150.000000 MHz ;
 2 items scored, 1 timing errors detected.
--
Error: The following path exceeds requirements by 1.700ns (weighted slack = -
171.700ns)
 Logical Details: Cell type Pin type Cell/ASIC name (clock net +/-)
 Source: FF Q reg12 (from clk1_c +)
 Destination: FF Data in reg23 (to clk2_c +)
 Delay: 1.116ns (27.2% logic, 72.8% route), 1 logic levels.
 Constraint Details:
 1.116ns physical path delay SLICE_0 to SLICE_1 exceeds
 (delay constraint based on source clock period of 3.300ns and destination clock
period of 6.666ns)
 0.066ns delay constraint less
 0.497ns skew and
 0.153ns M_SET requirement (totaling -0.584ns) by 1.700ns
......

General Considerations and Practices for Timing Closure

72 Timing Closure

What Is Learned from Case Study 8
From this case study, the following points are learned:

 Over-constraining your design is not always a good practice and can
result in an even more over-constrained engine, especially when your
design has cross-domain paths and these paths are not well constrained.

 PAR_ADJ could result in exactly the same problem as over-constraining if
cross-domain paths are not handled well in your preferences. It might not
be identified as easily as explicit over-constraining, because the PAR
engine uses a completely different FREQUENCY or PERIOD number
than that used by TRACE.

 Cross-domain paths should be carefully handled using MULTICYLE
preferences.

Case study 9 – Timing Exception 2 – False Paths
Many designs include paths that are asynchronous relative to the clocks of
the design or connections that never propagate a signal state because of logic
encoding. A false path illustration is shown in Figure 36.

If not well constrained, this condition can “mask” the violations of real timing
paths and make the performance results overly pessimistic.

False paths are treated as unconstrained by TRACE and timing-driven PAR. If
you can accurately describe false paths, design performance will usually
improve, because a false path is treated by PAR as unconstrained. With
“relaxed” timing objectives, PAR optimizes the true critical paths instead. In a
similar manner, unconstrained paths are ignored by TRACE and true critical
paths are reported instead.

You should use the BLOCK preference on those identified false paths. Refer
to the BLOCK PATH section for details.

Case study 10 – Use PLL FREQUENCY Settings
Most designs use PLLs to generate clocks driving the FPGA circuit. The
following example shows a design that uses a PLL. This design is similar to
the one used in all of the previous case studies, but instead of using two
unrelated top-level clocks, it uses a PLL.

module example(clk1, data1, data2, rst, cout, pll_lock);
input clk1, data1, data2, rst;
output cout, pll_lock;
reg reg11, reg12, reg13;

Figure 36: False Path

General Considerations and Practices for Timing Closure

Timing Closure 73

reg reg21, reg22, reg23;
wire clkop, clkok;

my_pll i_my_pll (.CLK(clk1), .RESET(rst), .CLKOP(clkop),
.CLKOS(), .CLKOK(clkok), .LOCK(pll_lock));

always @ (posedge clkop)
begin
 if (rst)
begin
 reg11<=1'b0;
 reg12<=1'b0;
 reg13<=1'b0;
end
 else
 begin
 reg11<=data1;
 reg12<=reg11;
 reg13<=reg22;
 end
end

always @ (posedge clkok)
begin
 if (rst)
begin
 reg21<=1'b0;
 reg22<=1'b0;
 reg23<=1'b0;
end
 else
 begin
 reg21<=data2;
 reg22<=reg21;
 reg23<=reg12;
 end
end

assign cout = reg13 & reg23;

endmodule

The PLL has the following frequency settings: 100MHz “clk1” input, 300MHz
“clkop” output, and 150MHz “clkok” output.

If there is no FREQUENCY preference defined in your LPF file, the
FREQUENCY values from the PLL will be used to drive the engine. This can
be observed in the TRACE report:

Preference Summary
• FREQUENCY NET "clk1_c" 100.000000 MHz (0 errors)
 0 items scored, 0 timing errors detected.
• FREQUENCY NET "clkop" 300.000000 MHz (0 errors)
 5 items scored, 0 timing errors detected.
Report: 375.094MHz is the maximum frequency for this
preference.
• FREQUENCY NET "i_my_pll/CLKOS" 300.000000 MHz (0 errors)
 0 items scored, 0 timing errors detected.

General Considerations and Practices for Timing Closure

74 Timing Closure

• FREQUENCY NET "clkok" 150.000000 MHz (0 errors)
 5 items scored, 0 timing errors detected.
Report: 375.094MHz is the maximum frequency for this
preference.

Here the “clkok” domain runs 150MHz and the “clkop” domain runs 300MHz,
which are from the PLL frequency settings.

This example still shows cross-domain behavior. In addition, since both clocks
are outputs from a PLL, by definition, these two clocks are related. Because
the engine will analyze cross-domain paths, MULTICYCLE preferences are
needed to relax the engine. See “Case Study 7 – Timing Exception 1 –
MULTICYCLE” on page 63.

One important fact to remember when using PLL: after the PLL’s clocks are
routed, there will be skews between different clock outputs. The skew will be
calculated automatically by the engine, as shown in the PAR TRACE report:

General Considerations and Practices for Timing Closure

Timing Closure 75

Preference: FREQUENCY NET "clkok" 150.000000 MHz ;
 5 items scored, 0 timing errors detected.
--
Passed: The following path meets requirements by 4.000ns
 The internal maximum frequency of the following component is 375.094 MHz
 Logical Details: Cell type Pin name Component name
 Destination: FSLICE CLK SLICE_1
 Delay: 2.666ns -- based on Minimum Pulse Width
Passed: The following path meets requirements by 2.218ns (weighted slack = 4.436ns)
 Logical Details: Cell type Pin type Cell/ASIC name (clock net +/-)
 Source: FF Q reg12 (from clkop +)
 Destination: FF Data in reg23 (to clkok +)
 Delay: 1.165ns (26.0% logic, 74.0% route), 1 logic levels.
 Constraint Details:
 1.165ns physical path delay SLICE_0 to SLICE_1 meets
 3.333ns delay constraint less
 -0.203ns skew and
 0.000ns feedback compensation and
 0.153ns M_SET requirement (totaling 3.383ns) by 2.218ns
Physical Path Details:
......
Clock Skew Details:
 Source Clock Path clk1 to SLICE_0:
 Name Fanout Delay (ns) Site Resource
PADI_DEL --- 0.508 K3.PAD to K3.PADDI clk1
ROUTE 1 0.000 K3.PADDI to PLL_R26C5.CLKI clk1_c
CLKI2OP_DE --- 0.000 PLL_R26C5.CLKI to *L_R26C5.CLKOP i_my_pll/PLLInst_0
ROUTE 2 1.445 *L_R26C5.CLKOP to R27C2B.CLK clkop

 1.953 (26.0% logic, 74.0% route), 2 logic levels.
PLL_R26C5.CLKOP attributes:
 Source Clock f/b:
 Name Fanout Delay (ns) Site Resource
CLKFB2OS_D --- 0.203 *L_R26C5.CLKFB to *L_R26C5.CLKOS i_my_pll/PLLInst_0
ROUTE 1 1.632 *L_R26C5.CLKOS to *L_R26C5.CLKFB i_my_pll/CLKOS

 1.835 (11.1% logic, 88.9% route), 1 logic levels.
PLL_R26C5.CLKOS attributes: PHASEADJ=22.5
 Destination Clock Path clk1 to SLICE_1:
 Name Fanout Delay (ns) Site Resource
PADI_DEL --- 0.508 K3.PAD to K3.PADDI clk1
ROUTE 1 0.000 K3.PADDI to PLL_R26C5.CLKI clk1_c
CLKI2OK_DE --- 0.203 PLL_R26C5.CLKI to *L_R26C5.CLKOK i_my_pll/PLLInst_0
ROUTE 2 1.445 *L_R26C5.CLKOK to R27C2A.CLK clkok

 2.156 (33.0% logic, 67.0% route), 2 logic levels.
 Destination Clock f/b:
 Name Fanout Delay (ns) Site Resource
CLKFB2OS_D --- 0.203 *L_R26C5.CLKFB to *L_R26C5.CLKOS i_my_pll/PLLInst_0
ROUTE 1 1.632 *L_R26C5.CLKOS to *L_R26C5.CLKFB i_my_pll/CLKOS

 1.835 (11.1% logic, 88.9% route), 1 logic levels.
PLL_R26C5.CLKOS attributes: PHASEADJ=22.5

General Considerations and Practices for Timing Closure

76 Timing Closure

The “clock skew details” section shows how the clock skew was calculated.
From here, you can also see the phase adjustment (shown in blue), that was
set when you generated the PLL from IPExpress.

Overwrite PLL FREQUENCY Settings
There are cases where you might want to overwrite PLL FREQUENCY
settings. For example:

 when you use a different FREQUENCY to drive the engine and static
timing analysis

 when you apply other options such as PAR adjustment using PAR_ADJ,
specify hold margin using HOLD_MARGIN, or specify peak-to-peak jitter
value for the incoming clock using CLOCK_JITTER

To overwrite PLL FREQUENCY settings, simply add FREQUENCY
preferences to your LPF file. For example:

FREQUENCY NET "clkok" 165.000000 MHz;
FREQUENCY NET "clkop" 330.000000 MHz;

The TRACE reports now show that the new FREQUENCY preferences
defined in the LPF are used:

Preference Summary
• FREQUENCY NET "clk1_c" 100.000000 MHz (0 errors)
 0 items scored, 0 timing errors detected.
• FREQUENCY NET "clkop" 330.000000 MHz (0 errors)
 4 items scored, 0 timing errors detected.
Report: 375.094MHz is the maximum frequency for this
preference.
• FREQUENCY NET "i_my_pll/CLKOS" 300.000000 MHz (0 errors)
 0 items scored, 0 timing errors detected.
• FREQUENCY NET "clkok" 165.000000 MHz (0 errors)
 4 items scored, 0 timing errors detected.
Report: 375.094MHz is the maximum frequency for this
preference.

WARNING - trce: The Preference FREQUENCY NET at signal clkop
(CLKOP) or signal i_my_pll/CLKOS (CLKOS) do not match their
divider settings for i_my_pll/PLLInst_0

From the report, you can easily see that there is a warning about the
overwriting of PLL settings. You should make sure that the overwriting is
indeed intended.

One important fact when overwriting the PLL settings: the PLL has been
configured and generated from IPExpress and its function has been fixed.
The overwriting values defined in the LPF file only affect the engine, to drive
other parts of your design, and the TRACE report. TRACE will calculate
slacks and other timing values, such as clock skews, based on the
preferences defined. To actually change the PLL definition, you must use
IPExpress to reconfigure it and regenerate it.

General Considerations and Practices for Timing Closure

Timing Closure 77

What Is Learned from Case Study 10
From this case study, the following points are learned:

 Designs with PLLs usually have FREQUENCY defined through the PLLs.
If FREQUENCY preferences are not defined in your LPF file, the PLL
settings will take effect.

 When a design including PLLs has multiple clock domains, MULTICYCLE
preferences are still needed. Otherwise, the design is under-constrained.

 FREQUENCY preferences in the LPF file can be used to overwrite PLL
settings and drive the engine and static timing analysis.

 Using FREQUENCY preferences in the LPF file allows you to specify
other options such as PAR_ADJ, which cannot be done when relying only
on PLL settings.

 Overwriting PLL settings will not affect the PLL itself. To reconfigure the
PLL using a different FREQUENCY, use IPExpress.

Case study 11 – BLOCK Preferences
The BLOCK preference in Diamond allows you to block certain nets, buses,
paths, and component pins that are irrelevant to the timing requirement of
your design. This prevents them from being considered by TRACE and the
timing-driven engine, and it improves runtime. If well used, the BLOCK
preference also allows the engine to focus on true critical paths.

For detailed information about BLOCK preference, refer to the Constraints
Reference Guide in the Diamond online Help.

Default BLOCK Preferences
When you start a new Diamond project and implementation, two BLOCK
preferences are added automatically:

BLOCK RESETPATHS;
BLOCK ASYNCPATHS;

Refer to “Case Study 1 – No user-defined timing constraint” on page 47 for
details.

BLOCK PATH
For identified asynchronous paths, you can use a BLOCK preference to
prevent the engine and TRACE from analyzing any defined nets, paths,
buses, or component pins that are irrelevant to the timing of the design; for
example, asynchronous paths from input pads to registers, asynchronous
paths from input pads to output pads, or all asynchronous reset nets in the
design. This will release the engine from spending time on those
asynchronous paths in order to meet other timing requirements, and it will
avoid generating incorrect timing reports. The following is an example of a
BLOCK preference:

BLOCK PATH FROM CELL "I_pci_slave_reg/*" TO CELL "I_0/*";

BLOCK RAM Reads during Write
If you are using PFU-based RAM, the BLOCK RD_DURING_WR_PATHS
preference will prevent timing analysis on a RAM read during a write on the
same address in a single clock period. By default, this is off.

General Considerations and Practices for Timing Closure

78 Timing Closure

BLOCK INTERCLOCKDOMAIN PATHS
As explained in “Case Study 7 – Timing Exception 1 – MULTICYCLE” on
page 63, when there are multiple clock domains in your design, you should
check to see whether there are cross-domain paths between related clocks. If
there are, you should use MULTICYCLE preferences to define the timing
relationship between these paths. If you do not, you should expect many
timing errors in the TRACE reports.

If you need to prevent the engine from considering and analyzing related
cross-domain paths temporarily, you can use the following preference:

BLOCK INTERCLOCKDOMAIN PATHS

Since paths crossing multiple clock domains are not analyzed, now the
engine becomes under-constrained, any many cross-domain timing issues
are now under-covered. This under-constraining can be examined by looking
at the percentage of constraint coverage, where the coverage drops
dramatically.

Instead of blocking all the related cross-domain paths, you can also
selectively block certain paths using the BLOCK PATH preference. For
example, the following preference will block the paths from the “clk1” domain
to the “clk2” domain:

BLOCK PATH from CLKNET "clk1_c" to CLKNET "clk2_c";

You can also block a specific path using the BLOCK PATH preference, as
explained in the section BLOCK PATH.

If you block only part of cross-domain paths, you might have a higher
constraint coverage percentage than if you use the BLOCK
INTERCLOCKDOMAIN PATHS preference, but potential timing issues can
still exist in your design.

What Is Learned from Case Study 11
From this case study, the following points are learned:

 If your design has multiple clock domains, you need to pay additional
attention to the possibility that cross-domain paths exist between related
clocks.

 If your design does have cross-domain paths between related clocks, it
must be well-constrained using the MULTICYCLE preference. Otherwise,
the TRACE report can contain many unnecessary timing errors, and the
engine will be over-constrained.

 You can use the BLOCK INTERCLOCKDOMAIN PATHS preference to
temporarily prevent the engine from looking at all the cross-domain paths
between related clocks. Or you can use BLOCK PATH preferences to
block part of them and relax the engine, but you will miss many potential
timing issues existing in your design. Unless ignoring cross-domain paths
is desirable, you should appropriately constrain these paths using
MULTICYCLE preferences.

General Considerations and Practices for Timing Closure

Timing Closure 79

Recommendations for Using Timing Preferences
In the section “Understand Precedence Rules for Preferences” in the Design
Planning chapter, we discussed the preference precedence rules. To recap:

 Rule number 1: Preferences defined in an LPF file take precedence over
attributes and directives defined in the HDL code.

For example, if you have a FREQUENCY attribute defined in your HDL
code, it will be overwritten by a FREQUENCY preference in your LPF file
if they constrain the same clock. One example of a FREQUENCY attribute
defined in the HDL code is PLLs generated from IP Express

 Rule number 2: Preferences that are more specific take precedence over
less specific ones. This means that individual net or path preferences
supersede group (bus) preferences, and group preferences supersede
global preferences.

For example, if you have the following two INPUT_SETUP preferences in
your LPF,

INPUT_SETUP ALLPORTS INPUT_DELAY 3.000000 ns CLKNET
"clk1_c";
INPUT_SETUP PORT "data1" 4.000000 ns CLKNET "clk1_c";

The input “data1” will have 4ns setup time requirement. In the following
example,

CLOCK_TO_OUT "cout" 1.0 ns CLKPORT "clk" CLKOUT PORT
"clkout";
CLOCK_TO_OUT "cout" 2.0 ns CLKPORT "clk" FROM "c2" CLKOUT
PORT "clkout";

the CLOCK_TO_OUT requirement for “c2” is 2ns instead of 1ns, which is
more general.

 Rule number 3: Preferences defined later in an LPF file take precedence
over preferences if these preferences are at the same level and are in
conflict.

For example, if you have the following 2 FREQUENCY preferences in
your LPF:

FREQUENCY NET "clk_c" 300.000000 MHz;
FREQUENCY NET "clk_c" 200.000000 MHz;

“clk_c” FREQUENCY will be 200MHz.

It is best to avoid this kind of conflict in your LPF file. See
“Recommendations for Creating and Editing LPF” in the Design Planning
document.

When defining timing constraints, in addition to these general preference
precedence rules, you should understand and follow these additional
recommendations:

 Rule number 4: Timing Preference Dependency – FREQUENCY/PERIOD

FREQUENCY and PERIOD preferences are the primary timing
requirements, and all other timing preferences depend on them. If none of
these preferences is defined, MAP will generate default FREQUENCY
preferences, as explained in “Case Study 1 – No user-defined timing
constraint” on page 47, and this will usually over-constrain your design.

General Considerations and Practices for Timing Closure

80 Timing Closure

Appropriate FREQUENCY or PERIOD preferences should be defined for
each and all clocks in your design, either in your HDL (such as using
PLLs) or in your LPF.

 Rule number 5: Appropriate Timing Preferences

From the case studies previously discussed, you should understand that
in order to properly drive the timing-driven engine and TRACE, every
design should include appropriate timing constraints:

 The two default BLOCK preferences should always be included and
stay at the top of your active LPF file.

 All unrelated clocks must be constrained using either the
FREQUENCY or the PERIOD preference. The Clock Domains
Analysis section in the TRACE report should help identify the number
of clocks in your design and whether they are properly constrained.

 INPUT_SETUP preferences for all inputs should be defined according
to your PCB timing requirements.

 CLOCK_TO_OUT preferences for all outputs should be defined
according to your PCB timing requirements.

 If your design has multiple clocks, you should examine your design
and determine whether any cross-domain paths exist in your design.

 If there are cross-domain paths between related clocks in your design,
you should use MULTICYCLE preferences to define the timing
requirements for all those cross-domain paths.

 If there are cross-domain paths between unrelated clocks in your
design, you should first establish the relationship between the clocks
using the CLKSKEWDIFF preference, and then you should define the
timing requirements using MULTICYCLE preferences.

 You should not over-constrain your design, but you should
appropriately constrain your design with your actual timing
requirement.

 If you need to use BLOCK preferences, you should fully understand
what each of them does and what effect it could have on your design.
As a good practice, you should put all the BLOCK preferences at the
top of your LPF file for easy debugging.

 It is strongly suggested that you not use the BLOCK
INTERCLOCKDOMAIN PATHS preference. If you use it, all cross-
domain paths will be blocked and will not be considered by the engine
and TRACE, even if you have MULTICYCLE preferences defined and
even if the BLOCK preference comes after the MULTICYCLE
preferences.

Last Check: Complete Timing Preference Coverage
To ensure that your design and the engine are neither over-constrained nor
under-constrained, you should carefully examine your LPF file. In addition to
all the recommendations you have read so far, you should make sure that
your LPF file includes all of the following preferences, if applicable, and that
they are complete and correct:

 The basics:

General Considerations and Practices for Timing Closure

Timing Closure 81

 FREQUENCY or PERIOD for each and all clocks. An inappropriate
value could over-constrain or under-constrain your design.

 Preferences for tightening the engine with the appropriate values:

 INPUT_SETUP

 CLOCK_TO_OUT

 MAXDELAY

 CLKSKEWDIFF

 Preferences for relaxing the engine with the appropriate values:

 MULTICYCLE

 CLKSKEWDISABLE

 MAXSKEW

 BLOCK

Finally and importantly, you should check the preference coverage section in
your TRACE report to ensure a high percentage of coverage. To find out
those paths that are neither covered nor analyzed by TRACE and PAR, turn
on the “Check Unconstrained Paths” option in the TRACE strategy settings
and examine the result in the TRACE reports.

Other Considerations

Hold-Time Analysis
If you enable the Hold Analysis through the TRACE strategy settings, which is
the default setting, TRACE will produce a hold-time check based on your
timing preferences.

By default, TRACE analyzes designs for setup time violations using the worst
case operating conditions for the target performance grade. In contrast to
setup time analysis, hold time analysis uses “best case” operating conditions.
This approach of analyzing at both corners of the operating conditions
establishes a well-defined range in which the device will operate successfully.

As explained in “Timing-Driven PAR Process” on page 30, PAR only tries to
correct setup time violations when auto-hold time correction is not enabled
through the PAR strategy settings. You should always examine the hold time
analysis result in the TRACE report to ensure that there are no hold time
violations in your final placed and routed design.

Use Primary or Secondary Clocks
For clock planning to help with timing closure, refer to the section “Clock
Assignment” in the Design Planning chapter.

Primary clock resources on a device are limited. Therefore, if there is no user
preference, the clock nets with the most loads will automatically be assigned
the primary clock resources by PAR. If your design has multiple clocks, you

General Considerations and Practices for Timing Closure

82 Timing Closure

can explicitly assign or prohibit them by using the PRIMARY and
SECONDARY preferences.

USE PRIMARY NET "CK38A_c" ;
USE SECONDARY NET "CK38B_c" ;
PROHIBIT PRIMARY NET “CLK_c”;

Other considerations when using the dedicated clock resources:

 To get an accurate 90-degree phase shift, use two primary clock nets: one
for the feedback path and one for the shifted clock. This limits uncertainty
to the insertion delay of sysCLOCK PLL (pad to input). The uncertainty
can then be reconciled with FDEL settings in 250-picosecond increments.

 Place the source of internally generated clocks (divider) as close to the
center of the device as possible to reduce injection time. This is especially
important for secondary clocks, since they do not have feed lines.

Tune I/O Timing with PLLs
Tuning the I/O timing with PLLs reconciles internal timing to an external
specification.

Group Components along Critical Paths
For the identified critical paths based on the TRACE report, you can try to use
UGROUP to group components along the critical paths so that PAR places
components close together. This should shorten routing distances along the
paths.

MAP Register Retiming
MAP register retiming is an optimization technique that moves registers
across combinatorial logic to balance the timing..

There is no guarantee that map register retiming will achieve a better Fmax,
since the Fmax constraint activates retiming around all registers. The
INPUT_SETUP and CLOCK_TO_OUTPUT constraints might deactivate
retiming on I/O registers, depending on the balancing of INPUT_SETUP vs.
FREQUENCY and CLOCK_TO_OUTPUT vs. FREQUENCY. However,
register retiming can be very useful for optimization because it allows for more
delay shifting.

MAP Register Retiming vs. Clock Boosting
See “Clock Boosting” on page 100.

MAP register retiming has the same goal as clock boosting, which adjusts the
timing by introducing predefined clock delays. The following considerations
should be taken into account when using either of these features for
optimizing timing:

 Optimizing with MAP Register Retiming

MAP register retiming can be either forward or backward. Forward
retiming moves a set of registers that are the inputs of logic to a single
register at its output. Backward retiming moves a register that is at the
output of a logic to a set of registers at its input. Retiming works on a data
path and has variable delay shift and variable area cost from design to

General Considerations and Practices for Timing Closure

Timing Closure 83

design. A drawback to register retiming is that it changes your netlist,
making debugging more difficult. It also has a minimum delay shift of one
logic level; for example, one LUT.

 Optimizing with Clock Boosting

Clock boosting works on clock paths and has a fixed delay, such as 0 ns,
1 ns, 2 ns, or 3 ns, and it has a fixed area cost on silicon. The delay shift is
accurate after placement and routing and can be as fine as less than or
equal to 1 ns. However, clock boosting requires the use of extra silicon
area, even if it is not used; and delay shift is limited to a few choices up to
about 3 ns or more.

Controlling PAR
Extensive benchmark experiments have been performed to determine the
optimum per-device default settings for all PAR options. At times, you can
obtain improved timing results on a design-by-design basis by trying different
variations of the PAR options. This section describes the techniques that you
can use to improve timing results from TRACE on placed and routed designs.

Running Multiple Routing Passes
You can obtain improved timing results by increasing the number of routing
passes during the routing phase of PAR. By default, the number of routing
passes is 6, but you can change this number through PAR strategy settings,
as shown in Figure 37.

The router routes the design for the defined number of routing iterations or
until all the timing preferences are met, whichever comes first. For example,
PAR stops after the second routing iteration if it hits a timing score of zero on
the second routing iteration.

You can view the PAR report in the Diamond Report window. The report
contains execution information about the PAR run. For example:

0 connections routed; 26590 unrouted.
Starting router resource preassignment
Completed router resource preassignment. Real time: 11 mins
31 secs

Figure 37: Setting the Number of Routing Passes

General Considerations and Practices for Timing Closure

84 Timing Closure

Starting iterative routing.
End of iteration 1
26590 successful; 0 unrouted; (151840) real time: 14 mins 29
secs
Dumping design to file
d:\ip\design.ncd.
End of iteration 2
26590 successful; 0 unrouted; (577) real time: 16 mins 23
secs
Dumping design to file
d:\ip\design.ncd.
End of iteration 3
26590 successful; 0 unrouted; (0) real time: 17 mins 39 secs
Dumping design to file

The PAR report also shows the steps taken as the program converges on a
placement and routing solution. In this routing convergence example, the
number in parenthesis is the timing score. In this example, timing was met
after three routing iterations, as you can see from the (0) timing score.

Using Multiple Placement Iterations (Cost Tables)
You can specify multiple placement iterations through the PAR strategy
settings, as shown in Figure 38.

By default, the number of iterations is set to 1, and the placement start point is
set to iteration 1 (cost table 1). You can increase the number of placement
iterations and set a different start point. After one PAR iteration is completed,
PAR loops back through the PAR flow until the number of iterations has
reached the number defined. PAR keeps track of the timing and routing
performance for every iteration, and the best result will be used as the final
result. If “Placement Iterations” is set to 0, PAR will run indefinitely through
multiple iterations until a 0 timing score is reached. In a design that is known
to have large timing violations, a 0 timing score is never reached. As a
consequence, you must intervene and stop the flow at a given point in time.

The following is a PAR report example:

Figure 38: Setting the Number of Placement Iterations

General Considerations and Practices for Timing Closure

Timing Closure 85

Cost Table Summary
Level/ Number Timing Run NCD
Cost [ncd] Unrouted Score Time Status
---------- -------- -------- ----- ------------
5_1 * 0 0 26 Complete
5_2 0 2846 42 Complete
* : Design saved.

In this example:

 The “5_” under the Level/Cost column means that the placement effort
level was set to 5. The placement effort level can range from 1 (lowest) to
5 (highest).

 Two different iterations ran (2 cost tables).

 Each iteration routed completely.

 Timing scores are expressed in the total number of picoseconds (ps) by
which the design is missing constraints on all preferences. This number is
additive for all paths in the design.

 Iteration number 1 (cost table 1) achieved a 0 timing score, so it is the
design that was saved and is set as the final result. More than one result
can be saved. You can control this by setting the value of “Placement
Save Best Runs” through the PAR strategy settings, as shown in
Figure 39. The default value is 1.

Sometimes it is a good practice to save more than one result from a multi-
PAR run and use PAR TRACE on each result. Since the timing score is a
composite of all timing constraints, a low score might not be ideal for your
application, unless it is 0.

In general, multiple placement iterations can help placement, but they can
also use many CPU cycles. Multiple placement iterations should be used
carefully because of system limitations and the uncertainty of results. It is
better to fix the root cause of timing problems in the design stage.

Figure 39: Setting the Number of Best Placement Runs

Attacking Timing Issues

86 Timing Closure

Using the NBR Routing Method
The PAR router has two main algorithms: the NBR algorithm (default) and the
CDR algorithm. In the default router, the NBR algorithm assumes that all of
the critical nets can be routed, and the tool will then work backwards to clean
up the legality of the nets. On the other hand, CDR routing is done based on
the legality of the nets.

For designs with timing issues, you want to keep the default routing method
(NBR) in the PAR strategy settings.

Floorplanning the Design
If performance goals cannot be met with FPGA timing preferences and
additional effort levels of the PAR process, you can improve performance by
directing the physical layout of the circuit in the FPGA. This step, often
referred to as floorplanning, is done by specifying FPGA location preferences.

For detailed information about floor planning, refer to the “Floor Planning”
section in the Design Planning document.

Attacking Timing Issues

Introduction
The completion of timing closure, in short, is when an FPGA designer
achieves the intended system performance or constraints. Typically, this is
measured by the maximum clock frequencies of the system clocks as well as
meeting all input setup, clock to output, and hold time requirements. It also
involves resolution of any cross-clock domain issues.

Though the practices and considerations discussed in “General
Considerations and Practices for Timing Closure” on page 35 should help you
achieve your performance goals with most typical designs, there are still
cases where timing requirements are hard to achieve. The timing issues in
these designs could be caused by various reasons, and different designs
might have different timing issue combinations. Identifying the causes and
applying the dedicated cures are the keys to successfully addressing the
timing problems.

This section discusses the probable causes of timing closure difficulties and
how to analyze, debug and identify timing issues. It explains how to apply
advance methods such as pipelining, logic retiming, logic grouping, and fan
control to improve performance, and it advises you about when and where to
apply these advance methods. This section also discusses some software
behaviors and work-arounds that can be used to achieve timing closure.

Attacking Timing Issues

Timing Closure 87

Understand Potential Causes of Timing
Closure Issues
Many things can cause timing closure issues. The most common areas of
timing closure problems are explained in the following sections.

RTL Coding
This is the most crucial and most effective area for achieving timing closure.
Instead of blindly coding your designs and using the “push-button” flow, the
best approach is to code your designs specifically for Lattice’s product
architecture. This can involve using/instantiating the embedded blocks,
pipelining, retiming, etc. To do this effectively, you should understand both
hardware and software.

Using Software
When using software tools, you should understand how to best utilize its
features and functions. Refer to previous sections and other related
documents for details. Misunderstanding or misusing the options and
switches of software tools can also lead to timing problems. For example, is
timing-driven synthesis really good for a design? (See synthesis “General
Considerations” on page 36.) What is the right trade-off between area and
speed synthesis mode? Are timing constraints for MAP and PAR accurate
and complete? Is the design under-constrained or over-constrained? Are
those MAP and PAR options used correctly and appropriately?

Understanding the Hardware
You should fully understand the chosen device. At a minimum, you should
fully utilize its capabilities, but not overestimate it. If the architecture and other
characteristics of your chosen device are not fully understood, you might not
fully utilize it, or you could actually misuse it.

For example, a chosen device has built-in ROM, while a certain part of your
design can be implemented as either RAM or ROM, and synthesis tools could
infer a RAM based on your coding style, thus leading to a waste of the “free”
resource and a potential performance issue.

You should also not overestimate the performance or overlook specific
features of your chosen device.

Area Balance
Although parallelism usually means faster, this is not always true. The
resource of a chosen FPGA for your design is limited. While usually it will be
faster if you increase the degree of parallel processing for the same design, it
will also increase the resource usage and lead to a “large” implementation,

Attacking Timing Issues

88 Timing Closure

with increased numbers of signals and connections. This can introduce long
routing or high routing resource usage and push certain non-critical paths to
becoming critical. A balance needs to be found.

Resource Utilization
Before you actually analyze the timing problem, you should make sure that
your design does not “over utilize” your chosen device.

Over-utilized designs usually cause timing closure issues, because it is nearly
impossible for Diamond to honor all of the timing constraints when the
required resources exceed the amount available. Experiences shows that
slice utilization of more than 85% should be considered as an over-utilized
design. In addition, when the number of clock domains exceeds the number
of primary clocks available, or block RAM/DSP utilization is 80% or more, the
design should be considered an over-utilized design.

To determine the device utilization, look at the details in the Synthesis Report
file (if you use Synplify, the file extension is .srr) and the MAP Report file (with
the file extension .mrp). These reports can be viewed through either the GUI
or a text editor.

The first thing is to look at whether the appropriate resources are allocated or
inferred in the synthesis report file. If anything is missing, you should further
examine why.

The next step is to check the resource utilization in the MAP Report File.
Make sure that the resource usage does not exceed the recommended
values.

If the resource utilization exceeds the recommended values, you should
recode your HDL or migrate to a larger device. See the document “Congested
Design.”

Steps to Resolve Timing Issues
Let us take a systematic approach to address timing issues. In this section,
we will bypass the synthesis process and focus on Lattice core processes
such as MAP, PAR and TRACE.

As illustrated in Figure 40, we will analyze timing reports from MAP TRACE
and PAR TRACE, debug and identify timing issues, fine tune the HDL or
preference, and apply various techniques to improve the timing based on
issues identified.

RTL Check and Modification
Before diving into the details of analyzing the timing report and debugging
timing issues, which require intensive effort, you should first review your HDL
code. The following items are a few things you should check and correct as

Attacking Timing Issues

Timing Closure 89

needed. These items tend to cause timing issues. By checking these items,
you can fix timing issues before you spend time analyzing the timing reports,
and you can get closer to achieving your timing.

 Shift register using distributed RAM

 Block RAM-related design not using the output register

 State machine encoding

 DSP-related functions that do not use all three registers (ECP3)

 Registering and Pipelining opportunities

 DSP block being used to implement no arithmetic functions (ECP3)

 I/O timing: to use or not to use the I/O registers (see “Using I/O Register to
Improve I/O Timing” on page 38 and “Adding Delays to Input Registers”
on page 39)

Analyzing the MAP TRACE Report
Examining the MAP TRACE report is the first step you should take. Identify
any issues of timing or preference correctness, and act from there.

Figure 40: Resolving Timing

Attacking Timing Issues

90 Timing Closure

The MAP TRACE report can be viewed in the Diamond Report View, or you
can open the report file in any text editor. The MAP TRACE report file is in
your implementation directory and has the file extension .tw1.

Rule of thumb: If there is any timing issue reported by MAP TRACE, usually
it is an RTL issue and you should correlate the issue and your HDL code.

You should also check your preference coverage and correctness, as
illustrated in Figure 41:

Review Timing Constraints and Reports
Reviewing the timing constraints is performed by examining the timing
constraints used and the timing results in the “Preference Summary” section
in the MAP TRACE report (.tw1 file). For example:

Preference Summary
• FREQUENCY NET "CK38A_c" 40.000000 MHz (0 errors)
 3831 items scored, 0 timing errors detected.
Report: 148.787MHz is the maximum frequency for this
preference.
• FREQUENCY NET "CK66_keep" 72.000000 MHz (4096 errors)
 4096 items scored, 4096 timing errors detected.
Warning: 65.283MHz is the maximum frequency for this
preference.

You need to pay attention to every preference listed in the report, especially
those that have the most timing failures. Examining the timing failures gives
clues as to where coding improvements can be made in the RTL or what
constraints need to be adjusted. The types of coding improvements are
registering/pipelining, retiming, or simply recoding to prevent long paths. The
types of constraint adjustment are constraint relaxation (if over-constrained)
or constraint coverage improvement (if under-constrained) such as adding
false paths, multi-cycle and MULTICYCLE for paths that cross related clock
domains.

Figure 41: Checking Preferences

Attacking Timing Issues

Timing Closure 91

Timing Preference Coverage
Timing preference coverage can be found in the MAP TRACE report in the
“Timing summary” section. For example:

Timing summary (Setup):

Timing errors: 18756 Score: 9623209
Cumulative negative slack: 9623209
Constraints cover 5206344 paths, 185 nets, and 176054
connections (99.6% coverage)

Timing summary (Hold):

Timing errors: 1237 Score: 823517
Cumulative negative slack: 823517
Constraints cover 5206344 paths, 177 nets, and 176050
connections (99.6% coverage)

Less than 95% coverage usually is insufficient and need improvement.

Unconstrained Paths
Unconstrained paths can be found in the MAP TRACE report for both setup
time and hold time analysis. For example:

You can review the list in order to improve your preference coverage or to
identify any paths that should be constrained.

Note that you need to turn on “Check Unconstrained Paths” through the
TRACE strategy settings (see “MAP TRACE” on page 29 and “PAR TRACE”
on page 32). By default, this is turned off.

Logic Levels
Logic levels can be examined in the synthesis report, MAP TRACE report and
PAR TRACE report. You should check to see whether paths exceed the
timing constraints and whether logic levels are too high. For example:

This example shows that the path has 20 logic levels and exceeds the
requirement by 1.430ns. The “Physical Path Details” section that follows gives
more information on the failed path.

When this situation happens, you have the following options:

 Explore the synthesis/map strategy settings, without changing the HDL, to
see if better results can be achieved. Possible strategy settings include
pipelining and retiming.

 Connections not covered by the preferences

 Delay Element Net
 e 0.000ns ECC_LINK_OUT_0_MGIOL.IOLDO to ECC_LINK_OUT_0.IOLDO ECC_LINK_OUT_0_c
 e 0.000ns rstn.PADDI to I_SEMF_INIT_GLOB_REG_1/I_22_0/SLICE_20648.B0 rstn_c
 e 4.765ns rstn.PADDI to reqn.PADDT rstn_c

Attacking Timing Issues

92 Timing Closure

 Recode the HDL to see if a smaller number of logic levels can be
achieved.

Other Things to Consider Before PAR
At this point, if you still do not have a good timing picture despite taking all the
preceding steps, consider doing the following:

 Continue RTL modifications.

 Continue finding registering and pipelining opportunities.

 Change arithmetic calculation from serial to parallel.

 Optimize the state machine.

 Trade off between distributed memory and Block Memory.

 Trade off between DSP block and carry-chain logic.

 Increase you speed grade.

 Change to a larger device.

Analyzing the PAR Report and PAR TRACE Report
When there are no more issues reported by MAP TRACE, you can confidently
move to the next step. As illustrated in Figure 42, this will involve more actions
and decisions

Initial PAR Assessment
If this is your first time running PAR, you should run PAR using the default
PAR strategy settings and find out if there is any issue that prevents PAR from
finishing successfully. One of the issues might be that you design is not
completely routed. If this is the case, see the document “Congested Design.”

If you have finished PAR successfully but have timing issues, you can quickly
check the setup time timing score from the “Cost Table Summary” of the PAR
report:

Cost Table Summary
Level/ Number Timing Run NCD
Cost [ncd] Unrouted Score Time Status
---------- -------- -------- ----- ------------
5_1 * 0 458 6:01:32 Complete

Error: The following path exceeds requirements by 1.430ns
Logical Details: Cell type Pin type Cell/ASIC name (clock net +/-)

Source: FF Q I_TOP_PCIDMA/U_3/sgdmac_inst/engine/dst_bus_r8_0 (from CK66_keep
+)
Destination: FF Data in I_0/I_RX_HDLC_CT_1/CT2/M_DWD_CNT_9 (to CK66_keep
+)

 Delay: 15.245ns (26.0% logic, 74.0% route), 20 logic levels.

Attacking Timing Issues

Timing Closure 93

If you have a small timing score number (less than a few hundred), you
should try a multi-PAR process with some PAR strategy changes (see PAR
“PAR (Place & Route Design) Settings in Strategy for Timing Closure” on
page 31 and “Controlling PAR” on page 83). A different strategy and multi-
PAR cost table might yield better results than the initial single seeded PAR
run. If a timing score of zero is achieved after a multi-PAR run, you can move
to the next step of the process.

If you still have timing issues, you should analyze the PAR TRACE report,
debug the timing problems, and use appropriate approaches to fix the issues.

Figure 42: Analyzing PAR and TRACE

Attacking Timing Issues

94 Timing Closure

Multi-PAR
When using multi-PAR, you should make sure that multiple PAR results are
saved for later timing analysis. You can modify this through the PAR strategy
settings (see section “Controlling PAR” on page 83). Saving multiple PAR
results has the following benefits:

 You can run PAR TRACE on multiple PAR results; for example, the top 5
results that have the lowest timing scores. This helps you identify timing
issues from multiple views with different angles. Note that failing paths
usually show up in more than one result, and this helps you identify
problematic areas in your design.

 You can select the best of the PAR results or the one whose timing issues
can be quickly resolved.

PAR TRACE Report Analysis
By default, PAR TRACE reports ten critical paths for each timing constraint,
and this should be sufficient for most designs. If your design has timing
issues, it is recommended that you change the number to at least 300 in order
to see the entire timing picture. To do this, change the value of “Worst-Case
Paths” through the PAR TRACE strategy settings.

Note that since PAR TRACE works on the placed and routed data, it is more
accurate than the MAP TRACE. The critical paths that are reported might be
very different from those in the MAP TRACE report.

When analyzing the PAR TRACE report, look for the paths with timing issues.
In the Diamond Report View, you can examine the “Preference Summary”
section where all failing preferences are highlighted in red. You can click one
of them to go to the detailed report. At this point, you might see some groups
of similar failing timing paths. These groups of paths are those that you need
to focus on until they no longer show up in the subsequent runs of PAR and
PAR TRACE.

To help you further analyze the timing issues, you can use the Timing
Analyzer View (TAV), which allows you cross-probe to the Physical View or
the Floorplan View. This method also provides clues as to what the software
has done in terms of far-apart placements and large fanouts, etc.

To focus on these paths, you should correlate them back to the RTL and, if
applicable, make the recommended modifications that are explained in the
following sections.

Clock Resources
Ideally, the number of clocks in your design should not exceed the number of
clock resources available in the target device. Otherwise, general routing
resources will be used for some clocks, and this will generate setup time and/
or hold time violations. See “Use Primary or Secondary Clocks” on page 81.

The information about clock resource usage can be found in the PAR report.
For example:

You should make sure that the general routing resources are not used for
your clock. If the number of clocks exceeds the number of clock resources

Attacking Timing Issues

Timing Closure 95

available, reconsider your clock resource usage strategy (see “Clock
Assignment” in the “Design Planning” chapter), or consider moving to a
device with more clock resources. Otherwise, correct the constraint and make
sure that general routing resources are not used.

Reduce Register Loads
If a failing path starts with a source register that drives more than one load
and has large delays, you should duplicate the source register to reduce its
load. The following is a typical example:

This path starts with the register “rx_tu_mode” with fanout number 3 and has
4.914ns routing delay, which contributes more than 50% of the total delay. To
address this issue, you should add the following synthesis directive to the
HDL to limit the number of loads:

reg rx_tu_mode /* synthesis syn_maxfan = 1 */

For your actual designs, depending on the value of the desired number of
loads, the appropriate number of registers will be generated.

Experience shows that if the value of the desired number of loads is too small,
it could cause an unintended effect: that the load of the input source of this
register increases. You should check to see whether such an effect occurs
when this modification is used.

The following 4 signals are selected to use the primary clock routing resources:
 clk_pll_c (driver: PLL_soft_wb_inst/PLL_inst0/PLLInst_0, clk load #: 400)
......

The following 6 signals are selected to use the secondary clock routing resources:
 clk_c (driver: OSCH_inst, clk load #: 393)

......

WARNING - par: Signal "clk_c" is selected to use Secondary clock resources; however
its driver comp "clk" is located at "N3", which is not a dedicated pin for connecting
to Secondary clock resources. General routing has to be used to route this signal,
and it may suffer from excessive delay or skew.

 Name Fanout Delay (ns) Site Resource
REG_DEL --- 0.285 R89C27C.CLK to R89C27C.Q0 U_core/SLICE_29896 (from
tel_clk_155)
ROUTE 3 4.914 R89C27C.Q0 to R91C45D.D1 U_core/rx_tu_mode_2
CTOF_DEL --- 0.180 R91C45D.D1 to R91C45D.F1 U_core/ddwr_stm8/SLICE_36645
ROUTE 1 0.312 R91C45D.F1 to R91C45D.D0 U_core/payload_we17_tz_tz
CTOF_DEL --- 0.180 R91C45D.D0 to R91C45D.F0 U_core/SLICE_36645
ROUTE 5 0.741 R91C45D.F0 to R89C48D.B0 U_core/payload_we17
CTOF_DEL --- 0.180 R89C48D.B0 to R89C48D.F0 U_core/SLICE_38198
ROUTE 4 0.861 R89C48D.F0 to R82C50A.C0 U_core/nxt_bcnt_0_sqmuxa_1
CTOF_DEL --- 0.180 R82C50A.C0 to R82C50A.F0 U_core/SLICE_38332
ROUTE 50 1.986 R82C50A.F0 to R75C72B.CE U_core//payload_we_1_sqmuxa_1
(to tel_clk_155)

 9.819 (17.3% logic, 92.7% route), 5 logic levels.

Attacking Timing Issues

96 Timing Closure

Using Registers Instead of Distributed Memory
If a failing path has a larger delay due to a shift register implemented using
distributed memory, you should change this so that registers are used instead
of distributed memory. For example:

You should add “syn_srlstyle” synthesis directive in your HDL:

Using Block RAM Output Register
If you design has block RAM, check the PAR TRACE report to make sure that
the output registers are used. Otherwise, timing issues could arise. In the
follow PAR TRACE report example, 2.484ns delay is quite large without the
use of output registers:

You should add the following parameters to the HDL:

 For instantiated PMI

parameter pmi_regmode = "reg”

 For Instantiated EBR memory

parameter REGMODE_A = "REG";
parameter REGMODE_B = "REG";

Disable Using DSP Blocks
When a non-DSP function is implemented in a DSP block, it can cause larger
delays, as shown in the following PAR TRACE report example:

Name Fanout Delay (ns) Site Resource
REG_DEL --- 0.243 R51C141C.CLK to R51C141C.Q0 SLICE_15 (from CLK_c)
ROUTE 12 0.760 R51C141C.Q0 to R51C143A.A0 tmp1_0
CTOF_DEL --- 0.147 R51C143A.A0 to R51C143A.F0 B_1_CR7_ram_0/SLICE_9
ROUTE 1 2.725 R75C143A.F0 to R75C142C.B1 B_1_4
C1TOFCO_DE --- 0.277 R75C142C.B1 to R75C142C.FCO SLICE_3
ROUTE 1 0.000 R75C142C.FCO to R75C143A.FCI Y_1_cry_4
FCITOF1_DE --- 0.177 R75C143A.FCI to R75C143A.F1 SLICE_4
ROUTE 1 0.811 R75C143A.F1 to IOL_R52A.OPOSA Y_1_6 (to CLK_c)

5.140(17.9% logic, 83.1% route), 4 logic levels.

reg [7:0] A_d1, A_d2, A_d3, A_d4 /* synthesis syn_srlstyle = “registers” */;
reg [7:0] B_d1, B_d2, B_d3, B_d4 /* synthesis syn_srlstyle = “registers” */;
always @(posedge CLK)
begin
 A_d1 <= A;
 B_d1 <= B;
 A_d2 <= A_d1;
 B_d2 <= B_d1;
 A_d3 <= A_d2;
 B_d3 <= B_d2;
 A_d4 <= A_d3;
 B_d4 <= B_d3;
end

Attacking Timing Issues

Timing Closure 97

There is a large delay (4.870ns) through the DSP block. Since the actual
function in the HDL is a simple multiplication and using a DSP block is
unnecessary, you should use the following directive to prevent a specific logic
from using the DSP block:

wire [40:0] Y_wire /* synthesis syn_multstyle = "logic" */;
assign Y_wire = A_d4 * B_d4;

Packing Related Logic
Packing unrelated logic together is usually practical for a non-high speed
design, but this might not be a good choice for a large design running at high
speed. Doing this can cause long paths between two or more sub-blocks, and
long paths can introduce timing problems. This issue is seen in the following
example:

This example section of the PAR TRACE report shows that the routing part
contributes more than 87% of the total delay. Further study shows that the
sum of the routing delay to and from “SLICE_23827” is 4.551ns out of
6.715ns total delay. Also notice that unlike all other sub-paths,

Name Fanout Delay (ns) Site Resource
C2Q_DEL --- 2.484 EBR_R49C2.CLKA to EBR_R49C2.DOA3 U_core/mem_mem_0_8 (from
sys_clk_125)
ROUTE 1 1.730 EBR_R49C2.DOA3 to R35C15C.C1 U_core/mp_fifo_dout_1_35
CTOF_DEL --- 0.180 R35C15C.C1 to R35C15C.F1 U_core/SLICE_13772
ROUTE 3 0.715 R35C15C.F1 to R33C27B.D1 U_core/mp_fifo_dout_2_35
CTOF_DEL --- 0.180 R33C27B.D1 to R33C27B.F1 U_core/SLICE_38961
ROUTE 6 0.661 R33C27B.F1 to R31C33D.D1 U_core/mp_eop_out_1
CTOF_DEL --- 0.180 R31C33D.D1 to R31C33D.F1 U_core/SLICE_35423
ROUTE 1 0.370 R31C33D.F1 to R31C33D.B0 U_core/
un1_abnormal_empty20_1_m2
CTOF_DEL --- 0.180 R31C33D.B0 to R31C33D.F0 U_core/SLICE_35423
ROUTE 32 1.310 R31C33D.F0 to R26C43B.CE U_core/
un1_abnormal_empty20_1_m4 (to sys_clk_125)

7.990(40.1% logic, 59.9% route), 5 logic levels.

 Name Fanout Delay (ns) Site Resource
REG_DEL --- 0.243 R47C42C.CLK to R47C42C.Q0 SLICE_100 (from CLK_c)
ROUTE 1 1.550 R47C42C.Q0 to *18_R34C51.B14 B_1_32
BYPASS_DEL --- 0.220 *18_R34C51.B14 to *_R34C51.ROB14 Y_wire_1_pt
ROUTE 1 0.000 *_R34C51.ROB14 to *54_R34C54.A32 Y_wire_1_pt_ROB14
PD_DEL --- 4.870 *54_R34C54.A32 to *54_R34C54.R40 Y_wire_1_40_0
ROUTE 1 1.283 *54_R34C54.R40 to R23C59C.M0 Y_wire_40 (to CLK_c)

8.166(24.1% logic, 75.9% route), 3 logic levels.

Attacking Timing Issues

98 Timing Closure

“SLICE_23827” stands alone and is not within a module or a sub-module.
This is a typical symptom where unrelated logic is packed together.

To fix this issue, you should add an HGROUP or UGROUP to “U_top/
module_A” in your HDL, or add a UGROUP preference to it. For example:

module module_A(CLK, A, B, Y)/* synthesis UGROUP=“MODULE_A” */;

After the modification, you need to run MAP again. This will ensure that
unrelated logic is not packed together by MAP.

When MAP finishes successfully, it propagates UGROUP constraints to the
generated PRF file that will be used to drive PAR. If grouping is no longer
desired, and you want to allow PAR to freely place the elements in the group
instead of trying putting them all in one SLICE or closed slices, you can
manually edit the PRF file to remove the group.

In this example, the UGROUP added is “MODULE_A.” In the generated PRF
file, you should see a few lines similar to the following example:

PGROUP "MODULE_A"
COMP "U_core/module_A/SLICE_0"
COMP "U_core/module_A/SLICE_1"
......
COMP "U_core/module_A/SLICE_1000"
PGROUP "PGROUP_X"

You should remove the line “PGROUP "MODULE_A"” toward the last line of
the group. In this example, the last line is the one containing “SLICE1000.”

Fixing Clock Enable (CE)
The enable pin on a PFU register usually has larger delays than the data pins.
Look at the following example from part of the PAR TRACE report:

 Name Fanout Delay (ns) Site Resource
REG_DEL --- 0.243 R81C10C.CLK to R81C10C.Q1 U_top/module_A/submodule_B/SLICE_2
(from sys_clk)
ROUTE 3 0.516 R81C10C.Q1 to R81C12D.D0 U_top/module_A/submodule_B/
col_count_4
CTOF_DEL --- 0.147 R81C12D.D0 to R81C12D.F0 U_top/module_A/submodule_B/
SLICE_25670
ROUTE 1 0.255 R81C12D.F0 to R81C12D.C1 U_top/module_A/submodule_B/
m27_e_s_10_1
CTOF_DEL --- 0.147 R81C12D.C1 to R81C12D.F1 U_top/module_A/SLICE_25670
ROUTE 1 0.562 R81C12D.F1 to R81C14A.A1 U_top/module_A/m27_s_10_1
CTOF_DEL --- 0.147 R81C14A.A1 to R81C14A.F1 U_top/module_A/SLICE_9269
ROUTE 9 2.602 R81C14A.F1 to R57C49C.D1 N_150822
CTOF_DEL --- 0.147 R57C49C.D1 to R57C49C.F1 SLICE_23827
ROUTE 1 1.949 R57C49C.F1 to R75C25C.M1 U_top_module_A_dout_9_0_i_4
(to sys_clk)

 6.715 (12.4% logic, 87.6% route), 5 logic levels.

Attacking Timing Issues

Timing Closure 99

The routing delay in this example contributes 91.1% of the total. The
“CE_SET requirement” statement shown in the report gives a clue that this is
a Clock Enable delay issue. To fix it, set “syn_useenables” synthesis directive
to 0. For example:

reg Myreg /* synthesis syn_useenables=0 */

The effect of this directive is to convert CE to A/B/C/D pin in a SLICE, as
illustrated in Figure 43.

Final PAR
With all or most of the critical timing issues identified and addressed, you
should have a final PAR run with increased PAR effort using the following
options. These options can be modified through the PAR strategy settings.
See “Controlling PAR” on page 83.

 Routing method: NBR

 Congestion driven placement: Yes

6.473ns physical path delay oam_ptp_func_instance/SLICE_19092 to
oam_ptp_func_instance/ptp_func_instance/gmii_rx_1588_0/SLICE_34361 exceeds
 6.410ns delay constraint less
 0.000ns skew and
 0.253ns CE_SET requirement (totaling 6.157ns) by 0.316ns

 Physical Path Details:
 Name Fanout Delay (ns) Site Resource
REG_DEL --- 0.243 R32C67A.CLK to R32C67A.Q1 oam_ptp_func_instance/SLICE_19092
(from sys_clk125m_c)
ROUTE 28 3.155 R32C67A.Q1 to R20C126B.M0 oam_ptp_func_instance/
gmii_rx_vlantag_ind_dly1_4
MTOOFX_DEL --- 0.186 R20C126B.M0 to R20C126B.OFX0 oam_ptp_func_instance/
ptp_func_instance/gmii_rx_1588_0/un1_ptp_pack_pulse_0_sqmuxa_3_0/SLICE_40297
ROUTE 1 0.341 R20C126B.OFX0 to R21C126A.D1 oam_ptp_func_instance/
ptp_func_instance/gmii_rx_1588_0/un1_ptp_pack_pulse_0_sqmuxa_3_0
CTOF_DEL --- 0.147 R21C126A.D1 to R21C126A.F1 oam_ptp_func_instance/
ptp_func_instance/gmii_rx_1588_0/SLICE_28586
ROUTE 6 2.401 R21C126A.F1 to R23C72B.CE oam_ptp_func_instance/
ptp_func_instance/gmii_rx_1588_0/message_type_0_sqmuxa_i (to sys_clk125m_c)

 6.473 (8.9% logic, 91.1% route), 3 logic levels.

Figure 43: Converting CE to A/B/D pin in a SLICE

Architecture Specific Topics

100 Timing Closure

 Congestion driven router: Yes

 Placement iteration: 10 to 30

 Placement effort: 5

 Routing passes: 10

 Path Based Placement: Yes

You should carefully examine the results to see if every iteration provides
significant improvement. If this is not the case, you might have reached a
point where a serious design review needs to be performed.

Architecture Specific Topics

Hardware Details
Understanding hardware details should help you fully utilize the hardware
capability or avoid unnecessary timing problems caused by improper use.
The following sections explain some of these important details.

Embedded Block RAM (EBR) Routing Differences
Routing from EBR to top slices could be different than routing to bottom
slices.

Different LUT Pins’ Delays
Typically, C and D inputs to a LUT are faster than the A and B inputs to the
same LUT.

The Enable Pin on PFU Registers
In general, the enable pin has a larger delay than the data pins.

Clock Boosting
Clock boosting is the deliberate introduction of clock skew on a target flip-flop
to increase the setup margin. The automated clock-boosting tool attempts to
meet setup constraints by introducing delays to as many target registers as
needed to meet timing. In effect, it borrows register hold margins to meet
register setup timing. Clock boosting is accomplished through the following
features:

 For the ECP3 device family, this is achieved by rerouting the clock through
the switch matrix to gain some delay on the destination clock. It introduces
skew only to the destination registers, not on the clock network.

Architecture Specific Topics

Timing Closure 101

 For certain device families, every programmable flip-flop in the device has
programmable delay elements before clock inputs for this purpose.

 A 4-tap delay cell structure in front of the clock port of every flip-flop in
the device (includes I/O flip-flops)

 The ability to borrow clock cycle time from one easily met path and
give this time to a difficult-to-meet path

Clock boosting is typically most useful in designs that are only missing timing
on a few paths for one or two preferences. If the design is missing timing by
over a few nanoseconds on any given path, clock boosting cannot schedule
skew in a way that eliminates enough timing to make the critical preference.
Clock boosting run times can be shortened by using a preference file that
contains only the failing preferences.

The example illustrated in Figure 44 shows two register-to-register transfers
that both need to meet the 10-ns period constraint. By using the DEL2 delay
cell to delay the clock input on flip-flop FF_2, the first register transfer makes
its period constraint with a new minimum period of approximately 9.7 ns, and
the second register transfer makes its period constraint by approximately 8.3
ns. The D1, D2, and D3 delays shown vary, depending on the performance
grade and FPGA device family.

Other important considerations on the practicality of using clock boosting:

 Some circuits show much improvement, but others show no gain. Clock
boosting results are very design-dependent.

 Clock boosting uses minimum delay values that have not yet been
validated at the system level.

 Automatic clock boosting identifies skew and hold-time issues. However,
after clock boosting is performed, it is recommended that you run PAR
TRACE hold analysis to make sure that there is no hold violation.

Figure 44: Clock Boosting

Architecture Specific Topics

102 Timing Closure

	Timing Closure
	Introduction
	Timing Requirements and Constraints
	Clock Period/Frequency
	Relating Two Clocks for Period/Frequency

	Input/Output Timing
	Input Setup/Input Delay
	Clock to Output
	Maximum Delay

	Exceptions
	MULTICYCLE
	False Paths/Block

	Example: Calculate Timing Requirement

	Timing-Driven Flow Using Lattice Diamond Design Software
	Timing-Driven Synthesis and Constraints
	Synplify Pro
	Specify Clock Frequency Timing Constraints Setting
	Other Timing Related Strategies
	Timing Constraints
	Understanding the Synplify Pro Timing Report

	LSE
	Strategy Settings for Timing-Driven Mode Synthesis
	Specify Clock Frequency Timing Constraint Setting
	Other Timing Related Strategies

	Timing Constraints
	Understanding the LSE Timing Report

	Understanding TRACE
	The MAP TRACE and PAR TRACE Reports

	MAP Process and Constraints
	Constraints
	Timing-Driven MAP Strategy
	MAP TRACE

	PAR Process and Constraints
	Understanding PAR
	Placement
	Routing
	Timing-Driven PAR Process

	PAR (Place & Route Design) Settings in Strategy for Timing Closure
	Timing Constraints
	PAR TRACE
	Understanding the PAR and PAR TRACE Reports

	I/O Timing Analysis
	Timing Analysis View

	General Considerations and Practices for Timing Closure
	Steps to Close Timing
	Synthesis Timing Closure Techniques
	General Considerations
	Using Dedicated GSR Resource for Fmax Improvement
	Using I/O Register to Improve I/O Timing
	Adding Delays to Input Registers
	Maximum Fanout Control for Fmax Improvement
	Clock-Enable Control for Fmax Improvement
	Assigning Black Box Timing
	Reviewing Synthesis Strategies
	State Machine Encoding
	Resource Sharing
	Pipeline and Retiming

	MAP and PAR Timing Closure Techniques
	General Strategy Guidelines
	Use Preferences to Improve Timing
	General Consideration
	Under-Constraining
	Over-Constraining

	Preferences and Processes
	Writing Effective Timing Constraints
	Case Study 1 – No user-defined timing constraint
	Case Study 2 – Insufficient FREQUENCY preference
	Case study 3 – Sufficient FREQUENCY preference
	Case study 4 - INPUT_SETUP
	Case Study 5 - CLOCK_TO_OUT
	Case Study 6 – CLKSKEWDIFF
	Case Study 7 – Timing Exception 1 – MULTICYCLE
	Case study 8 – Clock Over-Constrained
	Case study 9 – Timing Exception 2 – False Paths
	Case study 10 – Use PLL FREQUENCY Settings
	Case study 11 – BLOCK Preferences

	Recommendations for Using Timing Preferences
	Last Check: Complete Timing Preference Coverage

	Other Considerations
	Hold-Time Analysis
	Use Primary or Secondary Clocks
	Tune I/O Timing with PLLs
	Group Components along Critical Paths
	MAP Register Retiming
	MAP Register Retiming vs. Clock Boosting

	Controlling PAR
	Running Multiple Routing Passes
	Using Multiple Placement Iterations (Cost Tables)
	Using the NBR Routing Method

	Floorplanning the Design

	Attacking Timing Issues
	Introduction
	Understand Potential Causes of Timing Closure Issues
	RTL Coding
	Using Software
	Understanding the Hardware
	Area Balance
	Resource Utilization

	Steps to Resolve Timing Issues
	RTL Check and Modification
	Analyzing the MAP TRACE Report
	Review Timing Constraints and Reports
	Timing Preference Coverage
	Unconstrained Paths
	Logic Levels
	Other Things to Consider Before PAR

	Analyzing the PAR Report and PAR TRACE Report
	Initial PAR Assessment
	Multi-PAR

	PAR TRACE Report Analysis
	Clock Resources
	Reduce Register Loads
	Using Registers Instead of Distributed Memory
	Using Block RAM Output Register
	Disable Using DSP Blocks
	Packing Related Logic
	Fixing Clock Enable (CE)

	Final PAR

	Architecture Specific Topics
	Hardware Details
	Embedded Block RAM (EBR) Routing Differences
	Different LUT Pins’ Delays
	The Enable Pin on PFU Registers
	Clock Boosting

