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In Figure 7.32, all parameters were left unchanged butF, = 640 was selccted
to illustrate what can happen when (F,, 2*) > 1 occurs. In this case, the skewed
spur levels indicate that elements of both AM and PM are present and the strongest
spur component has increased to —-60 dBc. This is substantially worse than that
observed in the first two cases, which underscores the need to consider the worst
case situation in actual DDS design.

7.3.5 Techniques for Mapping 6to Sin(0)

The mapping technique [11] used for transforming the phase accumulator phase value
8 to sin(8) is particularly crucial if table storage size is to be kept reasonable. Each
additional bit used in the lookup table process potentially represents a doubling of
the required table storage space.

The most simple means for compressed sin(8) storage is to exploit the sym-
metry of the function about 7/2 and x. With proper manipulation of the phase and
amplitude, lookup table samples need only be stored for phase values spanning the
0 to 7/2 range. Such a scheme is shown schematically in Figure 7.33.

Normally, 2’s-complement arithmetic is used in digital computing elements.
However, this numerical representation presents some disadvantages wherever the
negative of a number must be computed because formal negation involves first com-
plementing each bit in the binary value followed by an addition of one to the quan-
tity. In the table lookup case, if an LSB/2 offset is included in the number to be
complemented, a simple 1’s complementor can be used in place of the more complex
2’s complementor without incurring additional error.

Sin(8) Table Compression

One of the earliest methods used for sine table compression over the 0 to 7/2 range
is that of Sunderland et al. [12]. The subject architecture for this compression method
is shown in Figure 7.34. In short, this technique allows the otherwise long table
lookup ROM with 2“*”*C storage locations to be replaced by two smaller ROMs
having storage sizes of 2**# and 2**“ locations. In the case where A = B =C=4
and D = 12 bits, the noncompressed table would require 45056 bits (11 x 2’). In
contrast, even if full 12-bit-wide storage is used in both smaller ROMs, the total
required bit storage is substantially less at 5632 bits (11 x 2* x 2) resulting in an
8:1 storage savings. The actual required word width for the second ROM in the
present example is only 4 bits, which when factored in results in a total storage
requirement of only 3840 bits (11 x 2° + 4 x 2°), which is equivalent to an 11.73:1
storage reduction.
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Figure 7.33 Exploitation of sin(0) symmetries about 7/2 and m for table storage compression. (<< 1988
JEEE,; reprinted with permission). After: [11). Figure 6.
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Figure 7.34 Sunderland architecture for compressed sin(8) table storage. (© 1988 IEEE:; reprinted with
permission). After: [11]. Figure 7.

The Sunderland technique is based on simple trigonometric identities. The phase
accumulator value 6 is first reflected into the first quadrant by computing & = 0 mod
m/2 and then further decomposed into a sum of three other angles as

p=a+ß+Xx

where

T
a<-

2

T
<< =274

ß 2

T
Xy< 52700

Using the trigonometric identity

sin(a + ß + x) = sin(a + ß) cos(y)

+ cos(a) cos(ß) sin(y) — sin(a) sin(ß) sin(y)

and exploiting the small-angle approximations where possible,

sin(a + ß + y) = sin(a + ß) + cos(a) sin(y)

(7.55)

(7.56)

(7.57)

(7.58)
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The contents of the upper ROM in Figure 7.34 then contains the quantity sin(a_ +
ß) and the lower ROM contains Ihe quantity cos(a) sin(y). Since sin(y) < 1, the
width of the lower ROM can normally be made considerably smaller than the upper
ROM.

An alternative means for calculating the ROM values based on numerical op-
timization is given in [11] also. Rather than be restricted to strictly a trigonometnc

interpretation, this approach permits each table value to be optimized independently.
In the example where A = B = C = 4andD = 12, this approach produced worst
case spurilous performance of approximately 84.2 dBc in comparison to - 72.2 dBc
using the Sunderland technique. The additional 12-dB performance improvement af-
forded by this numerical optimization technique is noteworthy.

Other optimizations and enhancements in the sin(8) compression area are cer-
tainly possible. One particular technique exploits the first-order Taylor series ex-
pansion for sin(8) by storing the altemnate function

= sin(Zx) n 7.59f(x) = sin 5X A (7.59)

rather than sin() explicitly. Owing to the smaller dynamic range required to store
f(x), storage requirements can be further reduced. The required table lookup mod-
ification for use with this method is shown in Figure 7.35.

Coarse ROM
1

©

N

\\> \

>

Fine ROM
£.

C
Mo

Figure 7.35 Modified architecture for sin(@) table compression using (8) = sin(8) - 8. (© 1988 JEEE:

reprinted with permission). After: [11], Figure 9.



A very interesting additional alternative for computation of sin(8) is dıscu0ced
at length in (13] where combinatorial binary logic is used to approximate the sine
function. The basic algorithm for trigonometric function approximation follows these
guidelines:

. Express the function or a related function as a multiplication by
(a) expressing the binary operands as polynomials,
(b) taking the derivative of the corresponding inverse trigonometric function
with the operands expressed as polynomials. The resulting equation is a mul.
tiplication of polynomials.
Expand multiplication into a partial products array.

. Prohibit carry propagation between array columns for the most significant re-
dundant digits of the unknown operand.

4. Express the resulting equation in a partial product array.
S. Reduce the array using Boolean and algebraic equivalences.

ar.

DI

In the case of sin(0), let Y equal the binary representation for sin(0) and 0 be the
binary representation for the angle argument. Then for0 = Y= 1,

N N

Y= > y2 = > yıx‘ (7.60)
i=0 i=0

and for the angle 0 where 0 = 0 = 7/2,
N N

0= X 027 =2X 0x (7.61)
i=0 i=0

The polynomial representation is used because it can be differentiated. Following
step 1 of the algorithm, the necessary formula are obtained as

x) = sin”' [Y(x)]
dx) _ 1 dYG)
& Vi-Wo) d& (7.62
Yo) = V1 - FG) 0'G)

FF = 1 -— Y*00)(80'00]°

Following through the considerable amount of algebra as described in [13], the 12-
bit estimate derived for sin(0) is as shown in Figure 7.36 where each column entry
is a lJogic minterm and the overbars indicate complement. This figure completely
describes the combinatorial logic required to estimate sin(8).

A comparison of this approach with more traditional methods is given in Figure
7.37. As shown, the 12-bit formulation is approximately equivalent to a third-order
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Method Bits Bits Array Size Latency
or Correct Max | Total Mpy | Add

Order || Ave Min. Col. Ele.

Prop. 8b] 7.14 | 3.78 5 26 [| <1 0
Prop. 12b [| 10.35 6.89 12 87 <1 0

||_Prop. 16b || 13.52 | 9.49 || 33 | 250 || <1 0
Taylor 1IRD 5.02 0.81 - - 0 0
Taylor | 30RD || 10.88 | 3.73 - - 3 1

[| Taylor_| 5 ORD || 17.73 | 7.79 — — 4 | 2
Cheby. | 10RD || 3.88 | 2.83 = = 1 0
Cheby. | 3 ORD 8.81 7.78 - - 3 1

(a) Cheby. | 50RD [|] 14.85 | 13.84 - - 4 2

47 X + Propposed: 12 bit
£ 207 \ + Filth Order Chebyshev
© 7 N © Fifth Order Taylor
S 00 A a 4 Third Order Chebyshev
© A = Zr Third Order Taylor
S 18 — At a ®- First Order Chebyshev
= an Q © First Order Taylor
5 160 7
5
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(b)
1.2 1.4 1.6

Angle (in radians)

Figure 7.37 (a) Statistics of proposed, Taylor series, and Chebyshev polynomial methods for sine fun‘
tion. (b) Number of correct bits in proposed, Taylor, and Chebyshev methods for it
function. (© 1992 IEEE:; reprinted with permission). Source: (13).
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hebyshev formulation. Although not directly comparable to the Sunderland ap-
„mach described carlier, the underlying concepts appear very altractive for VLS]
‚mplementation.

- 3.6 Digital-to-Analog Converter Imperfections

Tre D/A converter is ultimately responsible for interfacing the digital world to the
zntinuous RF/analog world. Although a number of performance measures have
teen standardized to quantify D/A converter imperfections, it is almost impossible
K reflect these quanitities to the DDS output and determine spectral purity. So, al-
gxugh these measures provide some evaluations guidelines for DACs, normally DDS
pectral purity with a specific DAC must be evaluated on a case-by-case basis. A
thorough introduction to this important aspect of DDS design can be found in [14-
7)

7.3.7 Spurious Suppression in Direct Digital Synthesizers Using Numerical
Techniques

Additional digital techniques may be incorporated into the generic DDS in order to
largely eliminate the presence of discrete spurious signals at the DDS output. Nor-
mally, this results in a slight increase in wideband spectral noise but the impact can
generally be made negligible.

From a standpoint of terminology, the earliest practitioners referred to these
iechniques as dithering[18] since randomization techniques are used to destroy the
coherence of the undesired spurious components. Delta-sigma modulation techniques
[19] based on digital signal processing techniques have spawned an alternative means
for destroying these same discrete spectral components and are frequently referred

W as noise-shaping methods. Unlike the randomization approaches that result in a
white broadband output noise floor spectrum, these techniques normally produce
Close-in noise spectra, which are generally high-pass in nature in that phase noise
very near the carrier is considerably better than at frequency offsets far removed
from the carrier. Both of these methods are considered in this section.

A marriage between these two techniques is in principle possible as well. Rather
han employ a randomization sequence in the dithering technique that is spectrally
white, the random sequence could be processed by a digital high-pass filter prior to
4pplication in the dithering process. Although such a technique has to date not been
Observed in the literature, it is anticipated that performance similar to the noise-
\haping approach could be achieved.

As of this writing, the author is only aware of one commercially available
highly integrated DDS device that includes a means for discrete spurious suppression


