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Filter Basics

This chapter is devoted to fundamental filter concepts. A filter is a network, passive
or active, which passes a desired set of frequencies, the passband, with a minimum
of attenuation. Other frequencies, the stopband, are attenuated. Although the funda-
mental concepts presented are aimed primarily at the analysis and design of LC
filters, they may be applied equally well to virtually any network. For example, the
hybrid-pi bipolar transistor presented in the preceding chapter predicts a low-pass-
filter-like response. The gain at low frequencies is high, but decreases with increasing
frequency.

The early sections of this chapter are introductory and are intended primarily
as a review. These sections are, nonetheless, very important, for they emphasize the
dual methods used for network analysis. Either time or frequency may be used as
the independent controlling variable. Once an analysis has been done with respect
to frequency (in the frequency domain), the circuit performance with respect to time
(in the time domain) is also determined. The two domains are related by Fourier
or Laplace transforms.

Filters are traditionally characterized in the frequency domain. That is, they
may be low pass or bandpass circuits. Time domain behavior has been analyzed,
but is often ignored in the design process. It is becoming increasingly important to
design filters with a desired time domain characteristic in addition to a suitable fre-
quency response. This is especially critical in modern digital communications systems
and in rf instrumentation.

The later part of this chapter deals primarily with low pass filters. The methods
presented are extended to the design of simple high pass and bandpass networks.
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Chapter 3 is an extension which treats a filter of special interest to the rf designer,
the coupled resonator bandpass.

2.4 NETWORK ANALYSIS IN THE TIME DOMAIN

The traditional method for network analysis is with differential equations with time
as the independent variable. This is illustrated in this section with a number of simple
circuits. The reader is assumed to have a background in differential equations and
a familiarity with ac circuit theory. Some texts written specifically for the study of
electronic networks will supply both backgrounds. Especially recommended are the
fundamental volumes by Van Valkenburg (1) and Skilling (2). The more advanced
reader is directed toward the outstanding text by Blinchikoff and Zverev (3).

The first circuit considered is a constant voltage applied to an RC network,
Fig. 2.1. The switch is assumed closed until ¢ = O when it is opened. The charge
on the capacitor is related to the voltage by Q = CV. But current is the time rate
of change of charge. Hence

1
V= Cfldt 2.1-1)

We use Kirchhoff’s voltage law to write an equation to describe the total voltage
drop in the circuit

1
V= IR+E,J'Idt 2.1-2)

The equation is differentiated and divided by the resistance

dr 1 2.1-3)

The equation is multiplied by an integrating factor, et/r, where 7 = RC,

dI 1
= etht +.1: etlr= 0 (2.1-9)
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Recalling the rule for differentiation of a product, this reduces to
4 (Iet") =0 2.1-5)
dt

Direct integrations yields
Ietr=K (2.1-6)

where K is a constant of integration, evaluated from initial conditions. The current
prior to opening the switch was F/R. It must be the same just after the switch is
opened, for the voltage across the capacitor cannot change instantaneously. The final
solution is the familiar decreasing exponential

V — /T -
I)=me Q2.1-7)

The capacitor voltage is obtained from direct application of Kirchhoff’s voltage law.

A similar equation will describe application of a dc voltage to an LR circuit,
as shown in Fig. 2.2. The circuit is assumed to be initially in a relaxed condition
with no current flowing. The switch is changed at t = 0. The differential equation
is written directly, noting that the voltage drop across L is L(dI/dt)

dI
V=L—+1IR 2.1-8
2t 2.1-8)

This is divided by L and multiplied by the integrating factor, e!/", to yield

14 dI I
< et = = etlr +; etlr (2.1-9)

where 7 = L/R. Integration and subsequent division by the integrating factor produces
vV
I=§+Ke‘”’ (2.1-10)

The constant of integration, K, is evaluated from initial conditions. I =0 at t = 0,
for the current in an inductor cannot change instantaneously. The inductor is the
dual of the capacitor which inhibits an instantaneous voltage change. The final solution
is

I(t) =%(1 — e th) 2.1-11)
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t=0 t=0
[———-o L L
+
I t<0 R Vsin wt t<0 R
Figure 2.2 Inductor-resistor circuit with dc Figure 2.3 Inductor-resistor network with a sinu-

step input. soidal input.

A more interesting circuit for the rf engineer is one where the dc voltage is
replaced with a sinusoidal source. This is shown in Fig. 2.3 and is described by

dI
V sin a)t=L;1—t+ IR 2.1-12)
Application of an integrating factor produces

d V
— I tr) = — plit Q1 -
t(e ) el" sin wt (2.1-13)

Integration and manipulation yield

Vi .
— —sin wt— w cos wt

L
1) === 1 + Ketrr (2.1-14)
= + w?
.

The second term vanishes in time and is ignored in this analysis. The first term is
simplified by the substitutions

1
;- Kcosé 2.1-15)
—w=K'sin¢
producing a familiar trigonometric form
K' cos ¢ sin wt+ K’ sin ¢ cos wt= K’ sin (ot + $) 2.1-16)
The angle, ¢, is evaluated as
tan4)___sin<1>_—co/K' _ —owL @.1-17)

cos ¢ - 1/(K'7) R
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K' is evaluated with the identity sin? ¢ + cos? ¢ = 1. The final steady state current
is

Vsin (0t + &)

Iss(t) = (w2L2 + R2)1/2

(2.1-18)

These results are interpreted by allowing individual components to become small.
As L vanishes, I;; becomes the ratio of the ac voltage to the resistance, Ohm’s law.
Current is in phase with the driving voltage source. If the resistance vanishes, I
becomes the driving current and is divided by wL. The tangent of the phase angle
becomes infinite, indicating a 90 degree phase difference between the voltage and
the current. Intermediate values of L and R produce phase differences between O
and 90 degrees. The denominator of Eq. 2.1-18 is termed the impedance of the network.

Equation 2.1-18 is termed a transfer function in the time domain if V is set
to unity. It is a transfer admittance here, for it is the output current, Ii(2), per unit
input voltage. The related output voltage across R of Fig. 2.3 is easily calculated.
This results in a voltage transfer function if V= 1.

A similar result will be obtained if the RC network (Fig. 2.1) is driven from
a sinusoidal voltage source. The inductive term, wL, is replaced with 1/(wC) and
the phase angle has the opposite sign.

The steady state ac current is the driving voltage divided by a suitable impedance,
a characteristic of the network and not of the driving signal.

These methods are easily extended to more complicated networks with many
more components. The differential equations become predictably more complicated
although the methods for solution are similar.

2.2 NETWORK ANALYSIS IN THE FREQUENCY DOMAIN

Previous circuits were analyzed with time as the independent variable. This traditional
approach is reasonable. Length, mass, and time are the three basic units of physics
from which all others are derived. Time forms a natural basis for circuit description
by differential equations.

A duality is observed when many circuits are analyzed. The frequency depend-
ence is often mathematically similar to the time dependence. It is then natural to
examine methods that will emphasize the frequency dependence of a function of
time.

Numerous techniques exist to assess the frequency content of a time function.
Any periodic function may be expanded in a Fourier series. An example was considered
in the previous chapter.

An arbitrary function of time, not necessarily periodic, is transformed to a
function only of frequency by the Fourier transform

F(w) =J”: F(t)eietds 2.2-1)
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The integration removes all time dependence from the result.
A function of frequency is similarly transformed into a time dependent one
with the inverse Fourier transform

1 o0
F) =;I_NF(w)ej“‘ dow 2.2-2)

These transforms are very useful for many electronics applications. However, they
are not well suited to the solution of differential equations. The transforms do not
exist for all functions. A better transformation is sought.

Section 2.1 gave the results of RC and RL networks when driven by a dc
source. More explicitly, the drive was the unit step function, u-;(¢), formally O for
t < 0 and 1 for t > 0. The results for the networks considered were decreasing
exponential time functions. Any transformation that might be picked for analysis
should apply well to the unit step. The transformation should, ideally, have physical
significance for any arbitrary driving function including a sinusoid.

The desired transformation is the Laplace transform, defined as

Fs)= £f() = f " fe st dt 2.2-3)

where f(t) is the time domain function and e~ is the multiplying factor. s is the
so-called Laplace frequency, and is defined by

s= 0o + jo (2.2-4)

This frequency can be real, imaginary, or complex. Many functions that are not
integrable alone, or are not Fourier transformable, have Laplace transforms. This is
a result of the e~”t component of e~s* which forces the integral to converge at large
t. Note that the Laplace transform is dependent on the values of the time function
only at times in the future. Earlier history is of no significance as it was for the
Fourier transform. Capital letters are used to represent the transformed functions.
Hence, F(s)is the transformed, frequency domain version of the time domain function
f@).

There are many details of the Laplace transformation that are both of scholarly
interest and vital to its application. These are found in many texts including those
referenced earlier. They are not presented here, for our goal is to gain intuition
about a specific application, filter design.

The greatest virtue of the Laplace transformation to the electronic designer is
the simplicity it affords. It will allow us to study problems directly in the frequency
domain. Analysis will be through straightforward algebraic manipulation to yield
F(s), the frequency domain solution. The corresponding time function, f(t), is found
from the inverse transformation, or from a search of tables of Laplace transforms.

There are two functions of special significance in interpretation of F(s). One
is the unit impulse, or Dirac delta function, &8(t — x). Tt is zero for all values of
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time except t = x where it is unbounded. However, it is infinite in a special way
such that its integral is unity. In the strictest sense, the unit impulse has significance
only when it appears within an integral. As such, it is often termed a functional
(4). The Laplace transform of the unit impulse is unity, shown by direct integration.

The other vital function is the unit step, u_,(z), defined earlier. The Laplace
transform of the unit step is 1/s.

The key to application of the Laplace transform in electronics lies in the fre-
quency domain transfer function, H(s). Time domain transfer functions were discussed
in the previous section for the case of sinusoidal excitation.

H(s) is written directly in the frequency domain for practical networks through
application of Kirchhoff’s laws. The impedance of an inductor was shown earlier
to be jwL. In the frequency domain, the impedance is Z,(s) = sL. Similarly, the
impedance of a capacitor is Z¢(s) = 1/sC. A resistor has an impedance of R in
both domains. Examples of H(s) will be presented below.

The casual designer will often use s, the complex frequency, merely as a shorthand
notation for jw. This is valid to the extent that it provides proper results. It is,
however, a severely restricted interpretation of Laplace methods. A more general
and significantly more profound result is

Fout(s) = H(s)Fin(s) (2.2-5)

Once H(s) is known, the frequency domain output is known for any arbitrary input
function, Fix(s), so long as that input function is Laplace transformable.

Recall that the transform of the impulse function was unity. H(s) is then the
frequency domain impulse response. Similarly, u_(¢) = 1/s. Hence, (1/s)H(s) is the
frequency domain response to a step function. Either result is obtained in the time
domain with an inverse transformation of the frequency domain calculation.

The response to a sinusoidal excitation is obtained by a direct substitution of
jo for sin H(s). The result is called the frequency response of the network.

The simplicity and elegance of the Laplace methods are illustrated with an
example, the LR circuit analyzed earlier with traditional methods. The circuit is
repeated in Fig. 2.4, now with an arbitrary input driving function. The frequency
domain impedance of the network is R + sL. Hence, the current transfer function
is

H(s)=

R+ sL (2.2-6)

sbL

out

Vi (s} R

Figure 2.4 Inductor-resistor network
with an arbitrary input voltage.
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The frequency response is evaluated initially with direct substitution of jw for s

. 1
H(jo)=2"—"~7 ToL 2.2-7)

If the input is a voltage at a frequency w, ¥ sin wt, the time domain current is

Vsin wt
It)=——m"m 2-
W R+ joL .(2 2-8)
or
_ Vsin(wt+¢)
Iout(t)_—(R2 ¥ w2LZp 2.2-9)

where ¢ = tan~!(wL/R). This is identical to the previous steady state response.
The impulse response is evaluated by obtaining the inverse transform of Hf(s).
A tabulation of Laplace transforms shows that the corresponding time domain function
is e~ t" where 7 = L/R.
Dividing H(s) by s yields the response to a unit step input. This is transformed,
again from perusal of a tabulation of Laplace transforms, to

Lu(t)= R% (1— e-th) 2.2-10)

Again, this is identical with the earlier result with a driving voltage of ¥ = 1. The
analysis is easier with Laplace methods and provides considerably more information.

2.3 POLES, ZEROS, AND THE SERIES TUNED CIRCUIT

The next example is the familiar series resonant circuit. This is of importance unto
itself and will further illustrate the utility of the Laplace method. The concept of
complex frequency will be presented in more detail in connection with the circuit.

The series tuned circuit is shown in Fig. 2.5. The total impedance of the network

A——— ———— Vouls)

Figure 2.5 Series funed circuit with ar-
bitrary frequency domain drive.
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is sSL + 1/(sC) + R. Noting the voltage divider action, the frequency domain voltage
transfer function is

His) = R _ sCR
&)= 1  s2LC+1+sCR @2.3-1)
sL+—+ R

The usual substitutions are defined

1 (x)oL
=— = 2.3-2
®*TTc R 2 @23-2)
H(s) then becomes
s/(woQ)

H(s)= (2.3-3)

s2/ws + 1+ 5/(woQ)

The steady state frequency response is first evaluated. Replacement of s by jow
yields

jw/ (@eQ)
1— (0)/(1)0)2 + _]a)/(on)

H(jw) = (2.3-4)

Consider the limiting cases. The denominator of H(jo) approaches unity at very
low frequencies, while the numerator vanishes. Hence, the frequency response goes
toward zero. At w = wo, H(jw) reduces to unity. The response again starts to decrease
as the frequency continues to increase, going to zero at very high frequencies. This
may be confirmed through detailed calculation, but is generally clear from inspection.
The numerator and denominator both increase with frequency. However, the quadratic
term in the denominator causes it to dominate.

The inductive reactance equals the reactance of the capacitor at a radial frequency
of @ = woy, and f; is defined as the resonant frequency where wo = 27 . The transfer
function is maximum at this frequency because the impedances of the inductor and
capacitor, while equal in magnitude, have opposite signs.

The parameter Q was introduced in Eq. 2.3-2. The effect of various Q values
is shown in Fig. 2.6. Figure 2.6a shows the relative amplitude plotted on a logarithmic
scale while Fig. 2.6b shows the phase response. Curves are presented for Q = 15,
2, and 6.

A number of features of Fig. 2.6 deserve forther comment. The curves are
not symmetrical about the center frequency, w/wo = 1. (They would be symmetrical
if the method of graphing had been changed.) The phase changes more rapidly near
resonance with higher Q. The phase is + and —45 degrees at the points where the
amplitude response is down by 3 dB. Similar results may be obtained for other phases
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Relative amplitude, dB

Phase, degrees

—-90

(b)

Figure 2.6 Frequency response (a) and phase response (b) for the series
tuned circuit with &= "2, 2, and 6.

and attenuations. This is an example of a more general observation that phase and
amplitude responses are not independent of each other. Not all networks have this
characteristic, but many do.

Returning to the transfer function, H(s), Eq. 2.3-1, we see that the Laplace
frequency s appears in both the numerator and denominator. Generally, the transfer
function of an arbitrary linear network is of the form
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i(s_)_bo'*‘bl.g‘f" . '+bmsm
O6s) agt+ais+ - - -+ gps™

The transfer function is a ratio of two polynomials in s, the Laplace frequency. The
highest power of the denominator polynomial equals the number of reactive elements
in the network. The numerator polynomial will have an order that is less than or
equal to that of the denominator with the former being more common. The polynomials
may be factored to

(s=—z)s—2) - (s—z,)
(s=p)s—p)- - - (5— pu)

H(s)=K (2.3-6)

where K is a scalar constant. The numerator vanishes at a complex frequency
§ = zm. Such a complex frequency is termed a zero of the function. Similarly, at
$= pn, the denominator vanishes, causing the transfer function to become infinite. Such
a complex frequency is termed a pole of the transfer function.

The transfer function of the series tuned circuit, Eq. 2.3-1, is clearly the ratio
of two polynomials. The numerator has no constant frequency independent terms.
Hence, the zero occurs at s= 0. Recall that the poles and zeros are complex frequencies,
§ = o + jo. While the resonant frequency, f, might be considered a “natural”
frequency of the network, the more significant natural frequencies are the poles and
zeros. The frequency response, H(jw), occurs not from excitation of the network at
a natural frequency, but for a complex frequency with only an imaginary part, jw.

The denominator of the series tuned circuit transfer function is factored using
the quadratic formula

— w0
D2= E [1£(1—402)1/2 2.3-7)

The part of this function under the radical is positive if Q is less than 1. The
roots will be real and negative. At Q = 15, the two roots are identical and have a
magnitude of w,. The roots become complex for Q> 15. The roots are predominantly
imaginary at high Q values.

It is useful to plot the position of the poles and zeros of a transfer function in
the s plane. Such a plot for the double tuned circuit is shown in Fig. 2.7. Poles are
plotted with an X while zeros are shown as a circle. Figure 2-7a shows a case of
low Q where both roots are real. The poles lie on the negative real axis. The second
part of the figure shows a case of Q > 1. The poles are now complex and lie on
the circle centered at the origin with radius wo. The roots are almost at the imaginary
axis with large Q. Note that the roots occur as complex conjugates.

The polynomials are usually much more difficult to factor for the general case,
Eq. 2.3-5. A number of methods are available. They are presented in the literature.
These range from careful algebra to numerical techniques.

Further meaning of the pole locations is gained from an analysis of the step
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Figure 2.7 Pole-zero plots for the series tuned circuit of Fig. 2.5. (a) shows
a low @ example while a higher & occurs at (b). (c) shows the method of
using vectors with a pole-zero diagram to infer network response.

response of the single tuned circuit. Dividing H(s) by s yields the step response in
the frequency domain

1/((.00Q)

52
-—+1+-—-——-
0l woQ

Vols) = (2.3-8)

The denominator has already been factored with known pole locations. A table of
Laplace transforms shows

1
at— o~ bt} —= —— -
./a_b(e e Py (2.3-9)
which leads to the time domain step response
/
$olt) =22 fexp () — exp a0 2310
1

The real part of the exponential functions may be factored from the expression.
The imaginary parts are decomposed to a sine function through Euler’s identity with
the final result for the step response

2 exp(—wot/2Q) sin[(wo/2Q)(4Q% — 1)/ 24
C!) ° (4Q2 — 1)1/ 2
This is a sinusoidal oscillation multiplied by a decreasing exponential. It is

said to be damped. The frequency of the sine component is less than w, for small
Q. The frequency approaches wo as Q becomes large. In addition, the multiplying

Vo() = (2.3-11)
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part in the real exponential component, the damping term, becomes smaller. Hence,
it will take longer for the “ringing” to damp to no perceptible signal after application
of the step.

The real exponential function has a negative real exponent. The plot of pole
location in the s plane, Fig. 2.7, is in the left half plane. A step input leads to an
exponentially growing amplitude if a pole occurs in the right half plane. This is
generally avoided with most circuits, for it represents an unstable condition.

A pole-zero plot such as the s-plane graphs of Fig. 2.7 are of great utility in
graphical analysis. The series tuned circuit has a transfer function of the form

(s—z)
= 2.3-12
1= oot @31

where the zero is at the origin, z; = 0 + jO. If excitation is considered at an arbitrary
frequency s, each of the three terms in Eq. 2.3-12 is a vector. An example is shown
in Fig. 2.7c where the frequency is a sinusoid and, hence, on the jo axis. The magnitude
of the frequency response (s = jw) is proportional to the length of the (s — z)
vector and inversely proportional to the magnitude of both of the (s — p,) vectors.
The lengths may be measured graphically to infer the response of the network. Simi-
larly, the angles of the individual vectors may be added or subtracted to evaluate
the phase response.

The example shown in Fig. 2.7c is for an excitation frequency close to the
resonant point, ® = w,. The (s — z;) and (s — p;) vectors have approximately the
same length, so their ratio is unity. The (s — pa) vector is longer, so it diminishes
the magnitude of the response accordingly.

An excitation frequency close to zero would produce a much different result.
The two pole vectors would be of approximately equal length. The (s — z) vector
is very short, leading to a low output.

If the other extreme is considered, a very high input frequency, the zero vector
will effectively cancel with one of the pole vectors. The other pole vector will then
dominate. The long length will lead to a small network response.

Pole-zero plots are especially useful for quick graphical analysis of many net-
works and the subject is covered in many texts. The reader is encouraged to study
the methods (5).

Pole-zero plots are equally useful for analysis of active networks. A transistor,
modeled at high frequency, will contain reactive terms. These cause poles and zeros

to arise in the frequency domain response. The complete amplifier is then characterized
by Hf(s).

2.4 FILTER CONCEPTS

Having acquired some basic tools for analysis, we will now investigate some of the
basic filter structures. Figure 2.8 shows several idealized frequency responses.
The idealized low pass filter is shown in Fig. 2.8a. Frequencies below the cutoff
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Figure 2.8 |dealized responses for (a) a low pass filter, (b) a high pass filter,
(c) a bandpass fiiter, and (d) a bandstop filter.

frequency, fc, are transferred through the filter without attenuation. This region is
the passband. Frequencies greater than the cutoff are completely attenuated. This
region is known as the stopband.

The high pass filter is the opposite of the low pass. Frequencies above the
cutoff frequency are passed without attenuation while lower ones are attenuated.

An ideal bandpass filter is presented in Fig. 2.8c. The filter is centered about
a frequency f,, and has a bandwidth shown as BW in the figure. We have already
seen one example of a bandpass filter, the single tuned circuit. It was, however, far
from ideal.

Finally, Fig. 2.8d shows a bandstop filter. Frequencies outside of the bandwidth
of the filter are passed without attenuation. Frequencies within the bandwidth are
eliminated from the output.

A final filter type not shown in the figure is the all-pass structure. It passes
all frequencies without attenuation. The utility of the all pass is that even though it
shows no attenuation, it will shift the phase of signals passing through it. This is of
value in numerous applications. One example of an all-pass filter is a matched transmis-
sion line.

The high pass and bandpass filters are designed from a low pass prototype
filter through suitable transformations. These details will be presented subsequently.
First some simple examples will be considered.

Figure 2-9 shows two simple networks. Each contains a resistor and one reactive
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Figure 2.9 Simple low pass fiters,
(a) (b) each with one reactive element.

element. The frequency domain transfer functions are written using the s plane im-
pedances and by noting the voltage divider action. H(s) for the network with the
capacitor, Fig. 2.9a, is

1/sC 1
R41/sC 1+ sCR

H(s)= 2.4-1)

This filter has a single pole in the s plane at s = —1/RC. The filter has no finite
zeros. Substitution of jw for s in Eq. 2.4-1 provides the frequency response. The
filter shows no attenuation at dc. As frequency increases, the response immediately
begins to decrease. This is clearly a low pass filter.

The network with the series inductor has a transfer function, H(s)

R 1
H = —
O=TIrzr sL 2.4-2)
1+
R
This filter has a single real pole at s = —R/L. Evaluation of the frequency response

is similar to that of the capacitive filter. The inductor presents no impedance at dc;
hence the filter has no attenuation. As the frequency increases so does the inductive
reactance, leading to increasing attenuation. A low pass response arises.

For both low pass filters, the frequency response is below the dc value by a
numerical factor of 1/4/2 at a radian frequency equal to the pole location. The
power out of the filter is reduced by the square of this amount to . Taking the
log of the power ratio and multiplying by 10 shows that the response is down by
3.01 dB, essentially 3 dB. This is defined as the cutoff frequency. The phase of the
output then differs from the drive by 45 degrees in each filter.

Neither of the filters has a well-defined stopband. That is, there is never a
finite frequency where the attenuation is infinite. This is true of virtually any real
filter. The amount of attenuation required in a given application will define what
the “stopband” of a filter will actually be. The slope of the response at frequencies
well above the cutoff is 6 dB per octave, or 20 dB per decade, for both of the single-
pole, low pass filters of Fig. 2.9. The phase of the response is —90 degrees when
high frequencies are reached.

Figure 2.10 shows two additional filters. From inspection, we see that they
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Figure 210 Simple high pass filters
with (a) a series capacitor and (b) a
(a) (b) shunt inductor.

are high pass structures. The capacitor in Fig. 2.10a is an open circuit at dc, producing
infinite attenuation there. Similarly, the inductor (Fig. 2.10b) is a short at dc. The
frequency domain transfer functions are

sCR

H(s)=———— 4-
) =1 sCcr (2.4-3)
for the capacitive high pass filter and
H(s) = —— (2.4-4)
s+ R/L "

for the inductive example. The filters each have a single pole. They also exhibit a
zero at the origin of the s plane. The 3-dB points occur for a radian frequency, w,
equal to the magnitude of the pole location. The slope is also 6 dB per octave at
low frequencies. The phase is +90 degrees at very low frequencies with respect to
the cutoff and is +45 degrees at the cutoff.

We have found from the foregoing discussion that low pass characteristics result
from series inductors or shunt capacitors. Shunt inductors and series capacitors lead
to high pass behavior. We can use this to form more elaborate filters. One example
already covered is the series tuned circuit of the last section. An element of each
type was placed in the series arm of the filter resulting in a bandpass characteristic.
A number of low pass elements may additionally be cascaded to form a more exotic
low pass structure. This also applies, of course, to the high pass.

Note that adding two reactances of the same type in the series arm of a filter
will not change the general characteristic. For example, two series inductors will
act as one inductor. This will lower the cutoff frequency, but will otherwise not
alter the response. If a composite filter is to be formed, it must be done by mixing
component types.

An example of a composite low pass filter is presented in Fig. 2.11. This filter
is doubly terminated. That is, it has a driving source that is not a pure voltage
generator, but one with an internal resistance, R;. The output is terminated in a
load resistance, R;.

The frequency domain transfer function for the filter may be written from inspec-
tion, noting the voltage divider action of the composite network. An admittance, ¥,
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is marked in Fig. 2.11. This is the admittance of the output load resistor in parallel
with the capacitor, Y= 1/R; + sC. The impedance of this combination is the reciprocal
of the admittance, Z = R;(1 + sCR.)™'. The total impedance looking in from the
voltage generator is Zr = Z + R; + sL. The transfer function is thus

oV,

out

I—~J‘ c R,
J; Figure 2.11 A two-pole, doubly termi-
Y

nated low pass filter.

VA 1
H(s)= Zp—

L 2.4-
s2LC+ s(RC+7{> +2 (24-5)

where R; = R;, = R.
This filter has no finite zeros, but has two poles. They are evaluated by factoring
the denominator polynomial of H(s). The result is

—(RC+ L/R)*=[(RC+ L/R)—8LC]'/?
2LC

Po= (2.4-6)

If we allow the source and load resistances to be equal at 1 @ and assign values of
L = ~/2 henry (H) and C = /2 farad (F), the poles occur at p = (1 £ j1)/+/2.

We will examine the nature of impedance matching when reactive terminations
are present before evaluation of the steady state frequency response. Maximum power
transfer occurs from a source with characteristic resistance R; when the load has
the same value, R, = R,. However, this is not the proper condition when the source
is a complex impedance.

Assume that the driving generator has a source resistance R, in series with an
inductor. The source impedance at a given angular frequency, w, is Z; = R; + joL.
If a similar impedance was used as the load, the power transferred to the load is
clearly not maximum. If the inductor in the load was removed, the net impedance
would decrease, causing an increase in current. Hence, additional power would be
dissipated in the load resistor. It is only the power in the resistor that is of significance.
The voltage drop in the inductor is always 90 degrees out of phase with the current,
leading to no power dissipation.

We ask what the source impedance should be for maximum power delivered
to the load. The load would be one with the same resistance as that of the source,
with a reactance opposite in sign, but with the same magnitude of the inductor.
This reactance is, of course, a capacitor. The combination of inductor and capacitor
would form a series resonant circuit. The total reactive imBedance is zero. Neither
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reactive component impedes the flow of current. In the general case, maximum power
transfer occurs where the load impedance is the complex conjugate of the source
impedance. This is termed a conjugate match.

Returning now to the filter of Fig. 2.11, the effective frequency response may
be evaluated. We could insert jw into Eq. 2.4-5 to obtain the response as was done
in earlier examples. This would not be the most useful information though. It is
more viable to consider the transducer gain of the filter. Recall that transducer gain
was defined as the power delivered to the output termination divided by the available
power from the generator.

The frequency response is written directly as

1
(2 — 20?) + jo2/2

H(jow)= 2.4-7)

This will be the output voltage for an input of 1 V. Assume that the input is 2 V.
Then, the output voltage is H(jw) of Eq. 2.4-7 multiplied by 2. The maximum power
available from the generator is half of the open circuit voltage across a load equal
to the source impedance, or P4 = 1/R,. The equation provides the output voltage,
Vout- The output power is then V3../R;. Hence, transducer gain is R;¥V 2../R.. We
will use this definition for filter frequency response throughout the rest of the text.

The frequency response of the filter is presented in Fig. 2.12 for the filter of

m

—1-90

Phase, degrees

—1-180

] | | |

0 1 2 3 4 5

Frequency, rad s~

Figure 212 Frequency response, or fransducer gain, G, of the two-pole low
pass filter. Phase response is also shown,
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Fig. 2.11. The phase with respect to the driving voltage generator is also presented.
We have assumed a filter with equal terminations of 1 © and C = +/2 F and L =
V2 H.

This filter shows no attenuation near dc. However, Gr = —3 dB at a radian
frequency of w = 1 rad s™1. This is the cutoff frequency. Also, the phase is —90
degrees at the cutoff. The attenuation slope approaches 12 dB per octave and the
phase nears —180 degrees at high frequencies.

The filter input impedance is also evaluated, shown in Fig. 2.11 as Z; The
impedance is easily calculated in the frequency domain

n R, (RLC)s2+sL+ R,
1+ SCRL 1+ SCRL

Zs(s)=sL (2.4-8)

The input impedance, like the transfer function, Hf(s), is a ratio of polynomials. It
has two zeros and one pole, which are evaluated using methods already presented.

The input impedance, Z;(jw) is calculated by substitution of jw for s in Eq.
2.4-8. The results are plotted in Fig. 2.13 showing both the resistive and reactive
portions. The imaginary part of the impedance is positive. This represents an inductive
input. This is intuitively reasonable—at high frequencies the capacitor at the output
of the filter tends to behave as a short circuit, leaving the inductor to dominate.

7.—

z.,Q

0 + ]
0 1 2 3 4 5

Frequency, rad s~

Figure 2.413 Input resistance and reactance for the two-pole, doubly termi-
nated low poss filter.
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The resistive portion of Zris 1 £} and there is no reactance at dc and frequencies
well below the cutoff. Maximum power is transferred and the attenuation is zero.
The impedance changes when the frequency increases. Not only does the resistive
portion tend toward zero, but the reactive part increases. This is characteristic of
all LC filters. The filtering action is a result of mismatch between the source or
load and the filter.

2.5 THE LADDER METHOD

The previous filter examples have been simple. They have contained at most two
poles, representing two reactive components. Each time a reactive component is added,
the degree of the polynomials describing the filter increases accordingly. Modern
communications circuitry often requires filters with a dozen or more reactive compo-
nents. The polynomials can, of course, be factored. However, the degree of algebraic
cleverness required of the designer is at least commensurate with the degree of the
polynomial. Other methods are required for the rest of us.

Our interest is not confined to the filter transfer function. We are also interested
in the immittances (impedances or admittances) associated with the terminals of the
filter. The filter must be properly terminated to function properly. Amplifiers at each
end must be designed so that they not only function properly with the impedances
presented at frequencies in the passband, but tolerate the impedances seen in the
stopband.

A method is presented in this section that is especially suited to filters built
in a ladder configuration. A ladder structure is one built from combinations of shunt
and series elements. Some of the more complicated structures, such as the lattice,
are not allowed. Fortunately, the ladder filter is a large category—mnearly all of the
typical filters in routine use are of this type. The method presented will not only
evaluate the transfer function, but will provide impedance data. The method will
be illustrated through the study of a third order low pass filter.

The first variation of the ladder method is sometimes termed the “tack hammer”
approach. Any practical filter has a transfer function. It may not be known, but we
can still write equations of a generalized form. A transfer function in the frequency
domain, H(s), has a corresponding steady state response, H(jw). The ac output voltage
at a given frequency is related to the input voltage by

Vout = H(Jw) Vin (25-1)
Solving for the input voltage yields
I/in - VoutH(jw)_l (2.5-2)

This suggests a method for filter analysis.
Figure 2.14 shows a third order low pass filter. We would speculate from the
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intuition gained in previous examples that this filter would have no finite zeros and
three poles in the transfer function, H(s).

Two critical nodes, x and y, are labeled in Fig. 2.14. Assume that the output
voltage across the load resistor, Ry, is 1 V. Knowing this, the voltage across the
capacitor, GCg, is also known. Hence, the current out of node x is known. Specifically,
the total current out of the node is the voltage times the admittance looking into
the node from the left, or I = G, + joCs. Arrows representing the direction of
assumed current flow are included in the diagram.

The current out of node x equals that flowing in. Hence, the current flowing
into the node, which is that flowing through the inductor, is also known. The voltage
drop across the inductor is calculated from this. The voltage at node y is evaluated
as V, =1 + Y;jwL, where Y; = G, + joCs. Now that the voltage at node y is
known, the current in C, is also specified. This defines the total current into node y
from the generator.

The procedure is continued until the voltage at the generator is known. Note
that the calculations all involve vectors, for the impedances and admittances are all
complex. The transfer function is found from calculated input voltage, H(jo) = V.

In addition, once the current into node y and the voltage at that node are
calculated, the input immittance is defined.

This method is easily extended to an arbitrarily long ladder. It is only necessary
to attack each node, one at a time in tack hammer fashion, until the filter is analyzed.

The tack hammer version of the ladder filter analysis involves the calculation
of numerous immittances. Study suggests a slightly modified method, equivalent to
the original, but with the virtue of being perhaps somewhat more ordered. Both
are easily programmed with a handheld calculator.

Consider the vertical lines in Fig. 2.14. These are labeled with the letters “a”
through “e” and represent different “planes” in the ladder filter. A different plane
occurs whenever an additional component is added to the circuit. From each plane,
an immittance (Z or Y) is well defined looking to the right toward the output termina-
tion.

The admittance is G, at plane “a.” Y3, the admittance looking into plane ”’b,”
is Y, + joG;. Knowing the admittance at plane “b,” the corresponding impedance
is calculated, the reciprocal of the admittance. When the admittance is complex,
the conversion is performed by transforming from polar to rectangular coordinates.

R

L,
</ JIT

{v) (X)
/J; /cl Figure 2.14 A three-pole low pass fil-
1 3

ter used to illustrate the ladder method
of analysis.

O e — e -
O ——— - —— ————— -

- W ———
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The magnitude is replaced with its reciprocal and the sign of the angle is changed.
The result is then converted back to rectangular coordinates.

The impedance looking to the right into plane “c” is that at plane “b” plus
the inductive reactance of L,. The result is then converted to an admittance and
the admittance of C; is added. Another conversion results in Z,. Finally, Z, is obtained
by addition of the source resistor. Y, results from a final conversion.

The power of this calculation becomes evident with additional algebra. This is
based upon having calculated all of the impedances or admittances at each plane in
the filter. First, a value for Vi, is specified. Typically, this will be 2 V, for we are
interested ultimately in evaluation of filter transducer gain. The input current is now
known, I, = Vin Y.. But this is also the current into plane “d.” Knowing the current,
the voltage at plane “d” is calculated. The procedure is repeated as needed. The
method is summarized in the following set of equations

I.="VinY.

L=1

Vo= 1.2, (2.5-3)
L= VaY.

Vo= I1.Zy

But V} is the output voltage, Vout.

Examination of the family of equations, Eqs. 2.5-3, shows that each contains
a current or a voltage on the right-hand side. However, that parameter is defined
in the next equation above. A continued substitution will eventually terminate at
the input voltage which was defined. The result is

Vout = ZpYeZyYeVin (2.5-4)

This method appears formidable. It would be if it were done with a slide rule
or with a very simple handheld calculator. However, modern programmable calcula-
tors make it a relatively simple task.

Each stage in the calculation involves the conversion of an impedance to an
admittance, or the opposite. It is necessary to perform a rectangular to polar conversion
at each step. Upon taking the reciprocal of the magnitude and changing the sign of
the angle, the desired result is available, the needed new immittance. The - magnitude
can be multiplied into a storage register and the angle summed into another. The
polar result is converted back into a rectangular format. This is needed to add the
next series impedance or shunt admittance. The transfer function is generated ‘““for
free” during the calculation of the input immittance seen from the driving generator.

An order is present in Eq. 2.5-4 that may not be immediately apparent. The
product of immittances is alternating in type. That is, the products are an impedance
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followed by an admittance followed by an impedance, etc. Also, admittances corre-
spond to planes looking into series elements while impedances correspond to filter
planes looking into parallel elements. This allows a program to be written quickly.

2.6 LOSSES IN REACTIVE COMPONENTS AND QUALITY FACTOR

The parameter Q was introduced in a preceding section dealing with the series tuned
circuit. No explanation was presented other than observing that the bandwidth of
the circuit decreased as Q increased. This section will present a more formal definition
and rationale for the parameter and will show how it is used in network analysis.

We have assumed in our studies that components are ideal. This implies that
they show no loss. This is, of course, not realistic. It is only a model that serves
for analysis. Real components do have loss.

There are numerous mechanisms that will produce loss in capacitors and induc-
tors. Dielectric heating and surface resistance on the conducting elements often intro-
duce loss in capacitors. Inductors show loss from motion of magnetic core material
and from wire resistance. The physics surrounding these phenomena is interesting
and of vital concern to rf designers, especially those working at microwave frequencies.

The inherent loss mechanisms resulting from component imperfections are usu-
ally beyond the control of the designer. They must be taken into account during
analysis though. Sometimes loss is purposefully introduced into a circuit. The most
common example is the termination that is found with any practical network. If
there was no termination, it would not be possible to extract energy from the network
and the circuit would have no purpose. All of these losses are represented with the
parameter (), which stands for the quality factor.

Formally, the Q of a circuit is defined as 27 times the energy stored in the
circuit divided by the energy lost per cycle of oscillation. The Q concept is usually
applied to a resonant or tuned circuit, which is often called a resonator. When applied
to a single component the Qis that which would result from resonating the component
at the frequency of interest with an ideal lossless reactance of the opposite type.
That is, the Q of an inductor would be the Q of a tuned circuit using that inductor
with a lossless capacitor.

It may be shown that the Q of an inductor can be modeled by a series resistor
(6). The resistor value is

_oL

Rs
Q

(2.6-1)

This resistor represents either the internal losses of the nonideal inductor or the
external loss associated with a load combined with internal losses. If the Q value
represents only the internal losses, the nonideal nature of the component, the Q is

termed the “unloaded Q” and is signified by a subscript, Q,. It is termed Q, for
“loaded O if the O valne renresents external loads as well ag tha internal lngces.
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The higher the @, the smaller the series resistance and hence the smaller the
loss. This is seen from the definition, Eq. 2.6-1.

We have seen in our study of networks that impedance and admittance are
used interchangeably. Admittance is more convenient than impedance when evaluating
a shunt component. Similarly, Q may be represented by a parallel instead of a series
resistance.

The impedance of a real inductor, as modeled by Q, is jwL + R;. The admittance
is then

1

Y= m (2.6-2)

Multiplying the top and bottom by the complex conjugate of the denominator
and inserting Eq. 2.6-1 for R; yields

y= (wL/Q)— joL
wl? (2.6-3)
02 + w2

The admittance is of the form G + jB where G is a conductance, G = 1/R,,
and B is a susceptance, B = 1/X,. Separating Eq. 2.6-3 into real and imaginary
parts yields, upon multiplication by Q2

o1 L LO?
=t il Q j—eLo (2.6-4)

R, ‘X, w21+ 0?2 oL+ Q2

For large value of Q, (1 + Q%) = Q2 Hence
Ry = QoL Xp=oL (2.6-5)

Both forms of modeling are used almost interchangeably in practice. The choice
is usually one of convenience. The difference is only significant for Q values of less
than 10.

Practical inductors show a wide range of Q, values. They are always a function
of frequency. Q increases with frequency, usually in proportion to the square root
of the frequency for a given fixed size air core inductor. Inductors wound on a
powdered iron core typically have a peak in Q. as frequency is changed. The best
inductors are thus built with a core picked especially for the frequency range of
interest. The highest Q. values are usually obtained with toroidal cores for the hf
region. Larger Q,, values result from air cores, but the physical size is often unreasona-
ble. A typical high @ inductor in the hf range would have @, = 250 or higher.

If large wire is used at vhf, air core inductors become practical. It is easily
possible to achieve Q, greater than 400 if large wire is used. This is best realized if
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the inductor is shielded, owing to radiation losses. The Q of the components should
be measured or obtained from tables provided by manufacturers of powdered iron
cores if careful work is to be done (7).

Capacitors also suffer from losses which may be represented by a Q.. Assume
a capacitor has a loss that is modeled by a parallel resistance, Rp. If this capacitor
was placed in parallel with a perfect, lossless inductor, the resonator would have
an unloaded Q. equal to that of the capacitor. If Q, was associated with the inductor,
R, would be QuwL. The inductive susceptance equals that of the capacitor in the
resonant circuit. Hence

QOu

y==2 (2.6-6)

Following the same arguments as were used with the inductor, the Q. value of a
capacitor may be related to a series resistance, R;, by

1

R, =
Q.0C

(2.6-7)

As was the case with the inductor, Egs. 2.6-6 and 2.6-7 are not exactly related to
each other. The two depend upon high @, values. We will use R, = QuwL = Qu/
wC as a formal relationship in most of our work.

Most capacitors used in tuned circuits have a very high Q. in the hf region.
Values well over 1000 are typical. Hence, it is valid for most applications to assume
that parallel capacitors are lossless and that the loss of a circuit is related to the
inductor.

This ideal behavior is not always true. At vhf and higher, capacitors often
exhibit Q values that are low enough that they must be taken into account in analysis.
This is true even in the hf spectrum with some capacitors. An example of a lossy
capacitor is the varactor diode often used as a voltage controlled variable capacitor.
The manufacturers of such diodes usually specify the Q, at a stated frequency with
the understanding that Q, will decrease linearly with increasing frequency. A better
model is that of an ideal diode with a frequency independent series resistance.

Consider the parallel tuned resonator of Fig. 2.15 as an example of the effect
of Qin a tuned system. Assume that the source equals the load resistance. Using
methods developed earlier, the transfer function is

. sL/R
H) = Grcr 1+ »L/R (2.6-8)

We find that H(jw) = ¥ at w? = 1/LC. Hence, all of the power available from
the voltage generator and source resistance is being delivered to the load resistor.
The resonator is transparent at this frequency, that of resonance.

The transfer function may be compared with that of the series tuned circuit,
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Hs
A'AVA'A' 2 ‘o cht
Vi, E L = C Ry
Figure 245 A parallel tuned circuit,
Y

777 77 doubly terminated.

Eq. 2.3-3. Some manipulation then shows that the Q equals half that of the series
tuned circuit. However, the series tuned circuit studied contained only one resistor
while the parallel one of Fig. 2.15 has two. The circuit Q is thus given by Q, =
Rp/wL where Ry is now the parallel combination of the source and load resistors.
Note that the same form of transfer function describes both the series and the parallel
tuned circuit.

Assume now that the components in the filter of Fig. 2.15 are not ideal, but
have a loss described by measurable Q, values. The equivalent parallel resistance
associated with the inductor is Rp, = QuiwL while the loss in the capacitor is
Ryc = Que/wC. But L= 1/wC. The equivalent loss resistance is the parallel combina-
tion of the two. The final result is the equivalent Q,

net = (Qu1 + Q207" (2.6-9)

This equation is quite general. When a number of lossy reactances are connected
in parallel or in series, the equivalent Q is obtained in the same way that the equivalent
resistance of parallel resistors is obtained.

Assume that the Q, value of the capacitor is arbitrarily high. The Q, of the
tuned circuit is then that of the inductor alone, resulting in R, = QuwL. The effects
of the reactive components disappear at resonance, leaving the equivalent circuit
shown in Fig. 2.16. The transducer gain of this network will be evaluated. We assume
that R; = R, = R and the voltage generator has an amplitude of 2 V. The output
voltage is written from inspection. Algebraic reduction produces the result

5 ( RyR )
R+ R 1
Vout = 2 = (2.6-10)
R+ RyR 1+ R/2R,
R+ R,
RS
ANM———9 ' —0 Vo,

Vin R,=Q,wlL SR, Figure 2.16 The equivalent of the par-

allel tuned circuit at resonance. £, is
the resistance representing the losses
in the resonator.
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The unloaded Q is Qn = Ry,/wL while the loaded Qis Q. = R./wL where R, is
the equivalent resistance loading the inductor. R, is the parallel combination of the
load, the source, and R,. Hence

Ry,R
R,=——m 2.6'1 1
° 2R,+R ( )
for the case of equal load and source resistances.
Consider the ratio of Q./Qu
R R
Q_R__R (2.6-12)
Q. R, 2R,+R
This simplifies to the relationship
R QL
= 2.6-13
2R, Qu.—1 ( )
which is then inserted into Eq. 2.6-10 to produce
Vout = (1 - %’L:) (2.6-14)

Because the source and load resistances are equal, the insertion loss of the filter of
Fig. 2.15 is the negative of the transducer gain, or

Insertion loss (IL) = —20 log (1 — Q./Q.) db (2.6-15)

This filter is a doubly terminated single resonator.

The bandwidth of the single resonator, terminated or not, is analytically related
to the Q. Recalling that the bandwidth is defined as the frequency where the output
power is down by half, or 3 dB, bandwidth is related to center frequency and Q by

Q0= fo/BW (2.6-16)

where Fy and BW are both measured in the same units.

This is well illustrated by an example. Assume a resonator has a center frequency
of 100 MHz and Q. = 400. The unloaded bandwidth is 100/400 = 0.25 MHz (Q
is a dimensionless number). A bandwidth of 1 MHz is measured if the resonator
is then placed between an equal source and load. The loaded Q is then Q, =
100/1 = 100. The insertion loss from Eq. 2.6-15 is 2.5 dB.

Examination of the equations reveals a method for measuring the Q of a resona-
tor. Note that as the loaded Q of a filter approaches the unloaded value, the insertion
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loss becomes very large. If a resonator is terminated equally by both the generator
and load and the values are adjusted so that the insertion loss is very large, the
measured 3-dB bandwidth will produce a loaded Q according to Eq. 2.6-16. Measuring
the insertion loss will allow calculation of Q./Q,. The loaded Q is very close to
Q. if the insertion loss is high enough, typically 30 to 40 dB.

Q has been related to a second order network in our discussion. That is, Q is
a parameter of a network containing two reactive elements, described by a transfer
function of second order. Sometimes a parameter Q appears in design equations for
third or even fourth order networks. The meaning for this Q is only loosely related
to the Q parameter we have been discussing. The actual energy storage in the network
and the related bandwidth properties are sometimes completely unrelated to Q.

2.7 THE ALL-POLE LOW PASS FILTER

Previous sections have presented background information and analysis methods. Now,
the problem of filter design is finally approached. The type of filter considered in
this section is shown in Fig. 2.17. It contains only series inductors and shunt capacitors.
The filter is a ladder configuration and may be analyzed using the ladder method
presented earlier.

10 9> 9a 901
E”T‘ 1L ‘ I —— = ——— 11N '
/;I; i i :
g9y G, a9,

Figure 2.47 An nth order low pass filter. The text has equations for evaluating
the component values and the location of the poles.

We find that the transfer function, H(s), of the filter of Fig. 2.17 contains no
finite zeros. The transfer function is the reciprocal of a simple polynomial in the
variable s. As such, the filter is described completely by factoring of the denominator
polynomial to extract the location of the complex poles. This filter, an all-pole type,
represents many of the practical low pass filters used in routine rf design.

Most design work with all filters is done with low pass prototypes like that of
Fig. 2.17 where the source and load resistance are 1  and the cutoff frequency is
1 rad. This has a number of consequences. First, analysis is simplified. Second, the
normalized filters are in a form that may be easily scaled to other terminations and
cutoff frequencies. The final rationale is somewhat less obvious, though. At a frequency
of 1 rad s71, a 1-H inductor and a 1-F capacitor have the same immittance, 1 € or
1 Siemen (S). This duality allows us to treat them more easily than we could if
another frequency of normalization were chosen. One consequence is that one form
of filter may be transformed into another with no change in numerical values.
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This duality is illustrated by the two filters in Fig. 2.18. One has two capacitors
of 1 F and an inductor of 2 H. The other has two inductors of 1 H each and a
single capacitor of 2 F. Both of these filters are identical. The cutoff frequency (—3
dB) is 1 rad s~! and the transfer functions, H(s), are identical. Only one set of normal-
ized parameters is required for tabulation of normalized filter components. These
are usually given by g as shown in the component labeling of Fig. 2.17.

The defining polynomial has a degree that is numerically identical to the number
of reactive components in the prototype filter. The filters of Fig. 2.18 are third order
filters with the highest power of s in H(s) being 3. The filter g, values are chosen
for a cutoff of 1 rad s~1. However, there are no other restrictions. An infinite number
of component values are still allowed.

1Q 2H 10 1H 1H

T [ 1.
1] ]

1F 2F

(a) (b}

Figure 2.48 Two different, but equivalent versions of the three-pole normal-
ized Butterworth low pass filter.

The chore of picking useful components is a complicated one and is the essence
of much of the subject of filter synthesis. Approximation methods are usually applied.
An ideal filter serves as a starting point. Then, an attempt is made at choosing filter
polynomials which approximate one characteristic or another of the ideal filter. The
term “ideal” is itself something of a puzzle. A filter that has a perfect “brick wall”
shape in the frequency domain, such as the low pass filter of Fig. 2.8a, may have a
horrible step response.

The nature of the approximations used in synthesis is covered well by many
writers and will not be dealt with here. The curious reader should refer to the text
by Blinchikoff and Zverev.

This section will present two popular and practical polynomial types and the
corresponding filters, the Butterworth and Chebyshev. The Butterworth filter is opti-
mized near the lowest frequencies and is often called a maximally flat response. It
has reasonable time domain behavior although not as ideal as some other types.

The Chebyshev filter is optimized for frequency domain response. It has excellent
differentiation between the passband response and that of the stopband. The price
for these virtues is some ripple, or variation, in attenuaiion within the passband
and poor time domain response.

The frequency response of the normalized Butterworth filter is

: 1
H(jw)= REPRINT (2.7-1)
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where o is the angular frequency and n is the degree of the polynomial. Using this
frequency response, the parameter values, the location of the complex poles, and
the frequency domain transfer function may all be derived. The pole locations in
the s plane are given by

ko
o =—sin2k— 1) —
" ( by (2.7-2)

wk=cos(2k—l)% k=1,2,3,...,n

where oy is the real part and wy is the complex part of the kth pole. The pole
locations may be combined with s to form the factored form of H(s). Multiplication
will produce the usual form. The transfer functions for n = 2 and n = 3 are

H(s) = ——1——- n=2
st + 14145 + 1 2.7-3)

1
H, - =
=G irets+r: "3

For larger values of n, the polynomials become more complex.

Noting the pole locations, Eqgs. 2.7-2, we see that the real and complex parts
are described by a sine and a cosine function with the same argument. Hence, the
poles of the Butterworth low pass filter lie on a circle in the s plane.

The component values of the normalized Butterworth low pass are given by

g =2 sin(2k — 1)%1 k=1,2,3,...,n (2.7-4)

for the case where the source and load resistances are 1 €. As it turns out, this
restriction is not a firm one. The end terminations need not be equal with proper
renormalization. The reader should refer to the literature for details (8).

The function for component values, Eq. 2.7-4, is an especially simple relationship.
Consider n = 3. Substitution then yields gs = 1, g2 = 2, and g; = 1. The resulting
filters are those of Fig. 2.18.

The analytical representation of the Chebyshev filters is considerably more com-
plex than the Butterworth. Where the Butterworth filter was described by circular
functions, the Chebyshev is dominated by hyberbolic functions. These are somewhat
more complicated, but may be manipulated easily with a programmable handheld
calculator. The analog to the Euler identities can be used:

e.t— e—I

2 (2.7-5)
ef+t e *

2

sinh x =

cosh x=
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The frequency response of the Chebyshev low pass filter is given by

N S i
H(Jm)—[1 AT TSI (2.7-6)

where Cy(w) are the Chebyshev polynomials defined by

C(w) = cos(n cos™1w) o<l @2.7-7)
Cu(w) = cosh(n cosh™'w) w>1 )

The parameter e is the ripple in the passband and is given by
€= (10%14—1)1/2 (2.7-8)

where 4 is the depth of the ripple in dB.

Figure 2.19 will shed additional light on the nature of the Chebyshev filter.
The figure shows the H(jw) plot for a filter with n = 5 and 4 = 1.5 dB. The
frequency response of the filter oscillates by a peak-to-peak value of 1.5 dB throughout
° T

ARIPPLE .dB

H(jw), dB
H
T

8 1 | ] 1 ] 1 | | J
] 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

w, rad s~

Figure 2.19 Frequency response of a five-pole low pass filter of the Chebyshev
type. The passband ripple is A= 1.5 dB. The attenuation equals the ripple
at the cutoff frequency of 1 rad s-1. Note that the number of half cycles of
passband ripple equals the order of the fiter.
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the passband. One other feature is apparent in Fig. 2.19. The response at @ = 1
rad s7! is equal to the value of A, the ripple, and is not —3 dB as is usually the
case. The frequency where the response is down by 3 dB is given by

1 1
w3as = cosh (; cosh™! ;) 2.7-9)

for 4 <3 dB.

The number of poles in a Chebyshev filter is equal to the number of half cycles
of oscillation in the ripple passband response. N was 5 for the filter used for the
curve of Fig. 2.19. Hence, at dc, the response was zero dB, or unity, for evaluation
of Eq. 2.7-6. This cannot be true for # an even number and preserve the Chebyshev
response of Eq. 2.7-6 unless the source and load reactances are unequal. If the load
is kept at 1 Q, the required source resistance to preserve the desired filter shape is
given by

1, nodd
R,= 2.7-10)
B,
tanh? (T), neven

where the parameter B, is defined below.

The equations for the component values, g, of the Chebyshev low pass filter
are standard and are presented in many texts. They are rarely presented in a closed
form. Instead, several equations of related parameters are given that are then used
to calculate the g values. A modified version of these equations is presented below
where the hyperbolic functions have been replaced by their exponential equivalents.
This facilitates evaluation with a handheld calculator.

The set of equations appears formidable. It is not. A program is easily written
for the handheld calculator to evaluate the functions. The following set of equations
also contains the adaptations of Egs. 2.7-9 and 2.7-10 in an exponential form

A
4= 568589 @711
where A is the passband ripple in dB.
1 ed+1
= 2.7-12
B 2n In [ed— 1] ( )
Bo=2nB (2.7-13)

N=15(eB— e~B) (2.7-14)
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Qk—)m

] k=1,2,...,n 2.7-15)
2n

a, = sin [

b= N2+ sin? (E’:_r) k=1,2,3,. . .,n (2.7-16)

The gi values are calculated using these parameters

2a
&= Wl @2.7-17)
g = a0 2.7-18)
br-18k-1
The 3-dB down frequency is evaluated using
w3 = Y2(e¥+ e ¥)
2.7-19)
where Y is given by
1 1 1 1/2
Y=-In [— + (—5 — 1) ] (2.7-20)
n le \e

for A < 3-dB ripple. The source required for proper termination to produce the
Chebyshev response in an even order filter is

2x 2
R, = [e 1] 2.7-21)
er* + 1
where
x= % (2.7-22)

The parameters a;, by, and g; are calculated. Then these values are used, along
with a; and b, to evaluate g. This continues. The evaluation of the kth component
depends upon earlier calculations associated with k — 1.

Table 2.1 is a tabulation of some results of these equations. The g, values are
presented for filters from order 2 through 5. The cases shown are for the Butterworth
filter, shown as 4 = 0, and Chebyshev filters with passband ripple of 4 = 0.1, 0.25,
0.5, 0.75, 1.0, and 1.5 dB. The frequencies where the attenuation is —3 dB are also
shown as well as the source resistances needed for achieving the Chebyshev response.
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Table 24 g, Values for Chebyshev and Butterworth (A = 0} Low Pass Filters,
(Normalized fo R, = 1 0 and a ripple bandwidth of 1 rad s-1)

4, dB n & & & & & ;1 »,—3dB
0 3 1.000 2.000 1.000 — — 1.000 1.000
4 0.7654 1.8478 1.8478 0.7654 — 1.000 1.000
5 0.6180 1.618 2.000 1.6180 0.618 1.000 1.000
0.1 2 0.8430 0.6220 — — — 0.7378 1.9432
3 1.0316 1.1474 1.0316 — — 1.000 1.3890
4 1.1088 1.3062 1.7704 0.8181 — 0.7378 1.2131
5 1.1468 1.3712 1.9750 1.3712 1.1468 1.000 1.1347
0.25 2 1.1132 0.6873 — — — 0.6174 1.5981
3 1.3034 1.1463 1.3034 — — 1.000 1.2529
4 1.3782 1.2693 2.0558 0.8510 — 0.6174 1.1398
5 1.4144 1.3180 2.2414 1.3180 1.4144 1.000 1.0887
0.5 2 1.4029 0.7071 — — — 0.504 1.3897
3 1.5963 1.0967 1.5963 — — 1.000 1.1675
4 1.6703 1.1926 2.3661 0.8419 — 0.504 1.0931
5 1.7058 1.2296 2.5408 1.2296 1.7058 1.000 1.0593
0.75 2 1.6271 0.7002 — — — 0.4304 1.2852
3 1.8243 1.0436 1.8243 — — 1.000 1.1236
4 1.8988 1.1243 2.6124 0.8172 — 0.4304 1.0689
5 1.9343 1.1551 2.7833 1.1551 1.9343 1.000 1.0439
1.00 2 1.8219 0.6850 — — — 0.3760 1.2176
3 2.0236 0.9941 2.0236 — — 1.000 1.0949
4 2.0991 1.0644 2.8311 0.7892 — 0.3760 1.0530
5 2.1349 1.0911 3.0009 1.0911 2.1349 1.000 1.0338
1.50 2 2.1688 0.6470 — — — 0.2983 1.1307
3 2.3803 0.9069 2.3803 — — 1.000 1.0574
4 2.4586 0.9637 3.2300 0.7335 — 0.2983 1.0322
5 2.4956 0.9850 3.4017 0.9850 2.4956 1.000 1.0205

Other characteristics of the Chebyshev filter are apparent from the table. Looking
at the —3-dB frequencies, it is seen that the rate of attenuation increases both for
increasing n and for increased passband ripple. If passband ripple is allowed, but as
much stopband attenuation as possible is needed, the Chebyshev low pass filter with
high ripple is called for. If the passband must be “clean” with a minimum of ripple,
the Butterworth, or a low ripple Chebyshev, is the choice.

Evaluation of the 3-dB frequencies gives some indication of the rate of attenuation
as the frequency moves from the passband to the stopband. However, it is less than
analytical. Knowledge of the stopband characteristics is often of great importance
in filter specification. As often as not, the desired goal is to provide a given level of
attenuation at a specific frequency that is out of the passband of a filter. Table 2.2
presents this data.

Table 2.2 shows the attenuation values in the stopband for = 1, 2, 3, 4, 5,
6, 8, and 10. All of the filters presented in Table 2.1 are considered. The data in
the stopband attenuation table is extended to filters up to the seventh order.
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Table 2.2 Aftenuation values in dB for Butterworth and Chebyshev filters
for orders from 2 to 7. @ = 1 corresponds to the edge of the ripple

band for Chebyshev filters and the 3-dB point for the Butterworth filter.
Table 2.2a Butterworth Filter

Chap. 2

n 1 2 3 4 5 6 8 10
2 30 12.3 19.1 24.1 28.0 31.1 36.1 400
3 30 18.1 28.6 36.1 41.9 46.7 54.2 60.0
4 3.0 24.1 38.2 48.2 55.9 62.3 72.2 80.0
5 3.0 30.1 47.7 60.2 69.9 77.8 90.3 100.0
6 30 36.1 573 72.2 83.9 93.4 108.4 120.0
7 3.0 42.1 66.8 84.3 97.9 108.9 126.4 140.0
Table 2.2b 0.1-dB Chebyshev Filter
n 1 2 3 4 5 6 8 10
2 0.1 33 8.9 13.7 17.6 20.7 25.8 29.7
3 0.1 12.2 23.6 314 374 42.2 49.8 55.6
4 0.1 234 38.9 49.3 57.3 63.7 73.8 81.6
5 0.1 34.8 54.2 67.3 72.2 85.3 97.9 107.6
6 0.1 46.3 69.5 85.2 97.1 106.8 121.9 133.6
7 0.1 57.7 84.8 103.1 117.0 128.3 146.0 159.0
Table 2.2¢ 0.25-dB Chebyshev Filter
n 1 2 3 4 5 6 8 10
2 0.25 5.9 12.6 17.6 21.6 24.8 29.8 33.7
3 0.25 16.1 27.6 35.5 414 46.3 539 59.7
4 0.25 27.5 43.0 534 61.4 67.8 729 85.7
5 0.25 38.9 58.3 714 81.3 89.3 101.9 111.7
6 0.25 50.3 73.6 89.2 101.2 110.8 126.0 137.7
7 0.25 61.8 88.9 107.2 121.1 132.4 150.0 157.3
Table 2.2d 0.5-dB Chebyshev Filter
n 1 2 3 4 5 6 8 10
2 0.5 8.4 15.6 20.7 24.7 279 329 36.8
3 0.5 19.2 30.8 38.6 4.6 49.4 57.0 62.8
4 0.5 30.6 46.1 56.5 64.5 70.9 81.0 88.8
5 0.5 420 61.4 74.5 84.4 92.5 105.1 114.8
6 0.5 53.5 76.7 924 104.3 114.0 129.1 140.8
7 0.5 64.9 92.0 110.3 124.2 135.5 153.2 166.8
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Table 2.2e 0.75-dB Chebyshev Filter

n 1 2 3 4 5 6 8 10

2 0.75 10.1 17.4 22.6 26.6 29.8 34.8 38.7
3 0.75 21.1 32.7 40.5 46.5 51.3 58.9 64.7
4 0.75 325 48.0 58.4 66.4 72.8 82.9 90.7
5 0.75 439 63.3 76.3 86.3 94.3 107.0 116.7
6 0.75 55.4 78.6 94.3 106.2 115.9 131.0 142.7
7 0.75 66.8 93.9 112.2 126.1 137.4 155.1 168.7

Table 2.2 1.0-dB Chebyshev Filter

n 1 2 3 4 5 6 8 10

2 1.0 11.4 18.8 24.0 27.9 31.6 36.2 40.1
3 1.0 22.5 34.0 41.9 47.8 52.7 60.3 66.1
4 1.0 33.9 494 59.8 67.8 74.2 84.3 92.1
5 1.0 45.3 64.7 71.7 87.7 95.7 108.4 118.1
6 1.0 56.7 80.0 95.6 107.6 117.2 132.4 144.1
7 1.0 68.2 95.3 113.6 127.5 138.8 156.4 170.1

Table 2.2g 1.5-dB Chebyshev Filter

n 1 2 3 4 5 6 8 10
2 1.5 13.3 20.8 26.0 30.0 332 38.2 42.1
3 1.5 245 36.1 439 499 54.7 62.3 68.1
4 1.5 35.9 51.4 61.8 69.8 76.2 86.3 94.1
5 1.5 473 66.7 79.7 89.7 97.7 110.4 120.1
6 1.5 58.8 82.0 97.7 109.6 119.3 134.4 146.4
7 1.5 70.2 97.3 115.6 129.5 140.8 158.5 172.1

Care must be exercised in using the data in Table 2.2, for the standard Chebyshev
equations have been used in evaluation. Hence, for a Chebyshev filter with a passband
ripple of 0.25 dB, the attenuation at @ = 1 will be 0.25 dB. Data on the —3-dB
frequencies given in Table 2.1 will allow the data of Table 2.2 to be normalized to
—3 dB as needed. Similar data are presented in graphical form by Zverev (9) where
all information has been normalized to a 3-dB cutoff frequency.

Use of these tables is illustrated by an example. Assume a low pass filter is to
be built with the specification that the stopband attenuation should be greater than
60 dB. The stopband, in this case, will be defined as frequencies greater than twice
the edge of the ripple band. We find upon examining @ = 2 that attenuations greater
than 60 dB occur for the seventh order Chebyshev filters with a ripple of 0.25 dB
or more.

The Butterworth filter has an advantage that is not apparent from the calcula-
tions. It has the virtue that it is generally insensitive to small changes in component
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values. This is demonstrated by differentiating the salient equations with respect to
component value. The Chebyshev response, however, is much more dependent upon
careful component selection.

The symmetry of the filters is interesting. The Butterworth filters are always
symmetrical with respect to component value. That is, equal g values appear about
a centerline drawn through the filter. The odd ordered Chebyshev filters are also
symmetrical. This is not true for the even order Chebyshev prototypes though.

The location of the poles of the Chebyshev filter are given as

o« = sinh Nsin(2k— 1) 2—’;
(2.7-23)

wr = cosh Ncos(2k— 1) Z
2n
where N is given by
1 . 1
N=-sinh"! - (2.7-24)
n €

It may be shown that the poles of the Chebyshev filter lie on an ellipse. They
are, of course, in the left half of the s plane. The ellipse is inside the circle of the
Butterworth filter. This is significant. It indicates that the real part of the poles of
the Chebyshev filter have a smaller magnitude than the Butterworth does. Hence,
damping is not as great—the poles have a higher Q than do those of an equal ordered
Butterworth filter. This is reflected in the time domain responses. The Chebyshev
filter shows more overshoot in both the impulse and step responses than does the
Butterworth. For this reason, the Chebyshev is not recommended for applications
where very high transition rates are encountered, such as pulses.

The Butterworth filter has a somewhat improved response to an impulse and
a step than the Chebyshev does. However, it is still not optimum. Other polynomials
are suggested for improved time domain response. These include the Bessel, the Gaus-
sian, and the minimum phase ripple filters. These are covered in detail in the work
of Zverev (9).

2.8 FILTER DENORMALIZATION, PRACTICAL LOW PASS, HIGH PASS,

AND BANDPASS STRUCTURES

The previous section showed how normalized components were calculated for low
pass filters. It is rare indeed when filters are built for a cutoff frequency near 1 rad
s™' and a 1-Q termination. Impedances are usually higher and cutoff frequencies
are arbitrary. The equations for denormalization of the previous filters will be presented
in this section.
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A low pass filter may begin with the first component being either a capacitor
or an inductor. The next component in the ladder must, however, be of the opposite
type. Each additional part must be opposite from the previous.

Intuition will generally prevail in the denormalization process. If a termination
impedance higher than 1 Q is desired, the reactances are multiplied accordingly.
The reactances are then scaled so that they have the same value at the new desired
cutoff frequency, w.. The stopband attenuation values presented in Table 2.2 will
scale with o replaced by the ratio of the actual cutoff to the frequency where a
given value of attenuation is observed.

The high pass filter is the dual of the low pass. Series inductors are replaced
with series capacitors while shunt capacitors are replaced by inductors. The reactances
are the same at the normalized cutoff of 1 rad s

The components for a low pass filter based upon the normalized results, Table
2.1, are

8k

Co=—" 2.8-1
= Rowe (2.8-1)
and
I, =&k (2.8-2)
We

The high pass filter is described by the following denormalization of the normal-
ized low pass tables

C.= (2.8-3)
* gkRo(Dc
and
Ly= R (2.8-4)
Wclk

In all of the equations above, w. = 2mf. where f; is the cutoff frequency in hertz
(Hz), and R, is the termination in ohms.

Assume that low pass and high pass filters with a Butterworth response are
to be built with a cutoff frequency of 5 MHz and terminations at each end of 50
Q. Assume that the attenuation should be 30 dB or more at frequencies separated
by a factor of 2 from the cutoff. We see from Table 2.2 that a fifth order filter is
good enough to provide the needed attenuation. The normalized component values
are g = gs = 0.618, g, = g = 1.618 and g = 2.000. The filters are designed using
this data with the preceding equations.

The resulting filters are shown in Fig. 2.20. The low pass is designed with a
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shunt capacitor as the input element while the high pass uses a series capacitor at
the input. The transducer gain of each is also presented in the figure. They were
obtained with the ladder method of analysis.

The duals of the filters of Fig. 2.20 are presented in Fig. 2.21. The choice of
the type to build is purely arbitrary. It will depend upon the application and the
practicality of the components.

The low pass filter is the mirror image of the high pass although it may not
appear so from the curves of Fig. 2.20. Recall that normalized data are presented
in terms of frequency ratios. The cutoff of each of the filters in Fig. 2.20 is 5 MHz.
The low pass is 30 dB down at twice this value, 10 MHz. Similarly, the high pass
is 30 dB down at half the cutoff, or 2.5 MHz.

The transfer functions of the two filters will differ significantly. The low pass
will be an all-pole function. However, the high pass filter will show zeros. Still, the
high pass structure is usually termed a five-pole filter, for it resulted from denormaliza-
tion of a five-pole low pass.

A simple bandpass filter is designed with little more effort than a low pass.
The procedure is straightforward. First, the two band edges are determined. The
difference is the bandwidth. The center frequency is the geometric mean of the two
edges

Seenter = (12)"2 (2.8-5)

where f; and f; are the passband edges. A low pass filter is first designed with a
bandwidth equaling that of the desired bandpass filter. Then, the resulting low pass
elements are resonated with the addition of components at the center frequency of
the filter as given by Eq. 2.8-5.

50 0.984 pH 3.183 uH 0.984 uH
\— TSt W ———p—— T
J; ;[ B
1030 pF 1030 pF
(a)
50 Q2 393.5 pF 393.5 pF
A Ay | o A}
v 71 JA|
50 2
2.575 uH 0.796 uH 2.575 uH Figure 221 The dual forms of the 5-

(b) MHz cutoff filters of Fig. 2.20.
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Assume that a bandpass filter is to be built to cover the range from 3 to 4.5
MHz and that the variation in response within the passband should not vary more
than 0.1 dB. Assume also that stopband requirements are consistent with a third
order Chebyshev filter and a 50-Q) termination is needed. The resulting filter design
is shown in Fig. 2.22. From Table 2.1, a low pass filter with an 0.1-dB Chebyshev
response is designed. The series inductors are then resonated at 3.674 MHz with
series capacitors while the parallel capacitor is tuned with an appropriate parellel
inductor. The result is the desired bandpass filter. Both low pass and bandpass re-
sponses and both circuits are given in Fig. 2.22.

This bandpass filter lacks arithmetic symmetry. If needed, this is approximated
by cascading a suitable low pass filter with a cutoff equal or just higher than the
upper cutoff of the bandpass structure.

The transfer function of the bandpass filter will contain both poles and zeros.
Where the low pass prototype had three poles, this filter has six. They will occur
in two bunches arranged as points on ellipses. The ellipses are centered about the
positive and negative points in the s plane corresponding to the center frequency of
the filter.

Even though this filter has six poles in its response, it is still a three-pole bandpass
filter. It has three pole pairs and is derived from a three-pole low pass prototype.
Generally, bandpass filters described by the number of poles are really being described
by the number of resonators in the filter.

This method of bandpass synthesis is generally limited to wide bandwidths,
usually 10% of the center frequency or more. In addition, the component values
that are encountered are sometimes much less than practical. Methods for the design
of narrower bandpass filters are presented in the next chapter.

The Chebyshev examples presented have been denormalized on the basis of
the edge of the ripple band. Assume that it is desired to build a filter with a Chebyshev
response, but with a well-defined 3-dB bandwidth. This is done by modifying the
normalized component values. The key is the 3-dB frequency, which has been evaluated
for the gy values shown in Table 2.1. The g values are all multiplied by the normalized
3-dB frequency. The resulting filter will then have the same response as the original,
but will have 3 dB of attenuation at 1 rad s~!. The new normalized g results are
then used in the denormalization equations.

The designer using any of the many collections of tabulated data should be
careful to ascertain the form of that data. The extensive tables and graphs presented
by Zverev are all normalized to a 3-dB cutoff frequency of 1 rad s, making compari-
sons more direct.
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