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Chapter 1

DC Analysis

1.1 Modified Nodal Analysis

Many different kinds of network element are encountered in network analysis. For circuit analysis
it is necessary to formulate equations for circuits containing as many different types of network
elements as possible. There are various methods for equation formulation for a circuit. These are
based on three types of equations found in circuit theory:

• equations based on Kirchhoff’s voltage law (KVL)

• equations based on Kirchhoff’s current law (KCL)

• branch constitutive equations

The equations have to be formulated (represented in a computer program) automatically in a
simple, comprehensive manner. Once formulated, the system of equations has to be solved. There
are two main aspects to be considered when choosing algorithms for this purpose: accuracy and
speed. The MNA, briefly for Modified NodalAnalysis, has been proved to accomplish these tasks.
MNA applied to a circuit with passive elements, independent current and voltage sources and
active elements results in a matrix equation of the form:

[A] · [x] = [z] (1.1)

For a circuit with N nodes and M independent voltage sources:

• The A matrix

– is (N+M)×(N+M) in size, and consists only of known quantities

– the N×N part of the matrix in the upper left:

∗ has only passive elements

∗ elements connected to ground appear only on the diagonal

∗ elements not connected to ground are both on the diagonal and off-diagonal terms

– the rest of the A matrix (not included in the N×N upper left part) contains only 1, -1
and 0 (other values are possible if there are dependent current and voltage sources)

• The x matrix

– is an (N+M)×1 vector that holds the unknown quantities (node voltages and the cur-
rents through the independent voltage sources)

– the top N elements are the n node voltages

7



– the bottom M elements represent the currents through the M independent voltage
sources in the circuit

• The z matrix

– is an (N+M)×1 vector that holds only known quantities

– the top N elements are either zero or the sum and difference of independent current
sources in the circuit

– the bottom M elements represent the M independent voltage sources in the circuit

The circuit is solved by a simple matrix manipulation:

[x] = [A]
−1 · [z] (1.2)

Though this may be difficult by hand, it is straightforward and so is easily done by computer.

1.1.1 Generating the MNA matrices

The following section is an algorithmic approach to the concept of the Modified Nodal Analysis.
There are three matrices we need to generate, the A matrix, the x matrix and the z matrix. Each
of these will be created by combining several individual sub-matrices.

1.1.2 The A matrix

The A matrix will be developed as the combination of 4 smaller matrices, G, B, C, and D.

A =

[
G B
C D

]

(1.3)

The A matrix is (M+N)×(M+N) (N is the number of nodes, and M is the number of independent
voltage sources) and:

• the G matrix is N×N and is determined by the interconnections between the circuit elements

• the B matrix is N×M and is determined by the connection of the voltage sources

• the C matrix is M×N and is determined by the connection of the voltage sources (B and C
are closely related, particularly when only independent sources are considered)

• the D matrix is M×M and is zero if only independent sources are considered

Rules for making the G matrix

The G matrix is an N×N matrix formed in two steps.

1. Each element in the diagonal matrix is equal to the sum of the conductance (one over
the resistance) of each element connected to the corresponding node. So the first diagonal
element is the sum of conductances connected to node 1, the second diagonal element is the
sum of conductances connected to node 2, and so on.

2. The off diagonal elements are the negative conductance of the element connected to the pair
of corresponding node. Therefore a resistor between nodes 1 and 2 goes into the G matrix
at location (1,2) and locations (2,1).

If an element is grounded, it will only have contribute to one entry in the G matrix – at the
appropriate location on the diagonal. If it is ungrounded it will contribute to four entries in the
matrix – two diagonal entries (corresponding to the two nodes) and two off-diagonal entries.
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Rules for making the B matrix

The B matrix is an N×M matrix with only 0, 1 and -1 elements. Each location in the matrix
corresponds to a particular voltage source (first dimension) or a node (second dimension). If the
positive terminal of the ith voltage source is connected to node k, then the element (k,i) in the B
matrix is a 1. If the negative terminal of the ith voltage source is connected to node k, then the
element (k,i) in the B matrix is a -1. Otherwise, elements of the B matrix are zero.

If a voltage source is ungrounded, it will have two elements in the B matrix (a 1 and a -1 in the
same column). If it is grounded it will only have one element in the matrix.

Rules for making the C matrix

The C matrix is an M×N matrix with only 0, 1 and -1 elements. Each location in the matrix
corresponds to a particular node (first dimension) or voltage source (second dimension). If the
positive terminal of the ith voltage source is connected to node k, then the element (i,k) in the C
matrix is a 1. If the negative terminal of the ith voltage source is connected to node k, then the
element (i,k) in the C matrix is a -1. Otherwise, elements of the C matrix are zero.

In other words, the C matrix is the transpose of the B matrix. This is not the case when dependent
sources are present.

Rules for making the D matrix

The D matrix is an M×Mmatrix that is composed entirely of zeros. It can be non-zero if dependent
sources are considered.

1.1.3 The x matrix

The x matrix holds our unknown quantities and will be developed as the combination of 2 smaller
matrices v and j. It is considerably easier to define than the A matrix.

x =

[
v
j

]

(1.4)

The x matrix is 1×(M+N) (N is the number of nodes, and M is the number of independent voltage
sources) and:

• the v matrix is 1×N and hold the unknown voltages

• the j matrix is 1×M and holds the unknown currents through the voltage sources

Rules for making the v matrix

The v matrix is an 1×N matrix formed of the node voltages. Each element in v corresponds to
the voltage at the equivalent node in the circuit (there is no entry for ground – node 0).

For a circuit with N nodes we get:

v =








v1
v2
...
vN








(1.5)
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Rules for making the j matrix

The j matrix is an 1×M matrix, with one entry for the current through each voltage source. So if
there are M voltage sources V1, V2 through VM , the j matrix will be:

j =








iV1

iV2

...
iVM








(1.6)

1.1.4 The z matrix

The z matrix holds our independent voltage and current sources and will be developed as the
combination of 2 smaller matrices i and e. It is quite easy to formulate.

z =

[
i
e

]

(1.7)

The z matrix is 1×(M+N) (N is the number of nodes, and M is the number of independent voltage
sources) and:

• the i matrix is 1×N and contains the sum of the currents through the passive elements into
the corresponding node (either zero, or the sum of independent current sources)

• the e matrix is 1×M and holds the values of the independent voltage sources

Rules for making the i matrix

The i matrix is an 1×N matrix with each element of the matrix corresponding to a particular node.
The value of each element of i is determined by the sum of current sources into the corresponding
node. If there are no current sources connected to the node, the value is zero.

Rules for making the e matrix

The e matrix is an 1×Mmatrix with each element of the matrix equal in value to the corresponding
independent voltage source.

1.1.5 A simple example

The example given in fig. 1.1 illustrates applying the rules for building the MNA matrices and
how this relates to basic equations used in circuit analysis.

R2
R=10 Ohm

R1
R=5 Ohm

I1
I=1 A

V1
U=1 V

node_1 node_2

Figure 1.1: example circuit applied to modified nodal analysis

10



Going through the MNA algorithm

The G matrix is a 2×2 matrix because there are 2 different nodes apart from ground which is the
reference node. On the diagonal you find the sum of the elements conductances connected to the
nodes 1 and 2. The off-diagonal matrix entries contain the negative conductances of the elements
connected between two nodes.

G =

[ 1
R1

− 1
R1

− 1
R1

1
R1

+ 1
R2

]

=

[
0.2 −0.2
−0.2 0.3

]

(1.8)

The B matrix (which is transposed to C) is a 1×2 matrix because there is one voltage source and
2 nodes. The positive terminal of the voltage source V1 is connected to node 1. That is why

B = CT =

[
1
0

]

(1.9)

and the D matrix is filled with zeros only because there are no dependent (active and controlled)
devices in the example circuit.

D =
[
0
]

(1.10)

The x matrix is a 1×3 matrix. The MNA equations deliver a solution for the unknown voltages
at each node in a circuit except the reference node and the currents through each voltage source.

x =





v1
v2
iV1



 (1.11)

The z matrix is according to the rules for building it a 1×3 matrix. The upper two entries are the
sums of the currents flowing into node 1 and node 2. The lower entry is the voltage value of the
voltage source V1.

z =





0
I1
U1



 =





0
1
1



 (1.12)

According to the MNA algorithm the equation system is represented by

[A] · [x] = [z] (1.13)

which is equivalent to

[
G B
C D

]

·
[
x
]
=
[
z
]

(1.14)

In the example eq. (1.14) expands to:





1
R1

− 1
R1

1

− 1
R1

1
R1

+ 1
R2

0

1 0 0



 ·





v1
v2
iV1



 =





0
I1
U1



 (1.15)

The equation systems to be solved is now defined by the following matrix representation.





0.2 −0.2 1
−0.2 0.3 0
1 0 0



 ·





v1
v2
iV1



 =





0
1
1



 (1.16)

Using matrix inversion the solution vector x writes as follows:

[x] = [A]
−1 · [z] =





v1
v2
iV1



 =





1
4
0.6



 (1.17)
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The result in eq. (1.17) denotes the current through the voltage source V1 is 0.6A, the voltage at
node 1 is 1V and the voltage at node 2 is 4V.

How the algorithm relates to basic equations in circuit analysis

Expanding the matrix representation in eq. (1.15) to a set of equations denotes the following
equation system consisting of 3 of them.

I : 0 =
1

R1
· v1 −

1

R1
· v2 + iV1 KCL at node 1 (1.18)

II : I1 = − 1

R1
· v1 +

(
1

R1
+

1

R2

)

· v2 KCL at node 2 (1.19)

III : U1 = v1 constitutive equation (1.20)

Apparently eq. I and eq. II conform to Kirchhoff’s current law at the nodes 1 and 2. The last
equation is just the constitutive equation for the voltage source V1. There are three unknowns
(v1, v2 and iV1) and three equations, thus the system should be solvable.

Equation III indicates the voltage at node 1 is 1V. Applying this result to eq. II and transposing
it to v2 (the voltage at node 2) gives

v2 =
I1 +

1
R1
·U1

1
R1

+ 1
R2

= 4V (1.21)

The missing current through the voltage source V1 can be computed using both the results v2 = 4V
and v1 = 1V by transforming equation I.

iV1 =
1

R1
· v2 −

1

R1
· v1 = 0.6A (1.22)

The small example, shown in fig. 1.1, and the excursus into artless math verifies that the MNA
algorithm and classic electrical handiwork tend to produce the same results.

1.2 Extensions to the MNA

As noted in the previous sections the D matrix is zero and the B and C matrices are transposed
each other and filled with either 1, -1 or 0 provided that there are no dependent sources within the
circuit. This changes when introducing active (and controlled) elements. Examples are voltage
controlled voltage sources, transformers and ideal operational amplifiers. The models are depicted
in section 11 and 10

1.3 Non-linear DC Analysis

Previous sections described using the modified nodal analysis solving linear networks including
controlled sources. It can also be used to solve networks with non-linear components like diodes
and transistors. Most methods are based on iterative solutions of a linearised equation system.
The best known is the so called Newton-Raphson method.

1.3.1 Newton-Raphson method

The Newton-Raphson method is going to be introduced using the example circuit shown in fig.
1.2 having a single unknown: the voltage at node 1.
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D1
Is=1e-15 A
N=1
Cj0=10 fF
M=0.5
Vj=0.7

I1
I=I0

R1
R=200 Ohm

node_1

Figure 1.2: example circuit for non-linear DC analysis

The 1x1 MNA equation system to be solved can be written as
[
G
]
·
[
V1

]
=
[
I0
]

(1.23)

whereas the value for G is now going to be explained. The current through a diode is simply
determined by Schockley’s approximation

Id = IS ·
(

e
Vd
VT − 1

)

(1.24)

Thus Kirchhoff’s current law at node 1 can be expressed as

I0 =
V

R
+ IS ·

(

e
V
VT − 1

)

(1.25)

By establishing eq. (1.26) it is possible to trace the problem back to finding the zero point of the
function f .

f(V ) =
V

R
+ IS ·

(

e
V
VT − 1

)

− I0 (1.26)

Newton developed a method stating that the zero point of a functions derivative (i.e. the tangent)
at a given point is nearer to the zero point of the function itself than the original point. In
mathematical terms this means to linearise the function f at a starting value V (0).

f
(

V (0) +∆V
)

≈ f
(

V (0)
)

+
∂f (V )

∂V

∣
∣
∣
∣
V (0)

·∆V with ∆V = V (1) − V (0) (1.27)

Setting f(V (1)) = 0 gives

V (1) = V (0) − f
(
V (0)

)

∂f (V )

∂V

∣
∣
∣
∣
V (0)

(1.28)

or in the general case with m being the number of iteration

V (m+1) = V (m) − f
(
V (m)

)

∂f (V )

∂V

∣
∣
∣
∣
V (m)

(1.29)

This must be computed until V (m+1) and V (m) differ less than a certain barrier.
∣
∣
∣V (m+1) − V (m)

∣
∣
∣ < εabs + εrel ·

∣
∣
∣V (m)

∣
∣
∣ (1.30)

With very small εabs the iteration would break too early and for little εrel values the iteration
aims to a useless precision for large absolute values of V .
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V

I

f(V)

V(0)V(1)V(2)

Figure 1.3: Newton-Raphson method for example circuit

With this theoretical background it is now possible to step back to eq. (1.26) being the determining
equation for the example circuit. With

g
(m)
d =

∂Id
∂V

∣
∣
∣
∣
V (m)

=
IS
VT
· e

V (m)

VT (1.31)

and
∂f (V )

∂V

∣
∣
∣
∣
V (m)

=
1

R
+ g

(m)
d (1.32)

the eq. (1.29) can be written as

(

g
(m)
d +

1

R

)

·V (m+1) = I0 −
(

I
(m)
d − g

(m)
d ·V (m)

)

(1.33)

when the expression

f
(

V (m)
)

=
1

R
·V (m) + I

(m)
d − I0 (1.34)

based upon eq. (1.26) is taken into account. Comparing the introductory MNA equation system
in eq. (1.23) with eq. (1.33) proposes the following equivalent circuit for the diode model.

1

2

g
(m)
d I

(m)
d − g

(m)
d ·V(m)

Figure 1.4: accompanied equivalent circuit for intrinsic diode

With
Ieq = I

(m)
d − g

(m)
d ·V (m) (1.35)
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the MNA matrix entries can finally be written as
[
gd −gd
−gd gd

]

·
[
V1

V2

]

=

[
−Ieq
Ieq

]

(1.36)

In analog ways all controlled current sources with non-linear current-voltage dependency built into
diodes and transistors can be modeled. The left hand side of the MNA matrix (the A matrix) is
called Jacobian matrix which is going to be build in each iteration step. For the solution vector x
possibly containing currents as well when voltage sources are in place a likely convergence criteria
as defined in eq. (1.30) must be defined for the currents.

1.3.2 Multi-dimensional Newton-Raphson method

Having understood the one-dimensional example, it is now only a small step to the general multi-
dimensional algorithm: The node voltage becomes a vectorV(m), factors become the corresponding
matrices and differentiations become Jacobian matrices.

The function whose zero must be found is the transformed MNA equation 1.23:

f(V(m)) = G ·V(m) − I
(m)
0 (1.37)

The only difference to the linear case is that the vector I0 also contains the currents flowing out
of the non-linear components. The iteration formula of the Newton-Raphson method writes:

V(m+1) = V(m) −
(
∂f(V)

∂V

∣
∣
∣
∣
V (m)

)−1

· f(V(m)) (1.38)

Note that the Jacobian matrix is nothing else but the real part of the MNA matrix for the AC
analysis:

J(m) =
∂f(V)

∂V

∣
∣
∣
∣
V(m)

= G− ∂I0
∂V

∣
∣
∣
∣
V(m)

= G− J
(m)
nl = Re (GAC) (1.39)

where the index nl denotes the non-linear terms only. Putting equation 1.39 into equation 1.38
and multiplying it with the Jacobian matrix leads to

J(m) ·V(m+1) = J(m) ·V(m) − f(V(m)) (1.40)

=
(

G− J
(m)
nl

)

·V(m) −G ·V(m) + I
(m)
0 (1.41)

= −J(m)
nl ·V(m) + I

(m)
0 (1.42)

So, bringing the Jacobian back to the right side results in the new iteration formula:

V(m+1) =
(

J(m)
)−1

·
(

−J(m)
nl ·V(m) + I

(m)
0

)

(1.43)

The negative sign in front of Jnl is due to the definition of I0 flowing out of the component. Note

that I
(m)
0 still contains contributions of linear and non-linear current sources.

1.4 Convergence

The implications during Newton-Raphson iterations solving the linear equation system

[A (xk)] · [xk+1] = [z (xk)] (1.44)

are continuous device model equations (with continuous derivatives as well), floating nodes (make
the Jacobian matrix A singular) and the initial guess x0. The convergence problems which in
fact occur are local minimums causing the matrix A to be singular, nearly singular matrices and
overflow problems.
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nearly singularlocal minimum (oscillating)

asymptotic behaviour (divergence) numerical overflow

1.4.1 Limiting schemes

The modified (damped) Newton-Raphson schemes are based on the limitation of the solution
vector xk in each iteration.

xk+1 = xk + α ·∆xk+1 with ∆xk+1 = xk+1 − xk (1.45)

One possibility to choose a value for α ∈ [0, 1] is

α =
γ

‖∆xk+1‖∞
(1.46)

This is a heuristic and does not ensure global convergence, but it can help solving some of the
discussed problems. Another possibility is to pick a value αk which minimizes the L2 norm of
the right hand side vector. This method performs a one-dimensional (line) search into Newton
direction and guarantees global convergence.

xk+1 = xk + αk ·∆xk+1 with an αk which minimizes
∥
∥z
(
xk + αk ·∆xk+1

)∥
∥
2

(1.47)

The one remaining problem about that line search method for convergence improvement is its iter-
ation into local minimums where the Jacobian matrix is singular. The damped Newton-Raphson
method “pushes” the matrix into singularity as depicted in fig. 1.5.
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x1x2 x1 x0

damped

Figure 1.5: singular Jacobian problem

1.4.2 Continuation schemes

The basic idea behind this Newton-Raphson modification is to generate a sequence of problems
such that a problem is a good initial guess for the following one, because Newton basically converges
given a close initial guess.

The template algorithm for this modification is to solve the equation system

[A] · [x]− [z] = 0 (1.48)

F (x (λ) , λ) = 0 (1.49)

with the parameter λ ∈ [0, 1] given that x (λ) is sufficiently smooth. F (x (0) , 0) starts the con-
tinuation and F (x (1) , 1) ends the continuation. The algorithm outline is as follows: First solve
the problem F (x (0) , 0), e.g. set λ = ∆λ = 0.01 and try to solve F (x (λ) , λ). If Newton-Raphson
converged then increase λ by ∆λ and double ∆λ = 2 ·∆λ, otherwise half ∆λ = 0.5 ·∆λ and set
λ = λprev +∆λ. Repeat this until λ = 1.

Source stepping

Applied to the solution of (non-linear) electrical networks one may think of α ∈ [0, 1] as a multiplier
for the source vector S yielding S (α) = αS. Varying α form 0 to 1 and solve at each α. The
actual circuit solution is done when α = 1. This method is called source stepping. The solution
vector x (α) is continuous in α (hence the name continuation scheme).

Minimal derivative stepping

Another possibility to improve convergence of almostly singular electrical networks is the so called
gmin stepping, i.e. adding a tiny conductance to ground at each node of the Jacobian A matrix.
The continuation starts e.g. with gmin = 0.01 and ends with gmin = 0 reached by the algorithm
described in section 1.4.2. The equation system is slightly modified by adding the current gmin to
each diagonal element of the matrix A.

1.4.3 Improved component models

Linearising the exponential diode eq. (1.54) in the forward region a numerical overflow can occur.
The diagram in fig. 1.6 visualises this situation. Starting with V (0) the next iteration value gets
V (1) which results in an indefinite large diode current. It can be limited by iterating in current
instead of voltage when the computed voltage exceeds a certain value.
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How this works is going to be explained using the diode model shown in fig. 1.4. When iterating
in voltage (as normally done) the new diode current is

Î
(m+1)
d = g

(m)
d

(

V̂ (m+1) − V (m)
)

+ I
(m)
d (1.50)

The computed value V̂ (m+1) in iteration step m + 1 is not going to be used for the following
step when V (m) exceeds the critical voltage VCRIT which gets explained in the below paragraphs.
Instead, the value resulting from

I
(m+1)
d = IS ·

(

e
V (m+1)

nVT − 1

)

(1.51)

is used (i.e. iterating in current). With

Î
(m+1)
d

!
= I

(m+1)
d and g

(m)
d =

IS
n ·VT

· e
V (m)

n ·VT (1.52)

the new voltage can be written as

V (m+1) = V (m) + nVT · ln
(

V̂ (m+1) − V (m)

nVT
+ 1

)

(1.53)

Proceeding from Shockley’s simplified diode equation the critical voltage is going to be defined.
The explained algorithm can be used for all exponential DC equations used in diodes and transis-
tors.

I (V ) = IS ·
(

e
V

nVT − 1
)

(1.54)

y (x) = f (x) (1.55)

V

I

Infinity

f(V)
V(0)

V(1)

V(2)

VCRIT →

Figure 1.6: numerical problem with Newton-Raphson algorithm

The critical voltage VCRIT is the voltage where the curve radius of eq. (1.54) has its minimum
with I and V having equally units. The curve radius R for the explicit definition in eq. (1.55) can
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be written as

R =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(

1 +

(
dy

dx

)2
)3/2

d2y

dx2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(1.56)

Finding this equations minimum requires the derivative.

dR

dx
=

d2y

dx2
· 3
2

(

1 +

(
dy

dx

)2
)1/2

· 2 · dy
dx
· d

2y

dx2
−
(

1 +

(
dy

dx

)2
)3/2

· d
3y

dx3

(
d2y

dx2

)2 (1.57)

The diagram in fig. 1.7 shows the graphs of eq. (1.56) and eq. (1.57) with n = 1, IS = 100nA
and VT = 25mV.

curve radius

derivative of curve radius

0.6 0.62 0.64 0.66 0.68 0.7

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.7: curve radius of exponential diode curve and its derivative

With the following higher derivatives of eq. (1.54)

dI (V )

dV
=

IS
nVT

· e
V

nVT (1.58)

d2I (V )

dV 2
=

IS
n2V 2

T

· e
V

nVT (1.59)

d3I (V )

dV 3
=

IS
n3V 3

T

· e
V

nVT (1.60)

the critical voltage results in

dR

dx

!
= 0 = 3− n2V 2

T

I2S
· e−2 V

nVT − 1 → VCRIT = nVT · ln
(

nVT

IS
√
2

)

(1.61)

19



In order to avoid numerical errors a minimum value of the pn-junction’s derivative (i.e. the currents
tangent in the operating point) gmin is defined. On the one hand this avoids very large deviations
of the appropriate voltage in the next iteration step in the backward region of the pn-junction and
on the other hand it avoids indefinite large voltages if gd itself suffers from numerical errors and
approaches zero.

The quadratic input I-V curve of field-effect transistors as well as the output characteristics of
these devices can be handled in similar ways. The limiting (and thereby improving the convergence
behaviour) algorithm must somehow ensure that the current and/or voltage deviation from one
iteration step to the next step is not too large a value. Because of the wide range of existing
variations how these curves are exactly modeled there is no standard strategy to achieve this.
Anyway, the threshold voltage VTh should play an important role as well as the direction which
the current iteration step follows.

1.5 Overall solution algorithm for DC Analysis

In this section an overall solution algorithm for a DC analysis for linear as well as non-linear
networks is given. With non-linear network elements at hand the Newton-Raphson (NR) algorithm
is applied.

prepare netlist:
  assign node and
  voltage source (built−in / real) numbers

choose a fallback convergence helper:
  RHS attenuation
  steepest descent

  
  line search
  gMin stepping
  source stepping

maximum iteration
count reached ?

a fallback left ?

apply fallback algorithm
restart NR iterations

yes

no

no

convergence
reached ?

solve network equation system

apply nodesetsis network linear ?

solve network equation system once

yes

no

yes yes

no

no solution

  node voltages
  branch currents
 (operating points)

save results:

Figure 1.8: DC solution algorithm flow chart

The algorithm shown in fig. 1.8 has been proved to be able to find DC solutions for a large
variety of networks. It must be said that the application of any of the fallback convergence helpers
indicates a nearly or definitely singular equation system (e.g. floating nodes or overdetermining
sources). The convergence problems are either due to an apparently “wrong” network topology or
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to the model implementation of non-linear components. For some of the problems also refer to the
facts mentioned in section 19.2 on page 251. In some cases it may even occur that tiny numerical
inaccuracies lead to non-convergences whereas the choice of a more accurate (but probably slower)
equation system solver can help. With network topologies having more than a single stable solution
(e.g. bistable flip-flops) it is recommended to apply nodesets, i.e. forcing the Newton-Raphson
iteration into a certain direction by initial values.

When having problems to get a circuit have its DC solution the following actions can be taken to
solve these problems.

• check circuit topology (e.g. floating nodes or overdetermining sources)

• check model parameters of non-linear components

• apply nodesets

• choose a more accurate equation system solver

• relax the convergence tolerances if possible

• increase the maximum iteration count

• choose the prefered fallback algorithm

The presented concepts are common to most circuit simulators each having to face the mentioned
aspects. And probably facing it in a different manner with more or less big differences in their
implementation details especially regarding the (fallback) convergence helpers. None of the algo-
rithms based on Newton-Raphson ensures global convergence, thus very few documents have been
published either for the complexity of the topic or for uncertainties in the detailed implementation
each carrying the attribute “can help” or “may help”.

So for now the application of a circuit simulator to find the DC solution of a given network
sometimes keeps being a task for people knowing what they want to achieve and what they can
roughly expect.
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Chapter 2

AC Analysis

The AC analysis is a small signal analysis in the frequency domain. Basically this type of simulation
uses the same algorithms as the DC analysis (section 1.1 on page 7). The AC analysis is a
linear modified nodal analysis. Thus no iterative process is necessary. With the Y-matrix of the
components, i.e. now a complex matrix, and the appropriate extensions it is necessary to solve
the equation system (2.1) similar to the (linear) DC analysis.

[A] · [x] = [z] with A =

[
Y B
C D

]

(2.1)

Non-linear components have to be linearized at the DC bias point. That is, before an AC simulation
with non-linear components can be performed, a DC simulation must be completed successfully.
Then, the MNA stamp of the non-linear components equals their entries of the Jacobian matrix,
which was already computed during the DC simulation. In addition to this real-valued elements,
a further stamp has to be applied: The Jacobian matrix of the non-linear charges multiplied by
jω (see also section 11.8).
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Chapter 3

AC Noise Analysis

3.1 Definitions

First some definition must be done:

Reciprocal Networks:
Two networks A and B are reciprocal to each other if their transimpedances have the following
relation:

Zmn,A = Znm,B (3.1)

That means: Drive the current I into node n of circuit A and at node m the voltage I ·Zmn,A

appears. In circuit B it is just the way around.

Adjoint Networks:
Network A and network B are adjoint to each other if the following equation holds for their MNA
matrices:

[A]T = [B] (3.2)

3.2 The Algorithm

To calculate the small signal noise of a circuit, the AC noise analysis has to be applied [1]. This
technique uses the principle of the AC analysis described in chapter 2 on page 22. In addition to
the MNA matrix A one needs the noise current correlation matrix CY of the circuit, that contains
the equivalent noise current sources for every node on its main diagonal and their correlation on
the other positions.

The basic concept of the AC noise analysis is as follows: The noise voltage at node i should be
calculated, so the voltage arising due to the noise source at node j is calculated first. This has
to be done for every n nodes and after that adding all the noise voltages (by paying attention to
their correlation) leads to the overall voltage. But that would mean to solve the MNA equation
n times. Fortunately there is a more easy way. One can perform the above-mentioned n steps in
one single step, if the reciprocal MNA matrix is used. This matrix equals the MNA matrix itself,
if the network is reciprocal. A network that only contains resistors, capacitors, inductors, gyrators
and transformers is reciprocal.

The question that needs to be answered now is: How to get the reciprocal MNA matrix for an
arbitrary network? This is equivalent to the question: How to get the MNA matrix of the adjoint
network. The answer is quite simple: Just transpose the MNA matrix!
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For any network, calculating the noise voltage at node i is done by the following three steps:

1. Solving MNA equation: [A]
T · [x] = [A]

T · [v] =















0
...
0
−1
0
...
0















← i-th row (3.3)

2. Creating noise correlation matrix: (CY ) (3.4)

3. Calculating noise voltage: vnoise,i =

√

[v]
T · (CY ) · [v]∗ (3.5)

If the correlation between several noise voltages is also wanted, the procedure is straight forward:
Perform step 1 for every desired node, put the results into a matrix and replace the vector [v]
in step 3 by this matrix. This results in the complete correlation matrix. Indeed, the above-
mentioned algorithm is only a specialisation of transforming the noise current correlation matrix
(CY ) into the noise voltage correlation matrix (CZ) (see section 5.5.1).

If the normal AC analysis has already be done with LU decomposition, then the most time
consuming work of step 1 has already be done.

instead of Y = L ·U we have Y T = UT ·LT (3.6)

I.e. UT becomes the new L matrix and LT becomes the new U matrix, and the matrix equation
do not need to be solved again, because only the right-hand side was changed. So altogether this
is a quickly done task. This is also true for every further node whose noise voltage should be
calculated, because only the right-hand side of step 1 changes, i.e. LU substitution is needed only.

When reusing the LU decomposed MNA matrix of the usual AC analysis some issues must be
considered. The decomposition representation changes during the AC noise analysis as the matrix
A gets transposed. This means:

A = L ·U with L =









l11 0 . . . 0

l21 l22
. . .

...
...

. . . 0
ln1 . . . . . . lnn









and U =









1 u12 . . . u1n

0 1
...

...
. . .

. . .
...

0 . . . 0 1









(3.7)

becomes

AT = UT ·LT with L =









1 0 . . . 0

l21 1
. . .

...
...

. . . 0
ln1 . . . . . . 1









and U =









u11 u12 . . . u1n

0 u22

...
...

. . .
. . .

...
0 . . . 0 unn









(3.8)

Thus the forward substitution (as described in section 19.2.4) and the backward substitution (as
described in section 19.2.4) must be slightly modified, because now the diagonal elements lii can
be neglected in the forward substitution but the uii elements must be considered in the backward
substitution.

yi = zi −
i−1∑

k=1

yk · lik i = 1, . . . , n (3.9)
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xi =
yi
uii
−

n∑

k=i+1

xk ·
uik

uii
i = n, . . . , 1 (3.10)

Another issue is the row exchanging of the ac matrix A. After transposing of A, the exchanged
rows become exchanged columns. This means, that the right-hand side of equation 3.3 must not
be fitted accordingly, but the result vector [v] must.

3.2.1 A Simple Example

The network that is depicted in figure 3.1 is given. The MNA equation is (see chapter 1.1):

[A] · [x] =
[
1/R1 0
G 1/R2

]

·
[
V1

V2

]

=

[
0
0

]

(3.11)

R2R1

SRC1
G=1 S

Node2Node1

Figure 3.1: simple non-reciprocal network

Because of the controlled current source, the circuit is not reciprocal. The noise voltage at node
2 is the one to search for. Yes, this is very easy to calculate, because it is a simple example, but
the algorithm described above should be used. This can be achived by solving the equations

[
1/R1 0
G 1/R2

]

·
[
Z11

Z21

]

=

[
−1
0

]

(3.12)

and [
1/R1 0
G 1/R2

]

·
[
Z12

Z22

]

=

[
0
−1

]

(3.13)

So, the MNA matrix must be solved two times: First to get the transimpedance from node 1 to
node 2 (i.e. Z21) and second to get the transimpedance from node 2 to node 2 (i.e. Z22). But why
solving it two times, if only one voltage should be calculated? With every step transimpedances
are calculated that are not need. Is there no more effective way?

Fortunately, there is Tellegen’s Theorem: A network and its adjoint network are reciprocal to each
other. That is, transposing the MNA matrix leads to the one of the reciprocal network. To check
it out:

[A]T · [x] =
[
1/R1 G
0 1/R2

]

·
[
V1

V2

]

=

[
0
0

]

(3.14)
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R2R1

SRC1
G=1 S

Node2Node1

Figure 3.2: simple network to compare with adjoint network

Compare the transposed matrix with the reciprocal network in figure 3.2. It is true! But now it
is: [

1/R1 G
0 1/R2

]

·
[
Z12,reciprocal

Z22,reciprocal

]

=

[
1/R1 G
0 1/R2

]

·
[
Z21

Z22

]

=

[
0
−1

]

(3.15)

Because Z21 of the original network equals Z12 of the reciprocal network, the one step delivers
exactly what is needed. So the next step is:

([A]T )−1 ·
[
0
−1

]

=

[
R1 −G ·R1 ·R2

0 R2

]

·
[
0
−1

]

=

[
G ·R1 ·R2

−R2

]

=

[
Z21

Z22

]

(3.16)

Now, as the transimpedances are known, the noise voltage at node 2 can be computed. As there
is no correlation, it writes as follows:

< v2node2 > = < v2R1,node2 > + < v2R2,node2 > (3.17)

= < i2R1 > ·Z21 ·Z∗
21+ < i2R2 > ·Z22 ·Z∗

22 (3.18)

=
4 · k ·T ·∆f

R1
· (G ·R1 ·R2)

2 +
4 · k ·T ·∆f

R2
· (−R2)

2 (3.19)

= 4 · k ·T ·∆f ·
(
R1 · (G ·R2)

2 +R2

)
(3.20)

That’s it. Yes, this could have be computed more easily, but now the universal algorithm is also
clear.

3.3 Noise Current Correlation Matrix

The sections 10 and 11 show the noise current correlation matrices of noisy components. The
equations are built for RMS noise currents with 1Hz bandwidth.
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Chapter 4

Scattering parameters

4.1 Introduction and definition

Voltage and current are hard to measure at very high frequencies. Short and open circuits (used
to define most n-port parameters) are hard to realize at high frequencies. Therefore, microwave
engineers work with so-called scattering parameters (s-parameters), that uses waves and matched
terminations (normally 50Ω). This procedure also minimizes reflection problems.

A (normalized) power wave is defined as ingoing wave a or outgoing wave b [2]:

a =
u+ Z0 · i

2
︸ ︷︷ ︸

Uforward

· 1
√

|ReZ0)|
b =

u− Z∗
0 · i

2
︸ ︷︷ ︸

Ubackward

· 1
√

|ReZ0)|
(4.1)

where u is (effective) voltage, i (effective) current flowing into the device and Z0 reference
impedance. The actual power delivered by the source to the load is as follows.

P =
(
|a|2 − |b|2

)
(4.2)

From the above equation, it becomes clear that |a|2 is the available power, i.e. the maximum
power that the source can deliver. Sometimes waves are defined with peak voltages and peak
currents. The only difference that appears then is the relation to power:

P =
1

2
·
(
|a|2 − |b|2

)
(4.3)

Now, characterizing an n-port is straight-forward:





b1
...
bn




 =






S11 . . . S1n
...

. . .
...

Sn1 . . . Snn




 ·






a1
...
an




 (4.4)

One final note: The reference impedance Z0 can be arbitrary chosen. Normally, it’s real-valued
(e.g. 50Ω), and there is no urgent reason to use a complex one. The definitions in equation 4.1,
however, are made form complex impedances. These waves relate to power, but they differ from
the voltage and current waves introduced in the following chapter. For real reference impedances
both definitions equal each other.

4.2 Waves on Transmission Lines

This section should derive the existence of the voltage and current waves on a transmission line.
This way, it also proofs that the definitions from the last section make sense.
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L'R'

∂z

G' C'

z

Figure 4.1: Infinite short piece of transmission line

Figure 4.1 shows the equivalent circuit of an infinite short piece of an arbitrary transmission line.
The names of the components all carry a single quotation mark which indicates a per-length
quantity. Thus, the units are ohms/m for R′, henry/m for L′, siemens/m for G′ and farad/m for
C′. Writing down the change of voltage and current across a piece with length ∂z results in the
transmission line equations.

∂u

∂z
= −R′ · i(z)− L′ · ∂i

∂t
(4.5)

∂i

∂z
= −G′ ·u(z)− C′ · ∂u

∂t
(4.6)

Transforming these equations into frequency domain leads to:

∂U

∂z
= −I(z) · (R′ + jωL′) (4.7)

∂I

∂z
= −U(z) · (G′ + jωC′) (4.8)

Taking equation 4.8 and setting it into the first derivative of equation 4.7 creates the wave equation:

∂2U

∂z2
= γ2 ·U (4.9)

with γ2 = (α+ jβ)2 = (R′ + jωL′) · (G′ + jωC′). The complete solution of the wave equation is:

U(z) = U1 · exp(−γ · z)
︸ ︷︷ ︸

Uf (z)

+U2 · exp(γ · z)
︸ ︷︷ ︸

Ub(z)

(4.10)

As can be seen, there is a voltage wave Uf (z) travelling forward (in positive z direction) and there
is a voltage wave Ub(z) travelling backwards (in negative z direction). By setting equation 4.10
into equation 4.7, it becomes clear that the current behaves in the same way:

I(z) =
γ

R′ + jωL′
︸ ︷︷ ︸

Y L

·
(
Uf (z)− U b(z)

)
=: If (z) + Ib(z) (4.11)

Note that both current waves are counted positive in positive z direction. In literature, the
backward flowing current wave Ib(z) is sometime counted the other way around which would
avoid the negative sign within some of the following equations.
Equation 4.11 introduces the characteristic admittance Y L. The propagation constant γ and the
characteristic impedance ZL are the two fundamental properties describing a transmission line.

ZL =
1

Y L

=
Uf

If
= −U b

Ib
=

√

R′ + jωL′

G′ + jωC′ ≈
√

L′

C′ (4.12)
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Note that ZL is real-valued if the line loss (due to R′ and G′) is zero. Usually, this is a good
approximation in reality. The combination of equation equation 4.11 and 4.12 shows what happens
at the end of a transmission line, if it’s terminated with the impedance Ze:

Ze =
Ue

Ie
=

Uf + U b

If + Ib
=

Uf + U b

If − Ub/ZL

= ZL ·
Uf + U b

ZL · If − Ub

= ZL ·
1 + U b/Uf

1− U b/Uf

(4.13)

⇒ Ze

ZL

·
(

1− U b

Uf

)

= 1 +
U b

Uf

⇒ Ze

ZL

− 1 =

(
Ze

ZL

+ 1

)

· Ub

Uf

(4.14)

As can be seen, the ration of Ze and Ze determines the ratio of forward and backward travelling
voltage wave. Therefore, this is an important quantity which is named reflection coefficient r:

r =
U b

Uf

= − Ib
If

=
Ze − ZL

Ze + ZL

=
Ze/ZL − 1

Ze/ZL + 1
=

Ue − ZL · Ie
Ue + ZL · Ie

(4.15)

This means that a part of the voltage and current wave is reflected back if the end of a transmission
line is not terminated by an impedance that equals ZL. The same effect occurs in the middle of
a transmission line, if its characteristic impedance changes.

U = Uf + U b I = If + Ib

Uf = 1
2 · (U + I ·ZL) If = 1

2 · (U/ZL + I)

Ub =
1
2 · (U − I ·ZL) Ib =

1
2 · (I − U/ZL)

Note that for power waves the reflection coefficient has a slightly different definition, because the
maximum output power is reached with a conjugate-complex termination:

r =
Ze − Z∗

L

Ze + ZL

(4.16)

4.3 Computing with S-parameters

4.3.1 S-parameters in CAE programs

The most common task of a simulation program is to compute the S parameters of an arbitrary
network that consists of many elementary components connected to each other. To perform this,
one can build a large matrix containing the S parameters of all components and then use matrix
operations to solve it. However this method needs heavy algorithms. A more elegant possibility was
published in [3]. Each step computes only one connection and so unites two connected components
to a single S parameter block. This procedure has to be done with every connection until there is
only one block left whose S parameters therefore are the simulation result.

Connecting port k of circuit (S) with port l of circuit (T ), the new S-parameters are

S′
ij = Sij +

Skj ·T ll ·Sik

1− Skk ·T ll

(4.17)

with i and j both being ports of (S). Furthermore, it is

S′
mj =

Skj ·Tml

1− Skk ·T ll

(4.18)

with m being a port of the circuit (T ). If two ports of the same circuit (S) are connected, the new
S-parameters are

S′
ij = Sij +

Skj ·Sil · (1− Slk) + Slj ·Sik · (1− Skl) + Skj ·Sll ·Sik + Slj ·Skk ·Sil

(1 − Skl) · (1− Slk)− Skk ·Sll

. (4.19)
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If more than two ports are connected at a node, one have to insert one or more ideal tee compo-
nents. Its S-parameters write as follows.

(
S
)
=

1

3
·





−1 2 2
2 −1 2
2 2 −1



 (4.20)

For optimisation reasons it may be desirable to insert a cross if at least four components are
connected at one node. Its S-parameters write as follows.

(
S
)
=

1

2
·







−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1







(4.21)

4.3.2 Theoretical Background

The formulas (4.17), (4.18) and (4.19) were obtained using the “nontouching-loop” rule being an
analytical method for solving a flow graph. In order to derive these equations, first a few basic
definitions have to be understood.

A “path” is a series of branches into the same direction with no node touched more than once.
A paths value is the product of the coefficients of the branches. A “loop” is formed when a path
starts and finishes at the same node. A “first-order” loop is a path coming to closure with no
node passed more than once. Its value is the product of the values of all branches encountered on
the route. A “second-order” loop consists of two first-order loops not touching each other at any
node. Its value is calculated as the product of the values of the two first-order loops. Third- and
higher-order loops are three or more first-order loops not touching each other at any node.

The nontouching-loop rule can be applied to solve any flow graph. In the following equation in
symbolic form T represents the ratio of the dependent variable in question and the independent
variable.

T =

P1 ·
(

1− ΣL
(1)
1 +ΣL

(1)
2 − ΣL

(1)
3 + . . .

)

+ P2 ·
(

1− ΣL
(2)
1 +ΣL

(2)
2 − ΣL

(2)
3 + . . .

)

+P3 ·
(

1− ΣL
(3)
1 +ΣL

(3)
2 − ΣL

(3)
3 + . . .

)

+ P4 · (1− . . .) + . . .

1− ΣL1 +ΣL2 − ΣL3 + . . .
(4.22)

In eq. (4.22) ΣL1 stands for the sum of all first-order loops, ΣL2 is the sum of all second-order
loops, and so on. P1, P2, P3 etc., stand for the values of all paths that can be found from the

independent variable to the dependent variable. ΣL
(1)
1 denotes the sum of those first-order loops

which do not touch (hence the name) the path of P1 at any node, ΣL
(1)
2 denotes then the sum of

those second-order loops which do not touch the path P1 at any point, ΣL
(2)
1 consequently denotes

the sum of those first-order loops which do not touch the path of P2 at any point. Each path is
multiplied by the factor in parentheses which involves all the loops of all orders that the path does
not touch.

When connecting two different networks the signal flow graph in fig. 4.2 is used to compute the
new S-parameters. With equally reference impedances on port k and port l the relations ak = bl
and al = bk are satisfied.
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sij skk t ll
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T(   )

bm

bi b a=l k

bk al=aj

Figure 4.2: signal flow graph of a joint between ports k and l on different networks

There is only one first-order loop (see fig. 4.3) within this signal flow graph. This loops value
yields to

L11 = Skk ·T ll (4.23)

sij skk t ll

sik

s tkj ml

bm

bi b a=l k

bk al=aj

Figure 4.3: loops in the signal flow graph when connecting ports k and l on different networks

The paths that can be found from the independent variable aj to the dependent variable bi (as
depicted in fig. 4.4) can be written as

P1 = Skj ·T ll ·Sik (4.24)

P2 = Sij (4.25)

sij skk t ll

sik

s tkj ml

bm

bi b a=l k

bk al=aj

sij skk t ll

sik

s tkj ml

bm

bi b a=l k

bk al=aj

sij skk t ll

sik

s tkj ml

bm

bi b a=l k

bk al=aj

Figure 4.4: paths in the signal flow graph when connecting ports k and l on different networks

Applying the nontouching-loop rule, i.e. eq. (4.22), gives the new S-parameter S′
ij

S′
ij =

bi
aj

=
P1 · (1− L11) + P2 · 1

1− L11

=
Sij · (1− Skk ·T ll) + Skj ·T ll ·Sik

1− Skk ·T ll

= Sij +
Skj ·T ll ·Sik

1− Skk ·T ll

(4.26)
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The only path that can be found from the independent variable aj to the dependent variable bm
(as depicted in fig. 4.4) can be written as

P1 = Skj ·Tml (4.27)

Thus the new S-parameter S′
mj yields to

S′
mj =

bm
aj

=
P1 · 1

1− L11
=

Skj ·Tml

1− Skk ·T ll

(4.28)

When connecting the same network the signal flow graph in fig. 4.5 is used to compute the new
S-parameters. With equally reference impedances on port k and port l the relations ak = bl and
al = bk are satisfied.

aj
sij skk

bk al=

b a=l k

skj

sikbi

aj

lls

s

s

s

slj

il

kl

lk

S(   )

bi

l

k

Figure 4.5: signal flow graph of a joint between ports k and l on the same network

There are three first-order loops and a second-order loop (see fig. 4.6) within this signal flow
graph. These loops’ values yield to

L11 = Skk ·Sll (4.29)

L12 = Skl (4.30)

L13 = Slk (4.31)

L21 = L12 ·L13 = Skl ·Slk (4.32)

sij skk

bk al=

b a=l k

skj

sik

sij skk

bk al=

b a=l k

skj

sik

sij skk

bk al=

b a=l k

skj

sikbi

aj

lls

s

s

s

slj

il

kl

lk bi

aj

lls

s

s

s

slj

il

kl

lk bi

aj

lls

s

s

s

slj

il

kl

lk

Figure 4.6: loops in the signal flow graph when connecting ports k and l on the same network

There are five different paths that can be found from the independent variable aj to the dependent

32



variable bi (as depicted in fig. 4.7) which can be written as

P1 = Skj ·Sll ·Sik (4.33)

P2 = Skj ·Sil (4.34)

P3 = Slj ·Sik (4.35)

P4 = Sij (4.36)

P5 = Slj ·Skk ·Sil (4.37)
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Figure 4.7: paths in the signal flow graph when connecting ports k and l on the same network

Thus the new S-parameter S′
ij yields to

S′
ij =

P1 + P2 · (1− L13) + P3 · (1− L12) + P4 · (1− (L11 + L12 + L13) + L21) + P5

1− (L11 + L12 + L13) + L21

= P4 +
P1 + P2 · (1− L13) + P3 · (1− L12) + P5

1− (L11 + L12 + L13) + L21

= Sij +
Skj ·Sll ·Sik + Skj ·Sil · (1− Slk) + Slj ·Sik · (1− Skl) + Slj ·Skk ·Sil

1− (Skk ·Sll + Skl + Slk) + Skl ·Slk

= Sij +
Skj ·Sll ·Sik + Skj ·Sil · (1− Slk) + Slj ·Sik · (1− Skl) + Slj ·Skk ·Sil

(1− Skl) · (1− Slk)− Skk ·Sll

(4.38)

This short introduction to signal flow graphs and their solution using the nontouching-loop rule
verifies the initial formulas used to compute the new S-parameters for the reduced subnetworks.

4.3.3 Differential S-parameter ports

The implemented algorithm for the S-parameter analysis calculates S-parameters in terms of the
ground node. In order to allow differential S-parameters as well it is necessary to insert an ideal
impedance transformer with a turns ratio of 1:1 between the differential port and the device under
test.
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Figure 4.8: transformation of differential port into single ended port

The S-parameter matrix of the inserted ideal transformer being a three port device can be written
as follows.

(
S
)
=

1

3
·





1 2 −2
2 1 2
−2 2 1



 (4.39)

This transformation can be applied to each S-parameter port in a circuit regardless whether it is
actually differential or not.

It is also possible to do the impedance transformation within this step (for S-parameter ports with
impedances different than 50Ω). This can be done by using a transformer with an impedance
ration of

r = T 2 =
50Ω

Z
(4.40)

With Z being the S-parameter port impedance. The S-parameter matrix of the inserted ideal
transformer now writes as follows.

(
S
)
=

1

2 ·Z0 + Z
·





2 ·Z0 − Z 2 ·
√
Z0 ·Z −2 ·

√
Z0 ·Z

2 ·
√
Z0 ·Z Z 2 ·Z0

−2 ·
√
Z0 ·Z 2 ·Z0 Z



 (4.41)

With Z being the new S-parameter port impedance and Z0 being 50Ω.

4.4 S-Parmeters via AC Analysis

In the chapter above it was shown how to make an s-parameter analysis by connecting all compo-
nents step-by-step together. This is an elegant concept. Nonetheless, a more practical approach
is to use an AC analysis, because this way, the s-parameters of the components need not to be
computed. Instead, the full s-parameters are calculated by solving the MNA matrix and obtaining
the result from the following equations:
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Smn =
Um − Im ·Zm

Un + In ·Zn
·
√

Zn

Zm
(4.42)

=
2 ·Um − U0,m

U0,n

·
√

Zn

Zm
(4.43)

for m = n

Snn = 2 · Un

U0,n

− 1 (4.44)

and for m 6= n

Smn = 2 · Um

U0,n

·
√

Zn

Zm
(4.45)

As can be seen, to get the n-th column of the s-parameter matrix port n must be stimulated
whereas all other ports must be passive. Hence, for an n-port s-parameter simulation the MNA
matrix must be solved n times. LU decomposition should be used, because for each of the n solu-
tions the right-hand side changes only. By using the short-circuit current stimulation I0,n = 2V/Zn

for port n, its open-circuit voltage is U0,n = 2V and the above-mentioned formulas become:

for m = n
Snn = Un − 1 (4.46)

and for m 6= n

Smn = Um ·
√

Zn

Zm
(4.47)

where Un is the voltage at port n. These equations become more complicated, if the reference
impedances Zn are not real-valued. With the definition of power waves (equation 4.1), the s-
parameters yield:

Smn =
2 ·Um ·Re(Zm)− I0,m · |Zm|2

I0,n ·Zn ·Zm
·
√

|Re(Zn)|
|Re(Zm)| (4.48)

4.5 Mixed-Mode S-Parmeters

In most cases the s-parameters are referenced to ground. This is shown in the chapters before
and fits perfectly the most popular microwave topologies, like coaxial cables. But as topologies
without ground-reference exist (like dipole antennas), there is also sense in defining s-parameters
this way.

The definition of mixed-mode s-parameters [4] can be seen in figure 4.9. Each port has two
terminals. This configuration exhibits two independent modes:

common mode: Uc =
1

2
· (U1 + U2) and Ic = I1 + I2 (4.49)

differential mode: Ud = U1 − U2 and Id =
1

2
· (I1 − I2) (4.50)
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Figure 4.9: two-terminal port

Measuring the ground-referenced s-parameters of each terminal, the mixed-mode s-parameters of
a two-port can be calculated as follows. (Here, terminal 1 and 2 are port 1, as well as terminal 3
and 4 are port 2.)

Sdd11 =
1

2
· (S11 − S21 − S12 + S22) (4.51)

Sdd12 =
1

2
· (S13 − S23 − S14 + S24) (4.52)

Sdd21 =
1

2
· (S31 − S41 − S32 + S42) (4.53)

Sdd22 =
1

2
· (S33 − S43 − S34 + S44) (4.54)

Sdc11 =
1

2
· (S11 − S21 + S12 − S22) (4.55)

Sdc12 =
1

2
· (S13 − S23 + S14 − S24) (4.56)

Sdc21 =
1

2
· (S31 − S41 + S32 − S42) (4.57)

Sdc22 =
1

2
· (S33 − S43 + S34 − S44) (4.58)

Scd11 =
1

2
· (S11 + S21 − S12 − S22) (4.59)

Scd12 =
1

2
· (S13 + S23 − S14 − S24) (4.60)

Scd21 =
1

2
· (S31 + S41 − S32 − S42) (4.61)

Scd22 =
1

2
· (S33 + S43 − S34 − S44) (4.62)

Scc11 =
1

2
· (S11 + S21 + S12 + S22) (4.63)

Scc12 =
1

2
· (S13 + S23 + S14 + S24) (4.64)

Scc21 =
1

2
· (S31 + S32 + S41 + S42) (4.65)

Scc22 =
1

2
· (S33 + S43 + S34 + S44) (4.66)

The concept is easily extendable to n-ports by replacing indices accordingly.
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4.6 Applications

4.6.1 Stability

A very important task in microwave design (especially for amplifiers) is the question, whether the
circuit tends to unwanted oscillations. A two-port oscillates if, despite of no signal being fed into
it, AC power issues from at least one of its ports. This condition can be easily expressed in terms
of RF quantities, so a circuit is stable if:

|r1| < 1 and |r2| < 1 (4.67)

with r1 being reflexion coefficient of port 1 and r2 the one of port 2.

A further question can be asked: What conditions must be fulfilled to have a two-port be stable
for all combinations of passive impedance terminations at port 1 and port 2? Such a circuit is
called unconditionally stable. [5] is one of the best discussions dealing with this subject.

A circuit is unconditionally stable if the following two relations hold:

K =
1− |S11|2 − |S22|2 + |∆|2

2 · |S12 ·S21|
> 1 (4.68)

|∆| = |S11 ·S22 − S12 ·S21| < 1 (4.69)

with ∆ being the determinant of the S parameter matrix of the two port. K is called Rollet
stability factor. Two relations must be fulfilled to have a necessary and sufficient criterion.

A more practical criterion (necessary and sufficient) for unconditional stability is obtained with
the µ-factor:

µ =
1− |S11|2

|S22 − S∗
11 ·∆|+ |S12 ·S21|

> 1 (4.70)

Because of symmetry reasons, a second stability factor must exist that also gives a necessary and
sufficient criterion for unconditional stability:

µ′ =
1− |S22|2

|S11 − S∗
22 ·∆|+ |S12 ·S21|

> 1 (4.71)

For conditional stable two-ports it is interesting which load and which source impedance may
cause instability. This can be seen using stability circles [6]. A disadvantage of this method is
that the radius of the below-mentioned circles can become infinity. (A circle with infinite radius
is a line.)

Within the reflexion coefficient plane of the load (rL-plane), the stability circle is:

rcenter =
S∗
22 − S11 ·∆∗

|S22|2 − |∆|2
(4.72)

Radius =
|S12| · |S21|
|S22|2 − |∆|2

(4.73)

If the center of the rL-plane lies within this circle and |S11| ≤ 1 then the circuit is stable for
all reflexion coefficients inside the circle. If the center of the rL-plane lies outside the circle and
|S11| ≤ 1 then the circuit is stable for all reflexion coefficients outside the circle.

Very similar is the situation for reflexion coefficients in the source plane (rS-plane). The stability
circle is:

rcenter =
S∗
11 − S22 ·∆∗

|S11|2 − |∆|2
(4.74)
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Radius =
|S12| · |S21|
|S11|2 − |∆|2

(4.75)

If the center of the rS-plane lies within this circle and |S22| ≤ 1 then the circuit is stable for
all reflexion coefficients inside the circle. If the center of the rS-plane lies outside the circle and
|S22| ≤ 1 then the circuit is stable for all reflexion coefficients outside the circle.

4.6.2 Gain

Maximum available and stable power gain (only for unconditional stable 2-ports) [6]:

Gmax =

∣
∣
∣
∣

S21

S12

∣
∣
∣
∣
·
(

K −
√

K2 − 1
)

(4.76)

where K is Rollet stability factor.

The (bilateral) transmission power gain (or transducer power gain) of a two-port is the ratio
between the power delivered to the load and the available power of the source.

GT =
|S21|2 · (1− |rS |2) · (1− |rL|2)

|1− rS ·S11 − rL ·S22 +∆ · rS · rL|2
(4.77)

The transducer power gain can be split into three parts [6]:

GT = GS ·G0 ·GL (4.78)

with

GS =
(1− |rS |2) · (1 − |r1|2)

|1− rS · r1|2
(4.79)

G0 = |S21|2 (4.80)

GL =
1− |rL|2

|1− rL ·S22|2 · (1− |r1|2)
(4.81)

where r1 is reflexion coefficient of the two-port input:

r1 = S11 +
S12 ·S21 · rL
1− rL ·S22

(4.82)

The curves of constant gain are circles in the reflexion coefficient plane. The circle for the load-
mismatched two-port with gain GL is

rcenter =
(S∗

22 − S11 ·∆∗) ·GL

GL · (|S22|2 − |∆|2) + 1
(4.83)

Radius =

√

1−GL · (1− |S11|2 − |S22|2 + |∆|2) +G2
L · |S12 ·S21|2

GL · (|S22|2 − |∆|2) + 1
(4.84)

The circle for the source-mismatched two-port with gain GS is

rcenter =
GS · r∗1

1− |r1|2 · (1−GS)
(4.85)

Radius =

√
1−GS · (1− |r1|2)
1− |r1|2 · (1−GS)

(4.86)
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The available power gain GA of a two-port is reached when the source is conjugately matched to
the input port and the load is conjugately matched to the output port. It is:

GA =
|S21|2 · (1− |rS |2)

|1− S11 · rS |2 − |S22 −∆ · rS |2
(4.87)

with ∆ = S11S22 − S12S21. The curves with constant gain GA are circles in the source reflexion
coefficient plane (rS-plane). The center rS,c and the radius RS are:

rS,c =
gA ·C∗

1

1 + gA · (|S11|2 − |∆|2)
(4.88)

RS =

√

1− 2 ·K · gA · |S12S21|+ g2A · |S12S21|2
|1 + gA · (|S11|2 − |∆|2)|

(4.89)

with C1 = S11 − S∗
22 ·∆, gA = GA/|S21|2 and K Rollet stability factor.

The operating (or effective) power gain GP of a two-port is the output power delivered to the load
divided by the input power delivered to the amplifier. It is:

GP =
|S21|2 · (1− |rL|2)

|1− S22 · rL|2 − |S11 −∆ · rL|2
(4.90)

with ∆ = S11S22 − S12S21. The curves with constant gain GP are circles in the load reflexion
coefficient plane (rL-plane). The center rL,c and the radius RL are:

rL,c =
gP ·C∗

2

1 + gP · (|S22|2 − |∆|2)
(4.91)

RL =

√

1− 2 ·K · gP · |S12S21|+ g2P · |S12S21|2
|1 + gP · (|S22|2 − |∆|2)|

(4.92)

with C2 = S22 − S∗
11 ·∆, gP = GP /|S21|2 and K Rollet stability factor.

4.6.3 Power Matching

A frequent task in microwave engineering is to match a load impedance ZL to an internal source
impedance ZS . It aims at getting the maximum possible power out of the RF generator. This
occurs if the load impedance equals the conjugate-complex of the source impedance. There are
many ways to achieve this power matching. The most easy and obvious one uses a series and a
parallel reactance, as depicted in figure 4.10. This combination always succeeds, if real value of
source and load impedance is greater zero. But it has a small bandwidth only.

ZS

ZL

jX

jY

1

2

Z = Zin S

!
*

Figure 4.10: Power match with an L circuit
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According to figure 4.11 the reactance X1 and the susceptance Y2 are calculated as follows:

r2 =

(
0.5

GS

)2

= X2 +

(

RL −
0.5

GS

)2

(4.93)

⇒X2 =
0.25

G2
S

−R2
L +

RL

GS
− 0.25

G2
S

(4.94)

⇒X = ±
√

RL ·
(

1

GS
−RL

)

(4.95)

with
1

GS
=

1

Re
(

1
RS+jXS

) =
1

Re
(

RS−jXS

R2
S
+X2

S

) =
R2

S +X2
S

RS
(4.96)

this yields

X1 = X −XL = ±
√

RL ·
(
R2

S +X2
S

RS
−RL

)

−XL (4.97)

Finally, the remaining susceptance must be compensated, i.e.:

Y2 = −Im
(

1

RL + jX

)

− Im

(
1

RS + jXS

)

=
X

R2
L +X2

+
XS

R2
S +X2

S

(4.98)

This method is possible if RL ≤ 1/GS. If this isn’t the case, source and load impedance has to be
exchanged, i.e. the series and parallel elements X1 and Y2 have to be mirrored.

Re(Z)

Im(Z)

X
r

R

R +jX

Re( )=

1
GL S

L

0.5
GS

Z

1 1
GS

Figure 4.11: Impedance plane showing the matching path

4.6.4 Two-Port Matching

Obtaining concurrent power matching of input and output in a bilateral circuit is not such simple,
due to the backward transmission S12. However, in linear circuits, this task can be easily solved
by the following equations:

∆ = S11 ·S22 − S12 ·S21 (4.99)

B = 1 + |S11|2 − |S22|2 − |∆|2 (4.100)

C = S11 − S∗
22 ·∆ (4.101)

rS =
1

2 ·C ·
(

B −
√

B2 − |2 ·C|2
)

(4.102)

Here rS is the reflexion coefficient that the circuit needs to see at the input port in order to reach
concurrently matched in- and output. For the reflexion coefficient at the output rL the same
equations hold by simply changing the indices (exchange 1 by 2 and vice versa).
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4.6.5 De-embeding

During measurements it often happens that some parts of the device under test (DUT) needs to
be separated from the rest of the result. For example: An amplifier should be measured, but
because of its high output signal, an attenuator must be inserted (embeded) to prevent damaging
the s-parameter system. So the measurement results have to be re-calculated afterwards in order
to remove the influence of the attenuator. This procedure is called de-embeding and is done
by measuring the s-paramters Sembed of the attenuator alone, take them to calculate a new s-
parameter set Sdeembed and finally use a CAE program to connect the blocks together:
(Sdeembed → [Sembed → SDUT ]) ≡ SDUT

The s-parameters Sdeembed are computed from the original s-parameters Sembed as follows:

Sdeembed =
1

∆S
·
(

S11 −S21

−S12 S22

)

(4.103)

where ∆S is the determinante of the s-parameter matrix.
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Chapter 5

Noise Waves

5.1 Definition

In microwave circuits described by scattering parameters, it is advantageous to regard noise as
noise waves [7]. The noise characteristics of an n-port is then defined completely by one outgoing
noise wave bnoise,n at each port (see 2-port example in fig. 5.1) and the correlation between
these noise sources. Therefore, mathematically, you can characterize a noisy n-port by its n × n
scattering matrix (S) and its n× n noise wave correlation matrix (C).

(C) =









bnoise,1 · b∗noise,1 bnoise,1 · b∗noise,2 . . . bnoise,1 · b∗noise,n
bnoise,2 · b∗noise,1 bnoise,2 · b∗noise,2 . . . bnoise,2 · b∗noise,n

...
...

. . .
...

bnoise,n · b∗noise,1 bnoise,n · b∗noise,2 . . . bnoise,n · b∗noise,n









=








c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn








(5.1)

Where x is the time average of x and x∗ is the conjugate complex of x. Noise correlation matrices
are hermitian matrices because the following equations hold.

Im (cnn) = Im
(

|bnoise,n|2
)

= 0 (5.2)

cnm = c∗mn (5.3)

Where Im(x) is the imaginary part of x and |x| is the magnitude of x.
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Figure 5.1: signal flow graph of a noisy 2-port

5.2 Noise Parameters

Having the noise wave correlation matrix, one can easily compute the noise parameters [7]. The
following equations calculate them with regard to port 1 (input) and port 2 (output). (If one uses
an n-port and want to calculate the noise parameters regarding to other ports, one has to replace
the index numbers of S- and c-parameters accordingly. I.e. replace ”1” with the number of the
input port and ”2” with the number of the output port.)

Noise figure:

F =
SNRin

SNRout
= 1 +

Te

T0
= 1 +

c22
k ·T0 · |S21|2

(5.4)

NF [dB] = 10 · lgF (5.5)

with Te being the equivalent noise temperature of the input port.
Optimal source reflection coefficient (normalized according to the input port impedance):

Γopt = η2 ·
(

1−
√

1− 1

|η2|2

)

(5.6)

With
η1 = c11 · |S21|2 − 2 ·Re (c12 ·S21 ·S∗

11) + c22 · |S11|2 (5.7)

η2 =
1

2
· c22 + η1
c22 ·S11 − c12 ·S21

(5.8)

Minimum noise figure:

Fmin = 1 +
c22 − η1 · |Γopt|2

k ·T0 · |S21|2 · (1 + |Γopt|2)
(5.9)

NFmin = 10 · lgFmin (5.10)

Equivalent noise resistance:

Rn =
Zport,in

4 · k ·T0
·
(

c11 − 2 ·Re
(

c12 ·
(
1 + S11

S21

)∗)

+ c22 ·
∣
∣
∣
∣

1 + S11

S21

∣
∣
∣
∣

2
)

(5.11)

With Zport,in internal impedance of input port
Boltzmann constant k = 1.380658 ·10−23 J/K
standard temperature T0 = 290K
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Calculating the noise wave correlation coefficients from the noise parameters is straightforward as
well.

c11 = k ·Tmin · (|S11|2 − 1) +Kx · |1− S11 ·Γopt|2 (5.12)

c22 = |S21|2 ·
(
k ·Tmin +Kx · |Γopt|2

)
(5.13)

c12 = c∗21 = −S∗
21 ·Γ∗

opt ·Kx +
S11

S21
· c22 (5.14)

with

Kx =
4 · k ·T0 ·Rn

Z0 · |1 + Γopt|2
(5.15)

Tmin = T0 · (Fmin − 1) (5.16)

Once having the noise parameters, one can calculate the noise figure for every source admittance
YS = GS + j ·Bs, source impedance ZS = RS + j ·Xs, or source reflection coefficient rS .

F =
SNRin

SNRout
=

Tequi

T0
+ 1 (5.17)

= Fmin +
Gn

RS
·
(
(RS −Ropt)

2 + (XS −Xopt)
2
)

(5.18)

= Fmin +
Gn

RS
·
∣
∣ZS − Zopt

∣
∣
2

(5.19)

= Fmin +
Rn

GS
·
(
(GS −Gopt)

2 + (BS −Bopt)
2
)

(5.20)

= Fmin +
Rn

GS
·
∣
∣Y S − Y opt

∣
∣
2

(5.21)

= Fmin + 4 · Rn

Z0
·

∣
∣Γopt − rS

∣
∣
2

(1− |rS |2) ·
∣
∣1 + Γopt

∣
∣
2 (5.22)

Where SNRin and SNRout are the signal to noise ratios at the input and output, respectively,
Tequi is the equivalent (input) noise temperature. Note that Gn does not equal 1/Rn.

All curves with constant noise figures are circles (in all planes, i.e. impedance, admittance and
reflection coefficient). A circle in the reflection coefficient plane has the following parameters.

center point:

rcenter =
Γopt

1 +N
(5.23)

radius:

R =

√

N2 +N · (1− |Γopt|2)
1 +N

(5.24)

with

N =
Z0

4 ·Rn
· (F − Fmin) · |1 + Γopt|2 (5.25)

5.3 Noise Wave Correlation Matrix in CAE

Due to the similar concept of S parameters and noise correlation coefficients, the CAE noise
analysis can be performed quite alike the S parameter analysis (section 4.3.1). As each step uses
the S parameters to calculate the noise correlation matrix, the noise analysis is best done step by
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step in parallel with the S parameter analysis. Performing each step is as follows: We have the
noise wave correlation matrices ( (C), (D) ) and the S parameter matrices ( (S), (T ) ) of two
arbitrary circuits and want to know the correlation matrix of the special circuit resulting from
connecting two circuits at one port.
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(S)i k
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b

b

a

ii
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S’
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S’jj

ji
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noise,i

noise,j
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i j

j

T

T

T

jl

lj
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b

a
S

S

ki

ik

SkkSii

noise,i

noise,k

noise,l

noise,j

b

b

b

b

i

i
a

b

Tjj

j

j

j(T)
(D)

l

i j

(C’)
(S’)

Figure 5.2: connecting two noisy circuits, scheme (left) and signal flow graph (right)

An example is shown in fig. 5.2. What we have to do is to transform the inner noise waves bnoise,k
and bnoise,l to the open ports. Let us look upon the example. According to the signal flow graph

the resulting noise wave b′noise,i writes as follows:

b′noise,i = bnoise,i + bnoise,k ·
T ll ·Sik

1− Skk ·T ll

+ bnoise,l ·
Sik

1− Skk ·T ll

(5.26)

The noise wave bnoise,j does not contribute to b′noise,i, because no path leads to port i. Calculating

b′noise,j is quite alike:

b′noise,j = bnoise,j + bnoise,l ·
T jl ·Skk

1− Skk ·T ll

+ bnoise,k ·
T jl

1− Skk ·T ll

(5.27)

Now we can derive the first element of the new noise correlation matrix by multiplying eq. (5.26)
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with eq. (5.27).

c′ij = b′noise,i · b′∗noise,j
= bnoise,i · b∗noise,j

+ bnoise,i · b∗noise,l ·
(

T jl ·Skk

1− Skk ·T ll

)∗
+ bnoise,i · b∗noise,k ·

(
T jl

1− Skk ·T ll

)∗

+ bnoise,k · b∗noise,j ·
T ll ·Sik

1− Skk ·T ll

+ bnoise,k · b∗noise,l ·
T ll ·Sik ·T ∗

jl ·S∗
kk

|1− Skk ·T ll|2
+ bnoise,k · b∗noise,k ·

T ll ·Sik ·T ∗
jl

|1− Skk ·T ll|2

+ bnoise,l · b∗noise,j ·
Sik

1− Skk ·T ll

+ bnoise,l · b∗noise,l ·
Sik ·T ∗

jl ·S∗
kk

|1− Skk ·T ll|2
+ bnoise,l · b∗noise,k ·

Sik ·T ∗
jl

|1− Skk ·T ll|2

(5.28)

The noise waves of different circuits are uncorrelated and therefore their time average product
equals zero (e.g. bnoise,i · b∗noise,j = 0). Thus, the final result is:

c′ij = (c′ji)
∗ = (ckk ·T ll + dll ·S∗

kk) ·
Sik ·T ∗

jl

|1− Skk ·T ll|2

+ cik ·
(

T jl

1− Skk ·T ll

)∗
+ dlj ·

Sik

1− Skk ·T ll

(5.29)

All other cases of connecting circuits can be calculated the same way using the signal flow graph.
The results are listed below.

If index i and j are within the same circuit, it results in fig. 5.3. The following formula holds:

c′ij = (c′ji)
∗ = cij + (ckk · |T ll|2 + dll) ·

Sik ·S∗
jk

|1− Skk ·T ll|2

+ cik ·
(

T ll ·Sjk

1− Skk ·T ll

)∗
+ ckj ·

T ll ·Sik

1− Skk ·T ll

(5.30)

This equation is also valid, if i equals j.

(   )
(   )

(   )
(   )

T
D

S
C

k l

j

i

Figure 5.3: connecting two noisy circuits

If the connected ports k and l are from the same circuit, the following equations must be applied
(see also fig. 5.4) to obtain the new correlation matrix coefficients.

M = (1− Skl) · (1− Slk)− Skk ·Sll (5.31)
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K1 =
Sil · (1 − Slk) + Sll ·Sik

M
(5.32)

K2 =
Sik · (1 − Skl) + Skk ·Sil

M
(5.33)

K3 =
Sjl · (1 − Slk) + Sll ·Sjk

M
(5.34)

K4 =
Sjk · (1 − Skl) + Skk ·Sjl

M
(5.35)

c′ij = cij + ckj ·K1 + clj ·K2 +K∗
3 · (cik + ckk ·K1 + clk ·K2)+

K∗
4 · (cil + ckl ·K1 + cll ·K2)

(5.36)

These equations are also valid if i equals j.

k

j

(S)
(C)

i

l

Figure 5.4: connection within a noisy circuits

The absolute values of the noise correlation coefficients are very small. To achieve a higher numer-
ical precision, it is recommended to normalize the noise matrix with k ·T0. After the simulation
they do not have to be denormalized, because the noise parameters can be calculated by using
equation (5.4) to (5.11) and omitting all occurrences of k ·T0.

The transformer concept to deal with different port impedances and with differential ports (as
described in section 4.3.3) can also be applied to this noise analysis.

5.4 Noise Parameters via AC Analysis

Above it was shown how to compute the noise wave correlation matrix of a circuit and how to
calculate the noise parameters with this matrix. This is a nice method, but it is more practical
to use the AC noise analysis. The noise of the s-parameter ports must be switched off during this
simulation. Then, the noise parameters are obtained by the noise voltage un,2 at the output port.

F =
SNRin

SNRout
= 1 +

u2
n,2 ·Re(RS)

4 · kB ·T0 · |Z21|2
(5.37)

where RS is the internal resistance of the input port and Z21 is the transimpedance between port
1 and port 2. The latter one was already calculated for getting S21.
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In order to get the complete set of noise parameters, the noise voltages at the input port un,1 and
output port un,2 as well as its correlation un,12 must be calculated (see chapter 3.2). Because the
port terminations are set noiseless during this simulation, the noise wave correlation coefficients
can then easy computed:

c11 = bnoise,1 · b∗noise,1 =

(
un,1 − Z1 · in,1

2 ·
√
Z1

)2

=
u2
n,1

Z1
(5.38)

c22 = bnoise,2 · b∗noise,2 =

(
un,2 − Z2 · in,2

2 ·
√
Z2

)2

=
u2
n,2

Z2
(5.39)

c12 = bnoise,1 · b∗noise,2 =
u2
n,12√

Z1 ·Z2

(5.40)

where Z1 and Z2 are the port impedances of input and output port, respectively. Having the
above-mentioned noise waves, all noise parameters can be calculated with the equations 5.4 to
5.11 on page 43.

5.5 Noise Correlation Matrix Transformations

The noise wave correlation matrix of a passive linear circuit generating thermal noise can simply
be calculated using Bosma’s theorem. The noise wave correlation matrices of active devices can
be determined by forming the noise current correlation matrix and then transforming it to the
equivalent noise wave correlation matrix.

The noise current correlation matrix (also called the admittance representation) CY is an n× n
matrix.

CY =








i1 · i∗1 i1 · i∗2 . . . i1 · i∗n
i2 · i∗1 i2 · i∗2 . . . i2 · i∗n
...

...
. . .

...

in · i∗1 in · i∗2 . . . in · i∗n








=








c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn








(5.41)

This definition is very likely the one made by eq. (5.1). The matrix has the same properties as
well. Because in most transistor models the noise behaviour is expressed as the sum of effects of
noise current sources it is easier to form this matrix representation.

5.5.1 Transformations

There are three usable noise correlation matrix representations for multiport circuits.

• admittance representation CY - based on noise currents

• impedance representation CZ - based on noise voltages

• wave representation CS - based on noise waves

According to Scott W. Wedge and David B. Rutledge [7] the transformations between these
representations write as follows.

CY CZ CS

CY CY Y ·CZ ·Y + (E + Y ) ·CS · (E + Y )
+

CZ Z ·CY ·Z+ CZ (E + Z) ·CS · (E + Z)
+

CS

1

4
(E + S) ·CY · (E + S)

+ 1

4
(E − S) ·CZ · (E − S)

+
CS
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The signal as well as correlation matrices in impedance and admittance representations are as-
sumed to be normalized in the above table. E denotes the identity matrix and the + operator
indicates the transposed conjugate matrix (also called adjoint or adjugate).

Each noise correlation matrix transformation requires the appropriate signal matrix representation
which can be obtained using the formulas given in section 19.1 on page 242.

For 2-ports there is another important noise correlation matrix [8], the so-called chain representa-
tion. It is defined by two noise sources at the input (port 1), a series voltage source and a parallel
current source:

CA =

(
u1 ·u∗

1 u1 · i∗1
i1 ·u∗

1 i1 · i∗1

)

=

(
Rn 0.5 · (Fmin − 1)−Rn ·Y ∗

opt

0.5 · (Fmin − 1)−Rn ·Y opt Rn · |Y opt|2
)

(5.42)

Transformations into impedance or admittance representation is done in the usual way:

CY CZ CA

CY CY Y ·CZ ·Y +

(
−y11 1
−y21 0

)

·CA ·
(
−y11 1
−y21 0

)+

CZ Z ·CY ·Z+ CZ

(
1 −z11
0 −z21

)

·CA ·
(
1 −z11
0 −z21

)+

CA

(
0 a12
1 a22

)

·CY ·
(
0 a12
1 a22

)+ (
1 −a11
0 −a21

)

·CZ ·
(
1 −a11
0 −a21

)+

CA

5.6 Noise Wave Correlation Matrix of Components

Many components do not produce any noise. Every element of their noise correlation matrix
therefore equals exactly zero. Examples are lossless, passive components, i.e. capacitors, inductors,
transformers, circulators, phase shifters. Furthermore ideal voltage and current sources (without
internal resistance) as well as gyrators also do not produce any noise.

If one wants to calculate the noise wave correlation matrix of a component, the most universal
method is to take noise voltages and noise currents and then derive the noise waves by the use of
equation (4.1). However, this can be very difficult.

A passive, linear circuit produces only thermal noise and thus its noise waves can be calculated
with Bosma’s theorem (assuming thermodynamic equilibrium).

(C) = k ·T ·
(
(E)− (S) · (S)∗T

)
(5.43)

with (S) being the S parameter matrix and (E) identity matrix. Of course, this theorem can also
be written with impedance and admittance representation of the noise correlation matrix:

CZ = 4 · k ·T ·Re(Z) (5.44)

CY = 4 · k ·T ·Re(Y ) (5.45)
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Chapter 6

Transient Analysis

The transient simulation is a non-linear time-domain analysis of a network with arbitrary excita-
tions (e.g. rectangular sources). Thus, it’s like a DC analysis with additionally current sources
stemming from loading and unloading of energy storing components (inductors and capacitors).

In the following sections the transient analysis is explained by implementing a linear capacitor.
The equations for inductors and non-linear components are described later. The relations between
current and voltage of a capacitance is given by the following differential equation:

I(t) =
dQ

dt
= C · dV

dt
(6.1)

This immediately shows what happens during a transient simulation: When the voltage V across
a capacitor changes over time t, a current I is flowing into it or out of it. This also changes the
charge Q whose value needs to be tracked by the simulation engine. That’s why it’s more practical
to transform the above equation into an integral equation:

Q(t) = Q(t = 0) +

∫ t

0

I(τ) · dτ (6.2)

So now the task will be to solve this formula numerically. The result is the current I through the
capacitor which is then added to the node currents in order to calculate the network response at
a specific time.

6.1 Integration methods

During the transient analysis the node voltages of a circuit are computed at discrete time spots
tn. Thus the notation of quantities is simplified by using indices, e.g. Q(tn) = Qn. So finally the
charge at tn+1 is calculated by its change from the previous time spot tn:

Qn+1 = Qn +

∫ tn+1

tn

I(τ) · dτ (6.3)

The time step h usually varies from step to step:

hn = tn+1 − tn (6.4)

There are many different methods for performing numerical integration. The differential equations
in transient simulations often contains very different time constants and as a consequence they are
very stiff (i.e. its eigenvalues strongly vary). Therefore, finding a stable and universal algorithm
turns out to be difficult.
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This section describes linear multi-step (LMS) integration methods. This kind of formula is used
in all traditional circuit simulators. The following list contains the most important properties:

• single- and multi-step methods
Single step methods only use Qn and/or In in order to calculate Qn+1, multi step methods
use Qi and/or Ii with 0 ≤ i < n as well. A p-step method is expressed by the following
formula:

Qn+1 =

p
∑

i=0

ai ·Qn−i + hn

p
∑

i=−1

bi · In−i (6.5)

So it can completely be defined by its coefficients ai and bi.

• order
The order k of an integration method is the maximum power of the polynom that can
approximate the solution with the same accuracy. I.e. the local truncation error εLTE can
be approximated by:

εLTE = E ·hk+1
n · d

k+1Vn

dtk+1
+O

(
hk+2
n

)
(6.6)

with E being a constant error factor and O(. . .) being a higher order term that can be
neglected. High order methods can handle larger time steps which leads to faster simulation
runs. But low order methods are more stable.

• implicit and explicit methods
Explicit integration formulas don’t contain In+1, so they predict the result without solving an
equation system (at least for linear circuits). Hence, they are faster than implicit methods,
but not suited for circuit simulations, because of not being stiff stable.

Linear multi-step methods are limited by the two Dahlquist barriers:

• First Dahlquist Stability Barrier
The order of accuracy p of a zero-stable k-step method satisfies

p ≤







k + 2 k is even

k + 1 k is odd

k is explicit

(6.7)

• Second Dahlquist Stability Barrier
An explicit method cannot be A-stable. The order of accuracy of an implicit A-stable method
satisfies p ≤ 2.

Indeed many other methods exist [9], [10] that don’t exhibits these limitations:

• Multi-stage methods (so-called Runge-Kutta) like Gauss, RADAU or SDIRK exhibit very
good stability properties. But they use intermediate steps and therefore create high compu-
tational costs.

• General linear methods (GLM) like DIMSIM tries to combine the advantages of LMS and
Runge-Kutta methods, but still need much computation power.

• Multi-derivative methods like the Obreshkov or Rosenbrock formulae are further algorithms
with good stability, but again need higher computation costs.

• Composite, cyclic composite or blended algorithms that uses combinations of different LMS
methods are able to exhibit better stability properties, but the improvements in accuracy
are usually limited.
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6.1.1 Explicit Euler Method

The explicit Euler (or forward Euler) algorithm is a first order single-step method. It’s defined by
the following formula:

Qn+1 = Qn + hn · In (6.8)

This method is conditional stable, and thus not usable for circuit simulations.

6.1.2 Implicit Euler Method

The implicit Euler (or backward Euler) algorithm is a first order single-step method. It’s defined
by the following formula:

Qn+1 = Qn + hn · In+1 ⇒ In+1 =
C

hn
· (Vn+1 − Vn) (6.9)

This method is A-stable and L-stable. But because of being single-step, its accuracy is quite low.

6.1.3 Trapezoidal Method

The trapezoidal (or bilinear) algorithm is a second order single-step method. It approximates Q(t)
linearly between two time spots, which yields the following formula:

Qn+1 = Qn +
hn

2
· (In+1 + In) ⇒ In+1 =

2C

hn
Vn+1 −

2C

hn
Vn − In (6.10)

The local truncation error εLTE writes:

εLTE =
1

12
·h3

n ·
∣
∣
∣
∣

∂3Vn

∂t3

∣
∣
∣
∣
=

h3
n

12
·
∣
∣
∣
∣

1

C
· ∂

2In
∂t2

∣
∣
∣
∣

≈ h3
n

12 ·C ·
∣
∣
∣
∣
∣

In+1−In
hn

− In−In−1

hn−1

hn

∣
∣
∣
∣
∣

=
hn

12 ·C ·
∣
∣
∣
∣
(In+1 − In)−

hn

hn−1
· (In − In−1)

∣
∣
∣
∣

(6.11)

With an error constant of E = 1/12 this method is the most accurate 2nd order LMS method and
thus also the most accurate A-stable LMS method. These properties make the trapezoidal rule to
one of the most used integration methods in circuit simulation. Unfortunately, it conserves energy
and therefore oscillations and numerical errors are not damped. Non-physical ringing may be the
result especially after switching events, i.e. this method isn’t L-stable.

6.1.4 Theta-Method

The theta-method is a modified trapezoidal algorithm defined by the following formula:

Qn+1 = Qn + hn · (θ · In+1 + (1 − θ) · In) ⇒ In+1 = C · Vn+1 − Vn

θ ·hn
− 1− θ

θ
In (6.12)
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As can be seen this yields explicit Euler for θ = 0, it yields trapezoidal for θ = 0.5 and implicit
Euler for θ = 1. The local truncation errors gives:

εLTE =

(

θ − 1

2

)

·h2
n ·

∂2Vn

∂t2
+

(
θ

2
− 1

3

)

·h3
n ·

∂3Vn

∂t3
+O(h4

n)

≈
(

θ − 1

2

)

· hn

C
· (In+1 − In) +

(
θ

2
− 1

3

)

· hn

C
·
(

In+1 − In −
hn

hn−1
· (In − In−1)

) (6.13)

Obviously, this method is explicit if θ = 0 and implicit otherwise. Furthermore, it’s second order
if θ = 0.5 and first order otherwise. It’s A-stable for θ ≥ 0.5. Usually, θ ≈ 0.54 is chosen. This
sacrifices a small piece of accuracy in order to improve stability, i.e. to avoid the non-physical
ringing that may occur with the original trapezoidal method.

6.1.5 Implicit Gear

The Gear [11] formulae (also called BDF - backward differentiation formulae) are implicit multi-
step integration methods that are stable for an order k ≤ 6.

Qn+1 =
k−1∑

i=0

ai ·Qn−i + hn · b−1 · In+1 ⇒ In+1 =
C

b−1 ·hn
·
(

Vn+1 −
k−1∑

i=0

ai ·Vn−i

)

(6.14)

The order k = 1 yields the implicit Euler method. The Gear formulas for constant step size h are
as follows:

BDF1: In+1 =
C

h
· (Vn+1 − Vn) (6.15)

BDF2: In+1 =
C

h
·
(
3

2
·Vn+1 − 2 ·Vn +

1

2
·Vn−1

)

(6.16)

BDF3: In+1 =
C

h
·
(
11

6
·Vn+1 − 3 ·Vn +

3

2
·Vn−1 −

1

3
·Vn−2

)

(6.17)

BDF4: In+1 =
C

h
·
(
25

12
·Vn+1 − 4 ·Vn + 3 ·Vn−1 −

4

3
·Vn−2 +

1

4
·Vn−3

)

(6.18)

BDF5: In+1 =
C

h
·
(
137

60
·Vn+1 − 5 ·Vn + 5 ·Vn−1 −

10

3
·Vn−2 +

5

4
·Vn−3 −

1

5
·Vn−4

)

(6.19)

BDF6: In+1 =
C

h
·
(
147

60
·Vn+1 − 6 ·Vn +

15

2
·Vn−1 −

20

3
·Vn−2 +

15

4
·Vn−3 −

6

5
·Vn−4 +

1

6
·Vn−5

)

(6.20)

The integration formula contains the coefficients ci = ai/b−1/hn and d−1 = −1/b−1/hn. Fur-
thermore the step size hn may change from step to step. To obtain the complete coefficients the
following equation system has to be solved:

(Aij) ·









d−1

c0
c1
c2
c3









=









0
−1/hn

0
0
0









with (Aij) =

(
hn + hn−1 + . . .+ hn−j+2

hn

)i−1

(6.21)

So the coefficients for 2nd order Gear yield:






1 1 1

0 1 hn+hn−1

hn

0 1 (hn+hn−1)
2

h2
n




 ·





d−1

c0
c1



 =





0
−1
hn

0



 (6.22)
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⇒ c1 =
hn

hn−1 · (hn + hn−1)
, c0 =

−1
hn

+
−1
hn−1

, d−1 = −c0 − c1 (6.23)

The error constants (E in equation (6.6)) are listed in the following table:

order k 1 2 3 4 5 6

error constant E −1

2
−2

9
− 3

22
− 12

125
− 10

137
− 20

343

This method is A-stable and L-stable for order k ≤ 2. It’s A(α)-stable for order k > 2. These
properties makes the Gear rules to one of the most used integration method in circuit simulations.
However, these algorithms fail for circuits with highly oscillatory behaviour (i.e. with eigenvalues
near the imaginary axis), because they damp oscillations (k ≤ 2) or become unstable (k > 2).
Therefore, the simulator must reduce the step-size or the order if instabilities are detected [12].
A modern circuit analysis often contains very complex component models (e.g. HICUM or BSIM)
that consumes most of the simulation time. So higher order integration methods are very attractive
for increasing the necessary time steps and decreasing the duration of the simulation. As the Gear
formulae are the most stable methods for order k > 2, many circuit simulators use them successful
for large circuits.

6.1.6 TR-BDF2

This is a one-step, 2nd order method, a composite algorithm that uses a trapezoidal integration
step (TR) followed by a 2nd order Gear step (BDF2). The time step h is divided into two steps
by the factor γ. I.e. first a complete iteration loop is performed with the trapezoidal formula from
tn to tn + γhn:

Qn+γ = Qn +
γ ·hn

2
· (In+1 + In) ⇒ In+1 =

2

γ ·hn
· (Qn+γ +Qn) (6.24)

After it converged, a complete iteration loop is performed with the second-order Gear formula
from tn + γhn to tn+1:

Qn+1 =
1

γ · (2 − γ)
·Qn+γ −

(1 − γ)2

γ · (2− γ)
·Qn + hn ·

1− γ

2− γ
· In+1 (6.25)

⇒ In+1 =
2− γ

hn · (1− γ)
·Qn+1 −

1

hn · γ · (1− γ)
·Qn+γ +

1− γ

hn · γ
·Qn (6.26)

The fixed intermediate step makes this algorithm a 2-stage method. The local truncation error
εLTE yields:

εLTE = 2 ·E · hn

C
·
(
In
γ
− In+γ

γ · (1− γ)
+

In+1

1− γ

)

(6.27)

with the error constant

E =
−3γ2 + 4γ − 2

12 · (2− γ)
(6.28)

It reaches its minimum with γ = 2 −
√
2 ≈ 0.585786. For this value the method is A-stable and

L-stable, and with E ≈ −2/(24.7 · (1− γ)) ≈ −0.19 a little more accurate than the BDF2 method
(EBDF2 ≈ −0.22). It was developed to combine the advantages of trapezoidal and BDF2 method,
i.e. to get an L-stable algorithm (like BDF2) that doesn’t damp circuit oscillations (like TR). A
disadvantage is the fixed intermediate time step, which makes problems with an adaptive step-size
control.
A generalization of this approach is the composition of theta- and BDF2-method [13] which also
gives a 2nd order A- and L-stable formula, but with one degree of freedom.
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6.1.7 Adams-Bashford

The Adams-Bashford algorithm is an explicit multi-step integration method with the following
equation:

Qn+1 = a0 ·Qn + h

k−1∑

i=0

bi · In−i (6.29)

The Adams-Bashford formula of order 1 yields the explicit Euler integration method. The co-
efficients of the 4th order Adams-Bashford formula can be calculated by the following equation
system:









1 0 0 0 0
0 1 1 1 1
0 0 −2 −4 −6
0 0 3 12 27
0 0 −4 −32 −108





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


·








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b1
b2
b3









=









1
1
1
1
1









(6.30)

The error constants (E in equation (6.6)) are listed in the following table:

order k 1 2 3 4 5 6

error constant E
1

2

5

12

3

8

251

720

95

288

19087

60480

This method is conditional stable.

6.1.8 Adams-Moulton

The Adams-Moulton algorithm is an implicit multi-step integration method with the following
equation:

Qn+1 = a0 ·Qn+h
k−1∑

i=−1

bi · In−i ⇒ In+1 =
C

b−1 ·hn
Vn+1−

a0 ·C
b−1 ·hn

Vn−
k−1∑

i=0

bi
b−1
· In−i (6.31)

The Adams-Moulton formula of order 1 yields the implicit Euler integration method and the
formula of order 2 yields the trapezoidal rule. The coefficients of the 4th order Adams-Moulton
formula can be calculated by the following equation system:









1 0 0 0 0
0 1 1 1 1
0 2 0 −2 −4
0 3 0 3 12
0 4 0 −4 −32









·









a0
b−1

b0
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







=









1
1
1
1
1









(6.32)

The error constants (E in equation (6.6)) are listed in the following table:

order k 1 2 3 4 5 6

error constant E −1

2
− 1

12
− 1

24
− 19

720
− 3

160
− 863

60480

This method is A-stable and L-stable for order k = 1. It’s A-stable for order k = 2 and zero-stable
for order k > 2.

6.1.9 Predictor-Corrector Methods

Explicit integration methods are fast because they don’t need to iterate, but they become unstable
for stiff problems. Implicit methods are stable but require iteration. The predictor-corrector
method tries to combine the advantages of both algorithms. It uses an explicit method to create
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an initial guess (the predictor step). Then this result is used as starting point for the iteration
with an implicit method (the corrector steps).

Let’s show a typical example. The 3rd order Adams-Bashford formula creates the initial guess
Qn+1,0 by performing the following calculation once:

Qn+1,0 = Qn + h · 23
12
· In − h · 16

12
· In−1 + h · 5

12
· In−2 (6.33)

Obviously this equation don’t need an iteration, because there’s no quantity with index n + 1.
If the index m is now introduced to label the number of the current iteration step, then the 3rd
order Adams-Moulton formula yields:

Qn+1,m+1 = Qn + h · 5
12
·Qn+1,m + h · 8

12
·Qn − h · 1

12
·Qn−1 (6.34)

An iteration process is needed to find the solution of this equation, because it contains the result
of the last iteration step (namely Qn+1,m). But as it’s an implicit method, there is a good chance
for reaching convergence.

The local truncation error of the predictor and of the corrector method both follow equation (6.6).
If the two methods have the same order k, it can be approximated by Milne’s estimate:

εLTE ≈
EC

EP − EC
· (Qn+1,m −Qn+1,0) (6.35)

with EP being the error constant of the predictor and EC being the error constant of the corrector.

6.2 Initialization

When starting a transient analysis a few things need to be noticed.

• Multi-step integration methods use several previous values for calculating the next voltage.
These values don’t exist at start-up (the first time step) and can’t simply be set to zero.
One solution is to use an integration method with lower order until the memory for previous
steps has filled up. For example start with first order Gear and go up to fourth order Gear
after the first seven steps are done.

• Sometimes it is wanted to give an energy-storage component an initial value before start-up.
This is performed by setting the last memory to the corresponding value.

6.3 A simple example

The circuit in figure 6.1 should serve as an example, i.e. the charging of the capacitor should be
simulated. At the beginning (t = 0) the voltage across the capacitor is Vc(t = 0) = 0.5V. The
voltage after 1ms will be calculated, i.e. the time step is ∆t = 1ms.

56



V1

U=2V
R1

R=1kΩ

C1

C=1µF

node2 node1

Figure 6.1: circuit for testing transient analysis

First, the MNA matrix has to be built. The three components enter their elements as follows.

• The resistor R1 is connected between node 1 and node 2. Thus, it enters 1/R1 at position
(1,1) and (2,2) as well as −1/R1 at position (1,2) and (2,1).

• The voltage source V1 is connected at node 1 to ground. It needs a third row and column.
It enters a 1 at position (2,3) and (3,2) in order to transform a voltage source into a current
source (gyrator). Furthermore, it enters V1 at position 3 of the right-hand side vector.

• The capacitorC1 is connected at node 1 to ground. The trapezoidal method will be used, thus
the component enters 2 ·C1/∆t at position (1,1). Furthermore, it enters 2 ·C1/∆t ·Vc(t =
0)+ Ic(t = 0) at position 1 of the right-hand side vector. Note that Ic(t = 0) is zero because
the voltage V1 is applied at t = 0.

Finally, the complete matrix equation writes as follows.





1
R1

+ 2 ·C1

∆t
−1
R1

0
−1
R1

1
R1

1

0 1 0



 ·





V1

V2

IV 1



 =





2 ·C1

∆t ·Vc(t = 0) + Ic(t = 0)
0
V1



 (6.36)

Filling in the numbers results in:





0.003 −0.001 0
−0.001 0.001 1

0 1 0





−1

·





0.001
0
2



 =





V1 = Vc(t = 1ms)
V2

IV 1



 =





1
2

−0.001



 (6.37)

Now, the result will be compared to the exact solution that gives:

Vc(t = 1ms) = (V1 − Vc(t = 0)) ·
(

1− exp

( −∆t

R1 ·C1

))

+ Vc(t = 0) = 1.448V (6.38)

The difference is 0.448V (almost 50%). The reason is the fact that a time step of 1ms is much to
large. A time step of 1µs is needed for an error of less than 1mV.

6.4 Local Truncation Error

Each numerical integration step has a limited accuracy because of limited order and finite step size
hn. The difference between the exact solution and the calculated solution is the local truncation
error εLTE. Using equation (6.5) and setting a−1 = −1 the truncation error is defined as

εLTE = Qn+1 −Qn+1,exact

=

p
∑

i=0

ai ·Qn−i,exact + h

p
∑

i=−1

bi · In−i,exact −Qn+1,exact

=

p
∑

i=−1

ai ·Qn−i,exact + h

p
∑

i=−1

bi · In−i,exact

(6.39)
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With the Taylor series expansions

Qn+i = Qn +
(ih)

1!
Q̇n +

(ih)
2

2!
Q̈n + . . . (6.40)

In+i = Q̇n+i = Q̇n +
(ih)

1!
Q̈n +

(ih)2

2!

...
Qn + . . . (6.41)

the local truncation error as defined by equation (6.39) can be written as

εLTE = E0 ·Qn + E1h · Q̇n + E2h
2 · Q̈n + . . . (6.42)

The error terms E0, E1, E2 etc. in their general form can then be expressed by the following
equation.

Eq = − 1

q!
·

p−1
∑

i=−1

ai · (p− i)
q − 1

(q − 1)!

p−1
∑

i=−1

bi · (p− i)
q−1

(6.43)

A linear multi-step integration method is of order k if

εLTE = Ek+1 ·hk+1 · d
k+1

dtk+1
Qn +O

(
hk+2

)
(6.44)

The error constant Ek+1 of an p-step integration method of order k is then defined as

Ek+1 = − 1

(k + 1)!
·

p−1
∑

i=−1

ai · (p− i)
k+1 − 1

k!

p−1
∑

i=−1

bi · (p− i)
k

(6.45)

The practical computation of these error constants is now going to be explained using the Adams-
Moulton formula of order 3 given by equation (6.34). For this method with a−1 = −1, a0 = 1,
b−1 = 5/12, b0 = 8/12 and b1 = −1/12 the following values are obtained using equation (6.43).

E0 = − 1

0!
·
(
−1 · 20 + 1 · 10

)
= 0 (6.46)

E1 = − 1

1!
·
(
−1 · 21 + 1 · 11

)
− 1

0!
·
(

5

12
20 +

8

12
10 − 1

12
00
)

= 0 (6.47)

E2 = − 1

2!
·
(
−1 · 22 + 1 · 12

)
− 1

1!
·
(

5

12
21 +

8

12
11 − 1

12
01
)

= 0 (6.48)

E3 = − 1

3!
·
(
−1 · 23 + 1 · 13

)
− 1

2!
·
(

5

12
22 +

8

12
12 − 1

12
02
)

= 0 (6.49)

E4 = − 1

4!
·
(
−1 · 24 + 1 · 14

)
− 1

3!
·
(

5

12
23 +

8

12
13 − 1

12
03
)

= − 1

24
(6.50)

In similar ways it can be verified for each of the discussed linear multi-step integration methods
that

Ep = 0 ∀ 0 ≤ p ≤ k (6.51)

6.5 Adaptive step-size control

For all numerical integration methods the choice of a proper step-size is essential. If the step
size is too large, the results become inaccurate or even unstable. If the step size is too small the
calculation requires more time than necessary without improving the accuracy. So the step-size
h must be chosen such that the local truncation errors stays below a user-defined absolute and
relative limit:

εLTE < εabs + εrel · |Qn+1| (6.52)
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Forming a step-error quotient

r =
εLTE

εabs + εrel · |Qn+1|
(6.53)

yields the following algorithm for the step-size control. The initial step size h0 is chosen sufficiently
small. After each integration step the error quotient r of every energy-storage component gets
computed in order to find the largest one rmax. If rmax > 1, then a reduction of the current
step-size is necessary. I.e. the current result has to be rejected and needs to be calculated again
with new step-size:

hn,new =

(
0.8

rmax

) 1
k+1
·hn,old (6.54)

with k denoting the order of the integration method. If necessary the process must be repeated.
On the other hand if rmax < 1, then the calculated value in the current step gets accepted and
the new step-size can be enlarged as follows:

hn+1 =

(
0.8

rmax

) 1
k+1
·hn (6.55)

6.6 Stability

Rounding errors are unavoidable when evaluating the equations of integration methods. The
evaluation must be repeated very often and thus the rounding error possibly accumulates. This is
especially critical for stiff problems as encountered in circuit simulations, because small variations
in the starting values easily lead to large variations in the solution values. If the numerical errors
don’t get damped by the integration formula, they will grow beyond all bounds. Therefrom the
numerical methods used for the transient analysis are required to be stiffly stable and accurate as
well. The regions requirements in the complex plane are visualized in the following figure.
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Figure 6.2: stability requirements for stiff differential equation systems

For values of hλ in region II the numerical method must be stable and accurate, in region I
accurate and in region III only stable. The area outside the specified regions are of no particular
interest.
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For the stability prediction of integration algorithms with regard to non-linear differential equa-
tions and equation systems the simple and linear test differential equation

ẋ = λx with λ ∈ C,Re {λ} < 0, x ≥ 0 (6.56)

is used. The condition Re {λ} < 0 ensures the solution to be decreasing. The general purpose
method of resolution given in (6.5) can be solved by the polynomial method setting

xk = zk with z ∈ C (6.57)

Thus we get the characteristic polynom

ϕ (z) = ̺ (z) + hλ · η (z) = 0 (6.58)

=
n−1∑

i=−1

ai · zn−i + hλ
n−1∑

i=−1

bi · zn−i (6.59)

Because of the conditions for multi-step integration methods the above equation (6.58) can only
be true for

|z| < 1 (6.60)

which describes the inner unity circle on the complex plane. In order to compute the boundary of
the area of absolute stability it is necessary to calculate

µ (z) = hλ = −̺ (z)

η (z)
with z = ejϑ, 0 ≤ ϑ ≤ 2π (6.61)

These equations describe closed loops. The inner of these loops describes the area of stability.
Because λ ≤ 0 and h ≥ 0 only the left half of the complex plane is of particular interest. An
integration algorithm is call zero-stable if the stability area encloses µ = 0. Given this condition
the algorithm is as a matter of principle usable, otherwise not. If an algorithms stability area
encloses the whole left half plane it is called A-stable (”absolute“ stable), i.e. the algorithm is
stable for any h and all λ < 0. Any other kind of stability area introduces certain restrictions on
the eigenvalues.

The figures 6.3, 6.4 and 6.5 show the stability for the discussed integration methods by visualiz-
ing the evaluation of equation (6.61). All implicit formulae are zero-stable and thus principally
usable. However, circuit simulations cover a wide field of involved equations. As a consequence
an algorithm needs a wide stability area in order be universally successful.

According to the second Dahlquist barrier the only LMS methods that are A-stable have an order
k ≤ 2. That’s why the modified trapezoidal and the TR-BDF2 method are the most stable and
reliable choice.
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Figure 6.3: areas of absolute stability for order 1. . . 6 Gear formulae
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Figure 6.4: areas of absolute stability for order 1. . . 6 Adams-Moulton formulae
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Figure 6.5: areas of absolute stability for order 1. . . 6 Adams-Bashford formulae

Figure 6.6 illustrates a typical problem for the stability of integration methods. A capacitor and
a voltage source are connected together directly, i.e. without a damping resistor or something
similar in between. After 1ms a linear voltage ramp generates a constant current that loads the
capacitance. The only integration method that yields the correct result is backward Euler, because
it approximates the charging current with a rectangle, and this is exactly what happens here. The
trapezoidal method gives a step twice as high as the correct one, because it approximates the
charging current with a triangle. Even more problematic is the stimulated oscillation that isn’t
damped. The theta-method shows a strongly damped oscillation. The second order Gear method
creates a smaller current peak that already disappears after the first time step. Third order Gear
shows an oscillation that disappears after the second time step. Oscillations by fourth order Gear
disappears after the third time step etc.
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6.7 Energy-storage components

As already mentioned it is essential for the transient analysis to consider the energy storing effects
of components. The following section describes how the modified nodal analysis can be used to
take this into account.

6.7.1 Capacitor

The integration formulae for linear capacitors have already been described in the chapters before.
The equations for implicit Euler, trapezoidal, Gear and Adams-Moulton (AM) are as followed:

In+1 =
C

hn
Vn+1 −

C

hn
Vn (implicit Euler) (6.62)

In+1 =
2C

hn
Vn+1 −

2C

hn
Vn − In (trapezoidal) (6.63)

In+1 =
C

b−1 ·hn
Vn+1 −

a0 ·C
b−1 ·hn

Vn −
a1 ·C
b−1 ·hn

Vn−1 − . . .− ak−1 ·C
b−1 ·hn

Vn−k+1 (Gear) (6.64)

In+1 =
C

b−1 ·hn
︸ ︷︷ ︸

geq

Vn+1−
a0 ·C
b−1 ·hn

Vn −
b0
b−1

In −
b1
b−1

In−1 − . . .− bk−2

b−1
In−k+2

︸ ︷︷ ︸

Ieq

(AM) (6.65)

Each of these equations can be rewritten as

In+1 = geq ·Vn+1 + Ieq (6.66)

which leads to the companion model representing a current source with its accompanied internal
resistance. Thus the complete MNA matrix equation for an ideal capacitance writes as follows.

[
+geq −geq
−geq +geq

]

·
[
V1,n+1

V2,n+1

]

=

[
−Ieq
+Ieq

]

(6.67)

6.7.2 Inductor

The relation between current and voltage in a linear inductor is:

V (t) =
dΦ

dt
= L · dI

dt
(6.68)
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Transforming this into an integral equation at discrete time spots yields:

Φn+1 = Φn +

∫ tn+1

tn

I(τ) · dτ (6.69)

This leads to the following equations for implicit Euler, trapezoidal and Gear methods:

In+1 =
hn

L
Vn+1 + In (implicit Euler) (6.70)

In+1 =
hn

2 ·LVn+1 +
hn

2 ·LVn + In (trapezoidal) (6.71)

In+1 =
b−1 ·hn

L
︸ ︷︷ ︸

geq

Vn+1 +a0 · In + a1 · In−1 + . . .+ ak−1 · In−k+1
︸ ︷︷ ︸

Ieq

(Gear) (6.72)

Again each of these equations can be rewritten as

In+1 = geq ·Vn+1 + Ieq (6.73)

which leads to the same MNA matrix equation as for an ideal capacitance. A disadvantage of this
approach is the fact that the inductance appears in the denominator. An alternative would be to
use a gyrator in order to transform the inductance into a capacitance (see next section).

6.7.3 Coupled Inductors

In a non-ideal transformer, there are two (or more) coupled inductors. The model for the transient
simulation is not very different from the one of a single inductor. In addition to each coil, the
mutal inductance has to be counted for.

VL1 = L1 ·
dIL1

dt
+M12 ·

dIL2

dt
+ IL1 ·R1 (6.74)

with M12 = k ·
√

L1 ·L2 (6.75)

and R1 ohmic resistance of coil 1 (6.76)

In contrast to the previous section it’s also possible to dissolve the equation for VL1,n+1:

VL1,n+1 = req11 · IL1,n+1 + req12 · IL2,n+1 + Veq(IL1,n, IL2,n, ...) (6.77)

This keeps the inductance L in the numerator and makes it possible to include the ohmic resistance
R1 into req11. For implicit Euler, it therefore follows:

VL1,n+1 =

(
L1

hn
+R1

)

︸ ︷︷ ︸

req11

· IL1,n+1+
k ·
√
L1 ·L2

hn
︸ ︷︷ ︸

req12

· IL2,n+1−
(
L1

hn
+R1

)

· IL1,n −
k ·
√
L1 ·L2

hn
· IL2,n

︸ ︷︷ ︸

Veq1

(6.78)
The voltage across the secondary coil VL2,n+1 goes likewise by just changing the indices. For every
inductance this approach creates an additional (internal) node. So finally, the MNA matrix writes
(port numbers are according to figure 10.2):











0 0 0 0 +1 0
0 0 0 0 0 +1
0 0 0 0 0 −1
0 0 0 0 −1 0
+1 0 0 −1 −req11 −req12
0 +1 −1 0 −req21 −req22











·











V1,n+1

V2,n+1

V3,n+1

V4,n+1

IL1,n+1

IL2,n+1











=











0
0
0
0

Veq1

Veq2











(6.79)
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These equations also give an idea on how to model more than two coupled inductors. For three
coupled inductors, the voltage across coil 1 writes:

VL1 = L1 ·
dIL1

dt
+M12 ·

dIL2

dt
+M13 ·

dIL3

dt
+ IL1 ·R1 (6.80)

VL2 = L2 ·
dIL2

dt
+M12 ·

dIL1

dt
+M23 ·

dIL3

dt
+ IL2 ·R2 (6.81)

VL3 = L3 ·
dIL3

dt
+M13 ·

dIL1

dt
+M23 ·

dIL2

dt
+ IL3 ·R3 (6.82)

with M12 = k12 ·
√

L1 ·L2 (6.83)

and M13 = k13 ·
√

L1 ·L3 (6.84)

and M23 = k23 ·
√

L2 ·L3 (6.85)

This can be easily extended to an arbitrary number of coupled inductors.

6.7.4 Non-linear Capacitance

For non-linear capacitances (like depletion capacitance) the following holds.

I(t) =
∂Q

∂t
and C =

∂Q

∂V
(6.86)

which gives:

Qn+1 = Qn + hn · In+1 (implicit Euler) (6.87)

Qn+1 = Qn +
hn

2
· (In+1 + In) (trapezoidal) (6.88)

Qn+1 = a0 ·Qn + a1 ·Qn−1 + . . .+ ak−1 ·Qn−k+1 + b−1 ·hn · In+1 (Gear) (6.89)

By the use of the Newton-Raphson formula

Vn+1,m+1 = Vn+1,m −
f (Vn+1,m)

f ′ (Vn+1,m)
(6.90)

an iterative algorithm is obtained. The indices m indicated the m-th Newton-Raphson itera-
tion. Now it is possible to derive the equations for the circuit simulation. For the implicit Euler
integration it is as follows.

f (Vn+1,m) = Qn+1,m −Qn − hn · In+1,m (6.91)

f ′ (Vn+1,m) =
∂f (Vn+1,m)

∂Vn+1,m
= Cn+1,m (6.92)

⇒ In+1,m =
1

hn
· (Qn+1,m + Cn+1,m · (Vn+1,m+1 − Vn+1,m)−Qn) (6.93)

=
Cn+1,m

hn
︸ ︷︷ ︸

geq

Vn+1,m+1 +
Qn+1,m −Qn

hn
− Cn+1,m

hn
·Vn+1,m

︸ ︷︷ ︸

Ieq

(6.94)

The double indices now indicate the n-th integration step and the m-th Newton-Raphson iteration.

The principle can be extended to the multi-dimension case as usual. To give an example, a
non-linear capacitance is assumed that depends on two voltages V1 and V2. The backward Euler
integration of the current flowing out of terminal 1 is thus:

I1,n+1,m+1 =
Qn+1,m −Qn

hn
+

C11,n+1,m · (V1,n+1,m+1 − V1,n+1,m) + C12,n+1,m · (V2,n+1,m+1 − V2,n+1,m)

hn

(6.95)
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For the trapezoidal integration the equations for the circuit simulation are as follows.

f (Vn+1,m) = Qn+1,m −Qn −
hn

2
· (In+1,m + In) (6.96)

f ′ (Vn+1,m) =
∂f (Vn+1,m)

∂Vn+1,m
= Cn+1,m (6.97)

⇒ In+1,m =
2

hn
· (Qn+1,m + Cn+1,m · (Vn+1,m+1 − Vn+1,m)−Qn)− In (6.98)

=
2 ·Cn+1,m

hn
︸ ︷︷ ︸

geq

Vn+1,m+1 + 2 · Qn+1,m −Qn − Cn+1,m ·Vn+1,m

hn
− In

︸ ︷︷ ︸

Ieq

(6.99)

So, finally, when convergence is reached the current for the next iteration step is:

In+1 =
2

hn
· (Qn+1,m −Qn)− In (6.100)

For the Gear integration the equations for the circuit simulation are as follows.

f (Vn+1,m) = Qn+1,m − a0 ·Qn − a1 ·Qn−1 − . . .− ak−1 ·Qn−k+1 − b−1 ·hn · In+1,m (6.101)

f ′ (Vn+1,m) =
∂f (Vn+1,m)

∂Vn+1,m
= Cn+1,m (6.102)

In+1,m =
Cn+1,m

b−1 ·hn
︸ ︷︷ ︸

geq

Vn+1,m+1

+
Qn+1,m − a0 ·Qn − . . .− ak−1 ·Qn−k+1 − Cn+1,m ·Vn+1,m

b−1 ·hn
︸ ︷︷ ︸

Ieq

(6.103)

6.8 Components defined in the frequency domain

The time-domain simulation of components defined in the frequency-domain can be performed
using an inverse Fourier transformation of the Y-parameters of the component (giving the impulse
response) and an adjacent convolution with the prior node voltages (or branch currents) of the
component.

This requires a memory of the node voltages and branch currents for each component defined in
the frequency-domain. During a transient simulation the time steps are not equidistant and the
maximum required memory length Tend of a component may not correspond with the time grid
produced by the time step control (see section 6.5 on page 58) of the transient simulation. That
is why an interpolation of exact values (voltage or current) at a given point in time is necessary.

Components defined in the frequency-domain can be divided into two major classes.

• Components with frequency-independent (non-dispersive) delay times and with or without
constant losses.

• Components with frequency-dependent (dispersive) delay times and losses.

6.8.1 Components with frequency-independent delay times

Components with constant delay times are a special case. The impulse response corresponds to
the node voltages and/or branch currents at some prior point in time optionally multiplied with
a constant loss factor.

66



Voltage controlled current source

With no constant delay time the MNA matrix entries of a voltage controlled current source is
determined by the following equations according to the node numbering in fig. 10.9 on page 115.

I2 = −I3 = G · (V1 − V4) (6.104)

The equations yield the following MNA entries during the transient analysis.







0 0 0 0
+G 0 0 −G
−G 0 0 +G
0 0 0 0






·







V1

V2

V3

V4






=







I1
I2
I3
I4







(6.105)

With a constant delay time τ eq. (6.104) rewrites as

I2 (t) = −I3 (t) = G · (V1 (t− τ)− V4 (t− τ)) (6.106)

which yields the following MNA entries during the transient analysis.







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






·







V1 (t)
V2 (t)
V3 (t)
V4 (t)






=







I1 (t)
−G · (V1 (t− τ)− V4 (t− τ))
+G · (V1 (t− τ)− V4 (t− τ))

I4 (t)







(6.107)

Voltage controlled voltage source

The MNA matrix entries of a voltage controlled voltage source are determined by the following
characteristic equation according to the node numbering in fig. 10.11 on page 116.

V2 − V3 = G · (V4 − V1) (6.108)

This equation yields the following augmented MNA matrix entries with a single extra branch
equation.









0 0 0 0 0
0 0 0 0 −1
0 0 0 0 1
0 0 0 0 0
G −1 1 −G 0









·









V1

V2

V3

V4

J1









=









I1
I2
I3
I4
0









(6.109)

When considering an additional constant time delay τ eq. (6.108) must be rewritten as

V2 (t)− V3 (t) = G · (V4 (t− τ)− V1 (t− τ)) (6.110)

This representation requires a change of the MNA matrix entries which now yield the following
matrix equation.









0 0 0 0 0
0 0 0 0 −1
0 0 0 0 1
0 0 0 0 0
0 −1 1 0 0









·









V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)









=









I1 (t)
I2 (t)
I3 (t)
I4 (t)

G · (V4 (t− τ) − V1 (t− τ))









(6.111)
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Current controlled current source

With no time delay the MNA matrix entries of a current controlled current source are determined
by the following equations according to the node numbering in fig. 10.10 on page 115.

I2 = −I3 = G · I1 = −G · I4 (6.112)

V1 = V4 (6.113)

These equations yield the following MNA matrix entries using a single extra branch equation.









0 0 0 0 1
0 0 0 0 G
0 0 0 0 −G
0 0 0 0 −1
1 0 0 −1 0









·









V1

V2

V3

V4

J1









=









I1
I2
I3
I4
0









(6.114)

When additional considering a constant delay time τ eq. (6.112) must be rewritten as

I2 (t) = −I3 (t) = G · I1 (t− τ) = −G · I4 (t− τ) (6.115)

Thus the MNA matrix entries change as well yielding









0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
1 0 0 −1 0









·









V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)









=









I1 (t)
−G · J1 (t− τ)
+G · J1 (t− τ)

I4 (t)
0









(6.116)

Current controlled voltage source

The MNA matrix entries for a current controlled voltage source are determined by the following
characteristic equations according to the node numbering in fig. 10.12 on page 117.

V2 − V3 = G · I2 = −G · I3 (6.117)

V1 = V4 (6.118)

These equations yield the following MNA matrix entries.











0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 −1
0 0 0 0 −1 0
0 1 −1 0 G 0
1 0 0 −1 0 0











·











V1

V2

V3

V4

J1
J2











=











I1
I2
I3
I4
0
0











(6.119)

With an additional time delay τ between the input current and the output voltage eq. (6.117)
rewrites as

V2 (t)− V3 (t) = G · I2 (t− τ) = −G · I3 (t− τ) (6.120)

Due to the additional time delay the MNA matrix entries must be rewritten as follows











0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 −1
0 0 0 0 −1 0
1 0 0 −1 0 0
0 1 −1 0 0 0











·











V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)
J2 (t)











=











I1 (t)
I2 (t)
I3 (t)
I4 (t)
0

G · J1 (t− τ)











(6.121)
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Ideal transmission line

The A-parameters of a transmission line (see eq (10.209) on page 119) are defined in the frequency
domain. The equation system formed by these parameters write as

I. V1 = V2 · cosh (γ · l) + I2 ·ZL · sinh (γ · l) (6.122)

II. I1 = V2 ·
1

ZL
sinh (γ · l) + I2 · cosh (γ · l) (6.123)

V1

I 1

V

I 2

2

l

ZL

1 2

Figure 6.7: ideal transmission line

Applying I +ZL · II and I−ZL · II to the above equation system and using the following transfor-
mations

coshx+ sinhx =
ex + e−x

2
+

ex − e−x

2
= ex (6.124)

coshx− sinhx =
ex + e−x

2
− ex − e−x

2
= e−x (6.125)

yields

V1 = V2 · e−γ · l + ZL ·
(
I1 + I2 · e−γ · l) (6.126)

V2 = V1 · e−γ · l + ZL ·
(
I2 + I1 · e−γ · l) (6.127)

whereas γ denotes the propagation constant α+ jβ, l the length of the transmission line and ZL

the line impedance.

These equations can be transformed from the frequency domain into the time domain using the
inverse Fourier transformation. The frequency independent loss α 6= f (ω) gives the constant
factor

A = e−α · l (6.128)

The only remaining frequency dependent term is

e−jβ · l = e−jω · τ with β =
ω

vph
=

ω

c0
=

ω · τ
l

(6.129)

which yields the following transformation

f (ω) · e−γ · l = A · f (ω) · e−jω · τ ⇐⇒ A · f (t− τ) (6.130)

All the presented time-domain models with a frequency-independent delay time are based on this
simple transformation. It can be applied since the phase velocity vph 6= f (ω) is not a function
of the frequency. This is true for all non-dispersive transmission media, e.g. air or vacuum.
The given transformation can now be applied to the eq. (6.126) and eq. (6.127) defined in the
frequency-domain to obtain equations in the time-domain.

The length Tend of the memory needed by the ideal transmission line can be easily computed by

Tend = τ =
l

vph
=

l

c0
(6.131)

69



whereas c0 denotes the speed of light in free space (since there is no dielectric involved during
transmission) and l the physical length of the transmission line.

The MNA matrix for a lossy transmission line during the transient analysis is augmented by two
new rows and columns in order to consider the following branch equations.

V1 (t) = ZL · I1 (t) +A · (ZL · I2 (t− τ) + V2 (t− τ)) (6.132)

V2 (t) = ZL · I2 (t) +A · (ZL · I1 (t− τ) + V1 (t− τ)) (6.133)

Thus the MNA matrix entries can be written as






0 0 1 0
0 0 0 1
−1 0 ZL 0
0 −1 0 ZL






·







V1 (t)
V2 (t)
I1 (t)
I2 (t)






=







I1 (t)
I2 (t)

A · (V2 (t− τ) + ZL · I2 (t− τ))
A · (V1 (t− τ) + ZL · I1 (t− τ))







(6.134)

Ideal 4-terminal transmission line

The ideal 4-terminal transmission line is a two-port as well. It differs from the 2-terminal line as
shown in figure 6.8 in two new node voltages and branch currents.

I1

ZL

I21 2

4 3

I3I4

Figure 6.8: ideal 4-terminal transmission line

The differential mode of the ideal 4-terminal transmission line can be modeled by modifying the
branch eqs. (6.132) and (6.133) of the 2-terminal line which yields

V1 (t)− V4 (t) = ZL · I1 (t) +A · (ZL · I2 (t− τ) + V2 (t− τ)− V3 (t− τ)) (6.135)

V2 (t)− V3 (t) = ZL · I2 (t) +A · (ZL · I1 (t− τ) + V1 (t− τ)− V4 (t− τ)) (6.136)

Two more conventions must be indroduced

I1 (t) = −I4 (t) (6.137)

I2 (t) = −I3 (t) (6.138)

which is valid for the differential mode (i.e. the odd mode) of the transmission line and represents
a kind of current mirror on each transmission line port.

According to these consideration the MNA matrix entries during transient analysis are











. . . . 1 0

. . . . 0 1

. . . . 0 −1

. . . . −1 0
−1 0 0 1 ZL 0
0 −1 1 0 0 ZL











·











V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)
J2 (t)











=











I1 (t)
I2 (t)
I3 (t)
I4 (t)

A · (V2 (t− τ) − V3 (t− τ) + ZL · J2 (t− τ))
A · (V1 (t− τ) − V4 (t− τ) + ZL · J1 (t− τ))











(6.139)
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Ideal coupled transmission line

The ideal coupled transmission line is a four-port device with the same nodes like the 4-terminal
line in figure 6.8. There are two independent modes travelling along the line, the even mode (or
common mode) and the odd mode (or differential mode).

V1 = Ve + Vo V4 = Ve − Vo (6.140)

I1 = Ie + Io I4 = Ie − Io (6.141)

or

Ve =
1

2
· (V1 + V4) Vo =

1

2
· (V1 − V4) (6.142)

Ie =
1

2
· (I1 + I4) Io =

1

2
· (I1 − I4) (6.143)

Therefore, there are now four additional rows (ans columns) in the MNA matrix:















. . . . 1 1 0 0

. . . . 0 0 1 1

. . . . 0 0 1 −1

. . . . 1 −1 0 0
−0.5 0 0 −0.5 ZLe 0 0 0
−0.5 0 0 +0.5 0 ZLo 0 0
0 −0.5 −0.5 0 0 0 ZLe 0
0 −0.5 +0.5 0 0 0 0 ZLo















·















V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1e (t)
J1o (t)
J2e (t)
J2o (t)















=















I1 (t)
I2 (t)
I3 (t)
I4 (t)

Ae ·
(
1
2 · (V2 (t− τ) + V3 (t− τ)) + ZLe · J2e (t− τ)

)

Ao ·
(
1
2 · (V2 (t− τ)− V3 (t− τ)) + ZLo · J2o (t− τ)

)

Ae ·
(
1
2 · (V1 (t− τ) + V4 (t− τ)) + ZLe · J1e (t− τ)

)

Ao ·
(
1
2 · (V1 (t− τ)− V4 (t− τ)) + ZLo · J1o (t− τ)

)















(6.144)

Logical devices

The analogue models of logical (digital) components explained in section 11.7 on page 159 do
not include delay times. With a constant delay time τ the determining equations for the logical
components yield

uout (t) = f (Vin,1 (t− τ) , Vin,2 (t− τ) , . . .) (6.145)

With the prior node voltages Vin,n (t− τ) known the MNA matrix entries in eq. (11.278) can be
rewritten as 





. . . 1

. . . 0

. . . 0
1 0 0 0






·







Vout (t)
Vin,1 (t)
Vin,2 (t)
Iout (t)






=







I0 (t)
I1 (t)
I2 (t)
uout (t)







(6.146)

during the transient analysis. The components now appear to be simple linear components. The
derivatives are not anymore necessary for the Newton-Raphson iterations. This happens to be
because the output voltage does not depend directly on the input voltage(s) at exactly the same
time point.
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6.8.2 Components with frequency-dependent delay times and losses

In the general case a component with P ports which is defined in the frequency-domain can be
represented by the following matrix equation.








Y11 Y12 . . . Y1P

Y21 Y22 Y2P

...
. . .

...
YP1 YP2 . . . YPP







·








V1

V2

...
VP







=








I1
I2
...
IP








(6.147)

This matrix representation is the MNA representation during the AC analysis. With no specific
time-domain model at hand the equation

[
Y (jω)

]
·
[
V (jω)

]
=
[
I (jω)

]
(6.148)

must be transformed into the time-domain using a Fourier transformation.

The convolution integral

The multiplication in the frequency-domain is equivalent to a convolution in the time-domain after
the transformation. It yields the following matrix equation

[
H (t)

]
∗
[
V (t)

]
=
[
I (t)

]
(6.149)

whereas H (t) is the impulse response based on the frequency-domain model and the ∗ operator
denotes the convolution integral

H (t) ∗ V (t) =

∫ +∞

−∞
H (τ) ·V (t− τ) dτ (6.150)

The lower bound of the given integral is set to zero since both the impulse response as well as the
node voltages are meant to deliver no contribution to the integral. Otherwise the circuit appears
to be unphysical. The upper limit should be bound to a maximum impulse response time Tend

H (t) ∗ V (t) =

∫ Tend

0

H (τ) ·V (t− τ) dτ (6.151)

with
H (τ) = 0 ∀ τ > Tend (6.152)

Since there is no analytic represention for the impulse response as well as for the node voltages
eq. (6.151) must be rewritten to

H (n ·∆t) ∗ V (n ·∆t) =
N−1∑

k=0

H (k ·∆t) ·V ((n− k) ·∆t) (6.153)

with

∆t =
Tend

N
(6.154)

whereas N denotes the number of samples to be used during numerical convolution. Using the
current time step t = n ·∆t it is possible to express eq. (6.153) as

I (t) = H (0) ·V (t)+

N−1∑

k=1

H (k ·∆t) ·V (t− k ·∆t)

︸ ︷︷ ︸

Ieq

(6.155)
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With G = H (0) the resulting MNA matrix equation during the transient analysis gets

[
G
]
·
[
V (t)

]
=
[
I (t)

]
−
[
Ieq
]

(6.156)

This means, the component defined in the frequency-domain can be expressed with an equiv-
alent DC admittance G and additional independent current sources in the time-domain. Each
independent current source at node r delivers the following current

Ieqr =

P∑

c=1

N−1∑

k=1

Hrc (k ·∆t) ·Vc (t− k ·∆t) (6.157)

whereas Vc denotes the node voltage at node c at some prior time and Hrc the impulse response of
the component based on the frequency-domain representation. The MNA matrix equation during
transient analysis can thus be written as








G11 G12 . . . G1P

G21 G22 G2P

...
. . .

...
GP1 GP2 . . . GPP







·








V1 (t)
V2 (t)

...
VP (t)







=








I1 (t)
I2 (t)
...

IP (t)







−








Ieq1
Ieq2
...

IeqP








(6.158)

Frequency- to time-domain transformation

With the number of samples N being a power of two it is possible to use the Inverse Fast Fourier
Transformation (IFFT). The transformation to be performed is

Y (jω)⇔ H (t) (6.159)

The maximum impulse response time of the component is specified by Tend requiring the following
transformation pairs.

Y (jωi)⇔ H (ti) with i = 0, 1, 2, . . . , N − 1 (6.160)

with

ti = 0,∆t, 2 ·∆t, . . . , (N − 1) ·∆t (6.161)

ωi = 0,
1

Tend
,

2

Tend
, . . . ,

N/2

Tend
(6.162)

The frequency samples in eq. (6.162) indicate that only half the values are required to obtain the
appropriate impulse response. This is because the impulse response H (t) is real valued and that
is why

Y (jω) = Y ∗ (−jω) (6.163)

The maximum frequency considered is determined by the maximum impulse response time Tend

and the number of time samples N .

fmax =
N/2

Tend
=

1

2 ·∆t
(6.164)

It could prove useful to weight the Y-parameter samples in the frequency-domain by multiplying
them with an appropriate windowing function (e.g. Kaiser-Bessel).
In order to reach an appropriate accuracy for the simulation result it is crucial that the maximum
impulse response time Tend in the Fourier transformation is high enough. I.e. the impulse response
must have decayed to almost zero at Tend. This is often hard to fulfill. Methods that avoid the
problem exist. The so-called DeHoog algorithm is considered as the most powerful one [14].
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Implementation considerations

For the method presented the Y-parameters of a component must be finite for all frequencies
and must converge for f → fmax. This cannot be ensured for the general case (e.g. for an ideal
inductor or capacitor).

6.9 Noise in time domain

In order to generate a noise voltage or current in time domain pseudo-random number generators
(PRNG) are used [15], [16]. A C++ function using this approach is depicted below.

Listing 6.1: noise generator

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // gene ra t e s 2ˆ31−2 random numbers us ing l i n e a r c on g r u en t i a l g ene ra to r
3 // f ( z ) = 16807 z mod (2ˆ31 − 1)
4 // I t p ro v i d e s uniform−d i s t r i b u t e d pseudo−random numbers from −1.0 to 1 . 0
5 // wi th mean = 0 and var i ance = 1/3.
6 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
7 s t a t i c unsigned in t seed = 1 ;
8
9 double ge t un i f o rm no i s e ( )

10 {
11 unsigned i n t lo , h i ;
12
13 l o = 16807 ∗ ( seed & 0xFFFF ) ;
14 h i = 16807 ∗ ( seed >> 16 ) ;
15
16 l o += ( hi & 0x7FFF) << 16 ;
17 l o += hi >> 15 ;
18
19 i f ( l o > 0x7FFFFFFF)
20 l o −= 0x7FFFFFFF ;
21
22 seed = lo ;
23 return double ( seed ) / double (0 x40000000 ) − 1 . 0 ;
24 }

The uniform-distributed number sequence can be used to create noise with an arbitrary frequency
dependency [17]:

en(f) =
√

Pn(f) · exp(j ·π ·n(f)) (6.165)

where Pn(f) is the power spectral density (PSD) and n(f) is a pseudo-random number sequence
uniform-distributed from -1 to +1. Performing an inverse Fourier transformation on the number
sequence en(f) generates time-domain noise with a normal-distributed amplitude.

Correlated noise can be created by a linear combination of uncorrelated noise:

u1(f) = U1 ·
(√

1− k · en1(f) +
√
k · en3(f)

)

(6.166)

u2(f) = U2 ·
(√

1− k · en2(f) +
√
k · en3(f)

)

(6.167)

where en1(f) to en3(f) are normalized number sequences according to equation 6.165 and k is the
correlation coefficient, i.e. k = 0 means no correlation between u1(f) and u2(f) and k = 1 means
complete correlation.
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6.10 Periodic Steady-State Analysis

Periodic steady-state (PSS) analysis is a transient simulation that automatically finds the steady
state condition for periodic signals. It works for autonomous circuits (oscillators) as well as for
non-autonomous ones.

For non-autonomous circuits the principle is quite simple, because the period T is known. Hence,
the algorithm performs a transient analysis and compares the state variables of two periods. The
PSS is reached if the difference is below a user defined limit.

For autonomous circuits things are a little bit more complex, because the period T is unknown.
Thus, the algorithm has to search for the correct periodicity.
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Chapter 7

Harmonic Balance Analysis

Harmonic balance is a non-linear, frequency-domain, steady-state simulation. The voltage and
current sources create discrete frequencies resulting in a spectrum of discrete frequencies at every
node in the circuit. Linear circuit components are solely modeled in frequency domain. Non-linear
components are modeled in time domain and Fourier-transformed before each solving step. The
informations in this chapter are taken from [18] (chapter 3) which is a very nice and well-written
publication on this topic.

The harmonic balance simulation is ideal for situations where transient simulation methods are
problematic. These are:

• components modeled in frequency domain, for instance (dispersive) transmission lines

• circuit time constants large compared to period of simulation frequency

• circuits with lots of reactive components

Harmonic balance methods, therefore, are the best choice for most microwave circuits excited with
sinusoidal signals (e.g. mixers, power amplifiers).

7.1 The Basic Concept

As the non-linear elements are still modeled in time domain, the circuit first must be separated
into a linear and a non-linear part. The internal impedances Zi of the voltage sources are put into
the linear part as well. Figure 7.1 illustrates the concept. Let us define the following symbols:

M = number of (independent) voltage sources

N = number of connections between linear and non-linear subcircuit

K = number of calculated harmonics

L = number of nodes in linear subcircuit
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iN vN

v1i1

i2 v2

vS,1

+

−

Zi,1

linear

i,MZ
+

−

S,Mv

non−linear

Figure 7.1: circuit partitioning in harmonic balance

The linear circuit is modeled by two transadmittance matrices: The first one Ỹ relates the source
voltages vS,1...vS,M to the interconnection currents i1...iN and the second one Ŷ relates the inter-
connection voltages v1...vN to the interconnection currents i1...iN . Taking both, we can express
the current flowing through the interconnections between linear and non-linear subcircuit:

I = ỸN×M ·VS + ŶN×N ·V = IS + Ŷ ·V (7.1)

Because VS is known and constant, the first term can already be computed to give IS . Taking
the whole linear network as one block is called the ”piecewise” harmonic balance technique.

The non-linear circuit is modeled by its current function i(t) = fg(v1, ..., vP ) and by the charge
of its capacitances q(t) = fq(v1, ..., vQ). These functions must be Fourier-transformed to give the
frequency-domain vectors Q and I, respectively.

A simulation result is found if the currents through the interconnections are the same for the linear
and the non-linear subcircuit. This principle actually gave the harmonic balance simulation its
name, because through the interconnections the currents of the linear and non-linear subcircuits
have to be balanced at every harmonic frequency. To be precise the described method is called
Kirchhoff’s current law harmonic balance (KCL-HB). Theoretically, it would also be possible to
use an algorithm that tries to balance the voltages at the subcircuit interconnections. But then
the Z matrix (linear subcircuit) and current-dependend voltage laws (non-linear subcircuit) have
to be used. That doesn’t fit the need (see other simulation types).

So, the non-linear equation system that needs to be solved writes:

F(V) = IS + Ŷ ·V
︸ ︷︷ ︸

linear

+ j ·Ω ·Q+ I
︸ ︷︷ ︸

non-linear

= 0 (7.2)

where matrix Ω contains the angular frequencies on the first main diagonal and zeros elsewhere,
0 is the zero vector.

After each iteration step, the inverse Fourier transformation must be applied to the voltage vector
V. Then the time domain voltages v0,1...vK,N are put into i(t) = fg(v1, ..., vP ) and q(t) =

77



fq(v1, ..., vQ) again. Now, a Fourier transformation gives the vectors Q and I for the next iteration
step. After repeating this several times, a simulation result has hopefully be found.

Having found this result means having got the voltages v1...vN at the interconnections of the two
subcircuits. With these values the voltages at all nodes can be calculated: Forget about the non-
linear subcircuit, put current sources at the former interconnections (using the calculated values)
and perform a normal AC simulation for each frequency. After that the simulation is complete.
Note that in multi-dimensional frequency schemes, many frequency values will appear more than
one time. Thus, results at equal frequencies must be added in order to get one result per frequency.

A short note to the construction of the quantities: One big difference between the HB and the
conventional simulation types like a DC or an AC simulation is the structure of the matrices and
vectors. A vector used in a conventional simulation contains one value for each node. In an HB
simulation there are many harmonics and thus, a vector contains K values for each node. This
means that within a matrix, there is a K × K diagonal submatrix for each node. Using this
structure, all equations can be written in the usual way, i.e. without paying attention to the
special matrix and vector structure. In a computer program, however, a special matrix class is
needed in order to not waste memory for the off-diagonal zeros.

7.2 Going through each Step

7.2.1 Creating Transadmittance Matrix

It needs several steps to get the transadmittance matrices [Ỹ ] and [Ŷ ] mentioned in equation
(7.1). First the MNA matrix of the linear subcircuit (figure 7.1) is created (chapter 1.1) without
the voltage sources S1...SM and without the non-linear components. Note that all nodes must
appear in the matrix, even those where only non-linear components are connected. Then the
transimpedance matrix is derived by exciting one by one the port nodes of the MNA matrix with
unity current. After that the transadmittance matrix is calculated by inverting the transimpedance
matrix. Finally the matrices [Ỹ ] and [Ŷ ] are filled with the corresponding elements of the overall
transadmittance matrix.

Note: The MNA matrix of the linear subcircuit has L nodes. Every node, that is connected to
the non-linear subcircuit or/and is connected to a voltage source, is called ”port” in the following
text. So, there are M +N ports. All these ports need to be differential ones, i.e. without ground
reference. Otherwise problemes may occur due to singular matrices when calculating [Ỹ ] or [Ŷ ].

Now this should be described in more detail: By use of the MNA matrix [A], the n-th column of
the transimpedance matrix [Z] should be calculated. The voltage source at port n is connected
to node i (positive terminal) and to node j (negative terminal). This results in the following
equation. (If port n is referenced to ground, the -1 is simply omitted.)

[A] ·






V1

...
VL




 =
















0
...
1
...
−1
...
0
















← i-th row

← j-th row
(7.3)

After having solved it, Z1,n...ZN+M,n are obtained simply by subtraction of the node voltages:

Zm,n = Vk − Vl (7.4)

78



Here the voltage source at portm is connected to node k (positive terminal) and to node l (negative
terminal).

The next column of [Z] is obtained by changing the right-hand side of equation (7.3) appropriately.
As this has to be done N +M times, it is strongly recommended to use LU decomposition.

As [Ỹ ] is not square, problems encounter by trying to build its inverse matrix. Therefore, the
following procedure is recommended:

• Create the transimpedance matrix for all ports (sources and interconnections).

• Compute the inverse matrix (transadmittance matrix).

• The upper left and upper right corner contains [Ŷ ] and [Ỹ ].

• The lower left and lower right corner contains the transadmittance matrices to calculate the
currents through the sources. They can be used to simplify the AC simulation at the very
end.

One further thing must be mentioned: Because the non-linear components and the sources are
missing in the linear MNA matrix, there are often components that are completely disconnected
from the rest of the circuit. The resulting MNA matrix cannot be solved. To avoid this problem,
shunt each port with a 100Ω resistor, i.e. place a resistor in parallel to each non-linear component
and to each source. The effect of these resistors can be easily removed by subtracting 10mS from
the first main diagonal of the transadmittance matrix.

D1

D2

Z

V1

node1 node2

node3

Figure 7.2: example circuit how to create the transadmittance matrices

A little example should demonstrate the creation of the transadmittance matrices. The circuit
in figure 7.2 should be solved: An ac voltage source connected to a resistance that is connected
to two diodes. The dotted resistances Ydot = 10mS are the ones inserted temporarily to avoid
disconnected nodes. The MNA matrix is:

[A] =





1/Z −1/Z 0
−1/Z 1/Z 0
0 0 0



+ [Ydot] =





1/Z + 0.01 −1/Z 0
−1/Z 1/Z + 0.01 −0.01
0 −0.01 0.01 + 0.01



 (7.5)

As can be seen the MNA without Ydot is singular, because it does neither contain the entries for
the non-linear components, nor the entries for the sources. The next step is to build the connexion
matrix for the sources and the non-linear components:

[C] =





0 1 −1
0 0 1
1 0 0





← D1 connected to node 2 and to node 3
← D2 connected to node 3 (and to ground)
← V1 connected to node 1 (and to ground)

(7.6)
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Now the transimpedance matrix can be calculated:

Ztrans = [C] · [A]−1 · [C]T (7.7)

Finally, the inverse matrix leads to the transadmittance matrix. Also, the influence of the dotted
resistances in figure 7.2 is removed as the last step. With Z = 50Ω this yields:

Ytrans = Z−1
trans − 10mS ·E =





0.02 0.02 −0.02
0.02 0.02 −0.02
−0.02 −0.02 0.02



 (7.8)

The upper left and upper right corner contains [Ŷ ] and [Ỹ ]:

[Ŷ ] =

[
0.02 0.02
0.02 0.02

]

[Ỹ ] =

[
−0.02
−0.02

]

(7.9)

Compare the result with figure 1 to see that this works quite fine.

7.2.2 Starting Values

A difficult question is how to find appropriate start values for the harmonic balance simulation.
Experience shows that the most simple answer is sufficient, i.e. the starting values are zero
voltages. However, convergence may soon become a big problem, especially with a large signal
strength and strong non-linearities. Therefore, it is recommended to perform a DC analysis in
order to get a better initial guess and use the source-stepping method for all non-DC sources as
a fundamental concept. This means that the elements of the current source vector IS that don’t
refer to zero frequency should be increased step by step during the iteration until the full signal
levels are reached. This procedure together with the Newton-Raphson method shows to be very
robust and reliable.

7.2.3 Solution algorithm

To perform a HB simulation, the multi-dimensional, non-linear function 7.2 has to be solved. One
of the best possibilities to do so is the Newton-Raphson method:

Vn+1 = Vn − J(Vn)
−1 ·F(Vn) = Vn −∆Vn (7.10)

with J being the Jacobian matrix. DC and transient simulation also use this technique, but here
J is needed in frequency domian. Starting at the HB equation 7.2, it is:

J(V n) =
dF (V )

dV
= Ŷ N×N +

∂I

∂V
+ j ·Ω∂Q

∂V
= Ŷ N×N +G+ j ·Ω ·C (7.11)

So, two Jacobian matrices have to be built, one for the current I and one for the charge Q. So,
finally the following equation system must be solved at every iteration step:

J(Vn) ·∆Vn = F(Vn) (7.12)

Note that the Nyquist frequencies (including DC) must be kept real-valued during all iteration
steps. Furthermore, for non-Nyquist frequencies the elements of the current source vector IS must
be set for positive and negative frequencies to half of its physical value.

7.2.4 Jacobian matrices in frequency domain

It was shown that Jacobian matrices in frequency domain are needed to solve a harmonic balance
simulation. To build them, they are first created in time domain and transformed into frequency
domain afterwards. To obtain a practical algorithm for this transformation, the DFT is best

80



written as matrix equation. By having a look at equation 19.178 and 19.179, it becomes clear how
this works. The harmonic factors exp(jωktn) build the matrix Γ:

DFT: U(jω) = Γ ·u(t) (7.13)

IDFT: u(t) = Γ−1 ·U(jω) (7.14)

with u and U being the vectors of the time and frequency values, respectively. In contrast to the
standard definition of DFT and inverse DFT, for HB simulation the factor 1/N must be applied
to the DFT and not to the inverse DFT. Now, it is possible to transform the desired Jacobian
matrix into frequency domain. As the Fourier Transformation and the differentiation are both
linear, they can be exchanged:

G =
∂I

∂V
=

∂(Γ · i)
∂(Γ ·v) = Γ · ∂i

∂v
·Γ−1 (7.15)

Here i is a vector with length K ·N , i.e. first all time values of the first node are inserted, then
all time values of the second node etc. The Jacobi matrix of i is defined as:

G(u) =









∂i1
∂u1

. . .
∂i1
∂un

...
. . .

...
∂in
∂u1

. . .
∂in
∂un









(7.16)

Hence this matrix consists of K ×K blocks (one for each node) that are diagonal matrices with
time values of the derivatives in it. (Components exists that create non-diagonal blocks, but these
are so special ones that they do not appear in this document.)

The formula 7.15 seems to be quite clear, but it has to be pointed out how this works with FFT
algorithm. With Γ−1 = (Γ−1)T (see equation 19.179) and (A ·B)T = BT ·AT , it follows:

G = Γ · ∂i
∂v
·Γ−1 =

(

Γ−1 ·
(

Γ · ∂i
∂v

)T
)T

(7.17)

So, there are two steps to perform an FFT-based transformation of the time domain Jacobian
matrix into the frequency domain Jacobian:

1. Perform an FFT on every column of the Jacobian and build a new matrix A with this result,
i.e. the first column of A is the FFTed first column of the Jacobian and so on.

2. Perform an IFFT on every row of the matrix A and build a new matrix B with this result,
i.e. the first row of B is the IFFTed first row of A and so on.

As the Fourier transformation has to be applied to diagonal sub-matrices, the whole above-
mentioned process can be performed by one single FFT. This is done by taking the ∂i/∂v values
in a vector J i and calculating:

1

K
·FFT (J i) (7.18)

The result is the first column of G. The second column equals the first one rotated down by one
element. The third column is the second one rotated down by one element etc. A matrix obeying
this structure is called circulant matrix.

As the time domain values are all real values, the above-mentioned procedure is equivalent to:

invFFT(J i) (7.19)
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The result is the first row of G. The second row equals the first one rotated to the right by one
element. The third row is the second one rotated to the right by one element etc.

If the matrix for a multi-dimensional FFT has to be built, the procedure is the same. The only
difference is that the first row needs to be rotated block-wise for every dimension.

Solving the equation system G ·V = I is the most time consuming task of a simulation. Therefore,
any redundancy must be avoided. The frequency domain Jacobian matrix (as described above)
contains for each frequency element its conjugate-complex counterpart, i.e. the negative frequency
element. If each row m is added to its counterpart m′, each column n can be summed up with
its counterpart n′ and a new row evolves that calculates the real part only. For every summed-up
element imn of the current Jacobian matrix G it is:

Re(imn) = (gmn + gm′n) · vn + (gmn′ + gm′n′) · vn′ (7.20)

= (gmn + gm′n) · vn + (g∗m′n + g∗mn) · v∗n (7.21)

= 2 · (Re(gmn) +Re(gm′n)) ·Re(vn)− 2 · (Im(gmn) + Im(gm′n)) · Im(vn) (7.22)

If each counterpart m′ is substracted from its original row m, the sum creates a row that calculates
the imaginary part only:

Im(imn) = (gmn − gm′n) · vn + (g∗m′n − g∗mn) · v∗n (7.23)

= 2 · (Im(gmn)− Im(gm′n)) ·Re(vn) + 2 · (Re(gmn)−Re(gm′n)) · Im(vn) (7.24)

The same can be done with the Jacobian matrix of the charge C. As this matrix is multiplied by
jω, it yields:

Re(imn) = −2ω · (Im(cmn) + Im(cm′n)) ·Re(vn)− 2ω · (Re(cmn) +Re(gm′n)) · Im(vn) (7.25)

Im(imn) = 2ω · (Re(cmn)−Re(cm′n)) ·Re(vn)− 2ω · (Im(cmn)− Im(cm′n)) · Im(vn) (7.26)

The linear part of Jacobian matrix Ŷ only contains diagonal elements. So, it is:

Re(inn) = 2 ·Re(ynn) ·Re(vn)− 2 · Im(ynn) · Im(vn) (7.27)

Im(inn) = 2 · Im(ynn) ·Re(vn) + 2 ·Re(ynn) · Im(vn) (7.28)

The real and imaginary part are now separated, the resulting equation system cannot be written
in matrix form. In order to derive it without first creating the standard Jacobian matrix, the
indeces mn and m′n must be converted into frequency indeces. This becomes straight-forward
when remembering the circulant structure of the Jacobian matrix. It is:

mn → n−m (7.29)

m′n → n+m (7.30)

Note that the new indeces correspond to the first row of the old Jacobian matrix which is the
inverse Fourier transformation. This concept is also true for more-dimensional frequency domain.
The index transformation must be applied to every dimension.
For every Nyquist frequency (including DC) the imaginary row and/or column, respectively, needs
to be omitted. So the final result is a real-valued equation system of the same size like the original
complex-valued one. Thus, the speed improvement is more than a factor of two.

7.2.5 Termination Criteria

Frequency components with very different magnitude appear in harmonic balance simulation. In
order to detect when the solver has found an accurate solution, an absolute as well as relative
criteria must be used on all nodes and at all frequencies. The analysis is regarded as finished if
one of the criteria is satisfied.
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The absolute and relative criteria write as follows:
∣
∣
∣Ĩn,k + În,k

∣
∣
∣ < εabs ∀ n, k (7.31)

2 ·
∣
∣
∣
∣
∣

Ĩn,k + În,k

Ĩn,k − În,k

∣
∣
∣
∣
∣
< εrel ∀ n, k (7.32)

where Ĩn,k is the current of the linear circuit partition for node n and frequency k and În,k is the
current of the non-linear circuit partition.

7.2.6 Dealing with Exceptions to the Rule

Of course, there are several things that do not fit into the standard harmonic balance scheme.
This subsection deals with them and shows how to solve the problems.

1. As the current source vector IS is created by multiplying the source voltages and the transad-
mittance matrix Ỹ , a current source needs some extra treatment. The solution is simple:
Just add a gyrator to the linear subcircuit and this way, convert the current source to a
voltage source.

2. In some circuits the transadmittance between two ports may be infinite, because of a short
circuit. The most simple work-around is to add the well-known 1GΩ resistance at these
nodes. As the absolute tolerance in the convergence check is usually about 10−6, this method
sacrifices no accuracy.

7.3 Speeding up Techniques

The long simulation time is the main problem of harmonic balance simulations. Solving the
equation system consumes about 90% of the simulation time, because its complexity is O(n3).
The rest is spent in creating the equation system (mainly matrix multiplication etc). The time
used for pre and post AC analysis as well as computing the component models and the FFT can
be neglected.

A possibility to reduce the simulation time is to reduce the matrix size, i.e. to reduce the number of
harmonic frequencies. Of course, this also reduces the accuracy of the simulation result. Therefore,
it is recommended to use a ”diamond-shaped” frequency scheme: All frequencies whose mixing-
order is above a specific maximum value are omitted in the equation system. This reduces the
simulation time quite much but the accuracy slightly only. An even faster method is to start the
iteration with a low maximum order (e.g. 4) and increase it to the user-defined value when the
tolerances are near the termination criteria.

Further speeding-up techniques are the following:

• Re-use of the Jacobian matrix (Samanskii iterations) together with an update method (e.g.
Broyden). The complexity is O(n2). I.e. use LU decomposition to solve equation 7.12. In
the next iteration step use the same decomposition to solve equation 7.12 again, but with
the new right-hand side F(Vn). This way, the much faster substitution is sufficient. Then
apply the result ∆Vn together with a modified Broyden update [19]:

Vn+1 = Vn −
∆Vn

1−∆VT
n−1 ·∆Vn/ |∆Vn−1|2

(7.33)

with |v| being the length of the vector v, i.e. the Euclidean norm. The Broyden update can
be performed in several consecutive iteration steps.

83



• Use of iterative matrix solvers, for example Krylov algorithms like Generalized Minimal
Residual (GMRES). The complexity is O(n2) for the standard method and O(n · log n) for
the matrix-implicit method.

Both methods tend to cause convergence problems in some circuits.

7.4 A Symbolic HB Algorithm

In this final section, a harmonic balance algorithm in symbolic language is presented.

Listing 7.1: symbolic HB algorithm

i n i t ( ) ; // s epa ra t e l i n e a r and non− l i n e a r d e v i c e s
Y = calcTransMatr ix ( ) ; // transadmi t tance matr ix o f l i n e a r c i r c u i t
I s = calcSourceCurrent ( ) ; // source cu r r en t o f l i n e a r s u b c i r c u i t
(v , i , q ) = calculateDC ( ) ; // DC s imu l a t i on as i n i t i a l HB es t ima t e
V = FFT(v ) ; // transform v o l t a g e i n t o f requency domain
F = I s + Y∗V; // l i n e a r par t o f HB equa t i on

do

JG = mFFT(GJacobian (v ) ) ; // c r ea t e Jacob i ans and transform . . .
JQ = mFFT(QJacobian (v ) ) ; // . . . them in to f requency domain
J = Y + JG + j ∗Ω∗JQ; // c a l c u l a t e o v e r a l l Jacobian
V = V − i n v e r t ( J ) ∗ F; // Newton Raphson i t e r a t i o n s t ep
v = IFFT(V) ; // v o l t a g e i n t o time domain
i = non l inearCurrent ( v ) ; // use component models to g e t . . .
q = nonl inearCharge ( v ) ; // . . . v a l u e s f o r nex t i t e r a t i o n
I = FFT( i ) ; // cu r r en t i n t o f requency domain
Q = FFT(q ) ; // charge i n t o f requency domain
F = I s + Y∗V + I + j ∗Ω∗Q; // HB equa t i on

whi le ( abs (F) > Fterm ) ; // convergence reached ?

Va = inv e r t (Ya) ∗ Ia ; // AC s imu l a t i on to g e t a l l v o l t a g e s

7.5 Large-Signal S-Parameter Simulation

Using harmonic balance techniques, it is also possible to perform an S-parameter simulation in the
large-signal regime. This is called LSSP (large-signal s-parameter). Figure 7.3 shows the principle.
The port n excites the circuit with the simulation frequency f0; meanwhile the power of all other
ports is set to zero. Having voltage and current of the fundamental frequency f0 at the ports, the
S-parameters can be calculated:

Smn =
Um(f0)− Im(f0) ·Zm

Un(f0) + In(f0) ·Zn
·
√

Zn

Zm
(7.34)

=
2 ·Um(f0)− U0,m

U0,n

·
√

Zn

Zm
(7.35)

for m = n

Snn = 2 · Un(f0)

U0,n

− 1 (7.36)

and for m 6= n

Smn = 2 · Um(f0)

U0,n

·
√

Zn

Zm
(7.37)
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Figure 7.3: S-parameter from AC voltages and currents

An algorithm in symbolic language should describe the whole LSSP:

Listing 7.2: symbolic HB algorithm

f o r n=1 to NumberOfPorts {
Set power o f port n to Pn .
Set power o f por t s 6= n to 0 .
Perform Harmonic Balance .

f o r m=1 to NumberOfPorts

Calcu la t e S
mn

accord ing to above−mentioned equat ion .
}

7.6 Autonomous Harmonic Balance

Up to here, only forced circuits were dealt with. That is, the above-mentioned methods can analyse
circuits that are driven by signal sources, but do not create a signal by themselves. The typical
examples are amplifiers and mixers. However, harmonic balance techniques are also capable of
simulating autonomous circuits like oscillators [20].
The situation here is that the frequencies are not known. This problem can be overcome by the
so-called mixed harmonic balanced formulation. This means for the vector V :

• Omit the imaginary part of the element refering to the fundamental frequency, i.e. set it to
zero.

• Add the fundamental frequency ω1 to the unknowns of the equation system.

So, the non-linear equation system of equation 7.2 is re-written to the following one:

F(V, ω1) = IS + Ŷ (ω1) ·V
︸ ︷︷ ︸

linear

+ j ·Ω(ω1) ·Q(V) + I(V)
︸ ︷︷ ︸

non-linear

= 0 (7.38)

The next problem is the fact, that all autonomous circuits have at least one further (unwanted)
solution: The DC steady state. One possibility to assure that the simulation converges towards
the wanted solution is to use an appropriate starting value like the AC (small-signal) solution
(frequency and magnitude). Furthermore, the user should define a node p where the oscillation
can be best measured. Then, convergence towards the wanted solution is further forced by nor-
malizing the error function element refering to node p and to the fundamental frequency ω1 by its
corresponding voltage:

Fp,ω1(V, ω) =
Fp,ω1(V, ω)

Vp
(7.39)

This leads to a partial Kurokawa condition for oscillations [20].
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The Jacobian matrix is still quite similar to the one of the forced circuit. For building it the
following additional steps have to be performed:

• The row corresponding to node p and to the fundamental frequency has to be divided by Vp

(taken from the previous iteration).

• Subtract Fp,ω1/V
2
p from the element in the first main diagonal corresponding to node p and

to the fundamental frequency.

• Replace the column now corresponding to oscillation frequency by the derivative with respect
to the oscillation frequency:

∂F(V, ω1)

∂ω1
=

∂Ŷ (ω1)

∂ω1
·V + j · ∂Ω(ω1)

∂ω1
·Q(V) (7.40)
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Chapter 8

Harmonic Balance Noise Analysis

Once a harmonic balance simulation is solved a cyclostationary noise analysis can be performed.
This results in the sideband noise of each harmonic (including DC, i.e. base band noise). The
method described here is based on the principle of small-signal noise. That is, the noise power is
assumed small enough (compared to the signal power and its harmonics) to neglect the mixing of
the noise terms to each other. This procedure is the standard concept in CAE and allows for a
quite simple and time-saving algorithm: Use the Jacobian to calculate a conversion matrix and
then apply the noise correlation matrix to it. Two important publications for HB noise simulation
exist that were used for the next subsection [21], [22].

Figure 8.1 shows the equivalent circuit for starting the HB noise analysis. At every connection
between linear and non-linear subcircuit, there are two noise current sources: one stemming from
the linear subcircuit and one stemming from the non-linear subcircuit.

The whole algorithm consists of three parts that all have to be performed for every noise frequency
ωR of interest.

• create the noise of the linear subcircuit

• create the noise of the non-linear subcircuit

• perform noise conversion, i.e. mixing with the signals

i l,1

non-linear

i l,N

i

i

nl,1

nl,N

linear

i,MZ
+

-

S,M

vS,1

v

+

-

Zi,1

Figure 8.1: principle of harmonic balance noise model
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8.1 The Linear Subcircuit

The noise stemming from the linear subcircuit is calculated in two steps:

1. An AC noise analysis (see section 3.2) is performed for the interconnecting nodes of linear
and non-linear subcircuit. This results in the noise-voltage correlation matrix CZ,lin. Note
that the MNA matrix was already inverted during the AC analysis of the post-HB algorithm.

2. The matrix CZ,lin is converted into a noise-current correlation matrix (see section 5.5.1):

CY,lin = Ŷ ·CZ,lin · Ŷ
+

(8.1)

where Ŷ is taken from equation 7.2.

Both steps have to be performed at every harmonic signal frequency (e.g. k ·ω0 + ωR for the
one-dimensional case). This is illustrated in figure 8.2. The final noise correlation matrix consists
of N × N blocks with K ×K elements each. The K ×K-sized blocks are diagonal submatrices,
i.e. in the linear subcircuit the noise at different frequencies is uncorrelated.

Remark: If no explicit noise sources exist in the linear subcircuit, CZ,lin can be computed much
faster by using Bosma’s theorem (equation 5.43).

power

fR f0 2f00 f0+fR 2f0-fR frequency

Figure 8.2: harmonics (including DC) with noise sidebands

8.2 The Non-Linear Subcircuit

The noise in the non-linear part of the circuit is calculated by using the quasi-static approach, i.e.
for every moment in time the voltages and currents are regarded as a time-dependend bias point.
The noise properties of these bias points are used for the noise calculation.

Remark: It is not clear whether this approach creates a valid result for noise with long-time
correlation (e.g. 1/f noise), too. But up to now, no other methods were proposed and some
publications reported to have achieved reasonable results with this approach and 1/f noise.

For calculating the noise-current correlation matrix (CY,nl)N×N the dependencies of the noise on
frequency and on bias needs to be seperated.

1. dependency on frequency (CY,DC)
The DC bias point uDC = u(ω = 0) taken from the result of the HB simulation is chosen
for building the frequency dependency. At this bias the noise power-spectral densities of the
non-linear components are calculated for each harmonic frequency and are entered into the
first main diagonal of the correlation matrix (CY,DC). I.e. each block is a K ×K diagonal
submatrix with the following elements:

CY,DC(ωR) CY,DC(ω0 + ωR) CY,DC(2 ·ω0 + ωR) . . . (8.2)

where ωR is the desired noise frequency.
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2. dependency on bias (M )
The noise frequency ωR is chosen to create the cyclostationary modulation matrix M(t). Its
main diagonal contains the current power-spectral density Si of each time step normalized
to its DC bias value:

M(t) =

√

Si (u(t), ωR)

Si(uDC , ωR)
=

√

Si (u(t), ωR)

CY,DC(ωR)
(8.3)

Note again that this equation only holds if the frequency dependency of Si is the same for
every bias, so that M(t) is frequency independent. Anyway, this demand is fullfilled for
most practical models. Now the modulation matrix M(t) can be transformed into frequency
domain. This is done by the procedure described in equation 7.18, resulting in the block
circulant matrix (M ).

The final step calculates the desired correlation matrix by applying the non-linear modulation to
the frequency dependency:

(CY,nl) = M · (CY,DC) ·M+ (8.4)

8.3 Noise Conversion

As the noise of linear and non-linear components are uncorrelated, the noise-voltage correlation
matrix at the interconnecting ports can now be calculated:

CZ = J−1 · (CY,lin +CY,nl) · (J−1)+ (8.5)

here J−1 is the inverse of the Jacobian matrix (see equation 7.11) taken from the last HB iteration
step (where it already was inverted). Note that it needs to be the precise Jacobian matrix. I.e. it
must be taken from an iteration step very close to the solution, without any convergence helpers,
and with a precise FFT algorithm (e.g. the multi-dimensional FFT).

Finally, the noise voltages from the interconnecting ports have to be used to compute all other
noise voltages. Because the linear subcircuit may be non-reciprocal, its noise must be counted for
in a final AC noise analysis, and not in the correlation matrix CZ . The rest is straight forward:

1. Convert the noise-voltage correlation matrix CZ into the noise-current correlation matrix
CY (see equation 8.1).

2. Remove the baseband noise (stemming from the linear subcircuit) from the noise correlation
matrix CY in order to not double-count it in the following analysis.

3. Create the noise-current correlation matrix for the linear subcircuit and insert the elements
of the matrix CY .

4. Perform an AC noise analysis for all nodes of interest.

8.4 Phase and Amplitude Noise

The harmonic balance noise analysis calculates the noise power spectral density Suu,k(ωR) at the
noise frequency ωR of the k-th harmonic. The SSB phase and amplitude noise normalized to the
carrier can be obtained by using the symmetry between positive and negative harmonic numbers:

〈
ΦkΦ

∗
−k

〉
=

Suu,k + Suu,−k − 2 ·Re (CZ,k,−k · exp(−j · 2 ·φk))

|Uk|2
(8.6)

〈
AkA

∗
−k

〉
=

Suu,k + Suu,−k + 2 ·Re (CZ,k,−k · exp(−j · 2 ·φk))

|Uk|2
(8.7)
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with Uk = |Uk| · exp(j ·φk) being the k-th harmonic and CZ,k,−k being the correlation coefficient
between the sideband noise of positive and negative harmonics.
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Chapter 9

Circuit Optimization

As circuits get more and more complex, it soon becomes very hard or even impossible to understand
all of its physical background. In this case a circuit optimizer is the best choice to reach a good
performance. The user defines

• the circuit and the type of simulation

• variables, i.e. circuit parameters that can be varied

• goals, i.e. function values that are computed from the simulation result and that should be
maximized, minimized etc.

Now the simulation engine searches for the parameter values that fit the goals most closely. Obvi-
ously, optimization is a very powerful and universal tool. That’s why a lot of different algorithms
exist. The most common are described in the next sections.

9.1 Grid Search

This method creates a mesh from the parameter space that consists of a user-defined number of
test points. The function value of every point is calculated and the best one is taken as a result.
Of course, this is a dumb algorithm that will succeed only if the number of test points is large and
the number of parameters is small.
In order to get a finer grid, a restart may be performed. I.e. the neighbourhood of best parameter
vector is used for a new grid search. This way the optimum can be approximated much better,
because the parameter space is much smaller.

9.2 Random Method

A random optimization is perhaps the most simple algorithm. The variables are varied randomly
within the user defined limits and the values with the best result are saved. This method is able to
find the global minimum, but usually it needs a huge number of simulation runs. Several strategies
exists. A popular one is the following:

1. Choose a starting point.

2. Update the current variables by adding (normal distributed) random numbers.

3. If the new one gives better function values, take it as new current vector.

4. Repeat from step 2 until the user-defined number of iterations is reached.
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9.3 Coordinate Descent

Coordinate descent (or coordinate search) is a quite simple optimization algorithm. It works a s
follows:

1. Choose a starting point.

2. Search along the first variable until a minimum is found (line search).

3. Do this step-by-step with all other variables.

4. Repeat from step 2 until the improvement is very small.

This method approximately follows the gradient of the function values, this way it finds a local
minimum near the starting point.

9.4 Hooke-Jeeves Method

The optimization method by Hooke and Jeeves tries to reduce the number of simulation runs by
performing two different steps. First an exploratory move tries to detect the direction where the
goals gain improvements. Then a pattern move is performed that tries to further improve the
result by varying the variables towards the same direction. This gives the following procedure:

• exploratory move

– Increment the first variable and check the goals.

– If there is no improvement, decrement this variable.

– If there is still no improvement, keep the old value.

– Perform these steps with all variables one-by-one.

– If no variable was changed, repeat from beginning with a smaller step size.

– If successful, two variable vectors are obtained:

1. ~vk contains the original variable values.

2. ~vk+1 contains the improved variable values.

• pattern move

– Get new variable values ~vk+2 = ~vk+1 + α · (~vk+1 − ~vk)
Usually α = 1, but larger values may be chosen.

– If there is no improvement, revert to the old variable values ~vk+1.

– Continue with a new exploratory move.

9.5 Nelder-Mead Method

The Nelder-Mead method or downhill simplex method is a good choice for large optimization
problems. It is capable of finding the global minimum even for non-smooth functions containing
noise.
With the number n of variables to be varied, the algorithm starts with n+ 1 vertices (parameter
vectors ~v) that span an n−dimensional body. By checking the function values f(~v) (goals) of
these vertices, the volume of this body is reduced step-by-step. This is done by four different
operations (reflection with R = 1, expansion with E = 2, contraction with K = 0.5 and shrinkage
with S = 0.5) in the following way:

1. Sort the vertices by its function values: f(~v1) < f(~v2) < . . . < f(~vn+1)
i.e. f(~v1) is the best value and ~vn+1 is the worst value.
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2. Calculate the average value of all but the worst vector: ~vm = 1
n ·
∑n

i=1 ~vi

3. Reflection: ~vr = ~vm +R · (~vm − ~vn+1)
If f(~v1) < f(~vr) < f(~vn) replace the worst value with the new vertex and start the next
iteration, i.e. go back to step 1.

4. If f(~vr) < f(~v1), then expand the new value:
~ve = ~vm + E · (~vr − ~vm)
If f(~ve) < f(~vr) replace the worst value with the expanded vertex, otherwise replace it with
the reflected vertex. Then start the next iteration.

5. Inside contraction: If f(~vr) > f(~vn+1) then ~vic = ~vm +K · (~vn+1 − ~vm)
If f(~vic) < f(~vn+1), replace the worst value with the new vertex and start the next iteration.

6. Outside contraction: If f(~vn) < f(~vr) < f(~vn+1) then ~voc = ~vm +K · (~vr − ~vm)
If f(~voc) < f(~vr), replace the worst value with the new vertex and start the next iteration.

7. Shrinkage: Replace all vertices except the best one by
~vi = ~vi − S · (~vi − ~v1) for i = 2, . . . , n+ 1
Then start the next iteration.

The iteration process ends

• if the largest difference of adjacent vertices becomes less than a user defined value ǫ:

max
|~vi − ~vi+1|
|~vi + ~vi+1|

< ǫ (9.1)

• and if the difference between the best and the worst function value becomes less than a user
defined value ǫ:

max

∣
∣
∣
∣

f(~v1)− f(~vn+1)

f(~v1) + f(~vn+1)

∣
∣
∣
∣
< ǫ (9.2)

9.6 Simulated Annealing

Simulated annealing (SA) is a heuristic method that emulates the statistical process of annealing
in solids, i.e. slowly cooling down until the material freezes into a crystal.
The algorithm starts with a user-defined initial parameter vector. In every iteration a randomly
chosen vector close to the current vector is evaluated. If the new vector gives a better function
value than the current one, it replaces the current one and the next iteration starts. If the new
vector gives a worse function value, it replaces the current one with a probability of

p = exp

(
fold − fnew

T

)

(9.3)

with fold , fnew being the function values of the current and the new vector, respectively, and T
is the current temperature. The annealing is performed by reducing T each time a fix number of
iterations are finished.

9.7 Modified controlled random search

The modified controlled random search (MCRS) is a heuristic method [23]. It starts with a number
of parameter vectors (called population), that are randomly distributed over the whole parameter
domain. In every iteration the algorithm randomly chooses a vertex out of the population and
performs a reflection:

~vr = ~vm +R · (~vx − ~vm) (9.4)
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with ~vm =
1

n
·

n∑

i=1

~vi (9.5)

with ~vx being an arbitrary vector from the vertex, ~vm being the centroid of the vertex and R
being a uniformly distributed random number between zero and α. The new vector ~vr replaces
the worst population vector, if its function value is better.

9.8 Differential Evolution

Differential evolution (DE) is known as one of the most powerful optimization algorithm for large
and complex problems [24]. It starts with a number of parameter vectors (called population) that
should be distributed over the whole parameter domain, i.e. for every parameter in every vector
it is:

vi = vi,min + rand(0,1)i · (vi,max − vi,min) (9.6)

with rand(0,1) being a uniformly distributed random number between 0 and 1, and vi,min, vi,max

are the minimum and maximum values for the i-th parameter. Good experiences have been made
with a population size that is ten times the number of parameters.
During the optimization DE creates a new generation of the population by performing mutation,
crossover and selection processes on every parameter vector. The most popular mutation strategies
are as follows:

DE/rand/1 ~Vj = ~Xr1 + F · ( ~Xr2 − ~Xr3)

DE/current/1 ~Vj = ~Xj + F · ( ~Xr1 − ~Xr2)

DE/best/1 ~Vj = ~Xbest + F · ( ~Xr1 − ~Xr2)

DE/best/2 ~Vj = ~Xbest + F · ( ~Xr1 − ~Xr2 + ~Xr3 − ~Xr4)

DE/rand-to-best/1 ~Vj = ~Xr1 + F · ( ~Xbest − ~Xr1 + ~Xr2 − ~Xr3)

DE/pbest/1 ~Vj = ~Xpbest + F · ( ~Xr1 − ~Xr2)

DE/current-to-pbest/1 ~Vj = ~Xj + F · ( ~Xpbest − ~Xj + ~Xr2 − ~Xr3)

DE/best-of-rand/2 ~Vj = ~Xbr + F · ( ~Xr1 − ~Xr2 + ~Xr3 − ~Xr4)

with the vector ~Xj being the j-th vector of the next generation, ~Xbest being the best vector of

the current generation, ~Xpbest being randomly chosen out of the M best vectors of the current

generation (with M usually about 8), ~Xr1 to ~Xr4 being randomly chosen vectors of the current

generation, and ~Xbr being the best of the randomly chosen vectors.

DE/rand and DE/best are the traditional variants. As can be easily understood, DE/rand con-
verges slowly but stable to the optimum. Therefore, it’s a good choice for hard problems. DE/best
shows the opposite behaviour. It converges fast, but tends to find local optimums instead of the
global one. DE/rand-to-best, DE/pbest and DE/best-of-rand try to combine the advantages of
the traditional variants. DE/best-of-rand/2 seems to be the most successful among them, but as
usually this also depend on the problem.

In order to increase the diversity, the current vector ~X and the mutated vector ~V are mixed by
the crossover operation. The binominal (bin) crossover is the most popular one:

ui =

{
vi if rand(0,1)i ≤ Cr or i = irand
xi otherwise

(9.7)

with Cr being the user-defined crossover probability and irand being a randomly chosen number
that makes sure that at least one crossover happens. The exponential (exp) crossover is a further
method, but it usually gives worse results.
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If the new vector contains parameters outside the user-defined limits, it’s not recommended to set
them to these limits, because the evolution process may easily get caught on them. A better way
is to mirror the value on this limit:

ui,mirrored = 2 ·xi,max − ui if ui > xi,max (9.8)

ui,mirrored = 2 ·xi,min − ui if ui < xi,min (9.9)

Finally the selection process determines which parameter vector survives, the current one or the
new generated one. I.e. the vector with the better function value is inserted into the next
generation.

The whole differential evolution process can be summarized as follows:

1. Create the first population ~Xi,1 randomly.

2. Perform mutation, i.e. create donor vector ~Vi,G

3. Perform crossover, i.e. create trial vector ~Ui,G

4. Perform selection, i.e. ~Xi,G+1 =

{
~Ui,G if f(~Ui,G) ≤ f( ~Xi,G)
~Xi,G otherwise

5. Perform step 2 to 4 for all vectors of the population (i = 1 . . .NP ).

6. Repeat from step 2 until wanted number of runs are done.

9.9 DEGL/SAW

Much work has be spent on improving the differential evolution. The most powerful attempt
created an algorithm called Differential Evolution with Global and Local neighborhood-based
mutations and Self Adaptive Weight factors (DEGL/SAW) [25]. It uses the mutation scheme

DE/current-to-best/1/bin and performs it twice for each vector. First by choosing ~Xr1,G, ~Xr2,G

and ~Xbest,G out of the whole population (global) and second by choosing them out of the neigh-

borhood of the current vector (local). The neighborhood of vector ~Xi,G consists of the vectors
with index ((i−n) modulo NP ) to index ((i+n) modulo NP ). Finally, the results of global

mutation ~Gi,G and local mutation ~Li,G are mixed together by a weighting factor wi:

~Vi,G = wi · ~Gi,G + (1− wi) · ~Li,G (9.10)

Each vector ~Xi,G has its own weighting factor wi. All factors together build a population that
evolves in the same way as the parameter vectors. I.e. at the beginning they are choosen randomly
and for each generation the mutation scheme DE/current-to-best/1/no-crossover is performed.
The values are limited to 0.05 to 0.95.

The following crossover and selection process equal the ones of the standard DE algorithm. The
size of the neighborhood is not critical and usually chosen to be a tenth of the whole population.
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Chapter 10

Linear devices

As the MNA matrix is the y-parameter matrix of the whole circuit, components that are defined
by y-parameters can be easily inserted by adding these parameters to the MNA matrix elements
(so-called ’stamping’), i.e. for a two-port:

[
Y11 Y12

Y21 Y22

]

·
[
V1

V2

]

=

[
I1
I2

]

=

[
0
0

]

(10.1)

The same is true for a noise model defined with current sources, i.e. the elements of the noise
current correlation matrix have simply to be added to the overall current correlation matrix.

In some cases the ground-referenced device needs to be extended to a device without ground
reference. That is, the first port now has got two terminals (1 and 2) and the second port has got
terminal 3 and 4:







Y11 −Y11 Y12 −Y12

−Y11 Y11 −Y12 Y12

Y21 −Y21 Y22 −Y22

−Y21 Y21 −Y22 Y22






·







V1

V2

V3

V4






=







I1
I2
I3
I4






=







0
0
0
0







(10.2)

Components that cannot be defined by y-parameters need to add additional columns and rows
to the MNA matrix. Components defined by z-parameters can be added in the following way
(example for a 2-port; Iin and Iout flow out of the component ports). It is easily extendable for
any port number.







. . 1 0

. . 0 1
−1 0 Z11 Z12

0 −1 Z21 Z22






·







V1

V2

Iin
Iout






=







I1
I2
0
0






=







0
0
0
0







(10.3)

For z-parmeters without ground reference, this yields:











. . . . 1 0

. . . . −1 0

. . . . 0 1

. . . . 0 −1
−1 +1 0 0 Z11 Z12

0 0 −1 +1 Z21 Z22











·











V1

V2

V3

V4

Iin
Iout











=











I1
I2
I3
I4
0
0











=











0
0
0
0
0
0











(10.4)

A 2-port component defined by h-parameters can be added in the following way to the MNA
matrix: 



. . 1

. H22 H21

−1 H12 H11



 ·





V1

V2

J1



 =





I1
I2
0



 (10.5)
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A 2-port component defined by g-parameters can be added in the following way to the MNA
matrix: 



G11 . G12

. . 1
G21 −1 G22



 ·





V1

V2

J2



 =





I1
I2
0



 (10.6)

A 2-port component defined by chain parameters (ABCD parameters) can be added in the follow-
ing way to the MNA matrix:





. A21 A22

. . −1
−1 A11 A12



 ·





V1

V2

J2



 =





I1
I2
0



 (10.7)

Components that are characterized by S-parameters (normalized to Z0) can be put into the MNA
matrix and the noise current correlation matrix by the following scheme (example for a 3-port).
It is easily extendable for any port number.











. . . 1 0 0

. . . 0 1 0

. . . 0 0 1
S11 − 1 S12 S13 Z0 · (S11 + 1) Z0 ·S12 Z0 ·S13

S21 S22 − 1 S23 Z0 ·S21 Z0 · (S22 + 1) Z0 ·S23

S31 S32 S33 − 1 Z0 ·S31 Z0 ·S32 Z0 · (S33 + 1)











·











V1

V2

V3

II1
II2
II3











=











I1
I2
I3
0
0
0











=











0
0
0
0
0
0











(10.8)

CY = 4 ·Z0 ·











. . . 0 0 0

. . . 0 0 0

. . . 0 0 0
0 0 0 cS,11 cS,12 cS,13
0 0 0 cS,21 cS,22 cS,23
0 0 0 cS,31 cS,32 cS,33











(10.9)

A 2-port component defined by T-parameters can be added in the following way to the MNA
matrix: 





. . 1 0

. . 0 1
−1 T11 + T12 +Z0 Z0 · (T11 − T12)
−1 T21 + T22 −Z0 Z0 · (T21 − T22)






·







V1

V2

J1
J2






=







I1
I2
0
0







(10.10)

10.1 Resistor

For DC and AC simulation an ideal resistor with resistance R yields:

Y =
1

R
·
(

1 −1
−1 1

)

(10.11)

The noise correlation matrix at temperature T yields:

(CY ) =
4 · k ·T

R
·
(

1 −1
−1 1

)

(10.12)

The scattering parameters normalized to impedance Z0 writes as follows.

S11 = S22 =
R

2 ·Z0 +R
(10.13)

S12 = S21 = 1− S11 =
2 ·Z0

2 ·Z0 +R
(10.14)
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Being on temperature T , the noise wave correlation matrix writes as follows.

(C) = k ·T · 4 ·R ·Z0

(2 ·Z0 +R)2
·
(

1 −1
−1 1

)

(10.15)

The noise wave correlation matrix of a parallel resistor with resistance R writes as follows.

(C) = k ·T · 4 ·R ·Z0

(2 ·R+ Z0)2
·
(
1 1
1 1

)

(10.16)

The noise wave correlation matrix of a grounded resistor with resistance R is a matrix consisting
of one element and writes as follows.

(C) = k ·T · 4 ·R ·Z0

(R+ Z0)2
(10.17)

10.2 Capacitor

During DC simulation the capacitor is an open circuit. Thus, its MNA entries are all zero.

During AC simulation the y-parameter matrix of an ideal capacitor with the capacitance C writes
as follows.

Y =

(
+jωC −jωC
−jωC +jωC

)

(10.18)

The scattering parameters (normalized to Z0) of an ideal capacitor with capacitance C writes as
follows.

S11 = S22 =
1

2 ·Z0 · jωC + 1
(10.19)

S12 = S21 = 1− S11 (10.20)

An ideal capacitor is noise free. Its noise correlation matrices are, therefore, zero.

10.3 Inductor

During DC simulation an inductor is a short circuit, thus, its MNA matrix entries need an addi-
tional row and column. 



. . +1

. . −1
+1 −1 0



 ·





V1

V2

Ibr



 =





I1
I2
0



 =





0
0
0



 (10.21)

During AC simulation the Y-parameter matrix of an ideal inductor with the inductance L writes
as follows.

Y =






+
1

jωL
− 1

jωL

− 1

jωL
+

1

jωL




 (10.22)

The scattering parameters of an ideal inductor with inductance L writes as follows.

S11 = S22 =
jωL

2 ·Z0 + jωL
(10.23)

S12 = S21 = 1− S11 (10.24)

An ideal inductor is noise free.
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10.4 DC Block

A DC block is a capacitor with an infinite capacitance. During DC simulation the DC block is an
open circuit. Thus, its MNA entries are all zero.

The MNA matrix entries of a DC block correspond to an ideal short circuit during AC analysis
which is modeled by a voltage source with zero voltage.





. . +1

. . −1
+1 −1 0



 ·





V1

V2

Ibr



 =





I1
I2
0



 =





0
0
0



 (10.25)

The scattering parameters writes as follows.

(S) =

(
0 1
1 0

)

(10.26)

A DC block is noise free. A model for transient simulation does not exist. It is common practice
to model it as a capacitor with finite capacitance whose value is entered by the user.

10.5 DC Feed

A DC feed is an inductor with an infinite inductance. The MNA matrix entries of a DC feed
correspond to an ideal short circuit during DC analysis:





. . +1

. . −1
+1 −1 0



 ·





V1

V2

Ibr



 =





I1
I2
0



 =





0
0
0



 (10.27)

During AC simulation the DC feed is an open circuit. Thus, its MNA entries are all zero.

The scattering parameters writes as follows.

(S) =

(
1 0
0 1

)

(10.28)

A DC feed is noise free. A model for transient simulation does not exist. It is common practice
to model it as an inductor with finite inductance whose value is entered by the user.

10.6 Bias T

An ideal bias t is a combination of a DC block and a DC feed (fig. 10.1). During DC simulation
the MNA matrix of an ideal bias t writes as follows:







. . . 0

. . . 1

. . . −1
0 1 −1 0






·







V1

V2

V3

Iout






=







I1
I2
I3
0






=







0
0
0
0







(10.29)
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1 2

3

Figure 10.1: bias t

The MNA entries of the bias t during AC analysis write as follows.







. . . −1

. . . 1

. . . 0
−1 1 0 0






·







V1

V2

V3

Iout






=







I1
I2
I3
0






=







0
0
0
0







(10.30)

The scattering parameters writes as follows.

(S) =





0 1 0
1 0 0
0 0 1



 (10.31)

A bias t is noise free. A model for transient simulation does not exist. It is common practice to
model it as an inductor and a capacitance with finite values which are entered by the user.

10.7 Transformer

The two winding ideal transformer, as shown in fig. 10.2, is determined by the following equation
which introduces one more unknown in the MNA matrix.

3

21

4

I t I tT

1T

Figure 10.2: ideal two winding transformer

T · (V2 − V3) = V1 − V4 → V1 − T ·V2 + T ·V3 − V4 = 0 (10.32)

The new unknown variable It must be considered by the four remaining simple equations.

I1 = −It I2 = T · It I3 = −T · It I4 = It (10.33)

And in matrix representation this is for DC and for AC simulation:









. . . . −1

. . . . T

. . . . −T

. . . . 1
1 −T T −1 0









·









V1

V2

V3

V4

It









=









I1
I2
I3
I4
0









=









0
0
0
0
0









(10.34)
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It is noticeable that the additional row (part of the C matrix) and the corresponding column (part
of the B matrix) are transposed to each other. When considering the turns ratio T being complex
introducing an additional phase the transformer can be used as phase-shifting transformer. Both
the vectors must be conjugated complex transposed in this case.

Using the port numbers depicted in fig. 10.2, the scattering parameters of an ideal transformer
with voltage transformation ratio T (number of turns) writes as follows.

S14 = S22 = S33 = S41 =
1

T 2 + 1
(10.35)

S12 = −S13 = S21 = −S24 = −S31 = S34 = −S42 = S43 = T ·S22 (10.36)

S11 = S23 = S32 = S44 = T ·S12 (10.37)

An ideal transformer is noise free.

10.8 Symmetrical transformer

The ideal symmetrical transformer, as shown in fig. 10.3, is determined by the following equations
which introduce two more unknowns in the MNA matrix.

4

3

2

1

6
5

1

2

I

I

T1

I T2

TT

T

1

Figure 10.3: ideal three winding transformer

T1 · (V2 − V3) = V1 − V6 → V1 − T1 ·V2 + T1 ·V3 − V6 = 0 (10.38)

T2 · (V2 − V3) = V5 − V4 → −T2 ·V2 + T2 ·V3 − V4 + V5 = 0 (10.39)

The new unknown variables IT1 and IT2 must be considered by the six remaining simple equations.

I2 = T1 · IT1 + T2 · IT2 I3 = −T1 · IT1 − T2 · IT2 (10.40)

I1 = −IT1 I4 = IT2 I5 = −IT2 I6 = IT1 (10.41)
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The matrix representation needs to be augmented by two more new rows and their corresponding
columns. For DC and AC simulation it is:















. . . . . . −1 0

. . . . . . T1 T2

. . . . . . −T1 −T2

. . . . . . 0 1

. . . . . . 0 −1

. . . . . . 1 0
1 −T1 T1 0 0 −1 0 0
0 −T2 T2 −1 1 0 0 0















·















V1

V2

V3

V4

V5

V6

IT1

IT2















=















I1
I2
I3
I4
I5
I6
0
0















=















0
0
0
0
0
0
0
0















(10.42)

Using the port numbers depicted in fig. 10.3, the scattering parameters of an ideal, symmetrical
transformer with voltage transformation ratio (number of turns) T1 and T2, respectively, writes
as follows.

denom = 1 + T 2
1 + T 2

2 (10.43)

S11 = S66 =
T 2
1

denom
S16 = S61 = 1− S11 (10.44)

S44 = S55 =
T 2
2

denom
S45 = S54 = 1− S44 (10.45)

S22 = S33 =
1

denom
S23 = S32 = 1− S22 (10.46)

S12 = S21 = −S13 = −S31 = −S26 = −S62 = S36 = S63 =
T1

denom
(10.47)

−S24 = −S42 = S25 = S52 = S34 = S43 = −S35 = −S53 =
T2

denom
(10.48)

−S14 = −S41 = S15 = S51 = S46 = S64 = −S56 = −S65 =
T1 ·T2

denom
(10.49)

An ideal symmetrical transformer is noise free.

10.9 Non-ideal transformer

Many simulators support non-ideal transformers (e.g. mutual inductor in SPICE). An often used
model consists of finite inductances and an imperfect coupling (straw inductance). This model
has three parameters: Inductance of the primary coil L1, inductance of the secondary coil L2 and
the coupling factor k = 0...1.

This model can be replaced by the equivalent circuit depicted in figure 10.4. The values are
calculated as follows.

turn ratio: T =

√
L1

L2
(10.50)

mutual inductance: M = k ·L1 (10.51)

primary inductance: L1,new = L1 −M = L1 · (1− k) (10.52)

secondary inductance: L2,new = L2 −
M

T 2
= L2 · (1− k) (10.53)
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Figure 10.4: equivalent circuit of non-ideal transformer

The Y-parameters of this component are:

Y11 = Y44 = −Y41 = −Y14 =
1

jω ·L1 · (1− k2)
(10.54)

Y22 = Y33 = −Y23 = −Y32 =
1

jω ·L2 · (1− k2)
(10.55)

Y13 = Y31 = Y24 = Y42 = −Y12 = −Y21 = −Y34 = −Y43 =
k

jω ·
√
L1 ·L2 · (1− k2)

(10.56)

Furthermore, its S-parameters are:

D = (k2 − 1) · ω
2 ·L1 ·L2

2 ·Z0
+ jωL1 + jωL2 + 2 ·Z0 (10.57)

S14 = S41 =
jωL2 + 2 ·Z0

D
(10.58)

S11 = S44 = 1− S14 (10.59)

S23 = S32 =
jωL1 + 2 ·Z0

D
(10.60)

S22 = S33 = 1− S23 (10.61)

S12 = −S13 = S21 = −S24 = −S31 = S34 = −S42 = S43 =
jω · k ·

√
L1 ·L2

D
(10.62)

Also including an ohmic resistance R1 and R2 for each coil, leads to the following Y-parameters:

Y11 = Y44 = −Y41 = −Y14 =
1

jω ·L1 ·
(

1− k2 · jωL2

jωL2 +R2

)

+R1

(10.63)

Y22 = Y33 = −Y23 = −Y32 =
1

jω ·L2 ·
(

1− k2 · jωL1

jωL1 +R1

)

+R2

(10.64)

Y13 = Y31 = Y24 = Y42 = −Y12 = −Y21 = −Y34 = −Y43 = k · jω
√
L1 ·L2

jω ·L2 +R2
·Y11 (10.65)

Building the S-parameters leads to too large equations. Numerically converting the Y-parameters
into S-parameters is therefore recommended.

The MNA matrix entries during DC analysis and the noise correlation matrices of this transformer
are:

(Y ) =







1/R1 0 0 −1/R1

0 1/R2 −1/R2 0
0 −1/R2 1/R2 0

−1/R1 0 0 1/R1







(10.66)
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(CY ) = 4 · k ·T ·







1/R1 0 0 −1/R1

0 1/R2 −1/R2 0
0 −1/R2 1/R2 0

−1/R1 0 0 1/R1







(10.67)

(CS) = 4 · k ·T ·Z0 ·








R1

(2 ·Z0+R1)2
0 0 − R1

(2 ·Z0+R1)2

0 R2

(2 ·Z0+R2)2
− R2

(2 ·Z0+R2)2
0

0 − R2

(2 ·Z0+R2)2
R2

(2 ·Z0+R2)2
0

− R1

(2 ·Z0+R1)2
0 0 R1

(2 ·Z0+R1)2








(10.68)

A transformer with three coupled inductors has three coupling factors k12, k13 and k23. Its Y-
parameters write as follows (port numbers are according to figure 10.3).

A = jω · (1− k212 − k213 − k223 + 2 · k12 · k13 · k23) (10.69)

Y11 = Y66 = −Y16 = −Y61 =
1− k223
L1 ·A

(10.70)

Y22 = Y33 = −Y23 = −Y32 =
1− k212
L3 ·A

(10.71)

Y44 = Y55 = −Y45 = −Y54 =
1− k213
L2 ·A

(10.72)

Y12 = Y21 = Y36 = Y63 = −Y13 = −Y31 = −Y26 = −Y62 =
k12 · k23 − k13√

L1 ·L3 ·A
(10.73)

Y15 = Y51 = Y46 = Y64 = −Y14 = −Y41 = −Y56 = −Y65 =
k13 · k23 − k12√

L1 ·L2 ·A
(10.74)

Y25 = Y52 = Y43 = Y34 = −Y24 = −Y42 = −Y53 = −Y35 =
k12 · k13 − k23√

L2 ·L3 ·A
(10.75)

A more general approach for coupled inductors can be obtained by using the induction law:

VL = jωL · IL + jω ·
N∑

n=1

kn ·
√

L ·Ln · IL,n (10.76)

where VL and IL is the voltage across and the current through the inductor, respectively. L is its
inductance. The inductor is coupled with N other inductances Ln. The corresponding coupling
factors are kn and IL,n are the currents through the inductors.

Realizing this approach with the MNA matrix is straight forward: Every inductance L needs an
additional matrix row. The corresponding element in the D matrix is jωL. If two inductors are
coupled the cross element in the D matrix is jωk ·

√
L1 ·L2. For two coupled inductors this yields:











. . . . +1 0

. . . . −1 0

. . . . 0 +1

. . . . 0 −1
+1 −1 0 0 jωL1 jωk ·

√
L1 ·L2

0 0 +1 −1 jωk ·
√
L1 ·L2 jωL2











·











V1

V2

V3

V4

Ibr1
Ibr2











=











I1
I2
I3
I4
0
0











=











0
0
0
0
0
0











(10.77)

Obviously, this approach has an advantage: It also works for zero inductances and for unity
coupling factors. It has the disadvantage that it enlarges the MNA matrix.
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10.10 Attenuator

The ideal attenuator with (power) attenuation L is frequency independent and the model is valid
for DC and for AC simulation. It is determined by the following Z parameters.

Z11 = Z22 = Zref ·
L+ 1

L− 1
(10.78)

Z12 = Z21 = Zref ·
2 ·
√
L

L− 1
(10.79)

The Z parameter representation is not very practical as new lines in the MNA matrix have to be
added. More useful are the Y parameters.

(Y ) =
1

Zref · (L − 1)
·
(

L+ 1 −2 ·
√
L

−2 ·
√
L L+ 1

)

(10.80)

Attenuator with (power) attenuation L, reference impedance Zref and temperature T :

(CY ) = 4 · k ·T ·Re (Y ) =
4 · k ·T

Zref · (L− 1)
·
(

L+ 1 −2 ·
√
L

−2 ·
√
L L+ 1

)

(10.81)

The scattering parameters and noise wave correlation matrix of an ideal attenuator with (power)
attenuation L (loss) (or power gain G = 1/L) in reference to the impedance Zref writes as follows.

S11 = S22 =
r · (L− 1)

L− r2
=

r · (1−G)

1− r2 ·G (10.82)

S12 = S21 =

√
L · (1− r2)

L− r2
=

√
G · (1− r2)

1− r2 ·G (10.83)

(C) = k ·T · (L − 1) · (r2 − 1)

(L− r2)2
·
(
−r2 − L 2 · r

√
L

2 · r
√
L −r2 − L

)

(10.84)

with

r =
Zref − Z0

Zref + Z0
(10.85)

10.11 Amplifier

An ideal amplifier increases signal strength from input to output and blocks all signals flowing
into the output. The ideal amplifier is an isolator with voltage gain G and is determined by the
following Z or Y parameters (valid for DC and AC simulation).

Z11 = Z1 Z12 = 0 (10.86)

Z21 = 2 ·
√

Z1 ·Z2 ·G Z22 = Z2 (10.87)

Y11 =
1

Z1
Y12 = 0 (10.88)

Y21 = − 2 ·G√
Z1 ·Z2

Y22 =
1

Z2
(10.89)

With the reference impedance of the input Z1 and the one of the output Z2 and the voltage
amplification G, the scattering parameters of an ideal amplifier write as follows.

S11 =
Z1 − Z0

Z1 + Z0
(10.90)
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S12 = 0 (10.91)

S22 =
Z2 − Z0

Z2 + Z0
(10.92)

S21 =
4 ·Z0 ·

√
Z1 ·Z2 ·G

(Z1 + Z0) · (Z2 + Z0)
(10.93)

Being on temperature T , the noise wave correlation matrix with reference to impedance Z1 and
Z2 (input and output) writes as follows.

c11 = c12 = c21 = 0 (10.94)

c22 = 4 · k ·T ·Z0 ·Z2 · (F − 1) ·
(

G

Z0 + Z2

)2

(10.95)

And for y parameters the noise correlation matrix writes:

cy11 = cy12 = cy21 = 0 (10.96)

cy22 = 4 · k ·T · (F − 1) · G
2

Z2
(10.97)

10.12 Isolator

An isolator is a one-way two-port, transporting incoming waves lossless from the input (port 1)
to the output (port 2), but dissipating all waves flowing into the output. The ideal isolator with
reference impedances Z1 (input) and Z2 (output) is determined by the following Z parameters (for
DC and AC simulation).

Z11 = Z1 Z12 = 0 (10.98)

Z21 = 2 ·
√

Z1 ·Z2 Z22 = Z2 (10.99)

A more useful MNA representation is with Y parameters.

(Y ) =






1

Z1
0

−2√
Z1 ·Z2

1

Z2




 (10.100)

Isolator with reference impedance Z1 (input) and Z2 (output) and temperature T :

(CY ) = 4 · k ·T ·






1

Z1
0

−2√
Z1 ·Z2

1

Z2




 (10.101)

With the reference impedance of the input Z1 and the one of the output Z2, the scattering
parameters of an ideal isolator writes as follows.

S11 =
Z1 − Z0

Z1 + Z0
(10.102)

S12 = 0 (10.103)
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S22 =
Z2 − Z0

Z2 + Z0
(10.104)

S21 =
√

1− (S11)2 ·
√

1− (S22)2 (10.105)

Being on temperature T , the noise wave correlation matrix of an ideal isolator with reference
impedance Z1 and Z2 (input and output) writes as follows.

(C) =
4 · k ·T ·Z0

(Z1 + Z0)2
·







Z1

√
Z1 ·Z2 ·

Z0 − Z1

Z0 + Z2

√
Z1 ·Z2 ·

Z0 − Z1

Z0 + Z2
Z2 ·

(
Z1 − Z0

Z2 + Z0

)2







(10.106)

10.13 Circulator

A circulator is a 3-port device, transporting incoming waves lossless from port 1 to port 2, from
port 2 to port 3 and from port 3 to port 1. In all other directions, there is no energy flow. The
ideal circulator cannot be characterized with Z or Y parameters, because their values are partly
infinite. But implementing with S parameters is practical (see equation 10.8).

With the reference impedances Z1, Z2 and Z3 for the ports 1, 2 and 3 the scattering matrix of an
ideal circulator writes as follows.

denom = 1− r1 · r2 · r3 (10.107)

r1 =
Z0 − Z1

Z0 + Z1
, r2 =

Z0 − Z2

Z0 + Z2
, r3 =

Z0 − Z3

Z0 + Z3
(10.108)

S11 =
r2 · r3 − r1
denom

, S22 =
r1 · r3 − r2
denom

, S33 =
r1 · r2 − r3
denom

(10.109)

S12 =

√
Z2

Z1
· Z1 + Z0

Z2 + Z0
· r3 · (1 − r21)

denom
, S13 =

√
Z3

Z1
· Z1 + Z0

Z3 + Z0
· 1− r21
denom

(10.110)

S21 =

√

Z1

Z2
· Z2 + Z0

Z1 + Z0
· 1− r22
denom

, S23 =

√

Z3

Z2
· Z2 + Z0

Z3 + Z0
· r1 · (1− r22)

denom
(10.111)

S31 =

√

Z1

Z3
· Z3 + Z0

Z1 + Z0
· r2 · (1 − r23)

denom
, S32 =

√

Z2

Z3
· Z3 + Z0

Z2 + Z0
· 1− r23
denom

(10.112)

An ideal circulator is noise free.

10.14 Phase shifter

A phase shifter has the same model equations like a transmission line. Its Z-parameters therefore
writes as follows.

Z11 = Z22 =
j ·Zref

tan(φ)
= Z12 · cos(φ) (10.113)

Z12 = Z21 =
j ·Zref

sin(φ)
(10.114)
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The admittance parameters required for the AC analysis result in

Y11 = Y22 =
j

Zref · tan (φ)
= −Y12 · cos(φ) (10.115)

Y12 = Y21 =
1

j ·Zref · sin (φ)
(10.116)

where φ denotes the actual phase shift of the device. Note that these parameters are not defined
for some phase shifts. The cosine term should therefore be preferred instead of the tangen term.
For zero phase shift (φ = 0) an ideal short circuit can be taken. For φ = π the chain parameters
must be taken instead of Y-parameters.

The scattering parameters of an ideal phase shifter with phase shift φ and reference impedance
Zref writes as follows.

r =
Zref − Z0

Zref + Z0
(10.117)

S11 = S22 =
r · (1− exp (j · 2φ))
1− r2 · exp (j · 2φ) (10.118)

S12 = S21 =
(1− r2) · exp (j ·φ)
1− r2 · exp (j · 2φ) (10.119)

An ideal phase shifter is noise free. Note that there’s no model for DC and transient analysis,
because the equations exhibit imaginary numbers and the impulse response isn’t finite.

10.15 Coupler (Hybrid)

According to the port numbers in fig. 10.5 the Y-parameters of a coupler write as follows.

Y11 = Y22 = Y33 = Y44 =
A · (2−A)

D
(10.120)

Y12 = Y21 = Y34 = Y43 =
−A ·B

D
(10.121)

Y13 = Y31 = Y24 = Y42 =
C · (A− 2)

D
(10.122)

Y14 = Y41 = Y23 = Y32 =
B ·C
D

(10.123)

(10.124)

with

A = k2 · (1 + exp (j · 2φ)) (10.125)

B = 2 ·
√

1− k2 (10.126)

C = 2 · k · exp (j ·φ) (10.127)

D = Zref ·
(
A2 − C2

)
(10.128)

(10.129)

whereas 0 < k < 1 denotes the coupling factor, φ the phase shift of the coupling path and Zref

the reference impedance. The coupler becomes a hybrid by setting k = 1/
√
2.

The noise wave correlationmatrix contains zeros in the first main diagonale, whereas there are some
non-diagonale elements being 2k

√
1− k2 · cosφ. Thus, this component shows physical behaviour

for φ = 0.5 ·π + n ·π only (90 degree).
Note that there’s no model for DC and transient analysis, because the equations exhibit imaginary
numbers and the impulse response isn’t finite. Thus, it’s recommended to model the coupler by
just making a short between port 1 and port 2 and between port 3 and port 4.
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21

4

Figure 10.5: ideal coupler device

The scattering parameters of a coupler are:

S11 = S22 = S33 = S44 = 0 (10.130)

S14 = S23 = S32 = S41 = 0 (10.131)

S12 = S21 = S34 = S43 =
√

1− k2 (10.132)

S13 = S31 = S24 = S42 = k · exp (jφ) (10.133)

whereas 0 < k < 1 denotes the coupling factor, φ the phase shift of the coupling path. Extending
them for an arbitrary reference impedance Zref , they already become quite complex:

r =
Z0 − Zref

Z0 + Zref
(10.134)

A = k2 · (exp (j · 2φ) + 1) (10.135)

B = r2 · (1−A) (10.136)

C = k2 · (exp (j · 2φ)− 1) (10.137)

D = 1− 2 · r2 · (1 + C) +B2 (10.138)

(10.139)

S11 = S22 = S33 = S44 = r · A ·B + C + 2 · r2 · k2 · exp (j · 2φ)
D

(10.140)

S12 = S21 = S34 = S43 =
√

1− k2 ·
(
1− r2

)
· (1−B)

D
(10.141)

S13 = S31 = S24 = S42 = k · exp (jφ) ·
(
1− r2

)
· (1 +B)

D
(10.142)

S14 = S23 = S32 = S41 = 2 ·
√

1− k2 · k · exp (jφ) · r ·
(
1− r2

)

D
(10.143)

An ideal coupler is noise free.

10.16 Unsymmetrical Hybrid

The previous chapter deals with symmetrical hybrids. This chapter describes the model of un-
symmetrical hybrids , i.e. hybrids where one path has a phase shift only. Figure 10.6 shows a
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symbol of these devices. Its s-parameters writes as follows.

S =
1√
2
·







0 0 1 1
0 0 1 ejφ

1 1 0 0
1 ejφ 0 0







(10.144)

0°

0°0°

Φ
1

3

4

2

Figure 10.6: unsymmetrical hybrid (3dB-coupler)

The noise wave correlation matrix contains zeros in the first main diagonale, whereas there are
some non-diagonale elements being 1+exp(±jφ). Thus, this component shows physical behaviour
for φ = π + n · 2π only (180 degree).
The y-parameters have a pole at φ = π + n · 2π. Thus the component has to be modeled with
s-parameters.

10.17 Gyrator

A gyrator is an impedance inverter. Thus, for example, it converts a capacitance into an inductance
and vice versa. The ideal gyrator with the ratio G = 1/R, as shown in fig. 10.7, is determined by
the following equations which introduce two more unknowns in the MNA matrix.

I in Iout

3

21

4

R

Figure 10.7: ideal gyrator

Iin = G · (V2 − V3) → G ·V2 −G ·V3 − Iin = 0 (10.145)

Iout = −G · (V1 − V4) → −G ·V1 +G ·V4 − Iout = 0 (10.146)

The new unknown variables Iout and Iin must be considered by the four remaining simple equa-
tions.

I1 = Iin I2 = Iout I3 = −Iout I4 = −Iin (10.147)
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As can be seen, a gyrator consists of two cross-connected VCCS (section 10.20.1). Hence, its
y-parameter matrix is:

(Y ) =







0 G −G 0
−G 0 0 G
G 0 0 −G
0 −G G 0







(10.148)

The scattering matrix of an ideal gyrator with the ratio G = 1/R writes as follows.

r =
R

Z0
=

1

G ·Z0
(10.149)

S11 = S22 = S33 = S44 =
r2

r2 + 4
(10.150)

S14 = S23 = S32 = S41 = 1− S11 (10.151)

S12 = −S13 = −S21 = S24 = S31 = −S34 = −S42 = S43 =
2 · r

r2 + 4
(10.152)

10.18 Voltage and current sources

For an AC analysis, DC sources are short circuit (voltage source) or open circuit (current source),
respectively. Accordingly, for a DC analysis, AC sources are short circuit (voltage source) or
open circuit (current source), respectively. As these sources have no internal resistance, they are
noisefree.

The MNA matrix of a current source is (with short circuit current I0 flowing into node 1 and out
of node 2):

[
. .
. .

]

·
[
V1

V2

]

=

[
I0
−I0

]

(10.153)

The MNA matrix of a voltage source is (with open circuit voltage U0 across node 1 to node 2):





. . 1

. . −1
1 −1 0



 ·





V1

V2

Iin



 =





0
0
U0



 (10.154)

The MNA matrix of a power source is (with internal resistance R and available power P ):






1

R
− 1

R

− 1

R

1

R




 ·

[
V1

V2

]

=







√

8 ·P
R

−
√

8 ·P
R







(10.155)

The factor ”8” is because of:

• transforming peak current value into effective value (factor two)

• at power matching the internal resistance dissipates the same power as the load (gives factor
four).

The noise current correlation matrix of a power source equals the one of a resistor with resistance
R.

All voltage sources (AC and DC) are short circuits and therefore their S-parameter matrix equals
the one of the DC block. All current sources are open circuits and therefore their S-parameter
matrix equals the one of the DC feed.
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10.19 Noise sources

To implement the frequency dependencies of all common noise PSDs the following equation can
be used.

PSD =
PSD0

a+ b · f c
(10.156)

Where f is frequency and a, b, c are the parameters. The following PSDs appear in electric devices.

white noise (thermal noise, shot noise): a = 0, b = 1, c = 0
pink noise (flicker noise): a = 0, b = 1, c = 1
Lorentzian PSD (generation-recombination noise): a = 1, b = 1/f2

c , c = 2

10.19.1 Noise current source

Noise current source with a current power spectral density of cPSD:

(CY ) = cPSD ·
(

1 −1
−1 1

)

(10.157)

The MNA matrix entries for DC and AC analysis are all zero.

The noise wave correlation matrix of a noise current source with current power spectral density
cPSD and its S parameter matrix write as follows.

(C) = cPSD ·Z0 ·
(

1 −1
−1 1

)

(S) =

(
1 0
0 1

)

(10.158)

10.19.2 Noise voltage source

A noise voltage source (voltage power spectral density vPSD) cannot be modeled with the noise
current matrix. That is why one has to use a noise current source (current power spectral density
cPSD) connected to a gyrator (transimpedance R) satisfying the equation

vPSD = cPSD ·R2 (10.159)

Figure 10.8 shows an example.

I1
i=1e-6

V1
u=1e-6

X1
R=1

Figure 10.8: noise voltage source (left-hand side) and its equivalent circuit (right-hand side)

The MNA matrix entries of the above construct (gyrator ratio R = 1) is similiar to a voltage
source with zero voltage.





. . −1

. . 1
1 −1 0



 ·





V1

V2

Ix



 =





I1
I2
0



 =





0
0
0



 (10.160)
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The appropriate noise current correlation matrix yields:

(CY ) = cPSD ·





0 0 0
0 0 0
0 0 1



 (10.161)

The noise wave correlation matrix of a noise voltage source with voltage power spectral density
vPSD and its S parameter matrix write as follows.

(C) =
vPSD

4 ·Z0
·
(

1 −1
−1 1

)

(S) =

(
0 1
1 0

)

(10.162)

10.19.3 Correlated noise sources

For two correlated noise current sources the (normalized) correlation coefficient K must be known
(with |K| = 0 . . . 1). If the first noise source has the current power spectral density Si1 and is
connected to node 1 and 2, and if furthermore the second noise source has the spectral density
Si2 and is connected to node 3 and 4, then the correlation matrix writes:

(CY ) =







Si1 −Si1 K ·
√
Si1 ·Si2 −K ·

√
Si1 ·Si2

−Si1 Si1 −K ·
√
Si1 ·Si2 K ·

√
Si1 ·Si2

K ·
√
Si1 ·Si2 −K ·

√
Si1 ·Si2 Si2 −Si2

−K ·
√
Si1 ·Si2 K ·

√
Si1 ·Si2 −Si2 Si2







(10.163)

The MNA matrix entries for DC and AC analysis are all zero.

The noise wave correlation matrix of two correlated noise current sources with current power
spectral densities Si1 and Si2 and correlation coefficient K writes as follows.

(C) = Z0 ·







Si1 −Si1 K ·
√
Si1 ·Si2 −K ·

√
Si1 ·Si2

−Si1 Si1 −K ·
√
Si1 ·Si2 K ·

√
Si1 ·Si2

K ·
√
Si1 ·Si2 −K ·

√
Si1 ·Si2 Si2 −Si2

−K ·
√
Si1 ·Si2 K ·

√
Si1 ·Si2 −Si2 Si2







(10.164)

(S) =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







(10.165)

For two correlated noise voltage sources two extra rows and columns are needed in the MNA
matrix:











. . . . −1 0

. . . . 1 0

. . . . 0 −1

. . . . 0 1
1 −1 0 0 0 0
0 0 1 −1 0 0











·











V1

V2

V3

V4

Ix1
Ix2











=











I1
I2
I3
I4
0
0











=











0
0
0
0
0
0











(10.166)

The appropriate noise current correlation matrix (with the noise voltage power spectral densities
Sv1 and Sv2 and the correlation coefficient K) yields:

(CY ) =











0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 Sv1 K ·

√
Sv1 ·Sv2

0 0 0 0 K ·
√
Sv1 ·Sv2 Sv2











(10.167)
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The noise wave correlation matrix of two correlated noise voltage sources with voltage power
spectral densities Sv1 and Sv2 and correlation coefficient K and its S parameter matrix write as
follows.

(C) =
1

4 ·Z0
·







Sv1 −Sv1 K ·
√
Sv1 ·Sv2 −K ·

√
Sv1 ·Sv2

−Sv1 Sv1 −K ·
√
Sv1 ·Sv2 K ·

√
Sv1 ·Sv2

K ·
√
Sv1 ·Sv2 −K ·

√
Sv1 ·Sv2 Sv2 −Sv2

−K ·
√
Sv1 ·Sv2 K ·

√
Sv1 ·Sv2 −Sv2 Sv2







(10.168)

(S) =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







(10.169)

If a noise current source (ports 1 and 2) and a noise voltage source (ports 3 and 4) are correlated,
the MNA matrix entries are as follows.









. . . . 0

. . . . 0

. . . . −1

. . . . 1
0 0 1 −1 0









·









V1

V2

V3

V4

Ix









=









I1
I2
I3
I4
0









=









0
0
0
0
0









(10.170)

The appropriate noise current correlation matrix (with the noise power spectral densities Si1 and
Sv2 and the correlation coefficient K) yields:

(CY ) =









Si1 −Si1 0 0 K ·
√
Si1 ·Sv2

−Si1 Si1 0 0 0
0 0 0 0 0
0 0 0 0 0

K ·
√
Si1 ·Sv2 0 0 0 Sv2









(10.171)

Note: Because the gyrator factor (It is unity.) has been omitted in the above matrix the units are
not correct. This can be ignored.

The noise wave correlation matrix of one correlated noise current source Si1 and one noise voltage
source Sv2 with correlation coefficient K writes as follows.

(C) =







Z0 ·Si1 −Z0 ·Si1 K/2 ·
√
Si1 ·Sv2 −K/2 ·

√
Si1 ·Sv2

−Z0 ·Si1 Z0 ·Si1 −K/2 ·
√
Si1 ·Sv2 K/2 ·

√
Si1 ·Sv2

K/2 ·
√
Si1 ·Sv2 −K/2 ·

√
Si1 ·Sv2 Sv2/4/Z0 −Sv2/4/Z0

−K/2 ·
√
Si1 ·Sv2 K/2 ·

√
Si1 ·Sv2 −Sv2/4/Z0 Sv2/4/Z0







(10.172)

(S) =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







(10.173)

10.20 Controlled sources

The models of the controlled sources contain the transfer factor G. It is complex because of the
delay time T and frequency f .

G = G · ejωT = G · ej · 2πf ·T (10.174)

During a DC analysis (frequency zero) it becomes real because the exponent factor is unity.
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10.20.1 Voltage controlled current source

The voltage-dependent current source (VCCS), as shown in fig. 10.9, is determined by the following
equation which introduces one more unknown in the MNA matrix.

I out
1

4

2

3

Figure 10.9: voltage controlled current source

Iout = G · (V1 − V4) → V1 − V4 −
1

G
· Iout = 0 (10.175)

The new unknown variable Iout must be considered by the four remaining simple equations.

I1 = 0 I2 = Iout I3 = −Iout I4 = 0 (10.176)

And in matrix representation this is:







0 0 0 0
G 0 0 −G
−G 0 0 G
0 0 0 0






·







V1

V2

V3

V4






=







I1
I2
I3
I4






=







0
0
0
0







(10.177)

The scattering matrix of the voltage controlled current source writes as follows (τ is time delay).

S11 = S22 = S33 = S44 = 1 (10.178)

S12 = S13 = S14 = S23 = S32 = S41 = S42 = S43 = 0 (10.179)

S21 = S34 = −2 ·G · exp (−jωτ) (10.180)

S24 = S31 = 2 ·G · exp (−jωτ) (10.181)

10.20.2 Current controlled current source

The current-dependent current source (CCCS), as shown in fig. 10.10, is determined by the
following equation which introduces one more unknown in the MNA matrix.

Iin

4 3

21

Figure 10.10: current controlled current source
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V1 − V4 = 0 (10.182)

The new unknown variable Iin must be considered by the four remaining simple equations.

I1 = Iin I2 = G · Iin I3 = −G · Iin I4 = −Iin (10.183)

And in matrix representation this is:









. . . . 1

. . . . G

. . . . −G

. . . . −1
1 0 0 −1 0









·









V1

V2

V3

V4

Iin









=









I1
I2
I3
I4
0









=









0
0
0
0
0









(10.184)

The scattering matrix of the current controlled current source writes as follows (τ is time delay).

S14 = S22 = S33 = S41 = 1 (10.185)

S11 = S12 = S13 = S23 = S32 = S42 = S43 = S44 = 0 (10.186)

S21 = S34 = −G · exp (−jωτ) (10.187)

S24 = S31 = G · exp (−jωτ) (10.188)

10.20.3 Voltage controlled voltage source

The voltage-dependent voltage source (VCVS), as shown in fig. 10.11, is determined by the
following equation which introduces one more unknown in the MNA matrix.

Iout

3

2

4

+

−

1

Figure 10.11: voltage controlled voltage source

V2 − V3 = G · (V1 − V4) → V1 ·G− V2 + V3 − V4 ·G = 0 (10.189)

The new unknown variable Iout must be considered by the four remaining simple equations.

I1 = 0 I2 = −Iout I3 = Iout I4 = 0 (10.190)

And in matrix representation this is:









. . . . 0

. . . . −1

. . . . 1

. . . . 0
G −1 1 −G 0









·









V1

V2

V3

V4

Iout









=









I1
I2
I3
I4
0









=









0
0
0
0
0









(10.191)

116



The scattering matrix of the voltage controlled voltage source writes as follows (τ is time delay).

S11 = S23 = S32 = S44 = 1 (10.192)

S12 = S13 = S14 = S22 = S33 = S41 = S42 = S43 = 0 (10.193)

S21 = S34 = G · exp (−jωτ) (10.194)

S24 = S31 = −G · exp (−jωτ) (10.195)

10.20.4 Current controlled voltage source

The current-dependent voltage source (CCVS), as shown in fig. 10.12, is determined by the
following equations which introduce two more unknowns in the MNA matrix.

Iout

I in

3

21

4

+

−

Figure 10.12: current controlled voltage source

V1 − V4 = 0 (10.196)

V2 − V3 = G · Iin → V2 − V3 − Iin ·G = 0 (10.197)

The new unknown variables Iout and Iin must be considered by the four remaining simple equa-
tions.

I1 = Iin I2 = −Iout I3 = Iout I4 = −Iin (10.198)

The matrix representation needs to be augmented by two more new rows (for the new unknown
variables) and their corresponding columns.











. . . . 1 0

. . . . 0 1

. . . . 0 −1

. . . . −1 0
0 1 −1 0 −G 0
1 0 0 −1 0 0











·











V1

V2

V3

V4

Iin
Iout











=











I1
I2
I3
I4
0
0











=











0
0
0
0
0
0











(10.199)

The scattering matrix of the current controlled voltage source writes as follows (τ is time delay).

S14 = S23 = S32 = S41 = 1 (10.200)

S11 = S12 = S13 = S22 = S33 = S42 = S43 = S44 = 0 (10.201)

S21 = S34 =
G

2
· exp (−jωτ) (10.202)

S24 = S31 = −G

2
· exp (−jωτ) (10.203)
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10.21 AM modulated AC source

An AC voltage source in the time-domain is characterized by its frequency f , the initial phase φ
and the amplitude A. During amplitude modulation the modulation level M must be considered.
The output voltage of the source is determined by the following equation.

V1 (t)− V2 (t) = (1 +M ·V3 (t)) ·A · sin (ω · t+ φ) (10.204)

1

2

3

AM

Figure 10.13: AM modulated AC source

The appropriate MNA matrix entries during the transient analysis decribing a simple linear op-
eration can be written as







. . . 1

. . . −1

. . . 0
1 −1 −M ·A · sin (ω · t+ φ) 0






·







V1 (t)
V2 (t)
V3 (t)
J1 (t)






=







I1 (t)
I2 (t)
I3 (t)

A · sin (ω · t+ φ)







(10.205)

10.22 PM modulated AC source

The phase modulated AC source is also characterized by the frequency f , the amplidude A and
by an initial phase φ. The output voltage in the time-domain is determinded by the following
equation

V1 (t)− V2 (t) = A · sin (ω · t+ φ+ 2π ·M ·V3 (t)) (10.206)

whereas M denotes the modulation index and V3 the modulating voltage.

1

2

3

PM

Figure 10.14: PM modulated AC source

The component is non-linear in the frequency- as well in the time-domain. In order to prepare
the source for subsequent Newton-Raphson iterations the derivative

g =
∂ (V1 − V2)

∂V3
= 2π ·M ·A · cos (ω · t+ φ+ 2π ·M ·V3) (10.207)

is required. With this at hand the MNA matrix entries of the PM modulated AC voltage source
during the transient analysis can be written as







. . . +1

. . . −1

. . . 0
+1 −1 g 0






·







V1 (t)
V2 (t)
V3 (t)
J1 (t)






=







I1 (t)
I2 (t)
I3 (t)

g ·V3 −A · sin (ω · t+ φ+ 2π ·M ·V3)







(10.208)
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10.23 Transmission Line

A transmission line is usually described by its ABCD-matrix. (Note that in ABCD-matrices, i.e.
the chain matrix representation, the current i2 is defined to flow out of the output port.)

(A) =

(
cosh (γ · l) ZL · sinh (γ · l)

sinh (γ · l)/ZL cosh (γ · l)

)

(10.209)

These can easily be recalculated into impedance parameters.

Z11 = Z22 =
ZL

tanh (γ · l) (10.210)

Z12 = Z21 =
ZL

sinh (γ · l) (10.211)

Or in admittance parameter representation it yields

Y11 = Y22 =
1

ZL · tanh (γ · l)

Y12 = Y21 =
−1

ZL · sinh (γ · l)

(10.212)

whence γ denotes the propagation constant α+ jβ and l is the length of the transmission line. ZL

represents the characteristic impedance of the transmission line. The Y-parameters as defined by
eq. (10.212) can be used for the microstrip line. For an ideal, i.e. lossless, transmission lines they
write accordingly.

Z11 = Z22 =
ZL

j · tan (β · l) (10.213)

Z12 = Z21 =
ZL

j · sin (β · l) (10.214)

Y11 = Y22 =
1

j ·ZL · tan (β · l)
(10.215)

Y12 = Y21 =
j

ZL · sin (β · l)
(10.216)

The scattering matrix of an ideal, lossless transmission line with impedance Z and electrical length
l writes as follows.

r =
Z − Z0

Z + Z0
(10.217)

p = exp

(

−jω l

c0

)

(10.218)

S11 = S22 =
r · (1 − p2)

1− r2 · p2 , S12 = S21 =
p · (1 − r2)

1− r2 · p2 (10.219)

With c0 = 299 792 458 m/s being the vacuum light velocity. Adding attenuation to the transmis-
sion line, the quantity p extends to:

p = exp

(

−jω l

c0
− α · l

)

(10.220)

Another equivalent equation set for the calculation of the scattering parameters is the following:
With the physical length l of the component, its impedance ZL and propagation constant γ, the
complex propagation constant γ is given by

γ = α+ jβ (10.221)
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where α is the attenuation factor and β is the (real) propagation constant given by

β =
√

εreff
(ω) · k0 (10.222)

where εreff
(ω) is the effective dielectric constant and k0 is the TEM propagation constant k0 for

the equivalent transmission line with an air dielectric.

k0 = ω
√
ε0µ0 (10.223)

The expressions used to calculate the scattering parameters are given by

S11 = S22 =
(z − y) sinh γl

2 coshγl + (z + y) sinh γl
(10.224)

S12 = S21 =
2

2 coshγl + (z + y) sinh γl
(10.225)

with z being the normalized impedance and y is the normalized admittance.
A lossy transmission line creates noise whose noise current correlation matrix can be calculated
by Bosma’s theorem (see eqn. 5.45 on page 49).

10.24 Differential Transmission Line

A differential (4-port) transmission line is not referenced to ground potential, i.e. the wave from the
input (port 1 and 4) is distributed to the output (port 2 and 3). Its chain parameter representation
writes (for the ABCD matrix elements see equation 10.209):









. . A21 −A21 A22

. . −A21 A21 −A22

. . . . −1

. . . . +1
−1 +1 A11 −A11 A12









·









V1

V4

V2

V3

J2









=









I1
I4
I2
I3
0









(10.226)

Its admittance parameters are:

Y11 = Y22 = Y33 = Y44 = −Y14 = −Y41 = −Y23 = −Y32 =
1

ZL · tanh(γ · l)
(10.227)

Y13 = Y31 = Y24 = Y42 = −Y12 = −Y21 = −Y34 = −Y43 =
1

ZL · sinh(γ · l)
(10.228)

The scattering parameters writes:

S11 = S22 = S33 = S44 = ZL ·
(2 ·Z0 + ZL) · exp(2 · γ · l) + (2 ·Z0 − ZL)

(2 ·Z0 + ZL)2 · exp(2 · γ · l)− (2 ·Z0 − ZL)2
(10.229)

S14 = S41 = S23 = S32 = 1− S11 (10.230)

S12 = S21 = S34 = S43 = −S13 = −S31 = −S24 = −S42 (10.231)

=
4 ·ZL ·Z0 · exp(γ · l)

(2 ·Z0 + ZL)2 · exp(2 · γ · l)− (2 ·Z0 − ZL)2
(10.232)

Note: As already stated, this is a pure differential transmission line without ground reference. It
is not a three-wire system. I.e. there is only one mode. The next section describes a differential
line with ground reference.
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10.25 Coupled transmission line

A coupled transmission line (see fig. 10.15) is described by two identical transmission line ABCD-
matrices, one for the even mode (or common mode) and one for the odd mode (or differential
mode).

V1 = Ve + Vo V4 = Ve − Vo (10.233)

I1 = Ie + Io I4 = Ie − Io (10.234)

or

Ve =
1

2
· (V1 + V4) Vo =

1

2
· (V1 − V4) (10.235)

Ie =
1

2
· (I1 + I4) Io =

1

2
· (I1 − I4) (10.236)

Because the coupled lines are a symmetrical 3-line system, the matrices are completely independent
of each other. Therefore, it gives (for the ABCD matrix elements see equation 10.209):











. . 1
2 · (A21e +A21o)

1
2 · (A21e −A21o) A22o A22e

. . 1
2 · (A21e −A21o)

1
2 · (A21e +A21o) −A22o A22e

. . . . −1 −1

. . . . +1 −1
− 1

2 + 1
2

1
2 ·A11o − 1

2 ·A11o A12o .
− 1

2 − 1
2

1
2 ·A11e

1
2 ·A11e . A12e











·











V1

V4

V2

V3

Jo
Je











=











I1
I4
I2
I3
0
0











(10.237)

Its Y-parameters write as follows.

Y11 = Y22 = Y33 = Y44 =
1

2 ·ZL,e · tanh (γe · l)
+

1

2 ·ZL,o · tanh (γo · l)
(10.238)

Y12 = Y21 = Y34 = Y43 =
−1

2 ·ZL,e · sinh (γe · l)
+

−1
2 ·ZL,o · sinh (γo · l)

(10.239)

Y13 = Y31 = Y24 = Y42 =
−1

2 ·ZL,e · sinh (γe · l)
+

1

2 ·ZL,o · sinh (γo · l)
(10.240)

Y14 = Y41 = Y23 = Y32 =
1

2 ·ZL,e · tanh (γe · l)
+

−1
2 ·ZL,o · tanh (γo · l)

(10.241)

The S-parameters (according to the port numbering in fig. 10.15) are as followed [26].

reflection coefficients
S11 = S22 = S33 = S44 = Xe +Xo (10.242)

through paths
S12 = S21 = S34 = S43 = Ye + Yo (10.243)

coupled paths
S14 = S41 = S23 = S32 = Xe −Xo (10.244)

isolated paths
S13 = S31 = S24 = S42 = Ye − Yo (10.245)

with the denominator

De,o = 2 ·ZL,e,o ·Z0 · cosh(γe,o · l) +
(
Z2
L,e,o + Z2

0

)
· sinh (γe,o · l) (10.246)

and

Xe,o =

(
Z2
L,e,o − Z2

0

)
· sinh (γe,o · l)

2 ·De,o
(10.247)

Ye,o =
ZL,e,o ·Z0

De,o
(10.248)
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1 2

4 3

Figure 10.15: coupled transmission line

10.26 S-parameter container with additional reference port

The Y-parameters of a multi-port component defined by its S-parameters required for a small
signal AC analysis can be obtained by converting the S-parameters into Y-parameters.

m

S’,C’ S,C

Figure 10.16: S-parameter container with noise wave correlation matrix

In order to extend a m − 1-port to have a S-parameter device with m ports assuming that the
original reference port had a reflection coefficient Γm the new S-parameters are according to T.
O. Grosch and L. A. Carpenter [27]:

Smm =

2− Γm −m+

m−1∑

i=1

m−1∑

j=1

S′
ij

1−m ·Γm −
m−1∑

i=1

m−1∑

j=1

S′
ij

(10.249)

Sim =

(
1− Γm ·Smm

1− Γm

)

·



1−
m−1∑

j=1

S′
ij



 for i = 1, 2 . . .m− 1 (10.250)

Smj =

(
1− Γm ·Smm

1− Γm

)

·
(

1−
m−1∑

i=1

S′
ij

)

for j = 1, 2 . . .m− 1 (10.251)

Sij = S′
ij −

(
Γm ·Sim ·Smj

1− Γm ·Smm

)

for i, j = 1, 2 . . .m− 1 (10.252)

If the reference port has been ground potential, then Γm simply folds to -1. The reverse transfor-
mation by connecting a termination with a reflection coefficient of Γm to the mth port writes as
follows.

S′
ij = Sij +

(
Γm ·Sim ·Smj

1− Γm ·Smm

)

for i, j = 1, 2 . . .m− 1 (10.253)

With the S-parameter transformation done the m-port noise wave correlation matrix is

Cm =

∣
∣
∣
∣

1

1− Γm

∣
∣
∣
∣

2

·
(

K ·Cm−1 ·K+ − Ts · kB ·
∣
∣
∣1− |Γm|2

∣
∣
∣ ·D ·D+

)

(10.254)
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with

K =










1 + Γm (S1m − 1) ΓmS1m . . . ΓmS1m

ΓmS2m 1 + Γm (S2m − 1) . . . ΓmS2m

...
...

. . .
...

ΓmS(m−1)m ΓmS(m−1)m . . . 1 + Γm

(
S(m−1)m − 1

)

ΓmSmm − 1 ΓmSmm − 1 . . . ΓmSmm − 1










(10.255)

D =










S1m

S2m

...
S(m−1)m

Smm − 1










(10.256)

whence Ts denotes the equivalent noise temperature of the original reference port and the +

operator indicates the transposed conjugate matrix (also called adjoint or adjugate).

The reverse transformation can be written as

Cm−1 = K ′ ·Cm ·K ′+ + Ts · kB ·

∣
∣
∣1− |Γm|2

∣
∣
∣

|1− ΓmSmm|2
·D′ ·D′+ (10.257)

with

K ′ =













1 0 . . . 0
ΓmS1m

1− ΓmSmm

0 1 . . . 0
ΓmS2m

1− ΓmSmm

. .
. . . .

...

0 0 . . . 1
ΓmS(m−1)m

1− ΓmSmm













(10.258)

D′ =








S1m

S2m

...
S(m−1)m








(10.259)

10.27 Loudspeaker

An electrodynamic loudspeaker consists of a voice-coil within the field of a magnet. An AC
current flowing through this coil creates a motion that is transfered into an acoustic pressure by
the diaphragm (or cone) to which the coil is attached. A complete model of a loudspeaker is very
complex, but the small-signal impedance can be simulated by the following equation [28].

ZV C = RE + ZL + ZM (10.260)

with RE being the voice-coil DC resistance, ZL being the impedance of the lossy inductor and
ZM models the low-frequency resonance caused by the mechanical system.

The impedance ZL stems from the coil inductance together with the hysteresis losses of the
magnetic material. It is calculated as follows.

ZL = K · (j ·ω)n = K ·ωn · exp
(

j · nπ
2

)

(10.261)
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It is 0 ≤ n ≤ 1, with n = 1 being a lossless inductor. The parameter K has no general relation
to n, but usually systems with a low value of n exhibit higher values for K. The impedance ZM

creates a resonance peak and is modeled with the following equation.

ZM =
RES · s/ωS

QMS · (s/ωS)2 + s/ωS +QMS
(10.262)

with s = jω, ωS is the (fundamental) resonance frequency of the driver, QMS is the mechanical
quality factor and RES determines the height of the resonance peak.

As an examples a typical 10 inch loudspeaker exhibits the parameter values: RE = 5.08Ω, n =
0.688, K = 0.0235, fS = 35.2Hz, RES = 32Ω, QMS = 2.8.

10.28 Real-Life Models

Non-ideal electronic components exhibit parasitic effects. Depending on the usage, they may show
a very different behaviour than the ideal ones. More precise models can sometimes be obtained
from their manufacturers or vendors. However, first oder approximations exists that can give
satisfactory result in many cases. A few of these simple models are presented in this chapter.

C=40 fF

R
L= 0.5 nH

Figure 10.17: simple equivalent circuit of a 0603 resistor

A model for a resistor (case 0603) is depicted in figure 10.17. Conclusion:

• useful up to 1GHz

• values between 50Ω and 150Ω are useful up to 20GHz

The parasitics for standard SMD resistors are approximately:

• case 0201 → C=20fF, L=0.2nH

• case 0402 → C=30fF, L=0.3nH

• case 0603 → C=40fF, L=0.5nH

• case 0805 → C=50fF, L=0.6nH
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0.33nH

50mΩC

(with via 1nH)

Figure 10.18: simple equivalent circuit of a 0603 ceramic capacitor

A model for a (ceramic) capacitor (case 0603) is depicted in figure 10.18. Conclusion:

• as coupling capacitor useful wide into GHz band

• as blocking capacitor a via is necessary, i.e. 10nF has resonance at about 50MHz

The parasitic inductances for SMD capacitors are approximately:

• case 0201 → 0.2nH

• case 0402 → 0.25nH

• case 0603 → 0.33nH

• case 0805 → 0.43nH

L=2.5 nH

ESR ESR ESR ESR ESR

C
32

C
16

C
8

C
4

C
2

Figure 10.19: simple equivalent circuit of an electrolyte capacitor

Electrolyte capacitors are quite complicate to model. They also show the biggest differences from
sample to sample. Nonetheless, figure 10.19 gives an idea how a model may look like. Conclusion:

• very broad resonance

• useful up to about 10MHz (strongly depending on capacitance)
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C RL

C

s ss

p

Figure 10.20: first order model of a (fundamental tone) crystal

Figure 10.20 shows a simple equivalent circuit of a crystal. The always existing but unwanted side
resonances are not included here. The datasheets of crystals usually specify the quality factor Q,
the equivalent series resistance Rs and the parallel capacitance Cp (and of course the frequency
f0). In most cases the quality factor can be approximated to Q · f0 ≈ 16 · 1012. It corresponds to
the series resonance, i.e.

Q =

√

Ls

Cs
· 1

Rs
(10.263)

and therefore

Cs =
1

2 ·π · f0 ·Q ·Rs
(10.264)

Ls =
Rs ·Q
2 ·π · f0

(10.265)
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Chapter 11

Non-linear devices

11.1 Operational amplifier

The ideal operational amplifier, as shown in fig. 11.1, is determined by the following equation
which introduces one more unknown in the MNA matrix.

Iout
+

−3
2

1

Figure 11.1: ideal operational amplifier

V1 − V3 = 0 (11.1)

The new unknown variable Iout must be considered by the three remaining simple equations.

I1 = 0 I2 = Iout I3 = 0 (11.2)

And in matrix representation this is (for DC and AC simulation):







. . . 0

. . . 1

. . . 0
1 0 −1 0






·







V1

V2

V3

Iout






=







I1
I2
I3
0







(11.3)

The operational amplifier could be considered as a special case of a voltage controlled current
source with infinite forward transconductance G. Please note that the presented matrix form is
only valid in cases where there is a finite feedback impedance between the output and the inverting
input port.

To allow a feedback circuit to the non-inverting input (e.g. for a Schmitt trigger), one needs a
limited output voltage swing. The following equations are often used to model the transmission
characteristic of operational amplifiers.

I1 = 0 I3 = 0 (11.4)

V2 = Vmax ·
2

π
arctan

(
π

2 ·Vmax
·G · (V1 − V3)

)

(11.5)
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with Vmax being the maximum output voltage swing and G the voltage amplification. To model
the small-signal behaviour (AC analysis), it is necessary to differentiate:

g =
∂V2

∂(V1 − V3)
=

G

1 +

(
π

2 ·Vmax
·G · (V1 − V3)

)2 (11.6)

This leads to the following matrix representation being a specialised three node voltage controlled
voltage source (see section 10.20.3 on page 116).







. . . 0

. . . 1

. . . 0
g −1 −g 0






·







V1

V2

V3

Iout






=







I1
I2
I3
0







(11.7)

The above MNA matrix entries are also used during the non-linear DC analysis with the 0 in the
right hand side vector replaced by an equivalent voltage

Veq = g · (V1 − V3)− Vout (11.8)

with Vout computed using eq. (11.5).

With the given small-signal matrix representation, building the S-parameters is easy.

(S) =





1 0 0
4g −1 −4g
0 0 1



 (11.9)

11.2 PN-Junction Diode

The following table contains the model parameters for the pn-junction diode model.

Name Symbol Description Unit Default
Is IS saturation current A 10−14

N N emission coefficient 1.0
Isr ISR recombination current parameter A 0.0
Nr NR emission coefficient for Isr 2.0
Rs RS ohmic resistance Ω 0.0
Cj0 Cj0 zero-bias junction capacitance F 0.0
M M grading coefficient 0.5
Vj Vj junction potential V 0.7
Fc Fc forward-bias depletion capacitance coefficient 0.5
Cp Cp linear capacitance F 0.0
Tt τ transit time s 0.0
Bv Bv reverse breakdown voltage V ∞
Ibv Ibv current at reverse breakdown voltage A 0.001
Ikf Ikf high-injection knee current A ∞
Kf KF flicker noise coefficient 0.0
Af AF flicker noise exponent 1.0
Ffe FFE flicker noise frequency exponent 1.0

Temp T device temperature ◦C 26.85
Xti XTI saturation current exponent 3.0
Eg EG energy bandgap eV 1.11

EgA αEG temperature coefficient 1 for energy bandgap eV/K 7.02 ·10−4
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Name Symbol Description Unit Default
EgB βEG temperature coefficient 2 for energy bandgap K 1108
Tbv TBv Bv linear temperature coefficient 1/◦C 0.0
Trs TRS Rs linear temperature coefficient 1/◦C 0.0

Ttt1 Tτ1 Tt linear temperature coefficient 1/◦C 0.0
Ttt2 Tτ2 Tt quadratic temperature coefficient 1/◦C2 0.0
Tm1 TM1 M linear temperature coefficient 1/◦C 0.0
Tm2 TM2 M quadratic temperature coefficient 1/◦C2 0.0

Tnom TNOM temperature at which parameters were extracted ◦C 26.85
Area A default area for diode 1.0

11.2.1 Large signal model

RS

A

Cathode

Anode

C

Vd

Figure 11.2: pn-junction diode symbol and large signal model

The current equation of the diode and its derivative writes as follows:

Id = Idf + Idr = IS ·
(

e
Vd

N ·VT − 1

)

+ ISR ·
(

e
Vd

NR ·VT − 1

)

(11.10)

gd =
∂Id
∂Vd

=
IS

N ·VT
· e

Vd
N ·VT +

ISR

NR ·VT
· e

Vd
NR · VT (11.11)

The first term Idf is the normal diode current and the second term is the recombination current
Idr. In high-injection region the normal diode current and conductance have to be multiplied as
follows.

Idf,h = Idf ·
√

Ikf
Ikf + Idf

(11.12)

gdf,h = gdf ·
(

1− 0.5 · Idf
Ikf + Idf

)

·
√

Ikf
Ikf + Idf

(11.13)

The complete MNA matrix entries for a dc iteration are:

[
gd −gd
−gd gd

]

·
[
VC

VA

]

=

[
+Id − gd ·Vd

−Id + gd ·Vd

]

(11.14)

11.2.2 Small signal model
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Figure 11.3: small signal model of intrinsic diode including noise

The voltage dependent capacitance (or charge) consists of a linear capacitance Cp, a diffusion
capacitance τ · gd and a junction (depletion) capacitance and is usually modeled by the following
equations.

Cd = Cp + τ · gd +







Cj0 ·
(

1− Vd

Vj

)−M

for Vd/Vj ≤ Fc

Cj0

(1− Fc)
M
·
(

1 +
M · (Vd/Vj − Fc)

1− Fc

)

for Vd/Vj > Fc

(11.15)

Qd = Cp ·Vd + τ · Id +







Cj0 ·Vj

1−M
·
(

1−
(

1− Vd

Vj

)1−M
)

for Vd/Vj ≤ Fc

Cj0 ·Vj ·Xd for Vd/Vj > Fc

(11.16)

with

Xd =
1− (1− Fc)

1−M

1−M

+
1− Fc · (1 +M)

(1− Fc)
1+M

· (Vd/Vj − Fc) +
M

2 · (1− Fc)
1+M

·
(
(Vd/Vj)

2 − F 2
c

)
(11.17)

The S-parameters of the passive circuit shown in fig. 11.3 can be written as

S11 = S22 =
1

1 + 2 · y (11.18)

S12 = S21 = 1− S11 =
2 · y

1 + 2 · y (11.19)

with
y = Z0 · (gd + jωCd) (11.20)

11.2.3 Noise model

The parasitic ohmic resistance in a non-ideal diode, of course, creates thermal noise that is char-
acterized by the following spectral density.

i2RS

∆f
=

4kBT

RS
(11.21)

The intrinsic diode (pn- or schottky-diode) generates shot noise. Both types of current (field and
diffusion) contribute independently to it. That is, even though the two currents flow in different
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directions (”minus” in dc current equation), they have to be added in the noise equation (current
is proportional to noise power spectral density). So, it is:

i2d
∆f

= 2 · e · IS ·
(

exp

(
Vd

N ·VT

)

+ 1

)

= 2 · e · (Id + 2 · IS) (11.22)

Where e is charge of an electron and VT is the temperature voltage.

To be very precise, the equation above only holds for diodes whose field and diffusion current
dominate absolutely (diffusion limited diode), i.e. N = 1. Many diodes also generate a genera-
tion/recombination current (N ≈ 2), which produces shot noise, too. But depending on where
and how the charge carriers generate or recombine, their effective charge is somewhat smaller than
e. To take this into account, one needs a further factor K. Several opinions exist according the
value of K. Some say 1 and 2/3 are common values, others say K = 1/N with K and N being
bias dependent. Altogether the noise current correlation matrix is:

(CY ) = 2 · e ·K · (Id + 2 · IS) ·
(

1 −1
−1 1

)

(11.23)

Remark: Believing the diode equation ID = IS · (exp(V/(N ·VT )) − 1) is the whole truth, it is
logical to define K = 1/N , because at V = 0 the conductance gd of the diode must create thermal
noise.

Some special diodes have additional current or noise components (tunnel diodes, avalanche diodes
etc.). All these mechanisms are not taken into account in equation above.

The flicker noise generated by the DC current flowing through the diode is characterized by the
following spectral density.

i2d
∆f

= KF
IAF

d

fFFE
(11.24)

Taking into account the dynamic conductance gd in parallel to the noise current source, the noise
wave correlation matrix writes as follows.

(C) =

∣
∣
∣
∣

0.5 ·Y0

gd + jωCd + 0.5 ·Y0

∣
∣
∣
∣

2

· 2 · e ·K · IS ·
(

exp

(
Vd

N ·VT

)

+ 1

)

·Z0 ·
(

1 −1
−1 1

)

= 2 · e ·K ·Z0 · (Id + 2 · IS) ·
∣
∣
∣
∣

1

2 ·Z0 · (gd + jωCd) + 1

∣
∣
∣
∣

2

·
(

1 −1
−1 1

)

with
1

2
≤ K ≤ 1

(11.25)

Where e is charge of an electron, VT the temperature voltage, gd the (dynamic) conductance of
the diode and Cd its junction capacitance.

11.2.4 Reverse Breakdown

Several models were developed for the reverse breakdown region of a diode. A very common one
is to use an exponential behaviour.

Ibr = Ibv · exp
(−Bv

VT

)

·
(

1− exp

(−Vd

VT

))

(11.26)

gbr =
Ibv
VT
· exp

(

−Bv + Vd

VT

)

(11.27)

The current Ibr is simply added to the forward current Id of the diode.
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11.2.5 Temperature model

This section mathematically describes the dependencies of the diode characterictics on tempera-
ture. For a junction diode a typical value for XTI is 3.0, for a Schottky barrier diode it is 2.0.
The energy band gap at zero temperature EG is by default 1.11eV. For other materials than Si,
0.69eV (for a Schottky barrier diode), 0.67eV (for Ge) and 1.43eV (for GaAs) should be used.

n2
i (T ) = B ·T 3 · e−EG(T )/kBT (11.28)

ni (T ) = 1.45 · 1010 ·
(

T

300K

)1.5

· exp
(
e ·EG (300K)

2 · kB · 300K
− e ·EG (T )

2 · kB ·T

)

(11.29)

EG (T ) = EG −
αEG ·T 2

βEG + T
(11.30)

with experimental values for Si given by

αEG = 7.02 ·10−4

βEG = 1108

EG = 1.16eV

The following equations show the temperature dependencies of the diode parameters. The refer-
ence temperature T1 in these equations denotes the nominal temperature TNOM specified by the
diode model. (Note that Vj may become zero or negative which is not allowed. Thus, its lower
boundary must be limited to a small positive value.)

IS (T2) = IS (T1) ·
(
T2

T1

)XTI/N

· exp
[

− e ·EG

N · kB ·T2
·
(

1− T2

T1

)]

(11.31)

ISR (T2) = ISR (T1) ·
(
T2

T1

)XTI/NR

· exp
[

− e ·EG

N · kB ·T2
·
(

1− T2

T1

)]

(11.32)

Vj (T2) =
T2

T1
·Vj (T1) +

2 · kB ·T2

e
· ln

(
ni (T1)

ni (T2)

)

(11.33)

=
T2

T1
·Vj (T1)−

3 · kB ·T2

e
· ln

(
T2

T1

)

−
(
T2

T1
·EG (T1)− EG (T2)

)

(11.34)

Cj0 (T2) = Cj0 (T1) ·
(

1 +M ·
(

400 · 10−6 · (T2 − T1)−
Vj (T2)− Vj (T1)

Vj (T1)

))

(11.35)

Some additionial temperature coefficients determine the temperature dependence of even more
model parameters.

Bv (T2) = Bv (T1)− TBv · (T2 − T1) (11.36)

τ (T2) = τ (T1) ·
(

1 + Tτ1 · (T2 − T1) + Tτ2 · (T2 − T1)
2
)

(11.37)

M (T2) = M (T1) ·
(

1 + TM1 · (T2 − T1) + TM2 · (T2 − T1)
2
)

(11.38)

RS (T2) = RS (T1) · (1 + TRS · (T2 − T1)) (11.39)

11.2.6 Area dependence of the model

The area factor A used in the diode model determines the number of equivalent parallel devices
of the specified model. The diode model parameters affected by the A factor are:

IS (A) = IS ·A (11.40)

Ibv (A) = Ibv ·A (11.41)

Cj0 (A) = Cj0 ·A (11.42)

RS (A) =
RS

A
(11.43)
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11.3 Bipolar Junction Transistor

The following table contains the model parameters for the BJT (Spice Gummel-Poon) model.

Name Symbol Description Unit Default
Is IS saturation current A 10−16

Nf NF forward emission coefficient 1.0
Nr NR reverse emission coefficient 1.0
Ikf IKF high current corner for forward beta A ∞
Ikr IKR high current corner for reverse beta A ∞
Vaf VAF forward early voltage V ∞
Var VAR reverse early voltage V ∞
Ise ISE base-emitter leakage saturation current A 0
Ne NE base-emitter leakage emission coefficient 1.5
Isc ISC base-collector leakage saturation current A 0
Nc NC base-collector leakage emission coefficient 2.0
Bf BF forward beta 100
Br BR reverse beta 1

Rbm RBm minimum base resistance for high currents Ω 0.0
Irb IRB current for base resistance midpoint A ∞
Rc RC collector ohmic resistance Ω 0.0
Re RE emitter ohmic resistance Ω 0.0
Rb RB zero-bias base resistance (may be high-current Ω 0.0

dependent)
Cje CJE base-emitter zero-bias depletion capacitance F 0.0
Vje VJE base-emitter junction built-in potential V 0.75
Mje MJE base-emitter junction exponential factor 0.33
Cjc CJC base-collector zero-bias depletion capacitance F 0.0
Vjc VJC base-collector junction built-in potential V 0.75
Mjc MJC base-collector junction exponential factor 0.33
Xcjc XCJC fraction of Cjc that goes to internal base pin 1.0
Cjs CJS zero-bias collector-substrate capacitance F 0.0
Vjs VJS substrate junction built-in potential V 0.75
Mjs MJS substrate junction exponential factor 0.0
Fc FC forward-bias depletion capacitance coefficient 0.5
Tf TF ideal forward transit time s 0.0
Xtf XTF coefficient of bias-dependence for Tf 0.0
Vtf VTF voltage dependence of Tf on base-collector voltage V ∞
Itf ITF high-current effect on Tf A 0.0
Ptf ϕTF excess phase at the frequency 1/(2πTF )

◦ 0.0
Tr TR ideal reverse transit time s 0.0
Kf KF flicker noise coefficient 0.0
Af AF flicker noise exponent 1.0
Ffe FFE flicker noise frequency exponent 1.0
Kb KB burst noise coefficient 0.0
Ab AB burst noise exponent 1.0
Fb FB burst noise corner frequency Hz 1.0

Temp T device temperature ◦C 26.85
Xti XTI saturation current exponent 3.0
Xtb XTB temperature exponent for forward- and reverse-beta 0.0
Eg EG energy bandgap eV 1.11

Tnom TNOM temperature at which parameters were extracted ◦C 26.85
Area A default area for bipolar transistor 1.0
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11.3.1 Large signal model
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Figure 11.4: bipolar transistor symbol and large signal model for vertical device

The SGP (SPICE Gummel-Poon) model is basically a transport model, i.e. the voltage dependent
ideal transfer currents (forward IF and backward IR) are reference currents in the model. The ideal
base current parts are defined dependent on the ideal transfer currents. The ideal forward transfer
current starts flowing when applying a positive control voltage at the base-emitter junction. It is
defined by:

IF = IS ·
(

e
VBE

NF · VT − 1

)

(11.44)

The ideal base current components are defined by the ideal transfer currents. The non-ideal
components are independently defined by dedicated saturation currents and emission coefficients.

IBEI =
IF
BF

gBEI =
∂IBEI

∂VBE
=

IS
NF ·VT ·BF

· e
VBE

NF ·VT (11.45)

IBEN = ISE ·
(

e
VBE

NE · VT − 1

)

gBEN =
∂IBEN

∂VBE
=

ISE

NE ·VT
· e

VBE
NE ·VT (11.46)

IBE = IBEI + IBEN (11.47)

gπ = gBE = gBEI + gBEN (11.48)

The ideal backward transfer current arises when applying a positive control voltage at the base-
collector junction (e.g. in the active inverse mode). It is defined by:

IR = IS ·
(

e
VBC

NR ·VT − 1

)

(11.49)

Again, the ideal base current component through the base-collector junction is defined in reference
to the ideal backward transfer current and the non-ideal component is defined by a dedicated
saturation current and emission coefficient.
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IBCI =
IR
BR

gBCI =
∂IBCI

∂VBC
=

IS
NR ·VT ·BR

· e
VBC

NR · VT (11.50)

IBCN = ISC ·
(

e
VBC

NC ·VT − 1

)

gBCN =
∂IBCN

∂VBC
=

ISC

NC ·VT
· e

VBC
NC ·VT (11.51)

IBC = IBCI + IBCN (11.52)

gµ = gBC = gBCI + gBCN (11.53)

With these definitions it is possible to calculate the overall base current flowing into the device
using all the base current components.

IB = IBE + IBC = IBEI + IBEN + IBCI + IBCN (11.54)

The overall transfer current IT can be calculated using the normalized base charge QB and the
ideal forward and backward transfer currents.

IT =
IF − IR
QB

(11.55)

The normalized base charge QB has no dimension and has the value 1 for VBE = VBC = 0. It
is used to model two effects: the influence of the base width modulation on the transfer current
(Early effect) and the ideal transfer currents deviation at high currents, i.e. the decreasing current
gain at high currents.

QB =
Q1

2
·
(

1 +
√

1 + 4 ·Q2

)

(11.56)

The Q1 term is used to describe the Early effect and Q2 is responsible for the high current effects.

Q1 =
1

1− VBC

VAF
− VBE

VAR

and Q2 =
IF
IKF

+
IR
IKR

(11.57)

The transfer current IT depends on VBE and VBC by the normalized base charge QB and the
forward transfer current IF and the backward transfer current IR. That is why both of the partial
derivatives are required.

The forward transconductance gmf of the transfer current IT is obtained by differentiating it with
respect to VBE . The reverse transconductance gmr can be calculated by differentiating the transfer
current with respect to VBC .

gmf =
∂IT
∂VBE

=
∂ITF

∂VBE
− ∂ITR

∂VBE
=

1

QB
·
(

+gIF − IT ·
∂QB

∂VBE

)

(11.58)

gmr =
∂IT
∂VBC

=
∂ITF

∂VBC
− ∂ITR

∂VBC
=

1

QB
·
(

−gIR − IT ·
∂QB

∂VBC

)

(11.59)

With gIF being the forward conductance of the ideal forward transfer current and gIR being the
reverse conductance of the ideal backward transfer current.

gIF =
∂IF
∂VBE

= gBEI ·BF (11.60)

gIR =
∂IR
∂VBC

= gBCI ·BR (11.61)

135



The remaining derivatives in eq. (11.58) and (11.59) can be written as

∂QB

∂VBE
= Q1 ·

(
QB

VAR
+

gIF

IKF ·
√
1 + 4 ·Q2

)

(11.62)

∂QB

∂VBC
= Q1 ·

(
QB

VAF
+

gIR

IKR ·
√
1 + 4 ·Q2

)

(11.63)

For the calculation of the bias dependent base resistance RBB′ there are two different ways within
the SGP model. If the model parameter IRB is not given it is determined by the normalized base
charge QB. Otherwise IRB specifies the base current at which the base resistance drops half way
to the minimum (i.e. the constant component) base resistance RBm. The base resistance is linear
(bias independent), if RBm equals (or is greater than) RB.

RBB′ =







RBm +
RB −RBm

QB
for IRB =∞

RBm + 3 · (RB −RBm) · tan z − z

z · tan2 z for IRB 6=∞
(11.64)

with z =

√

1 +
144

π2
· IB
IRB

− 1

24

π2
·
√

IB
IRB

(11.65)

The MNA matrix entries and the current vector entries are as follows.






gµ + gπ −gµ −gπ 0
−gµ + gmf − gmr gµ + gmr −gmf 0
−gπ − gmf + gmr −gmr gπ + gmf 0

0 0 0 0






·







VB

VC

VE

VS






=







−IBEeq
− IBCeq

+IBCeq
− ICEeq

+IBEeq
+ ICEeq

0







(11.66)

IBEeq
= IBE − gπ ·VBE (11.67)

IBCeq
= IBC − gµ ·VBC (11.68)

ICEeq
= IT − gmf ·VBE + gmr ·VBC (11.69)

In order to implement the influence of the excess phase parameter ϕTF – denoting the phase
shift of the current gain at the transit frequency – the method developed by P.B. Weil and L.P.
McNamee [29] can be used. They propose to use a second-order Bessel polynomial to modify the
forward transfer current:

ITx = IT ·Φ (s) = IT ·
3 ·ω2

0

s2 + 3 ·ω0 · s+ 3 ·ω2
0

(11.70)

This polynomial is formulated to closely resemble a time domain delay for a Gaussian curve which
is similar to the physical phenomenon exhibited by bipolar transistor action.

Applying the inverse Laplace transformation to eq. (11.70) and using finite difference methods the
transfer current can be written as

In+1
Tx = C1 · In+1

T + C2 · InTx − C3 · In−1
Tx (11.71)

with

C1 =
3 ·ω2

0 ·∆t2

1 + 3 ·ω0 ·∆t+ 3 ·ω2
0 ·∆t2

(11.72)

C2 =
2 + 3 ·ω0 ·∆t

1 + 3 ·ω0 ·∆t+ 3 ·ω2
0 ·∆t2

(11.73)

C3 =
1

1 + 3 ·ω0 ·∆t+ 3 ·ω2
0 ·∆t2

(11.74)

136



and

ω0 =
π

180
· 1

ϕTF ·TF
(11.75)

The appropiate modified derivative writes as

gn+1
mx = C1 · gn+1

m (11.76)

It should be noted that the excess phase implementation during the transient analysis (and thus
in the AC analysis as well) holds for the forward part of the transfer current only.

With non-equidistant inegration time steps during transient analysis present eqs. (11.73) and
(11.74) yield

C2 =
1 +∆t/∆t1 + 3 ·ω0 ·∆t

1 + 3 ·ω0 ·∆t+ 3 ·ω2
0 ·∆t2

(11.77)

C3 =
∆t/∆t1

1 + 3 ·ω0 ·∆t+ 3 ·ω2
0 ·∆t2

(11.78)

whereas ∆t denotes the current time step and ∆t1 the previous one.

11.3.2 Small signal model

Equations for the real valued conductances in both equivalent circuits for the intrinsic BJT have
already been given.
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Figure 11.5: small signal model of intrinsic BJT including noise sources

137



The junctions depletion capacitances in the SGP model write as follows:

CBEdep
=







CJE ·
(

1− VBE

VJE

)−MJE

for VBE ≤ FC ·VJE

CJE

(1− FC)
MJE

·
(

1 +
MJE · (VBE − FC ·VJE)

VJE · (1− FC)

)

for VBE > FC ·VJE

(11.79)

CBCdep
=







CJC ·
(

1− VBC

VJC

)−MJC

for VBC ≤ FC ·VJC

CJC

(1− FC)
MJC

·
(

1 +
MJC · (VBC − FC ·VJC)

VJC · (1− FC)

)

for VBC > FC ·VJC

(11.80)

CSCdep
=







CJS ·
(

1− VSC

VJS

)−MJS

for VSC ≤ 0

CJS ·
(

1 +MJS ·
VSC

VJS

)

for VSC > 0

(11.81)

The base-collector depletion capacitance is split into two components: an external and an internal.

CBCIdep = XCJC ·CBCdep
(11.82)

CBCXdep
= (1−XCJC) ·CBCdep

(11.83)

The base-emitter diffusion capacitance can be obtained using the following equation.

CBEdiff
=

∂QBE

∂VBE
with QBE =

IF
QB
·TFF (11.84)

Thus the diffusion capacitance depends on the bias-dependent effective forward transit time TFF

which is defined as:

TFF = TF ·
(

1 +XTF ·
(

IF
IF + ITF

)2

· exp
(

VBC

1.44 ·VTF

))

(11.85)

With
∂TFF

∂VBE
=

TF ·XTF · 2 · gIF · IF · ITF

(IF + ITF )
3 · exp

(
VBC

1.44 ·VTF

)

(11.86)

the base-emitter diffusion capacitance can finally be written as:

CBEdiff
=

∂QBE

∂VBE
=

1

QB
·
(

IF ·
∂TFF

∂VBE
+ TFF ·

(

gIF −
IF
QB
· ∂QB

∂VBE

))

(11.87)

Because the base-emitter charge QBE in eq. (11.84) also depends on the voltage across the base-
collector junction, it is necessary to find the appropriate derivative as well:

CBEBC
=

∂QBE

∂VBC
=

IF
QB
·
(
∂TFF

∂VBC
− TFF

QB
· ∂QB

∂VBC

)

(11.88)

which turns out to be a so called transcapacitance. It additionally requires:

∂TFF

∂VBC
=

TF ·XTF

1.44 ·VTF
·
(

IF
IF + ITF

)2

· exp
(

VBC

1.44 ·VTF

)

(11.89)

The base-collector diffusion capacitance writes as follows:

CBCdiff
=

∂QBC

∂VBC
= TR · gIR with QBC = TR · IR (11.90)
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To take the excess phase parameter ϕTF into account the forward transconductance is going to
be a complex quantity.

gmf = gmf · e−jϕex with ϕex =
( π

180
·ϕTF

)

·TF · 2πf (11.91)

With these calculations made it is now possible to define the small signal Y-parameters of the
intrinsic BJT. The Y-parameter matrix can be converted to S-parameters.

Y =







YBC + YBE + YBEBC
−YBC − YBEBC

−YBE 0
gmf − YBC − gmr YCS + YBC + gmr −gmf −YCS

gmr − gmf − YBE − YBEBC
−gmr + YBEBC

YBE + gmf 0
0 −YCS 0 YCS







(11.92)

with

YBC = gµ + jω
(
CBCIdep + CBCdiff

)
(11.93)

YBE = gπ + jω
(
CBEdep

+ CBEdiff

)
(11.94)

YCS = jω ·CCSdep
(11.95)

YBEBC
= jω ·CBEBC

(11.96)

The external capacitance CBCX connected between the internal collector node and the external
base node is separately modeled if it is non-zero and if there is a non-zero base resistance.

11.3.3 Noise model

The ohmic resistances RBB′ , RC and RE generate thermal noise characterized by the following
spectral densities.

i2RBB′

∆f
=

4kBT

RBB′

and
i2RC

∆f
=

4kBT

RC
and

i2RE

∆f
=

4kBT

RE
(11.97)

Shot noise, flicker noise and burst noise generated by the DC base current is characterized by the
spectral density

i2b
∆f

= 2eIBE +KF
IAF

BE

fFFE
+KB

IAB

BE

1 +

(
f

FB

)2 (11.98)

The shot noise generated by the DC collector to emitter current flow is characterized by the
spectral density

i2c
∆f

= 2eIT (11.99)

The noise current correlation matrix of the four port intrinsic bipolar transistor can then be written
as

CY = ∆f







+i2b 0 −i2b 0

0 +i2c −i2c 0

−i2b −i2c +i2c + i2b 0
0 0 0 0







(11.100)

This matrix representation can be converted to the noise wave correlation matrix representation
CS using the formulas given in section 5.5.1 on page 48.
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11.3.4 Temperature model

Temperature appears explicitly in the exponential term of the bipolar transistor model equations.
In addition, the model parameters are modified to reflect changes in the temperature. The refer-
ence temperature T1 in these equations denotes the nominal temperature TNOM specified by the
bipolar transistor model.

IS (T2) = IS (T1) ·
(
T2

T1

)XTI

· exp
[

−e ·EG (300K)

kB ·T2
·
(

1− T2

T1

)]

(11.101)

VJE (T2) =
T2

T1
·VJE (T1)−

3 · kB ·T2

e
· ln

(
T2

T1

)

−
(
T2

T1
·EG (T1)− EG (T2)

)

(11.102)

VJC (T2) =
T2

T1
·VJC (T1)−

3 · kB ·T2

e
· ln

(
T2

T1

)

−
(
T2

T1
·EG (T1)− EG (T2)

)

(11.103)

VJS (T2) =
T2

T1
·VJS (T1)−

3 · kB ·T2

e
· ln

(
T2

T1

)

−
(
T2

T1
·EG (T1)− EG (T2)

)

(11.104)

where the EG (T ) dependency has already been described in section 11.2.5 on page 132. The
temperature dependence of BF and BR is determined by

BF (T2) = BF (T1) ·
(
T2

T1

)XTB

(11.105)

BR (T2) = BR (T1) ·
(
T2

T1

)XTB

(11.106)

Through the parameters ISE and ISC , respectively, the temperature dependence of the non-ideal
saturation currents is determined by

ISE (T2) = ISE (T1) ·
(
T2

T1

)−XTB

·
[
IS (T2)

IS (T1)

]1/NE

(11.107)

ISC (T2) = ISC (T1) ·
(
T2

T1

)−XTB

·
[
IS (T2)

IS (T1)

]1/NC

(11.108)

The temperature dependence of the zero-bias depletion capacitances CJE , CJC and CJS are
determined by

CJE (T2) = CJE (T1) ·
(

1 +MJE ·
(

400 · 10−6 · (T2 − T1)−
VJE (T2)− VJE (T1)

VJE (T1)

))

(11.109)

CJC (T2) = CJC (T1) ·
(

1 +MJC ·
(

400 ·10−6 · (T2 − T1)−
VJC (T2)− VJC (T1)

VJC (T1)

))

(11.110)

CJS (T2) = CJS (T1) ·
(

1 +MJS ·
(

400 · 10−6 · (T2 − T1)−
VJS (T2)− VJS (T1)

VJS (T1)

))

(11.111)

11.3.5 Area dependence of the model

The area factor A used in the bipolar transistor model determines the number of equivalent parallel
devices of a specified model. The bipolar transistor model parameters affected by the A factor
are:

IS (A) = IS ·A (11.112)

ISE (A) = ISE ·A ISC (A) = ISC ·A (11.113)

IKF (A) = IKF ·A IKR (A) = IKR ·A (11.114)

IRB (A) = IRB ·A ITF (A) = ITF ·A (11.115)

140



CJE (A) = CJE ·A CJC (A) = CJC ·A (11.116)

CJS (A) = CJS ·A (11.117)

RB (A) =
RB

A
RBm (A) =

RBm

A
(11.118)

RE (A) =
RE

A
RC (A) =

RC

A
(11.119)

11.4 Junction FET

The following table contains the model parameters for the JFET model.

Name Symbol Description Unit Default
Vt0 VTh zero -bias threshold voltage V −2.0
Beta β transconductance parameter A/V2 10−4

Lambda λ channel-length modulation parameter 1/V 0.0
Rd RD drain ohmic resistance Ω 0.0
Rs RS source ohmic resistance Ω 0.0
Is IS gate-junction saturation current A 10−14

N N gate P-N emission coefficient 1.0
Isr ISR gate-junction recombination current parameter A 0.0
Nr NR Isr emission coefficient 2.0
Cgs Cgs zero-bias gate-source junction capacitance F 0.0
Cgd Cgd zero-bias gate-drain junction capacitance F 0.0
Pb Pb gate-junction potential V 1.0
Fc Fc forward-bias junction capacitance coefficient 0.5
M M gate P-N grading coefficient 0.5
Kf KF flicker noise coefficient 0.0
Af AF flicker noise exponent 1.0
Ffe FFE flicker noise frequency exponent 1.0

Temp T device temperature ◦C 26.85
Xti XTI saturation current exponent 3.0

Vt0tc VThTC
Vt0 temperature coefficient V/◦C 0.0

Betatce βTCE Beta exponential temperature coefficient %/◦C 0.0
Tnom TNOM temperature at which parameters were extracted ◦C 26.85
Area A default area for JFET 1.0

11.4.1 Large signal model
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Figure 11.6: junction FET symbol and large signal model

The current equation of the gate source diode and its derivative writes as follows:

IGS = IS ·
(

e
VGS

N · VT − 1

)

+ ISR ·
(

e
VGS

NR ·VT − 1

)

(11.120)

ggs =
∂IGS

∂VGS
=

IS
N ·VT

· e
VGS

N · VT +
ISR

NR ·VT
· e

VGS
NR · VT (11.121)

The current equation of the gate drain diode and its derivative writes as follows:

IGD = IS ·
(

e
VGD

N · VT − 1

)

+ ISR ·
(

e
VGD

NR ·VT − 1

)

(11.122)

ggd =
∂IGD

∂VGD
=

IS
N ·VT

· e
VGD

N ·VT +
ISR

NR ·VT
· e

VGD
NR · VT (11.123)

Both equations contain the gate-junction saturation current IS , the gate P-N emission coefficient
N and the temperature voltage VT with the Boltzmann’s constant kB and the electron charge q.
The operating temperature T must be specified in Kelvin.

VT =
kB ·T

q
(11.124)

The controlled drain currents have been defined by Shichman and Hodges [30] for different modes
of operations.

gm =
∂Id
∂VGS

and gds =
∂Id
∂VDS

with VGD = VGS − VDS (11.125)

• normal mode: VDS > 0

– normal mode, cutoff region: VGS − VTh < 0

Id = 0 (11.126)

gm = 0 (11.127)

gds = 0 (11.128)
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– normal mode, saturation region: 0 < VGS − VTh < VDS

Id = β · (1 + λVDS) · (VGS − VTh)
2

(11.129)

gm = β · (1 + λVDS) · 2 (VGS − VTh) (11.130)

gds = β ·λ (VGS − VTh)
2 (11.131)

– normal mode, linear region: VDS < VGS − VTh

Id = β · (1 + λVDS) · (2 (VGS − VTh)− VDS) ·VDS (11.132)

gm = β · (1 + λVDS) · 2 ·VDS (11.133)

gds = β · (1 + λVDS) · 2 (VGS − VTh − VDS) + β ·λVDS · (2 (VGS − VTh)− VDS)
(11.134)

• inverse mode: VDS < 0
In inverse mode the same equations as in normal mode holds, but the following things must
be changed: Replace VGS with VGD, change the sign of IDS and of gm, place gm according
to its new dependency (VGD) into the MNA matrix.

Applying the rules for creating the MNA matrix of an arbitrary network the complete MNA matrix
entries (admittance matrix and current vector) for the intrinsic junction FET are:





ggd + ggs −ggd −ggs
−ggd + gm gds + ggd −gds − gm
−ggs − gm −gds ggs + gds + gm



 ·





VG

VD

VS



 =





−IGDeq
− IGSeq

+IGDeq
− IDSeq

+IGSeq
+ IDSeq



 (11.135)

with

IGSeq
= IGS − ggs ·VGS (11.136)

IGDeq
= IGD − ggd ·VGD (11.137)

IDSeq
= Id − gm ·VGS − gds ·VDS (11.138)

11.4.2 Small signal model
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Figure 11.7: small signal model of intrinsic junction FET with noise source

The small signal Y-parameter matrix of the intrinsic junction FET writes as follows. It can be
converted to S-parameters.

Y =





YGD + YGS −YGD −YGS

gm − YGD YGD + YDS −YDS − gm
−gm − YGS −YDS YGS + YDS + gm



 (11.139)

with

YGD = ggd + jωCGD (11.140)

YGS = ggs + jωCGS (11.141)

YDS = gds (11.142)

The junction capacitances are modeled with the following equations.

CGD =







Cgd ·
(

1− VGD

Pb

)−M

for VGD ≤ Fc ·Pb

Cgd

(1− Fc)
M
·
(

1 +
M · (VGD − Fc ·Pb)

Pb · (1− Fc)

)

for VGD > Fc ·Pb

(11.143)

CGS =







Cgs ·
(

1− VGS

Pb

)−M

for VGS ≤ Fc ·Pb

Cgs

(1− Fc)
M
·
(

1 +
M · (VGS − Fc ·Pb)

Pb · (1− Fc)

)

for VGS > Fc ·Pb

(11.144)

11.4.3 Noise model

Both the drain and source resistance RD and RS generate thermal noise characterized by the
following spectral density.

i2RD

∆f
=

4kBT

RD
and

i2RS

∆f
=

4kBT

RS
(11.145)
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Channel noise and flicker noise generated by the DC transconductance gm and current flow from
drain to source is characterized by the following spectral density.

i2ds
∆f

=
8kBTgm

3
+KF

IAF

DS

fFFE
(11.146)

The noise current correlation matrix (admittance representation) of the intrinsic junction FET
can be expressed by

CY = ∆f





0 0 0

0 +i2ds −i2ds
0 −i2ds +i2ds



 (11.147)

This matrix representation can be easily converted to the noise-wave representation CS if the
small signal S-parameter matrix is known.

11.4.4 Temperature model

Temperature appears explicitly in the exponential terms of the JFET model equations. In addi-
tion, saturation current, gate-junction potential and zero-bias junction capacitances have built-in
temperature dependence.

IS (T2) = IS (T1) ·
(
T2

T1

)XTI/N

· exp
[

−e ·EG (300K)

N · kB ·T2
·
(

1− T2

T1

)]

(11.148)

ISR (T2) = ISR (T1) ·
(
T2

T1

)XTI/NR

· exp
[

−e ·EG (300K)

NR · kB ·T2
·
(

1− T2

T1

)]

(11.149)

Pb (T2) =
T2

T1
·Pb (T1)−

3 · kB ·T2

e
· ln

(
T2

T1

)

−
(
T2

T1
·EG (T1)− EG (T2)

)

(11.150)

Cgs (T2) = Cgs (T1) ·
(

1 +M ·
(

400 ·10−6 · (T2 − T1)−
Pb (T2)− Pb (T1)

Pb (T1)

))

(11.151)

Cgd (T2) = Cgd (T1) ·
(

1 +M ·
(

400 ·10−6 · (T2 − T1)−
Pb (T2)− Pb (T1)

Pb (T1)

))

(11.152)

where the EG (T ) dependency has already been described in section 11.2.5 on page 132. Also
the threshold voltage as well as the transconductance parameter have a temperature dependence
determined by

VTh (T2) = VTh (T1) + VThTC
· (T2 − T1) (11.153)

β (T2) = β (T1) · 1.01βTCE · (T2−T1) (11.154)

11.4.5 Area dependence of the model

The area factor A used for the JFET model determines the number of equivalent parallel devices
of a specified model. The following parameters are affected by the area factor.

β (A) = β ·A IS (A) = IS ·A (11.155)

RD (A) =
RD

A
RS (A) =

RS

A
(11.156)

Cgs (A) = Cgs ·A Cgd (A) = Cgd ·A (11.157)

11.5 MOS Field-Effect Transistor
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Figure 11.9: four types of MOS field effect transistors and their symbols

There are four different types of MOS field effect transistors as shown in fig. 11.9 all covered by
the model going to be explained here. The “First Order Model” is a physical model with the drain
current equations according to Harold Shichman and David A. Hodges [30].

The following table contains the model and device parameters for the MOSFET level 1.

Name Symbol Description Unit Default Typical
Is IS bulk junction saturation current A 10−14 10−15

N N bulk junction emission coefficient 1.0
Vt0 VT0 zero-bias threshold voltage V 0.0 0.7

Lambda λ channel-length modulation parameter 1/V 0.0 0.02
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Name Symbol Description Unit Default Typical
Kp KP transconductance coefficient A/V2 2 · 10−5 6 · 10−5

Gamma γ bulk threshold
√
V 0.0 0.37

Phi Φ surface potential V 0.6 0.65
Rd RD drain ohmic resistance Ω 0.0 1.0
Rs RS source ohmic resistance Ω 0.0 1.0
Rg RG gate ohmic resistance Ω 0.0
L L channel length m 100µ

Ld LD lateral diffusion length m 0.0 10−7

W W channel width m 100µ
Tox TOX oxide thickness m 0.1µ 2 · 10−8

Cgso CGSO gate-source overlap capacitance per me-
ter of channel width

F/m 0.0 4 · 10−11

Cgdo CGDO gate-drain overlap capacitance per me-
ter of channel width

F/m 0.0 4 · 10−11

Cgbo CGBO gate-bulk overlap capacitance per me-
ter of channel length

F/m 0.0 2 · 10−10

Cbd CBD zero-bias bulk-drain junction capaci-
tance

F 0.0 6 · 10−17

Cbs CBS zero-bias bulk-source junction capaci-
tance

F 0.0 6 · 10−17

Pb ΦB bulk junction potential V 0.8 0.87
Mj MJ bulk junction bottom grading coeffi-

cient
0.5 0.5

Fc FC bulk junction forward-bias depletion ca-
pacitance coefficient

0.5

Cjsw CJSW zero-bias bulk junction periphery ca-
pacitance per meter of junction perime-
ter

F/m 0.0

Mjsw MJSW bulk junction periphery grading coeffi-
cient

0.33 0.33

Tt TT bulk transit time s 0.0
Kf KF flicker noise coefficient 0.0
Af AF flicker noise exponent 1.0
Ffe FFE flicker noise frequency exponent 1.0

Nsub NSUB substrate (bulk) doping density 1/cm3 0.0 4 · 1015
Nss NSS surface state density 1/cm2 0.0 1010

Tpg TPG gate material type (0 = alumina, -1 =
same as bulk, 1 = opposite to bulk)

1

Uo µ0 surface mobility cm2/Vs 600.0 400.0
Rsh RSH drain and source diffusion sheet resis-

tance
Ω/square 0.0 10.0

Nrd NRD number of equivalent drain squares 1
Nrs NRS number of equivalent source squares 1
Cj CJ zero-bias bulk junction bottom capaci-

tance per square meter of junction area
F/m2 0.0 2 · 10−4

Js JS bulk junction saturation current per
square meter of junction area

A/m2 0.0 10−8

Ad AD drain diffusion area m2 0.0
As AS source diffusion area m2 0.0
Pd PD drain junction perimeter m 0.0
Ps PS source junction perimeter m 0.0

Temp T device temperature ◦C 26.85
Tnom TNOM parameter measurement temperature ◦C 26.85
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11.5.1 Large signal model
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Figure 11.10: n-channel MOSFET large signal model

Beforehand some useful abbreviation are made to simplify the DC current equations.

Leff = L− 2 ·LD (11.158)

β = KP ·
W

Leff
(11.159)

The bias-dependent threshold voltage depends on the bulk-source voltage VBS or the bulk-drain
voltage VBD depending on the mode of operation.

VTh = VT0 +







γ ·
(√

Φ− VBS −
√
Φ
)

for VDS ≥ 0, i.e. VBS ≥ VBD

γ ·
(√

Φ− VBD −
√
Φ
)

for VDS < 0, i.e. VBD > VBS

(11.160)

The following equations describe the DC current behaviour of a N-channel MOSFET in normal
mode, i.e. VDS > 0, according to Shichman and Hodges.

• cutoff region: VGS − VTh < 0

Id = 0 (11.161)

gds = 0 (11.162)

gm = 0 (11.163)

gmb = 0 (11.164)
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• saturation region: 0 < VGS − VTh < VDS

Id = β/2 · (1 + λVDS) · (VGS − VTh)
2

(11.165)

gds = β/2 ·λ (VGS − VTh)
2

(11.166)

gm = β · (1 + λVDS) (VGS − VTh) (11.167)

gmb = gm ·
γ

2
√
Φ− VBS

(11.168)

• linear region: VDS < VGS − VTh

Id = β · (1 + λVDS) · (VGS − VTh − VDS/2) ·VDS (11.169)

gds = β · (1 + λVDS) · (VGS − VTh − VDS) + β ·λVDS · (VGS − VTh − VDS/2) (11.170)

gm = β · (1 + λVDS) ·VDS (11.171)

gmb = gm ·
γ

2
√
Φ− VBS

(11.172)

with

gds =
∂Id
∂VDS

and gm =
∂Id
∂VGS

and gmb =
∂Id
∂VBS

(11.173)

In the inverse mode of operation, i.e. VDS < 0, the same equations can be applied with the
following modifications. Replace VBS with VBD, VGS with VGD and VDS with −VDS . The drain
current Id gets reversed. Furthermore the transconductances alter their controlling nodes, i.e.

gm =
∂Id

∂VGD
and gmb =

∂Id
∂VBD

(11.174)

The current equations of the two parasitic diodes at the bulk node and their derivatives write as
follows.

IBD = ISD ·
(

e
VBD

N ·VT − 1

)

gbd =
∂IBD

∂VBD
=

ISD

N ·VT
· e

VBD
N ·VT (11.175)

IBS = ISS ·
(

e
VBS

N ·VT − 1

)

gbs =
∂IBS

∂VBS
=

ISS

N ·VT
· e

VBS
N ·VT (11.176)

with
ISD = IS and ISS = IS (11.177)

Now it is possible to form the MNA matrix and the current vector of the intrinsic MOSFET
device.






0 0 0 0
gm gds + gbd −gds − gm − gmb gmb − gbd
−gm −gds gbs + gds + gm + gmb −gbs − gmb

0 −gbd −gbs gbs + gbd






·







VG

VD

VS

VB






=







0
+IBDeq

− IDSeq

+IBSeq
+ IDSeq

−IBDeq
− IBSeq







(11.178)

IBDeq
= IBD − gbd ·VBD (11.179)

IBSeq
= IBS − gbs ·VBS (11.180)

IDSeq
= Id − gm ·VGS − gmb ·VBS − gds ·VDS (11.181)
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11.5.2 Physical model

There are electrical parameters as well as physical and geometry parameters in the set of model
parameters for the MOSFETs “First Order Model”. Some of the electrical parameters can be
derived from the geometry and physical parameters.

The oxide capacitance per square meter of the channel area can be computed as

C′
ox = ε0 ·

εox
Tox

with εox = εSiO2 = 3.9 (11.182)

Then the overall oxide capacitance can be written as

Cox = C′
ox ·W ·Leff (11.183)

The transconductance coefficient KP can be calculated using

KP = µ0 ·C′
ox (11.184)

The surface potential Φ is given by (with temperature voltage VT )

Φ = 2 ·VT · ln
(
NSUB

ni

)

with the intrinsic density ni = 1.45 ·10161/m3 (11.185)

Equation (11.185) holds for acceptor concentrations NA (NSUB) essentially greater than the donor
concentration ND. The bulk threshold γ (also sometimes called the body effect coefficient) is

γ =

√
2 · e · εSi · ε0 ·NSUB

C′
ox

with εSi = 11.7 (11.186)

And finally the zero-bias threshold voltage VT0 writes as follows.

VT0 = VFB +Φ + γ ·
√
Φ (11.187)

Whereas VFB denotes the flat band voltage consisting of the work function difference ΦMS between
the gate and substrate material and an additional potential due to the oxide surface charge.

VFB = ΦMS −
e ·NSS

C′
ox

(11.188)

The temperature dependent bandgap potential EG of silicon (substrate material Si) writes as
follows. With T = 290K the bandgap is approximately 1.12eV .

EG (T ) = 1.16− 7.02 ·10−4 ·T 2

T + 1108
(11.189)

The work function difference ΦMS gets computed dependent on the gate conductor material.
This can be either alumina (ΦM = 4.1eV ), n-polysilicon (ΦM ≈ 4.15eV ) or p-polysilicon (ΦM ≈
5.27eV ). The work function of a semiconductor, which is the energy difference between the vacuum
level and the Fermi level (see fig. 11.11), varies with the doping concentration.

ΦMS = ΦM − ΦS = ΦM −
(

4.15 +
1

2
EG +

1

2
Φ

)

(11.190)

ΦM =







4.1 for TPG = +0, i.e. alumina

4.15 for TPG = +1, i.e. opposite to bulk

4.15 + EG for TPG = −1, i.e. same as bulk

(11.191)
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Figure 11.11: energy band diagrams of isolated (flat band) MOS materials

The expression in eq. (11.190) is visualized in fig. 11.11. The abbreviations denote

χAl electron affinity of alumina = 4.1eV
χSi electron affinity of silicon = 4.15eV
E0 vacuum level
EC conduction band
EV valence band
EF Fermi level
EI intrinsic Fermi level
EG bandgap of silicon ≈ 1.12eV at room temperature

Please note that the potential 1/2 ·Φ is positive in p-MOS and negative in n-MOS as the following
equation reveals.

ΦF =
EF − EI

e
(11.192)

When the gate conductor material is a heavily doped polycrystalline silicon (also called polysilicon)
then the model assumes that the Fermi level of this semiconductor is the same as the conduction
band (for n-poly) or the valence band (for p-poly). In alumina the Fermi level, valence and
conduction band all equal the electron affinity.

If the zero-bias bulk junction bottom capacitance per square meter of junction area CJ is not
given it can be computed as follows.

CJ =

√
εSi · ε0 · e ·NSUB

2 ·ΦB
(11.193)

That’s it for the physical parameters. The geometry parameters account for the electrical param-
eters per length, area or volume. Thus the MOS model is scalable.

The diffusion resistances at drain and gate are computed as follows. The sheet resistance RSH

refers to the thickness of the diffusion area.

RD = NRD ·RSH and RS = NRS ·RSH (11.194)

If the bulk junction saturation current per square meter of the junction area JS and the drain
and source areas are given the according saturation currents are calculated with the following
equations.

ISD = AD · JS and ISS = AS · JS (11.195)
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If the parameters CBD and CBS are not given the zero-bias depletion capacitances for the bottom
and sidewall capacitances are computed as follows.

CBD = CJ ·AD (11.196)

CBS = CJ ·AS (11.197)

CBDS = CJSW ·PD (11.198)

CBSS = CJSW ·PS (11.199)

11.5.3 Small signal model
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g
ds

C

CBD

BS

Figure 11.12: small signal model of intrinsic MOSFET with noise source

The bulk-drain and bulk-source capacitances in the MOSFET model split into three parts: the
junctions depletion capacitance which consists of an area and a sidewall part and the diffusion
capacitance.
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CBDdep
=







CBD ·
(

1− VBD

ΦB

)−MJ

for VBD ≤ FC ·ΦB

CBD

(1− FC)
MJ
·
(

1 +
MJ · (VBD − FC ·ΦB)

ΦB · (1− FC)

)

for VBD > FC ·ΦB

(11.200)

CBDSdep
=







CBDS ·
(

1− VBD

ΦB

)−MJSW

for VBD ≤ FC ·ΦB

CBDS

(1− FC)
MJSW

·
(

1 +
MJSW · (VBD − FC ·ΦB)

ΦB · (1− FC)

)

for VBD > FC ·ΦB

(11.201)

CBSdep
=







CBS ·
(

1− VBS

ΦB

)−MJ

for VBS ≤ FC ·ΦB

CBS

(1− FC)
MJ
·
(

1 +
MJ · (VBS − FC ·ΦB)

ΦB · (1− FC)

)

for VBS > FC ·ΦB

(11.202)

CBSSdep
=







CBSS ·
(

1− VBS

ΦB

)−MJSW

for VBS ≤ FC ·ΦB

CBSS

(1− FC)
MJSW

·
(

1 +
MJSW · (VBS − FC ·ΦB)

ΦB · (1− FC)

)

for VBS > FC ·ΦB

(11.203)

The diffusion capacitances of the bulk-drain and bulk-source junctions are determined by the
transit time of the minority charges through the junction.

CBDdiff
= gbd ·TT (11.204)

CBSdiff
= gbs ·TT (11.205)

Charge storage in the MOSFET consists of capacitances associated with parasitics and the in-
trinsic device. Parasitic capacitances consist of three constant overlap capacitances. The intrinsic
capacitances consist of the nonlinear thin-oxide capacitance, which is distributed among the gate,
drain, source and bulk regions. The MOS gate capacitances, as a nonlinear function of the terminal
voltages, are modeled by J.E. Meyer’s piece-wise linear model [31].

The Meyer model [31] was the first widely used one for the bias-dependent gate-oxide capacitances.
But nowadays it’s obsolete as it doesn’t conserve charge and as its capacitance equations aren’t
continuous. The Yang-Chatterjee model solves these problems. With VDsat = VGS−VTh it writes
as follows.

• cutoff regions: VGS − VTh < 0

– VGS − VTh ≤ −Φ

CGS = 0 (11.206)

CGD = 0 (11.207)

CGB = Cox (11.208)

– −Φ < VGS − VTh ≤ −Φ/2

CGS = 0 (11.209)

CGD = 0 (11.210)

CGB = −Cox ·
VGS − VTh

Φ
(11.211)
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– −Φ/2 < VGS − VTh ≤ 0

CGS =
2

3
·Cox +

4

3
·Cox ·

VGS − VTh

Φ
(11.212)

CGD = 0 (11.213)

CGB = −Cox ·
VGS − VTh

Φ
(11.214)

• saturation region: 0 < VGS − VTh < VDS

CGS =
2

3
·Cox (11.215)

CGD = 0 (11.216)

CGB = 0 (11.217)

• linear region: VDS < VGS − VTh

Qgs = Cox ·
(

−V 2
ds

24 ·
(
Vgs − Vth − Vds

2

) +
Vgs − Vth

2
+

1

4
·Vds

)

(11.218)

∂Qgs

∂Vgs
= Cox ·

(

V 2
ds

24 ·
(
Vgs − Vth − Vds

2

)2 +
1

2

)

(11.219)

∂Qgs

∂Vds
= Cox ·

(

−4 ·Vds · (Vgs − Vth) + V 2
ds

48 ·
(
Vgs − Vth − Vds

2

)2 +
1

4

)

(11.220)

Qgd = Cox ·
(

V 2
ds

8 ·
(
Vgd − Vth + Vds

2

) +
Vgd − Vth + Vds

2
− 3

4
·Vds

)

(11.221)

∂Qgd

∂Vgs
= Cox ·

(

−V 2
ds

8 ·
(
Vgs − Vth − Vds

2

)2 +
1

2

)

(11.222)

∂Qgd

∂Vds
= Cox ·

(

4 ·Vds · (Vgd − Vth) + V 2
ds

16 ·
(
Vgd − Vth − Vds

2

)2 −
1

4

)

(11.223)

CGB = 0 (11.224)

In the inverse mode of operation VGS and VGD need to be exchanged, VDS changes its sign, then
the above formulas can be applied as well.

The constant overlap capacitances compute as follows.

CGSOV L
= CGSO ·W (11.225)

CGDOV L
= CGDO ·W (11.226)

CGBOV L
= CGBO ·Leff (11.227)

With these definitions it is possible to form the small signal Y-parameter matrix of the intrinsic
MOSFET device in an operating point which can be converted into S-parameters.

Y =










YGS +
YGD + YGB

−YGD −YGS −YGB

gm − YGD YGD + YBD + YDS −YDS − gm − gmb −YBD + gmb

−gm − YGS −YDS YGS + YDS +
YBS + gm + gmb

−YBS − gmb

−YGB −YBD −YBS YBD + YBS + YGB










(11.228)
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with

YGS = jω (CGS + CGSOV L
) (11.229)

YGD = jω (CGD + CGDOV L
) (11.230)

YGB = jω (CGB + CGBOV L
) (11.231)

YBD = gbd + jω
(
CBDdep

+ CBDSdep
+ CBDdiff

)
(11.232)

YBS = gbs + jω
(
CBSdep

+ CBSSdep
+ CBSdiff

)
(11.233)

YDS = gds (11.234)

11.5.4 Noise model

The thermal noise generated by the external resistors RG, RS and RD is characterized by the
following spectral density.

i2RG

∆f
=

4kBT

RG
and

i2RD

∆f
=

4kBT

RD
and

i2RS

∆f
=

4kBT

RS
(11.235)

Channel and flicker noise generated by the DC transconductance gm and current flow from drain
to source is characterized by the spectral density

i2ds
∆f

=
8kBTgm

3
+KF

IAF

DS

fFFE
(11.236)

The noise current correlation matrix (admittance representation) of the intrinsic MOSFET can
be expressed as

CY = ∆f







0 0 0 0

0 +i2ds −i2ds 0

0 −i2ds +i2ds 0
0 0 0 0







(11.237)

This matrix representation can be easily converted to the noise-wave representation CS if the
small signal S-parameter matrix is known.

11.5.5 Temperature model

Temperature affects some MOS model parameters which are updated according to the new temper-
ature. The reference temperature T1 in the following equations denotes the nominal temperature
TNOM specified by the MOS transistor model. The temperature dependence of KP and µ0 is
determined by

KP (T2) = KP (T1) ·
(
T1

T2

)1.5

(11.238)

µ0 (T2) = µ0 (T1) ·
(
T1

T2

)1.5

(11.239)

The effect of temperature on ΦB and Φ is modeled by

Φ (T2) =
T2

T1
·Φ (T1)−

3 · kB ·T2

e
· ln

(
T2

T1

)

−
(
T2

T1
·EG (T1)− EG (T2)

)

(11.240)
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where the EG (T ) dependency has already been described in section 11.2.5 on page 132. The
temperature dependence of CBD, CBS , CJ and CJSW is described by the following relations

CBD (T2) = CBD (T1) ·
(

1 +MJ ·
(

400 ·10−6 · (T2 − T1)−
ΦB (T2)− ΦB (T1)

ΦB (T1)

))

(11.241)

CBS (T2) = CBS (T1) ·
(

1 +MJ ·
(

400 ·10−6 · (T2 − T1)−
ΦB (T2)− ΦB (T1)

ΦB (T1)

))

(11.242)

CJ (T2) = CJ (T1) ·
(

1 +MJ ·
(

400 · 10−6 · (T2 − T1)−
ΦB (T2)− ΦB (T1)

ΦB (T1)

))

(11.243)

CJSW (T2) = CJSW (T1) ·
(

1 +MJSW ·
(

400 ·10−6 · (T2 − T1)−
ΦB (T2)− ΦB (T1)

ΦB (T1)

))

(11.244)

The temperature dependence of IS is given by the relation

IS (T2) = IS (T1) · exp
[

− e

kB ·T2
·
(
T2

T1
·EG (T1)− EG (T2)

)]

(11.245)

An analogue dependence holds for JS .

11.6 Thyristors

11.6.1 Diac

A diac is a bidirectional trigger diode normally used to set the switching of a triac to a specific
level. A diac switches to the ”on” state when the voltage across its terminals exceeds the break-
over voltage Ubo. At this point the current Ibo is flowing through the device. The diac switches
to the ”off” state when its current ID falls below the holding current Ibo. Figure 11.13 shows the
equivalent circuit and its IV characteristic. As can be seen an internal node is needed. The device
equations are:

ID = IS ·
(

exp

(
UD

Ut

)

− 1

)

− IS ·
(

exp

(−UD

Ut

)

− 1

)

(11.246)

with Ut = Ut,on = n · k ·T
e

if Ui > Ibo ·Ri (11.247)

Ut = Ut,off =
Ubo

ln

(
Ibo
IS

) if Ui ≤ Ibo ·Ri (11.248)
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Ui

UD
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UUbo

−Ubo
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ID

A2

A1

A1

A2

Figure 11.13: Diac symbol (left), equivalent circuit (middle) and IV characteristic (right)

Because the voltage-current characteristic is not monotone, the device encounters many conver-
gence problems. Therefore, the following additional rules should be added.

• The exponent function is replaced by the limited exponential function:

limexp(x) =

{
exp(x) for x < 80

exp(80) · (1 + x− 80) for x ≥ 80
(11.249)

• In transienten simulation, the switching does never occur during an iteration, but when the
switching rule is valid for the voltage of the previous time step.

• The switching at time ts does not happen abrupt, but take a time of ∆t = 1µs. During this
time Ut changes linearly from ”on” to ”off” state:

Ut = (Ut,off − Ut,on) ·
t− ts
∆t

+ Ut,on (11.250)

or from ”off” to ”on” state, respectively:

Ut = (Ut,on − Ut,off ) ·
t− ts
∆t

+ Ut,off (11.251)

11.6.2 Triac

A triac is a bidirectional diode that can be switched on via a gate terminal. It is switched off when
the current through it falls below the holding current. Figure 11.14 shows its symbol, equivalent
circuit and iv characteristics. The model equations are as follows:

ID = IS ·
(

exp

(
UD

Ut

)

− 1

)

− IS ·
(

exp

(−UD

Ut

)

− 1

)

(11.252)

with Ut = n · k ·T
e

(11.253)

UD,bo = Ut · ln
(
Ibo
IS

)

(11.254)

Ri =

{
Ri,on if |UD| ≥ UD,bo
Ubr

Ibo
if |UD| < UD,bo

(11.255)

The resistance Ri,on during switched-on state and the breakdown voltage Ubr are model parame-
ters. The convergence problems of the diac are also valid for the triac. Therefore, the same rules
must be applied here:
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• The limited exponential function must be used.

• In transienten simulation, the switching does never occur during an iteration, but when the
switching rule is valid for the voltage of the previous time step.

• The switching (at ts) takes a time of ∆t = 1µs. During this time Ri changes linearly from
”on” to ”off” state:

Ri = (Ri,off −Ri,on) ·
t− ts
∆t

+Ri,on (11.256)

or from ”off” to ”on” state, respectively:

Ri = (Ri,on −Ri,off ) ·
t− ts
∆t

+Ri,off (11.257)

Ui

UD

iRA1

A2

G

Rg

UIbo

boI

I

ID

A2

A1

G

Figure 11.14: Triac symbol (left), equivalent circuit (middle) and IV characteristic (right)

11.6.3 SCR

An SCR (silicon controlled rectifier) is a uni-directional diode that can be switched on via a gate
terminal. It is switched off when the current through it falls below the holding current. Figure
11.15 shows its symbol, equivalent circuit and iv characteristics. The model equations are the ones
of a uni-directional triac:

ID = IS ·
(

exp

(
UD

Ut

)

− 1

)

(11.258)

with Ut = n · k ·T
e

(11.259)

UD,bo = Ut · ln
(
Ibo
IS

+ 1

)

(11.260)

Ri =

{
Ri,on if UD ≥ UD,bo
Ubr

Ibo
if UD < UD,bo

(11.261)
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Figure 11.15: SCR; from left to right: symbol, transistor model, equivalent circuit, IV character-
istic

11.7 Models for boolean devices

Logical (boolean) functions (OR, AND, XOR etc.) can be modeled using macro models. Here,
each input gets the transfer characteristic and its derivative described as follows:

ui = tanh(10 · (uin − 0.5)) (11.262)

u′
i = 10 ·

(
1− tanh2(10 · (uin − 0.5))

)
(11.263)

The resulting voltages ui for each input are combined to create the wanted function for a device
with N inputs:

Inverter: uout = 0.5 · (1− ui) (11.264)

NOR: uout =
N

∑

m

2

1− ui,m

(11.265)

OR: uout = 1− uout,NOR (11.266)

AND: uout =
N

∑

m

2

1 + ui,m

(11.267)

NAND: uout = 1− uout,AND (11.268)

XOR: uout = 0.5 ·
(

1−
∏

m

−ui,m

)

(11.269)

XNOR: uout = 0.5 ·
(

1 +
∏

m

ui,m

)

(11.270)

The above-mentioned functions model devices with 0V as logical low-level and 1V as logical high-
level. Of course, they can be easily transformed into higher voltage levels by multiplying the
desired high-level voltage to the output voltage uout and dividing the input voltages uin by the
desired high-level voltage. Note: The derivatives also get uin divided by the desired high-level
voltage, but they are not multiplied by the desired high-level voltage.
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To perform a simulation on these devices, the first derivatives are also needed:

Inverter:
∂uout

∂uin
= −0.5 ·u′

i (11.271)

OR:
∂uout

∂uin,n
=

2 ·N ·u′
i,n

(

(1− ui,n) ·
∑

m

2

1− ui,m

)2 (11.272)

NOR:
∂uout

∂uin,n
= − ∂uout

∂uin,n

∣
∣
∣
∣
OR

(11.273)

AND:
∂uout

∂uin,n
=

2 ·N ·u′
i,n

(

(1 + ui,n) ·
∑

m

2

1 + ui,m

)2 (11.274)

NAND:
∂uout

∂uin,n
= − ∂uout

∂uin,n

∣
∣
∣
∣
AND

(11.275)

XOR:
∂uout

∂uin,n
= 0.5 ·u′

i,n ·
∏

m 6=n

−ui,m (11.276)

XNOR:
∂uout

∂uin,n
= 0.5 ·u′

i,n ·
∏

m 6=n

ui,m (11.277)

A problem of these macro models are the numbers of input ports. The output voltage levels worsen
with increasing number of ports. The practical limit lies around eight input ports.

With that knowledge it is now easy to create the MNA matrix. The first port is the output port
of the device. So, for a 2-input port device, it is:







. . . 1

. . . 0

. . . 0
−1 ∂uout/∂uin,1 ∂uout/∂uin,2 0






·







Vout

Vin,1

Vin,2

Iout






=







I0
I1
I2
0







(11.278)

The above MNA matrix entries are also used during the non-linear DC and transient analysis with
the 0 in the right hand side vector replaced by an equivalent voltage

Veq =
∂uout

∂uin,1
·Vin,1 +

∂uout

∂uin,2
·Vin,2 − uout (11.279)

with uout computed using equations (11.264) to (11.270).

With the given small-signal matrix representation, building the S-parameters is easy.

(S) =





−1 4 ·∂uout/∂uin,1 4 ·∂uout/∂uin,2

0 1 0
0 0 1



 (11.280)

These matrices can easily extended to any number of input ports.

11.8 Equation defined models

Often it will happen that a user needs to implement his own model. Therefore, it is useful to
supply devices that are defined by arbitrary equations.
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11.8.1 Models with Explicit Equations

For example the user must enter an equation i(V ) describing how the port current I depends on
the port voltage V = V1 − V2 and an equation q(V ) describing how much charge Q is held due to
the voltage V . These are time domain equations. The most simple way then is a device with two
nodes. Defining

I = i(V ) and g =
∂I

∂V
= lim

h→0

I(V + h)− I(V )

h
(11.281)

as well as

Q = q(V ) and c =
∂Q

∂V
= lim

h→0

Q(V + h)−Q(V )

h
(11.282)

the MNA matrix for a (non-linear) DC analysis writes:

[
+g(m) −g(m)

−g(m) +g(m)

]

·
[

V
(m+1)
1

V
(m+1)
2

]

=

[
−I(m) + g(m) ·V (m)

+I(m) − g(m) ·V (m)

]

=

[

−I(m) + g(m) · (V (m)
1 − V

(m)
2 )

+I(m) − g(m) · (V (m)
1 − V

(m)
2 )

] (11.283)

For a transient simulation, equation 6.91 on page 65 has to be used with Q and c.

For an AC analysis the MNA matrix writes:

(Y ) = (g + jω · c) ·
[
+1 −1
−1 +1

]

(11.284)

And the S-parameter matrix writes:

S11 = S22 =
1

2 ·Z0 ·Y + 1
(11.285)

S12 = S21 = 1− S11 (11.286)

Y = g + jω · c (11.287)

The simulator needs to create the derivatives g and c by its own. This can be done numerically
or symbolically. One might ask why the non-linear capacitance is modeled as charge, not as
capacitance. Indeed this may be changed, but with a computer algorithm, creating the derivative
is easier than to integrate.

The component described above can be expanded to one with two ports (two pairs of terminals:
terminal 1 and 2 and terminal 3 and 4). That is, the currents and charges of both ports depend
on both port voltages V12 = V1 − V2 and V34 = V3 − V4. Thus, the defining equations are:

I1 = i1(V12, V34) and g11 =
∂I1
∂V12

and g12 =
∂I1
∂V34

(11.288)

I2 = i2(V12, V34) and g21 =
∂I2
∂V12

and g22 =
∂I2
∂V34

(11.289)

as well as

Q1 = q1(V12, V34) and c11 =
∂Q1

∂V12
and c12 =

∂Q1

∂V34
(11.290)

Q2 = q2(V12, V34) and c21 =
∂Q2

∂V12
and c22 =

∂Q2

∂V34
(11.291)
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The MNA matrix for the DC analysis writes:








g
(m)
11 −g(m)

11 g
(m)
12 −g(m)

12

−g(m)
11 g

(m)
11 −g(m)

12 g
(m)
12

g
(m)
21 −g(m)

21 g
(m)
22 −g(m)

22

−g(m)
21 g

(m)
21 −g(m)

22 g
(m)
22







·








V
(m+1)
1

V
(m+1)
2

V
(m+1)
3

V
(m+1)
4







=








−I(m)
1 + g

(m)
11 ·V

(m)
12 + g

(m)
12 ·V

(m)
34

I
(m)
1 − g

(m)
11 ·V

(m)
12 − g

(m)
12 ·V

(m)
34

−I(m)
2 + g

(m)
21 ·V

(m)
12 + g

(m)
22 ·V

(m)
34

I
(m)
2 − g

(m)
21 ·V

(m)
12 − g

(m)
22 ·V

(m)
34








(11.292)

For a transient simulation, equation 6.95 on page 65 has to be used with Q1, c11 and c12, as well
as with Q2, c21 and c22.

For an AC analysis the MNA matrix writes:

(Y ) =







g11 + jω · c11 −g11 − jω · c11 g12 + jω · c12 −g12 − jω · c12
−g11 − jω · c11 g11 + jω · c11 −g12 − jω · c12 g12 + jω · c12
g21 + jω · c21 −g21 − jω · c21 g22 + jω · c22 −g22 − jω · c22
−g21 − jω · c21 g21 + jω · c21 −g22 − jω · c22 g22 + jω · c22







(11.293)

As can bee seen, this scheme can be expanded to any number of ports. The matrices soon
become quite complex, but fortunately, modern computers are able to cope with this complexity.
S-parameters must be obtained numerical by setting equation 11.293 into equation 19.5.

11.8.2 Models with Implicit Equations

The above-mentioned explicit models are not useable for all components. If the Y-parameters
do not exist or if the equations cannot be analytical transformed into the explicit form, then
an implicit representation must be taken. That is, for a one-port (two-terminal) component the
following formulas are defined by the user:

0 = f(V, I) and gV =
∂f(V, I)

∂V
= lim

h→0

f(V + h, I))− f(V, I)

h
(11.294)

and gI =
∂f(V, I)

∂I
= lim

h→0

f(V, I + h))− f(V, I)

h
(11.295)

The MNA matrix for the AC analysis writes as follows:





. . 1

. . −1
gV −gV gI



 ·





V1

V2

Iout



 =





0
0
0



 (11.296)

As usual, for the DC analysis the last zero on the right hand side has to be replaced by the
iteration formula:

gV · (V1 − V2) + gI · Iout − f(V1 − V2, Iout) (11.297)

The S-parameters are:

S11 = S22 =
gI

gI − 2 ·Z0 · gV
(11.298)

S12 = S21 = 1− S11 (11.299)

Consequently, for a two-port device two equation are necessary: One for first port and one for
second port:

0 = f1(V12, V34, I1, I2) (11.300)

0 = f2(V12, V34, I1, I2) (11.301)
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Building the MNA matrix is again straight forward:











. . . . 1 0

. . . . −1 0

. . . . 0 1

. . . . 0 −1
gf1,V 12 −gf1,V 12 gf1,V 34 −gf1,V 34 gf1,I1 gf1,I2
gf2,V 12 −gf2,V 12 gf2,V 34 −gf2,V 34 gf2,I1 gf2,I2











·













V
(m+1)
1

V
(m+1)
2

V
(m+1)
3

V
(m+1)
4

I
(m+1)
out1

I
(m+1)
out2













=

[
gf1,V 12 ·V12 + gf1,V 34 ·V34 + gf1,I1 · Iout1 + gf1,I2 · Iout2 − f1(V12, V34, Iout1, Iout2)
gf2,V 12 ·V12 + gf2,V 34 ·V34 + gf2,I1 · Iout1 + gf2,I2 · Iout2 − f2(V12, V34, Iout1, Iout2)

]

(11.302)

Once more, this concept can easily expanded to any number of ports. It is also possible mix
implicit and explicit definitions, i.e. some ports of the device may be defined by explicit equations
whereas the others are defined by implicit equations.

The calculation of the S-parameters is not that trival. The Y-parameters as well as the Z-
parameters might be infinite. A small trick can avoid this problem, as will be shown in the
following 2-port example. First, the small-signal Y-parameters should be derived by using the law
about implicit functions:

(J) =

(
y11 y12
y21 y22

)

= −






∂f1
∂I1

∂f1
∂I2

∂f2
∂I1

∂f2
∂I2






︸ ︷︷ ︸

Ji

−1

·






∂f1
∂V1

∂f1
∂V2

∂f2
∂V1

∂f2
∂V2






︸ ︷︷ ︸

Jv

(11.303)

The equation reveals immediately the difficulty: The inverse of the current Jacobi matrix Ji may
not exist. But this problem can be outsourced to one single scalar number by using Cramer’s rule
for matrix inversion:

J−1
i =

1

detJi
·AJi (11.304)

The matrix AJi is built of the sub-determinantes of Ji in the way that a(n,m) is the determinante
of Ji without row m and without column n but multiplied with (−1)n+m. It therefore always
exists, whereas dividing by the determinante of Ji may become infinity. Now parameters can be
defined as follows:

detJi · (J) =
(
y′11 y′12
y′21 y′22

)

= −AJi · Jv (11.305)

Before converting to S-parameters the matrix must be expanded to a 4-port matrix, because the
2-ports are not referenced to ground:

detJi · (J ′) =







y′11 −y′11 y′12 −y′12
−y′11 y′11 −y′12 y′12
y′21 −y′21 y′22 −y′22
−y′21 y′21 −y′22 y′22







= −A′
Ji · J ′

v (11.306)

Finally, equation 19.5 converts the parameters to S-parameters:

(S) = ((E)− Z0 · (Y )) · ((E) + Z0 · (Y ))
−1

(11.307)

=

(

(E) + Z0 ·
1

detJi
·A′

Ji · J ′
v

)

·
(

(E)− Z0 ·
1

detJi
·A′

Ji ·J ′
v

)−1

(11.308)

= (detJi · (E) + Z0 ·A′
Ji · J ′

v) · (detJi · (E) − Z0 ·A′
Ji · J ′

v)
−1

(11.309)
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The calculations proofs that the critical factor 1/detJi disappears and a solution exists if and only
if the S-parameters of this device exist.

11.9 Resonance tunnel diode

A resonance tunnel diode (RTD) is a two-terminal semiconductor device. Its schematic symbol
and its IV-characteristic are shown in fig. 11.16. An RTD consists of a very thin double-barrier
structure that only electrons with a specific energy can pass. This leads to the typical peak current
IP at the peak voltage VP . Above the valley voltage VV the thermal-ionic current ITH dominates
and thus, the current increases rapidly. The negative differential resistance (NDR) between VP and
VV makes it possible to build oscillators and logic gates that work at extremely high frequencies.

I

VVV VP

IP

Figure 11.16: schematic symbol (left) and IV-characteristic (right) of a resonance tunnel diode

The IV-characteristic can be modeled by the following equations [32]. The model parameters are
listed in table at the end of this section.

ID(V ) = IT (V )− IT (−V ) + ITH (11.310)

with (11.311)

X = Wr −
q ·V
δV

(11.312)

IT (V ) = JP ·A ·TSC ·
2 · δT · kB ·T

π · η · ln
(

1 + exp

(
η −X

δT · kB ·T

))

·
(
π

2
+ arctan

X

∆W

)

(11.313)

ITH = JV ·A ·
sinh

q ·V
nV · kB ·T

sinh
q ·VV

nV · kB ·T

(11.314)

Where q = 1.6 · 10−19As is charge of electron, kB = 1.38 ·10−23J/K is Boltzmann’s constant
and π = 3.14 . . . is a mathematical constant. The non-linear (parallel) capacitance consists of
the depletion capacitance Cdep and the quantum-well capacitance Cqw. They can be modeled as
follows [32]:

C(V ) = Cdep + Cqw (11.315)

with (11.316)

Cdep =
A ·C0

(

1 +
V

φC

)m (11.317)

Cqw = −τqw ·
∂ID(V )

∂V
(11.318)
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Symbol Description Default Unit
JP peak current density 4 · 108 A/m2

A area 10−11 m2

Wr resonance energy 2.7 · 10−20 Ws
η level of Fermi energy WF to WL 1.1 · 10−20 Ws
∆W width of resonance 4.5 · 10−21 Ws
TSC maximum of transmission 0.95 1
δT fitting factor for electron density 0.9 1
δV fitting factor for voltage drop 2.0 1
JV valley current density 6.2 · 107 A/m2

VV valley voltage 0.8 V
nV fitting factor for diode current 16.5 V
T device temperature 300 K
C0 depletion capacitance at V = 0V 8 · 10−3 F/m2

φC voltage scaling factor 0.5 1
m voltage exponent 0.5 1
τqw life-time of electrons in quantum wel 6 · 10−13 sec

11.10 Photodiode

A photodiode (usually a PIN diode) converts an optical input power into an electrical current.
Figure 11.17 shows the eqivalent circuit. The optical power is modeled as a voltage at the optical
node. Note that a photodiode is biased in backward direction, i.e. with a positive potential at
the cathode. The responsivity Roe determines the conversion from optical power Popt to electrical
photocurrent Iphoto:

Iphoto = Roe ·Popt (11.319)

As usual, the transit time τ of the intrinsic diode is approximated with the diffusions capacitance,
whereas the photocurrent exhibits a rectangle impulse response of width τ . The frequency response
is

H(jω) =
exp(jω · τ)− 1

jω · τ (11.320)

In addition to the usual noise sources (thermal noise of resistor RS and shot noise of diode current)
the photocurrent creates shot noise, too:

Si = 2 · e · Iphoto (11.321)
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Figure 11.17: electrical equivalent circuit (left) and IV characteristic (right) of a photodiode

11.11 TOM3 Model

TriQuint’s Own Model III (TOM3) was developed for simulating GaAs MESFETs. It was designed
to fit the drain-source current IDS as well as its first three derivatives. This is important in order
to model non-linearities. The equations writes as follows [33].

IDS = I0 · (1 + λ ·VDS) (11.322)

I0 = β ·V Q
g ·

α ·VDS

(1 + (α ·VDS)
κ
)
1/κ

(11.323)

Vg = Q ·Vst · ln (exp(u) + 1) (11.324)

u =
VGS − VT0 + γ ·VDS

Q ·Vst
(11.325)

Vst = Vst0 · (1 +Mst0 ·VDS) (11.326)

with VGS being the intrinsic gate-source voltage and VDS being the intrinsic drain-source voltage.
The term ”ln(exp(u) + 1)” creates a soft channel pinch-off and ”(1 + λ ·VDS)” creates a finite
output resistance.

The transconductance GM and the output conductance GDS are as follows.

GM =
∂IDS

∂VGS
=

IDS ·Q
Vg · (1 + exp(−u)) (11.327)

GDS =
∂IDS

∂VDS
(11.328)

= λ · I0 +GM · (γ − u ·Q ·Vst0 ·Mst0) (11.329)

+

(

Q · I0 ·Mst0

1 +Mst0 ·VDS
+

α ·β ·V Q
g

(1 + (α ·VDS)
κ
)
1+1/κ

)

· (1 + λ ·VDS) (11.330)

The gate-source and the gate-drain diodes exhibit the usual Shockley equation. In parallel to each
of them there are additional leakage currents:

IL = ILK ·
(

1− exp
−V
φLK

)

(11.331)

GL =
∂IL
∂V

=
IL
φLK

· exp −V
φLK

(11.332)
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The non-linear gate-source and gate-drain charges and capacitances are modeled with the following
equations.

QGG = 2 ·QGS = 2 ·QGD = Qgl ·Ft +Qgh · (1− Ft) +QGG0 · (VGS + VGD) (11.333)

Ft = exp(−QGGB · IDS ·VDS) (11.334)

∂Ft

∂VGS
= −QGGB · (IDS + (GM +GDS) ·VDS) ·Ft (11.335)

∂Ft

∂VGD
= QGGB · (IDS +GDS ·VDS) ·Ft (11.336)

Fl = QGQL · exp (QGAG · (VGS + VGD)) (11.337)

Qgl = Fl · cosh(QGAD ·VDS) +QGCL · (VGS + VGD) (11.338)

Qgh = QGQH · ln
(

1 +
IDS

QGI0

)

+QGSH ·VGS +QGDH ·VGD (11.339)

Cgsh = (GM +GDS) ·
QGQH

IDS +QGI0
+QGSH (11.340)

Cgdh = −GDS ·
QGQH

IDS +QGI0
+QGDH (11.341)

Cgsl = Fl · (QGAG · cosh(QGAD ·VDS) +QGAD · sinh(QGAD ·VDS)) +QGCL (11.342)

Cgdl = Fl · (QGAG · cosh(QGAD ·VDS)−QGAD · sinh(QGAD ·VDS)) +QGCL (11.343)

CGS =

(

Cgsl ·Ft + Cgsh · (1 − Ft) + (Qgl −Qgh) ·
∂Ft

∂VGS
+QGG0

)

(11.344)

CGD =

(

Cgdl ·Ft + Cgdh · (1− Ft) + (Qgl −Qgh) ·
∂Ft

∂VGD
+QGG0

)

(11.345)

If the drain-source voltage is negative, VGS and VGD have to be exchanged.

Most parameters scale proportionally with the transistor size, i.e. they are multiplied with the
channel width W and with the number of gate finger Ng. This holds for the following parameters:

β, IS , CDS , Qgql, Qgqh, Qgi0, Qgcl, Qgsh, Qgdh, Qgg0, ILK (11.346)

The following parameters are scaled inversly, i.e. they are divided by the channel width W and
by the number of gate finger Ng.

Qggb, Rd, Rs, Rg (11.347)

The scaling of the gate metal resistor is somewhat different:

Rgmet,scaled = Rgmet ·
W

Ng
(11.348)

There are three types of temperature dependencies. The linear scaling is defined as

Pscaled = Pnom + Scale · (T − Tnom) (11.349)

and applies to
VT0, γ, Vst0, Mst0 (11.350)

The linear, relative scaling is defined as

Pscaled = Pnom · (1 + Scale · (T − Tnom)) (11.351)

and applies to
Rd, Rs (11.352)
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The exponential scaling is defined as

Pscaled = Pnom · 1.01Scale · (T−Tnom) (11.353)

and applies to
α, β (11.354)

The noise model is typical for a JFET. The parasitic resistances Rd, Rs, Rg and Rgmet creates
thermal noise. The channel noise is modeled with a user-defined parameter P :

i2ds
∆f

= 4 · kB ·T ·GM ·P +KF
IAF

DS

fFFE
(11.355)

11.12 Statz Model

A popular GaAs MESFET model is the Statz Raytheon model [34]. The equations for the drain-
source current writes as follows.

for 0 < Vds <
α
3

Ids =
β · (Vgs − Vt0)

2

1 + b · (Vgs − Vt0)
·
(

1−
(

1− α ·Vds

3

)3
)

· (1 + λ ·Vds) (11.356)

∂Ids
∂Vds

=
β · (Vgs − Vt0)

2

1 + b · (Vgs − Vt0)
(11.357)

·
(

α ·
(

1− α ·Vds

3

)2

· (1 + λ ·Vds) + λ ·
(

1−
(

1− α ·Vds

3

)3
))

(11.358)

∂Ids
∂Vgs

= β · (Vgs − Vt0) ·
2 + b · (Vgs − Vt0)

(1 + b · (Vgs − Vt0))
2 · (1 + λ ·Vds) (11.359)

·
(

1−
(

1− α ·Vds

3

)3
)

(11.360)

and for Vds ≥ α
3

Ids =
β · (Vgs − Vt0)

2

1 + b · (Vgs − Vt0)
· (1 + λ ·Vds) (11.361)

∂Ids
∂Vds

=
β · (Vgs − Vt0)

2

1 + b · (Vgs − Vt0)
·λ (11.362)

∂Ids
∂Vgs

= β · (Vgs − Vt0) ·
2 + b · (Vgs − Vt0)

(1 + b · (Vgs − Vt0))
2 · (1 + λ ·Vds) (11.363)

with Vgs being the intrinsic gate-source voltage and Vds being the intrinsic drain-source voltage.

The charge and capacitances are:

for Vnew > Vmax
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Qgs = Cgs0 ·



2 ·Vbi ·
(

1−
√

1− Vmax

Vbi

)

+
Vnew − Vmax
√

1− Vmax

Vbi



 (11.364)

∂Qgs

∂Vgs
=

Cgs0
√

1− Vmax

Vbi

· ∂Vnew

∂Vgs
(11.365)

∂Qgs

∂Vgd
=

Cgs0
√

1− Vmax

Vbi

· ∂Vnew

∂Vgd
(11.366)

and for Vnew ≤ Vmax

Qgs = Cgs0 · 2 ·Vbi ·
(

1−
√

1− Vnew

Vbi

)

(11.367)

∂Qgs

∂Vgs
=

Cgs0
√

1− Vnew

Vbi

· ∂Vnew

∂Vgs
(11.368)

∂Qgs

∂Vgd
=

Cgs0
√

1− Vnew

Vbi

· ∂Vnew

∂Vgd
(11.369)

with

Vmax = Fc ·Vbi (11.370)

Vnew =
1

2
·
(

Veff1 + Vt0 +
√

(Veff1 − Vt0)2 +∆2
2

)

(11.371)

Veff1 =
1

2
·
(

Vgs + Vgd +
√

(Vgs − Vgd)2 +∆2
1

)

(11.372)

Veff2 =
1

2
·
(

Vgs + Vgd −
√

(Vgs − Vgd)2 +∆2
1

)

(11.373)

∂Vnew

∂Vgs
=

(

1

2
+

Veff1 − Vt0

2 ·
√

(Veff1 − Vt0)2 +∆2
2

)

· ∂Veff1

∂Vgs
(11.374)

=

(

1

2
+

Veff1 − Vt0

2 ·
√

(Veff1 − Vt0)2 +∆2
2

)

·
(

1

2
+

Vgs − Vgd

2 ·
√

(Vgs − Vgd)2 +∆2
1

)

(11.375)

∂Vnew

∂Vgd
=

(

1

2
+

Veff1 − Vt0

2 ·
√

(Veff1 − Vt0)2 +∆2
2

)

·
(

1

2
− Vgs − Vgd

2 ·
√

(Vgs − Vgd)2 +∆2
1

)

(11.376)

Furthermore it is:

Qgd =
Cgd0

2
·
(

Vgs + Vgd −
√

(Vgs − Vgd)2 +∆2
1

)

(11.377)

∂Qgd

∂Vgs
= Cgd0 ·

(

1

2
− Vgs − Vgd

2 ·
√

(Vgs − Vgd)2 +∆2
1

)

(11.378)

∂Qgd

∂Vgd
= Cgd0 ·

(

1

2
+

Vgs − Vgd

2 ·
√

(Vgs − Vgd)2 +∆2
1

)

(11.379)

11.13 HICUM

HICUM (High-Current Model) is a modern and very popular circuit model for bipolar junction
transistors. It is designed for standard BJTs as well as for HBTs (Heterojunction Bipolar Tran-
sistors) and especially takes into account the effects at high frequencies and high currents. The
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model was developed by the HICUM Group at CEDIC at the University of Technology Dresden
and the University of California at San Diego. The model owner is Michael Schröter. All infor-
mation about HICUM can be found on the internet:
https://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html
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Chapter 12

Microstrip components

12.1 Single microstrip line

h

t

W l

Figure 12.1: single microstrip line

The electrical parameters of microstrip lines which are required for circuit design are impedance,
attenuation, wavelength and propagation constant. These parameters are interrelated for all
microstrips assuming that the propagation mode is a transverse electromagnetic mode, or it can
be approximated by a transverse electromagnetic mode. The Y and S parameters can be found in
section 10.23.

12.1.1 Quasi-static characteristic impedance

Wheeler

Harold A. Wheeler [35] formulated his synthesis and analysis equations based upon a conformal
mapping’s approximation of the dielectric boundary with parallel conductor strips separated by a
dielectric sheet.

For wide strips (W/h > 3.3) he obtains the approximation

ZL (W,h, εr) =
ZF0

2
√
εr
· 1

W

2h
+

1

π
ln 4 +

εr + 1

2πεr
ln

(
πe

2

(
W

2h
+ 0.94

))

+
εr − 1

2πε2r
· ln eπ2

16

(12.1)
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For narrow strips (W/h ≤ 3.3) he obtains the approximation

ZL (W,h, εr) =
ZF0

π
√

2 (εr + 1)
·



ln




4h

W
+

√
(
4h

W

)2

+ 2



− 1

2
· εr − 1

εr + 1

(

ln
π

2
+

1

εr
ln

4

π

)




(12.2)
The formulae are applicable to alumina-type substrates (8 ≤ εr ≤ 12) and have an estimated
relative error less than 1 per cent.
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Figure 12.2: characteristic impedance as approximated by Hammerstad for εr = 1.0 (air), 3.78
(quartz) and 9.5 (alumina)

Schneider

The following formulas obtained by rational function approximation give accuracy of ±0.25% for
0 ≤W/h ≤ 10 which is the range of importance for most engineering applications. M.V. Schneider
[36] found these approximations for the complete elliptic integrals of the first kind as accurate as
±1% for W/h > 10.

ZL =
ZF0√
εreff

·







1

2π
· ln

(
8 ·h
W

+
W

4 ·h

)

for
W

h
≤ 1

1

W

h
+ 2.42− 0.44 · h

W
+

(

1− h

W

)6 for
W

h
> 1

(12.3)

Hammerstad and Jensen

The equations for the single microstrip line presented by E. Hammerstad and Ø. Jensen [37]
are based upon an equation for the impedance of microstrip in an homogeneous medium and an
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equation for the microstrip effective dielectric constant. The obtained accuracy gives errors at
least less than those caused by physical tolerances and is better than 0.01% for W/h ≤ 1 and
0.03% for W/h ≤ 1000.

ZL1 (W,h) =
ZF0

2π
· ln



fu
h

W
+

√

1 +

(
2h

W

)2


 (12.4)

ZL (W,h, εr) =
ZL1 (W,h)√

εr
=

ZF0

2π · √εr
· ln



fu
h

W
+

√

1 +

(
2h

W

)2


 (12.5)

with

fu = 6 + (2π − 6) · exp
(

−
(

30.666 · h
W

)0.7528
)

(12.6)

The comparison of the expression given for the quasi-static impedance as shown in fig. 12.3 has
been done with respect to E. Hammerstad and Ø. Jensen. It reveals the advantage of closed-form
expressions. The impedance step for Wheelers formulae at W/h = 3.3 is approximately 0.1Ω.
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Figure 12.3: characteristic impedance in comparison for εr = 9.8

12.1.2 Quasi-static effective dielectric constant

Wheeler

Harold A. Wheeler [38] gives the following approximation for narrow strips (W/h < 3) based upon
the characteristic impedance ZL. The estimated relative error is less than 1%.

εreff
=

εr + 1

2
+

ZF0

2πZL
· εr − 1

2
·
(

ln
π

2
+

1

εr
ln

4

π

)

(12.7)
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For narrow strips (W/h ≤ 1.3):

εreff
=

1 + εr
2
·
(

A

A−B

)2

(12.8)

with

A = ln

(

8
h

W

)

+
1

32
·
(
W

h

)2

(12.9)

B =
1

2
· εr − 1

εr + 1
·
(

ln
π

2
+

1

εr
ln

4

π

)

(12.10)

For wide strips (W/h > 1.3):

εreff
= εr ·

(
E −D

E

)2

(12.11)

with

D =
εr − 1

2πεr
·
(

ln

(
πe

2

(
W

2h
+ 0.94

))

− 1

εr
ln

eπ2

16

)

(12.12)

E =
1

2
·W
h

+
1

π
· ln

(

πe
W

h
+ 16.0547

)

(12.13)

Schneider

The approximate function found by M.V. Schneider [36] is meant to have an accuracy of ±2% for
εreff

and an accuracy of ±1% for
√
εreff

.

εreff
=

εr + 1

2
+

εr − 1

2
· 1
√

1 + 10
h

W

(12.14)

Hammerstad and Jensen

The accuracy of the E. Hammerstad and Ø. Jensen [37] model is better than 0.2% at least for
εr < 128 and 0.01 ≤W/h ≤ 100.

εreff
(W,h, εr) =

εr + 1

2
+

εr − 1

2
·
(

1 + 10
h

W

)−ab

(12.15)

with

a (u) = 1 +
1

49
· ln

(

u4 + (u/52)
2

u4 + 0.432

)

+
1

18.7
· ln

(

1 +
( u

18.1

)3
)

(12.16)

b (εr) = 0.564 ·
(
εr − 0.9

εr + 3

)0.053

(12.17)

u =
W

h
(12.18)

12.1.3 Strip thickness correction

The formulas given for the quasi-static characteristic impedance and effective dielectric constant
in the previous sections are based upon an infinite thin microstrip line thickness t = 0. A finite
thickness t can be compensated by a reduction of width. That means a strip with the width W
and the finite thickness t appears to be a wider strip.
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Wheeler

Harold A. Wheeler [38] proposes the following equation to account for the strip thickness effect
based on free space without dielectric.

∆W1 =
t

π
ln

4e
√
(
t

h

)2

+

(
1/π

W/t+ 1.10

)
(12.19)

For the mixed media case with dielectric he obtains the approximation

∆Wr =
1

2
∆W1

(

1 +
1

εr

)

(12.20)

Schneider

M.V. Schneider [36] derived the following approximate expressions.

∆W =







t

π
·
(

1 + ln
4 ·π ·W

t

)

for
W

h
≤ 1

2π

t

π
·
(

1 + ln
2 ·h
t

)

for
W

h
>

1

2π

(12.21)

Additional restrictions for applying these expressions are t ≪ h, t < W/2 and t/∆W < 0.75.
Notice also that the ratio ∆W/t is divergent for t→ 0.

Hammerstad and Jensen

E. Hammerstad and Ø. Jensen are using the method described by Wheeler [38] to account for
a non-zero strip thickness. However, some modifications in his equations have been made, which
give better accuracy for narrow strips and for substrates with low dielectric constant. For the
homogeneous media the correction is

∆W1 =
t

π
· ln




1 +

4e
t

h
· coth2

√
6.517W




 (12.22)

and for the mixed media the correction is

∆Wr = 0.5 ·∆W1 ·
(
1 + sech

√
εr − 1

)
(12.23)

By defining corrected strip widths, W1 = W + ∆W1 and Wr = W + ∆Wr , the effect of strip
thickness may be included in the equations (12.4) and (12.15).

ZL (W,h, t, εr) =
ZL1 (Wr, h)

√
εreff

(Wr , h, εr)
(12.24)

εreff
(W,h, t, εr) = εreff

(Wr , h, εr) ·
(
ZL1 (W1, h)

ZL1 (Wr, h)

)2

(12.25)

12.1.4 Dispersion

Dispersion can be a strong effect in microstrip transmission lines due to their inhomogeneity. Typ-
ically, as frequency is increased, εreff

increases in a non-linear manner, approaching an asymptotic
value. Dispersion affects characteristic impedance in a similar way.
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Kirschning and Jansen

The dispersion formulae given by Kirschning and Jansen [39] is meant to have an accuracy better
than 0.6% in the range 0.1 ≤ W/h ≤ 100, 1 ≤ εr ≤ 20 and 0 ≤ h/λ0 ≤ 0.13, i.e. up to about
60GHz for 25mm substrates.

εr(f) = εr −
εr − εreff

1 + P (f)
(12.26)

with

P (f) = P1P2 · ((0.1844 + P3P4) · fn)1.5763 (12.27)

P1 = 0.27488 +

(

0.6315 +
0.525

(1 + 0.0157 ·fn)20

)

· W
h
− 0.065683 · exp

(

−8.7513W
h

)

(12.28)

P2 = 0.33622 · (1− exp (−0.03442 ·εr)) (12.29)

P3 = 0.0363 · exp
(

−4.6W
h

)

·
(

1− exp

(

−
(

fn
38.7

)4.97
))

(12.30)

P4 = 1 + 2.751 ·
(

1− exp

(

−
( εr
15.916

)8
))

(12.31)

fn = f ·h = normalised frequency in [GHz ·mm] (12.32)

Dispersion of the characteristic impedance according to [40] can be applied for the range 0 ≤
h/λ0 ≤ 0.1, 0.1 ≤ W/h ≤ 10 and for substrates with 1 ≤ εr ≤ 18 and is is given by the following
set of equations.

R1 = 0.03891 ·ε1.4r (12.33)

R2 = 0.267 ·u7.0 (12.34)

R3 = 4.766 · exp
(
−3.228 ·u0.641

)
(12.35)

R4 = 0.016 + (0.0514 ·εr)4.524 (12.36)

R5 = (fn/28.843)
12.0

(12.37)

R6 = 22.20 ·u1.92 (12.38)

and

R7 = 1.206− 0.3144 · exp (−R1) · (1− exp (−R2)) (12.39)

R8 = 1+ 1.275 ·
(

1− exp
(

−0.004625 ·R3 · ε1.674r · (fn/18.365)2.745
))

(12.40)

R9 = 5.086 · R4 ·R5

0.3838 + 0.386 ·R4
· exp (−R6)

1 + 1.2992 ·R5
· (εr − 1)

6

1 + 10 · (εr − 1)
6 (12.41)
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and

R10 = 0.00044 ·ε2.136r + 0.0184 (12.42)

R11 =
(fn/19.47)

6

1 + 0.0962 · (fn/19.47)6
(12.43)

R12 =
1

1 + 0.00245 ·u2
(12.44)

R13 = 0.9408 ·εr(f)R8 − 0.9603 (12.45)

R14 = (0.9408−R9) · εR8
reff
− 0.9603 (12.46)

R15 = 0.707 ·R10 · (fn/12.3)1.097 (12.47)

R16 = 1 + 0.0503 ·ε2r ·R11 ·
(

1− exp
(

− (u/15)
6
))

(12.48)

R17 = R7 ·
(

1− 1.1241 · R12

R16
· exp

(
−0.026 ·f1.15656

n −R15

)
)

(12.49)

Finally the frequency-dependent characteristic impedance can be written as

ZL(fn) = ZL(0) ·
(
R13

R14

)R17

(12.50)

The abbreviations used in these expressions are fn for the normalized frequency as denoted in
eq. (12.32) and u = W/h for the microstrip width normalised with respect to the substrate
height. The terms ZL(0) and εreff

denote the static values of microstrip characteristic impedance
and effective dielectric constant. The value εr(f) is the frequency dependent effective dielectric
constant computed according to [39].

R.H. Jansen and M. Kirschning remark in [40] for the implementation of the expressions on a
computer, R1, R2 and R6 should be restricted to numerical values less or equal 20 in order to
prevent overflow.

Yamashita

The values obtained by the approximate dispersion formula as given by E. Yamashita [41] deviate
within 1% in a wide frequency range compared to the integral equation method used to derive
the functional approximation. The formula assumes the knowledge of the quasi-static effective
dielectric constant. The applicable ranges of the formula are 2 < εr < 16, 0.06 < W/h < 16 and
0.1GHz < f < 100GHz. Though the lowest usable frequency is limited by 0.1GHz, the propagation
constant for frequencies less than 0.1GHz has been given as the quasi-static one.

εr(f) = εreff
·






1 +
1

4
· k ·F 1.5

1 +
1

4
·F 1.5






2

(12.51)

with

k =

√
εr

εreff

(12.52)

F =
4 ·h · f · √εr − 1

c0
·
(

0.5 +

(

1 + 2 · log
(

1 +
W

h

))2
)

(12.53)
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Kobayashi

The dispersion formula presented by M. Kobayashi [42], derived by comparison to a numerical
model, has a high degree of accuracy, better than 0.6% in the range 0.1 ≤W/h ≤ 10, 1 < εr ≤ 128
and any h/λ0 (no frequency limits).

εr(f) = εr −
εr − εreff

1 +

(
f

f50

)m (12.54)

with

f50 =
c0

2π ·h ·
(

0.75 +

(

0.75− 0.332

ε1.73r

)
W

h

) ·
arctan

(

εr ·
√

εreff
− 1

εr − εreff

)

√
εr − εreff

(12.55)

m = m0 ·mc (≤ 2.32) (12.56)

m0 = 1 +
1

1 +

√

W

h

+ 0.32 ·







1

1 +

√

W

h







3

(12.57)

mc =







1 +
1.4

1 +
W

h

·
(

0.15− 0.235 · exp
(

−0.45 f

f50

))

for W/h ≤ 0.7

1 for W/h ≥ 0.7

(12.58)

Getsinger

Based upon measurements of dispersion curves for microstrip lines on alumina substrates 0.025
and 0.050 inch thick W. J. Getsinger [43] developed a very simple , closed-form expression that
allow slide-rule prediction of microstrip dispersion.

εr(f) = εr −
εr − εreff

1 +G ·
(

f

fp

)2 (12.59)

with

fp =
ZL

2µ0h
(12.60)

G = 0.6 + 0.009 ·ZL (12.61)

Also based upon measurements of microstrip lines 0.1, 0.25 and 0.5 inch in width on a 0.250
inch thick alumina substrate Getsinger [44] developed two different dispersion models for the
characteristic impedance.

• wave impedance model published in [44]

ZL(f) = ZL ·
√

εreff

εr(f)
(12.62)

• group-delay model published in [45]

ZL(f) = ZL ·
√

εr(f)

εreff

· 1

1 +D(f)
(12.63)
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with

D(f) =
(εr − εr(f)) ·

(
εr(f)− εreff

)

εr(f) ·
(
εr − εreff

) (12.64)

Hammerstad and Jensen

The dispersion formulae of E. Hammerstad and Ø. Jensen [37] give good results for all types
of substrates (not as limited as Getsinger’s formulae). The impedance dispersion model is based
upon a parallel-plate model using the theory of dielectrics.

εr(f) = εr −
εr − εreff

1 +G ·
(

f

fp

)2 (12.65)

with

fp =
ZL

2µ0h
(12.66)

G =
π2

12
· εr − 1

εreff

·
√

2π ·ZL

ZF0
(12.67)

ZL(f) = ZL ·
√

εreff

εr(f)
· εr(f)− 1

εreff
− 1

(12.68)

Edwards and Owens

The authors T. C. Edwards and R. P. Owens [46] developed a dispersion formula based upon
measurements of microstrip lines on sapphire in the range 10Ω ≤ ZL ≤ 100Ω and up to 18GHz.
The procedure was repeated for several microstrip width-to-substrate-height ratios (W/h) between
0.1 and 10.

εr(f) = εr −
εr − εreff

1 + P
(12.69)

with

P =

(
h

ZL

)1.33

·
(
0.43f2 − 0.009f3

)
(12.70)

where h is in millimeters and f is in gigahertz. Their new dispersion equation involving the poly-
nomial, which was developed to predict the fine detail of the experimental εr(f) versus frequency
curves, includes two empicical parameters. However, it seems the formula is not too sensitive to
changes in substrate parameters.

Pramanick and Bhartia

P. Bhartia and P. Pramanick [47] developed dispersion equations without any empirical quantity.
Their work expresses dispersion of the dielectric constant and characteristic impedance in terms
of a single inflection frequency.

For the frequency-dependent relative dielectric constant they propose

εr(f) = εr −
εr − εreff

1 +

(
f

fT

)2 (12.71)

where

fT =

√
εr

εreff

· ZL

2µ0h
(12.72)
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Dispersion of the characteristic impedance is accounted by

ZL(f) =
ZF0 ·h

We(f) ·
√

εr(f)
(12.73)

whence

We(f) = W +
Weff −W

1 +

(
f

fT

)2 and Weff =
ZF0 ·h

ZL · √εreff

(12.74)

Schneider

Martin V. Schneider [48] proposed the following equation for the dispersion of the effective dielec-
tric constant of a single microstrip line. The estimated error is less than 3%.

εr(f) = εreff
·
(

1 + f2
n

1 + k · f2
n

)2

(12.75)

with

fn =
4h · f ·

√
εr − 1

c0
and k =

√
εreff

εr
(12.76)

For the dispersion of the characteristic impedance he uses the same wave guide impedance model
as Getsinger in his first approach to the problem.

ZL(f) = ZL ·
√

εreff

εr(f)
(12.77)

12.1.5 Transmission losses

The attenuation of a microstrip line consists of conductor (ohmic) losses, dielectric (substrate)
losses, losses due to radiation and propagation of surface waves and higher order modes.

α = αc + αd + αr + αs (12.78)

The conversion into dB/m unit is a multiplication:

α[dB/m] = α · 20

ln(10)
(12.79)

Dielectric losses

Dielectric loss is due to the effects of finite loss tangent tan δd. Basically the losses rise proportional
over the operating frequency. For common microwave substrate materials like Al2O3 ceramics with
a loss tangent δd less than 10−3 the dielectric losses can be neglected compared to the conductor
losses.

For the inhomogeneous line, an effective dielectric filling fraction give that proportion of the
transmission line’s cross section not filled by air. For microstrip lines, the result is

αd =
εr

√
εr,eff (0)

· εr,eff (0)− 1

εr − 1
· π
λ0
· tan δd (12.80)

whereas

εr,eff (0) effective relative permittivity without dispersion
δd dielectric loss tangent
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Conductor losses

E. Hammerstad and Ø. Jensen [37] proposed the following equation for the conductor losses. The
surface roughness of the substrate is necessary to account for an asymptotic increase seen in the
apparent surface resistance with decreasing skin depth. This effect is considered by the correction
factor Kr. The current distribution factor Ki is a very good approximation provided that the
strip thickness exceeds three skin depths (t > 3δ).

αc =
Rsh

ZL(0) ·W
·Kr ·Ki (12.81)

with

Rsh =
ρ

δ
=

√

ρ · ω ·µ
2

=
√

ρ ·π · f ·µ (12.82)

Ki = exp

(

−1.2
(
ZL(0)

ZF0

)0.7
)

(12.83)

Kr = 1 +
2

π
arctan

(

1.4

(
∆

δ

)2
)

(12.84)

whereas

ZL(0) characteristic impedance of microstrip without dispersion
Rsh sheet resistance of conductor material (skin resistance)

ρ specific resistance of conductor
δ skin depth

Ki current distribution factor
Kr correction term due to surface roughness
∆ effective (rms) surface roughness of substrate

ZF0 wave impedance in vacuum

Radiation losses

The radiation losses of a free (unshielded) and matched (reflectionless terminated) microstrip
transmission line may be calculated as follows [49]:

αr = 60 ·
(
2πf ·h ·√ǫr,eff

c0

)2

·
(

1− ǫr,eff − 1

2 · √ǫr,eff
· ln

(√
ǫr,eff + 1
√
ǫr,eff − 1

))

(12.85)

whereas

c0 velocity of light in vacuum
f frequency
h height of substrate

ǫr,eff effective dielectric constant

12.1.6 Higher modes

In order for a transmission line to work properly, it’s important that one mode only propagates.
For the microstrip line this is the quasi-TEM mode. Higher-order modes appear above a certain
frequency, i.e. the useability is limited to the frequency range below the cut-off of the first higher
mode.

The cut-off frequency of the first TE mode (TE1) is:

fc =
c0√

ǫr · (2 ·W + 0.8 ·h) (12.86)
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The cut-off frequency of surface waves (TM1 mode) is:

fs =
c0
π ·h ·

√

arctan ǫr
2 · (ǫr − 1)

(12.87)

12.2 Parallel coupled microstrip lines

h

t

W

Ws

l

Figure 12.4: parallel coupled microstrip lines

12.2.1 Characteristic impedance and effective dielectric constant

Parallel coupled microstrip lines are defined by the characteristic impedance and the effective
permittivity of the even and the odd mode. The y- and S-parameters are depicted in section
10.25.

Kirschning and Jansen

These quantities can very precisely be modeled by the following equations [50], [51].

Beforehand some normalised quantities (with microstrip line width W , spacing s between the lines
and substrate height h) are introduced:

u =
W

h
, g =

s

h
, fn =

f

GHz
· h

mm
=

f

MHz
·h (12.88)

The applicability of the described model is

0.1 ≤ u ≤ 10 , 0.1 ≤ g ≤ 10 , 1 ≤ εr ≤ 18 (12.89)

The accuracies of the formulas holds for these ranges.

Static effective permittivity of even mode:

εeff,e(0) = 0.5 · (εr + 1) + 0.5 · (εr − 1) ·
(

1 +
10

v

)−ae(v) · be(εr)
(12.90)
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with

v = u · 20 + g2

10 + g2
+ g · exp (−g) (12.91)

ae (v) = 1 +
1

49
· ln

(

v4 + (v/52)
2

v4 + 0.432

)

+
1

18.7
· ln

(

1 +
( v

18.1

)3
)

(12.92)

be (εr) = 0.564 ·
(
εr − 0.9

εr + 3

)0.053

(12.93)

Static effective permittivity of odd mode:

εeff,o(0) = (0.5 · (εr + 1) + ao (u, εr)− εeff (0)) · exp
(
−co · gdo

)
+ εeff (0) (12.94)

with

ao (u, εr) = 0.7287 · (εeff (0)− 0.5 · (εr + 1)) · (1− exp (−0.179 ·u)) (12.95)

bo (εr) = 0.747 · εr
0.15 + εr

(12.96)

co = bo(εr)− (bo (εr)− 0.207) · exp (−0.414 ·u) (12.97)

do = 0.593 + 0.694 · exp (−0.562 ·u) (12.98)

whence εeff (0) refers to the zero-thickness single microstrip line of width W according to [37] (see
also eq. (12.15)).

The dispersion formulae for the odd and even mode write as follows.

εeff,e,o (fn) = εr −
εr − εeff,e,o(0)

1 + Fe,o (fn)
(12.99)

The frequency dependence for the even mode is

Fe (fn) = P1 ·P2 · ((P3 ·P4 + 0.1844 ·P7) · fn)1.5763 (12.100)

with

P1 = 0.27488+

(

0.6315 +
0.525

(1 + 0.0157 ·fn)20
)

·u− 0.065683 · exp (−8.7513 ·u) (12.101)

P2 = 0.33622 · (1− exp (−0.03442 ·εr)) (12.102)

P3 = 0.0363 · exp (−4.6 ·u) ·
(

1− exp
(

− (fn/38.7)
4.97
))

(12.103)

P4 = 1 + 2.751 ·
(

1− exp
(

− (εr/15.916)
8
))

(12.104)

P5 = 0.334 · exp
(

−3.3 · (εr/15)3
)

+ 0.746 (12.105)

P6 = P5 · exp
(

− (fn/18)
0.368

)

(12.106)

P7 = 1 + 4.069 ·P6 · g0.479 · exp
(
−1.347 ·g0.595 − 0.17 · g2.5

)
(12.107)

The frequency dependence for the odd mode is

Fo (fn) = P1 ·P2 · ((P3 ·P4 + 0.1844) · fn ·P15)
1.5763

(12.108)
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with

P8 = 0.7168 ·
(

1 +
1.076

1 + 0.0576 · (εr − 1)

)

(12.109)

P9 = P8 − 0.7913 ·
(

1− exp
(

− (fn/20)
1.424

))

· arctan
(

2.481 · (εr/8)0.946
)

(12.110)

P10 = 0.242 · (εr − 1)
0.55

(12.111)

P11 = 0.6366 · (exp (−0.3401 ·fn)− 1) · arctan
(

1.263 · (u/3)1.629
)

(12.112)

P12 = P9 +
1− P9

1 + 1.183 ·u1.376
(12.113)

P13 = 1.695 · P10

0.414 + 1.605 ·P10
(12.114)

P14 = 0.8928 + 0.1072 ·
(

1− exp
(

−0.42 · (fn/20)3.215
))

(12.115)

P15 =
∣
∣1− 0.8928 · (1 + P11) · exp

(
−P13 · g1.092

)
·P12/P14

∣
∣ (12.116)

Up to fn = 25 the maximum error of these equations is 1.4%.

The static characteristic impedance for the even mode writes as follows.

ZL,e(0) =

√

εeff (0)

εeff,e(0)
· ZL(0)

1− ZL(0)

377Ω
·
√

εeff (0) ·Q4

(12.117)

with

Q1 = 0.8695 ·u0.194 (12.118)

Q2 = 1 + 0.7519 ·g + 0.189 · g2.31 (12.119)

Q3 = 0.1975 +
(

16.6 + (8.4/g)6
)−0.387

+
1

241
· ln

(

g10

1 + (g/3.4)10

)

(12.120)

Q4 =
Q1

Q2
· 2

exp (−g) ·uQ3 + (2 − exp (−g)) ·u−Q3
(12.121)

with ZL(0) and εeff (0) being again quantities for a zero-thickness single microstrip line of width
W according to [37] (see also eq. (12.15) and (12.5)).

The static characteristic impedance for the odd mode writes as follows.

ZL,o(0) =

√

εeff (0)

εeff,o(0)
· ZL(0)

1− ZL(0)

377Ω
·
√

εeff (0) ·Q10

(12.122)
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with

Q5 = 1.794 + 1.14 · ln
(

1 +
0.638

g + 0.517 ·g2.43
)

(12.123)

Q6 = 0.2305 +
1

281.3
· ln

(

g10

1 + (g/5.8)10

)

+
1

5.1
· ln

(
1 + 0.598 · g1.154

)
(12.124)

Q7 =
10 + 190 · g2
1 + 82.3 · g3 (12.125)

Q8 = exp
(

−6.5− 0.95 · ln (g)− (g/0.15)
5
)

(12.126)

Q9 = ln (Q7) · (Q8 + 1/16.5) (12.127)

Q10 =
Q2 ·Q4 −Q5 · exp

(
ln (u) ·Q6 ·u−Q9

)

Q2
= Q4 −

Q5

Q2
·uQ6 ·u−Q9

(12.128)

The accuracy of the static impedances is better than 0.6%.

Dispersion of the characteristic impedance for the even mode can be modeled by the following
equations.

ZL,e(fn) = ZL,e(0) ·
(

0.9408 · (εeff (fn))Ce − 0.9603

(0.9408− de) · (εeff (0))Ce − 0.9603

)Q0

(12.129)

with

Ce = 1 + 1.275 ·
(

1− exp
(

−0.004625 ·pe · ε1.674r · (fn/18.365)2.745
))

−Q12 +Q16 −Q17 +Q18 +Q20

(12.130)

de = 5.086 · qe ·
re

0.3838 + 0.386 · qe
· exp

(
−22.2 ·u1.92

)

1 + 1.2992 · re
· (εr − 1)6

1 + 10 · (εr − 1)6
(12.131)

pe = 4.766 · exp
(
−3.228 ·u0.641

)
(12.132)

qe = 0.016 + (0.0514 · εr ·Q21)
4.524

(12.133)

re = (fn/28.843)
12

(12.134)
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and

Q11 = 0.893 ·
(

1− 0.3

1 + 0.7 · (εr − 1)

)

(12.135)

Q12 = 2.121 · (fn/20)
4.91

1 +Q11 · (fn/20)4.91
· exp (−2.87 · g) · g0.902 (12.136)

Q13 = 1 + 0.038 · (εr/8)5.1 (12.137)

Q14 = 1 + 1.203 · (εr/15)
4

1 + · (εr/15)4
(12.138)

Q15 =
1.887 · exp

(
−1.5 · g0.84

)
· gQ14

1 + 0.41 · (fn/15)3 ·
u2/Q13

0.125 + u1.626/Q13

(12.139)

Q16 = Q15 ·
(

1 +
9

1 + 0.403 · (εr − 1)
2

)

(12.140)

Q17 = 0.394 ·
(

1− exp
(

−1.47 · (u/7)0.672
))

·
(

1− exp
(

−4.25 (fn/20)1.87
))

(12.141)

Q18 = 0.61 ·
1− exp

(

−2.13 · (u/8)1.593
)

1 + 6.544 ·g4.17 (12.142)

Q19 =
0.21 · g4

(1 + 0.18 · g4.9) · (1 + 0.1 ·u2) ·
(

1 + (fn/24)
3
) (12.143)

Q20 = Q19 ·
(

0.09 +
1

1 + 0.1 · (εr − 1)
2.7

)

(12.144)

Q21 =

∣
∣
∣
∣
1− 42.54 · g0.133 · exp (−0.812 ·g) · u2.5

1 + 0.033 ·u2.5

∣
∣
∣
∣

(12.145)

With εeff (fn) being the single microstrip effective dielectric constant according to [39] (see eq.
(12.26)) and Q0 single microstrip impedance dispersion according to [40] (there denoted as R17,
see eq. (12.49)).

Dispersion of the characteristic impedance for the odd mode can be modeled by the following
equations.

ZL,o(fn) = ZL(fn) +

ZL,o(0) ·
(
εeff,o(fn)

εeff,o(0)

)Q22

− ZL(fn) ·Q23

1 +Q24 + (0.46 · g)2.2 ·Q25

(12.146)
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with

Q22 = 0.925 · (fn/Q26)
1.536

1 + 0.3 · (fn/30)1.536
(12.147)

Q23 = 1 +
0.005 ·fn ·Q27

(

1 + 0.812 · (fn/15)1.9
)

· (1 + 0.025 ·u2)
(12.148)

Q24 =
2.506 ·Q28 ·u0.894

3.575 + u0.894
·
(
(1 + 1.3 ·u) · fn

99.25

)4.29

(12.149)

Q25 =
0.3 · f2

n

10 + f2
n

·
(

1 +
2.333 · (εr − 1)

2

5 + (εr − 1)
2

)

(12.150)

Q26 = 30−
22.2 ·

(
εr − 1

13

)12

1 + 3 ·
(
εr − 1

13

)12 −Q29 (12.151)

Q27 = 0.4 · g0.84 ·
(

1 +
2.5 · (εr − 1)

1.5

5 + (εr − 1)
1.5

)

(12.152)

Q28 = 0.149 · (εr − 1)
3

94.5 + 0.038 · (εr − 1)3
(12.153)

Q29 =
15.16

1 + 0.196 · (εr − 1)
2 (12.154)

with ZL(fn) being the frequency-dependent power-current characteristic impedance formulation
of a single microstrip with width W according to [40] (see eq. (12.50)). Up to fn = 20, the
numerical error of ZL,o(fn) and ZL,e(fn) is less than 2.5%.

Hammerstad and Jensen

The equations given by E. Hammerstad and Ø. Jensen [37] represent the first generally valid model
of coupled microstrips with an acceptable accuracy. The model equations have been validated in
the range 0.1 ≤ u ≤ 10 and g ≥ 0.01, a range which should cover that used in practice.

The homogeneous mode impedances are

ZL,e,o (u, g) =
ZL(u)

1− ZL(u) ·Φe,o (u, g) /ZF0
(12.155)

The effective dielectric constants are

εeff,e,o (u, g, εr) =
εr + 1

2
+

εr − 1

2
·Fe,o (u, g, εr) (12.156)

with

Fe (u, g, εr) =

(

1 +
10

µ (u, g)

)−a(µ) · b(εr)
(12.157)

Fo (u, g, εr) = fo (u, g, εr) ·
(

1 +
10

u

)−a(u) · b(εr)
(12.158)

whence a(u) and b (εr) denote eqs. (12.16) and (12.17) of the single microstrip line. The charac-
teristic impedance of the single microstrip line ZL (u) also defined in [37] is given by eq. (12.5).

187



The modifying equations for the even mode are as follows

Φe (u, g) =
ϕ(u)

Ψ(g) ·
(
α(g) · um(g) + (1− α(g)) ·u−m(g)

) (12.159)

ϕ(u) = 0.8645 ·u0.172 (12.160)

Ψ(g) = 1 +
g

1.45
+

g2.09

3.95
(12.161)

α(g) = 0.5 · e−g (12.162)

m(g) = 0.2175 +
(

4.113 + (20.36/g)
6
)−0.251

+
1

323
· ln

(

g10

1 + (g/13.8)
10

)

(12.163)

The modifying equations for the odd mode are as follows

Φo (u, g) = Φe (u, g)−
θ(g)

Ψ(g)
· exp

(

β(g) ·u−n(g) · lnu
)

(12.164)

θ(g) = 1.729 + 1.175 · ln
(

1 +
0.627

g + 0.327 · g2.17
)

(12.165)

β(g) = 0.2306 +
1

301.8
· ln

(

g10

1 + (g/3.73)
10

)

+
1

5.3
· ln

(
1 + 0.646 · g1.175

)
(12.166)

n(g) =

(
1

17.7
+ exp

(

−6.424− 0.76 · ln g − (g/0.23)
5
))

· ln
(

10 + 68.3 · g2
1 + 32.5 · g3.093

)

(12.167)

Furthermore

µ (u, g) = g · e−g + u · 20 + g2

10 + g2
(12.168)

fo (u, g, εr) = fo1 (g, εr) · exp (p(g) · lnu+ q(g) · sin (π · log u)) (12.169)

p(g) =
exp

(
−0.745 ·g0.295

)

cosh (g0.68)
(12.170)

q(g) = exp (−1.366− g) (12.171)

fo1 (g, εr) = 1− exp



−0.179 · g0.15 − 0.328 · gr(g,εr)

ln
(

e+ (g/7)2.8
)



 (12.172)

r (g, εr) = 1 + 0.15 ·



1−
exp

(

1− (εr − 1)
2
/8.2

)

1 + g−6



 (12.173)

The quasi-static characteristic impedance ZL(u) of a zero-thickness single microstrip line denoted
in eq. (12.155) can either be calculated using the below equations with εreff

being the quasi-static
effective dielectric constant defined by eq. (12.15) or using eqs. (12.5) and (12.15).

ZL1(u) =
ZF0

u+ 1.98 ·u0.172
(12.174)

ZL(u) =
ZL1(u)√
εreff

(12.175)

The errors in the even and odd mode impedances ZL,e and ZL,e were found to be less than 0.8%
and less than 0.3% for the wavelengths.

The model does not include the effect of non-zero strip thickness or asymmetry. Dispersion is also
not included. W. J. Getsinger [52] has proposed modifications to his single strip dispersion model,
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but unfortunately it is easily shown that the results are asymptotically wrong for extreme values
of gap width.

In fact he correctly assumes that in the even mode the two strips are at the same potential, and the
total current is twice that on a single strip, and dispersion for even-mode propagation is computed
by substituting ZL,e/2 for ZL in eqs. (12.60) and (12.61). In the odd mode the two strips are
at opposite potentials, and the voltage between strips is twice that of a single strip to ground.
Thus the total mode impedance is twice that of a single strip, and the dispersion for odd-mode
propagation is computed substituting 2ZL,o for ZL in eqs. (12.60) and (12.61).

εr,e,o (f) = εr −
εr − εreff,e,o

1 +G ·
(

f

fp

)2 (12.176)

with

fp =







ZL,e

4µ0h
even mode

ZL,o

µ0h
odd mode

(12.177)

G =







0.6 + ZL,e · 0.0045 even mode

0.6 + ZL,o · 0.018 odd mode

(12.178)

12.2.2 Strip thickness correction

According to R.H. Jansen [53] corrected strip width values have been found in the range of tech-
nologically meaningful geometries to be

Wt,e = W +∆W ·
(

1− 0.5 · exp
(

−0.69 · ∆W

∆t

))

(12.179)

Wt,o = Wt,e +∆t (12.180)

with

∆t =
2 · t ·h
s · εr

for s≫ 2t (12.181)

The author refers to the modifications of the strip width of a single microstrip line ∆W given by
Hammerstad and Bekkadal. See also eq. (12.21) on page 175.

∆W =







t

π
·
(

1 + ln

(
2h

t

))

for W >
h

2π
> 2t

t

π
·
(

1 + ln

(
4πW

t

))

for
h

2π
≥W > 2t

(12.182)

For large spacings s the single line formulae (12.182) applies.

12.2.3 Transmission losses

The loss equations given by E. Hammerstad and Ø. Jensen [37] for the single microstrip line
are also valid for coupled microstrips, provided that the dielectric filling factor, homogeneous
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impedance, and current distribution factor of the actual mode are used. The following approxima-
tion gives good results for odd and even current distribution factors (modification of eq. (12.83)).

Ki,e = Ki,o = exp

(

−1.2 ·
(
ZL,e + ZL,o

2 ·ZF0

)0.7
)

(12.183)

12.3 Microstrip open

A microstrip open end can be modeled by a longer effective microstrip line length ∆l as described
by M. Kirschning, R.H. Jansen and N.H.L. Koster [54].

∆l

h
=

Q1 ·Q3 ·Q5

Q4
(12.184)

with

Q1 = 0.434907 ·
ε0.81r,eff + 0.26

ε0.81r,eff − 0.189
· (W/h)

0.8544
+ 0.236

(W/h)0.8544 + 0.87
(12.185)

Q2 = 1 +
(W/h)

0.371

2.358 · εr + 1
(12.186)

Q3 = 1 +
0.5274

ε0.9236r,eff

· arctan
(

0.084 · (W/h)
1.9413
Q2

)

(12.187)

Q4 = 1 + 0.0377 · (6− 5 · exp (0.036 · (1− εr))) · arctan
(

0.067 · (W/h)
1.456

)

(12.188)

Q5 = 1− 0.218 · exp (−7.5 ·W/h) (12.189)

The numerical error is less than 2.5% for 0.01 ≤W/h ≤ 100 and 1 ≤ εr ≤ 50.

Another microstrip open end model was published by E. Hammerstad [55]:

∆l

h
= 0.102 ·W/h+ 0.106

W/h+ 0.264
·
(

1.166 +
εr + 1

εr
· (0.9 + ln (W/h+ 2.475))

)

(12.190)

Here the numerical error is less than 1.7% for W/h < 20.

In order to simplify calculations, the equivalent additional line length ∆l can be transformed into
an equivalent open end capacitance Cend:

Cend = C′ ·∆l =

√
εr,eff

c0 ·ZL
∆l (12.191)

With C′ being the capacitance per length and c0 = 299 792 458 m/s being the vacuum light
velocity.

12.4 Microstrip gap

A symmetrical microstrip gap can be modeled by two open ends with a capacitive series coupling
between the two ends. The physical layout is shown in fig. 12.5.
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Figure 12.5: symmetrical microstrip gap layout

The equivalent π-network of a microstrip gap is shown in figure 12.6. The values of the components
are according to [56] and [57].

CS [pF] = 500 ·h · exp
(

−1.86 · s
h

)

·Q1 ·
(

1 + 4.19

(

1− exp

(

−0.785 ·
√

h

W1
· W2

W1

)))

(12.192)

CP1 = C1 ·
Q2 +Q3

Q2 + 1
(12.193)

CP2 = C2 ·
Q2 +Q4

Q2 + 1
(12.194)

with

Q1 = 0.04598 ·
(

0.03 +

(
W1

h

)Q5
)

· (0.272 + 0.07 · εr) (12.195)

Q2 = 0.107 ·
(
W1

h
+ 9

)

·
( s

h

)3.23

+ 2.09 ·
( s

h

)1.05

· 1.5 + 0.3 ·W1/h

1 + 0.6 ·W1/h
(12.196)

Q3 = exp

(

−0.5978 ·
(
W2

W1

)1.35
)

− 0.55 (12.197)

Q4 = exp

(

−0.5978 ·
(
W1

W2

)1.35
)

− 0.55 (12.198)

Q5 =
1.23

1 + 0.12 · (W2/W1 − 1)0.9
(12.199)

with C1 and C2 being the open end capacitances of a microstrip line (see eq. (12.191)). The
numerical error of the capacitive admittances is less than 0.1mS for

0.1 ≤W1/h ≤ 3

0.1 ≤W2/h ≤ 3

1 ≤W2/W1 ≤ 3

6 ≤ εr ≤ 13

0.2 ≤ s/h ≤ ∞
0.2GHz ≤ f ≤ 18GHz
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Figure 12.6: microstrip gap and its equivalent circuit

The Y-parameters for the given equivalent small signal circuit can be written as stated in eq.
(12.200) and are easy to convert to scattering parameters.

Y =

[
jω · (CP1 + CS) −jωCS

−jωCS jω · (CP2 + CS)

]

(12.200)

12.5 Microstrip corner

The equivalent circuit of a microstrip corner is shown in fig. 12.7. The values of the components
are as follows [57].

C [pF] = W ·
(

(10.35 · εr + 2.5) ·W
h

+ (2.6 · εr + 5.64)

)

(12.201)

L [nH] = 220 ·h ·
(

1− 1.35 · exp
(

−0.18 ·
(
W

h

)1.39
))

(12.202)

The values for a 50% mitered bend are [57].

C [pF] = W ·
(

(3.93 · εr + 0.62) ·W
h

+ (7.6 · εr + 3.80)

)

(12.203)

L [nH] = 440 ·h ·
(

1− 1.062 · exp
(

−0.177 ·
(
W

h

)0.947
))

(12.204)

With W being width of the microstrip line and h height of the substrate. These formulas are valid
for W/h = 0.2 to 6.0 and for εr = 2.36 to 10.4 and up to 14 GHz. The precision is approximately
0.3%.

C

LL

Figure 12.7: microstrip corner (left), mitered corner (middle) and equivalent circuit (right)

As could be seen the mitered bend reduces the capacitance and increases the inductance. Thus,
the bend can be optimized in a way that the reflection is minimized [58]. Figure 12.8 and the
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following equations give the design rules.

X =
√
2 ·W · (0.52 + 0.65 · exp

(

−1.35 ·W
h

)

(12.205)

A =
√
2 ·X −W (12.206)

The miter does not depend on the relative permittivity of the substrate.

X
A

W

Figure 12.8: optimized microstrip bend

12.6 Microstrip impedance step

The equivalent circuit of a microstrip impedance step is quite simple: a capacitance CS to ground
and a series inductance LS. The values are according to [59]:

CS [pF] =
√

W1 ·W2 ·
(

(10.1 · lg εr + 2.33) ·W1

W2
− 12.6 · lg εr − 3.17

)

(12.207)

for εr ≤ 10 and 1.5 ≤W1/W2 ≤ 3.5 the error is < 10%. Another formula determines CS from the
step geometry:

CS =
W1 −W2

2
·
(

εr,eff1
ZL1 · c0

− ε0 · εr ·
W1

h

)

(12.208)

The series inductance located at the port with the broader width is according to [60]:

LS =
ZL1 ·Weff1

π · f ·λ1
·

[

ln

(

1− a2

4a
·
(
1 + a

1− a

)0.5 · (a+1/a)
)

+ 2 · A+B + 2 ·D
A ·B −D2

+

(
Weff1

4 ·λ1

)2

·
(
1− a

1 + a

)4a

·
(
5a2 − 1

1− a2
+

4a2 ·D
3 ·A

)2
]

(12.209)

A =

(
1 + a

1− a

)2a

·
[

1 +
√

1− (Weff1/λ1)2

1−
√

1− (Weff1/λ1)2

]

− 1 + 3a2

1− a2
(12.210)

B =

(
1 + a

1− a

)2/a

·
[

1 +
√
1− (Weff2/λ2)2

1−
√
1− (Weff2/λ2)2

]

− 3 + a2

1− a2
(12.211)

D =

(
4a

1− a2

)2

(12.212)
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a =
Weff2

Weff1
(12.213)

λ =
c0

f · √ǫr,eff
(12.214)

Weff =
Weff,static + fp ·W

1 + fp
(12.215)

Weff,static =
ZF0 ·h

ZL · ǫr,eff
(12.216)

fp =
2 ·W · f · ǫr,eff

c0
(12.217)

with f being frequency and c0 being light velocity in vacuum.

12.7 Microstrip tee junction

A model of a microstrip tee junction is published in [55]. Figure 12.9 shows a unsymmetrical
microstrip tee with the main arms consisting of port a and b and with the side arm consisting of
port 2. The following model describes the gray area. The equivalent circuit is depicted in figure
12.10. It consists of a shunt reactance BT , one transformer in each main arm (ratios Ta and Tb)
and a microstrip line in each arm (width Wa, Wb and W2).

Port a Port bWa bW

W2

Port 2

Figure 12.9: unsymmetrical microstrip tee (see text)
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a T

L L

T

L

1 T

Port 2

1 Port bPort a jB

Figure 12.10: equivalent circuit of unsymmetrical microstrip tee

First, let us define some quantities. Each of them is used in the equations below with an index of
the arm they belong to (a, b or 2).

equivalent parallel plate line width: D =
ZF0√
εr,eff

· h

ZL
(12.218)

where ZF0 is vacuum field impedance, h height of substrate, εr,eff effective, relative dielectric
constant, ZL microstrip line impedance.

first higher order mode cut-off frequency: fp = 4 · 105 · ZL

h
(12.219)

The main arm displacements of the reference planes from the center lines are (index x stand for
a or b):

dx = 0.055 ·D2 ·
ZL,x

ZL,2
·
(

1− 2 · ZL,x

ZL,2
·
(

f

fp,x

)2
)

(12.220)

The length of the line in the main arms is:

Lx = 0.5 ·W2 − dx (12.221)

where f is frequency.

The side arm displacement of the reference planes from the center lines is:

d2 =
√

Da ·Db · (0.5−R · (0.05 + 0.7 · exp (−1.6 ·R) + 0.25 ·Q− 0.17 · lnR)) (12.222)

The length of the line in the side arm is:

L2 = 0.5 ·max (Wa,Wb)− d2 (12.223)

where max (x, y) is the larger of the both quantities, R and Q are:

R =

√
ZL,a ·ZL,b

ZL,2
Q =

f2

fp,a · fp,b
·R (12.224)

Turn ratio of transformers in the side arms:

T 2
x = 1− π ·

(
f

fp,x

)2

·
(

1

12
·
(
ZL,x

ZL,2

)2

+

(

0.5− d2
Dx

)2
)

(12.225)
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The transformer ratios have to be limited to prevent them from becoming negative above a specific
frequency, e.g.:

T 2
x = min(T 2

x , 10
−12) (12.226)

Shunt susceptance:

BT = 5.5 · µ0 ·h · f
√
ZL,a ·ZL,b

· εr + 2

εr
· 1

ZL,2 ·Ta ·Tb
·
√
da · db
D2

·
(

1 + 0.9 · lnR+ 4.5 ·Q− 4.4 · exp (−1.3 ·R)− 20 ·
(
ZL,2

ZF0

)2
) (12.227)

Please note that the main arm displacements in eq. (12.220) yield two small microstrip lines at
each main arm and the side arm displacement of eq. (12.222) results in a small microstrip strip
line as well, but with negative length, i.e. kind of phaseshifter here.

For better implementation of the microstrip tee (figure 12.10) the device parameter of the equiva-
lent circuit (three microstrip lines, two transformers and the shunt susceptance) are given below.
First the cascade of transmission line Yij and transformer (turn ratio T ) is put together:

(Y T ) =






Y11
Y12

T
Y21

T

Y22

T 2




 (12.228)

The y-parameters of the complete microstrip tee can now be calculated using the y-parameters

Y
(1...3)
ij of the three microstrip arms.

Y G
ii = Y

(i)
11 −

Y
(i)
12 ·Y

(i)
21

X
(12.229)

Y G
ij = −Y

(i)
12 ·Y

(j)
21

X
with i 6= j (12.230)

with X = Y
(1)
22 + Y

(2)
22 + Y

(3)
22 + j ·B (12.231)

12.8 Microstrip cross

The most useful model of a microstrip cross have been published in [61, 62]. Fig. 12.11 shows
the equivalent circuit (right-hand side) and the scheme with dimensions (left-hand side). The
hatched area in the scheme marks the area modeled by the equivalent circuit. As can be seen the
model require the microstrip width of line 1 and 3, as well as the one of line 2 and 4 to equal each
other. Furthermore the permittivity of the substrat must be ǫr = 9.9. The component values are
calculated as follows:

X = ln

(
W1

h

)

·
(

86.6 ·W2

h
− 30.9 ·

√

W2

h
+ 367

)

+

(
W2

h

)3

+ 74 ·W2

h
+ 130 (12.232)

C1 = C2 = C3 = C4

= 10−12 ·W1 ·
(

0.25 ·X ·
(

h

W1

)1/3

− 60 +
h

2 ·W2
− 0.375 ·W1

h
·
(

1− W2

h

))

(12.233)

Y = 165.6 ·W2

h
+ 31.2

√

W2

h
− 11.8 ·

(
W2

h

)2

(12.234)

L1 = L3 = 10−9 ·h ·
(

Y ·W1

h
− 32 ·W2

h
+ 3

)

·
(

h

W1

)1.5

(12.235)
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L5 = 10−9 ·h ·
(

5 ·W2

h
· cos

(
π

2
·
(

1.5− W1

h

))

−
(

1 +
7 ·h
W1

)

· h

W2
− 337.5

)

(12.236)

The equation of L2 and L4 is obtained from the one of L1 by exchanging the indices (W1 and
W2). Note that L5 is negative, so the model is unphysical without external microstrip lines. The
above-mentioned equations are accurate to within 5% for 0.3 ≤ W1/h ≤ 3 and 0.1 ≤ W2/h ≤ 3
(value of C1 . . . C4) or for 0.5 ≤W1,2/h ≤ 2 (value of L1 . . . L3), respectively.
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W2

3

4

1
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1 3

2 4

L L
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3
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42

1

1

2 4

5L

Figure 12.11: single-symmetrical microstrip cross and its model

Some improvement should be added to the original model:

1. Comparisons with real life show that the value of L5 is too large. Multiplying it by 0.8 leads
to much better results.

2. The model can be expanded for substrates with ǫr 6= 9.9 by modifying the values of the
capacitances:

Cx = Cx(ǫr = 9.9) · Z0(ǫr = 9.9,W = Wx)

Z0(ǫr = ǫr,sub,W = Wx)
·
√

ǫeff (ǫr = ǫr,sub,W = Wx)

ǫeff (ǫr = 9.9,W = Wx)
(12.237)

The equations of Z0 and ǫeff are the ones from the microstrip lines.

A useful model for an unsymmetrical cross junction has never been published. Nonetheless, as
long as the lines that lie opposite are not to different in width, the model described here can be
used as a first order approximation. This is performed by replacing W1 and W2 by the arithmetic
mean of the line widths that lie opposite. This is done:

• In equation (12.232) and (12.233) for W2 only, whereas W1 is replaced by the width of the
line.

• In equation (12.234) and (12.235) for W2 only, whereas W1 is replaced by the width of the
line.

• In equation (12.236) for W1 and W2.

Another closed-form expression describing the non-ideal behaviour of a microstrip cross junction
was published by [63]. Additionally there have been published papers [64, 65, 66] giving analytic
(but not closed-form) expressions or just simple equivalent circuits with only a few expressions for
certain topologies and dielectric constants which are actually of no pratical use.

12.9 Microstrip radial stub
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Figure 12.12: microstrip radial stub

Figure 12.12 shows a radial stub that is often used in microwave circuits to create an RF short.
Its input impedance can be calculated as follows [67]:

Zin = j · ZF0 ·h
riθ
√
ǫr,eff

· J0(k · ri) ·N1(k · ro)− J1(k · ro) ·N0(k · ri)
J1(k · ri) ·N1(k · ro)− J1(k · ro) ·N1(k · ri)

(12.238)

with ZF0 ≈ 377Ω being vacuum field impedance, h height of substrate, ri inner radius, ro outer
radius, θ angle of stub in radians, ǫr,eff effective dielectric constant of a microstrip line with width
w = (ri + ro) · sin(0.5 · θ) and propagation constant k = α+ jβ. J0 and J1 are the Bessel function
of first kind and order zero and one, respectively. N0 and N1 are the Bessel function of second
kind and order zero and one, respectively. It is further:

α =
Rs · √ǫr,eff

ZF0 ·h
=

√
ρπfµ · ǫr,eff
ZF0 ·h

(12.239)

and

β =
2πf
√
ǫr,eff

c0
(12.240)

with f frequency and c0 light velocity in vacuum, ρ conductivity of the metal and µ magnetic
permeability of metal. As the Bessel functions have complex arguments, it’s better to split real
and imaginary part:

J0(k · r) = J0(β · r) + j ·α · r · J1(β · r) (12.241)

J1(k · r) = J1(β · r)− j ·α · r · J0(β · r) + j · α
β
· J1(β · r) (12.242)

N0(k · r) = N0(β · r) + j ·α · r ·N1(β · r) (12.243)

N1(k · r) = N1(β · r)− j ·α · r ·N0(β · r) + j · α
β
·N1(β · r) (12.244)

12.10 Microstrip interdigital capacitor
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Figure 12.13: microstrip interdigital capacitor with 5 fingers

Figure 12.13 shows an interdigital capacitor (IDC). Its capacitance consists of three parts [68], the
capacitance at the end of the fingers Cend, the one of a three-finger structure C3F and the one of
a periodical N − 3 structure CN :

CIDC = Cend + C3F + CN (12.245)

For an IDC with N fingers, the above-mentioned terms can be calculated as follows:

Cend = N ·CCPW,open (12.246)

C3F = 4 ·L · ǫ0 ·
(
K(k1)

K(k′1)
+

ǫr − 1

2
· K(k2)

K(k′2)

)

(12.247)

CN = (N − 3) ·L · ǫ0 ·
(
K(k3)

K(k′3)
+

ǫr − 1

2
· K(k4)

K(k′4)

)

(12.248)

a =
π

4 ·h (12.249)

k1 =
W

W + 2 ·S ·
√

(3W + 2S)2 − (W + 2S)2

(3W + 2S)2 −W 2
(12.250)

k2 =
sinh(a ·W )

sinh(a · (W + 2 ·S)) ·
√

sinh2(a · (3W + 2S))− sinh2(a · (W + 2S))

sinh2(a · (3W + 2S))− sinh2(a ·W )
(12.251)

k3 =
W

W + S
(12.252)

k4 =
sinh(a ·W )

sinh(a · (W + S))
·
√

cosh2(a · (W + S))− sinh2(a · (W + S))

cosh2(a ·W )− sinh2(a · (W + S))
(12.253)

(12.254)

with CCPW,open being the open-end capacitance of a coplanar waveguide according to equation
13.28 and 13.29. K(k) and K(k′) are the complete elliptic integral of the first kind and its
complement.
A discrete capacitor is a very good equivalent circuit for an IDC at low frequencies. At higher
frequencies the different transit times of the inner and the outer fingers creates an additional loss.
This can be modelled by parallel transmission lines.

12.11 Microstrip via hole
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Figure 12.14: microstrip via hole to ground

According to Marc E. Goldfarb and Robert A. Pucel [69] a via hole ground in microstrip is a series
of a resistance and an inductance. The given model for a cylindrical via hole has been verified
numerically and experimentally for a range of h < 0.03 ·λ0.

L =
µ0

2π
·
(

h · ln
(

h+
√
r2 + h2

r

)

+
3

2
·
(

r −
√

r2 + h2
)
)

(12.255)

whence h is the via length (substrate height) and r = D/2 the via’s radius.

R = R (f = 0) ·
√

1 +
f

fδ
(12.256)

with
fδ =

ρ

π ·µ0 · t2
(12.257)

The relationship for the via resistance can be used as a close approximation and is valid indepen-
dent of the ratio of the metalization thickness t to the skin depth. In the formula ρ denotes the
specific resistance of the conductor material.

12.12 Bondwire

Wire inductors, so called bond wire connections, are used to connect active and passive circuit
components as well as micro devices to the real world.
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Figure 12.15: bond wire and its equivalent circuit

12.12.1 Freespace model

The freespace inductance L of a wire of diameter d and length l is given [70, 71] by

L =
µ0

2π
· l



ln







2l

d
+

√

1 +

(
2l

d

)2





+

d

2l
−

√

1 +

(
d

2l

)2

+ C



 (12.258)

where the frequency-dependent correction factor C is a function of bond wire diameter and its
material skin depth δ is expressed as

C =
µr

4
· tanh

(
4δ

d

)

(12.259)

δ =
1√

π ·σ · f ·µ0 ·µr

(12.260)

where σ is the conductivity of the wire material. When δ/d is small, C = δ/d. Due to the skin
effect the wire resistance R is given by

R =
l

σ ·π · δ · (d− δ)
for d > 2 · δ (12.261)

R =
l

σ ·π · 0.25 ·d2 for d ≤ 2 · δ (12.262)

(12.263)

12.12.2 Mirror model

The effect of the ground plane on the inductance value of a wire has also been considered. If the
wire is at a distance h above the ground plane, it sees its image at 2h from it. The wire and
its image result in a mutual inductance. Since the image wire carries a current opposite to the
current flow in the bond wire, the effective inductance of the bond wire becomes

L =
µ0

2π
· l
[

ln

(
4h

d

)

+ ln

(

l +
√

l2 + d2/4

l +
√
l2 + 4h2

)

+

√

1 +
4h2

l2
−
√

1 +
d2

4l2
− 2

h

l
+

d

2l

]

(12.264)

Mirror is a strange model that is frequency independent. Whereas computations are valid, hy-
pothesis are arguable. Indeed, they did the assumption that the ground plane is perfect that is
really a zero order model in the high frequency domain.
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Chapter 13

Coplanar components

13.1 Coplanar waveguides (CPW)

13.1.1 Definition

A coplanar line is a structure in which all the conductors supporting wave propagation are located
on the same plane, i.e. generally the top of a dielectric substrate. There exist two main types of
coplanar lines: the first, called coplanar waveguide (CPW), that we will study here, is composed
of a median metallic strip separated by two narrow slits from a infinite ground plane, as may be
seen on the figure below.

Figure 13.1: coplanar waveguide line

The characteristic dimensions of a CPW are the central strip width W and the width of the slots
s. The structure is obviously symmetrical along a vertical plane running in the middle of the
central strip.
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The other coplanar line, called a coplanar slot (CPS) is the complementary of that topology,
consisting of two strips running side by side.

13.1.2 Quasi-static analysis by conformal mappings

A CPW can be quasi-statically analysed by the use of conformal mappings. Briefly speaking, it
consists in transforming the geometry of the PCB into another conformation, whose properties
make the computations straightforward. The interested reader can consult the pp. 886 - 910 of
[72] which has a correct coverage of both the theoretical and applied methods. The French reader
interested in the mathematical arcanes involved is referred to the second chapter of [73] (which
may be out of print nowadays), for an extensive review of all the theoretical framework. The
following analysis is mainly borrowed from [61], pp. 375 et seq. with additions from [72].

The CPW of negligible thickness located on top of an infinitely deep substrate, as shown on the
left of the figure below, can be mapped into a parallel plate capacitor filled with dielectric ABCD
using the conformal function:

w =

∫ z

z0

dz
√

(z −W/2)(z −W/2− s)
. (13.1)
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To further simplify the analysis, the original dielectric boundary is assumed to constitute a mag-
netic wall, so that BC and AD become magnetic walls too and there is no resulting fringing field
in the resulting capacitor. With that assumption, the capacitance per unit length is merely the
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sum of the top (air filled) and bottom (dielectric filled) partial capacitances. The latter is given
by:

Cd = 2 · ε0 · εr ·
K(k1)

K ′(k1)
(13.2)

while the former is:

Ca = 2 · ε0 ·
K(k1)

K ′(k1)
(13.3)

In both formulae K(k) and K ′(k) represent the complete elliptic integral of the first kind and its
complement, and k1 = W

W+2s . While the separate evaluation of K and K ′ is more or less tricky,
the K/K ′ ratio lets itself compute efficiently through the following formulae:

K(k)

K ′(k)
=

π

ln
(

2 1+
√
k′

1−
√
k′

) for 0 ≤ k ≤ 1√
2

(13.4)

K(k)

K ′(k)
=

ln
(

2 1+
√
k

1−
√
k

)

π
for

1√
2
≤ k ≤ 1 (13.5)

with k′ being the complementary modulus: k′ =
√
1− k2. While [72] states that the accuracy of

the above formulae is close to 10−5, [61] claims it to be 3 · 10−6. It can be considered as exact for
any practical purposes.

The total line capacitance is thus the sum of Cd and Ca. The effective permittivity is therefore:

εre =
εr + 1

2
(13.6)

and the impedance:

Z =
0.25 ·ZF0√

εre
· K

′(k1)

K(k1)
(13.7)

with ZF0 being the field impedance of vacuum, i.e. ≈ 377Ω.
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Figure 13.2: characteristic impedance as approximated by eq. (13.7) for εr = 1.0 (air), 3.78
(quartz) and 9.5 (alumina)

In practical cases, the substrate has a finite thickness h. To carry out the analysis of this confor-
mation, a preliminary conformal mapping transforms the finite thickness dielectric into an infinite
thickness one. Only the effective permittivity is altered; it becomes:

εre = 1 +
εr − 1

2
· K(k2)

K ′(k2)
· K

′(k1)

K(k1)
(13.8)

where k1 is given above and

k2 =

sinh

(
πW

4h

)

sinh

(
π · (W + 2s)

4h

) . (13.9)

Finally, let us consider a CPW over a finite thickness dielectric backed by an infinite ground
plane. In this case, the quasi-TEM wave is an hybrid between microstrip and true CPW mode.
The equations then become:

εre = 1 + q · (εr − 1) (13.10)

where q, called filling factor is given by:

q =

K(k3)

K ′(k3)
K(k1)

K ′(k1)
+

K(k3)

K ′(k3)

(13.11)

and

k3 =

tanh

(
πW

4h

)

tanh

(
π · (W + 2s)

4h

) (13.12)
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The impedance of this line amounts to:

Z =
0.5 ·ZF0√

εre
· 1

K(k1)

K ′(k1)
+

K(k3)

K ′(k3)

(13.13)

13.1.3 Effects of metalization thickness

In most practical cases, the strips are very thin, yet their thickness cannot be entirely neglected.
A first order correction to take into account the non-zero thickness of the conductor is given by
[61]:

se = s−∆ (13.14)

and
We = W +∆ (13.15)

where

∆ =
1.25t

π
·
(

1 + ln

(
4πW

t

))

(13.16)

In the computation of the impedance, both the k1 and the effective dielectric constant are affected,
wherefore k1 must be substituted by an “effective” modulus ke, with:

ke =
We

We + 2se
≈ k1 +

(
1− k21

)
· ∆
2s

(13.17)

and

εtre = εre −
0.7 · (εre − 1) · t

s
K(k1)

K ′(k1)
+ 0.7 · t

s

(13.18)

13.1.4 Effects of dispersion

The effects of dispersion in CPW are similar to those encountered in the microstrip lines, though
the net effect on impedance is somewhat different. [61] gives a closed form expression to compute
εre(f) from its quasi-static value:

√

εre(f) =
√

εre(0) +

√
εr −

√

εre(0)

1 +G ·
(

f

fTE

)−1.8 (13.19)

where:

G = e
u · ln

(

W
s

)

+v
(13.20)

u = 0.54− 0.64p+ 0.015p2 (13.21)

v = 0.43− 0.86p+ 0.54p2 (13.22)

p = ln
(
W
h

)
(13.23)

and fTE is the cut-off frequency of the TE0 mode, defined by:

fTE =
c

4h ·
√
εr − 1

. (13.24)

This dispersion expression was first reported by [74] and has been reused and extended in [75]. The
accuracy of this expression is claimed to be better than 5% for 0.1 ≤ W/h ≤ 5, 0.1 ≤ W/s ≤ 5,
1.5 ≤ εr ≤ 50 and 0 ≤ f/fTE ≤ 10.
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13.1.5 Evaluation of losses

As for microstrip lines, the losses in CPW results of at least two factors: a dielectric loss αd and
conductor losses αCW

c . The dielectric loss αd is identical to the microstrip case, see eq. (12.80) on
page 180.

The αCW
c part of the losses is more complex to evaluate. As a general rule, it might be written:

αCW
c = 0.023 · Rs

Z0cp

[
∂Za

0cp

∂s
−

∂Za
0cp

∂W
−

∂Za
0cp

∂t

]

in dB/unit length (13.25)

where Za
0cp stands for the impedance of the coplanar waveguide with air as dielectric and Rs is

the surface resistivity of the conductors (see eq. (12.82) on page 181).

Through a direct approach evaluating the losses by conformal mapping of the current density, one
obtains [61], first reported in [76] and finally applied to coplanar lines by [77]:

αCW
c =

Rs ·
√
εre

480π ·K(k1) ·K ′(k1) · (1− k21)
·

(
1

a

[

π + ln
8πa · (1− k1)

t · (1 + k1)

]

+
1

b

[

π + ln
8πb · (1− k1)

t · (1 + k1)

]) (13.26)

In the formula above, a = W/2, b = s+W/2 and it is assumed that t > 3δ, t≪W and t≪ s.

13.1.6 S- and Y-parameters of the single coplanar line

The computation of the coplanar waveguide lines S- and Y-parameters is equal to all transmission
lines (see section section 10.23 on page 119).

13.2 Coplanar waveguide open

The behaviour of an open circuit as shown in fig. 13.3 is very similar to that in a microstrip line;
that is, the open circuit is capacitive in nature.

g

s W st

Figure 13.3: coplanar waveguide open-circuit

A very simple approximation for the equivalent length extension ∆l associated with the fringing
fields has been given by K.Beilenhoff [78].

∆lopen =
Copen

C′ ≈ W + 2s

4
(13.27)
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For the open end, the value of ∆l is not influenced significantly by the metallization thickness
and the gap g when g > W + 2s. Also, the effect of frequency and aspect ration W/(W + 2s) is
relatively weak. The above approximation is valid for 0.2 ≤W/(W + 2s) ≤ 0.8.

The open end capacitance Copen can be written in terms of the capacitance per unit length and
the wave resistance.

Copen = C′ ·∆lopen =

√
εr,eff

c0 ·ZL
·∆lopen (13.28)

In order to also model a small end gap g, the above-mentioned capacitance is multiplied by the
following factor:

k = 1 + 0.03 ·W + 2s

g
(13.29)

13.3 Coplanar waveguide short

There is a similar simple approximation for a coplanar waveguide short-circuit, also given in [78].
The short circuit is inductive in nature.

s W st

Figure 13.4: coplanar waveguide short-circuit

The equivalent length extension ∆l associated with the fringing fields is

∆lshort =
Lshort

L′ ≈ W + 2s

8
(13.30)

Equation (13.30) is valid when the metalization thickness t does not become too large (t < s/3).

The short end inductance Lshort can be written in terms of the inductance per unit length and
the wave resistance.

Lshort = L′ ·∆lshort =

√
εr,eff ·ZL

c0
·∆lshort (13.31)

According to W.J.Getsinger [79] the CPW short-circuit inductance per unit length can also be
modeled by

Lshort =
2

π
· ε0 · εr,eff · (W + s) ·Z2

L ·
(

1− sech

(
π ·ZF0

2 ·ZL · √εr,eff

))

(13.32)

based on his duality [80] theory.
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13.4 Coplanar waveguide gap

According to W.J.Getsinger [80] a coplanar series gap (see fig. 13.5) is supposed to be the dual
problem of the inductance of a connecting strip between twin strip lines.
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Figure 13.5: coplanar waveguide series gap

The inductance of such a thin strip with a width g and the length W is given to a good approxi-
mation by

L =
µ0 ·W
2π

·
(

p−
√

1 + p2 + ln

(

1 +
√

1 + p2

p

))

(13.33)

where p = g/4W and g,W ≪ λ. Substituting this inductance by its equivalent capacitance of the
gap in CPW yields

C = L · 4 · εr,eff
Z2
F0

=
2 · ε0 · εr,eff ·W

π
·
(

p−
√

1 + p2 + ln

(

1 +
√

1 + p2

p

)) (13.34)

13.5 Coplanar waveguide step

The coplanar step discontinuity shown in figure 13.6 has been analysed by C. Sinclair [81].
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Figure 13.6: coplanar waveguide impedance step and equivalent circuit
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The symmetric step change in width of the centre conductor is considered to have a similar
equivalent circuit as a step of a parallel plate guide - this is a reasonable approximation to the
CPW step as in the CPW the majority of the field is between the inner and outer conductors with
some fringing.

The actual CPW capacitance can be expressed as

C = x · ε0
π
·
(
α2 + 1

α
· ln

(
1 + α

1− α

)

− 2 · ln
(

4 ·α
1− α2

))

(13.35)

where

α =
s1
s2

, α < 1 and x =
x1 + x2

2
(13.36)

The capacitance per unit length equivalence yields

x1 =
C′ (W1, s1) · s1

ε0
and x2 =

C′ (W2, s2) · s2
ε0

(13.37)

with

C′ =

√
εr,eff

c0 ·ZL
(13.38)

The average equivalent width x of the parallel plate guide can be adjusted with an expression
that uses weighted average of the gaps s1 and s2. The final expression has not been discussed in
[81]. The given equations are validated over the following ranges: 2 < εr < 14, h > W + 2s and
f < 40GHz.

The Z-parameters of the equivalent circuit depicted in fig. 13.6 are

Z11 = Z21 = Z12 = Z22 =
1

jωC
(13.39)

The MNA matrix representation for the AC analysis can be derived from the Z-parameters in the
following way.







. . 1 0

. . 0 1
−1 0 Z11 Z12

0 −1 Z21 Z22






·







V1

V2

Iin
Iout






=







I1
I2
0
0







(13.40)

The above expanded representation using the Z-parameters is necessary because the Y-parameters
are infinite. During DC analysis the equivalent circuit is a voltage source between both terminals
with zero voltage.

The S-parameters of the topology are

S11 = S22 = − Z0

2Z + Z0
(13.41)

S12 = S21 = 1 + S11 =
2Z

2Z + Z0
(13.42)
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Chapter 14

Stripline components

14.1 Transmission line

A symmetrical stripline (also known as tri-plate line or sandwich line) can be seen in figure 14.1
on the left-handside. The signal line is centered between the upper and lower ground plane.

h

t

W

a

t W b

Figure 14.1: symmetrical stripline (left) and unsymmetrical stripline (right)

As the line is completely embedded into the dielectric substrate it is non-dispersive [60].

ǫr,eff = ǫr (14.1)

ZL =
0.25 ·ZF0 · (h− t)

√
ǫr ·

(

W + 1
π ·
(

2 ·h · ln
(

2 ·h−t
h−t

)

− t · ln
(

h2

(h−t)2 − 1
))) for

W

h− t
≥ 0.35 (14.2)

ZL =
ZF0

2 ·π√ǫr
· ln

(
4 ·h
π · de

)

for
W

h− t
< 0.35 (14.3)

with de =
W

2
·
(

1 +
t

π ·W ·
(

1 + ln

(
4 ·π ·W

t

))

+ 0.236 ·
(

t

W

)1.65
)

(14.4)

If t/W > 1 then in equation 14.4 t/W has to be replaced with W/t and de/W with de/t. The
conductor losses are as follows [82].
For W

h−t ≥ 0.35 it is:

αc =
4 · ǫr ·ZL ·Rsh

Z2
F0 · (h− t)

·
(

1 +
2 ·W
h− t

+
h+ t

π · (h− t)
· ln

(
2h− t

t

))

(14.5)
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and for W
h−t < 0.35 it is:

αc =
Rsh

2π ·ZL · de

·
(

1

2
+

de
h

+
t

2π ·W +
ln
(
4π ·W

t

)

2π
+ 0.1947 ·

(
t

W

)0.65

− 0.0767 ·
(

t

W

)1.65
) (14.6)

with Rsh being the sheet resistivity according to equation 12.82. The dielectric losses are:

αd =
π · f · √ǫr,eff

c0
· tan δ (14.7)

A non-symmetrical stripline is shown in figure 14.1 on the right-handside. Its properties can be
calculated by the equations of the symmetrical stripline. The effective permittivity ǫr,eff and the
dielectric loss factor αd are the same. The characteristic impedance is calculated by the virtual
parallel connection of two striplines with height h1 and h2, respectively.

ZL = 2 · ZL(h1 = 2a+ t) ·ZL(h2 = 2b+ t)

ZL(h1 = 2a+ t) + ZL(h2 = 2b+ t)
(14.8)

The conductor loss is the arithmetic mean of both factors.

αc = 0.5 · (αc(h1 = 2a+ t) + αc(h2 = 2b+ t)) (14.9)

Higher order modes occur in striplines if the half wavelength becomes as large as the line width
w or the substrate height h. The cut-off frequencies for the first TE and TM modes are [82]:

fc,TE =
c0

(2 ·w + 0.5 ·π ·h) · √ǫr
(14.10)

fc,TM =
c0

2 ·h · √ǫr
(14.11)

14.2 Stripline open end

The open end effect is modeled with an additional line length ∆l [83], [82]:

∆l =
1

k
· arctan

(
(L+ 2 ·W ) · tan(k ·L)

4 ·L+ 2 ·W

)

(14.12)

with

k =
2 ·π · f · √ǫr

c0
(14.13)

L =
h · ln(2)

π
(14.14)

with c0 vacuum light velocity, W is line width, h substrate height, f frequency and ǫr relative
permittivity of substrate.

14.3 Stripline gap

A gap of length s in the transmission line is modeled with a π circuit consisting of capacitances
as shown in picture 12.5 [83], [82]:
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ω ·Cs =
0.5

ZL
· 1 +B ·A

A−B
− 0.5 ·ωCp (14.15)

ω ·Cp =
1

ZL
· tan

(
2 · ln(2) ·h · f · √εr

c0

)

(14.16)

with

A = cot

(
π · s · f · √ǫr

c0

)

(14.17)

B =
2 ·h · f · √ǫr

c0
·
[

ln
(

coth
(π · s
2 ·h

))

− ln
(

cosh
(π · s
2 ·h

))]

(14.18)

14.4 Stripline bend

The (uncompensated) stripline bend with angle θ (in radians) can be modeled with a T circuit
consisting of two identical series inductances Ls and a parallel capacitance Cp in between [83]:

ω ·Ls =
2 ·D ·ZL · f ·

√
ǫr

c0
·
[

Ψ

(
θ

2π
− 0.5

)

−Ψ(−0.5)
]

(14.19)

ω ·Cp =
2π ·D · f · √ǫr · tan(0.5 · θ)

c0 ·ZL
(14.20)

with effective line width

D = W + h · 2 · ln(2)
π

(14.21)

with c0 vacuum light velocity, W is line width, h substrate height, f frequency and ǫr relative
permittivity of substrate. Ψ(x) is the so-called digamma function. Here it can be precisely
approximated by the following equation:

Ψ(x) = 0.144202+ 0.023591 · (x+ 1) + 0.870648 · ln(x+ 1)− 0.744174

x+ 1
− 1

x
(14.22)

14.5 Optimal stripline bend

The parasitics of a 90 degree stripline bend can be compensated completely by cutting off the
corner metallization. The model of this mitered bend is just the line length l of its curve [83]:

W

l
=1.7854346− 0.015055579 ·W

h
− 0.11334006 ·

(
W

h

)2

+ 0.050432954 ·
(
W

h

)3

− 0.0097883487 ·
(
W

h

)4
(14.23)

14.6 Stripline step

A stripline impedance step (step in line width, i.e. W1 > W2) creates a series inductance Ls [83],
[82]:

ω ·Ls = −
2 ·ZL ·D1 · f ·

√
ǫr

c0
· ln

(

sin

(
π ·D2

2 ·D1

))

(14.24)
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withD1 andD2 being the effective line width according to equation 14.21. The parallel capacitance
at line W2 is mentioned nowhere, but it can be approximated by the geometry of the corners:

Cp = ε0 · εr ·
(W1 −W2)

2

h
(14.25)

14.7 Stripline Tee junction

X
A

X
A

X
B

1
 : n

Figure 14.2: equivalent circuit of a stripline tee junction

The equivalent circuit of a stripline tee junction is depicted in figure 14.2. The component values
are [83], [82]:

n =
λ

π ·D2
· sin

(
π ·D2

λ

)

(14.26)

XA = − (π ·n ·D2)
2

16 ·λ ·D1
(14.27)

for D2 < 0.5 ·D1 it is

XB =− 0.5 ·XC +
2 ·D2

1

λ · n2 ·D2
·
[

0.5 ·
(
D1

λ

)2

· cos4
(
π ·D2

2 ·D1

)

− ln

(

sin

(
π ·D2

2 ·D1

))

+
π ·D2

6 ·D1
+ 1.5 ·

(
D1

λ

)2

+ ln(2)

] (14.28)

and for D2 > 0.5 ·D1 it is

XB = −0.5 ·XC +
2 ·D2

1

λ ·n2 ·D2
·
(

ln

(

1.43 · D1

D2

)

+ 2 ·
(
D1

λ

)2
)

(14.29)

with

λ =
c0

f · √ǫr
(14.30)

with D1 and D2 being the effective line width according to 14.21.
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Chapter 15

Other types of transmission lines

The dielectric losses of an arbitrary quasi-TEM waveguide can be calculated as follows [84]:

αD

[
dB

m

]

=
20 ·π

λ · ln 10 ·
t

~E · ~D · tan δ dV

C ·V 2
(15.1)

=
20 ·π
ln 10

·
f · √ǫr,eff · tan δ

c0
· ǫr
ǫr,eff

· ∂ǫr,eff
∂ǫr

(15.2)

The conductor losses can be calculated by the Wheeler’s formula:

αc

[
dB

m

]

=
Rs ·
√
ǫr

2 ·ZF0
· 1

ZL
· ∂ZL

∂n
(15.3)

where Rsh is the sheet resistance according to 12.82 and n is the surface normal into the conduc-
tor. I.e. the conductor volume is reduced and its change to the characteristic transmission line
impedance ZL gives the loss.

15.1 Coaxial cable

d

l

D

εr

Figure 15.1: coaxial line

15.1.1 Characteristic impedance

The characteristic impedance of a coaxial line can be calculated as follows [85]:

ZL =
ZF0

2π · √εr
· ln

(
D

d

)

(15.4)
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15.1.2 Losses

Overall losses in a coaxial cable consist of dielectric and conductor losses. The dielectric losses
compute as follows:

αd =
π

c0
· f · √εr · tan δ (15.5)

The conductor (i.e. ohmic) losses are specified by

αc =
√
εr ·







1

D
+

1

d

ln

(
D

d

)






· RS

ZF0
(15.6)

with RS denoting the sheet resistance of the conductor material, i.e. the skin resistance

RS =
√

π · f ·µr ·µo · ρ (15.7)

15.1.3 Cutoff frequencies

In normal operation a signal wave passes through the coaxial line as a TEM wave with no electrical
or magnetic field component in the direction of propagation. Beyond a certain cutoff frequency
additional (unwanted) higher order modes are excited.

fTE ≈
c0

π · (D + d)
→ TE(1,1) mode (15.8)

fTM ≈
c0

2 · (D − d)
→ TM(n,1) mode (15.9)

15.2 Twisted pair

The twisted pair configurations as shown in fig. 15.2 provides good low frequency shielding.
Undesired signals tend to be coupled equally into eachline of the pair. A differential receiver will
therefore completely cancel the interference.
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εr

Figure 15.2: twisted pair configuration
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15.2.1 Quasi-static model

According to P. Lefferson [86] the characteristic impedance and effective dielectric constant of a
twisted pair can be calculated as follows.

ZL =
ZF0

π ·√εr,eff
· acosh

(
D

d

)

(15.10)

εr,eff = εr,1 + q · (εr − εr,1) (15.11)

with
q = 0.25 + 0.0004 · θ2 and θ = atan (T ·π ·D) (15.12)

whereas θ is the pitch angle of the twist; the angle between the twisted pair’s center line and the
twist. It was found to be optimal for θ to be between 20◦and 45◦. T denotes the twists per length.
Eq. (15.12) is valid for film insulations, for the softer PTFE material it should be modified as
follows.

q = 0.25 + 0.001 · θ2 (15.13)

Assuming air as dielectric around the wires yields 1’s replacing εr,1 in eq. (15.11). The wire’s
total length before twisting in terms of the number of turns N is

l = N ·π ·D ·
√

1 +
1

tan2 θ
(15.14)

15.2.2 Transmission losses

The propagation constant γ of a general transmission line is given by

γ =
√

(R′ + jωL′) · (G′ + jωC′) (15.15)

Using some transformations of the formula gives an expression with and without the angular
frequency.

γ =
√

(R′ + jωL′) · (G′ + jωC′)

=
√
L′C′ ·

√

R′G′

L′C′ + jω

(
R′

L′ +
G′

C′

)

− ω2

=
√
L′C′ ·

√
(
1

2
·
(
R′

L′ +
G′

C′

)

+ jω

)2

− 1

4
·
(
R′

L′ +
G′

C′

)2

+
R′G′

L′C′

(15.16)

For high frequencies eq.(15.16) can be approximated to

γ ≈
√
L′C′ ·

(
1

2
·
(
R′

L′ +
G′

C′

)

+ jω

)

(15.17)

Thus the real part of the propagation constant γ yields

α = Re {γ} =
√
L′C′ · 1

2
·
(
R′

L′ +
G′

C′

)

(15.18)

With

ZL =

√

L′

C′ (15.19)

the expression in eq.(15.18) can be written as

α = αc + αd =
1

2
·
(
R′

ZL
+G′ZL

)

(15.20)

whereas αc denotes the conductor losses and αd the dielectric losses.
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Conductor losses

The sheet resistance R’ of a transmission line conductor is given by

R′ =
ρ

Aeff
(15.21)

whereas ρ is the specific resistance of the conductor material and Aeff the effective area of the con-
ductor perpendicular to the propagation direction. At higher frequencies the area of the conductor
is reduced by the skin effect. The skin depth is given by

δs =

√
ρ

π · f ·µ (15.22)

Thus the effective area of a single round wire yields

Aeff = π ·
(
r2 − (r − δs)

2
)
= π · δs · (d− δs) (15.23)

whereas r denotes the radius of the wire. This means the overall conductor attenuation constant
αc for a single wire gives

αc =
R′

2 ·ZL
=

ρ

2 ·ZL ·π · δs · (d− δs)
(15.24)

Dielectric losses

The dielectric losses are determined by the dielectric loss tangent.

tan δd =
G′

ωC′ → G′ = ωC′ · tan δd (15.25)

With

C′ =
1

ω
· Im

{
γ

ZL

}

(15.26)

the equation (15.25) can be rewritten to

G′ =
β

ZL
· tan δd =

ω

vph ·ZL
· tan δd

=
2π · f · √εr,eff

c0 ·ZL
· tan δd =

2π · √εr,eff
λ0 ·ZL

· tan δd
(15.27)

whereas vph denotes the phase velocity, c0 the speed of light, εr,eff the effective dielectric constant
and λ0 the freespace wavelength. With these expressions at hand it is possible to find a formula
for the dielectric losses of the transmission line.

αd =
1

2
·G′ZL =

π · √εr,eff
λ0

· tan δd (15.28)

Overall losses of the twisted pair configuration

Transmission losses consist of conductor losses, dielectric losses as well as radiation losses. The
above expressions for the conductor and dielectric losses are considered to be first order approxi-
mations. The conductor losses have been derived for a single round wire. The overall conductor
losses due to the twin wires must be doubled. The dielectric losses can be used as is. Radiation
losses are neglected.
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Chapter 16

Synthesizing circuits

16.1 Attenuators

Attenuators are used to damp a signal. Using pure ohmic resistors the circuit can be realized for
a very high bandwidth, i.e. from DC to many GHz. The power attenuation 0 < L ≤ 1 is defined
as:

L =
Pin

Pout
=

V 2
in

Zin
· Zout

V 2
out

=

(
Vin

Vout

)2

· Zout

Zin
(16.1)

where Pin and Pout are the input and output power and Vin and Vout are the input and output
voltages.

1 3YY

Y2

Figure 16.1: π-topology of an attenuator

Fig. 16.1 shows an attenuator using the π-topology. The conductances can be calculated as
follows.

Y2 =
L− 1

2 ·
√
L ·Zin ·Zout

(16.2)

Y1 = Y2 ·
(√

Zout

Zin
·L− 1

)

(16.3)

Y3 = Y2 ·
(√

Zin

Zout
·L− 1

)

(16.4)

where Zin and Zout are the input and output reference impedances, respectively. The π-attenuator
can be used for an impedance ratio of:

1

L
≤ Zout

Zin
≤ L (16.5)
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Z2

Z1 Z3

Figure 16.2: T-topology of an attenuator

Fig. 16.2 shows an attenuator using the T-topology. The resistances can be calculated as follows.

Z2 =
2 ·
√
L ·Zin ·Zout

L− 1
(16.6)

Z1 = Zin ·A− Z2 (16.7)

Z3 = Zout ·A− Z2 (16.8)

with A =
L+ 1

L− 1
(16.9)

where L is the attenuation (0 < L ≤ 1) according to equation 16.1 and Zin and Zout are the input
and output reference impedance, respectively. The T-attenuator can be used for an impedance
ratio of:

Zout

Zin
≤ (L+ 1)2

4 ·L (16.10)

16.2 Filters

One of the most common tasks in microwave technologies is to extract a frequency band from
others. Optimized filters exist in order to easily create a filter with an appropriate characteristic.
The most popular ones are:

Name Property
Bessel filter (Thomson filter) as constant group delay as possible
Butterworth filter (power-term filter) as constant amplitude transfer function as possible
Legendre filter (Optimum L filter) fastest roll-off with monotonic frequency response
Chebychev filter type I constant ripple in pass band
Chebychev filter type II constant ripple in stop band
Cauer filter (elliptical filter) constant ripple in pass and stop band

From top to bottom the following properties increase:

• ringing of step response

• phase distortion

• variation of group delay

• steepness of amplitude transfer function at the beginning of the pass band

The order n of a filter denotes the number of poles of its (voltage) transfer function. It is:

slope of asymptote = ±n · 20dB/decade (16.11)

Note that this equation holds for all filter characteristics, but there are big differences concerning
the attenuation near the pass band.
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16.2.1 Transfer functions

The transfer functions of the filter types is usually given for lowpass filters. They can be trans-
formed into the other filter classes by replacing the normalized frequency S = j ω

ωB
by the following

terms.

lowpass→ highpass : S′ =
1

S
(16.12)

lowpass→ bandpass : S′ =
S + 1

S

∆Ω
(16.13)

lowpass→ bandstop : S′ =
∆Ω

S + 1
S

(16.14)

with ∆Ω =
ωup − ωlow

ωmid
=

ωup − ωlow√
ωup ·ωlow

(16.15)

Bessel

The transfer function of an n-th order Bessel lowpass filter writes as follows:

A =
A0

1 +
∑n

i=1 ci ·Si
(16.16)

with c1 = 1 (16.17)

ci =
2 · (n− i+ 1)

i · (2n− i + 1)
· ci−1 for i = 2 . . . n (16.18)

Butterworth

The transfer function of an n-th order Butterworth lowpass filter writes as follows:

A =
A0

∏

i(1 + ai ·S + bi ·S2)
(16.19)

with (even order) ai = 2 · cos (2i− 1) ·π
2n

for i = 1 . . .
n

2
(16.20)

bi = 1 (16.21)

with (odd order) a1 = 1 (16.22)

b1 = 0 (16.23)

ai = 2 · cos (i− 1) ·π
n

for i = 2 . . .
n+ 1

2
(16.24)

bi = 1 (16.25)
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Chebyshev I

The transfer function of an n-th order Chebyshev lowpass filter writes as follows:

A =
A0

∏

i(1 + ai ·S + bi ·S2)
(16.26)

with (even order) ai = 2 · bi · sinhγ · cos
(2i− 1) ·π

2n
for i = 1 . . .

n

2
(16.27)

bi =
1

cosh2γ − cos2 (2i−1) · π
2n

(16.28)

with (odd order) a1 =
1

sinhγ
(16.29)

b1 = 0 (16.30)

ai = 2 · bi · sinhγ · cos
(i − 1) ·π

n
for i = 2 . . .

n+ 1

2
(16.31)

bi =
1

cosh2γ − cos2 (i−1) · π
n

(16.32)

with γ =
1

n
· arsinh 1√

10RdB/10 − 1
(16.33)

The corner frequency fc of Chebyshev filters is not the -3dB frequency f−3dB. But this can be
easily transformed by the following equation:

fc = f−3dB · cosh
(
1

n
· arcosh 1√

10RdB/10 − 1

)

(16.34)

16.2.2 LC ladder filters

The best possibility to realize a filters in VHF and UHF bands are LC ladder filters. The usual
way to synthesize them is to first calculate a low-pass (LP) filter and afterwards transform it into
a high-pass (HP), band-pass (BP) or band-stop (BS) filter. To do so, each component must be
transformed into another.

In a low-pass filter, there are parallel capacitors CLP and series inductors LLP in alternating order.
The other filter classes can be derived from it:

In a high-pass filter:

CLP → LHP =
1

ω2
B ·CLP

(16.35)

LLP → CHP =
1

ω2
B ·LLP

(16.36)
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In a band-pass filter:

CLP → parallel resonance circuit with (16.37)

CBP =
CLP

∆Ω
(16.38)

LBP =
∆Ω

ω1 ·ω2 ·CLP
(16.39)

LLP → series resonance circuit with (16.40)

CBP =
∆Ω

ω1 ·ω2 ·LLP
(16.41)

LBP =
LLP

∆Ω
(16.42)

In a band-stop filter:

CLP → series resonance circuit with (16.43)

CBP =
CLP

2 ·
∣
∣
∣
∣

ω2

ω1
− ω1

ω2

∣
∣
∣
∣

(16.44)

LBP =
1

ω2 ·∆Ω ·CLP
(16.45)

LLP → parallel resonance circuit with (16.46)

CBP =
1

ω2 ·∆Ω ·LLP
(16.47)

LBP =
LLP

2 ·
∣
∣
∣
∣

ω2

ω1
− ω1

ω2

∣
∣
∣
∣

(16.48)

Where

ω1 → lower corner frequency of frequency band (16.49)

ω2 → upper corner frequency of frequency band (16.50)

ω → center frequency of frequency band ω = 0.5 · (ω1 + ω2) (16.51)

∆Ω → ∆Ω =
|ω2 − ω1|

ω
(16.52)

Butterworth

The k-th element of an n order Butterworth low-pass ladder filter is:

capacitance: Ck =
Xk

Z0
(16.53)

inductance: Lk =Xk ·Z0 (16.54)

with Xk =
2

ωB
· sin (2 · k + 1) ·π

2 ·n (16.55)

The order of the Butterworth filter is dependent on the specifications provided by the user. These
specifications include the edge frequencies and gains.

n =

log

(
10−0.1 ·αstop − 1

10−0.1 ·αpass − 1

)

2 · log
(
ωstop

ωpass

) (16.56)
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Chebyshev I

The equations for a Chebyshev type I filter are defined recursivly. With RdB being the passband
ripple in decibel, the k-th element of an n order low-pass ladder filter is:

capacitance: Ck =
Xk

Z0
(16.57)

inductance: Lk = Xk ·Z0 (16.58)

with Xk =
2

ωB
· gk (16.59)

r = sinh

(
1

n
· arsinh 1√

10RdB/10 − 1

)

(16.60)

ak = sin
(2 · k + 1) ·π

2 ·n (16.61)

gk =







ak
r

for k = 0
ak−1 · ak

gk−1 ·
(

r2 + sin2
k ·π
n

) for k ≥ 1 (16.62)

The ripple of even order Chebyshev filters is above the 0dB line. Thus, they can’t be realized with
passive circuits (at least not with input and output impedance being equal). The -3dB frequency
transformation is done by equation 16.34.

The order of the Chebychev filter is dependent on the specifications provided by the user. The
general form of the calculation for the order is the same as for the Butterworth, except that the
inverse hyperbolic cosine function is used in place of the common logarithm function.

n =

sech

(
10−0.1 ·αstop − 1

10−0.1 ·αpass − 1

)

2 · sech
(
ωstop

ωpass

) (16.63)

Chebyshev II

Because of the nature of the derivation of the inverse Chebychev approxiation function from the
standard Chebychev approximation the calculation of the order (16.63) is the same.

16.2.3 End-coupled transmission line bandpass filters

Filters for the lower microwave bands (4 to 12 GHz) can be easily realized by transmission line
filters. Figure 16.3 shows a capacitive-coupled, half-wavelength resonator bandpass filter. The
necessary design steps are described now [87].

C1

C=432.9f

Line1

Z=50

L=21.27m

C2

C=121.8f

Line2

Z=50

L=23.8m

C3

C=121.8f

Line3

Z=50

L=21.27m

C4

C=432.9f

Figure 16.3: 3rd order half-wavelength bandpass filters
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First the (normalized) characteristic admittances of the J-inverters are calculated:

Jk =

√

π ·∆f

2 · gk · gk+1
for k = −1 and k = n− 1 (16.64)

Jk =
π ·∆f

2 ·√gk · gk+1
for k = 0 . . . n− 2 (16.65)

(16.66)

where n is the order of the filter, g0 . . . gn−1 are the normalized elements of a LC ladder-type
lowpass filter (gk = Xk ·ωB, see section 16.2.2), g−1 and gn equals 1, ∆f = (fup − flow)/fmid is
the relative bandwidth.

Secondly, the susceptances Bk are computed.

Bk ·Z0 =
Jk

1− J2
k

(16.67)

Finally, the coupling capacitances Ck and the length lk of the transmission lines can be determined.

Ck =
Bk

ωmid
(16.68)

lk =
c0

2ωmid
· (2π − arctan(2 ·Bk−1 ·Z0)− arctan(2 ·Bk ·Z0)) (16.69)

The characteristic impedance of the transmission lines equals the system impedance Z0. Note
that all transmission line filters are periodic and thus, they also show passband behaviour at the
harmonic frequencies (2ωmid, 3ωmid, 4ωmid, . . .).

This kind of bandpass filter can be realized in microstrip topology. The transmission lines are
replaced by microstrip lines and the capacitors are replaced by microstrip gaps. The microstrip
width is calculated to fit the system impedance and the gap length is calculated to fit the coupling
capacitance Ck (see section 12.4). The length of the microstrip lines must be shortened according
to the effective relative permittivity and according to the end-effect of the microstrip open (see
section 12.4 and 12.3). Because the coupling capacitance of a microstrip gap is quite small the
relative bandwidth that can be achieved with this filter topology is small, too (up to approximately
3%).

16.2.4 Lateral-coupled transmission line bandpass filters

Coupled transmission lines are well suited to design bandpass filters for frequencies from 1 to 40
GHz. Figure 16.4 shows an example. The design steps follow below [87].

Figure 16.4: 3rd order coupled transmission line bandpass filters
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The calculation again starts with the (normalized) characteristic admittances of the J-inverters
(see equation 16.65 and 16.66). They are used to determine the characteristic impedances of the
even and the odd mode (k = 0 . . . n).

Z0e,k = Z0 ·
(
1 + Jk + J2

k

)
(16.70)

Z0o,k = Z0 ·
(
1− Jk + J2

k

)
(16.71)

The length of the transmission lines is a quarter of the wavelength.

lk =
c0

4 · fmid
(16.72)

This kind of bandpass filter can nicely be realized in microstrip topology. The characteristic
impedances of even and odd mode are used to calculate the widths and the gaps of the lines. The
lengths have to be reduced by the effective relative permittivity ǫre and ǫro and by the open-end
effect of the microstrip lines.

lk =
c0

4 · fmid · 4
√
ǫre,k · ǫro,k

−∆lopen (16.73)

16.2.5 Stepped-impedance lowpass filters

The z-parameters of a transmission line are

Z11 = Z22 = −j ·Z0 · cot(βl) (16.74)

Z12 = Z21 = −j ·Z0 · cosec(βl) (16.75)

Because Z12 and Z21 are equal, this can replace a T-topology (see section 19.1.3) with the series
elements being each

j ·X = Z11 − Z12 = j ·Z0 ·
1− cosec(βl)

sin(βl)
= j ·Z0 · tan

(
βl

2

)

(16.76)

For short lines the impedance X of the series elements and admittance B of the shunt element
gives the following.

X ≈ Z0 ·βl (16.77)

B ≈ Y0 ·βl (16.78)

For a transmission line with large characteristic impedance Zh the series elements dominate. Thus,
it behaves like an inductance. For a transmission line with small characteristic impedance Zl the
shunt element dominates. Thus, it behaves like a capacitance. A sequence of short transmission
lines with alternating low and high impedances results in a lowpass filter. The line lengthes are

lhigh = gk ·
Z0

Zh
· c0
ωB

(16.79)

llow = gk ·
Zl

Z0
· c0
ωB

(16.80)

with Z0 being the impedance that the filter is designed for and gk = Xk ·ωB (see section 16.2.2).
To get good performance Zl must be as low as possible and Zh must be as high as possible.
Nonetheless, the stop-band attenuation won’t reach the typical value of the filter type used. This
is because of the approximations done above. Sometimes, the result can be improved by adding the
inductance of the previous and/or following low-impedance line to the one of the high-impedance
line. The length then becomes:

lhigh =
Z0

Zh
· c0
ωB
·
(

gk − 0.5 · gk−1 ·
(
Zl

Z0

)2

− 0.5 · gk+1 ·
(
Zl

Z0

)2
)

(16.81)
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Sometimes, performance is also improved by lowing the capacitance of the low-impedance line in
order to compensate for the capacitance of the adjacent high-impedance lines. The line length
becomes for examples:

llow =
c0
ωB
·
(

gk ·
Zl

Z0
− 0.1 · Zl

Zh

)

(16.82)

16.2.6 Active filters

Active RC filters are a good choice for frequencies below 1MHz. Here, the multi-feedback topology
will be discussed because it shows better performance in reality than the Sallen-Key topology.

OP1R1

C1

Figure 16.5: active 1st order lowpass filter

Figure 16.5 shows a 1st order active low-pass filter. The number of components leaves some degree
of freedom. The following procedure is recommended:

choose C1 (e.g. E6 serie) (16.83)

R1 =
a1

ωB ·C1
(16.84)

OP1

C1R2

R3
C2

R1

Figure 16.6: active 2nd order lowpass filter

Figure 16.6 shows a 2nd order active low-pass filter. The number of components leaves some
degree of freedom. The following procedure is recommended:

choose C1 (e.g. E6 serie) (16.85)

choose C2 ≥
4 · b1 · (1 +A0)

a21
·C1 (e.g. E6 serie) (16.86)

R2 =
a1 ·C2 −

√

a21 ·C2
2 − 4 ·C1 ·C2 · b1 · (1 +A0)

2 ·ωB ·C1 ·C2
(16.87)

R1 =
R2

A0
(16.88)

R3 =
b1

ω2
B ·C1 ·C2 ·R2

(16.89)
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OP1

R1

C1

Figure 16.7: active 1st order highpass filter

Figure 16.7 shows a 1st order active high-pass filter. The number of components leaves some
degree of freedom. The following procedure is recommended:

choose C1 (e.g. E6 serie) (16.90)

R1 =
1

ωB · a1 ·C1
(16.91)

OP1

R1

C3

C2

C1

R2

Figure 16.8: active 2nd order highpass filter

Figure 16.8 shows a 2nd order active high-pass filter. The number of components leaves some
degree of freedom. The following procedure is recommended:

choose C1 (e.g. E6 serie) (16.92)

C2 = C3 =
C1

A0
(16.93)

R1 =
2 +A0

a1 ·ωB ·C2
(16.94)

R2 =
a1

ωB · b1 ·C2 · (2 +A0)
(16.95)

The terms a1 and b1 in the equations above are the constants for the wanted filter type (see 16.2.1).
Several cascaded filters can create all filter types with even order by replacing these terms with
a2 and b2 for the second stage etc. Odd order filters need a first order filter as first stage.

228



Chapter 17

System Simulation

System simulations are used to analyze a transmission system on the modulation level. The
principle is quite simple. The data consists of an array of complex numbers. Each number
represents the amplitude and phase of the modulated carrier at a specific time. A data block is
sent to a component which modifies it according to its function. Afterwards the array is sent to
the next component. This procedure repeats until all componets are done.

17.1 Component models

17.1.1 Mach-Zehnder Modulator

A Mach-Zehnder modulator (MZM) is an interferometer that is often used to modulate optical
signals. It consists of a power splitter, two waveguides and a power combiner. The delay caused
by the waveguides changes according to the modulation voltage and thus, creating a constructive
or destructive interference at the output Eout, i.e. the transfer function is a cosine. The MZM can
be used as amplitude modulator (when biased at quadrature) or as phase modulator (when biased
at minimum). An MZM in push-pull configuration can be modeled by the following equation:

Eout(t) =
j ·Ein(t)√

L · (1 +
√
ER)

· exp
(

j ·α · π

2Vπ

)(

exp(−X)−
√
ER− 1√
ER+ 1

· exp(X)

)

(17.1)

with X = j
π

2Vπ
· (Vbias − Vmod) (17.2)

with Vbias DC bias voltage, Vmod modulation voltage, Vπ voltage for full modulation, α chirp
coefficient, ER extinction rate, L power loss. Note a finite extiction ratio creates a chirp. The
chirp coefficient here produces an additional chirp.

17.1.2 Delay-Line Interferometer

A delay-line interferometer (DLI) is used in optical telecommunication systems to convert a phase
modulation into an amplitude modulation. It consists of a power splitter, two waveguides and
a power combiner, which a constructive and a destructive output. The delays of the waveguides
differ by the symbol duration T . It can be modeled by the following equation:

Econstructive(t) =
Ein(t) + γ ·Ein(t− 1/FSR)

√

2 ·L · (1 + γ2)
(17.3)

Edestructive(t) =
Ein(t)− γ ·Ein(t− 1/FSR)

√

2 ·L · (1 + γ2)
(17.4)
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with γ = exp(j ·φ) ·
√
ER− 1√
ER+ 1

(17.5)

with FSR = 1/T free spectral range, L power loss, ER extinction rate, φ phase of delayed
waveguide.
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Chapter 18

Electromagnetic field simulations

18.1 Introduction

Circuit simulations are very powerful analysis tools in electrical engineering, but of course limits
exist for their application. A typical example is an arbitrary printed circuit board (PCB) lay-
out at very high frequencies where circuit models for the components are not precise enough or
not available at all. At this point, computational electromagnetics (CEM) plays an important
role. It solves the differential equation for the electromagnetic field, and therefore use the most
fundamental approach in physics. The most common methods are the following ones:

• FDTD (finite-difference time-domain) is the most popular method in CEM. It is a partial
differential equation (PDE) technique that is easy to understand, easy to implement and
very powerful.
The discretization is restricted to structured rectangular hexahedrons (known as Yee grid).
Thus, the mesh creation is a difficult task, especially with complex or multiscale geometries,
because the smallest detail determines the cell size.
In contrast to all frequency-domain methods, FDTD doesn’t build a matrix, but solves the
domain by simple cell-by-cell operations. Hence, the memory and computation complexity
rises linearly with the problem size, i.e. O(n). FDTD is therefore the best choice for very
large structures.
For calculating the frequency response, the circuit is usually excited by a gaussian-shaped
pulse. Then, the solver iterates over time until the energy has decreased to a specific level.
A different approach is to use the FDFD (finite-difference frequency-domain) method.
Famous projects are:
Meep → http://ab-initio.mit.edu/wiki/index.php/Meep
openEMS → http://www.openEMS.de/

• TLM (transmission line matrix) is a time domain analysis that uses Huygen’s principle of
wave propagation in space and time. Furthermore, frequency domain variants exist, too.
It is very similar to FDTD, and hence both methods share most of its advantages and
disadvantages. The most famous projects are:
Yatpac → http://www.yatpac.org
emGine → http://www.petr-lorenz.com/emgine/

• FEM (finite element method) is the most popular frequency domain method. It is a PDE
method and is very universal and powerful. The domain can be discretized with unstructured
grids (usually tetrahedrons). Nonetheless, it usually needs more resources (memory and
computation time) than FDTD.
The matrix to be solved is very sparse, so the computation complexity rises quadratically
with the problem size, i.e. O(n2).
Promising projects are:
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GetDP → http://geuz.org/getdp/
Elmer → http://www.csc.fi/english/pages/elmer

• MoM (method of moments) or BEM (boundary element method) is mostly a frequency
domain analysis, even though a time-domain version exists. It’s a surface integral technique
and is especially successful in simulating classical antennas, but also very useful for planar
structures like PCBs.
This method needs to discretize the surfaces (or metal layers) only and includes the envi-
ronment (like the PCB substrate) by use of the Green’s function. Hence, It’s the best choice
for small and middle-sized planar structures.
The matrix to be solved is dense but small. Filling the matrix consumes by far the most
time, so the computation complexity rises very strongly with the problem size. Anyway, an
extension called MLFMM (multilevel fast multipole method) exists that can reduce the
complexity to O(N · log(N)).
The most famous projects are:
NEC2 → http://www.si-list.net/swindex.html
GLMoM → http://glmom.sourceforge.net/
SCUFF-EM → http://homerreid.dyndns.org/scuff-EM/
Puma-EM → http://puma-em.sourceforge.net/

As usual each method has its advantages and disadvantages. PDE techniques are very successful
in simulating closed volumes with inhomogeneous dielectrics (e.g. cavity resonators or shielded
transmission lines), whereas integral techniques are well suited to model conducting surfaces in
open domain problems (e.g. radiation and scattering). Modern EM simulators often use hybrid
methods that combine the advantages of both types of formulations. This way it is possible to
precisely calculate almost every property of almost every structure. The disadvantage of field
solvers is the huge amount of memory and computation time that are consumed.

Some terms often used in electromagnetics should also be mentioned:

• PDE - partial differential equation

• ABC - absorbing boundary condition

• PML - perfectly matched layer (a special ABC)

• PEC - perfect electrical conductor

• PMC - perfect magnetical conductor

• EMI - electromagnetic interference

• EMC - electromagnetic compatibility

Boundary conditions (B.C.) are needed to solve a differential equation. The most important ones
are the following:

• Dirichlet B.C. → V = 0, e.g. tangential electric field on metallic surfaces

• inhomogeneous Dirichlet B.C. → V = Qb, e.g. electric potential on metallic surfaces

• Neumann B.C. → ∇V ·~n = ∂V
∂n = 0 with n being orthonormal to boundary, e.g. dy-

namic magnetic field on metallic surfaces

• inhomogeneous Neumann B.C. → ∂V
∂n = Qb, e.g. surface charge in electrostatics

• Impedance B.C. → ∂V
∂n + a ·V = 0, e.g. first order absorbing condition
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18.2 Finite-Difference Time-Domain (FDTD) Method

The FDTD method [88] discretizes the simulation domain into a structured mesh with rectangular
blocks. Then, it calculates the electric field along the edges of each block. The grid for the magnetic
field lies half a block displaced and is calculated for half a time step later. This discretization is
called Yee cell, see figure 18.1.
The electric field is computed from the magnetic field by Ampere’s law:

∮

∂A

~H · d~s = +
∂

∂t

x

A

ǫ ~E · d ~A+
x

A

κ~E · d ~A (18.1)

The result is stored and used to compute the magnetic field for the next half time step by Faraday’s
law: ∮

∂A

~E · d~s = − ∂

∂t

x

A

µ ~H · d ~A+
x

A

σ ~H · d ~A (18.2)

The result is stored and used to repeat the calculation of the electric field for the next time step.
This is done again and again, so the incident field moves through the domain according to Huy-
gens’ principle.

E

H (z )

x

y

sy

sx

sz

1

H (z )y 2

H (y )z 1

H (y )z 2

Figure 18.1: Yee cell showing discretization of Ampere’s law for Ex

According to figure 18.1, the discretization of Ampere’s law yields:

Hy(z2) · sy −Hy(z1) · sy −Hz(y2) · sy +Hz(y1) · sy ≈ ǫ · ∂
∂t

Ex · sy · sz + κEx · sy · sz (18.3)

It’s now the better choice to use voltages and currents instead of the field variables, i.e. we set:

iy = Hy · sy iz = Hz · sz vx = Ex · sx (18.4)

Cx =
ǫ · sy · sz

sx
Gx =

ǫ · sy · sz
sx

(18.5)

The method then is called equivalent-circuit FDTD (EC-FDTD). Next, the time derivative is
replaced by its difference quotient and the voltages at half a time step is approximated by the
average of its values from the time step before and after. This gives:

iy(z2, t0.5)− iy(z1, t0.5)− iz(y2, t0.5) + iz(y1, t0.5)

≈ Cx ·
vx(t1)− vx(t0)

∆t
+Gx ·

vx(t1)− vx(t0)

2

(18.6)
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Finally, the equation can be solved for vx(t1) which yields:

vx(t1) ≈
2 ·Cx −∆t ·Gx

2 ·Cx +∆t ·Gx
· vx(t0)

+
2 ·∆t

2 ·Cx +∆t ·Gx
· (iy(z2, t0.5)− iy(z1, t0.5)− iz(y2, t0.5) + iz(y1, t0.5))

(18.7)

This equation calculates the voltage vx(t1) from the results of prior time steps. The same can
be performed for all other variables vy, vz, ix, iy and iz. So, we have got a simple algorithm to
perform an electro-magnetic field simulation in time domain.

18.2.1 Discretization

A disadvantage of the FDTD algorithm is the need for a structured mesh. A small cell size at
any position causes a dense grid over the whole domain. The method also has problems with high
field densities, that for example appear at the edges of microstrip lines. Very small cell sizes are
necessary here. Laterally, this can be relaxed by the so-called 1/3 2/3 rule (see figure 18.2). I.e.
the grid isn’t set precisely on the edge, but shifted by one third of the cell size into the metal strip.

1/3
2/3

1/3
2/3

Figure 18.2: A typical FDTD mesh for a microstrip line using the 1/3 2/3 rule

18.2.2 Excitation

Usually, the structure is excited by a short pulse, the simulation is performed until the field energy
has decayed below a certain limit and the result is transformed into frequency domain. Obviously,
the pulse must excite the frequency range of interest. Furthermore, two problems may encounter.
First, many structures tend to store DC charges that prevent the energy to decay if the excitation
contains DC energy. And second, if the structure creates high-Q resonances, the energy decay is
strongly delayed.
The most popular pulse shape is Gaussian, because it covers a broad frequency range and af-
terwards exhibits a very steep roll-off. DC-free variants exists, too. So, Gaussian pulses can be
trimmed to excite the wanted frequency range only (omit DC and/or resonances if needed). The
following pulse shape is quite popular:

v(t) = cos (2 ·π · f0 · (t− t0)) · exp
(

−9 ·
(

t

t0
− 1

)2
)

(18.8)

with t0 =
9

2 ·π · fc
(18.9)

with f0 being the center frequency, i.e. the one with the highes energy. The pulse reaches its
maximum at t0. It has to be applied to the simulation domain from time 0 to 2 · t0. The parameter
fc determines frequency decay. Three parameter pairs are used often (see figure 18.3 and 18.4):

• broadband: f0 = 0 and fc = 1.8 ·fmax

Fastest FDTD convergence, most energy at DC
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• middle: f0 = 2 · fmax and fc = fmax

Slower FDTD convergency, steeper frequency roll-off, most energy at DC

• DC min: f0 = 0.5 · (fmax + fmin) and fc = 0.5 · (fmax − fmin)
Slowest FDTD convergency, steepest frequency roll-off, small DC energy
(If fmin > 0.33 · (fmax − fmin), the DC energy is below -40dB, so it can be considered as
DC free.)

If a DC free pulse and a low frequency excitation is required, the above-mentioned function isn’t
the best choice. A better suited example is the Ricker wavelet (see figure 18.3 and 18.4):

v(t) =
(
1− 2 ·x2

)
· exp

(
−x2

)
(18.10)

x = π · f0 · (t− t0) (18.11)

with t0 =
1

2 ·π · f0
(18.12)

with f0 being the frequency with the highest energy. Again, the pulse reaches its maximum at t0.
It has to be applied to the simulation domain from time 0 to 2 · t0. The usable frequency range is
about 0.22 ·f0 to 2 · f0.

A function with an even lower cut-off frequency is the following pulse:

v(t) = 8.1 ·x · exp
(
−12.0 ·x2

)
(18.13)

x = f0 · (t− t0) (18.14)

with t0 =
1.5

f0
(18.15)

Once more,it has to be applied to the simulation domain from time 0 to 2 · t0. The usable fre-
quency range is about 0.06 ·f0 to 2 · f0.
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Figure 18.3: Pulse shapes often used for FDTD simulations (fmin = 0.1Hz, fmax = 3Hz)
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Figure 18.4: Frequency domain representation of pulse shapes (fmin = 0.1Hz, fmax = 3Hz)

18.3 Finite Element Method (FEM)

18.3.1 Overview

FEM is a universal method to solve partial differential equations (PDE). It is used in many
scientific fields like electro- and magnetostatics, heat transfer, mechanical stress analysis, fluid
flows etc. The steps to perform an FEM analysis can be shortly summerized as follows:

1. The user defines the properties and the boundary of the geometry under investigation (size,
material etc.). He also specifies the excitation (e.g. current source, incident electric field).

2. Discretization: The preprocessor creates the mesh, i.e. it divides the user-defined domain
into spatial pieces (finite elements) that are small enough to guarantee accuracy, but that
are still few enough to keep the computation time low.

3. The PDE, the boundary conditions and the excitations are applied to every element in the
domain. This way, the matrix A and the right-hand side vector b are created.

4. The simulator solves the matrix equation A ·x = b to get the unknown quantity x (e.g.
electric field) at every element of the domain.

5. The postprocessor uses the result x to calculate all wanted quantities (e.g. s-parameters,
capacitance, impedance etc.)

Creating the discretization (step 2) is a very complex task that needs sophisticated algorithms.
Usually, stand-alone programs perform this meshing. The most famous projects are as follows:

Gmsh → http://www.geuz.org/gmsh/
Tetgen → http://wias-berlin.de/software/tetgen/
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Netgen → http://netgen-mesher.sourceforge.net/

The next subsections explain step 3 in more detail. The technical background for performing an
FEM analysis is described by typical examples.

18.3.2 Electrostatics

Because electrostatic fields are curl-free (∇ × ~E = ~0), they can be fully represented by a scalar
potential V , defined as:

~E = −∇V (18.16)

The PDE describing all electrostatic phenomena is quite simple therefore:

−∇ · (ǫ∇V ) = qV (18.17)

with permittivity ǫ and volume charge density in As/m3. In order to solve the equation numerically,
the computational domain needs to be split into a finite number of small pieces, most often into
tetrahedrons (3D space) or triangles (2D space), respectively. Within these elements, a shape (or
basis) function Wk interpolates the electrostatic potential:

V =
∑

k

Vk ·Wk (18.18)

Scalar quantities are usually modeled with node-based shape functions, i.e. the unknowns Vk are
the values at the nodes of the elements. Because a tetrahedron has four nodes (figure 18.5), it
creates four unknowns in the matrix equation (k = 4).

The basic concept of FEM is to multiply the PDE with a weighting funkction W and integrate
the product over the volume Ω of each element:

y

Ω

PDE(~r) ·W (~r) dv (18.19)

Hence, the PDE is not forced to be valid everywhere. Instead, a weighted average is used, which
is named weak form of the PDE. In case of equation 18.17 this leads to:

−
y

Ω

∇ · (ǫ∇V ) ·W dv =
y

Ω

qV ·W dv (18.20)

By use of Green’s first identity, the double differential operator can be avoided, leading to:

y

Ω

ǫ∇V · ∇W dv −
{

∂Ω

ǫ∇V ·W d~S =
y

Ω

qV ·W dv (18.21)

By replacing V with the interpolation formula (equation 18.18) the unknowns can be separated
from the integrals. Using the same function W as basis and as weighting function (Galerkin’s
method) leads to the final matrix equation:

(P −B) ·V = Q (18.22)

with the following matrix and vector entries:

potential P nm =
y

ǫ · ∇Wn · ∇Wm dv (18.23)

boundaries Bn =
{

~D ·Wn d~S +
{

qS ·Wn dS (18.24)

sources Qn =
y

qV ·Wn dv (18.25)
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These integral equations can be solved directly, because all terms are known:

1. The user defines material properties (permittivity ǫ, volume charge density qV ) and the

boundary conditions (incoming flux ~n · ~D, surface charge density qS , fixed potential on metal-
lic surfaces).

2. The pre-processor determines the integration domains by creating the mesh.

3. The basis functions Wn are pre-defined and pre-calculated formulas.

Thus, the matrix (P − B) and the right-hand side vector Q are filled by stamping. A matrix
entry is non-zero only if it belongs to two nodes that share the same element. Hence, the matrix
is very sparse. Furthermore, it can be seen that an FEM matrix is always structurally symmetric.

In order to save resources, it is usual practice to exploit symmetries. Through a symmetry plane,
no electrical flux is flowing. Therefore, it is sufficient to simulate one half of the domain only by
keeping the new boundary open (no boundary condition at all). If a symmetry plane exists, but
charge and potential have different signs on each side, the symmetry plane can be replaced by a
fixed potential of zero. Again one half of the domain needs to be simulated only.

18.3.3 Heat Transfer

The heat equation for thermal equilibrium equals exactly the PDE for electrostatics:

−∇ · (k · ∇T ) = hV (18.26)

with k being the heat conductivity and hV being the volume heating in W/m3. Solving this
equation goes the same way as described for electrostatics.
The heat equation for non-equilibrium writes as follows:

ρ · cp ·
∂T

∂t
−∇ · (k ·∇T ) = hV (18.27)

where ρ is mass density in kg/m3, cp is specific heat capacity in J/kg/K and t is time.

18.3.4 Static Current Conduction

The equation for static current conduction equals exactly the PDE for electrostatics:

−∇ · (σ · ∇V ) =
∂qV
∂t

(18.28)

with σ being the electric conductivity and qV being the volume charge density. Solving this
equation goes the same way as described for electrostatics.

18.3.5 Electromagnetic Waves

Im microwave engineering, field solvers are often used to calculate the RF behaviour of a specific
structure [89]. Thus, it is used to solve the vector wave equation for the complex-valued, time-

harmonic electric field ~E (i.e. in frequency domain with ∂/∂t = jω):

ω2 · ǫ ·µ · ~E +∇2 ~E −∇ · (∇ ~E) = j ·ω ·µ · ~J +∇× ~M (18.29)

Note that in source-free regions it is ∇ ~E = 0, ~J = 0 and ~M = 0. In order to find a solution to
this equation, boundary conditions are required:

~n1 × ( ~E1 − ~E2) = 0 (18.30)
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~n1 · (ǫ1 · ~E1 − ǫ2 · ~E2) = ρs (18.31)

Note again that in source-free regions it is ρs = 0. By resolving the Laplace operator, the differ-
ential equation 18.29 can also be written as:

ω2 · ǫ ·µ · ~E −∇×∇× ~E = j ·ω ·µ · ~J +∇× ~M (18.32)
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Figure 18.5: tetrahedron with node and edge numbering

For 3D vector quantities the prefered discretization use tetrahedral elements (see figure 18.5) with
edge-based shape function (TVFE - tangential vector finite elements). That is, the computational
domain is divided into small tetrahedra. The unknowns in vector x of the matrix equation are the
average values of the electric field Ek in parallel to the edges of these tetrahedral-shaped elements.
The electric field ~E within them is interpolated with a so-called shape (or basis) function ~Wk,
which is non-zero within its element only:

~E =

6∑

k=1

Ek · ~Wk (18.33)

This way, the electric field can be expressed in the matrix equation with one unknown for each
edge in the mesh. The basic concept of FEM is to cast the PDE into its weak form:

y
PDE(~r) · ~W (~r) dv (18.34)

For equation 18.32 this gives:

y
ω2 · ǫ ·µ · ~E · ~W − ~W · ∇ ×∇× ~E dv =

y
j ·ω ·µ · ~J · ~W + ~W · ∇ × ~M dv (18.35)

That is, the PDE is not enforced everywhere. Instead a weighted average (over each element) is

solved. Most often, the shape function from equation 18.33 is used as weighting function ~W (~r)
(Galerkin’s method). This finally gives the following matrix equation:

(S − ǫ0 ·µ0 ·ω2 ·T −B) ·E = J (18.36)

with:

”stiffness” Snm =
y 1

µr
· (∇× ~Wn) · (∇× ~Wm) dv (18.37)

”mass” T nm =
y

ǫr · ~Wn · ~Wm dv (18.38)

boundaries Bn = jωµ0 ·
({

~Wn · (~n× ~H) dS −
x

σS · (~n× ~Wn) · (~n× ~Wm) dS
)

(18.39)

sources Jn = −
y (

jωµ0 · ~Jn +
1

µr
· ∇ × ~Mn

)

· ~Wn dv (18.40)
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with σS being the surface conductivity (or admittance) at a boundary. Each edge of the mesh gets
a row and a column within the matrices S, T and B. In order to create the matrices S and T, a
tetrahedral element inserts the 6× 6 coefficients of its edges at the corresponding position. Thus,
a matrix entry is non-zero only if it belongs to two edges that share the same finite element. The
overall matrix is very sparse therefore.

If now the coefficients of the wave equation (i.e. the material properties ǫr and µr) are kept
constant within an element, the integrals 18.37 and 18.38 can be solved in advance. With first
order shape functions applied to a tetrahedron the results are [90]:

Snm =
1

9 ·V ·µr
· [~bn ·~bm] (n = 0 . . . 5, m = 0 . . . 5) (18.41)

element volume V =
1

6
· |(~r1 − ~r0) · ((~r2 − ~r0)× (~r3 − ~r0))| (18.42)

edge vector ~bk = ~bij = ~rj − ~ri (18.43)

where ~ri is the position vector of node i. Furthermore:

T =
ǫr

180 ·V · [T nm] (n = 0 . . . 5, m = 0 . . . 5) (18.44)

with T00 = 2 · ( ~A0 · ~A0 − ~A0 · ~A1 + ~A1 · ~A1) (18.45)

T11 = 2 · ( ~A0 · ~A0 − ~A0 · ~A2 + ~A2 · ~A2) (18.46)

T22 = 2 · ( ~A0 · ~A0 − ~A0 · ~A3 + ~A3 · ~A3) (18.47)

T33 = 2 · ( ~A1 · ~A1 − ~A1 · ~A2 + ~A2 · ~A2) (18.48)

T44 = 2 · ( ~A1 · ~A1 − ~A1 · ~A3 + ~A3 · ~A3) (18.49)

T55 = 2 · ( ~A2 · ~A2 − ~A2 · ~A3 + ~A3 · ~A3) (18.50)

T10 = T01 = ~A0 · ~A0 − ~A0 · ~A1 − ~A0 · ~A2 + 2 · ~A1 · ~A2 (18.51)

T20 = T02 = ~A0 · ~A0 − ~A0 · ~A1 − ~A0 · ~A3 + 2 · ~A1 · ~A2 (18.52)

T21 = T12 = ~A0 · ~A0 − ~A0 · ~A2 − ~A0 · ~A3 + 2 · ~A2 · ~A3 (18.53)

T30 = T03 = ~A0 · ~A1 − ~A1 · ~A1 − 2 · ~A0 · ~A2 + ~A1 · ~A2 (18.54)

T31 = T13 = 2 · ~A0 · ~A1 − ~A1 · ~A2 − ~A0 · ~A2 + ~A2 · ~A2 (18.55)

T32 = T23 = ~A0 · ~A1 − ~A1 · ~A3 − ~A0 · ~A2 + ~A2 · ~A3 (18.56)

T40 = T04 = ~A0 · ~A1 − ~A1 · ~A1 − 2 · ~A0 · ~A3 + ~A1 · ~A3 (18.57)

T41 = T14 = ~A0 · ~A1 − ~A1 · ~A2 − ~A0 · ~A3 + ~A2 · ~A3 (18.58)

T42 = T24 = 2 · ~A0 · ~A1 − ~A1 · ~A3 − ~A0 · ~A3 + ~A3 · ~A3 (18.59)

T43 = T34 = ~A1 · ~A1 − ~A1 · ~A2 − ~A1 · ~A3 + 2 · ~A2 · ~A3 (18.60)

T50 = T05 = ~A0 · ~A2 − ~A1 · ~A2 − ~A0 · ~A3 + ~A1 · ~A3 (18.61)

T51 = T15 = ~A0 · ~A2 − ~A2 · ~A2 − 2 · ~A0 · ~A3 + ~A2 · ~A3 (18.62)

T52 = T25 = 2 · ~A0 · ~A2 − ~A2 · ~A3 − ~A0 · ~A3 + ~A3 · ~A3 (18.63)

T53 = T35 = ~A1 · ~A2 − ~A2 · ~A2 − 2 · ~A1 · ~A3 + ~A2 · ~A3 (18.64)

T54 = T45 = 2 · ~A1 · ~A2 − ~A2 · ~A3 − ~A1 · ~A3 + ~A3 · ~A3 (18.65)

where ~Ai is the area normal of the triangle lying opposite to node i and pointing to the inside of
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the tetrahedron, e.g.

~A0 =
1

2
· (~r2 − ~r1)× (~r3 − ~r1) (18.66)

18.4 FE-BI Method

The finite element boundary integral (FE-BI) method is a hybrid technique that uses FEM (for
volume electric field) and MoM (for surface electric and magnetic field). This way the advantages
of both methods are combined and create one of the most powerful techniques in computational
electromagnetics. Anyway, a disadvantage of the MoM part is its dense matrix structure.
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Chapter 19

Mathematical background

19.1 N-port matrix conversions

When dealing with n-port parameters it may be necessary or convenient to convert them into
other matrix representations. All equations in this section uses the definition of power waves. The
following matrices and notations are used in the transformation equations.

[X ]
−1

= inverted matrix of [X]

[X ]
∗

= complex conjugated matrix of [X ]

[E] =








1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1







identity matrix

[S] = S-parameter matrix

[Z] = impedance matrix

[Y ] = admittance matrix

[
Zref

]
=








Z0,1 0 . . . 0
0 Z0,2 . . . 0
...

...
. . .

...
0 0 . . . Z0,N








Z0,n = reference impedance of port n

[Gref ] =








G1 0 . . . 0
0 G2 . . . 0
...

...
. . .

...
0 0 . . . GN








Gn =
1

√

Re
∣
∣Z0,n

∣
∣

242



19.1.1 Renormalization of S-parameters to different port impedances

During S-parameter usage it sometimes appears to have not all components in a circuit normalized
to the same impedance. In the field of RF techniques, it is usually 50Ω. In order to transform the
S-parameter matrix [S] to the one [S′] with different port impedances, the following computation
must be applied.

[S′] = [A]
−1 ·

(
[S]− [R]

∗) · ([E]− [R] · [S])−1 · [A]∗ (19.1)

With

Zn = reference impedance of port n after the normalizing process

Zn,before = reference impedance of port n before the normalizing process

[R] =








r1 0 . . . 0
0 r2 . . . 0
...

...
. . .

...
0 0 . . . rN








reflection coefficient matrix

rn =
Zn − Z∗

n,before

Zn + Zn,before

[A] =








A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AN








An =
1−r∗n
|1−rn|

·
√

|1− rn · r∗n|

An =

√
Zn ·Zn,before

Zn + Zn,before
for real-valued reference impedances

19.1.2 Transformations of n-Port matrices

S-parameter, admittance and impedance matrices are not limited to one- or two-port definitions.
They are defined for an arbitrary number of ports. The following section contains transformation
formulas forth and back each matrix representation.

Converting a scattering parameter matrix to an impedance matrix is done by the following formula.

[Z] =
[
Gref

]−1 · ([E]− [S])
−1 ·

(

[S] ·
[
Zref

]
+
[
Zref

]∗) ·
[
Gref

]
(19.2)

Converting a scattering parameter matrix to an admittance matrix can be achieved by computing
the following formula.

[Y ] =
[
Gref

]−1 ·
(

[S] ·
[
Zref

]
+
[
Zref

]∗)−1

· ([E]− [S]) ·
[
Gref

]
(19.3)

Converting an impedance matrix to a scattering parameter matrix is done by th following formula.

[S] =
[
Gref

]
·
(

[Z]−
[
Zref

]∗) ·
(
[Z] +

[
Zref

])−1 ·
[
Gref

]−1
(19.4)
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Converting an admittance matrix to a scattering parameter matrix is done by the following for-
mula.

[S] =
[
Gref

]
·
(

[E]−
[
Zref

]∗ · [Y ]
)

·
(
[E] +

[
Zref

]
· [Y ]

)−1 ·
[
Gref

]−1
(19.5)

Converting an impedance matrix to an admittance matrix is done by the following simple formula.

[Y ] = [Z]
−1

(19.6)

Converting an admittance matrix to an impedance matrix is done by the following simple formula.

[Z] = [Y ]−1 (19.7)

19.1.3 Two-Port transformations

Two-Port matrix conversion based on current and voltage

transmission
twoport

I

V

I1 2

2V1

Figure 19.1: twoport definition using current and voltage

There are five different matrix forms for the correlations between the quantities at the transmission
twoport shown in fig. 19.1, each having its special meaning when connecting twoports with each
other.

• Y-parameters (also called admittance parameters)

(
I1
I2

)

=

(
Y 11 Y 12

Y 21 Y 22

)

·
(
V 1

V 2

)

(19.8)

• Z-parameters (also called impedance parameters)

(
V 1

V 2

)

=

(
Z11 Z12

Z21 Z22

)

·
(
I1
I2

)

(19.9)

• H-parameters (also called hybrid parameters)

(
V 1

I2

)

=

(
H11 H12

H21 H22

)

·
(
I1
V 2

)

(19.10)

• G-parameters (also called C-parameters)

(
I1
V 2

)

=

(
G11 G12

G21 G22

)

·
(
V 1

I2

)

(19.11)

• A-parameters (also called chain or ABCD-parameters)

(
V 1

I1

)

=

(
A11 A12

A21 A22

)

·
(
V 2

−I2

)

(19.12)
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parallel-parallel
connection

series-series
connection

series-parallel
connection

parallel-series
connection

cascaded twoports

Basically there are five different kinds of twoport connections. Using the corresponding twoport
matrix representations, complicated networks can be analysed by connecting elementary twoports.
The linear correlations between the complex currents and voltages rms values of a twoport are
described by four complex twoport parameters (i.e. the twoport matrix). These parameters are
used to describe the AC behaviour of the twoport.

• parallel-parallel connection: use Y-parameters: Y = Y1 + Y2

• series-series connection: use Z-parameters: Z = Z1 + Z2

• series-parallel connection: use H-parameters: H = H1 +H2

• parallel-series connection: use G-parameters: G = G1 +G2

• chain connection: use A-parameters: A = A1 ·A2

A Y Z H G

A
A11 A12

A21 A22

−Y22

Y21

−1
Y21

−∆Y

Y21

−Y11

Y21

Z11

Z21

∆Z

Z21

1

Z21

Z22

Z21

−∆H

H21

−H11

H21

−H22

H21

−1
H21

1

G21

G22

G21

G11

G21

∆G

G21

Y

A22

A12

−∆A

A12

−1
A12

A11

A12

Y11 Y12

Y21 Y22

Z22

∆Z

−Z12

∆Z
−Z21

∆Z

Z11

∆Z

1

H11

−H12

H11

H21

H11

∆H

H11

∆G

G22

G12

G22

−G21

G22

1

G22

Z

A11

A21

∆A

A21

1

A21

A22

A21

Y22

∆Y

−Y12

∆Y
−Y21

∆Y

Y11

∆Y

Z11 Z12

Z21 Z22

∆H

H22

H12

H22

−H21

H22

1

H22

1

G11

−G12

G11

G21

G11

∆G

G11

H

A12

A22

∆A

A22

−1
A22

A21

A22

1

Y11

−Y12

Y11

Y21

Y11

∆Y

Y11

∆Z

Z22

Z12

Z22

−Z21

Z22

1

Z22

H11 H12

H21 H22

G22

∆G

−G12

∆G
−G21

∆G

G11

∆G

G

A21

A11

−∆A

A11

1

A11

A12

A11

∆Y

Y22

Y12

Y22

−Y21

Y22

1

Y22

1

Z11

−Z12

Z11

Z21

Z11

∆Z

Z11

H22

∆H

−H12

∆H
−H21

∆H

H11

∆H

G11 G12

G21 G22
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Two-Port matrix conversion based on signal waves

transmission
twoport

a1 b2

b a1 2

Figure 19.2: twoport definition using signal waves

There are two different matrix forms for the correlations between the quantities at the transmission
twoport shown in fig. 19.2.

• S-parameters (also called scattering parameters)

(
b1
b2

)

=

(
S11 S12

S21 S22

)

·
(
a1
a2

)

(19.13)

• T-parameters (also called transfer scattering parameters)

(
b1
a1

)

=

(
T 11 T 12

T 21 T 22

)

·
(
a2
b2

)

(19.14)

Note that this is only one of two different definitions for T-parameters appearing in literature!
When connecting cascaded twoports it is possible to compute the resulting transfer scattering
parameters by the following equation.

T = T1 ·T2 (19.15)

According to Janusz A. Dobrowolski [91] the following table contains the matrix transformation
formulas.

S T

S
S11 S12

S21 S22

T12

T22

∆T

T22

1

T22

−T21

T22

T

−∆S

S21

S11

S21

−S22

S21

1

S21

T11 T12

T21 T22

Mixed Two-Port matrix conversions

Sometimes it may be useful to have a twoport matrix representation based on signal waves in
a representation based on voltage and current and the other way around. There are two more
parameters involved in this case: The reference impedance at port 1 (denoted as Z1) and the
reference impedance at port 2 (denoted as Z2).
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Converting from scattering parameters to chain parameters results in

A11 =
(1− S22) · (Z∗

1 + Z1 ·S11) + Z1 ·S12 ·S21

2 ·S21 ·
√

Re (Z1) ·Re (Z2)
(19.16)

A12 =
(Z∗

1 + Z1 ·S11) · (Z∗
2 + Z2 ·S22)− Z1 ·Z2 ·S12 ·S21

2 ·S21 ·
√

Re (Z1) ·Re (Z2)
(19.17)

A21 =
(1− S11) · (1− S22)− S12 ·S21

2 ·S21 ·
√

Re (Z1) ·Re (Z2)
(19.18)

A22 =
(1− S11) · (Z∗

2 + Z2 ·S22) + Z2 ·S12 ·S21

2 ·S21 ·
√

Re (Z1) ·Re (Z2)
(19.19)

Converting from chain parameters to scattering parameters results in

S11 =
A11 ·Z2 +A12 −A21 ·Z∗

1 ·Z2 −A22 ·Z∗
1

A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1
(19.20)

S12 =
∆A · 2 ·

√

Re (Z1) ·Re (Z2)

A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1
(19.21)

S21 =
2 ·
√

Re (Z1) ·Re (Z2)

A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1
(19.22)

S22 =
−A11 ·Z∗

2 +A12 −A21 ·Z1 ·Z∗
2 +A22 ·Z1

A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1
(19.23)

Converting from scattering parameters to hybrid parameters results in

H11 =
(Z∗

1 + Z1 ·S11) · (Z∗
2 + Z2 ·S22)− Z1 ·Z2 ·S12 ·S21

(1− S11) · (Z∗
2 + Z2 ·S22) + Z2 ·S12 ·S21

(19.24)

H12 =
2 ·S12 ·

√

Re (Z1) ·Re (Z2)

(1− S11) · (Z∗
2 + Z2 ·S22) + Z2 ·S12 ·S21

(19.25)

H21 =
−2 ·S21 ·

√

Re (Z1) ·Re (Z2)

(1− S11) · (Z∗
2 + Z2 ·S22) + Z2 ·S12 ·S21

(19.26)

H22 =
(1− S11) · (1− S22)− S12 ·S21

(1− S11) · (Z∗
2 + Z2 ·S22) + Z2 ·S12 ·S21

(19.27)

Converting from hybrid parameters to scattering parameters results in

S11 =
(H11 − Z∗

1 ) · (1 + Z2 ·H22)− Z2 ·H12 ·H21

(H11 + Z1) · (1 + Z2 ·H22)− Z2 ·H12 ·H21
(19.28)

S12 =
2 ·H12 ·

√

Re (Z1) ·Re (Z2)

(H11 + Z1) · (1 + Z2 ·H22)− Z2 ·H12 ·H21
(19.29)

S21 =
−2 ·H21 ·

√

Re (Z1) ·Re (Z2)

(H11 + Z1) · (1 + Z2 ·H22)− Z2 ·H12 ·H21
(19.30)

S22 =
(H11 + Z1) · (1− Z∗

2 ·H22) + Z∗
2 ·H12 ·H21

(H11 + Z1) · (1 + Z2 ·H22)− Z2 ·H12 ·H21
(19.31)
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Converting from scattering parameters to the second type of hybrid parameters results in

G11 =
(1− S11) · (1− S22)− S12 ·S21

(1− S22) · (Z∗
1 + Z1 ·S11) + Z1 ·S12 ·S21

(19.32)

G12 =
−2 ·S12 ·

√

Re (Z1) ·Re (Z2)

(1− S22) · (Z∗
1 + Z1 ·S11) + Z1 ·S12 ·S21

(19.33)

G21 =
2 ·S21 ·

√

Re (Z1) ·Re (Z2)

(1− S22) · (Z∗
1 + Z1 ·S11) + Z1 ·S12 ·S21

(19.34)

G22 =
(Z∗

1 + Z1 ·S11) · (Z∗
2 + Z2 ·S22) + Z1 ·Z2 ·S12 ·S21

(1− S22) · (Z∗
1 + Z1 ·S11) + Z1 ·S12 ·S21

(19.35)

Converting from the second type of hybrid parameters to scattering parameters results in

S11 =
(1−G11 ·Z∗

1 ) · (G22 + Z2) + Z∗
1 ·G12 ·G21

(1 +G11 ·Z1) · (G22 + Z2)− Z1 ·G12 ·G21
(19.36)

S12 =
−2 ·G12 ·

√

Re (Z1) ·Re (Z2)

(1 +G11 ·Z1) · (G22 + Z2)− Z1 ·G12 ·G21
(19.37)

S21 =
2 ·G21 ·

√

Re (Z1) ·Re (Z2)

(1 +G11 ·Z1) · (G22 + Z2)− Z1 ·G12 ·G21
(19.38)

S22 =
(1 +G11 ·Z1) · (G22 − Z∗

2 )− Z1 ·G12 ·G21

(1 +G11 ·Z1) · (G22 + Z2)− Z1 ·G12 ·G21
(19.39)

Converting from scattering parameters to admittance parameters results in

Y11 =
(1− S11) · (Z∗

2 + Z2 ·S22) + Z2 ·S12 ·S21

(Z∗
1 + Z1 ·S11) · (Z∗

2 + Z2 ·S22)− Z1 ·Z2 ·S12 ·S21
(19.40)

Y12 =
−2 ·S12 ·

√

Re (Z1) ·Re (Z2)

(Z∗
1 + Z1 ·S11) · (Z∗

2 + Z2 ·S22)− Z1 ·Z2 ·S12 ·S21
(19.41)

Y21 =
−2 ·S21 ·

√

Re (Z1) ·Re (Z2)

(Z∗
1 + Z1 ·S11) · (Z∗

2 + Z2 ·S22)− Z1 ·Z2 ·S12 ·S21
(19.42)

Y22 =
(1− S22) · (Z∗

1 + Z1 ·S11) + Z1 ·S12 ·S21

(Z∗
1 + Z1 ·S11) · (Z∗

2 + Z2 ·S22) + Z1 ·Z2 ·S12 ·S21
(19.43)

Converting from admittance parameters to scattering parameters results in

S11 =
(1− Y11 ·Z∗

1 ) · (1 + Y22 ·Z2) + Y12 ·Z∗
1 ·Y21 ·Z2

(1 + Y11 ·Z1) · (1 + Y22 ·Z2)− Y12 ·Z1 ·Y21 ·Z2
(19.44)

S12 =
−2 ·Y12 ·

√

Re (Z1) ·Re (Z2)

(1 + Y11 ·Z1) · (1 + Y22 ·Z2)− Y12 ·Z1 ·Y21 ·Z2
(19.45)

S21 =
−2 ·Y21 ·

√

Re (Z1) ·Re (Z2)

(1 + Y11 ·Z1) · (1 + Y22 ·Z2)− Y12 ·Z1 ·Y21 ·Z2
(19.46)

S22 =
(1 + Y11 ·Z1) · (1− Y22 ·Z∗

2 ) + Y12 ·Z1 ·Y21 ·Z∗
2

(1 + Y11 ·Z1) · (1 + Y22 ·Z2)− Y12 ·Z1 ·Y21 ·Z2
(19.47)
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Converting from scattering parameters to impedance parameters results in

Z11 =
(Z∗

1 + Z1 ·S11) · (1− S22) + Z1 ·S12 ·S21

(1− S11) · (1− S22)− S12 ·S21
(19.48)

Z12 =
2 ·S12 ·

√

Re (Z1) ·Re (Z2)

(1− S11) · (1− S22)− S12 ·S21
(19.49)

Z21 =
2 ·S21 ·

√

Re (Z1) ·Re (Z2)

(1− S11) · (1− S22)− S12 ·S21
(19.50)

Z22 =
(1− S11) · (Z∗

2 + Z2 ·S22) + Z2 ·S12 ·S21

(1− S11) · (1− S22)− S12 ·S21
(19.51)

Converting from impedance parameters to scattering parameters results in

S11 =
(Z11 − Z∗

1 ) · (Z22 + Z2)− Z12 ·Z21

(Z11 + Z1) · (Z22 + Z2)− Z12 ·Z21
(19.52)

S12 =
2 ·Z12 ·

√

Re (Z1) ·Re (Z2)

(Z11 + Z1) · (Z22 + Z2)− Z12 ·Z21
(19.53)

S21 =
2 ·Z21 ·

√

Re (Z1) ·Re (Z2)

(Z11 + Z1) · (Z22 + Z2)− Z12 ·Z21
(19.54)

S22 =
(Z11 + Z1) · (Z22 − Z∗

2 )− Z12 ·Z21

(Z11 + Z1) · (Z22 + Z2)− Z12 ·Z21
(19.55)

Two-Port parameters of passive devices

Basically the twoport parameters of passive twoports can be determined using Kirchhoff’s voltage
law and Kirchhoff’s current law or by applying the definition equations of the twoport parameters.
This has been done [92] for some example circuits.

• T-topology

Z2

Z1 Z3

Z =

[
Z1 + Z2 Z2

Z2 Z2 + Z3

]

• π-topology

1 3YY

Y2

Y =

[
Y1 + Y2 −Y2

−Y2 Y2 + Y3

]

• symmetric T-bridge
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Z2

Z1

Z3

Z1

Z =






Z2
1 + Z1 ·Z3

2 ·Z1 + Z3
+ Z2

Z2
1

2 ·Z1 + Z3
+ Z2

Z2
1

2 ·Z1 + Z3
+ Z2

Z2
1 + Z1 ·Z3

2 ·Z1 + Z3
+ Z2






• symmetric X-topology

2Z

1Z 1Z

2Z

Z =
1

2

[
Z1 + Z2 Z1 − Z2

Z1 − Z2 Z1 + Z2

]

19.1.4 Calculating Power

A component with y-parameter matrix Y (or z-parameter matrix Z) and node voltage vector U
(or node current vector I) consumes the apparent power as follows:

S =
1

2
·UT · I∗ (19.56)

=
1

2
·UT ·Y ∗ ·U∗ =

1

2

∑

m

∑

n

Um ·Y ∗
mn ·U∗

n (19.57)

=
1

2
· IT ·ZT · I∗ =

1

2

∑

m

∑

n

Im ·Znm · I∗n (19.58)

(19.59)

The factor 1
2 is to convert peak values to effective values. The current is positive if it flows into

the component. The real part of S is the power dissipated by the component. If it’s negative
the component is a source. In Harmonic Balance simulation all harmonics must be summed up
(Parseval’s theorem). E.g. this means, that if a DC current is also flowing through the component,
the total power Ptot is the AC power plus the DC power:

Ptot =
1

2
·UT

AC ·Y ∗ ·U∗
AC + UT

DC ·Re(Y ) ·UDC (19.60)

The power dissipated by a component with s-parameter matrix S is as follows:

Pdiss = a∗T ·
(
E − S∗T ·S

)
· a (19.61)
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19.2 Solving linear equation systems

When dealing with non-linear networks the number of equation systems to be solved depends on
the required precision of the solution and the average necessary iterations until the solution is
stable. This emphasizes the meaning of the solving procedures choice for different problems.

The equation systems
[A] · [x] = [z] (19.62)

solution can be written as
[x] = [A]−1 · [z] (19.63)

19.2.1 Matrix inversion

The elements βµν of the inverse of the matrix A are

βµν =
Aµν

detA
(19.64)

whereas Aµν is the matrix elements aµν cofactor. The cofactor is the sub determinant (i.e. the
minor) of the element aµν multiplied with (−1)µ+ν . The determinant of a square matrix can be
recursively computed by either of the following equations.

detA =

n∑

µ=1

aµν ·Aµν using the ν-th column (19.65)

detA =

n∑

ν=1

aµν ·Aµν using the µ-th row (19.66)

This method is called the Laplace expansion. In order to save computing time the row or column
with the most zeros in it is used for the expansion expressed in the above equations. A sub
determinant (n − 1)-th order of a matrix’s element aµν of n-th order is the determinant which
is computed by canceling the µ-th row and ν-th column. The following example demonstrates
calculating the determinant of a 4th order matrix with the elements of the 3rd row.

∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣
∣
∣
∣
∣
∣
∣
∣

= a31

∣
∣
∣
∣
∣
∣

a12 a13 a14
a22 a23 a24
a42 a43 a44

∣
∣
∣
∣
∣
∣

− a32

∣
∣
∣
∣
∣
∣

a11 a13 a14
a21 a23 a24
a41 a43 a44

∣
∣
∣
∣
∣
∣

(19.67)

+ a33

∣
∣
∣
∣
∣
∣

a11 a12 a14
a21 a22 a24
a41 a42 a44

∣
∣
∣
∣
∣
∣

− a34

∣
∣
∣
∣
∣
∣

a11 a12 a13
a21 a22 a23
a41 a42 a43

∣
∣
∣
∣
∣
∣

This recursive process for computing the inverse of a matrix is most easiest to be implemented
but as well the slowest algorithm. It requires approximately n! operations.

19.2.2 Gaussian elimination

The Gaussian algorithm for solving a linear equation system is done in two parts: forward elimi-
nation and backward substitution. During forward elimination the matrix A is transformed into
an upper triangular equivalent matrix. Elementary transformations due to an equation system
having the same solutions for the unknowns as the original system.

A =








a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann







→








a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...
0 . . . 0 ann








(19.68)
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The modifications applied to the matrix A in order to achieve this transformations are limited to
the following set of operations.

• multiplication of a row with a scalar factor

• addition or subtraction of multiples of rows

• exchanging two rows of a matrix

Step 1: Forward elimination

The transformation of the matrix A is done in n− 1 elimination steps. The new matrix elements
of the k-th step with k = 1, . . . , n− 1 are computed with the following recursive formulas.

aij = 0 i = k + 1, . . . , n and j = k (19.69)

aij = aij − akj · aik/akk i = k + 1, . . . , n and j = k + 1, . . . , n (19.70)

zi = zi − zk · aik/akk i = k + 1, . . . , n (19.71)

The triangulated matrix can be used to calculate the determinant very easily. The determinant of
a triangulated matrix is the product of the diagonal elements. If the determinant detA is non-zero
the equation system has a solution. Otherwise the matrix A is singular.

detA = a11 · a22 · . . . · ann =
n∏

i=1

aii (19.72)

When using row and/or column pivoting the resulting determinant may differ in its sign and must
be multiplied with (−1)m whereas m is the number of row and column substitutions.

Finding an appropriate pivot element

The Gaussian elimination fails if the pivot element akk turns to be zero (division by zero). That is
why row and/or column pivoting must be used before each elimination step. If a diagonal element
akk = 0, then exchange the pivot row k with the row m > k having the coefficient with the largest
absolute value. The new pivot row is m and the new pivot element is going to be amk. If no such
pivot row can be found the matrix is singular.

Total pivoting looks for the element with the largest absolute value within the matrix and ex-
changes rows and columns. When exchanging columns in equation systems the unknowns get
reordered as well. For the numerical solution of equation systems with Gaussian elimination
column pivoting is sufficient.

In order to improve numerical stability pivoting should also be applied if akk 6= 0 because division
by small diagonal elements propagates numerical (rounding) errors. This appears especially with
poorly conditioned (the two dimensional case: two lines with nearly the same slope) equation
systems.

Step 2: Backward substitution

The solutions in the vector x are obtained by backward substituting into the triangulated matrix.
The elements of the solution vector x are computed by the following recursive equations.

xn =
zn
ann

(19.73)

xi =
zi
aii
−

n∑

k=i+1

xk ·
aik
aii

i = n− 1, . . . , 1 (19.74)
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The forward elimination in the Gaussian algorithm requires approximately n3/3, the backward
substitution n2/2 operations.

19.2.3 Gauss-Jordan method

The Gauss-Jordan method is a modification of the Gaussian elimination. In each k-th elimination
step the elements of the k-th column get zero except the diagonal element which gets 1. When
the right hand side vector z is included in each step it contains the solution vector x afterwards.

The following recursive formulas must be applied to get the new matrix elements for the k-th
elimination step. The k-th row must be computed first.

akj = akj/akk j = 1 . . . n (19.75)

zk = zk/akk (19.76)

Then the other rows can be calculated with the following formulas.

aij = aij − aik · akj j = 1, . . . , n and i = 1, . . . , n with i 6= k (19.77)

zi = zi − aik · zk i = 1, . . . , n with i 6= k (19.78)

Column pivoting may be necessary in order to avoid division by zero. The solution vector x is not
harmed by row substitutions. When the Gauss-Jordan algorithm has been finished the original
matrix has been transformed into the identity matrix. If each operation during this process is
applied to an identity matrix the resulting matrix is the inverse matrix of the original matrix.
This means that the Gauss-Jordan method can be used to compute the inverse of a matrix.

Though this elimination method is easy to implement the number of required operations is larger
than within the Gaussian elimination. The Gauss-Jordan method requires approximately N3/2+
N2/2 operations.

19.2.4 LU decomposition

LU decomposition (decomposition into a lower and upper triangular matrix) is recommended
when dealing with equation systems where the matrix A does not alter but the right hand side
(the vector z) does. Both the Gaussian elimination and the Gauss-Jordan method involve both
the right hand side and the matrix in their algorithm. Consecutive solutions of an equation system
with an altering right hand side can be computed faster with LU decomposition.

The LU decomposition splits a matrix A into a product of a lower triangular matrix L with an
upper triangular matrix U.

A = LU with L =









l11 0 . . . 0

l21 l22
. . .

...
...

. . . 0
ln1 . . . . . . lnn









and U =









u11 u12 . . . u1n

0 u22

...
...

. . .
. . .

...
0 . . . 0 unn









(19.79)

The algorithm for solving the linear equation system Ax = z involves three steps:

• LU decomposition of the coefficient matrix A
→ Ax = LUx = z

• introduction of an (unknown) arbitrary vector y and solving the equation system Ly = z by
forward substitution
→ y = Ux = L−1z
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• solving the equation system Ux = y by backward substitution
→ x = U−1y

The decomposition of the matrix A into a lower and upper triangular matrix is not unique. The
most important decompositions, based on Gaussian elimination, are the Doolittle, the Crout and
the Cholesky decomposition.

If pivoting is necessary during these algorithms they do not decompose the matrix A but the
product with an arbitrary matrix PA (a permutation of the matrix A). When exchanging rows
and columns the order of the unknowns as represented by the vector z changes as well and must
be saved during this process for the forward substitution in the algorithms second step.

Step 1: LU decomposition

Using the decomposition according to Crout the coefficients of the L and U matrices can be stored
in place the original matrix A. The upper triangular matrix U has the form

U =









1 u12 . . . u1n

0 1
...

...
. . .

. . . un−1,n

0 . . . 0 1









(19.80)

The diagonal elements ujj are ones and thus the determinant detU is one as well. The elements of
the new coefficient matrix LU for the k-th elimination step with k = 1, . . . , n compute as follows:

ujk =
1

ljj

(

ajk −
j−1
∑

r=1

ljrurk

)

j = 1, . . . , k − 1 (19.81)

ljk = ajk −
k−1∑

r=1

ljrurk j = k, . . . , n (19.82)

Pivoting may be necessary as you are going to divide by the diagonal element ljj .

Step 2: Forward substitution

The solutions in the arbitrary vector y are obtained by forward substituting into the triangulated
L matrix. At this stage you need to remember the order of unknowns in the vector z as changed by
pivoting. The elements of the solution vector y are computed by the following recursive equation.

yi =
zi
lii
−

i−1∑

k=1

yk ·
lik
lii

i = 1, . . . , n (19.83)

Step 3: Backward substitution

The solutions in the vector x are obtained by backward substituting into the triangulated U
matrix. The elements of the solution vector x are computed by the following recursive equation.

xi = yi −
n∑

k=i+1

xk ·uik i = n, . . . , 1 (19.84)

The division by the diagonal elements of the matrix U is not necessary because of Crouts definition
in eq. (19.80) with uii = 1.

The LU decomposition requires approximately n3/3 + n2 − n/3 operations for solving a linear
equation system. For M consecutive solutions the method requires n3/3+Mn2−n/3 operations.
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19.2.5 QR decomposition

Singular matrices actually having a solution are over- or under-determined. These types of matrices
can be handled by three different types of decompositions: Householder, Jacobi (Givens rotation)
and singular value decomposition. Householder decomposition factors a matrix A into the product
of an orthonormal matrix Q and an upper triangular matrix R, such that:

A = Q ·R (19.85)

The Householder decomposition is based on the fact that for any two different vectors, v and w,
with ‖v‖ = ‖w‖, i.e. different vectors of equal length, a reflection matrix H exists such that:

H · v = w (19.86)

To obtain the matrix H , the vector u is defined by:

u =
v − w

‖v − w‖ (19.87)

The matrix H defined by
H = I − 2 ·u ·uT (19.88)

is then the required reflection matrix.

The equation system
A ·x = z is transformed into QR ·x = z (19.89)

With QT ·Q = I this yields

QTQR ·x = QT z → R ·x = QT z (19.90)

Since R is triangular the equation system is solved by a simple matrix-vector multiplication on
the right hand side and backward substitution.

Step 1: QR decomposition

Starting with A1 = A, let v1 = the first column of A1, and wT
1 = (±‖v1‖, 0, . . . 0), i.e. a column

vector whose first component is the norm of v1 with the remaining components equal to 0. The
Householder transformation H1 = I − 2 ·u1 ·uT

1 with u1 = v1 − w1/‖v1 − w1‖ will turn the first
column of A1 into w1 as with H1 ·A1 = A2. At each stage k, vk = the kth column of Ak on and
below the diagonal with all other components equal to 0, and wk’s kth component equals the norm
of vk with all other components equal to 0. Letting Hk ·Ak = Ak+1, the components of the kth
column of Ak+1 below the diagonal are each 0. These calculations are listed below for each stage
for the matrix A.

v1 =








a11
a21
...

an1








w1 =








±‖v1‖
0
...
0








u1 =
v1 − w1

‖v1 − w1‖
=








u11

u21

...
un1








H1 = I − 2 ·u1 ·uT
1 → H1 ·A1 = A2 =








a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...
0 an2 . . . ann








(19.91)

With this first step the upper left diagonal element of the R matrix, a11 = ±‖v1‖, has been
generated. The elements below are zeroed out. Since H1 can be generated from u1 stored in place
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of the first column of A1 the multiplication H1 ·A1 can be performed without actually generating
H1.

v2 =








0
a22
...

an2








w1 =








0
±‖v2‖

...
0








u2 =
v2 − w2

‖v2 − w2‖
=








0
u22

...
un2








H2 = I − 2 ·u2 ·uT
2 → H2 ·A2 = A3 =








a11 a12 . . . a1n
0 a22 . . . a2n
... 0

. . .
...

0 0 ann








(19.92)

These elimination steps generate the R matrix because Q is orthonormal, i.e.

A = Q ·R → QTA = QTQ ·R → QTA = R

→ Hn · . . . ·H2 ·H1 ·A = R
(19.93)

After n elimination steps the original matrix A contains the upper triangular matrix R, except for
the diagonal elements which can be stored in some vector. The lower triangular matrix contains
the Householder vectors u1 . . . un.

A =








u11 r12 . . . r1n
u21 u22 r2n
...

...
. . .

...
un1 un2 . . . unn








Rdiag =








r11
r22
...

rnn








(19.94)

With QT = H1 ·H2 · . . . ·Hn this representation contains both the Q and R matrix, in a packed
form, of course: Q as a composition of Householder vectors and R in the upper triangular part
and its diagonal vector Rdiag.

Step 2: Forming the new right hand side

In order to form the right hand side QT z let remember eq. (19.88) denoting the reflection matrices
used to compute QT .

Hn · . . . ·H2 ·H1 = QT (19.95)

Thus it is possible to replace the original right hand side vector z by

Hn · . . . ·H2 ·H1 · z = QT · z (19.96)

which yields for each k = 1 . . . n the following expression:

Hk · z =
(
I − 2 ·uk ·uT

k

)
· z = z − 2 ·uk ·uT

k · z (19.97)

The latter uT
k · z is a simple scalar product of two vectors. Performing eq. (19.97) for each

Householder vector finally results in the new right hand side vector QT z.

Step 3: Backward substitution

The solutions in the vector x are obtained by backward substituting into the triangulated R
matrix. The elements of the solution vector x are computed by the following recursive equation.

xi =
zi
rii
−

n∑

k=i+1

xk ·
rik
rii

i = n, . . . , 1 (19.98)
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Motivation

Though the QR decomposition has an operation count of 2n3 + 3n2 (which is about six times
more than the LU decomposition) it has its advantages. The QR factorization method is said to
be unconditional stable and more accurate. Also it can be used to obtain the minimum-norm (or
least square) solution of under-determined equation systems.

R2
R=10 Ohm

I1
I=100 mA

R1
R=10 Ohm I2

I=100 mA

Node2
Node1 Node3

Figure 19.3: circuit with singular modified nodal analysis matrix

The circuit in fig. 19.3 has the following MNA representation:

Ax =





1
R2

0 0

0 1
R1

− 1
R1

0 − 1
R1

1
R1



 ·





V1

V2

V3



 =





0.1 0 0
0 0.1 −0.1
0 −0.1 0.1



 ·





V1

V2

V3



 =





I1
−I1
I2



 =





0.1
−0.1
0.1



 = z

(19.99)
The second and third row of the matrix A are linear dependent and the matrix is singular because
its determinant is zero. Depending on the right hand side z, the equation system has none or
unlimited solutions. This is called an under-determined system. The discussed QR decomposition
easily computes a valid solution without reducing accuracy. The LU decomposition would probably
fail because of the singularity.

QR decomposition with column pivoting

Least norm problem

With some more effort it is possible to obtain the minimum-norm solution of this problem. The
algorithm as described here would probably yield the following solution:

x =





V1

V2

V3



 =





1
0
1



 (19.100)

This is one out of unlimited solutions. The following short description shows how it is possible to
obtain the minimum-norm solution. When decomposing the transposed problem

AT = Q ·R (19.101)

the minimum-norm solution x̂ is obtained by forward substitution of

RT ·x = z (19.102)

and multiplying the result with Q.
x̂ = Q ·x (19.103)
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In the example above this algorithm results in a solution vector with the least vector norm possible:

x̂ =





V1

V2

V3



 =





1
−0.5
0.5



 (19.104)

This algorithm outline is also sometimes called LQ decomposition because of RT being a lower
triangular matrix used by the forward substitution.

19.2.6 Singular value decomposition

Very bad conditioned (ratio between largest and smallest eigenvalue) matrices, i.e. nearly singular,
or even singular matrices (over- or under-determined equation systems) can be handled by the
singular value decomposition (SVD). This type of decomposition is defined by

A = U ·Σ ·V H (19.105)

where the U matrix consists of the orthonormalized eigenvectors associated with the eigenvalues
of A ·AH , V consists of the orthonormalized eigenvectors of AH ·A and Σ is a matrix with the
singular values of A (non-negative square roots of the eigenvalues of AH ·A) on its diagonal and
zeros otherwise.

Σ =








σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn








(19.106)

The singular value decomposition can be used to solve linear equation systems by simple substi-
tutions

A ·x = z (19.107)

U ·Σ ·V H ·x = z (19.108)

Σ ·V H ·x = UH · z (19.109)

since
UH ·U = V H ·V = V ·V H = I (19.110)

To obtain the decomposition stated in eq. (19.105) Householder vectors are computed and their
transformations are applied from the left-hand side and right-hand side to obtain an upper bidi-
agonal matrix B which has the same singular values as the original A matrix because all of the
transformations introduced are orthogonal.

U
H (n)
B · . . . ·UH (1)

B ·A ·V (1)
B · . . . ·V (n−2)

B = UH
B ·A ·VB = B(0) (19.111)

Specifically, U
H (i)
B annihilates the subdiagonal elements in column i and V

(j)
B zeros out the ap-

propriate elements in row j.

B(0) =










β1 δ2 0 · · · 0
0 β2 δ3 0 0
... 0

. . .
. . . 0

0 0 0 βn−1 δn
0 0 0 0 βn










(19.112)

Afterwards an iterative process (which turns out to be a QR iteration) is used to transform the
bidiagonal matrix B into a diagonal form by applying successive Givens transformations (therefore
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orthogonal as well) to the bidiagonal matrix. This iteration is said to have cubic convergence and
yields the final singular values of the matrix A.

B(0) → B(1) → . . .→ Σ (19.113)

B(k+1) =
(

S(k)
)H

·B(k) ·T (k) (19.114)

Each of the transformations applied to the bidiagonal matrix is also applied to the matrices UB

and V H
B which finally yield the U and V H matrices after convergence.

So far for the algorithm outline. Without the very details the following sections briefly describe
each part of the singular value decomposition.

Notation

Beforehand some notation marks are going to be defined.

• Conjugate transposed (or adjoint):

A→
(
AT
)∗

= (A∗)T = AH

• Euclidian norm:

‖x‖ =

√
√
√
√

n∑

i=1

xi ·x∗
1 =

√
√
√
√

n∑

i=1

|xi|2 =
√

|x1|2 + · · ·+ |xn|2 =
√
x ·xH

• Hermitian (or self adjoint):
A = AH

whereas AH denotes the conjugate transposed matrix of A. In the real case the matrix A is
then said to be “symmetric”.

• Unitary:
A ·AH = AH ·A = I

Real matrices A with this property are called “orthogonal”.

Householder reflector

A Householder matrix is an elementary unitary matrix that is Hermitian. Its fundamental use is
their ability to transform a vector x to a multiple of ~e1, the first column of the identity matrix.
The elementary Hermitian (i.e. the Householder matrix) is defined as

H = I − 2 ·u ·uH where uH ·u = 1 (19.115)

Beside excellent numerical properties, their application demonstrates their efficiency. If A is a
matrix, then

H ·A = A− 2 ·u ·uH ·A (19.116)

= A− 2 ·u ·
(
AH ·u

)H

and hence explicit formation and storage of H is not required. Also colums (or rows) can be
transformed individually exploiting the fact that uH ·A yields a scalar product for single columns
or rows.

259



Specific case In order to reduce a 4×4 matrix A to upper triangular form successive Householder
reflectors must be applied.

A =







a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44







(19.117)

In the first step the diagonal element a11 gets replaced and its below elements get annihilated by
the multiplication with an appropriate Householder vector, also the remaining right-hand columns
get modified.

u1 =







u11

u21

u31

u41







H1 = I − 2 ·u1 ·uH
1 → A1 = H1 ·A =








β1 a
(1)
12 a

(1)
13 a

(1)
14

0 a
(1)
22 a

(1)
23 a

(1)
24

0 a
(1)
32 a

(1)
33 a

(1)
34

0 a
(1)
42 a

(1)
43 a

(1)
44








(19.118)

This process must be repeated

u2 =







0
u22

u32

u42







H2 = I − 2 ·u2 ·uH
2 → A2 = H2 ·A1 =








β1 a
(2)
12 a

(2)
13 a

(2)
14

0 β2 a
(2)
23 a

(2)
24

0 0 a
(2)
33 a

(2)
34

0 0 a
(2)
43 a

(2)
44








(19.119)

u3 =







0
0
u33

u43







H3 = I − 2 ·u3 ·uH
3 → A3 = H3 ·A2 =








β1 a
(3)
12 a

(3)
13 a

(3)
14

0 β2 a
(3)
23 a

(3)
24

0 0 β3 a
(3)
34

0 0 0 a
(3)
44








(19.120)

u4 =







0
0
0
u44







H4 = I − 2 ·u4 ·uH
4 → A4 = H4 ·A3 =








β1 a
(4)
12 a

(4)
13 a

(4)
14

0 β2 a
(4)
23 a

(4)
24

0 0 β3 a
(4)
34

0 0 0 β4








(19.121)

until the matrix A contains an upper triangular matrix R. The matrix Q can be expressed as the
the product of the Householder vectors. The performed operations deliver

HH
4 ·HH

3 ·HH
2 ·HH

1 ·A = QH ·A = R → A = Q ·R (19.122)

since Q is unitary. The matrix Q itself can be expressed in terms of Hi using the following
transformation.

QH = HH
4 ·HH

3 ·HH
2 ·HH

1 (19.123)
(
QH
)H

=
(
HH

4 ·HH
3 ·HH

2 ·HH
1

)H
(19.124)

Q = H1 ·H2 ·H3 ·H4 (19.125)

The eqn. (19.123)-(19.125) are necessary to be mentioned only in case Q is not Hermitian, but
still unitary. Otherwise there is no difference computing Q or QH using the Householder vectors.
No care must be taken in choosing forward or backward accumulation.

General case In the general case it is necessary to find an elementary unitary matrix

H = I − τ ·u ·uH (19.126)
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that satisfies the following three conditions.

|τ |2 ·uH ·u = τ + τ∗ = 2 ·Re {τ} , HH ·x = γ · ‖x‖ ·~e1 , |γ| = 1 (19.127)

When choosing the elements uii = 1 it is possible the store the Householder vectors as well as the
upper triangular matrix R in the same storage of the matrix A. The Householder matrices Hi can
be completely restored from the Householder vectors.

A =







β1 a12 a13 a14
u21 β2 a23 a24
u31 u32 β3 a34
u41 u42 u43 β4







(19.128)

There exist several approaches to meet the conditions expressed in eq. (19.127). For fewer com-
putational effort it may be convenient to choose γ to be real valued. With the notation

HH ·x = HH ·







α
x2

x3

x4






=







β
0
0
0







(19.129)

one possibility is to define the following calculation rules.

ν = sign (Re {α}) · ‖x‖ (19.130)

τ =
α+ ν

ν
(19.131)

γ = −1 (19.132)

β = γ · ‖x‖ = −‖x‖ → real valued (19.133)

u =
x+ ν ·~e1
α+ ν

→ uii = 1 (19.134)

These definitions yield a complex τ , thus H is no more Hermitian but still unitary.

H = I − τ ·u ·uH → HH = I − τ∗ ·u ·uH (19.135)

Givens rotation

A Givens rotation is a plane rotation matrix. Such a plane rotation matrix is an orthogonal matrix
that is different from the identity matrix only in four elements.

M =


























1 0 · · · · · · 0

0
. . .

...
... 1

+c 0 · · · 0 +s
0 1 0
...

. . .
...

0 1 0
−s 0 · · · 0 +c

1
...

...
. . . 0

0 · · · · · · 0 1


























(19.136)

The elements are usually choosen so that

R =

[
c s
−s c

]

c = cos θ, s = sin θ → |c|2 + |s|2 = 1 (19.137)
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The most common use of such a plane rotation is to choose c and s such that for a given a and b

R =

[
c s
−s c

]

·
[
a
b

]

=

[
d
0

]

(19.138)

multiplication annihilates the lower vector entry. In such an application the matrix R is often
termed “Givens rotation” matrix. The following equations satisfy eq. (19.138) for a given a and b
exploiting the conditions given in eq. (19.137).

c =
±a

√

|a|2 + |b|2
and s =

±b
√

|a|2 + |b|2
(19.139)

d =

√

|a|2 + |b|2 (19.140)

Eigenvalues of a 2-by-2 matrix

The eigenvalues of a 2-by-2 matrix

A =

[
a b
c d

]

(19.141)

can be obtained directly from the quadratic formula. The characteristic polynomial is

det (A− µI) = det

[
a− µ b
c d− µ

]

= (a− µ) · (d− µ)− bc

0 = µ2 − (a+ d) ·µ+ (ad− bc)

(19.142)

The polymonial yields the two eigenvalues.

µ1,2 =
a+ d

2
±

√
(
a+ d

2

)2

+ bc− ad (19.143)

For a symmetric matrix A (i.e. b = c) eq.(19.143) can be rewritten to:

µ1,2 = e+ d±
√

e2 + b2 with e =
a− d

2
(19.144)

Step 1: Bidiagonalization

In the first step the original matrix A is bidiagonalized by the application of Householder reflections
from the left and right hand side. The matrices UH

B and VB can each be determined as a product
of Householder matrices.

U
H (n)
B · . . . ·UH (1)

B
︸ ︷︷ ︸

UH
B

·A · V (1)
B · . . . ·V (n−2)

B
︸ ︷︷ ︸

VB

= UH
B ·A ·VB = B(0) (19.145)

Each of the required Householder vectors are created and applied as previously defined. Suppose
a n× n matrix, then applying the first Householder vector from the left hand side eliminates the
first column and yields

U
H (1)
B ·A =











β1 a
(1)
12 a

(1)
13 · · · a

(1)
1n

u21 a
(1)
22 a

(1)
23 a

(1)
2n

u31 a
(1)
32 a

(1)
33 a

(1)
3n

...
. . .

...

un1 a
(1)
n2 a

(1)
n3 · · · a

(1)
nn











(19.146)
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Next, a Householder vector is applied from the right hand side to annihilate the first row.

U
H (1)
B ·A ·V (1)

B =











β1 δ2 v13 · · · v1n

u21 a
(2)
22 a

(2)
23 a

(2)
2n

u31 a
(2)
32 a

(2)
33 a

(2)
3n

...
. . .

...

un1 a
(2)
n2 a

(2)
n3 · · · a

(2)
nn











(19.147)

Again, a Householder vector is applied from the left hand side to annihilate the second column.

U
H (2)
B ·UH (1)

B ·A ·V (1)
B =











β1 δ2 v13 · · · v1n

u21 β2 a
(3)
23 a

(3)
2n

u31 u32 a
(3)
33 a

(3)
3n

...
...

. . .
...

un1 un2 a
(3)
n3 · · · a

(3)
nn











(19.148)

This process is continued until

UH
B ·A ·VB =











β1 δ2 v13 · · · v1n
u21 β2 δ3 v2n

u31 u32
. . .

. . .
...

... βn−1 δn
un1 un2 un3 βn











(19.149)

For each of the Householder transformations from the left and right hand side the appropiate τ
values must be stored in separate vectors.

Step 2: Matrix reconstructions

Using the Householder vectors stored in place of the original A matrix and the appropiate τ value
vectors it is now necessary to unpack the UB and V H

B matrices. The diagonal vector β and the
super-diagonal vector δ can be saved in separate vectors previously. Thus the UB matrix can be
unpacked in place of the A matrix and the V H

B matrix is unpacked in a separate matrix.

There are two possible algorithms for computing the Householder product matrices, i.e. forward
accumulation and backward accumulation. Both start with the identity matrix which is succes-
sively multiplied by the Householder matrices either from the left or right.

UH
B = HH

Un · . . . ·HH
U2 ·HH

U1 · I (19.150)

→ UB = I ·HUn · . . . ·HU2 ·HU1 (19.151)

Recall that the leading portion of each Householder matrix is the identity except the first. Thus,
at the beginning of backward accumulation, UB is “mostly the identity” and it gradually becomes
full as the iteration progresses. This pattern can be exploited to reduce the number of required
flops. In contrast, UH

B is full in forward accumulation after the first step. For this reason, backward
accumulation is cheaper and the strategy of choice. When unpacking the UB matrix in place of
the original A matrix it is necessary to choose backward accumulation anyway.

VB = I ·HH
V 1 ·HH

V 2 · . . . ·HH
V n (19.152)

→ V H
B = I ·HV n · . . . ·HV 2 ·HV 1 (19.153)

Unpacking the V H
B matrix is done in a similar way also performing successive Housholder matrix

multiplications using backward accumulation.
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Step 3: Diagonalization – shifted QR iteration

At this stage the matrices UB and V H
B exist in unfactored form. Also there are the diagonal vector

β and the super-diagonal vector δ. Both vectors are real valued. Thus the following algorithm
can be applied even though solving a complex equation system.

B(0) =










β1 δ2 0 · · · 0
0 β2 δ3 0 0
... 0

. . .
. . . 0

0 0 0 βn−1 δn
0 0 0 0 βn










(19.154)

The remaining problem is thus to compute the SVD of the matrix B. This is done applying an
implicit-shift QR step to the tridiagonal matrix T = BTB which is a symmetric. The matrix T is
not explicitely formed that is why a QR iteration with implicit shifts is applied.

After bidiagonalization we have a bidiagonal matrix B(0):

B(0) = UH
B ·A ·VB (19.155)

The presented method turns B(k) into a matrix B(k+1) by applying a set of orthogonal transforms

B(k+1) = SH ·B(k) ·T (19.156)

The orthogonal matrices S and T are chosen so that B(k+1) is also a bidiagonal matrix, but with
the super-diagonal elements smaller than those of B(k). The eq.(19.156) is repeated until the
non-diagonal elements of B(k+1) become smaller than ε and can be disregarded.

The matrices S and T are constructed as

S = S1 ·S2 ·S3 · . . . ·Sn (19.157)

and similarly T where Ti and Si are matrices of simple rotations as given in eq.(19.136). Both T
and S are products of Givens rotations and thus perform orthogonal transforms.

The left multiplication of B(k) by SH
i replaces two rows of B(k) by their linear combinations. The

rest of B(k) is unaffected. Right multiplication of B(k) by Ti similarly changes only two columns
of B(k).

A matrix T2 is chosen the way that

B(k+1) = TH
2 ·

(

B(k)
)H

·B(k) ·T2 (19.158)

is a QR transform with a shift. Note that multiplying B(k) by T2 gives rise to a non-zero element
which is below the main diagonal. A new rotation angle is then chosen so that multiplication by
SH
2 gets rid of that elemnent. But this will create a non-zero element which is right beside the

super-diagonal. T3 is made to make it disappear, but this leads to another non-zero element below
the diagonal, etc.

In the end, Sn the matrix SHBT becomes bidiagonal again. However, because of a special choice
of T2 (QR algorithm), its non-diagonal elements are smaller than those of B.

For a single QR step the computation of the eigenvalue µ of the 2-by-2 submatrix of Tn = BT
n ·Bn

that is closer to the t22 matrix element is required.

Tn =

[
t11 t12
t21 t22

]

= BT
n ·Bn =

[
βn−1 0
δn βn

]

·
[
βn−1 δn
0 βn

]

(19.159)

=

[
β2
n−1 δn ·βn−1

δn ·βn−1 β2
n + δ2n

]

(19.160)

264



The required eigenvalue is called Wilkinson shift, see eq.(19.144) for details. The sign for the
eigenvalue is chosen such that it is closer to t22.

µ = t22 + d− sign(d) ·
√

d2 + t212 (19.161)

= t22 + d− t212 · sign
(

d

t12

)

·

√
(

d

t12

)2

+ 1 (19.162)

whereas

d =
t11 − t22

2
(19.163)

Step 4: Solving the equation system

It is straight-forward to solve a given equation system once having the singular value decomposition
computed.

A ·x = z (19.164)

UΣV H ·x = z (19.165)

ΣV H ·x = UH · z (19.166)

V H ·x = Σ−1UH · z (19.167)

x = V Σ−1UH · z (19.168)

The inverse of the diagonal matrix Σ yields

Σ−1 =








1/σ1 0 · · · 0
0 1/σ2 · · · 0
...

...
. . .

...
0 0 · · · 1/σn








(19.169)

With vi being the i-th row of the matrix V , ui the i-th column of the matrix U and σi the i-th
singular value eq. (19.168) can be rewritten to

x =

n∑

i=1

uH
i · z
σi
· vi (19.170)

It must be mentioned that very small singular values σi corrupt the complete result. Such values
indicate (nearly) singular (ill-conditioned) matricesA. In such cases, the solution vector x obtained
by zeroing the small σi’s and then using equation (19.168) is better than direct-method solutions
(such as LU decomposition or Gaussian elimination) and the SVD solution where the small σi’s
are left non-zero. It may seem paradoxical that this can be so, since zeroing a singular value
corresponds to throwing away one linear combination of the set of equations that is going to be
solved. The resolution of the paradox is that a combination of equations that is so corrupted by
roundoff error is thrown away precisely as to be at best useless; usually it is worse than useless
since it ”pulls” the solution vector way off towards infinity along some direction that is almost a
nullspace vector.

19.2.7 Jacobi method

This method quite simply involves rearranging each equation to make each variable a function of
the other variables. Then make an initial guess for each solution and iterate. For this method it
is necessary to ensure that all the diagonal matrix elements aii are non-zero. This is given for the
nodal analysis and almostly given for the modified nodal analysis. If the linear equation system
is solvable this can always be achieved by rows substitutions.
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The algorithm for performing the iteration step k + 1 writes as follows.

x
(k+1)
i =

1

aii



zi −
i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k)
j



 for i = 1, . . . , n (19.171)

This has to repeated until the new solution vectors x(k+1) deviation from the previous one x(k) is
sufficiently small.

The initial guess has no effect on whether the iterative method converges or not, but with a good
initial guess (as possibly given in consecutive Newton-Raphson iterations) it converges faster (if
it converges). To ensure convergence the condition

n∑

j=1,j 6=i

|aij | ≤ |aii| for i = 1, . . . , n (19.172)

and at least one case
n∑

i=1,i6=j

|aij | ≤ |aii| (19.173)

must apply. If these conditions are not met, the iterative equations may still converge. If these
conditions are met the iterative equations will definitely converge.

Another simple approach to a convergence criteria for iterative algorithms is the Schmidt and v.
Mises criteria. √

√
√
√

n∑

i=1

n∑

j=1,j 6=i

∣
∣
∣
∣

aij
aii

∣
∣
∣
∣

2

< 1 (19.174)

19.2.8 Gauss-Seidel method

The Gauss-Seidel algorithm is a modification of the Jacobi method. It uses the previously com-
puted values in the solution vector of the same iteration step. That is why this iterative method
is expected to converge faster than the Jacobi method.

The slightly modified algorithm for performing the k + 1 iteration step writes as follows.

x
(k+1)
i =

1

aii



zi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j



 for i = 1, . . . , n (19.175)

The remarks about the initial guess x(0) as well as the convergence criteria noted in the section
about the Jacobi method apply to the Gauss-Seidel algorithm as well.

19.2.9 A comparison

Of course, there are many different algorithms for solving linear equation systems. The table
below shows a comparison of the most famous ones. In circuit simulations gaussian elimination or
LU decomposition are usually used. All the others are less fast and have no practical advantages.
The listings below show functions for these two algorithms. Gaussian elimination is a little bit
faster, whereas LU decomposition can solve very fast several matrices when the right-hand side
differs only.
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method precision application programming
effort

computing
complexity

notes

Laplace
expansion

numerical
errors

general straight
forward

n! very time
consuming

Gaussian
elimination

numerical
errors

general intermediate n3/3 +
n2/2

Gauss-Jordan numerical
errors

general intermediate n3/3 +
n2 − n/3

computes the
inverse besides

LU
decomposition

numerical
errors

general intermediate n3/3 +
n2 − n/3

useful for
consecutive

solutions

QR
decomposition

good general high 2n3 + 3n3

Singular value
decomposition

good general very high 2n3 + 4n3 ill-conditioned
matrices can be

handled

Jacobi very
good

diagonally
dominant
systems

easy n2 in each
iteration

step

possibly no
convergence

Gauss-Seidel very
good

diagonally
dominant
systems

easy n2 in each
iteration

step

possibly no
convergence

Listing 19.1: gaussian elimination algorithm in C

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // So l v e s the l i n e a r equa t i on system ”mat ∗ rVec = iVec ”
3 // by us ing Gaussian e l im i n a t i o n wi th column p i v o t i n g . Thus ,
4 // the row numbers in r e s u l t v e c t o r ”rVec” s t a y unchanged .
5 // Returns f a l s e i f no s o l u t i o n e x i s t s . Otherwise r e tu rn s t ru e and the
6 // s o l u t i o n i s in ”rVec ” . ”rVec” needs not to be f i l l e d w i th va l u e s b e f o r e .
7 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
8
9 bool solveRealEqnSys ( double ∗mat , double ∗ iVec , double ∗rVec , i n t S ize )

10 {
11 double d , tmp , ∗p1 , ∗p2 ;
12 i n t i , j , k , p ivot = −1;
13
14 // forward e l im i n a t i o n
15 f o r ( i =0; i<S ize ; i++) {
16
17 // search p i v o t e l ement
18 d = 0 . 0 ;
19 p1 = mat + i ;
20 f o r ( j=i ; j<S ize ; j++)
21 i f ( fab s ( p1 [ j ∗ S ize ] ) > d) {
22 d = fabs ( p1 [ j ∗ S ize ] ) ;
23 p ivot = j ;
24 }
25
26 i f (d < 1e−150)
27 return f a l s e ; // matr ix s i n g u l a r
28
29 i f ( p ivot != i ) {
30 // exchange rows in v e c t o r
31 d = iVec [ i ] ;
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32 iVec [ i ] = iVec [ p ivot ] ;
33 iVec [ p ivot ] = d ;
34
35 // exchange rows in matr ix
36 p1 = mat + i ∗ S ize ;
37 p2 = mat + p ivot ∗ S ize ;
38 f o r ( j=i ; j<S ize ; j++) {
39 d = p1 [ j ] ;
40 p1 [ j ] = p2 [ j ] ;
41 p2 [ j ] = d ;
42 }
43 }
44
45 // perform e l im i n a t i o n s t ep
46 p1 = mat + i ∗ S ize ;
47 tmp = p1 [ i ] ;
48 f o r ( j=i +1; j<S ize ; j++) {
49 p2 = mat + j ∗ S ize ;
50 d = p2 [ i ] / tmp ;
51 f o r (k=i +1; k<S ize ; k++)
52 p2 [ k ] −= d ∗ p1 [ k ] ;
53 iVec [ j ] −= d ∗ iVec [ i ] ;
54 }
55 }
56
57 // backward s u b s t i t u t i o n
58 f o r ( i=Size −1; i >= 0 ; i−−) {
59 d = iVec [ i ] ;
60 p1 = mat + i ∗ S ize ;
61 f o r ( j=i +1; j<S ize ; j++)
62 d −= p1 [ j ] ∗ rVec [ j ] ;
63 rVec [ i ] = d / p1 [ i ] ;
64 }
65
66 return true ;
67 }

Listing 19.2: LU decomposition algorithm in C

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // LU decompos i t i on wi th column p i v o t i n g ( from Golub and Van Loan ) .
3 // So l v e s the l i n e a r equa t i on system ”mat ∗ RESULT = vec ” . The r e s u l t i s
4 // in ” vec ” . The row numbers in r e s u l t v e c t o r ”rVec” s t a y unchanged .
5 // Returns f a l s e i f no s o l u t i o n e x i s t s . Otherwise r e tu rn s t ru e
6 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
7
8 bool solveComplexEqnSys ( complex ∗mat , complex ∗vec , i n t S ize )
9 {

10 double d ;
11 complex c , tmp , ∗p1 , ∗p2 ;
12 i n t i , j , k , p ivot = −1;
13
14 f o r ( i =0; i<S ize ; i++) { // go ing through every row
15
16 d = 0 . 0 ;
17 p1 = mat + i ;
18 f o r ( j=i ; j<S ize ; j++) // search p i v o t e l ement
19 i f (d < norm(p1 [ j ∗ S ize ] ) ) {
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20 d = norm(p1 [ j ∗ S ize ] ) ;
21 p ivot = j ;
22 }
23
24 i f (d < 1e−150)
25 return f a l s e ; // matr ix s i n g u l a r
26
27 i f ( p ivot != i ) {
28 p1 = mat + i ∗ S ize ;
29 p2 = mat + p ivot ∗ S ize ;
30 f o r ( j=Size −1; j>=0; j−−) { // exchange rows in matr ix
31 c = p1 [ j ] ;
32 p1 [ j ] = p2 [ j ] ;
33 p2 [ j ] = c ;
34 }
35
36 i f ( vec ) {
37 c = vec [ i ] ;
38 vec [ i ] = vec [ p ivot ] ; // exchange RHS e l ements
39 vec [ p ivot ] = c ;
40 }
41 }
42
43 p1 = mat + i ∗ S ize ;
44 tmp = p1 [ i ] ;
45 f o r ( j=i +1; j<S ize ; j++) { // perform e l im i n a t i o n s t ep
46 p2 = mat + j ∗ S ize ;
47 p2 [ i ] /= tmp ;
48 c = p2 [ i ] ;
49
50 f o r (k=i +1; k<S ize ; k++)
51 p2 [ k ] −= c ∗ p1 [ k ] ;
52 }
53 }
54
55 // forward s u b s t i t u t i o n o f LU matr ix
56 f o r ( i =0; i<S ize ; i++) {
57 c = vec [ i ] ;
58 p1 = mat + i ∗ S ize ;
59 f o r ( j =0; j<i ; j++)
60 c −= p1 [ j ] ∗ vec [ j ] ;
61 vec [ i ] = c ;
62 }
63
64 // backward s u b s t i t u t i o n o f LU matr ix
65 f o r ( i=Size −1; i>=0; i−−) {
66 c = vec [ i ] ;
67 p1 = mat + i ∗ S ize ;
68 f o r ( j=i +1; j<S ize ; j++)
69 c −= p1 [ j ] ∗ vec [ j ] ;
70 vec [ i ] = c / p1 [ i ] ;
71 }
72
73 return true ;
74 }
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As can be seen from the table above the time for solving an equation system with direct solvers like
Gaussian elimination or LU decomposition rises cubically with the number of rows. Hence, large
circuits soon create very time consuming simulations. Fortunately, the MNA matrix is sparse, i.e.
most of its elements are zero. Sparse solver algorithms take advantage from this and store non-
zero elements only. As this saves much memory, it also speeds up the algorithm, because memory
through-put and cache size dominate the computation time. But the biggest speed-up can be
reached by using algorithms that order the rows and columns of the MNA matrix in a way that
minimizes the fill-in (elements that change from zero to non-zero during the LU decomposition).
For circuit simulations the most useful open-source packages are Sparse1.4 [93] and SuiteSparse
[94]. But even with these programs, the computation time for solving the MNA matrix dominates
the simulation speed. Except for small circuits, the component models takes 10% of the overall
time only.
Figure 19.4 gives an impression about the simulation time with different equation solvers using
transient analysis with 5000 time steps on a 1.4GHz Pentium R© processor.
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Figure 19.4: speed comparison of different equation solvers

Iterative matrix solvers like BiCGStab or GMRES are able to reach even more speed advantages
than sparse solvers. The disadvantages are that they find an approximate solution only and that
they may encounter severe convergence problems.

19.3 Frequency-Time Domain Transformation

Any signal can completely be described in time or in frequency domain. As both representations
are equivalent, it is possible to transform them into each other. This is done by the so-called
Fourier Transformation (FT) and the inverse Fourier Transformation (IFT), respectively:

Fourier Transformation: U(f) =

∞∫

−∞

u(t) · e−j · 2πf · t dt (19.176)

inverse Fourier Transformation: u(t) =

∞∫

−∞

U(f) · ej · 2πf · t df (19.177)

In digital systems the data u(t) or U(f), respectively, consists of a finite number N of samples
uk and Un. This leads to the discrete Fourier Transformation (DFT) and its inverse operation
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(IDFT):

DFT: Un =

N−1∑

k=0

uk · exp
(

−j ·n2π · k
N

)

(19.178)

IDFT: uk =
1

N
·

N∑

n=0

Un · exp
(

j · k 2π ·n
N

)

(19.179)

The absolute time and frequency values do not appear anymore in the DFT. They depend on the
sampling frequency fs and the number of samples N .

∆f =
1

Ts
=

1

N ·∆t
=

fs
N

=
2 · fmax

N
(19.180)

∆t =
1

fs
=

1

2 · fmax
=

1

N ·∆f
=

Ts

N
(19.181)

Where ∆f is the distance between frequency samples, ∆t is the distance between time samples
and Ts is the complete sampling time interval. Because the DFT creates positive and negative
frequencies, the maximum frequency fmax (also called Nyquist frequency) is half of the sampling
frequency.
During the FT, the quantity is multiplied by time. So the unit for a voltage becomes ”Vs”, i.e.
it’s now a voltage per frequency. This isn’t the case for the DFT. Here the unit of the operand
stays unchanged, because of its normalization to the sampling frequency. To get a comparable
quantity in the discrete domain, the DFT needs to be multiplied by the sampling time step:

UT,n = ∆t ·Un (19.182)

Indeed, the calculation of the signal power P consumed by the resistance R doesn’t need the time
information. But the calculation of the signal energy W does.

P ·R =
W

Ts
·R =

1

Ts
·

Ts∫

0

u2 dt ≈ 1

Ts
·

N∑

u2
k ·∆t =

1

N
·

N∑

u2
k (19.183)

The same calculation can be performed in frequency domain. The results equal each other exactly.

P ·R =
W

Ts
·R =

1

Ts
·

fmax∫

−fmax

|UT |2 df ≈ 1

Ts
·

N∑

|UT,n|2 ·∆f =
1

N2
·

N∑

|Un|2 (19.184)

I.e. the power spectral density in continuous, discrete and normalized discrete domain is, respec-
tively:

PSD = lim
T→∞

|UT |2
T

PSD =
∆t · |Un|2

N
PSD =

|Un|2
N

(19.185)

With DFT the N time samples are transformed into N frequency samples. This also holds if the
time data are real numbers, as is always the case in ”real life”: The complex frequency samples
are conjugate complex symmetrical and so equalizing the score:

UN−n = U∗
n (19.186)

That is, knowing the input data has no imaginary part, only half of the Fourier data must be
computed.
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19.3.1 Fast Fourier Transformation

As can be seen in equation 19.178 the computing time of the DFT rises with N2. This is really
huge, so it is very important to reduce the time consumption. Using a strongly optimized algo-
rithm, the so-called Fast Fourier Transformation (FFT), the DFT is reduced to an N · log2 N time
rise. The following information stems from [95], where the theoretical background is explained
comprehensively.

The fundamental trick of the FFT is to cut the DFT into two parts, one with data having even
indices and the other with odd indices:

Un =

N−1∑

k=0

uk · exp
(

−j ·n2π · k
N

)

(19.187)

=

N/2−1
∑

k=0

u2k · exp
(

−j ·n2π · 2k
N

)

+

N/2−1
∑

k=0

u2k+1 · exp
(

−j ·n2π · (2k + 1)

N

)

(19.188)

=

N/2−1
∑

k=0

u2k · exp
(

−j ·n2π · k
N/2

)

︸ ︷︷ ︸

Feven

+Wn,N ·
N/2−1
∑

k=0

u2k+1 · exp
(

−j ·n2π · k
N/2

)

︸ ︷︷ ︸

Fodd

(19.189)

with Wn,N = exp
(

2π · j · n
N

)

(so-called ’twiddle factor’) (19.190)

The new formula shows no speed advantages. The important thing is that the even as well as the
odd part each is again a Fourier series. Thus the same procedure can be repeated again and again
until the equation consists of N terms. Then, each term contains only one data uk with factor
e0 = 1. This works if the number of data is a power of two (2, 4, 8, 16, 32, ...). So finally, the
FFT method performs log2 N times the operation

uk1,even +Wn,x ·uk2,odd (19.191)

to get one data of Un. This is called the Danielson-Lanzcos algorithm. The question now arises
which data values of uk needs to be combined according to equation (19.191). The answer is quite
easy. The data array must be reordered by the bit-reversal method. This means the value at index
k1 is swapped with the value at index k2 where k2 is obtained by mirroring the binary number k1,
i.e. the most significant bit becomes the least significant one and so on. Example for N = 8:

000 ↔ 000 011 ↔ 110 110 ↔ 011
001 ↔ 100 100 ↔ 001 111 ↔ 111
010 ↔ 010 101 ↔ 101

Having this new indexing, the values to combine according to equation 19.191 are the adjacent
values. So, performing the Danielson-Lanzcos algorithm has now become very easy.

Figure 19.5 illustrates the whole FFT algorithm starting with the input data uk and ending with
one value of the output data Un.
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Figure 19.5: principle of a FFT with data length 8

This scheme alone gives no advantage. But it can compute all output values within, i.e. no
temporary memory is needed and the periocity of Wn,N is best exploited. To understand this,
let’s have a look on the first Danielson-Lanczos step in figure 19.5. The four multiplications and
additions have to be performed for each output value (here 8 times!). But indeed this is not
true, because Wn,2 is 2-periodical in n and furthermore Wn,2 = −Wn+1,2. So now, u0 +W0,2 ·u4

replaces the old u0 value and u0−W0,2 ·u4 replaces the old u4 value. Doing this for all values, four
multiplications and eight additions were performed in order to calculate the first Danielson-Lanczos
step for all (!!!) output values. This goes on, as Wn,4 is 4-periodical in n and Wn,4 = −Wn+2,4.
So this time, two loop iterations (for Wn,4 and for Wn+1,4) are necessary to compute the current
Danielson-Lanczos step for all output values. This concept continues until the last step.

Finally, a complete FFT source code in C should be presented. The original version was taken
from [95]. It is a radix-2 algorithem, known as the Cooley-Tukey Algorithm. Here, several changes
were made that gain about 10% speed improvement.

Listing 19.3: 1D-FFT algorithm in C

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // Parameters :
3 // num − number o f complex samples
4 // ∗ data − array con ta i n i n g the data samples , r e a l and imaginary
5 // par t in a l t e r n a t i n g order ( l e n g t h : 2∗num)
6 // order o f f r e q u en c i e s : 0 , 1 , 2 , . . . , N/2 , . . . , −2, −1
7 // i s i g n − i s 1 to c a l c u l a t e FFT and −1 to c a l c u l a t e i n v e r s e FFT
8 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9

10 #de f i ne SWAP(a , b) { wr = a ; a = b ; b = wr ; }
11
12 void f f t r a d i x 2 ( i n t num, double ∗data , i n t i s i g n )
13 {
14 double wt , theta , wr , wi , wpr , wpi , tempi , tempr ;
15 i n t i , j , m, n ;
16 n = 2∗num;
17 j = 0 ;
18
19 // b i t r e v e r s a l method
20 // 1) index 0 need not to be swapped
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21 // −> s t a r t a t i=2
22 // 2) swap scheme i s symmetr ica l
23 // −> swap f i r s t and second h a l f in one i t e r a t i o n
24 f o r ( i =2; i<num; i+=2) {
25 m = num;
26 whi le ( j >= m) { // c a l c u l a t e swap index
27 j −= m;
28 m >>= 1 ;
29 }
30 j += m;
31
32 i f ( j > i ) { // was index a l r eady swapped ?
33 SWAP( data [ j ] , data [ i ] ) ; // swap r e a l par t
34 SWAP( data [ j +1] , data [ i +1 ] ) ; // swap imaginary par t
35
36 i f ( j < num) { // swap second h a l f ?
37 SWAP ( data [ n−j −2] , data [ n−i −2 ] ) ; // swap r e a l par t
38 SWAP ( data [ n−j −1] , data [ n−i −1 ] ) ; // swap imaginary par t
39 }
40 }
41 }
42
43 // Danielson−Lanzcos a l g o r i t hm
44 i n t mmax, i s t e p ;
45 mmax = 2 ;
46 whi le (n > mmax) { // each Danielson−Lanzcos s t e p
47 i s t e p = mmax << 1 ;
48 theta = i s i g n ∗ ( 2 . 0 ∗ PI / mmax) ;
49 wpr = cos ( theta ) ;
50 wpi = s in ( theta ) ;
51 wr = 1 . 0 ;
52 wi = 0 . 0 ;
53 f o r (m=1; m<mmax; m+=2) {
54 f o r ( i=m; i<=n ; i+=i s t e p ) {
55 j = i+mmax;
56 tempr = wr∗data [ j −1] + wi∗data [ j ] ;
57 tempi = wr∗data [ j ] − wi∗data [ j −1] ;
58 data [ j −1] = data [ i −1] − tempr ;
59 data [ j ] = data [ i ] − tempi ;
60 data [ i −1] += tempr ;
61 data [ i ] += tempi ;
62 }
63 wt = wr ;
64 wr = wt∗wpr − wi∗wpi ;
65 wi = wi∗wpr + wt∗wpi ;
66 }
67 mmax = i s t e p ;
68 }
69
70 i f ( i s i g n == −1) // perform i n v e r s e FFT ?
71 f o r ( i =0; i<n ; i++)
72 data [ i ] /= num; // norma l i ze r e s u l t
73 }

There are many other FFT algorithms mainly aiming at higher speed (radix-4 FFT, radix-8 FFT,
split-radix FFT, Winograd FFT). These algorithms are much more complex, but on modern pro-
cessors with numerical co-processors they gain only small speed advantages, because the reduced
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FLOPS are equaled by the far more complex indexing.
The above-mentioned methods only work if the data size is a power of two. For other data sizes
the Bluestein algorithm can be used. Even though it runs about four times slower, it still has
N · log(N) complexity and thus, is much faster than the standard DFT.

19.3.2 Real-Valued FFT

All physical systems are real-valued in time domain. As already mentioned above, this fact leads
to a symmetry in frequency domain, which can be exploited to save 50% memory usage and about
30% computation time. Rewriting the C listing from above to a real-valued FFT routine creates
the following function. As this scheme is not symmetric anymore, an extra procedure for the
inverse transformation is needed. It is also depicted below.

Listing 19.4: real-valued FFT algorithm in C

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // Parameters :
3 // num − number o f rea l−va lued samples (must be power o f 2)
4 // ∗ data − array con ta i n i n g the time samples ( l e n g t h : num)
5 //
6 // Output :
7 // ∗ data − r (0) , r (1) , i (1 ) , . . . . , r (N/2−1) , i (N/2−1) , r (N/2)
8 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9

10 #de f i ne SWAP(a , b) { wr = a ; a = b ; b = wr ; }
11
12 void r e a l f f t r a d i x 2 ( i n t num, double ∗data )
13 {
14 i n t i , j , k , l , n1 = num >> 1 , n2 = 1 ;
15 double t1 , t2 , t3 , wr , wi , wpr , wpi ;
16
17 // b i t r e v e r s a l method
18 // 1) index 0 need not to be swapped
19 // −> s t a r t a t i=1
20 // 2) swap scheme i s symmetr ica l
21 // −> swap f i r s t and second h a l f in one i t e r a t i o n
22 j = 0 ;
23 f o r ( i =1; i<n1 ; i++) {
24 k = n1 ;
25 whi le ( j >= k) { // c a l c u l a t e swap index
26 j −= k ;
27 k >>= 1 ;
28 }
29 j += k ;
30
31 i f ( j > i ) { // was index a l r eady swapped ?
32 SWAP( data [ j ] , data [ i ] ) ;
33
34 i f ( j < n1 ) // swap second h a l f ?
35 SWAP ( data [num−j −1] , data [num−i −1 ] ) ;
36 }
37 }
38
39 // l e n g t h two b u t t e r f l i e s
40 f o r ( i =0; i<num; i+=2) {
41 t1 = data [ i +1] ;
42 data [ i +1] = data [ i ] − t1 ;
43 data [ i ] += t1 ;
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44 }
45
46 whi le ( n1 < num) {
47 n2 <<= 1 ; // h a l f a b u t t e r f l y
48 n1 = n2 << 1 ; // l e n g t h o f a b u t t e r f l y
49
50 f o r ( i =0; i<num; i+=n1 ) {
51 t1 = data [ i+n2 ] ;
52 data [ i+n2 ] = −data [ i+n1−1] ;
53 data [ i+n1−1] = data [ i ] − t1 ;
54 data [ i ] += t1 ;
55 }
56
57 t1 = 2 .0∗M PI / ( ( double ) n1 ) ;
58 wpr = cos ( t1 ) ; // r e a l par t o f tw i d d l e f a c t o r
59 wpi = s in ( t1 ) ; // imaginary par t o f tw i d d l e f a c t o r
60 wr = 1 . 0 ; // s t a r t o f tw i d d l e f a c t o r
61 wi = 0 . 0 ;
62
63 f o r ( j =3; j<n2 ; j+=2) { // a l l complex l i n e s o f a b u t t e r f l y
64 t1 = wr ;
65 wr = t1 ∗wpr − wi∗wpi ; // c a l c u l a t e nex t tw i d d l e f a c t o r
66 wi = wi∗wpr + t1 ∗wpi ;
67
68 f o r ( i =0; i<num; i+=n1) { // through a l l b u t t e r f l i e s
69 k = i + j − 2 ;
70 l = i + n1 − j ;
71 t1 = data [ l ]∗wr + data [ l +1]∗wi ;
72 t3 = data [ k+1] ;
73 t2 = data [ l +1]∗wr − data [ l ]∗ wi ;
74 data [ l ] = data [ k ] ;
75
76 i f ( ( i & n1 ) != 0) { // index swap ?
77 t1 = −t1 ;
78 t3 = −t3 ;
79 }
80
81 data [ k ] += t1 ;
82 data [ k+1] = t2 + t3 ;
83 data [ l ] −= t1 ;
84 data [ l +1] = t2 − t3 ;
85 }
86 }
87 }
88 }

Listing 19.5: real-valued inverse FFT algorithm in C

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // Parameters :
3 // num − count o f numbers in data (must be power o f 2)
4 // ∗ data − r (0) , r (1) , i (1 ) , . . . . , r (N/2−1) , i (N/2−1) , r (N/2)
5 //
6 // Output :
7 // ∗ data − array con ta i n i n g the time samples ( l e n g t h : num)
8 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9

10 #de f i ne SWAP(a , b) { wr = a ; a = b ; b = wr ; }
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11
12 void r e a l i f f t r a d i x 2 ( i n t num, double ∗data )
13 {
14 i n t i , j , k , l , n1 , n2 = num;
15 double t1 , t2 , t3 , wr , wi , wpr , wpi ;
16
17 whi le ( n2 > 2) {
18 n1 = n2 ; // l e n g t h o f a b u t t e r f l y
19 n2 >>= 1 ; // h a l f a b u t t e r f l y
20
21 f o r ( i =0; i<num; i+=n1 ) { // through a l l b u t t e r f l i e s
22 t1 = data [ i+n1−1] ;
23 data [ i+n1−1] = −2.0 ∗ data [ i+n2 ] ;
24 data [ i+n2−1] ∗= 2 . 0 ;
25 data [ i+n2 ] = data [ i ] − t1 ;
26 data [ i ] += t1 ;
27 }
28
29 t1 = 2 .0∗M PI / ( ( double ) n1 ) ;
30 wpr = cos ( t1 ) ; // r e a l par t o f tw i d d l e f a c t o r
31 wpi = s in ( t1 ) ; // imaginary par t o f tw i d d l e f a c t o r
32 wr = 1 . 0 ; // s t a r t o f tw i d d l e f a c t o r
33 wi = 0 . 0 ;
34
35 f o r ( j =3; j<n2 ; j+=2) { // a l l complex l i n e s o f a b u t t e r f l y
36 t1 = wr ;
37 wr = t1 ∗wpr + wi∗wpi ; // c a l c u l a t e nex t tw i d d l e f a c t o r
38 wi = wi∗wpr − t1 ∗wpi ;
39
40 f o r ( i =0; i<num; i+=n1) { // through a l l b u t t e r f l i e s
41 k = i + j − 2 ;
42 l = i + n1 − j ;
43 t1 = data [ l ] − data [ k ] ;
44 t2 = data [ l +1] + data [ k+1] ;
45 t3 = data [ k+1] − data [ l +1] ;
46 data [ k ] += data [ l ] ;
47
48 i f ( ( i & n1 ) != 0) {
49 t1 = −t1 ;
50 t3 = −t3 ;
51 }
52
53 data [ k+1] = t3 ;
54 data [ l ] = t2 ∗wi − t1 ∗wr ;
55 data [ l +1] = t2 ∗wr + t1 ∗wi ;
56 }
57 }
58 }
59
60 // l e n g t h two b u t t e r f l i e s
61 f o r ( i =0; i<num; i+=2) {
62 t1 = data [ i +1] ;
63 data [ i +1] = ( data [ i ] − t1 ) / num;
64 data [ i ] = ( data [ i ] + t1 ) / num;
65 }
66
67 // b i t r e v e r s a l method
68 // 1) index 0 need not to be swapped
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69 // −> s t a r t a t i=1
70 // 2) swap scheme i s symmetr ica l
71 // −> swap f i r s t and second h a l f in one i t e r a t i o n
72 j = 0 ;
73 n1 = num >> 1 ;
74 f o r ( i =1; i<n1 ; i++) {
75 k = n1 ;
76 whi le ( j >= k) { // c a l c u l a t e swap index
77 j −= k ;
78 k >>= 1 ;
79 }
80 j += k ;
81
82 i f ( j > i ) { // was index a l r eady swapped ?
83 SWAP( data [ j ] , data [ i ] ) ;
84
85 i f ( j < n1 ) // swap second h a l f ?
86 SWAP ( data [num−j −1] , data [num−i −1 ] ) ;
87 }
88 }
89 }

19.3.3 More-Dimensional FFT

A standard Fourier transformation is not useful in harmonic balance methods, because with multi-
tone excitation many mixing products appear. The best way to cope with this problem is to use
multi-dimensional Fourier transformation and its inverse opreation, respectively.

U(jω1, jω1, . . . , jωn) = (19.192)
∞∫

−∞

∞∫

−∞

. . .

∞∫

−∞

u(t1, t2, . . . , tn) · e−jω1 · t1 · e−jω2 · t2 . . . · e−jωn · tn dt1dt2 . . . dtn (19.193)

u(t1, t2, . . . , tn) =

(
1

2π

)n

· (19.194)

∞∫

−∞

∞∫

−∞

. . .

∞∫

−∞

U(jω1, jω1, . . . , jωn) · ejω1 · t1 · ejω2 · t2 . . . · ejωn · tn dω1dω2 . . . dωn (19.195)

As can be seen, the n-dimensional Fourier transformation handles n different arbitrary time and
frequency scales.

Fourier Transformations in more than one dimension soon become very time consuming. Using
FFT mechanisms is therefore mandatory. A more-dimensional Fourier Transformation consists of
many one-dimensional Fourier Transformations (1D-FFT). First, 1D-FFTs are performed for the
data of the first dimension at every index of the second dimension. The results are used as input
data for the second dimension that is performed the same way with respect to the third dimension.
This procedure is continued until all dimensions are calculated. The following equations shows
this for two dimensions.
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Un1,n2 =

N2−1∑

k2=0

N1−1∑

k1=0

uk1,k2 · exp
(

−j ·n1
2π · k1
N1

)

· exp
(

−j ·n2
2π · k2
N2

)

(19.196)

=

N2−1∑

k2=0

exp

(

−j ·n2
2π · k2
N2

)

·
N1−1∑

k1=0

uk1,k2 · exp
(

−j ·n1
2π · k1
N1

)

︸ ︷︷ ︸

1D-FFT

(19.197)

Finally, a complete n-dimensional FFT source code should be presented. It was taken from [95]
and somewhat speed improved. The data is stored in ”C order” (row-major format), that is

the array notation data[n1][n2][n3]

points to the index data + n1 * N2*N3 + n2 * N3 + n3

Listing 19.6: multidimensional FFT algorithm in C

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // ndim − number o f d imensions
3 // num [ ] − array con ta i n i n g number o f complex samples f o r every dimension
4 // data [ ] − array con ta i n i n g the data samples , r e a l and imaginary par t in
5 // a l t e r n a t i n g order ( l e n g t h : 2∗sum of num [ ] ) ,
6 // through the array the f i r s t dimension changes l e a s t r a p i d l y !
7 // i s i g n − i s 1 to c a l c u l a t e FFT and −1 to c a l c u l a t e i n v e r s e FFT
8 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9

10 #de f i ne SWAP(a , b) { wr = a ; a = b ; b = wr ; }
11
12 void mf f t r ad i x 2 ( i n t ndim , i n t num [ ] , double data [ ] , i n t i s i g n )
13 {
14 i n t idim , i1 , m, i3rev , ip1 , ip2 , ip3 , mmax, i f p 2 ;
15 i n t i , j , n , nprev , ntot ;
16 double tempi , tempr , wt , theta , wr , wi , wpi , wpr ;
17
18 ntot = 1 ;
19 f o r ( idim=0; idim<ndim ; idim++) // compute t o t a l number o f complex va l u e s
20 ntot ∗= num[ idim ] ;
21
22 nprev = 1 ;
23 f o r ( idim=ndim−1; idim>=0; idim−−) { // main l oop over the dimensions
24 n = num[ idim ] ;
25 ip1 = 2∗nprev ;
26 ip2 = ip1 ∗n ;
27 ip3 = 2∗ ntot ;
28
29 j = 0 ;
30 f o r ( i=ip1 ; i<ip2 ; i+=ip1 ) { // b i t−r e v e r s a l method
31 m = ip2 >> 1 ;
32 whi le ( j >= m) {
33 j −= m;
34 m >>= 1 ;
35 }
36 j += m;
37
38 i f ( j > i ) // was index a l r eady swapped ?
39 f o r ( i 1=i ; i1<=i+ip1 −2; i 1+=2)
40 f o r ( i f p 2=i1 ; i fp2<=ip3 ; i f p 2+=ip2 ) {
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41 i 3 r ev = j+i fp2−i ;
42 SWAP( data [ i f p 2 ] , data [ i 3 r ev ] ) ; // swap r e a l par t
43 SWAP( data [ i f p 2 +1] , data [ i 3 r ev +1] ) ; // swap imaginary par t
44 }
45 }
46
47 mmax = ip1 ;
48 whi le ( ip2 > mmax) { // Danielson−Lanzcos a l g o r i t hm
49 i f p 2 = mmax << 1 ;
50 theta = i s i g n ∗M PI/(mmax/ ip1 ) ;
51 wpr = cos ( theta ) ;
52 wpi = s in ( theta ) ;
53 wr = 1 . 0 ;
54 wi = 0 . 0 ;
55 f o r (m=1; m<=mmax; m+=ip1 ) {
56 f o r ( i 1=m; i1<=m+ip1 −2; i 1+=2)
57 f o r ( i=i 1 ; i<=ip3 ; i+=i f p 2 ) {
58 j = i + mmax;
59 tempr = wr∗data [ j −1] + wi∗data [ j ] ;
60 tempi = wr∗data [ j ] − wi∗data [ j −1] ;
61 data [ j −1] = data [ i −1] − tempr ;
62 data [ j ] = data [ i ] − tempi ;
63 data [ i −1] += tempr ;
64 data [ i ] += tempi ;
65 }
66
67 wt = wr ;
68 wr = wt∗wpr − wi∗wpi ;
69 wi = wi∗wpr + wt∗wpi ;
70 }
71 mmax = i f p 2 ;
72 }
73 nprev ∗= n ;
74 }
75
76 i f ( i s i g n == −1) // perform i n v e r s e FFT ?
77 f o r ( i=2∗ntot −1; i>=0; i−−)
78 data [ i ] /= ntot ; // norma l i ze r e s u l t
79 }

The next listings contain FFT functions for real-valued time-domain data. The principle is sim-
ple: Perform a real-valued one-dimensional FFT for the last dimension and a standard multi-
dimensional FFT for all other dimension. As the positions of the Nyquist frequencies are not well
structured, the memory size for the data is somewhat larger than half of the one for a complex
FFT:

size = N1 ·N2 ·N3 · . . . · (0.5 ·Nn + 1) (19.198)

Listing 19.7: multidimensional real-valued FFT algorithm in C

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // ndim − number o f d imensions
3 // num [ ] − array con ta i n i n g number o f complex samples f o r every dimension
4 // data [ ] − array con ta i n i n g the data samples ( rea l−va lued )
5 // Before and a f t e r each data b l ock , t h e r e must be an a d d i t i o n a l
6 // ( empty ) da te −> l e n g t h : num [ 0 ] + num[ 1 ] + . . . + (num[ ndim−1]+2)
7 // through the array the f i r s t dimension changes l e a s t r a p i d l y !
8 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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9
10 #de f i ne SWAP(a , b) { wr = a ; a = b ; b = wr ; }
11
12 void r e a l m f f t r a d i x 2 ( i n t ndim , i n t num [ ] , double data [ ] )
13 {
14 i n t idim , i1 , i , m, i2rev , i3rev , ip1 , ip2 , ip3 , mmax, i f p 2 ;
15 i n t i b i t , j , n , nprev , nrem , ntot ;
16 double tempi , tempr , wt , theta , wr , wi , wpi , wpr ;
17
18 ntot = 1 ;
19 f o r ( idim=0; idim<ndim ; idim++) // compute t o t a l number o f complex va l u e s
20 ntot ∗= num[ idim ] ;
21
22 m = 1 ;
23 n = num[ ndim−1] ;
24 // Fi r s t , perform rea l−va lued FFT f o r the l a s t dimension .
25 f o r ( i =0; i<ntot ; i+=n) {
26 r e a l f f t r a d i x 2 (n , data+m) ;
27 data [m−1] = data [m] ;
28 data [m] = 0 . 0 ;
29 data [m+n ] = 0 . 0 ;
30 m += n + 2 ;
31 }
32
33 nprev = n/2 + 1 ;
34 // Now, perform complex−va lued FFT f o r a l l o t h e r dimensions .
35 f o r ( idim=ndim−2; idim>=0; idim−−) { // main l oop over the dimensions
36 n = num[ idim ] ;
37 nrem = ntot /(n∗nprev ) ;
38 ip1 = nprev << 1 ;
39 ip2 = ip1 ∗n ;
40 ip3 = ip2 ∗nrem ;
41 i 2 r ev = 1 ;
42
43 f o r ( i =1; i<=ip2 ; i+=ip1 ) { // b i t−r e v e r s a l method
44
45 i f ( i < i 2 r ev ) {
46 f o r ( i 1=i ; i1<=i+ip1 −2; i 1+=2) {
47 f o r (m=i1 ; m<=ip3 ; m+=ip2 ) {
48 i 3 r ev = i2 r ev+m−i ;
49 SWAP( data [m−1] , data [ i3rev −1 ] ) ; // swap r e a l par t
50 SWAP( data [m] , data [ i 3 r ev ] ) ; // swap imaginary par t
51 }
52 }
53 }
54 i b i t=ip2 >> 1 ;
55 whi le ( i b i t >= ip1 && i2 r ev > i b i t ) {
56 i 2 r ev −= i b i t ;
57 i b i t >>= 1 ;
58 }
59 i 2 r ev += i b i t ;
60 }
61
62 mmax = ip1 ;
63 whi le ( ip2 > mmax) { // Danielson−Lanzcos a l g o r i t hm
64 i f p 2 = mmax << 1 ;
65 theta = 2 .0∗M PI/( i f p 2 / ip1 ) ;
66 wpr = cos ( theta ) ;
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67 wpi = s in ( theta ) ;
68 wr = 1 . 0 ;
69 wi = 0 . 0 ;
70 f o r (m=1; m<=mmax; m+=ip1 ) {
71 f o r ( i 1=m; i1<=m+ip1 −2; i 1+=2)
72 f o r ( i=i 1 ; i<=ip3 ; i+=i f p 2 ) {
73 j = i + mmax;
74 tempr = wr∗data [ j −1] + wi∗data [ j ] ;
75 tempi = wr∗data [ j ] − wi∗data [ j −1] ;
76 data [ j −1] = data [ i −1] − tempr ;
77 data [ j ] = data [ i ] − tempi ;
78 data [ i −1] += tempr ;
79 data [ i ] += tempi ;
80 }
81
82 wt = wr ;
83 wr = wt∗wpr − wi∗wpi ;
84 wi = wi∗wpr + wt∗wpi ;
85 }
86 mmax = i f p 2 ;
87 }
88 nprev ∗= n ;
89 }
90 }

Listing 19.8: multidimensional real-valued inverse FFT algorithm in C

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // ndim − number o f d imensions
3 // num [ ] − array con ta i n i n g number o f complex samples f o r every dimension
4 // data [ ] − array wi th data samples , r e a l and imaginary par t in a l t e r n a t i n g
5 // order −> l e n g t h : num [ 0 ] + num[ 1 ] + . . . + (num[ ndim−1]+2)
6 // through the array the f i r s t dimension changes l e a s t r a p i d l y !
7 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
8
9 #de f i ne SWAP(a , b) { wr = a ; a = b ; b = wr ; }

10
11 void r e a l m i f f t r a d i x 2 ( i n t ndim , i n t num [ ] , double data [ ] )
12 {
13 i n t idim , i1 , i , m, i2rev , i3rev , ip1 , ip2 , ip3 , mmax, i f p 2 ;
14 i n t i b i t , j , n , nprev , nrem , ntot ;
15 double tempi , tempr , wt , theta , wr , wi , wpi , wpr ;
16
17 ntot = 1 ;
18 f o r ( idim=0; idim<ndim ; idim++) // compute t o t a l number o f complex va l u e s
19 ntot ∗= num[ idim ] ;
20
21 nprev = num[ ndim−1]/2 + 1 ;
22 // Perform complex−va lued FFT f o r a l l d imensions e x c ep t the l a s t one .
23 f o r ( idim=ndim−2; idim>=0; idim−−) { // main l oop over the dimensions
24 n = num[ idim ] ;
25 nrem = ntot /(n∗nprev ) ;
26 ip1 = nprev << 1 ;
27 ip2 = ip1 ∗n ;
28 ip3 = ip2 ∗nrem ;
29 i 2 r ev = 1 ;
30
31 f o r ( i =1; i<=ip2 ; i+=ip1 ) { // b i t−r e v e r s a l method
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32
33 i f ( i < i 2 r ev ) {
34 f o r ( i 1=i ; i1<=i+ip1 −2; i 1+=2) {
35 f o r (m=i1 ; m<=ip3 ; m+=ip2 ) {
36 i 3 r ev = i2 r ev+m−i ;
37 SWAP( data [m−1] , data [ i3rev −1 ] ) ; // swap r e a l par t
38 SWAP( data [m] , data [ i 3 r ev ] ) ; // swap imaginary par t
39 }
40 }
41 }
42 i b i t=ip2 >> 1 ;
43 whi le ( i b i t >= ip1 && i2 r ev > i b i t ) {
44 i 2 r ev −= i b i t ;
45 i b i t >>= 1 ;
46 }
47 i 2 r ev += i b i t ;
48 }
49
50 mmax = ip1 ;
51 whi le ( ip2 > mmax) { // Danielson−Lanzcos a l g o r i t hm
52 i f p 2 = mmax << 1 ;
53 theta = −2.0∗M PI/( i f p 2 / ip1 ) ;
54 wpr = cos ( theta ) ;
55 wpi = s in ( theta ) ;
56 wr = 1 . 0 ;
57 wi = 0 . 0 ;
58 f o r (m=1; m<=mmax; m+=ip1 ) {
59 f o r ( i 1=m; i1<=m+ip1 −2; i 1+=2)
60 f o r ( i=i 1 ; i<=ip3 ; i+=i f p 2 ) {
61 j = i + mmax;
62 tempr = wr∗data [ j −1] + wi∗data [ j ] ;
63 tempi = wr∗data [ j ] − wi∗data [ j −1] ;
64 data [ j −1] = data [ i −1] − tempr ;
65 data [ j ] = data [ i ] − tempi ;
66 data [ i −1] += tempr ;
67 data [ i ] += tempi ;
68 }
69
70 wt = wr ;
71 wr = wt∗wpr − wi∗wpi ;
72 wi = wi∗wpr + wt∗wpi ;
73 }
74 mmax = i f p 2 ;
75 }
76 nprev ∗= n ;
77 }
78
79 m = 1 ;
80 n = num[ ndim−1] ;
81 nrem = ntot / n ;
82 // F ina l l y , perform rea l−va lued FFT f o r the l a s t dimension .
83 f o r ( i =0; i<ntot ; i+=n) {
84 data [m] = data [m−1] ;
85 data [m−1] = 0 . 0 ;
86 data [m+n ] = 0 . 0 ;
87 r e a l i f f t r a d i x 2 (n , data+m) ;
88 f o r ( j =0; j<n ; j++)
89 data [m+j ] /= nrem ; // norma l i ze r e s u l t
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90 m += n + 2 ;
91 }
92 }

19.4 Newton’s divided differences interpolation

The divided difference f [x0, x1, . . . , xn] of a function f(x) on the points x0, x1, . . . , xn is defined
by:

f [x0] = f(x0)

f [x0, x1] =
f(x0)− f(x1)

x0 − x1

f [x0, x1, x2] =
f [x0, x1]− f [x1, x2]

x0 − x2

· · ·

f [x0, x1, . . . , xn] =
f [x0, . . . , xn−1]− f [x1, . . . , xn]

x0 − xn

(19.199)

Two important properties should be mentioned shortly:

• linearity

(a · f + b · g)[x0, . . . , xn] = a · f [x0, . . . , xn] + b · g[x0, . . . , xn] (19.200)

with a, b being real numbers and f(x), g(x) being functions.

• symmetry
If y0, . . . , yn is a permutation of x0, . . . , xn, then it holds

f [x0, . . . , xn] = f [y0, . . . , yn] (19.201)

An application for these formulae is the numerical derivation. The generalization of the mean
value theorem may be written as follows:

f [x0, x1, . . . , xn] =
f (n)(u)

n!
for some u ∈ [x0, xn] (19.202)

This also implies that the divided difference can be used as an approximation for the numerical
derivation:

∂nf

∂xn
≈ n! · f [x0, x1, . . . , xn] (19.203)

Another application for these formulae is the interpolation (or extrapolation) of function values
with k-order accuracy:

f(x) ≈
k∑

i=0

f [x0, x1, . . . , xi] ·
i−1∏

j=0

(x− xj) (19.204)
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Figure 19.6: linear (left) and quadratic (right) interpolation

For a linear interpolation (order 1) this yields:

f1(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
· (x− x0) = f(x1) +

f(x1)− f(x0)

x1 − x0
· (x− x1) (19.205)

For a quadratic interpolation (order 2) it yields:

f2(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
· (x− x0) +

f(x2)−f(x1)
x2−x1

− f(x1)−f(x0)
x1−x0

x2 − x0
· (x− x0) · (x− x1) (19.206)

Setting the derivative of f2(x) to zero yields the coordinate xlm of the local minimum or maximum:

xlm =
x1 + x0

2
− 1

2
· x2 − x0

m− 1

with m =
x1 − x0

x2 − x1
· f(x2)− f(x1)

f(x1)− f(x0)

(19.207)
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