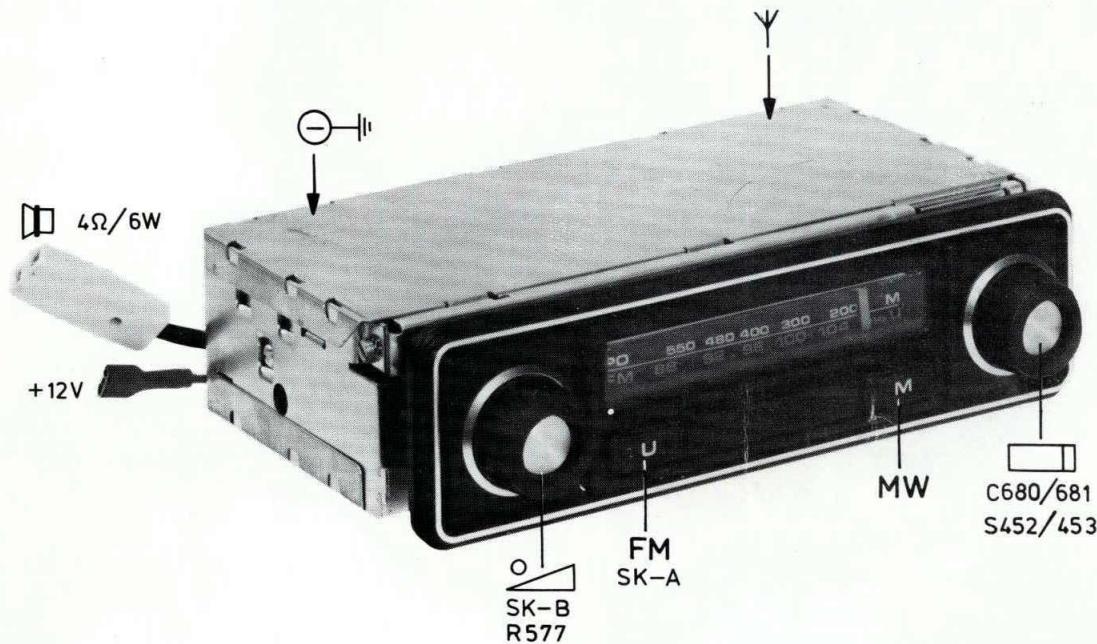


Service
Service
Service


Free service manuals
Gratis schema's

Digitized by

www.freeservicemanuals.info

12 V

Service Manual

MW : 520-1605kHz (577-187m) IF = 452kHz/00/08

468kHz/15

460kHz/19/22

FM : 87.5-104MHz IF = 10.7MHz

 (14V): 6W (d=10%)

 : 176 x 4.3 x 106.5 mm

5165A

Safety regulations require that the set be restored to its original condition and that parts which are identical with those specified, be used.

Documentation Technique Service Dokumentation Documentazione di Servizio Huolte-Ohje Manual de Servicio Manual de Serviço

CS52471

Subject to modification

4822 725 11438

Printed in The Netherlands

Published in Heiloo, Holland.

PHILIPS

SK....							
MW (520-1605 kHz)	452 kHz (/00/08)	Ⓐ	max. cap.	S463,462,460	S466	① max.	
	468 kHz (/15)	Ⓑ			S463,S462		
	460 kHz (/19/22)	Ⓒ			S460		
MW (520-1605 kHz)	via 33 nF		min. cap.		C740	② max.	
	1640 kHz				C679		
	1500 kHz	Ⓓ			S458		
	1510 kHz				S457		
FM (87.5-104 MHz)	550 kHz		max. cap.	S465,461,459 S456,455	S464	① Ⓢ max.	
	10.7 MHz	Ⓐ			S461		
	$\Delta f = 200 \text{ kHz}$	Ⓑ			S459		
	(50 Hz)	Ⓒ			S455,456		
		Ⓓ			S465		
					R535		
FM (87.5-104 MHz)	108 MHz		min. ind.		C675	② Ⓢ max.	
	86.8 MHz	Ⓐ			S453		
	94 MHz	Ⓑ			S452		

INTERFERENCE SUPPRESSION

FM (87.5-104 MHz)	Pilot 19 kHz (250 mV)	Ⓐ				R564	④ Ⓢ
		Ⓑ	3 V	200 μsec .			

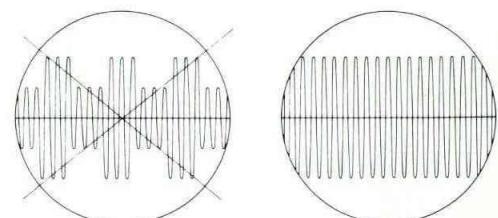
GB

- ① Open bridge . Set R535 to mid-position. Adjust for max. height and symmetry.
- ② Close bridge . Adjust for max. symmetry of the S-curve.
- ③ Also AM-modulate the signal generator.
- ④ Trigger oscilloscope with the square-wave voltage Time base 20 $\mu\text{sec}/\text{cm}$. Adjust for minimum deviation of amplitude. See Fig.

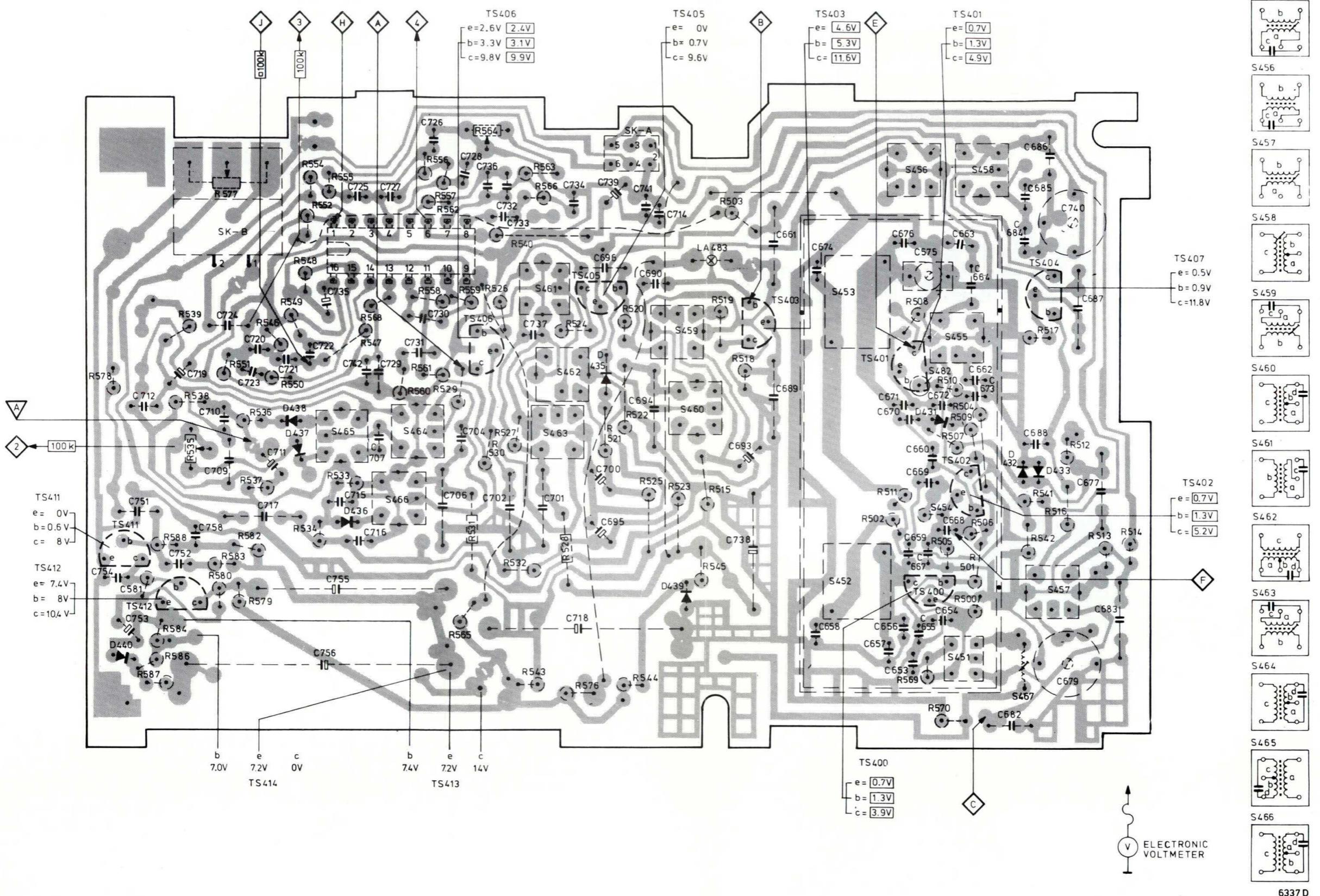
F

- ① Ouvrir le pont . Placer R535 en position médiane. Régler sur hauteur et symétrie maximales.
- ② Fermer le pont . Régler sur symétrie maximale de la courbe en S.
- ③ Moduler également le générateur BF en AM.
- ④ Enclencher l'oscilloscope par la tension rectangulaire Base de temps: 20 $\mu\text{sec}/\text{cm}$. Régler sur déviation minimale de l'amplitude, voir fig.

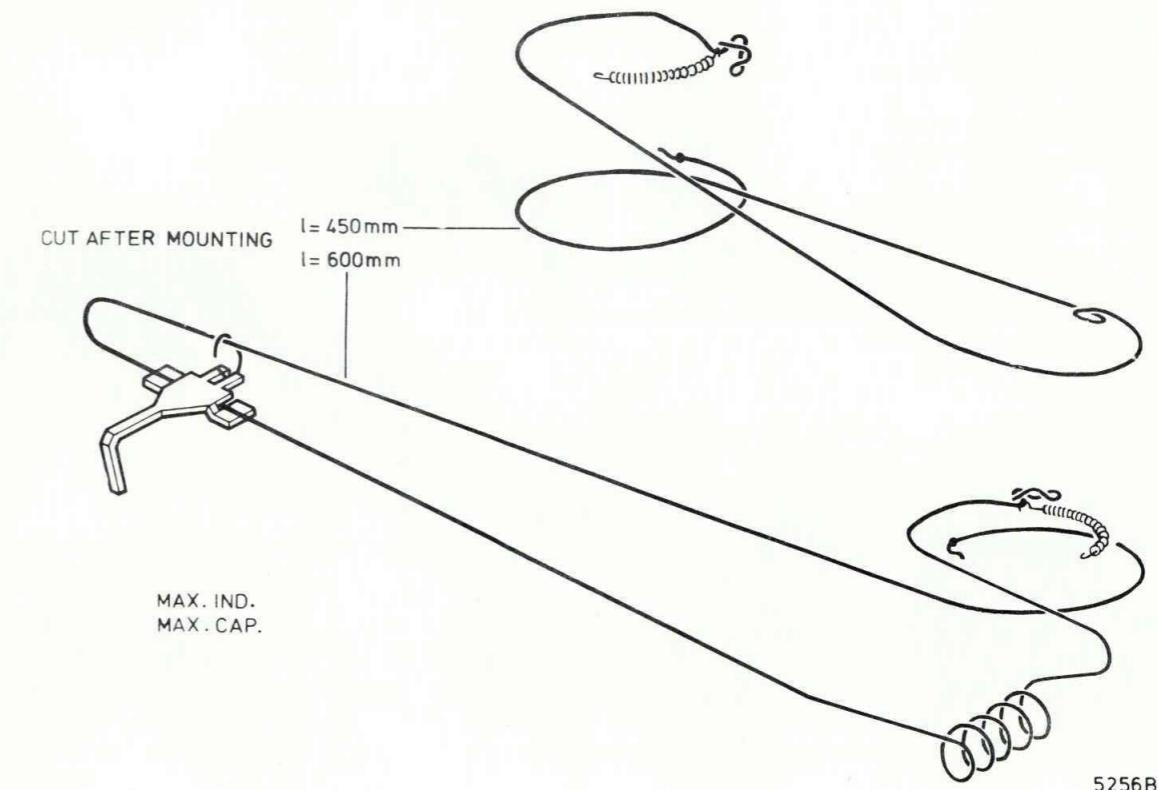
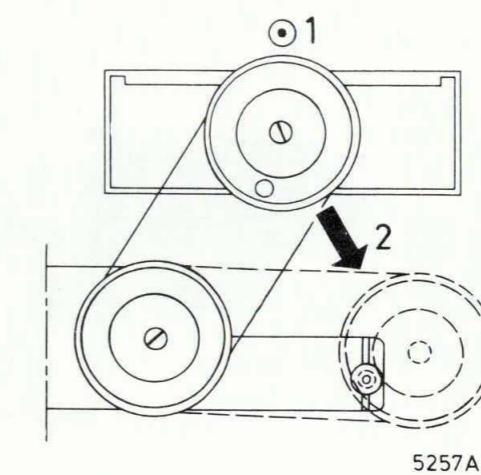
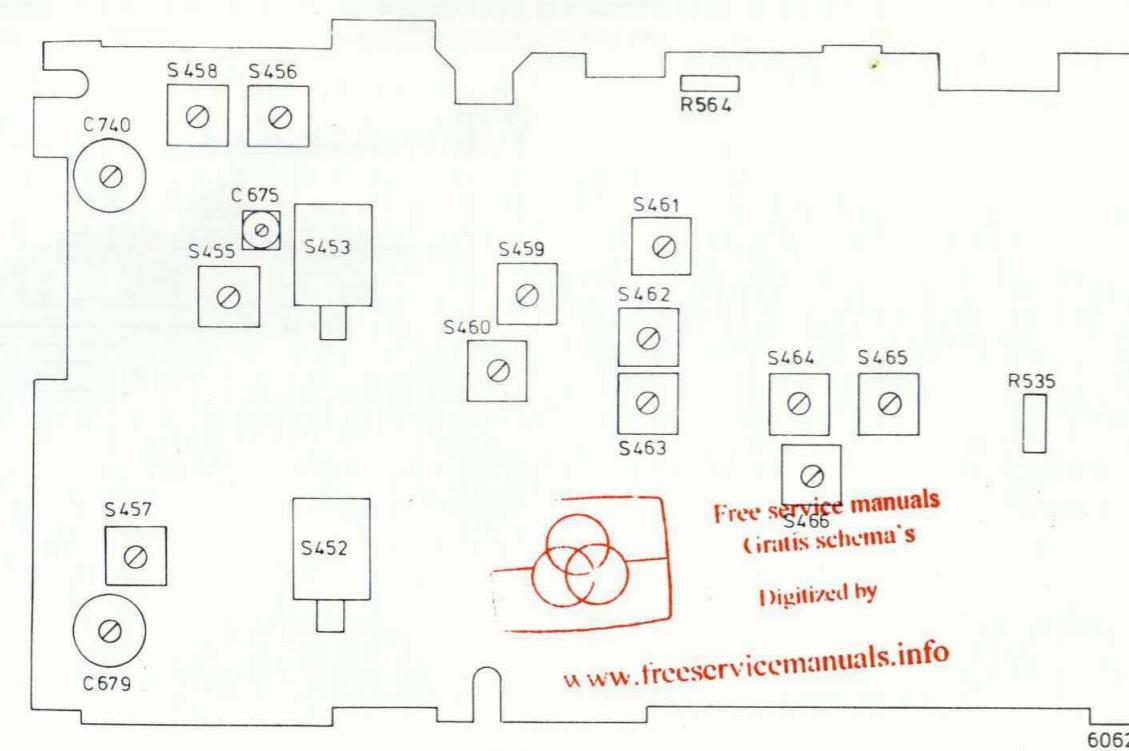
I

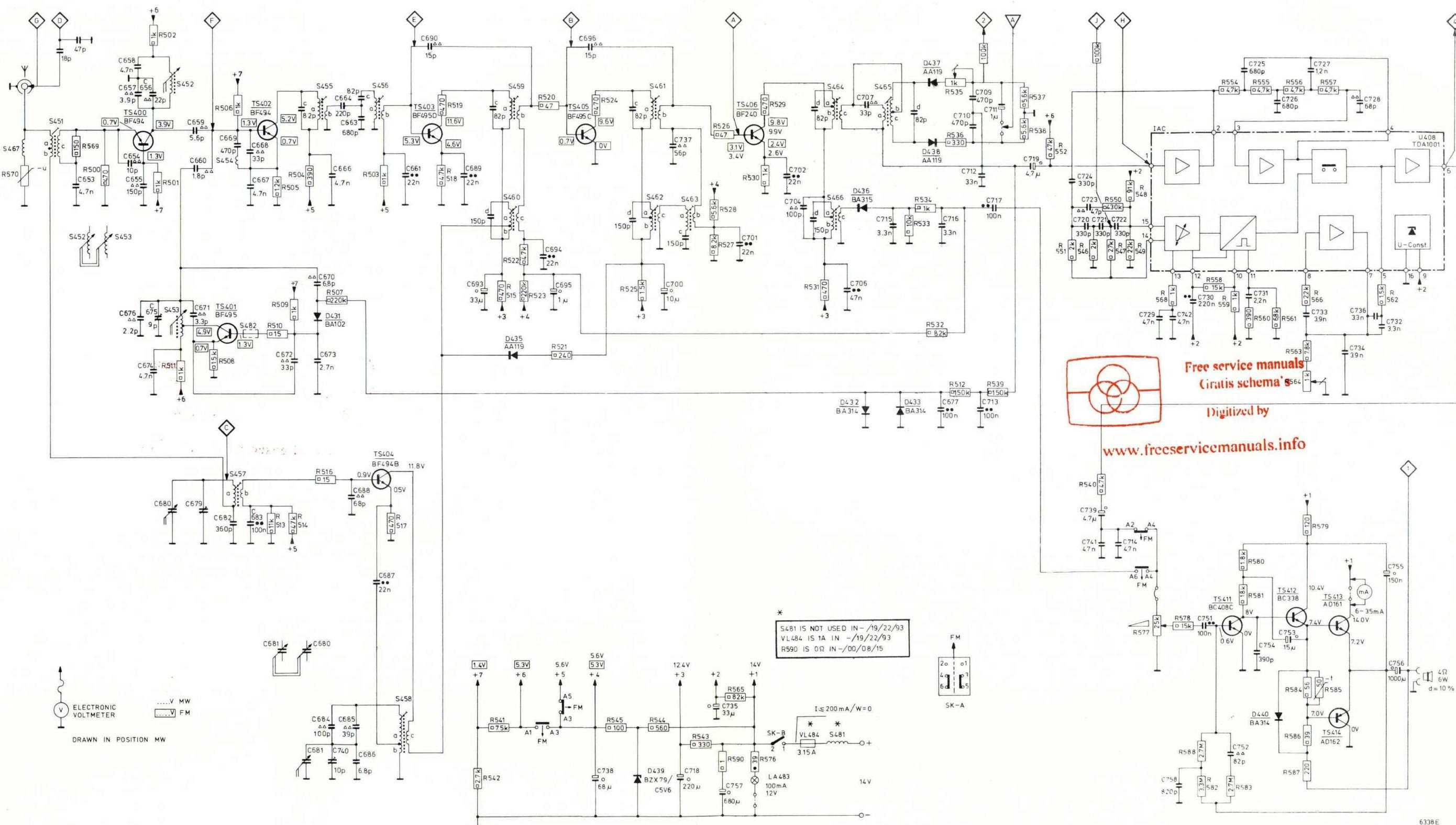

- ① Staccare il ponte . Porre R535 in posizione centrale. Regolare su altezza e simmetria.
- ② Chiudere il ponte . Regolare su simmetria della curva ad S.
- ③ Modulare anche il generatore BF - AM.
- ④ Base di tempo: 20 $\mu\text{sec}/\text{cm}$. Regolare su minima deviazione dell'amplitudine, vedi fig. Mettere l'oscilloscopio in marcia con una tensione rettangolare.

NL

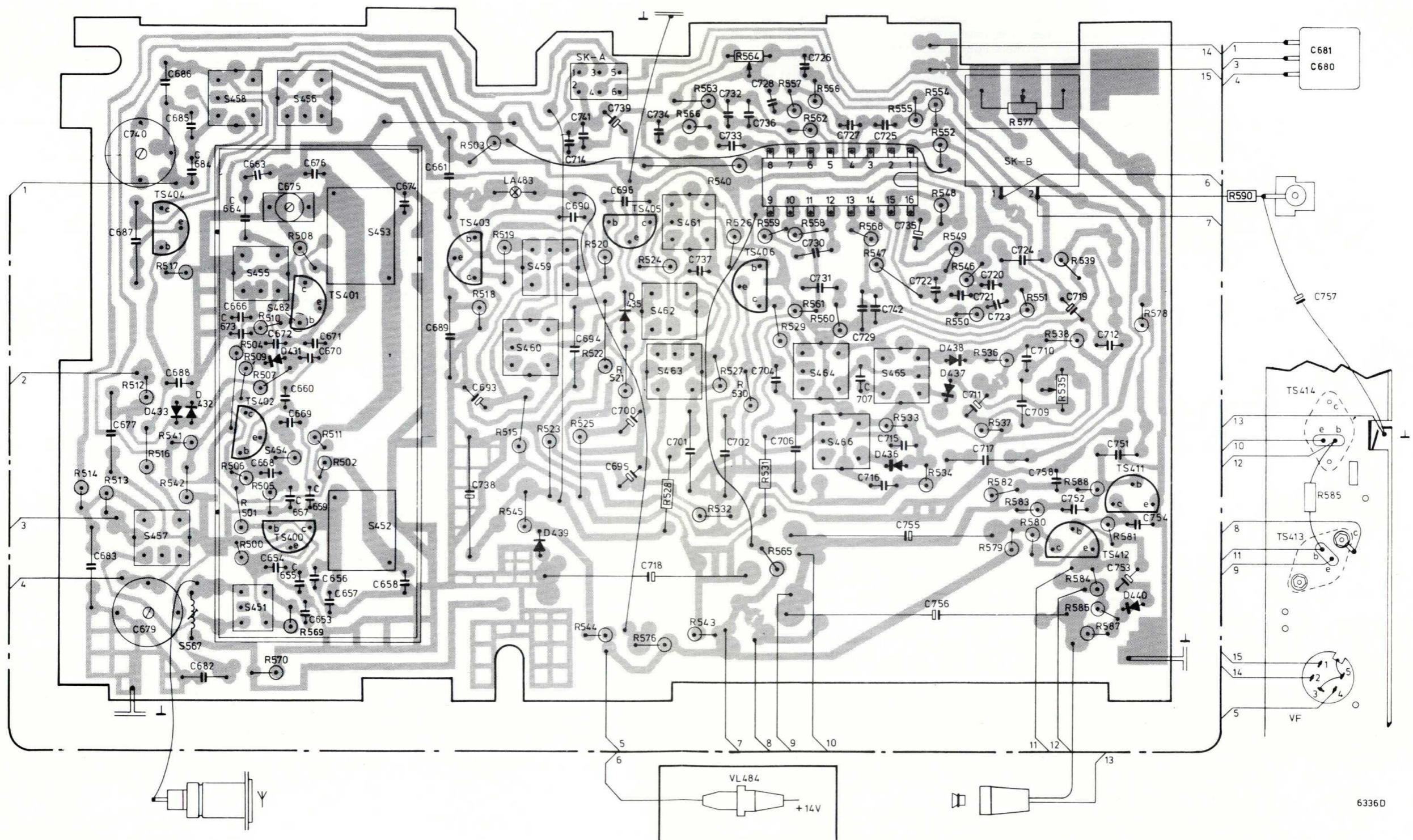

- ① Open brug . Zet R535 in de middenstand. Regel af op max. hoogte en symmetrie.
- ② Sluit brug . Regel af op max. hoogte en symmetrie van de S kromme.
- ③ Moduleer de signaalgenerator tevens AM.
- ④ Oscilloscooptriggeren met de blokspanning. Tijdbasis 20 $\mu\text{sec}/\text{cm}$. Regelopminimale afwijking van de amplitude, zie fig.

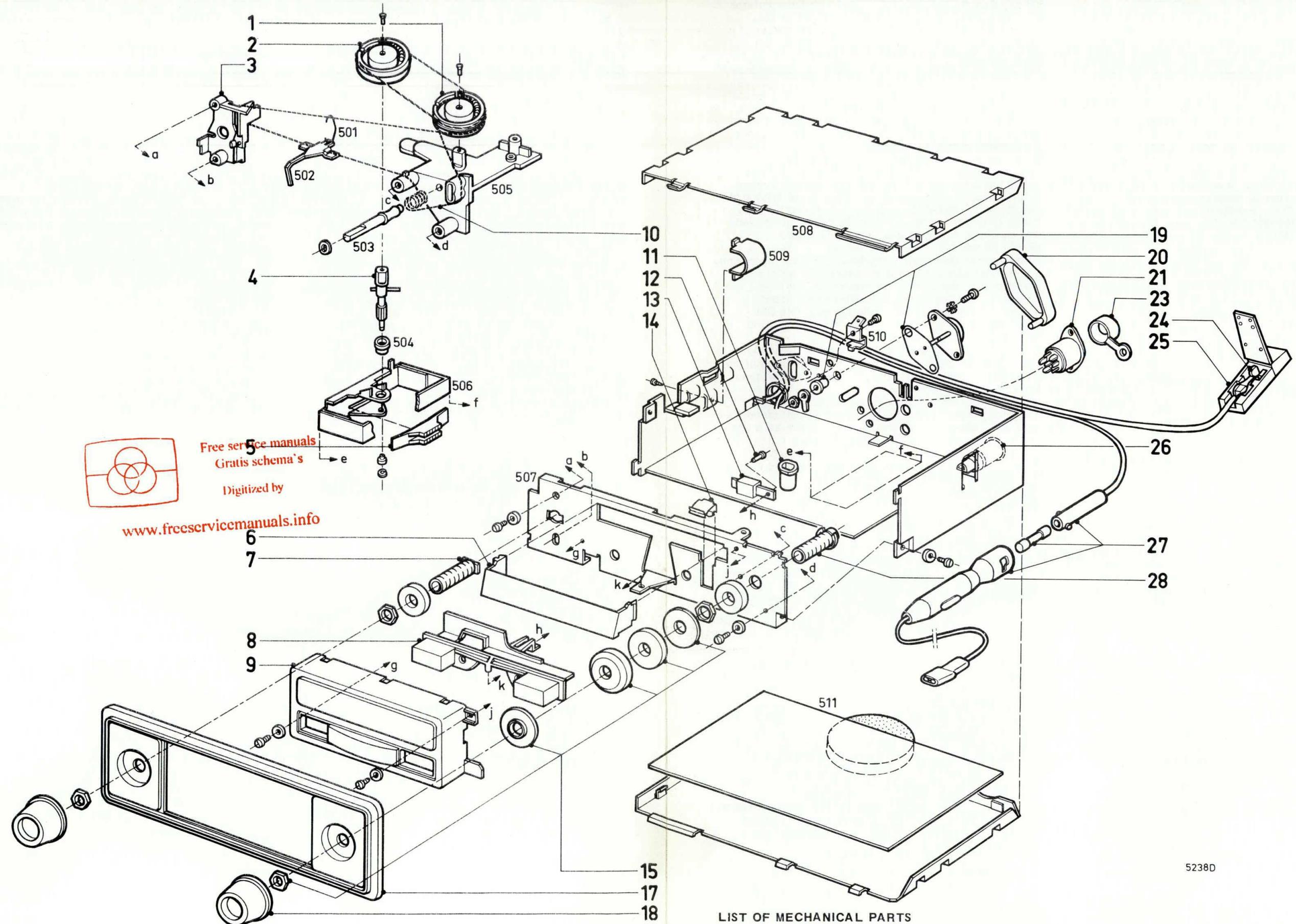
D




- ① Offne Brücke . Drehe R535 in Mittelstellung. Justiere auf maximale Höhe und Symmetrie.
- ② Schliesse Brücke . Justiere auf maximale Symmetrie der S-Kurve.
- ③ Moduliere den Signalgenerator auch AM.
- ④ Triggere den Oszilloskopographen mit der Rechteckspannung. Zeilbasis 20 $\mu\text{sec}/\text{cm}$. Justiere auf minimale Abweichung der Amplitude Siehe Abb.


MISC	D440	TS410,411	SK-B	D438,437	D436	TS406	TS405	D435	SK-A	D439	LA483	TS403	TS401	D431	TS400,402	TS404	D432,433	MISC													
S				465	466	464	461-463		459	460		452	453	454	456	482	451	455	458	467	457										
C	712	719+7	710 724	735	725	742.727-730 731 726	736	732	733	734	739 696	694	690	689	661	674	671	670	675	672	666	663	664	673	684-686	740	687				
C	751-754	758	709 717 711	756	755	715 716	707	706	704	702	701	718	700	695	741	714	738	693	667	660	669	653-659	668	682	688	679	677	683			
R	578	538	577 548-552	546	536	554 555	547	568	557-562	556	529	564	526	527	563	566	524	521	522	515	519	518	503	508	510	509	504	517	R		
R	581	584	586-588	535	580	583	537	582	579	534	533	530-532	543	528	576	544	525	523	515	545	502	511	505-507	501	500	570	542	541	516	512-514	R

REPLACEMENT OF PARTS OF THE FM-UNIT


MISC	TS400	TS401	TS402	D431	TS404	TS403	D435	TS405	D439	TS406	SK-B	VL484	D432,436	D433,437,438	TS411	D440	TS412 - TS414	MISC
S	467	451	452 453	454 457	482	455	456 458	459 460	461-463	481 464	466	465						S
C		653	654-658	659 660	667-669	666	664 663	661 690	689	694	696	737	702 704	707 715	716 702	712 711	714	720-724 761
C			674-676	680 679	671 682 683	672 681 684	670 673	740 585-688	693	695	738	700	718 735 757	706	677	713	719	729 758 730
R	570	569 500	501 502	506	505 504	503	518 519	522	520	524	526-530	532-536	537 538	551	540 550	548 577 568	558 554 560 555	556 566 564 557
R			511	508-510	513 514	516 507	517	542 515	523 541	521	545 525	544	543 590 565 576	531	512	539	552	546 547 549 578 588 580-583



Published in Heiloo, Holland

MISC	D433,432 TS404				TS402,400 D431 TS401				TS403 LA483 D439 SK-AVL484 D435 TS405				TS406				D436			D437,438		SK-B		TS412,411 D440			TS413,414	MISC
S	457 567	458 455 451	482 456 454	453 452	5481	460 459	461-463	714 690 694 696 732-734 737 736 728	730.731.725-727.729 742.735.719-723.724	464	466	465	710	712	680 681	757	S											
C	687 740	684-686	673 664 663 666 672 675 676	670 671 674	661 689	693 738	741 739	695 700 718 701	702 704 706	707	716 715 755 756	711 717 709 758 752 751 753 754	710	712	680 681	757	C											
C	683 677	679 688 682	668 652-659 669 660 667	504 509 510 508	503 518 519 515	520 522 521 524 566 563	527 526 564	529 557-562 568 547 555 554 558-552 536	577	538	539 586 578	590	R															
R	517	504 509 510 508	503 518 519 515	520 522 521 524 566 563	527 526 564	529 557-562 568 547 555 554 558-552 536	577	538	539 586 578	590	533	534 546 579 582 537 583 580	535 588 584 587 581	585	R													
R	514 513 512	516 541 542 570 569 500 501 505-507	511 502	545	523 525 544 576	528 543 532 530 531 565 556	533	534 546 579 582 537 583 580	535 588 584 587 581	533	534 546 579 582 537 583 580	535 588 584 587 581	585	R														

LIST OF MECHANICAL PARTS

1	4822 528 80596	11	4822 255 20068	23 (/22)	4822 263 60025
2	4822 528 80596	12	4822 535 10046	24	4822 492 61359
3	4822 404 10212	13	4822 277 30378	25	4822 268 40084
4	4822 535 70495	14	4822 492 61889	26	4822 267 30196
5	4822 522 31195	15	4822 310 10062	27 (/00/08/15)	4822 321 10112
6	4822 334 20014	17	4822 459 50153	27 (/19/22)	4822 321 20215
7	4822 532 30264	18	4822 413 40636	28	4822 532 30265
8	4822 404 20168	19	4822 255 40069		
9	4822 423 50235	20	4822 462 70468		
10	4822 321 30213	21 (/22)	4822 267 40045		

Cette intensité est mesurée au point 12-IC et à la sortie de la bascule de Schmitt, point 10-IC. Ces deux mesures résultent en une tension de régulation qui ramène l'amplification de l'amplificateur de manière telle que seules les impulsions parasites au-dessus d'un certain niveau, produisent une impulsion de déclenchement issue de la bascule de Schmitt. Les impulsions parasites de faible amplitude ne sont alors pas supprimées. Un filtre actif RC 19 kHz assure que lorsque le signal BF perturbé est supprimé, le ton pilote de 19 kHz continue à osciller au même rythme (sin a au diagramme). Si ce n'est pas le cas, à cause d'un ajustement erroné, la différence entre la phase et l'amplitude à la fin de l'impulsion de suppression est trop importante (sin.b dans le diagramme). Ceci s'entend à un ton sifflant désagréable. La façon dont le filtre réagit est surtout déterminé par les composants passifs externes.

Remarque

Le fait que ce circuit supprime l'interférence avec succès n'implique pas que toutes les autos dans lesquelles des appareils à IAC sont montés, ne doivent pas être déparasitées en FM, car sinon il se pourrait que le niveau maximum d'interférence que ce circuit peut encore supprimer, serait trop rapidement dépassé.

Dans de nombreux cas, on peut cependant renoncer au matériel de déparasitage.

D

BESCHREIBUNG DER ENTSTÖRUNGSCHALTUNG (IAC = Interference Absorption Circuit)

Einleitung

Funkstörung erhält man meistens über die Antenne. Die Flankensteilheit ist in der Regel gross; die Form der Störspannung zeigt abrupte Übergänge. Derartige Störungsscheinungen sind aus einer grossen Anzahl sinusförmiger Spannungen aufgebaut, und zwar in der Frequenzfolge von Null bis unendlich. Da die NF-Information bei FM-Stereo einen Bereich von ca. 53 kHz umfasst, ist es erklärlich, dass die Störungen auf FM und insbesondere auf FM-Stereo stärker durchkommen als bei AM.

Die Wirkungsweise der IAC

Vorausgesetzt, dass ein NF-Signal mit Störimpuls am Eingang ist (Punkt 1 - IC), dann durchläuft dieses Signal ein NF-Durchlassfilter und erscheint verstärkt am Eingang einer Torschaltung (Punkt 4 der IC).

Das NF-Durchlassfilter ist so dimensioniert, dass:

1. der -3 dB-Punkt auf 65 kHz liegt. Die vollständige Stereo-Information wird also weitergegeben
2. die Verzögerungszeit 2-3 μ s beträgt

Auch wird das Signal an Punkt 1 der IC durch ein Hochpassfilter geführt. Dieses Filter bildet ein differenziertes Netzwerk für Signale mit Frequenzen höher als 53 kHz.

Die so entstandenen differenzierten Nadeln, die fast nur von Störungsscheinungen abgeleitet sind, werden einem Impulsverstärker zugeführt.

Die verstärkten Impulse werden gleichgerichtet und nach einem Schmitt-Trigger gesteuert.

Eine aus festen Komponenten bestehende RC-Kombination an Punkt 11 der IC bestimmt die Breite des Triggerimpulses aus dem Schmitt-Trigger.

Der positive Impuls steuert die Torschaltung in dem Augenblick dicht, so dass das bereits eingetroffene gestörte NF-Signal gesperrt wird.

Mit anderen Worten, das NF-Signal vom Demodulator wird auf dem Niveau, welches das Signal in dem Augenblick da die Störung beginnt hat, konstant gehalten. Bestimmend hierfür ist die Ladung am Speicherkondensator C734.

Bei einer 50 prozentigen Störung des NF-Signals kann die Störung noch mit Erfolg unterdrückt werden, vorausgesetzt, dass die Unterdrückungszeit hinsichtlich der Periodenzeit des Entstörsignals klein ist. Wird dieses Niveau überschritten, dann erfolgt eine Rückregelung, wodurch nur Störimpulse mit grosser Amplitude unterdrückt werden.

Dies erreicht man wie folgt:

Das Störsignal besteht meistens aus einem ausgeweiteten Spektrum mit Störimpulsen verschiedener Amplituden. Die Intensität der Störimpulse bestimmt das Mass der Rückregelung des Impulsverstärkers. Diese Intensität wird an Punkt 12 der IC gemessen und an einem Ausgang des Schmitt-Triggers (Punkt 10 der IC).

Diese beiden Messungen ergeben eine Regelspannung, die die Verstärkung des Impulsverstärkers darart zurückdringt, dass jetzt nur Steuerimpulse einen Triggerimpuls aus einem Schmitt-Trigger abgeben, die ein bestimmtes Niveau übersteigen. Die Störimpulse mit geringer Amplitude werden dann nicht unterdrückt.

Ein aktives RC-Filter von 19 kHz sorgt dafür, dass der 10-kHz-Pilotton bei Unterdrückung des gestörten NF-Signals in gleichem Rhythmus weiterschwingen kann (sin a im Diagramm).

Ist dies nicht der Fall - z.B. bei einem falschen Abgleich - dann ist die Phasen- und Amplitudendifferenz am Ende des Unterdrückungsimpulses zu gross (sin b im Diagramm). Dies erfährt man als einen hinderlichen Flötenton. Die Wirkungsweise des Filters wird hauptsächlich von den externen passiven Komponenten bestimmt.

Bemerkung

Die Tatsache, dass diese Schaltung mit Erfolg Störungen unterdrückt, impliziert nicht, dass alle Autos mit eingebauter IAC nicht für FM entstört werden müssen. Es besteht dann die Möglichkeit dass der maximale Störpegel, der die Schaltung noch unterdrücken kann, zu schnell überschritten wird. In vielen Fällen kann man Entstörmaterial einsparen.

I

DESCRIZIONE CIRCUITO ANTIDISTURBO IAC (Interference Absorption Circuit)

Introduzione

Le interferenze in ricezione provengono per la maggior parte dall'antenna. L'inclinazione dei fianchi del segnale è perciò forte e la forma di tensione d'interferenza è soggetta a brusche variazioni. Questi fenomeni d'interferenza sono composti da un gran numero di armoniche, la cui frequenza va da zero all'infinito.

Tenendo conto che il segnale BF-FM stereo copre una gamma di circa 53 kHz, è evidente che in FM e a maggior ragione in FM stereo, l'interferenza sarà più intensa che non in AM.

Funzionamento IAC

Partiamo da un segnale BF con un disturbo all'entrata 1-IC.

Questo segnale attraversa un filtro passa-banda BF ed arriva amplificato all'entrata del circuito porta, punto 4-IC.

Il filtro passa-banda BF è così concepito:

1. Il punto di 3 dB è a 65 kHz, l'informazione stereo completa è dunque trasmessa.
2. Il tempo di ritardo è di circa 2 o 3 μ sec.
- Il segnale in causa è così applicato attraverso un filtro passa alto.

Questo filtro forma una rete differenziale per segnali superiori a 53 kHz. Questi differenti picchi così prodotti, che sono derivati unicamente da fenomeni di disturbo, sono inviati all'ingresso di un amplificatore d'impulsi. Gli impulsi amplificati sono raddrizzati ed applicati all'oscillatore di Schmitt. Una combinazione R-C comprendente i componenti fissi, al punto 11-IC, determina la durata degli impulsi di scarica dell'oscillatore di Schmitt. L'impulso positivo blocca il circuito porta, in modo che il segnale BF parassita giunto nel contempo è bloccato. In altri termini il segnale BF del rivelatore è mantenuto costante al livello che il segnale possiede al momento, quando l'interferenza è presente.

In questo modo è determinata la carica sul condensatore di memoria C734.

Se il 50 % del segnale BF è composto da interferenze, queste possono essere ancora sopprese con buon risultato. A condizione però, che il tempo di soppressione sia corto in rapporto al periodo di tempo del segnale che deve essere senza disturbi. Se questo livello deve essere superato, si applica una certa regolazione di compenso che sopprime soltanto quegli impulsi parassiti di forte intensità. Questo fenomeno a luogo nel seguente modo: Il segnale d'interferenza si compone generalmente di una larga banda di impulsi parassiti di differente intensità.

L'intensità degli impulsi parassiti determina la misura della regolazione di compenso dell'amplificatore di impulsi. Questa intensità è misurata al punto 12-IC e all'uscita dell'oscillatore di Schmitt, punto 10-IC. Queste due misure risultanti in una tensione di regolazione che riduce l'amplificazione dell'amplificatore in maniera tale che solo gli impulsi parassiti, al di sopra di un certo livello, producono un impulso di scarica all'uscita dell'oscillatore di Schmitt. Gli impulsi parassiti di debole intensità non sono soppressi. Un filtro attivo RC 19 kHz assicura che, quando il segnale BF disturbato, è soppresso, il pilota da 19 kHz continua ad oscillare allo stesso ritmo (sinusoide (a) nel diagramma). Se così non fosse, e causa di una errata regolazione, la differenza fra la fase e l'ampiezza alla fine dell'impulso di soppressione, è troppo elevata (sinusoide (b) nel diagramma). Così si può sentire un fischio sgradevole. Il modo con cui il filtro reagisce è soprattutto determinato dai componenti passivi esterni.

Osservazioni

Il fatto che questo circuito sopprima le interferenze con successo non implica che tutte le auto, nelle quali sono montati degli apparecchi con IAC, non debbano essere schermate. Infatti si potrebbe verificare che il livello massimo, a cui questo circuito può ancora effettuare la soppressione di disturbi possa essere superato rendendolo inefficiente. Tuttavia in qualche caso si può rinunciare alla schermatura.

LIST OF ELECTRICAL PARTS

S	~~~~~	C		
Toko code				
S451	4822 156 30079	C653,658	4.7 nF - 63 V 4822 122 31125	
S452	4822 156 20691	C663	680 pF-5%-63 V 4822 121 50521	
S453	4822 156 20692	C664	220 pF-2%-100 V 4822 122 30101	
S455	20 - 230 -	C666,667	4.7 nF - 63 V 4822 122 31125	
S456	20 - 230 -	C669	470 pF-10%-100 V 5322 122 30034	
S457		C673	2.7 nF-10%-100 V 4822 122 30057	
S458		C674	4.7 nF-10%-100 V 4822 122 30129	
S459	20 - 230 -	C675	Trimmer 9 pF 5322 125 50049	
S460	20 - 270 -	C679	Trimmer 10 pF 4822 125 50026	
S461	20 - 230 -	C680	Variable cap. 4822 125 20194	
S462	20 - 270 -	C681		
S463	20 - 290 -	C682	360 pF-2.5%-63 V 4822 121 50551	
S464	20 - 210 -	C709,710	470 pF-10%-100 V 5322 122 30034	
S465	20 - 220 -	C712,715,716	3.3 nF-10%-100 V 5322 122 30099	
S466	99 - 740 -	C720-722	330 pF-10%-100 V 4822 122 30055	
S482		C724	330 pF-10%-100 V 4822 122 30055	
		C725,726	680 pF-10%-100 V 5322 122 30053	
		C727	1,2 nF-10%-100 V 5322 122 30054	
		C729	4.7 nF-10%-100 V 4822 122 30128	
		C731	2.2 nF-10%-100 V 4822 122 30114	
		C732,736	3.3 nF-10%-100 V 5322 122 30099	
		C733,734	3.9 nF-10%-100 V 4822 122 30098	
		C740	Trimmer 10 pF 4822 125 50026	
		C741,742	4.7 nF-10%-100 V 4822 122 30129	
		C754	390 pF-10%-100 V 4822 122 30091	
		C758	820 pF-10%-100 V 5322 122 30031	
TS	~~~~~	D	~~~~~	
TS400,402	BF494	5322 130 44195	TS403	BF495D
TS401	BF495	4822 130 40947	TS404	BF494B 40835 4822 130 40949
IC408	TDA1001	4822 209 80284	TS405	BF495C
			TS406	BF240 4822 130 40902
			TS411	BC408C 5322 130 44196
			TS412	BC338 5322 130 44121
			TS413	AD161 P 5322 130 40349
			TS414	AD162
			D431	BA102 5322 130 30272
			D432,433	BA314 4822 130 30879
			D435	AA119 5322 130 40229
			D436	BA315 4822 130 30843
			D437,438	2 - AA119 4822 130 30312
			D439	BZX79/C5V6 5322 130 30759
			D440	BA314 4822 130 30879