
IS51-Builder
Notizen für Anwender

Stand: 25. März 2025
Tom Amann

Anwendernotizen

Seite 2

IS51-Builder

Inhaltsverzeichnis
1 Einleitung... 4
2 Programm ausführen... 6

2.1 Einzeldateien...6
2.2 Projekte mit mehreren Dateien..7
2.3 Download zum Zielsystem...8

3 Kurze Übersicht...9
3.1 Klammerpaare...9
3.2 Lesezeichen...9
3.3 Die Werkzeugleiste..10
3.4 Menübefehle.. 11

3.4.1 Datei..11
3.4.2 Bearbeiten...11
3.4.3 Einstellungen... 13
3.4.4 Funktionen... 13
3.4.5 Hilfe.. 13

3.5 Bedienung..14
3.5.1 Zeileneinrückung... 14

4 Ausführen.. 15
4.1 Desktop Startsymbol..15

5 Beispiele.. 16
5.1 Einfache Textdatei... 16
5.2 C-Programmdatei.. 17

6 USB unter Linux... 19
6.1 USB-RS232 Wandler...19
6.2 Libusb Geräte..21

6.2.1 Zugriff vorübergehend einrichten... 21
6.2.2 Zugriff dauerhaft einrichten.. 22

X Bekannte Fehler.. 23
X.1 Lesezeichen..23

Y Infos.. 24
y.1 Versionsnummer..24
y.2 A...24

Seite 3

1 Einleitung

Der IS51-Builder ist eine Integrierte Entwicklungsumgebung (Integrated Development Environment – IDE)
für die Mikrocontrollerfamilie MCS51 und speziell in Verbindung mit der Hardware der verschiedenen
IS5xx-Platinen und dem SDC-Compiler. Es ist damit aber auch möglich Programme für andere
Prozessoren und Mikrocontroller zu schreiben. Der Debugger wird aber nur mit MCS51 arbeiten Da man
aus der IDE auch Programme starten kann, lassen sich natürlich auch Debugger anderer
Prozessoren/Controller ausführen.

Das Grundkonzept der IDE ist möglichst einfach in der Bedienung zu sein und den Anwender bei seiner
Arbeit möglichst wenig zu behindern. Bei vielen modernen IDE’s wird man von gut gemeinten Hilfen
förmlich erschlagen und verbringt einen guten Teil der Zeit damit die Folgen der Hilfestellungen wieder zu
beseitigen. Meist kann man die Hilfe auch abschalten, aber dann hat man keine Hilfe mehr.

Ich versuche hier Hilfen zur Verfügung zu stellen, sie aber nur nach Aufforderung zu geben. Dadurch
vermeide ich, von der Hilfe behindert zu werden.

Der Editor mit seinen Funktionen wird öffentlich sein, der Debugger nicht, da er sich auf Hardware bezieht
die, ausser mir, niemand hat.

Das Programm ist in C++ und dem FLTK Framework unter und für Linux geschrieben und statisch gelinkt.
Dadurch muss der Anwender kein eigenes Rahmenwerk dafür installieren. Das Programm einfach in ein
Verzeichnis kopieren und dort starten.

Der Editor ist der aus den FLTK-Beispielen, erweitert um Multifile-, Lesezeichen-, Klammerfinde- und
erweiterte Suchfunktionen.

Die Werkzeugleiste befindet sich am linken Bildrand, um Platz für mehr Zeilen im Editor zu schaffen.

Durch Rechtsklick im Editorfenster öffnet sich ein lokales Menü, in dem sich Hilfsfunktionen finden.

Öfter läuft beim Syntaxhighlight noch etwas schief, in dem Fall im Menü das highlighting deaktivieren und
wieder aktivieren.

Anwendernotizen

2 Programm ausführen

Das Programm wurde statisch gelinkt, dadurch ist alles was es benötigt integriert. Es muß nichts
dafür installiert werden. Es kann einfach nur gestartet werden. In der Konsole mit dem Befehl:
„./is51b“ oder durch anklicken des Symbol in einer grafischen Oberfläche.

Das Zahnradsymbol dient zum übersetzen (compilieren/assemblieren) der momentan
aktiven Datei. Der erste Buchstabe des Dateiextend entscheidet über die Art der
Übersetzung. Ist der Buchstabe ein „A“ oder „a“ wird die Datei assembliert, bei „C“ oder
„c“ wird compiliert. Dazu werden der Compiler/Assembler des SDCC-Paketes verwendet.
Es wird nur diese eine Datei übersetzt. Meldungen des Übersetzers werden in der Datei:
„dateiname.log“ gespeichert. Fehlermeldungen landen in der Datei: „dateiname.err“. Dabei ist
„dateiname“ der Name der aktiven Datei im Editor.

2.1 Einzeldateien

Im Modus für Einzeldateien können die nicht mehr gebrauchten Zwischendateien nicht automatisch
gelöscht werden. Dafür ist es aber möglich sich ein einfaches makefile mit der benötigten Funktion
zu erstellen.

Makefile:

Hinweis: zum löschen der Dateien "make clean CFL=Dateiname ohne Extend" aufrufen.

clean:

$(RM) $(CFL).adb $(CFL).asm $(CFL).cdb $(CFL).ihx

$(RM) $(CFL).lk $(CFL).lst $(CFL).map $(CFL).mem

$(RM) $(CFL).omf $(CFL).rel $(CFL).rst $(CFL).sym

$(RM) $(CFL).err $(CFL).log

Aufgerufen kann „make clean“ über die Shell im Editor werden.

Seite 6

IS51-Builder

Um das(die) Kommando(s) nicht jedes mal neu eintippen zu müssen, kann man sie in eine eigene
Textdatei schreiben und bei Bedarf aus dieser in das Eingabefenster kopieren.

2.2 Projekte mit mehreren Dateien

Um mehrere Dateien zum bilden eines Zielprogramms zusammen zu verarbeiten wird einmalig ein
makefile für das Projekt erstellt und kann dann mehrfach benutzt werden. Das makefile wird
vorteilhaft im Projektverzeichnis angelegt und wird dann mit „make“ aufgerufen. Braucht man
mehrere makefiles mit unterschiedlichen Funktionen im gleichen Verzeichnis, können die makefiles
unterschiedliche Namen haben und unter diesen Namen von make bedient werden. Aufgerufen
werden sie dann unter der Angabe dieses Namens:

 „make -f Dateiname“ – zum Beispiel: „make -f make1“

Innerhalb des makefiles kann nun auch ein Abschnitt „clean“ zum löschen nicht mehr benötigter
Dateien sein. Dieser Abschnitt wird dann durch „make clean“ ausgeführt.

Um make beim Aufruf den Namen einer Datei mitzuteilen, kann dieser als Aufrufparameter
übergeben werden:

make clean -C FNM=/home/tom/Ldaten/IS52XTLL/IS52XTLL

übergibt an make die Variable FNM (File NaMe), welche nun innerhalb von make benutzbar ist.
Innerhalb wird diese Variable dann als „$(FNM)“ Verwendung finden und steht in diesem Fall für:

/home/tom/Ldaten/IS52XTLL/IS52XTLL

Seite 7

Anwendernotizen

Im folgenden makefile wird die in $(FNM) übergebene C-Datei und die zugehörige Assemblerdatei
„Startup.asd“ zum Hexfile mit dem übergebenen Namen und dem Extend „.hex“ verarbeitet.

Beispiel:

##

GNU Makefile demonstrating combination of C and assembly source files

File Name: makefile

All targets in the makefile are processed sequentially by SDCC

To create the file ‘file.hex’ using GNU make, just execute ‘make’

##

The following lines defines additional directories to search for include files

#INCLUDES := -I”C:\Your Directory\Lab3\”

#Here are the sourcefiles used for the project

#CFX = weisnichtwas hier können auch weitere Quelldateien eingefügt werden.

CFL = $(FNM)

AFL = Startup

#MODEL = --model-large

MODEL = --model-small

The following line defines flags given to the SDCC C compiler

CFLAGS := -c --debug --verbose $(MODEL) $(INCLUDES)

The following line defines flags given to the SDCC linker

Non-specific: –code-loc 0x6000 –xram-loc 0xB000 –model-large

LFLAGS := --debug --verbose --code-loc 0x8100 --code-size 0x8000 --xram-loc 0xC000 --xram-size
0x4000 $(MODEL)

The following line specifies the default target(s) to build

#all: file.hex

The following line specifies the object files that are to be linked together

OBJECTS := $(CFL).rel $(AFL).rel

Seite 8

IS51-Builder

The following lines define a rule that sends the object files through the linker to

create file.ihx which then has to be processed by packihx to create file.hex

file.hex : $(OBJECTS)

@echo "Linker:" >> $(CFL).log

sdcc $(LFLAGS) $^ >> $(CFL).log 2>> $(CFL).err

packihx $(CFL).ihx > $(CFL).hex

The following rule sends each C file through the preprocessor and creates the asm file

that is then assembled to create the rel file.

%.rel : %.c

@echo "Compiler:" > $(CFL).log 2> $(CFL).err

sdcc $(CFLAGS) $< >> $(CFL).log 2>> $(CFL).err

The following rule sends each asm file (Not the asm files created by SDCC as an

intermediate output of the compilation process.) through the assembler to create a rel

file.

%.rel : %.asd

@echo "Assembler:" >> $(CFL).log

sdas8051 -plosgff $< >> $(CFL).log 2>> $(CFL).err

The following rule will clean all the derived objects from your directory. This will

save you from accidentally tying ‘rm *’ if you are developing on a UNIX platform.

Hinweis: zum löschen der Dateien "make clean" aufrufen.

clean:

$(RM) $(AFL).lst $(AFL).rel $(AFL).rst $(AFL).sym

$(RM) $(CFL).adb $(CFL).asm $(CFL).cdb $(CFL).ihx

$(RM) $(CFL).lk $(CFL).lst $(CFL).map $(CFL).mem

$(RM) $(CFL).omf $(CFL).rel $(CFL).rst $(CFL).sym

$(RM) $(CFL).err $(CFL).log

Fehlermeldungen werden in einer Datei „übergebener Name.err“, Standardmeldungen in
„übergebener Name.log“ gespeichert. Ist die Fehlerdatei leer, so hat SDCC keinen Fehler erkannt.
Mit „clean“ werden alle dabei entstandenen Zwischendateien gelöscht. Übrig bleiben nur die
Quelldateien und die Hexdatei. „make clean -C Dateiname-ohne-Extend“. Der Aufruf von make über

Seite 9

Anwendernotizen

die IDE macht das automatisch, um den korrekten Inhalt des makefile muss man sich selbst
kümmern.

2.3 Download zum Zielsystem

Unter Download wird das erzeugte Hexfile über USB zur IS5x übertragen. Da sonst
niemand diese Hardware hat ist deren Beschreibung nicht wichtig.

Für abweichende Zielhardware kann das/die entsprechende(n) Kommando(s) in der Shell gegeben
werden. Um nicht so viel tippen zu müssen kann man die erforderlichen Kommandos auch in der
Kommandodatei ablegen und von dort in die Shell kopieren.

Seite 10

IS51-Builder

3 Kurze Übersicht

Von den üblichen Tastenkommandos für Editoren sind die meisten umgesetzt. Die zugehörigen
Funktionen sind auch über das Menü erreichbar, dort finden sich auch die zugeordneten
Tastenkürzel.

3.1 Klammerpaare

Wird eine Klammer mit der Maus oder der Tastatur markiert, wird sie und die zugehörige Klammer
rot markiert. Nachdem irgend etwas am Text geändert ist, verschwinden auch die Markierungen. Es
werden nur runde- „()“, geschweifte- „{}“ und eckige „[]“ Klammern berücksichtigt, da die spitzen
Klammern auch ungepaart im Quelltext vorkommen können.

3.2 Lesezeichen

Im Text können an beliebigen Stellen
Lesezeichen gesetzt werden. Durch Um-
schalten wird ein Lesezeichen gesetzt, oder
falls bereits vorhanden, entfernt. Mit
Rückwärts und Vorwärts geht es zum jeweils
vorigen oder folgenden Lese-zeichen. Die
Arbeitsweise ist dabei modulo, wenn ein Ende
erreicht ist, wird am anderen Ende weiter
gemacht.

Die Liste um ein Lesezeichen gezielt aufzusuchen ist noch nicht realisiert.

Die Funktion „Alle löschen“, löscht alle Lesezeichen unwiderruflich. Die Funktion hat kein
Tastenkürzel, damit sie nicht versehentlich aufgerufen wird.

Seite 11

Anwendernotizen

Seite 12

IS51-Builder

3.3 Die Werkzeugleiste

Datei - Neu

Menü: Datei – Neu (strg+n) Symbol:

Erstellt eine neue Datei mit dem Namen „neu.txt“

Datei - Öffnen

Menü: Datei – Öffnen(strg+o)

Öffnet eine bereits bestehende Datei

Datei - Speichern

Menü: Datei – Speichern (strg+s)

Speichert eine bearbeitete Datei.

Datei – Speichern unter

Menü: Datei – Speichern unter. (strg+shift+s)

Speichert die aktuelle Datei unter einem neuen Namen.

Datei - Schließen

Menü: Datei schließen (strg+w)

Schließt die aktuelle Datei.

Bearbeiten - Ausschneiden

Menü: Bearbeiten Ausschneiden (strg+x)

Markierten Text ausschneiden und in die Zwischenablage legen.

Bearbeiten - Kopieren

Menü: Bearbeiten Kopieren (strg+c)

Markierten Bereich in die Zwischenablage legen.

Bearbeiten - Einfügen

Seite 13

Anwendernotizen

Menü: Bearbeiten Einfügen (strg+v)

Inhalt der Zwischenablage einfügen.

Bearbeiten – Rückgängig (undo)

Menü: Bearbeiten Rückgängig (strg+z)

Letzte Funktion zurücknehmen.

Bearbeiten – Wiederherstellen (redo)

Menü: Bearbeiten Wiederherstellen (strg+y)

Letztes Undo zurücknehmen.

Bearbeiten – suchen

Menü: Bearbeiten suchen (strg+f)

Text in Quelldatei finden/ersetzen.

Bearbeiten – Übersetzen (Compiler/Assembler)

Menü: Bearbeiten Übersetzen

Quelldatei assemblieren/compilieren.

Bearbeiten – Download

Menü: Bearbeiten Download

Bearbeiten – Shell

Menü: Bearbeiten Shell

Ausführen von Konsolenprogrammen.

3.4 Menübefehle
Im Menü erreicht man auch die Funktionen, welche sich nicht
in der Werkzeugleiste finden. Diese Funktionen werden zum
Teil auch über Tastenkürzel aufgerufen.

3.4.1 Datei

Seite 14

IS51-Builder

Neu (Ctrl+N)

Erstellt und öffnet im Verzeichnis von is51b eine neue und leere Textdatei mit dem Namen „neu.txt“.
Ist dort bereits eine Datei dieses Namens vorhanden, wird diese geöffnet. Dadurch kann eine
Rahmendatei erstellt und bei jeder neuen Datei benutzt werden. Wird die Datei woanders
gebraucht, kann sie mit „Speichern unter“ im gewünschten Verzeichnis mit dem erforderlichen
Namen gespeichert werden. Der Editor übernimmt den neuen Pfad und Namen für die Datei. Sind
bereits Dateien geöffnet, wird der Pfad der zuletzt aktiven Datei für die Neue verwendet.

Öffnen (Ctrl+O)

Zeigt einen Dialog, in dem eine bereits vorhandene Datei wählbar ist. Um die Auswahl auf
bestimmte Dateitypen zu beschränken, kann der Dateifilter eingestellt werden. Grundeinstellung ist
hier Alle-Dateien (*.*). Als Verzeichnis wird das der momentan aktuellen Datei vorgeschlagen. Auch
hier ist es möglich vordefinierte Rahmendateien zu nutzen.

Speichern (Ctrl+S)

Speichert die Datei an ihrem ursprünglichen Ort mit dem aktuellen Namen auf Datenträger.

Speichern unter (Ctrl+Shift+S)

Öffnet einen Dialog, in dem ein neuer Ort und ein neuer Name wählbar ist. Hiermit lassen sich neu
erstellte Dateien ihrem Ziel zuordnen.

Schließen (Ctrl+W)

Die aktuelle Datei wird geschlossen. Wurde sie seit dem letzten speicher geändert, Öffnet sich ein
Dialog in dem gefragt wird, ob sie gespeichert werden soll.

Beenden (Ctrl+Q)

Beendet den IS51-Builder. Sind noch Dateien offen, die nach dem letzten speichern geändert
wurden, erfolgt für jede dieser Dateien eine Abfrage ob sie gespeichert werden soll.

3.4.2 Bearbeiten

Ausschneiden (Ctrl+X)
Entfernt den markierten Bereich aus dem Text und legt ihn in die
Zwischenablage.

Kopieren (Ctrl+C)

Seite 15

Anwendernotizen

Kopiert den markierten Bereich aus dem Text und legt ihn in die Zwischenablage.

Einfügen (Ctrl+V)
Fügt den Inhalt der Zwischenablage an der aktuellen Cursorposition ein.

Seite 16

IS51-Builder

Suchen (Ctrl+F)

Sucht im aktuellen Text nach einem
bestimmten Abschnitt, der im Ein-
gabefeld „Suchen“ vorgegeben wird.
Wird im Text ein Abschnitt / Wort
markiert, z.B: durch Doppelklick, wird
dieser markierte Text beim öffnen des Dialogs als Suchtext übernommen, sonst der zuletzt benutzte
Suchtext. Beim ersten Aufruf des Dialoges ist der letzte Suchtext noch leer. Durch „Rück“ und „Vorw“
wird der jeweils vorherige oder folgende Treffer angewählt. „Alle“ ist noch nicht verfügbar (alle
Vorkommen des Suchtextes markieren) und springt zum letzten Vorkommen des Suchtext.

Ist ein Ersatztext vorhanden, wird durch „Ersatz“ das aktuell gefundene Suchwort durch diesen
ersetzt. „Alle“ ersetzt alle Suchworte von der aktuellen Cursorposition bis zum Ende des Textes. Um
wirklich alle Vorkommen im Text zu ersetzen ist der Cursor auf den Dateianfang zu setzen. Die
ursprüngliche Cursorposition kann durch ein Lesezeichen (strg+t) festgehalten werden, so kommt
man schnell zur alten Position zurück.

Vor dem ersetzen aller Vorkommen empfiehlt es sich die Datei zu speichern, da man zwar alle
Vorkommen gemeinsam ersetzen, aber dies nur einzeln rückgängig machen kann.

Durch „Ende“ wird der Dialog beendet, dabei bleibt der letzte Suchtext erhalten und beim erneuten
Aufruf wieder als Suchtext vorgegeben (sofern kein Bereich im Quelltext markiert ist).

Rückgängig (Ctrl+Z)
Macht die letzte Aktion rückgängig. Erneutes aktivieren die Aktion davor und so weiter. Bis zum
Startpunkt des Editors.

Wiederherstellen (Ctrl+Y)
Stellt die letzte rückgängig gemachte Aktion wieder her. Erneutes aktivieren die Aktion davor und so
weiter. Bis zum Startpunkt von „Rückgängig“.

Übersetzen
Assemblieren/compilieren der aktuellen Datei der IDE. Die Art des übersetzens ist abhängig vom
ersten Buchstaben des Dateiextend. Ist dieser ein „A“ oder „a“ wird assembliert (z.B: xxx.asm,
xxx.asd, …), ist es ein „C“ oder „c“ wird compiliert (z.B: xxx.c, xxx.c51, ...).

Wurde die aktuelle Datei seit dem letzten speichern geändert, erscheint ein Dialog in dem man
speichern wählen kann.

Seite 17

Anwendernotizen

Make
Ruft das „makefile“ auf.

Wurde die aktuelle Datei seit dem letzten speichern geändert, erscheint ein Dialog in dem man
speichern wählen kann.

Clean
Ruft „make clean“ auf, um die nicht mehr benötigten Zwischendateien zu löschen. Es ist vorteilhaft
sich zwei makefiles, für C oder Assembler, zurechtzulegen. Für C-Programme ist die x.asm nur eine
Zwischendatei, für Assembler ist es möglicherweise die Quelldatei und darf nicht gelöscht werden.
Es ist vorteilhaft für Assemblerquelldateien den Extend “.asd“ (aSSEMBLER sdCC) zu vergeben, damit
sie nicht versehentlich gelöscht werden. Der Builder erwartet ein Makefile „aclean.mak“ für
Assembler- und „cclean.mak“ für C-Quelldateien.

Download
Ruft den Download der Intel-Hex Datei über USB auf.

Shell
Ermöglicht die Eingabe von Befehlen in die Konsole.

3.4.3 Einstellungen

Syntaxhighlight:

Aktivieren und deaktivieren des Syntaxhighlight im aktiven Editorfenster.

Zeilennummern

Wird noch nicht bedient. Die Zeilennummern werden immer angezeigt.

Intel-Hex

Wird noch nicht bedient. Intel-Hex Editor zum bearbeiten von Hex-Dateien.

3.4.4 Funktionen

Lesezeichen

Bearbeiten (umschalten, anspringen, löschen) der Lesezeichen.

Seite 18

IS51-Builder

Zeile

Zu einer gegebenen Zeile springen.

Schlüsselworte

Wird noch nicht bedient. Hilfslisten mit oft benötigten Worten um sie daraus in den Quelltext
kopieren zu können. Dies zeigt Mnemonics, C-Befehle, SFR, SFR-Bit, Registernamen und vieles mehr,
um sie nicht in verschiedenen Dokumenten nachschlagen zu müssen.

3.4.5 Hilfe

Version

Anzeige des vorliegenden Programmstatus.

Sprache C
Hilfestellung für die Programmiersprache C.

Assembler
Hilfestellung für die Programmiersprache Assembler.

Seite 19

Anwendernotizen

3.5 Bedienung

Viele Funktionen gleichen denen anderer Editoren, einige weichen davon ab. Hier sind die
abweichenden Funktionen der Bedienung des Editors im IS51-Builder beschrieben.

Durch die Einfügen-Taste der Tastatur wird der
Einfügemodus umgeschaltet. Er wechselt zwischen „INS“
(INSert – Einfügen) und „OVR“ (OVeRwrite –
Überschreiben). Die entsprechende Anzeige des Modus
ist in der Statuszeile rechts neben der Spaltennummer zu
finden.

3.5.1 Zeileneinrückung

Anstatt immer nur den linken Rand, oder immer die Position der vorherigen Zeile zu verwenden
(was recht nervig sein kann), wird hier eine dreifache Wahl angeboten:

Enter: Linker Rand

Ctrl+Enter: Wie vorige Zeile

Alt+Enter: Wie folgende Zeile

Ist keine vorige- (Textanfang), oder folgende- (Textende) Zeile vorhanden, wird für die neue Zeile der
linke Rand gewählt. Hierbei wird, dem Konzept entsprechend, dem Anwender nichts aufgezwungen,
sondern er hat die freie Wahl.

Seite 20

IS51-Builder

4 Ausführen

Hier finden sich einige Beispiele für den Umgang mit IS51-Builder.

4.1 Startsymbol einrichten

Das ICON des Programms und die Datei „is51b.desktop“ in den versteckten Ordner
/home/user/.local/share/applications/ kopieren. Nun kann sie aus den Anwendungen gestartet oder
an die Schnellstartleiste angeheftet werden.

Beispiel – is51b.desktop:

[Desktop Entry]

Type=Application

Icon=/home/tom/.local/share/applications/IS51ICO.ico

Name=IS51-Builder

Comment=8051-IDE für SDCC

Exec=/home/tom/LDaten/QtProgs/FLTK/is51b/is51b/is51b

Path=/home/tom/LDaten/QtProgs/FLTK/is51b/

StartupNotify=true

Terminal=false

MimeType=x-directory/normal;inode/directory;

4.2 Desktop Startsymbol

Die Datei is51b.desktop in den Desktop-Ordner
(Schreibtisch) kopieren, dann das Icon rechts
anklicken und „Starten erlauben“ aktivieren.
Dadurch wird das Programm über den Desktop
als Symbol erreichbar.

Seite 21

Anwendernotizen

5 Beispiele

Hier finden sich einige Beispiele für den Umgang mit IS51-Builder.

5.1 Einfache Textdatei

Im normalen Textmodus verhält sich der IS51-Builder wie viele andere Editoren auch. Es können
Lesezeichen an beliebigen Stellen gesetzt werden. Es werden immer Zeilennummern angezeigt. Die
Anzeige der Cursorposition Spalte/Zeile ist unten links in der Statuszeile. Die Funktionen
einfügen/überschreiben fehlen noch.

Seite 22

IS51-Builder

5.2 C-Programmdatei

Hier ein kleines Testprogramm in C für MCS51. Es liest, in einer Enlosschleife, die Stellung

von 8 Schaltern an Port P1 ein und gibt diese an die LED‘s an Port P3 aus.

Programm Prog1.c zum kopieren:

/*******************************

* Testprogramm für C-Compiler *

******************************/

#include <8051.h>

//--- Initialisierung der Speicher unterdrücken -------

 void nocrtinit (void) __naked

{ __asm

__mcs51_genXINIT::

__mcs51_genXRAMCLEAR::

__mcs51_genRAMCLEAR::

__sdcc_gsinit_startup::

__endasm;

}

int main ()

{ char cVar;

 for(;;) //Endlosschleife

 { cVar = P1; //Schalterstellung einlesen

 P3 = cVar; //Zu den LED's ausgeben

 }

}

Seite 23

Anwendernotizen

Seite 24

IS51-Builder

Programm Prog1.c im Editor:

Compilieren durch Klick auf das Zahnrad der Werkzeugleiste oder Menü: Bearbeiten – Uebersetzen.
Dadurch wird eine ganze Reihe Zwischendateien erzeugt, die bei Nichtgebrauch mit Menü:
Bearbeiten – Clean wieder entfernt werden können, sofern ein entsprechendes makefile vorhanden
ist.

Daraus erzeugte Intel-Hex Datei:

:03000000020000FB

:03000600020003F2

:03000300020009EF

:060009008590B080FB228F

:00000001FF

Seite 25

Anwendernotizen

Diese HexDatei kann nun zum Zielsystem übertragen und dort ausgeführt werden.

Seite 26

IS51-Builder

6 USB unter Linux

Unter Linux ist es nicht ganz einfach eine zugekaufte oder selbstgebaute Hardware einzubinden,
wenn sie nicht automatisch vom System erkannt wird. Dies betrifft auch die vielen verschiedenen
Programmieradapter für Mikrocontroller.

6.1 USB-RS232 Wandler

Die RS232-Schnittstelle ist eine genormte serielle Schnittstelle, welche mit unterschiedlichen
Bezeichnungen verbreitet ist. Nach amerikanischer Norm heißt sie RS232, nach europäischer Norm
V.24 und nach deutscher Norm DIN 66020. Da heute die meisten PC‘s keine RS232-Schnittstelle
mehr haben, werden billige USB-RS232 Adapter angeboten. Die Hersteller dieser Adapter scheren
sich oft nicht viel um die Norm, was die Sache etwas verkompliziert. Doch das ist im Netz vielfach
beschrieben und wird hier nicht weiter ausgeführt. Hier geht es um das einbinden und benutzen
dieser Adapter.

Beim einstecken eines funktionierenden Adapter an einen USB-Anschluß, wird er vom System
erkannt und unter einem bestimmten Namen eingetragen. Diesen Namen herauszufinden ist
wichtig, um die Schnittstelle ansprechen zu können. Dazu sieht man sich im Hauptverzeichnis der
Festplatte den Inhalt des Ordners „dev“ (devices - Geräte) genauer an.

Der hier verwendete Adapter wurde unter dem Namen ttyUSB0 eingetragen, wobei die Nummer 0
eine fortlaufende Nummer ist. Wird zusätzlich ein zweiter, gleicher Adapter angesteckt erhält er die
nächst höhere Nummer, also ttyUSB1. Ein Teil meiner Adapter meldet sich mit ttyACMx (Abstract
Control Model). Um sicherzustellen dass es auch wirklich der richtige Adapter ist, kann man ihn
wieder abstecken und der Eintrag verschwindet.

ttyUSBx = USB-UART Konverter (Hardware), ttyACMx = USB-CDC Programm (Software).

Seite 27

Anwendernotizen

Die Schnittstellen sind auch durch „dmesg“ in einem Terminal ermittelbar:

dmesg | grep tty

tom@tom-TM6595T:~/LDaten$ dmesg | grep tty

[0.000000] console [tty0] enabled

[0.708179] 0000:00:16.3: ttyS4 at I/O 0x30b0 (irq = 19, base_baud = 115200) is a 16550A

[27540.663961] cdc_acm 2-1.2:1.0: ttyACM0: USB ACM device

Damit ist nun bekannt unter welchem Namen der Adapter angesprochen wird.

Nun ist zu prüfen, ob man die Berechtigung besitzt auf das Gerät zugreifen zu dürfen. Dazu in der
Konsole die Gruppenzugehörigkeit ermitteln mit "id":

tom@tom-TM6595T:~/LDaten/QtProgs$ id

uid=1000(tom) gid=1000(tom) Gruppen=1000(tom),4(adm),20(dialout),24(cdrom),

27(sudo),30(dip),46(plugdev),118(lpadmin),128(sambashare)

Um mit den seriellen Schnittstellen arbeiten zu dürfen muss man sich in der Gruppe „dialout“, und
für die USB-Schnittstelle besser auch in der Gruppe „plugdev“ befinden. In meinem Fall ist das hier
gegeben, in der Liste sind die Gruppen 20(dialout) und 46(plugdev) aufgeführt. Ist man kein Mitglied
der entsprechenden Gruppe, muss man sich dieser anschließen:

Bestehenden Benutzer einer weiteren Gruppe hinzufügen:

Allgemein: sudo usermod -aG GRUPPENNAME BENUTZERNAME

Beispiel: sudo usermod -aG plugdev tom

Als Benutzername ist nicht tom, sondern der Eigene einzusetzen. Danach Linux abmelden und
wieder anmelden damit die Änderung wirksam ist.

Seite 28

IS51-Builder

Nachdem nun der Zugriff auf die Hardware sichergestellt ist, wird jetzt die Software für das
Downloaden eingerichtet. Dazu sind die Übertragungsparameter der Zielhardware richtig
einzustellen, damit sich die Teilnehmer untereinander verstehen. Welche die richtigen Parameter
der Zielhardware sind, ist deren Dokumentation zu entnehmen. Die Parameter für den PC und damit
für den IS51-Builder werden mit dem „stty“ Kommando bestimmt:

stty 9600 -F /dev/ttyUSB0

Hier wird die Baudrate von ttyUSB0 auf 9600 Bit je Sekunde eingestellt. Näheres findet sich in der
Dokumentation von „stty“. Sind die richtigen Einstellungen für die Zielhardware ermittelt, werden sie
in eine der freien Einstellungen des IS51-Builder übernommen und sind dann auf Mausklick
erreichbar.

Gleiches gilt für den eigentlichen Befehl zum Download. Er wird in eine der freien Einstellungen, z.B
Senden, übernommen und ist dann auch per Mausklick erreichbar. Der Konsolen-Befehl nennt sich
„cat“ und ist geeignet eine Datei über die serielle Schnittstelle zu senden. Im Beispiel wird die Intel-
Hex Datei IS52XTLL.ihx aus dem Pfad „/home/tom/LDaten/“ zum Gerät „/dev/ttyUSB0“ gesendet.

cat /home/tom/LDaten/IS52XTLL.ihx > /dev/ttyUSB0

6.2 Libusb Geräte

Auch hier ist es wichtig das richtige Gerät zu ermitteln. Dazu das Gerät mit einem freien USB-
Anschluss des PC verbinden und in der Konsole den Befehl „lsusb“ eingeben (der erste Buchstabe ist
ein kleines L, kein großes i).

Ermittelt durch "lsusb":

Seite 29

Anwendernotizen

tom@tom-TM6595T:~/LDaten/QtProgs$ lsusb

Bus 002 Device 003: ID 1c7a:0603 LighTuning Technology Inc.

-> Bus 002 Device 004: ID 16d0:0418 MCS

Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub

Mein Programmiergerät (ID 16d0:0418 MCS) ist hier das zweite Gerät: Bus 002 Device 004.

Nun die Rechte der Geräte prüfen. Hier prüfe ich die Geräte am Bus 002:

ls -l /dev/bus/usb/002

tom@tom-TM6595T:~/LDaten$ ls -l /dev/bus/usb/002

crw-rw-r-- 1 root root 189, 128 Mai 11 09:04 001

crw-rw-r-- 1 root root 189, 129 Mai 11 09:04 002

crw-rw-r-- 1 root root 189, 130 Mai 11 09:04 003

-> crw-rw---- 1 root root 189, 131 Mai 11 13:49 004

Mein Gerät (Nummer 004) hat Lese/Schreib-Rechte (rw) für den Besitzer und die Gruppe, gehört
aber nur zu Gruppe root und erlaubt mir deshalb als Benutzer keinen Zugriff.

6.2.1 Zugriff vorübergehend einrichten

Zum testen des Gerätes und prüfen der Einstellungen können diese vorübergehend verändert
werden. Die Änderungen sind sofort wirksam, aber spätestens beim nächsten Systemstart sind sie
wieder zurückgestellt.

Da es sich um ein USB-Gerät handelt, ist es in der Gruppe „plugdev“ (Steckbare Geräte) gut
aufgehoben. Ändern der Gruppe für das Gerät:

sudo chown root:plugdev /dev/bus/usb/002/004

Überprüfen der Änderung:

Seite 30

IS51-Builder

ls -l /dev/bus/usb/002

crw-rw-r-- 1 root root 189, 128 Mai 11 09:04 001

crw-rw-r-- 1 root root 189, 129 Mai 11 09:04 002

crw-rw-r-- 1 root root 189, 130 Mai 11 09:04 003

-> crw-rw---- 1 root plugdev 189, 132 Mai 11 14:15 004

Jetzt befindet sich das Gerät in Gruppe „plugdev“ und ich darf als Mitglied dieser Gruppe auch
darauf zugreifen. Sollten dem Gerät die nötigen Schreib/Lese-Rechte fehlen, lassen diese sich mit
„chmod“ einstellen. Das „+w“ steht für Schreibzugriff ermöglichen:

sudo chmod u+w /dev/bus/usb/002/004

Überprüfen der Änderung: ls -l /dev/bus/usb/002

6.2.2 Zugriff dauerhaft einrichten

Um den Zugriff dauerhaft, bei jedem Systemstart freizugeben ist anders vorzugehen als zuvor
beschrieben. In einem zugänglichen Verzeichnis (z.B: der Projektordner) eine Textdatei mit dem
Extend „.rules“ erstellen, in der die gewünschten Geräte mit ihrer VID, PID, Zugriffsmodus und
Gruppe aufgelistet sind:

Im Beispiel hier werden vier Geräte eingerichtet. Ein selbstgebautes Programmiergerät, zwei USB-
µC im Bootloadermodus und ein AVR ISP MKII-Programmiergerät:

Datei: usbproger.rules

IS51 libusb-device

ATTRS{idVendor}=="16d0", ATTRS{idProduct}=="0418", MODE="0660", GROUP="dialout"

AT89C5131 - Bootloader

ATTRS{idVendor}=="03eb", ATTR{idProduct}=="2ffd", MODE="0664", GROUP="plugdev"

Seite 31

Anwendernotizen

AT89C5122 - Bootloader

ATTRS{idVendor}=="03eb", ATTRS{idProduct}=="2ffe", MODE="0664", GROUP="plugdev"

AVR ISP MKII

ATTRS{idVendor}=="03eb", ATTRS{idProduct}=="2104", MODE="0664", GROUP="plugdev"

Hinweis! -> Hexzahlen in Kleinschreibung, nicht 0x03EB sondern 0x03eb.

idVendor = Vendor-ID (hier 0x16d0, 0x03eb)

idProduct = Produkt-ID (hier 0x0418, 0x2ffd, 0x2ffe, 0x2104)

MODE = Zugriffsmodus (hier 0664: x6xx=owner-rw, xx6x=group-rw, xxx4=other-r)

GROUP = Gruppe für rw(read-write) Zugriff (Der Anwender muß sich darin befinden)

Abschließend ist die Datei, mit Admin-Rechten, in den Ordner "/etc/udev/rules.d" zu

kopieren:

sudo cp usbproger.rules /etc/udev/rules.d

Die Änderung wird dann beim nächsten Neustart von Linux wirksam, oder sofort durch:

sudo /etc/init.d/udev stop

sudo udevadm control --reload-rules

sudo /etc/init.d/udev start

Seite 32

IS51-Builder

X Bekannte Fehler
Hier sind erkannte Fehler gelistet, die im derzeit oder dauerhaft nicht beseitigt werden.

X.1 Lesezeichen

Da beim setzen eines Lesezeichens die Hintergrundfarbe des Zeichens gespeichert wird, wird nach
wechsel von Syntaxhighlight und entfernen der Markierung diese Farbe als Hintergrund für das
Zeichen weiter verwendet - Sytaxhighlight zweimal umschalten behebt das Problem.

Seite 33

Anwendernotizen

Y Infos
Zusätzliche Informationen zum Programm und dessen Umfeld.

y.1 Versionsnummer

Die Versionsnummer besteht aus drei, durch Punkt getrennte, Nummern. Darin bedeutet die erste
Nummer die Version. Die zweite Nummer die Revision und die dritte Nummer den Fehlerstatus.

Version: 0.5.3 – 3. Fehlerbereinigung

 | |------ 5. Änderung/Erweiterung

 |--------- 0=Alphastatus (1=Beta, >1=Endstatus)

Der Fehlerstatus zählt die bereinigten Fehler der Version. Der Änderungsstatus die Änderungen oder
Erweiterungen der Version. Und der Programmstatus den Zustand, wobei Nummern größer 1 auf
entscheidende Änderungen/Erweiterungen hinweisen.

y.2 A

D

Seite 34

	1 Einleitung
	2 Programm ausführen
	2.1 Einzeldateien
	2.2 Projekte mit mehreren Dateien
	2.3 Download zum Zielsystem

	3 Kurze Übersicht
	3.1 Klammerpaare
	3.2 Lesezeichen
	3.3 Die Werkzeugleiste
	3.4 Menübefehle
	3.4.1 Datei
	3.4.2 Bearbeiten
	3.4.3 Einstellungen
	3.4.4 Funktionen
	3.4.5 Hilfe

	3.5 Bedienung
	3.5.1 Zeileneinrückung

	4 Ausführen
	4.1 Startsymbol einrichten
	4.2 Desktop Startsymbol

	5 Beispiele
	5.1 Einfache Textdatei
	5.2 C-Programmdatei

	6 USB unter Linux
	6.1 USB-RS232 Wandler
	6.2 Libusb Geräte
	6.2.1 Zugriff vorübergehend einrichten
	6.2.2 Zugriff dauerhaft einrichten

	X Bekannte Fehler
	X.1 Lesezeichen

	Y Infos
	y.1 Versionsnummer
	y.2 A

