

The Swiss Army Knife of Digital Networks

by Richard Lyons and Amy Bell

This article describes a general discrete-signal network that appears, in various forms, inside
many DSP applications. So the "DSP Tip" for this column is for every DSP engineer to become
acquainted with this network. Figure 1 shows how the network's structure has the distinct look of
a digital filter—a comb filter followed by a 2nd-order recursive network. However, we do not
call this unique general network a filter because its capabilities extend far beyond simple
filtering. Through a series of examples, we illustrate the fundamental strength of the network: its
ability to be reconfigured to perform a surprisingly large number of useful functions based on the
values of its seven control parameters.

z -1

z -1

z -N

y(n)x(n)

c1

a2 b2

b1

b0

a1

a0

Comb 2nd-order recursive network (biquad)

-+

Figure 1. General discrete-signal processing network.

The general network has a transfer function of

H(z) = (1 -c1z-N)
 b0 + b1z-1 + b2z-2
 1/a0 -a1z-1 -a2z-2 . (1)

 From here out, we'll use DSP filter lingo and call the 2nd-order recursive network a "biquad"
because its transfer function is the ratio of two quadratic polynomials. The tables in this article
list various signal processing functions performed by the network based on the an, bn, and c1
coefficients. Variable N is the order of the comb filter. Included in the tables are depictions of
the network's impulse response, z-plane pole/zero locations, as well as frequency-domain
magnitude and phase responses. The frequency axis in those tables is normalized such that a
value of 0.5 represents a frequency of fs/2 where fs is the sample rate in Hz.

Moving Averager: Referring to the first entry in Table 1, this network configuration is a
computationally-efficient method for computing the N-point moving average of x(n). Also called
a recursive running sum, or boxcar averager, this structure is equivalent to an N-tap direct
convolution FIR filter with all the coefficients having a value of 1/N. However, this moving
averager is efficient because it performs only one add and one subtract per output sample
regardless of the value of N. (Whereas an N-tap direct convolution FIR filter must perform N-1
additions per output sample.) The moving averager's transfer function is
Hma(z) = (1/N)(1-z-N)/(1-z-1).
 Hma(z)'s numerator results in N zeros equally spaced around the z-plane's unit circle located at
z(k) = ej2πk/N, where integer k is 0≤k<N. Hma(z)'s denominator places a single pole at z = 1 on the
unit circle, canceling the zero at that location.

1

Table 1. General Functions.
Function and
coefficients

Network behavior
impulse response z-plane magnitude (dB) phase (rad.)

Moving Averager
a0 = 1, a1 = 1, a2 = 0,
b0 = 1/N, b1 = 0, b2 = 0,
c1 = 1, N = 8

0 5 10
-0.1

0

0.1

0.2

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
-5

0

5

1/N

Frequency Frequency
Differencer
a0 = 1, a1 = 0, a2 = 0,
b0 = 1, b1 = -1, b2 = 0,
c1 = 0

0 5 10
-1

0

1

Time
-1 0 1

-1

0

1

Real part
Im

ag
in

ar
y

pa
rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
-2

0

2

Frequency Frequency
Integrator
a0 = 1, a1 = 1, a2 = 0,
b0 = 1, b1 = 0, b2 = 0,
c1 = 0

0.5 0 0.5
-2

0

2

0 5 10

0

0.5

1

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

Frequency Frequency
Leaky Integrator
a0 = 1, a1 = 1-α, a2 = 0,
b0 = α, b1 = 0, b2 = 0,
c1 = 0, α = 0.1

-1 0 1
-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
-2

0

2
α = 0.5

α = 0.1

α = 0.5

α = 0.1

0 10 20

0

0.1

0.2

Time

α = 0.1

Frequency Frequency
1st-order Delay
Network
a0 = 1, a1 = -R, a2 = 0,
b0 = R, b1 = 1, b2 = 0,
c1 = 0 -1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5

0

0 5 10

0

0.5

1

Time

zero at
z = 11

delay∆

= 0.2

-0.5 0 0.5
1

1.1

1.2 Group delay

0.2/fs

R = 0.91

delay∆ = 0.2

Frequency Frequency
2nd-order Delay
Network
a0 = 1, a1 = -R1, a2 = -R2,
b0 = R2, b1 = R1, b2 = 1,
c1 = 0 -1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5

0

zeros
not

shown
delay∆ = 0.3

-0.5 0 0.5
1.5

2

2.5

0.3/fs

Group delay

0 5 10

0

0.5

1

Time

2.3
R1 = -0.182
R2 = 0.028

delay∆ = 0.3

FrequencyFrequency

Differencer: This is a discrete version of a 1st-order differentiator. An ideal differentiator has a
frequency magnitude response that's a linear function of frequency, and this network only
approaches that ideal at low frequencies relative to fs.

Integrator: This structure performs the running summation of the x(n) inputs samples, making it
the discrete-time equivalent of a continuous-time integrator.

Leaky Integrator: This network configuration, also called an exponential averager, is a
venerable structure used in lowpass filter implementations for random noise reduction. It is a 1st-
order IIR filter where, for stable lowpass operation, the constant α lies in the range 0<α<1.
 This nonlinear-phase filter has a single pole at z = 1-α on the z-plane, and a transfer function
of Hli(z) = α/[1-(1-α)z-1]. Small values for α yield narrow passbands at the expense of increased
filter response time. Table 1 shows the filter's behavior for α = 0.1 as solid curves. For
comparison, the frequency domain performance for α = 0.5 is indicated by the dashed curves.

2

1st-order Delay Network: A subclass of a 1st-order IIR Filter, the coefficients in Table 1 yield
an allpass network having a relatively constant group delay at low frequencies. The network's
delay is Dtotal = 1 + ∆delay samples where ∆delay, typically in the range of -0.5 to 0.5, is a fraction
of the 1/fs sample period. For example, when ∆delay is 0.2, the network delay (at low frequencies)
is 1.2 samples. The real-valued R coefficient is

R =
 -∆delay

 ∆delay + 2 (2)

producing a z-plane transfer function of H1,del(z) = (R+z-1)/(1+Rz-1) with a pole at z = -R and a
zero at z = -1/R.
 Performance for ∆delay = 0.2 (R = 0.91) is shown in Table 1 where we see the magnitude
response being constant. The band, centered at DC, over which the group delay varies no more
than |∆delay|/10 from the specified Dtotal value, the bar in the group delay plot, ranges roughly
from 0.1fs to 0.2fs for 1st-order networks. So if your signal is oversampled, making it low in
frequency relative to fs, this 1st-order allpass delay network may be of some use. If you propose
its use in a new design, you can impress your colleagues by saying this network is based on the
Thiran Approximation [1].

2nd-order Delay Network: A subclass of a 2nd-order IIR Filter, the coefficients in Table 1
yield an allpass network having a relatively constant group at low frequencies. (Over a wider
frequency range, by the way, than the 1st-order Delay Network.) This network's delay is
Dtotal = 2 + ∆delay samples where ∆delay is typically in the range of -0.5 to 0.5. For example, when
∆delay is 0.3, the network delay (at low frequencies) is 2.3 samples. The real-valued coefficients
are

R1 =
 -2∆delay

 ∆delay + 3 and R2 =
 (∆delay)(∆delay+1)

 (∆delay + 3)(∆delay + 4). (3)

 The band, centered at DC, over which the group delay varies no more than |∆delay|/10 from the
specified Dtotal value, the bar in the group delay plot, ranges roughly from 0.26fs to 0.38fs for this
2nd-order network. Performance for ∆delay = 0.3 (R1 = -0.182 and R2 = 0.28) is shown in Table 1
where we see the magnitude response being constant.
 The flat group delay band is wider for negative ∆delay than when ∆delay is positive. This means
if you desire, for example, a group delay of Dtotal = 2.5 samples it's better to use an external unit
delay and set ∆delay to -0.5 rather than letting ∆delay be 0.5. To ensure stability, ∆delay must be
greater than -1. Reference [1] provides methods for designing higher-order allpass delay
networks.

Goertzel Network: Referring to the first entry in Table 2, this traditional Goertzel network is
used for single-tone detection because it computes a single-bin N-point discrete Fourier
transform (DFT) centered at an angle of θ = 2πk/N radians on the unit circle, corresponding to a
cyclic frequency of kfs/N Hz. Frequency variable k, in the range 0≤k<N, need not be an integer.
The behavior of the network is shown by the solid curves in Table 2. However the frequency
magnitude response of the Goertzel algorithm, for N = 8 and k = 1, is shown as the dashed curve.
 After N+1 input samples are applied, y(n) is a single-bin DFT result. The DFT computational
workload is N+2 real multiplies and 2N+1 real adds. The network is typically stable because N is
kept fairly low (in the hundreds) in practice before the network is reinitialized [2], [3].

3

Table 2. Analysis and Synthesis Functions.
Function and
coefficients

Network behavior
impulse response z-plane magnitude (dB) phase (rad.)

Goertzel Network
a0 = 1, a1 = 2cos(θ),
a2 = -1, b0 = 1, b1 = -e-jθ,
b2 = 0, c1 = 0, θ = 2πk/N

N = 8
k = 1

-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
-5

0

5

10

0 5 10
-1

0

1

Time

Real
part

Frequency Frequency
Sliding DFT
Network
a0 = rejθ, a1 = 1, a2 = 0,
b0 = 1, b1 = 0, b2 = 0,
c1 = rN, θ = 2πk/N 0 10 20

-1

0

1

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
-5

0

5
N = 22

θ = 4π/22
k = 2

r = 0.999
Real
part

Frequency Frequency
Real Oscillator
a0 = 1, a1 = 2cos(θ),
a2 = -1, b0 = 1,
b1 = 0, b2 = -1

0 20
-2

0

2

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
0

5

10

15

θ = π/4

Frequency Frequency
Quadrature
Oscillator
a0 = G(n), a1 = ejθ,
a2 = 0, b0 = 1,
b1 = 0, b2 = 0 0 10 20

-1

0

1

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
-5

0

5

10

θ = π/4
G = 1

Real part

Frequency Frequency
Audio Comb
a0 = 1, a1 = 0, a2 = α,
b0 = 1, b1 = 0, b2 = 0,
c1 = 0, α = 0.2

0 5 10
0

0.5

1

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-4

-2

0

-0.5 0 0.5
-0.5

0

0.5

Frequency Frequency

Sliding DFT Network: This structure computes a single-bin N-point DFT centered at an angle
of θ = 2πk/N radians on the unit circle, corresponding to a cyclic frequency of kfs/N Hz. N is the
DFT size and integer k is 0≤k<N. Real damping factor r is kept as close to, but less than, unity as
possible to maintain network stability. After N input samples have been applied, this network
will compute a new follow-on DFT result based on each new x(n) sample (thus the term sliding)
at a computational workload of only four real multiplies and four real adds per input sample [2],
[3]. Setting coefficient c1 = -rN allows the analysis band to be centered at an angle of
θ = 2π(k+1/2)/N radians, corresponding to a cyclic frequency of (k+1/2)fs/N Hz.

Real Oscillator: There are many possible digital oscillator structures, but this network generates
a real-valued sinusoidal y(n) sequence whose amplitude is not a function of the output frequency.
The argument for coefficient a1 in Table 2 is θ = 2πft/fs radians, where ft is the oscillator's
frequency in Hz. To start the oscillator we set the y(n-1) sample driving the a1 multiplier equal
to 1 and compute new output samples as the time index n advances. For fixed-point
implementations, filter coefficients may need to be scaled so that all intermediate results are in
the proper numerical range [4].

Quadrature Oscillator: Called the coupled quadrature oscillator, this structure provides
y(n) = cos(nθ) + jsin(nθ) outputs for a complex exponential sequence whose tuned frequency is ft
Hz. The exponent for a1 in Table 2 is θ = 2πft/fs radians. To start the oscillator, we set the

4

complex y(n-1) sample, driving the a1 multiplier, equal to 1 + j0 and begin computing output
samples as the time index n advances. To ensure oscillator output stability in fixed-point
arithmetic implementations, instantaneous gain correction G(n) must be computed for each
output sample. The G(n) sample values will be very close to unity [5], [6].

Audio Comb: This structure is a 2nd-order (the simplest) version of an infinite impulse response
(IIR) comb filter used by audio folks to synthesize the sound of a plucked-string instrument. The
input to the filter is random noise samples. The filter has frequency response peaks at DC and
±fs/2, with dips in the response located at ±fs/4. The filter's transfer function is Hac(z) = 1/(1-αz-2)
resulting in two poles located at z = ± α on the z-plane. To maintain stability the real-valued α
must be less than unity, and the closer α is to unity the more narrow the frequency response
peaks.
 For a more realistic-sounding synthesis, we can set a1 = α and the top delay element of the
biquad in Figure 1 may have its delay increased to, say, eight instead of one yielding more
frequency response peaks between 0 and fs/2 Hz. In this music application, the filter's input is
Gaussian white noise samples. Other plucked-string instrument synthesis networks have been
used with success [7], [8].

Comb Filter: Referring to the first entry in Table 3, this standard comb filter is a key component
on many filtering applications, as we shall see. Its transfer function, Hcomb(z) = 1-z-N, results in N
zeros equally spaced around the z-plane's unit circle located at z(k) = ej2πk/N, where integer k is
0≤k<N. Those z(k) values are the N roots of unity when we set (1) equal to zero yielding
z(k)N = (ej2πk/N)N = 1. The N zeros on the unit circle result in frequency response nulls (infinite
attenuation) located at cyclic frequencies of mfs/N where integer m is 0≤m≤N/2. The peak gain of
this linear-phase filter is 2.
 If we set coefficient c1 to -1 in the comb filter, making its transfer function Halt,comb(z) = 1+z-N,
we obtain an alternate linear-phase comb filter having zeros rotated counterclockwise around the
unit circle by an angle of π/N radians positioning the zeros at angles of 2π(k+1/2)/N radians on
the z-plane's unit circle. The rotated zeros result in frequency response nulls located at cyclic
frequencies of (m+1/2)fs/N, where integer m is 0≤m≤(N/2)-1. With this filter a frequency
magnitude peak is located at 0 Hz (DC).

Bandpass Filter at fs/4: This network is a bandpass filter centered at fs/4 having a sin(x)/x-like
frequency response and linear-phase over the passband. It has poles at z = ±j, so for pole/zero
cancellation the comb filter's delay (N) must be an integer multiple of four. This guaranteed-
stable, multiplierless, bandpass filter's transfer function is Hbp(z) = (1-z-N)/(1+z-2).

1st-order IIR Filter: This is the Direct Form II version of a simple 1st-order IIR filter having a
single pole located at a radius of Rp from the z-plane's origin at an angle of θp radians, and a
single zero at a radius of Rz at an angle of π+θz. For real-valued coefficients (θp = θz = 0) the
filter can only exhibit either a lowpass or a highpass frequency response, no bandpass or
bandstop filters are possible. The filter's transfer function is H1,iir(z) = (1+Rzejθzz-1)/(1-Rpejθpz-1).
 The shape of the filter's frequency magnitude responses are nothing to write home about; its
transition regions are so wide that they don't actually have distinct passbands and stopbands. Of
course to ensure stability, Rp must be between zero and 1 to keep the pole inside the z-plane's
unit circle, and the closer Rp is to unity the more narrowband is the filter.

5

Table 3. Filter Functions.
Function and
coefficients

Network behavior
impulse response z-plane magnitude (dB) phase (rad.)

Comb Filter
a0 = 1, a1 = 0, a2 = 0,
b0 = 1, b1 = 0, b2 = 0,
c1 = 1, N = 8

0 5 10
-1

0

1

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

0.5 0 0.5
-20

-10

0

0.5 0 0.5
-2

0

2

Frequency Frequency
Bandpass Filter at
fs/4
a0 = 1, a1 = 0, a2 = -1,
b0 = 1, b1 = 0, b2 = 0,
c1 = 1, N = 16 0 10 20

-1

0

1

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
-5

0

5

Frequency Frequency
1st-order IIR Filter
a0 = 1, a1 = Rpejθp,
a2 = 0, b0 = 1,
b1 = Rzejθz, b2 = 0,
c1 = 0 0 10 20

-1

0

1

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
-2

0

2

θ = 0.5π
θ = 0.4π

z
p

R = R = 0.8z pReal part

Frequency Frequency
1st-order Equalizer
a0 = 1, a1 = R, a2 = 0,
b0 = -R*, b1 = 1, b2 = 0,
c1 = 0

0 5 10

-0.5

0

0.5

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5

0

-0.5 0 0.5
-5

0

5

R = -0.3

R = 0.7

R = 0.7

Frequency Frequency
2nd-order IIR Filter
a0 = 1, a1 = 1.194,
a2 = -0.436,
b0 = b2 = 0.0605,
b1 = 0.121, c1 = 0 0 10

-0.1

0

0.1

0.2

0.3

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
-5

0

5

Frequency Frequency
2nd-order Equalizer
a0 = 1, a1 = 2Rcos(θ),
a2 = -R2, b0 = 1,
b1 = -(2/R)cos(θ),
b2 = 1/R2, c1 = 0 -0.5 0 0.5

0R = 0.6
θ = π/3

0 5 10
-1

0

1

Time
-2 0 2

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-1 1

R = -0.7

R = 0.6

-0.5 0 0.5
-15

-10

-5

0

Frequency Frequency

1st-order Equalizer: This structure has a frequency magnitude response that's constant across
the entire frequency band (An allpass filter). It has a pole at z = R on the z-plane, and a zero
located at 1/R*, where * means conjugate. The value of R, which can be real or complex but
whose magnitude must be less than unity to ensure stability, controls the nonlinear-phase
response. The equalizer has a transfer function of H1,eq(z) = (-R*+z-1)/(1-Rz-1).
 These networks can be used as phase equalizers by cascading them after a filter, or network,
whose nonlinear phase response requires crude linearization. The goal is to make the cascaded
filters' combined phase as linear as possible. Table 3 shows the filter's behavior for R = 0.7 as
solid curves. For comparison, the phase response for R = -0.3 is indicated by the dashed curve.
These 1st-order allpass filters can also be used for interpolation and audio reverberation for low-
frequency signals.

2nd-order IIR Filter: This is the Direct Form II version of a 2nd-order IIR filter, the workhorse
of IIR filter implementations. Conjugate pole and zero pairs may be positioned anywhere on the

6

z-plane to control the filter's frequency response.† Because high-order IIR filters are so
susceptible to coefficient quantization and potential data overflow problems, practitioners
typically implement their IIR filters by cascading multiple copies of this 2nd-order IIR structure
to ensure filter stability and avoid limit cycles. The filters have a transfer function of (1) with the
c1 = 0. Lowpass, highpass, bandpass, and bandstop filters are possible. No single example shows
all the possibilities of this structure, so Table 3 merely gives a simple lowpass filter example.
 If an IIR filter design requires high performance, high Q, it turns out the Direct Form I version
of a 2nd-order IIR filter is less susceptible to coefficient quantization and overflow errors than
the Direct Form II structure given here.

2nd-order Equalizer: This structure has a frequency magnitude response that's constant across
the entire frequency band, making it also an allpass filter. It has two conjugate poles located at a
radius of R from the z-plane's origin at angles of ±θ radians, and two conjugate zeros at a
reciprocal radius of 1/R at angles of ±θ. The positioning of the poles and zeros, using real-valued
R, controls the nonlinear-phase response.
Table 3 shows the equalizer's behavior for R = 0.6 and θ = π/3 as solid curves. For comparison,
the phase response for R = -0.7 and θ = π/3 is indicated by the dashed curve.
 These networks are primarily used for phase equalization by cascading them after a filter, or
network, whose nonlinear phase response requires linearization. However, it may take multiple
cascaded biquad networks to achieve acceptable equalization.

CIC Interpolation Filter: Referring to the first entry in Table 4, this network is a single-stage
cascaded integrator-comb (CIC) interpolation filter used for time-domain interpolation. If a time-
domain signal sequence is upsampled by N (by inserting N-1 zero-valued samples in between
each original sample) and applied to this lowpass filter, the filter's output is an interpolated by N
version of the original signal. This lowpass filter's transfer function is Hcic(z) = (1-z-K)/(1-z-1). To
improve the attenuation of spectral images, we can cascade M copies of the comb filter followed
by M cascaded biquad sections. Such cascaded filters will also have narrower passband widths at
zero Hz.
 In practice, the upsampling operation (zero stuffing) is performed after the comb filter and
before the biquad network. This has the sweet advantage that the comb filter's delay length
becomes N = 1, reducing the necessary comb delay storage requirement to one. CIC filters are
typically used as the first stage of multistage lowpass filtering in hardware sample rate increase
(interpolation) by N applications because no multipliers are required [6].

Complex Frequency Sampling Filter (FSF): This structure is a single section of a complex
frequency sampling filter having a sin(x)/x-like frequency magnitude response centered at an
angle of θk = 2πk/N radians on the unit circle, corresponding to a cyclic frequency of kfs/N Hz. N
and k are integers with k is 0≤k<N. The larger N the more narrow the filter's mainlobe width [6].
 If multiple biquads are implemented in parallel (all driven by the single comb filter), with
adjacent center frequencies, complex almost linear-phase bandpass filters can be built. Table 4
shows the behavior of an N = 16, three-biquad, complex bandpass filter each centered at k = 2, 3,
and 4 respectively.

† There's a terrific piece of MATLAB code (PEZ, created by the talented Dr. Craig Ulmer) allowing us to see the
frequency-domain effect of moving multiple poles and zeros, manually using a mouse, around on the z-plane. It's
available at http://www.cspl.umd.edu/spm/tips-n-tricks/.

7

Table 4. Additional Filter Functions.
Function and
coefficients

Network behavior
impulse response z-plane magnitude (dB) phase (rad.)

CIC Interpolation
Filter
a0 = 1, a1 = 1, a2 = 0,
b0 = 1, b1 = 0, b2 = 0,
c1 = 1, N = 8 0 5 10

0

0.5

1

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
-5

0

5

Frequency Frequency
Complex FSF†

a0 = 1, a1 = ejθk, a2 = 0,
b0 = (-1)k, b1 = 0, b2 = 0,
c1 = 1, θk = 2πk/N

-0.5 0 0.5
-40

-30

-20

-10

0

-0.5 0 0.5
-10

-5

0

5

-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt N = 16

0 10
-2

0

2

4

Time Frequency Frequency
Real FSF, Type I
a0 = 1, a1 = 2cos(θk),
a2 = -1, b0 = |Hk|cos(φk),
b1 = -|Hk|cos(φk-θk),
b2 = 0, c1 = 1, θk = 2πk/N -0.5 0 0.5

-40

-20

0

0
-5

0

5

-1 0 1
-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0.5

N = 22

Time
0 10 20

0

2

4

Frequency Frequency
Real FSF, Type IV
a0 = 1, a1 = 2cos(θk),
a2 = -1, b0 = (-1)kMk,
b1 = 0, b2 = (-1)k(-Mk),
c1 = 1, θk = 2πk/N 0

-40

-20

0

0
-5

0

5

-1 0 1
-1

0

1

Real part

Im
ag

in
ar

y
pa

rt N = 22

-0.5 0.5 -0.5 0.5
Time

0 10 20

0

2

4

6

8

FrequencyFrequency
DC Bias Removal
a0 = 1, a1 = α, a2 = 0,
b0 = 1, b1 = -1, b2 = 0,
c1 = 0

0 10

0

0.5

1

Time
-1 0 1

-1

0

1

Real part

Im
ag

in
ar

y
pa

rt

-0.5 0 0.5
-20

-10

0

-0.5 0 0.5
-2

0

2

α = 0.8

Frequency Frequency
† FSF = Frequency sampling filter

Real Frequency Sampling Filter, Type I: This structure is a single section of a real-coefficient
frequency sampling filter having a sin(x)/x-like frequency magnitude responses centered at both
±θk = ±2πk/N radians, where N is an integer. The larger N the more narrow the filter's mainlobe
width. Integer k is 0≤k<N.
 If multiple biquads are implemented in parallel (all driven by the single comb filter), with
adjacent center frequencies, almost linear-phase lowpass filters can be built. In this case,
complex gain factors Hk are the desired peak frequency response of the kth biquad. Parameter φk
is the desired relative phase shift, in radians, of Hk. Table 4 shows the behavior of an N = 22,
three-biquad, lowpass filter each centered at k = 0, 1, and 2 respectively. In this example |H0| = 1,
|H1| = 2, and |H2| = 0.74. These bandpass filters can have group delay fluctuations as large as 2/fs
in the passband. This recursive finite impulse response (FIR) filter is the most common
frequency sampling filter discussed in the DSP textbooks [6], [9], [10].

Real Frequency Sampling Filter, Type IV: This structure is similar in behavior to the Type I
frequency sampling filter, with important exceptions. First, in a multi-biquad lowpass filter
implementations this filter yields an exactly linear phase response. Also, this filter provides
deeper stopband attenuation than the Type I filter.
 The real-valued gain factors Mk are the desired peak frequency magnitude response of the kth
biquad. Table 4 shows the behavior of an N = 22, three-biquad, lowpass filter with the biquads
centered at k = 0, 1, and 2 respectively. In this example M0 = 1, M1 = 2, and M2 = 0.74. Here's

8

why you need to know about these filters: with judicious choice of the Mk gain factors,
narrowband lowpass linear-phase FIR filters can be built, in some cases, whose computational
workload is less than Parks-McClellan-designed FIR filters [6].

DC Bias Removal: This network, used to remove any DC bias from the x(n) input, has a transfer
function having a pole located at z = α and a zero at z = 1. Having a frequency response notch
(null) at 0 Hz (DC, hence the name), and the sharpness of the notch is determined by α, where
for stable operation α lies in the range 0<α<1. The closer α is to unity the more narrow the notch
at DC. This nonlinear-phase filter has a transfer function of Hdc(z) = (1-z-1)/(1-αz-1). Table 4
shows the filter's behavior for α = 0.8.
 In those fixed-point implementations where the output y(n) sequence must be truncated to
avoid data overflow (that is, y(n) must have fewer bits than input x(n)), feedback noise shaping
can be used to reduce the quantization noise induced by truncation [6], [11].
 An alternative to truncation, to avoid overflow, is to limit the gain of the filter. For example,
we could precede the network with a positive gain element whose gain is less than unity. On the
other hand we could use b0 = G, and b1 = -G, where G = (1+α)/2, in our implementation for this
purpose yielding a reduced-gain transfer function of Halt,dc(z) = (G-Gz-1)/(1-αz-1).
 If the reader has any comments regarding this article, please E-mail one of the authors.
Feedback from our readers, either positive or negative, is most welcome.

Richard Lyons is a Consulting Systems Engineer and lecturer with Besser Associates in Mt.
View, CA. He has been the Lead Hardware Engineer for numerous signal processing systems for
both the National Security Agency (NSA) and TRW Inc., and has taught at the University of
California Santa Cruz Extension. An Associate Editor for the IEEE Signal Processing Magazine,
he is also the author of Understanding Digital Signal Processing 2/E (Prentice-Hall, 2004).
Lyons is a member of the Eta Kappa Nu honor society, and is trying to learn how to strike a cue
ball so that it travels where intended on a pool table. He can be contacted at: r.lyons@ieee.org.

Amy Bell is an assistant professor in the department of electrical and computer engineering at
Virginia Tech. She received her Ph.D. in electrical engineering from the University of Michigan.
Bell conducts research in wavelet image compression, embedded systems, and bioinformatics.
She is the recipient of a 1999 NSF CAREER award and a 2002 NSF Information Technology
Research award. Bell is an Associate Editor for the IEEE Signal Processing Magazine, and her
“best results” to-date include Jacob and Henry: a collaboration with her husband. She can be
contacted at: abell@vt.edu.

References

[1] T. Laakso et al., "Splitting the unit delay," IEEE Signal Proc. Magazine, pp. 30-60, Jan. 1996.

[2] E. Jacobsen and R. Lyons, "The sliding DFT", IEEE Signal Proc. Magazine, DSP Tips & Tricks
Column, Vol. 20, No. 2, pp. 74-80, Mar. 2003.

[3] E. Jacobsen and R. Lyons, "The sliding DFT, an update", IEEE Signal Proc. Magazine, DSP
Tips & Tricks Column, Vol. 21, No. 1, Jan. 2004.

[4] D. Grover and J. Deller, Digital Signal Processing and the Microcontroller, Prentice Hall, Upper
Saddle River, New Jersey, 1999.

[5] C. Turner, "Recursive discrete-time sinusoidal oscillators", IEEE Signal Proc. Magazine, Vol.
20, No. 3, pp. 103-111, May 2003.

9

[6] R. Lyons, Understanding Digital Signal Processing, 2nd Ed., Prentice Hall, Upper Saddle River,
New Jersey, 2004.

[7] http://ccrma-www.stanford.edu/~jos/waveguide/Comb_Filters.html

[8] Texas Instruments, "How can comb filters be used to synthesize musical instruments on a
TMS320 DSP?", TMS320 DSP Designers Notebook, No. 56, 1995.

[9] V. Ingle and J. Proakis, Digital Signal Processing Using MATLAB, Brookes/Cole Publishing,
Pacific Grove, CA, 2000, pp. 202-208.

[10] J. Proakis and D. Manolakis, Digital Signal Processing-Principles, Algorithms, and
Applications, Third Edition, Prentice Hall, Upper Saddle River, New Jersey, 1996, pp. 630-637.

[11] C. Dick, and F. Harris, "FPGA signal processing using sigma-delta modulation", IEEE Signal
Proc. Magazine, vol. 17, No. 1, Jan. 2000.

10

	The Swiss Army Knife of Digital Networks
	References

