‘9 TEXAS
INSTRUMENTS

TMS320F2810, TMS320F2811, and TMS320F2812
Flash APIs

Version 2.10

For creating custom programming solutions for the
TMS320F2810, TMS320F2811 and TMS320F2812 DSPs.

August 4, 2005

TMS320F281x Flash API E TEXAS

Version 2.10

Flash API Disclaimer

The following Flash Application Program Interface (Flash API) libraries are included in
this release:

o Flash2810_API_V210.lib
o Flash2811_API_V210.lib
o Flash2812 API_V210.lib

Texas Instruments Inc. (TI) reserves the right to update or change any material included with
this release. This includes:

o The API functional behavior based on continued TMS320F2810, TMS320F2811, and
TMS320F2812 testing.

o Improvements in algorithm performance and functionality.

It is the user’s responsibility to check for future updates to these APIs and to use the latest
version available for their TMS320F2810, TMS320F2811 or TMS320F2812 silicon.

Should functional changes occur to the APIs, it is the user’s responsibility to update any
application that uses the API (programmers, embedded software, etc) to insure proper long-
term operation of the flash.

Updates to the API will be posted on the Texas Instruments Inc website (www.ti.com) and
can also be obtained by contacting a local Tl representative or the Tl Product Information Center.

In this document, the terms F281x, and TMS320F281x are used to refer to all flash devices
within the family, i.e. TMS320F2810, TMS320F2811 and TMS320F2812.

2 of 48

Q TEXAS TMS320F281x Flash API

INSTRUMENTS Version 2.00
Contents:
1. GeNEral REIEASE NOLES......cciiiiiiiii ittt ettt r e et et se e e e nn e e e s e e e nn e e nre e e nnneenaneean 4
2. V/1.00 tO V2.10 MiIQFatiON TS uuueteeeeeaeeeiitttieete e e e e e rteeeeaea e e s e aaabeeeeeaeaasaasbebeeeeaaaeaaabbbbeeeaaaeeaannbbnbeeeeaaeessannrnbees 7
3. API ReViSioN VS. SIlICON REVISIONcoiiiiiiiiiiiiii ettt ettt e e e e e e s bb et et e e e e e e e anbbtbeeeeaaeesannrnrees 8
4. Introduction: Flash APl Programming FUNAamMENtalScooiiiiiiiiiiiiiiiii e 10
5. EXAMPIE PIOGIAIM ...ttt e e oottt et e e e oo s bbbttt et e e e e e e ab bbb e e e e e e e e s amnbbbeeeeaaeeaeannbeneaaaaeeaaanne 11
6. [= L] I o O 1= o [TP PP UOPPUPPPRTN 12
7. Step 1: Modify FIash281X_API_CoNfig.N ... 13
8. Step 2: Include FIash281X_APIL _LIDrary.n ...t e e e e e e e s ee e e e 14
9. Step 3: Include the proper FIash AP LIDIaryeeeeeoiiiiie e e e e e e s nnnrnreeeee s 14
10. Step 4: Initialize PLL Control ReQISter (PLLCR)cciiciiiiiieee e sttt e s st e e e e e s snbeae e e e e e e e s snnnneeeeaeeeanannes 14
11. Step 5: Copy the Flash API functions to Internal SARAMcccuiiiiiii e 15
12. Step 6: Initialize Flash_CPUSCAIEFACIONciiiiiiiiiiieiec e e e s s e s e e e e e e s snreereeeeeeaennnes 19
13. Step 7: Initialize the Callback FUNCLION POINTETooiuiiiiiiei et e e e e e e e e e e e e e nnnes 20
14. Step 8: Optional: Disable GIODal INTEITUPLSooiii i e e e e e e e e aanes 22
15. Step 9: Rules for Callback, Interrupts, and WatChdOg.......ccuueaiiiiiiiiiieeee e 24
16. Step 10: Optional: Frequency and PLL Configuration TOggle TeSt ...t 25
17. Step 11: Optional: Unlock the Code Security Module (CSM)uuiiiiiiiiiiiiiiiee e 26
18. STEP 12: API REFEIENCE ...ttt oottt e e e e e e b e b e et e e e e e e sanbbeaeeeeaeeeeannbaeeeaaaeeaaannes 26
18.1. Data TYPE CONVENTIONSeiiiiiiiiiitieiie e ettt e e e e et et e e e e e s s abbbe e et e e e e s s bbb beeeaaeeaaaanbbeeeeaaeesaaannnbaeeaaaaeas 26
18.2. API Function Naming Conventions and FUNCON IStccciiiiiieiiiiiece e 26
18.3. Flash status StrUCIUrE (FLASH ST .uiiiiiiiiiiiiiiiie ettt e e st e e e e e e st e e e e e e s s st en e e e e e s snnnnnrnneeeeees 27
18.4. B0 T | L= =3 A U T o o PSR 28
18.5. o T o 1o PP PPRT 30
18.6. [(oo = Vg TN 0T T 1o) o SRS 34
18.7. V=T 413V VT o1 1o o PR UETT ORI 37
18.8. Version (IN float) FUNCHION...........uuiee ettt e e e et e e e e e e e s e nan e e e aaae s 39
18.9. Version (IN HEX) FUNCHION ...ttt e e e e e e s bbb et e e e e e e e s annbeeeaaaeeas 40
18.10. Depletion RECOVEIY FUNCHIONciiiiiiiiiiiiii ettt e e e ettt e e e e e e abbbee e e e e e e e aannbaneeeaaaaeaaaane 41
18.11. Step 13: REUMN STAIUS VAIUEScoiiiiiiiiiiiiii ettt ettt e e e e e st e e e e e e s e snnbaeeeaeaaaeaaaanes 42
19, COUE SIZE REQUITEIMENTS ...ccii ittt ee e ettt e ettt et e e e e e s bbbt et e e e e e e s abbebeeeeaeeaaaanbbeaeeeeeeeasannbsbeeaaaeeaaanne 45
20. Files inCluded inN thiS FEIEASE.........cccii ittt nnre e e e nn e ne e nes 48

3 of 48

TMS320F281x Flash API E TEXAS

Version 2.10

INSTRUMENTS

1. General Release Notes

There is one flash API per each device within the TMS320F281x family. This list applies to the TMS320F2810,
TMS320F2811 and TMS320F2812 APIs.

a)

b)

d)

e)

f)

Version 2.10 of the API is a mandatory update. All users of the TMS320F2810, TMS320F2811, and
TMS320F2812 Flash API must upgrade their flash programming system to use V2.10 of the Flash API.

Flash API V2.10 is being released to accompany the change to TMS320F2810, TMS320F2811, and
TMS320F2812 silicon revision G. Silicon revision G will require Flash APl V2.10. Versions earlier than
V2.00 of the Flash API will not operate correctly with revision G silicon.

Flash API VV2.10 is fully backwards compatible with all previous TMS and TMP silicon revisions of
TMS320F2810, TMS320F2811, and TMS320F2812. As with V1.00 of the Flash API, V2.10 of the Flash
API will not work on TMX revisions prior to silicon revision C (i.e. silicon revisions 0, A and B).

If you have additional questions after reviewing this documentation, please check the
TMS320C2000 web site at http://www.ti.com/c2000, contact your local Tl representative, or contact the
Texas Instruments Product Information Center.

Note:

Version 2.00 of the Flash API was available for download for a short time during the week of July 18™ 2005.
Using V2.00 to program the OTP will disturb erased bits within sector J of the main flash array. For this
reason, V2.00 of the API is now considered obsolete. Users who downloaded V2.00 should migrate to
Vv2.10.

The Flash APIs have all been compiled with the large memory model (-ml) enabled. The small memory
model is not supported. Any application that uses the Flash API should also be compiled for the large
memory model. For information on the large memory model refer to the TMS320C28x Optimizing C/C++
Compiler User’s Guide (literature #SPRU514).

Some traditional programming utilities have separate operations for “clear” or “pre-condition” and “erase”.
These two operations have been combined into one operation referred to only as “erase”.

Note: The CSM will be permanently locked if the CSM password locations are loaded with all 0x0000
and the device is secured. During the erase API function, a sector clear (program all bits to 0x0000)
is immediately followed by an erase operation without resetting the device. This will help avoid
permanently locking the CSM. Do not program the CSM passwords with all 0x0000.

The intended use of the Flash API software is for development of custom flash programming methods. The
Flash API is used with ROM boot loading options such as parallel load 16/8, SCI and SPI modes, to
transfer the flash programming code into the DSP.

For programming the TMS320F2810, TMS320F2811 or TMS320F2812 through the JTAG port, use the
SDFlash programmer from TI 3" Party vendor Spectrum Digital Inc. (www.spectrumdigital.com) or the Code
Composer Studio™ Plug-in from TI.

4 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

Changes from vV2.00 to V2.10

This list applies to the TMS320F2810, TMS320F2811 and TMS320F2812 APIs.

a)

Fixed an issue where programming the OTP block would disturb erased bits within sector J
of the main flash array.

Changes from V1.00 to V2.00

This list applies to the TMS320F2810, TMS320F2811 and TMS320F2812 APIs.

a)

b)

d)

f)

)

h)

Added support for TMS320F2810, TMS320F2811 and TMS320F2812 silicon revision G.
This API is also backward compatible and has been tested on revision C through revision
G. Refer to Section 3 for information regarding silicon revision vs. API revision.

The timing of the program-verify and the erase-verify operations have been extended. This timing change
will enhance the robustness of the programming operation for revision G silicon.

The new API improves the robustness of the low temperature erase function at zero degrees C. There are
no reliability issues with devices prior to revision G that are programmed with either API1 V1.00 or API
V2.10. Erasing at zero degrees C with API V1.00 will, however, yield higher than expected fallout.

A callback function for the APl can now be specified by the user. This specified function will be called at
appropriate times during the program, erase, verify, and depletion recovery algorithms. This function may
be useful for transmitting status to a serial port or servicing an external watchdog timer. During execution of
the callback function the flash and OTP are not available and cannot be accessed. Refer to section 13 for
more information.

To improve system integration of the API, interrupts are now only blocked during time critical code. The
global interrupt masks (INTM, DBGM) and the XNMI configuration registers are saved before and restored
after time critical code segments. During the time that interrupts are allowed the flash and OTP are not
available for code execution or data fetches. Refer to section 14 for more information.

A depletion recovery API function has been added to allow users to attempt to recover a part that has bits
left in an over-erased (i.e. depleted) state. Depletion can occur if the erase algo is stopped (via debugger
halt, device reset, system powered down, etc) before it executes to completion. See section 18.10 for a
description of depletion and the depletion recovery API function.

Added two functions that return the current version number of the API. One function returns a decimal
encoded hex value and the other returns a floating point value. See section 18.8 and 18.9 for a description
of these functions.

The error codes used in API V1.00 have been retained. The following error codes have been added:

O STATUS_FAIL_PRECOMPACT
Within the erase function, a pre-compaction step of all sectors has been added to improve the
robustness of the erase function. The error code STATUS_FAIL_PRECOMPACT was added for this
portion of the erase algorithm.

O STATUS_FAIL_INCORRECT_PARTID
The API now checks the PARTID register (memory address 0x0882) before executing. This prevents
the API from executing on an incompatible part. For example, a TMS320F281x API cannot execute on
the flash of a F280x device.

5 of 48

TMS320F281x Flash API E TEXAS

Version 2.10

INSTRUMENTS

)

O STATUS_FAIL_API_SILICON_MISMATCH
At the start of each API function, the content of a boot ROM location is checked to determine if it is ok
to execute the given API version on that silicon. In the future, Tl can change the content of this boot
ROM location if an APl becomes obsolete. This will prevent an old API from executing on the new
silicon. Version 2.00 of the API looks for the value OxFFFF in Boot ROM location 0x3FFFB9.

If this error code occurs, verify that that the proper API version is being used. Check the
TMS320C2000 web site at http://www.ti.com/c2000.

Internal to the API, the file structure has changed. Therefore, if customers have linked specific API files to
specific code sections the applications linker command file may need to be modified. The file structure was
changed such that only functions called by the application will be included in the final .out file. The API
memory usage information in section 19 includes a list of the files associated with various API functions.

Internal to the API some function names now have a device specific prefix attached. This was done to allow

linking of more then one API into a single application. Functions that are generic to the APIs are only linked
once in this case. This will not affect normal usage of the APl and no action is required.

6 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

2. V1.00 to V2.10 Migration Tips

This list applies to all of the TMS320F281x APIs.

a)

b)

c)

d)

f)

a)

h)

The V1.00 function prototypes have been retained and are compatible with V2.10. Prototypes for
compatible functions as well as new functions, such as depletion recovery and API version, are included in
the Flash281x_API_Library.h file.

The V1.00 error codes have also been retained and are compatible with V2.10. Definitions of the all of the
API error codes are included in the Flash281x_API_Library.h file.

Interrupts are now only disabled during time critical code. During the time that interrupts are enabled, flash
and OTP memory blocks are not available for code execution or data fetches. If an application relied on the
V1.00 API to automatically set the global interrupt mask before an API function call, then the application
may need to be modified to explicitly disable interrupts before calling the V2.10 API function. Otherwise an
ISR located in flash or OTP may be inadvertently executed. See section 14 for more information.

The version number of the API library (.lib) is included in the filename of the library itself. If
the filename has been used in the linker .cmd file, then the .cmd file will need to be updated
to reflect the new API library name.

Updating to use the new API files:

Q Library file (lib): Include the new library file (.lib) in the applications project and
remove the old library.

O F281x_API_Library.h: The V2.10 F281x_API_Library.h file should be used to include
the new error codes, API function prototypes for new functions and the callback
function pointer definition.

O F281x_API_Config.h: Only cosmetic changes have been made to the
F281x_API_Config.h file.

If you have customized either the V1.00 F281x_API_Library.h or F281x_API_Config.h
file, make sure that the changes are carried over to the new versions of these files. In
particular, check that the CPU speed configuration in F281x_API_Config.h is correct.

The ability to specify a callback function has been added to the API. If the callback function feature is not
going to be used by the application then it is best to explicitly set the function pointer (Flash_CallbackPtr) to
NULL as described in section 13. Failure to initialize the callback function pointer can cause the code
to branch to an undefined location.

A beta version of the V1.00 API with callback function capability was released to a limited nhumber of users.
In the V1.00 callback beta API, the function name was static and could not be changed. To add flexibility,

in V2.10 of the API you must specify a pointer to the function that the API will use as the callback function.
Refer to section 13.

Internal to the API, the file structure has changed. Therefore, if users have linked specific API files to
specific code sections the applications linker command file may need to be modified. The structure was
changed such that only functions called by the application will be included in the final .out file. The API
memory usage information in section 19 includes a list of the files associated with various API functions.

To allow for new features, the code size of the API functions has increased. Refer to the APl memory
usage information in section 19 for information on the code size requirements of the API.

7 of 48

TMS320F281x Flash API l# TEXAS
Version 2.10

3. API Revision vs. Silicon Revision

The silicon revision can be determined by the lot trace code marked on the top of the package. The figure below
provides an example of the TMS320F281x markings. Some prototype devices may have markings different from
those illustrated. Refer to the TMS320F2810\F2811\F2812, TMS320C2810\C2811\C2812 DSP Silicon Errata
(literature number SPRZ193) for information on how to determine your device’s silicon revision.

{y DSP

| Tms
. 320F2812GHHA
CA-26ACRCW

SILICON REVISION

o 1 LOT TRACE CODE

TMS 320F2812 GHH

A
PREFIX L ewerature
TM8 Production device

PACKAGE TYPE

DEVICE

Second Letter In REVID Obsolete Recommended
Prefix of Trace Lot | (Addr 0x883) Flash APIs Flash API
Code'
These APIs are Obsolete and
No Longer Recommended °
Blank 0x0000 none none
A 0x0001 none none
B 0x0002 none none
C 0x0003 Betal, V1.00, V2.00 V2.10 or Later
D 0x0003 V1.00, V2.00 V2.10 or Later
E 0x0005 V1.00, V2.00 V2.10 or Later
F 0x0006 V1.00, V2.00 V2.10 or Later
G 0x0007 V2.00 V2.10 or Later
Later >= 0x0008 V2.00 V2.10 or Later

Notes:
1) Silicon Revisions B, D and F were Tl only internal test revisions.

2) There are no reliability issues with devices prior to revision G that are programmed with either Flash
API Betal, or Flash API V1.00. Erasing at zero degrees C with Flash API Betal or Flash APl V1.00
will, however, yield higher than expected fallout.

Note:
For future silicon revisions, Tl anticipates that no functional changes will be required to these
APIs (and hence no changes should be required to your DSP software).

Should API changes occur that affect the programming of the flash, it is the user’s
responsibility to update any application that uses the API (programmers, embedded software,
etc) to insure proper long-term operation of the flash. Tl will test these APIs on future silicon
revisions as soon as possible when such devices become available. Updates that only add
features are not required.

8 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

The following APIs are obsolete and not recommended for use:
O Version 2.00: F2812_API_V200.lib, F2811_API_V200.lib, F2810: F2810_API_V200.lib

Version 2.00 of the Flash API was available for download during the week of July 18™ 2005. Using
V2.00 to program the OTP will disturb erased bits within sector J of the main flash array. For this
reason, V2.00 of the API is now considered obsolete. Users who downloaded V2.00 should migrate to
V2.10.

Q Version 1.00: F2812_API_V100.lib, F2811_API_V100.lib, F2810: F2810_API_V100.lib
The TMS320F2810, TMS320F2811 and TMS320F2812 API VV1.00 will not program or erase the flash

as of Rev G silicon. If V1.00 of the APl is run on a Rev G or later silicon, then the API will report one of
the following error codes:

Erase: STATUS_FAIL_ERASE
Program: STATUS_FAIL_ZERO_BIT_ERROR
Verify: Verify will still operate as expected

The attempt to erase or program the flash will have no effect and no change will have been made to the
contents of the flash.

The only exception to this is if an attempt is made to program all zeros (0x0000) into the flash. In this
case, the V1.00 API will incorrectly report that the programming operation successfully completed,
however no change will have been made to the contents of the flash. This is a very unusual case and
typically does not occur in a customer’s system.

O Betal: F2812_ APl Betal.lib, F2810 APl Betal.lib

These APIs operated on REV C silicon only.

9 of 48

TMS320F281x Flash API l# TEXAS

Version 2.10

4. Introduction: Flash API Programming Fundamentals

The Flash Application Program Interface (Flash API) consists of well-documented functions that the client
application calls to perform flash specific operations. The flash array and One Time Programmable (OTP)
block are managed via CPU execution of algorithms in the Flash API library. Texas Instruments Inc (TI)
provides API functions to erase, program and verify the flash array as briefly described here:

Erase:
Zero-Waitstate SARAM Erase operates on the flash array only. The One Time Programmable (OTP)
. block cannot be erased once it has been programmed. The erase function is
User's used to set the flash array contents to all 1's (OXFFFF). The erase API operation
Application includes the following steps:
¢ O Pre-compact all sectors. This step is to help make sure no bits are in an
Flash AP over-erased or “depleted” state before attempting the sector erase. Depletion
can occur as a result of stopping the erase function before its post-condition
Flash Al or compaction step can complete. Even with this step, halting the erase
ash Algos function before it completes is not recommended.
OTP/Flash -) o
Array Control U Pre-condition or “clear” the sector to be erased. This programs all bits in the
t sector to 0x0000 to allow for an even erase across the sector.
Flash/OTP O Erase the sector. This step removes charge from the bits in the sector until
Memory all of the bits in that sector are erased.
O Post-condition or compact the sector that was erased. This step makes sure
no bits were left in an over-erased (or depleted) state.
The smallest amount of memory that can be erased at a time is a single sector.
Some traditional algorithms, such as those for the 240x family, require that the
flash be pre-conditioned or “cleared” before it is erased. The F281x Flash API
erase function includes the flash pre-conditioning and a separate “clear” step by
the user is not required.
The flash array and OTP block are in an erased state (all OxFFFF) when the
device is shipped from the factory.
Program:

The program function operates on both the flash array and the OTP block. This function is used to put
application code and data into the flash array or OTP. The program function can only change bits from a 1 to a
0. Bits cannot be moved from a 0 back to a 1 by the programming function. For this reason, flash is typically in

an erased state (all OxFFFF) before calling the programming function. The programming function operates on a

single 16-bit word at a time.

To protect the flash or OTP and allow for user flexibility, the program operation will not attempt to program
any bit that has previously been programmed. For example, a flash or OTP location can be programmed with
OXxFFFE and later the same location can be programmed with OxFFFC without going through an erase cycle.
During the second programming call, the program operation will detect that bit 0 was already programmed
and will only program bit 1.

Verify:
The erase and program functions perform verification with voltage margin as they execute. The verify function
provides a second check via a CPU read that can be run to verify the flash contents against the reference
value. The verify function operates on both the flash array and OTP blocks.

10 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

To integrate one of the Flash APIs into your application you will need to follow steps described within this
document. The checklist provided in section 6 gives an overview of the required steps and can be used to
guide you through the process. While integrating the API, keep the following Do’s and Don’ts in mind:

API Do’s:

O Execute the Flash API code from zero-wait state internal SARAM memory.

Q Configure the API for the correct CPU frequency of operation.

O Follow the Flash API checklist in section 6 to integrate the API into an application.

O Initialize the PLL control register (PLLCR) and wait for the PLL to lock before calling an API function.

O Initialize the API callback function pointer (Flash_CallbackPtr). If the callback function is not going to be
used then it is best to explicitly set the function pointer to NULL as described in section 13. Failure to
initialize the callback function pointer can cause the code to branch to an undefined location.

Q Carefully review the API restrictions for the callback function, interrupts, and watchdog described in
section 15.

APl Don’ts:

O Don't execute the flash API from wait stated memory such as XINTF.

O Don't execute the Flash APIs from the flash or OTP. If the APIs are stored in flash or OTP memory,
they must first be copied to internal SARAM before they are executed.

O Don't execute any interrupt service routines (ISRs) that can occur during an erase, program or
depletion recovery API function from the flash or OTP memory blocks. Until the API function completes
and exits the flash and OTP are not available for program execution or data storage.

O Don't execute the API callback function from flash or OTP. When the callback function is invoked by
the API during the erase, program or depletion recovery routine the flash and OTP are not available for
program execution or data storage. Only after the API function completes and exits will the flash and
OTP be available.

O Don't stop the erase, program or depletion recovery functions while they are executing (for example,
don't stop the debugger within API code, don’t reset the part, etc).

O Do not execute code or fetch data from the flash array or OTP while the flash and/or OTP is being

erased, programmed or during depletion recovery.

5. Example Program

An example program that uses the Flash API has been included in this release. This example demonstrates
how to interface to the API. The example is setup to be stored in the flash and the appropriate code and
constants are copied to SARAM for execution.

11 of 48

TMS320F281x Flash API

Version 2.10

Q'lhxns

6. Flash API Checklist

Integration of the TMS320F2810, TMS320F2811, or TMS320F2812 API into an application requires the system
designer to satisfy several key requirements. The following checklist gives an overview of the steps required to
integrate the API. These steps are further discussed in detail in the reference section indicated. Steps that

have been added for V2.10 of the API are indicated with “NEW".

Before using the API, do the following:

Step | Description Reference
1 Modify Flash281x_API_Config.h for your target operating conditions. Section 7
2 Include Flash281x_API Library.h in your source code. Section 8
3 Add the proper Flash API library to your project. Section 9
When using the Flash API, build your code with the large memory
model. The API Library is built in 28x Object code (OBJMODE =1,
AMODE = 1)
In your application do the following:
Step Description Reference
4 Initialize the PLL control register (PLLCR) and wait for the PLL to lock. Section 10
5 Optional: The API must execute from internal SARAM. If the API is to be | Section 11
copied from flash/OTP or XINTF memory into internal SARAM then
follow the instructions in this section.
6 Initialize the 32-bit global variable Flash_CPUScaleFactor Section 12
7 Initialize the global function pointer Flash_CallbackPtr to point to the .
NEW application’s?:allback functi(?n. Alternativ_ely set the pointgr to NULL. Section 13
NEW 8 Optional: Disable global interrupts before calling an API function. Section 14
9 Understand the API restrictions detailed in this section before making Section 15
NEW
any API calls.
10 Optional: Run the frequency toggle test to confirm proper frequency Section 16
configuration of the Flash API. Note: The ToggleTest function will
execute forever. You must halt the processor to stop this test.
11 Optional: Unlock the code security module (CSM). Section 17
12 Call the Flash API Functions. Section 18

The called flash API function will do the following:

[Wy iy iy =

The watchdog timer is disabled. (Section 15).
The REVID register (memory location 0x0883) is checked. REVID must match Rev C silicon or later.
NEW: Checks the PARTID (memory location 0x0882) register to make sure the part is a F281x device
NEW: Checks the contents of 0x3FFFB9 in the boot ROM for API version vs. silicon revision compatibility.
Performs the called operation and:

o NEW: Disables and restores global interrupts (via INTM, DBGM, XNMICR) around time critical code
segments. (Section 14).
o NEW: Invokes the callback function if Flash_CallbackPtr is not NULL.

O Returns success or an error code. These are defined in F281x_API_Library.h (Section 18.11)

The user’s code should then do the following:

Step | Description Reference
13 | Check the return status against the error codes. Section 18.8
14 | Optional: Re-enable the watchdog timer.

12 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

7. Step 1: Modify Flash281x_API_Config.h

Modify the Flash281x_API_Config.h file, found in the include directory, to match your specific target operating
conditions. This file is used for the TMS320F2810, TMS320F2811 and TMS320F2812 APIs.

7.1.

7.2.

Specify the device.

This definition is used by the API main include file, Flash281x_API_Library.h, to conditionally compile in
options specific to the TMS320F2810, TMS320F2811 and TMS320F2812 devices. These options
include sector bit masks and macros that interface to the API functions.

Specify the clock rate of the CPU (SYSCLKOUT) in nanoseconds.

Uncomment the line corresponding to the CPU Clock rate (SYSCLKOUT) in nanoseconds at which the
API functions will be run at. This is done by removing the leading // in front of the correct line. Only one
line should be uncommented. The file lists a number of commonly occurring clock rates. If your CPU
clock rate is not listed, then provide your own definition using the examples as a guideline.

For example: Suppose the final CPU clock rate will be 135 MHz. This corresponds to a 7.407 nS cycle
time. There is no line present for this clock speed, so you should insert your own entry and comment
out all other entries:

/| #defi ne CPU_RATE 6.667L // for a 150MHz CPU cl ock speed (SYSCLKQOUT)
/| #defi ne CPU_RATE 7.143L // for a 140MHz CPU cl ock speed (SYSCLKQOUT)
#def i ne CPU_RATE 7.407L /1 for a 135MHz CPU cl ock speed (SYSCLKOUT)
/| #defi ne CPU_RATE 8.333L // for a 120MHz CPU cl ock speed (SYSCLKQOUT)

The CPU clock rate is used during the compile to calculate a scale factor for your operating frequency.
This scale factor will be used by the Flash API functions to properly scale software delays that are
VITAL to the proper operation of the API.

The formula, found at the bottom of the Flash281x_API_Config.h, file for this calculation is:

#define SCALE FACTOR 1048576.0L*((200L/ CPU RATE))

CAUTION
For flash integrity at operating frequencies, the device should always be programmed
at the fastest possible CPU frequency. For example, if the CLKIN frequency is 30 MHz
program the device at 150 MHz rather then 15 MHz or 30 MHz.

The flash APl is not designed to function properly below 10 MHz.

13 of 48

Q'lhxns

Version 2.10

8. Step 2: Include Flash281x_API_Library.h

Flash281x_API_Library.h is the main include file for the Flash API and should be included in any application
source file that interfaces to the Flash APIl. Flash281x_API_Library.h, is used for the TMS320F2810,
TMS320F2811 and TMS320F2812 API libraries.

Flash281x_API_Library.h contains the following:

a

a

a

Error code definitions. Refer to section 18.11.
Sector bit mask definitions that can be used when calling the erase function. Refer to Section 18.5.

Flash status structure (FLASH_ST) definition used by the API functions to return information back to the
calling routine.

Function prototypes for each API library. Refer to section 18.
Frequency scale factor definition: Flash_CPUScaleFactor. Refer to section 12.
Pointer to callback function definition: Flash_CallbackPtr. Refer to section 13.

Macros to enable easy porting between the TMS320F2810, TMS320F2811 and TMS320F2812 API
libraries. Refer to section 18.2.

9. Step 3: Include the proper Flash APl library

The proper Flash API library must also be included in your project.

By default<> = C:\tidcs\c28

F2810: <>\ Fl ash28_API \ Fl ash2810_API _V210\ i b\ Fl ash2810_API _V210.lib
F2811: <>\ Fl ash28_API\ Fl ash2811_APl _V210\li b\ Fl ash2811_APlI _V210.lib
F2812: <>\ Fl ash28_API \ Fl ash2812_APl _V210\ i b\ Fl ash2812_APl _V210.lib

The Flash APIs have been compiled with the large memory model (-ml) option. The small memory model
option is not supported. For information on the large memory model refer to the TMS320C28x Optimizing
C/C++ Compiler User’s Guide (literature #SPRU514).

10. Step 4: Initialize PLL Control Register (PLLCR)

It is vital that the API functions be run at the proper operating frequency. To achieve this, the calling
application must initialize the PLLCR register before calling any of the API functions.

As part of this initialization, the calling application must guarantee through a software delay or other means that
the PLL has had enough time to lock at the new frequency before making API calls. The PLL lock time
required, as of Rev C silicon is 131072 cycles.

14 of 48

QTExns

INSTRUMENTS

TMS320F281x Flash API

Version 2.00

11. Step 5: Copy the Flash API functions to Internal SARAM

There are two factors that restrict the type of memory that the Flash API functions can be executed from:

O Onthe TMS320F2810, TMS320F2811 and TMS320F2812 devices, there is only one flash array. The flash
architecture imposes the restriction that the flash can perform only one operation at a time. Due to this
restriction, when erasing, programming, or running the depletion recovery algo, code itself cannot execute
and data cannot be fetched from the flash.

Q There are required delays within the flash API functions that are vital to their proper operation. These
delays are implemented via cycle-sensitive software delays. To be accurate, these delays must execute

from zero-wait state memory.

To satisfy these two restrictions, time critical flash API functions must be executed from on-chip, zero-wait state
SARAM memory. The figure below illustrates three different methods that can be used to load the API code
into the device.

User's
Application
A
) F2810/F2811/F2812
Flash API SARAM
== BOOT ROM |«
Flash Algos /\
OTP/Flash EAX'zcizgi
N

y

CPU

OTP and
FLASH
ARRAY

SCI B

SPI

PARALLEL

Code Composer Studio

SDFlash

A

Method A: The code is loaded directly into on-chip SARAM via the JTAG port. This is the method used by
Code Composer Studio and the SDFlash utility.

Method B:

Method C:

The code is loaded directly into on-chip SARAM by one of the ROM boot loaders (SCI, SPI or
Parallel). This is the method used by custom programmers such as SCI programmers.
This method can also be extended to other peripherals by programming a custom loader into the

OTP block.

The API code is embedded within an application that is stored in the flash, OTP or XINTF. In this
case the API code must first be copied out of Flash into on-chip SARAM before it is executed.

If the API functions are loaded directly into on-chip, zero-waitstate SARAM as shown in method A or B then this

step can be skipped.

If, however, the Flash API functions are stored in flash, OTP or XINTF memory, then the

calling application must first copy the required code into SARAM before making any calls into the APIl. The
following describes how to accomplish this copy.

15 of 48

Version 2.10

Steps to copy the API functions from Flash to SARAM:
In the linker command (.cmd) file, create a group section called Flash28_API as shown.

TMS320F2812 Example:

| % e
* User's .cnd file: TMS320F2812 API Library G oup Section Exanple
K o o o o o o o o o e e o e o e o e e e e e e e e e e */
' SECTI ONS
Fl ash28_API :
{
-1 Fl ash2812_API _V210.1i b(. econst)
-1 Fl ash2812_API _V210.1i b(. text)
} LOAD = FLASHC,
RUN = RAMLO,
LOAD START(_Fl ash28 APl _LoadStart),
LOAD END(_Fl ash28_ APl _LoadEnd),
RUN_START(_Fl ash28_API _RunStart),
PAGE = 0
}
TMS320F2811 Example:
R e
* User's .cnd file: TMS320F2811 APl Library G oup Section Exanple
K o o o o o e o o o o e e e o o o e */
' SECTI ONS
FI ash28_API :
{
-1 Fl ash2811_API _V210.1i b(. econst)
-1 Fl ash2811_API _V210.1i b(. text)
} LOAD = FLASHC,
RUN = RAMLO,
LOAD START(_Fl ash28 APl _LoadStart),
LOAD END(_Fl ash28_API _LoadEnd),
RUN_START(_Fl ash28_API _RunStart),
PAGE = 0
}

16 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

TMS320F2810 Example:

/25
* User's .cnd file: TMS320F2810 APl Library G oup Section Exanple
K o o o o o o o o o e e e e o e */
SECTI ONS
{
Fl ash28_API :
-1 Fl ash2810_API _V210.1i b(. econst)
-1 Fl ash2810_API _V210.1i b(. text)
} LOAD = FLASHC,
RUN = RAMLO,
LOAD START(_Fl ash28 APl _LoadStart),
LOAD END(_Fl ash28_API _LoadEnd),
RUN_START(_Fl ash28_API _RunStart),
PAGE = 0
}

This group section must contain the following blocks:

Q APl library source code: Example: Flash2810_API_V210.lib (.text)
Q API constant parameters: Example: Flash2810_API_V210.lib (.econst)

CAUTION

It is important to include both the constants (.econst) as well as the code
(.text) sections of the library.

This group section defines symbols that the linker will assign to the load start, load end, and run start addresses
of the section. For the example shown, the linker will assign the following symbols:

Q Load address start: Flash28_API_LoadStart
Q Load address end: Flash28_API_LoadEnd
Q Run address start: Flash28_API_RunStart

These symbols are declared in the main library include file, Flash281x_API_Library.h.

ext ern Ui ntl6 Flash28 APl LoadStart;
extern U ntl1l6 Flash28 APl LoadEnd;
extern U ntl6 Flash28 APl RunStart;

These three symbols can then be used to copy the Flash API functions from the Flash memory to the SARAM
as shown in the included example programs.

17 of 48

TMS320F281x Flash API E TEXAS

INSTRUMENTS
Version 2.10
% o e e e e e e e ieeieooo
* User’'s application .c file: Exanple call to a menory copy routine
___ */
#i nclude Fl ash281x_API Library.h
Exanpl e_MenCopy(&Fl ash28 APl _LoadStart, &Fl ash28 APl _LoadEnd, \
&Fl ash28 APl _RunStart);
% o e e e e e eieeeaool
* User’'s application .c file: Exanple menory copy routine
K o o e m e e e e e mm e * [
voi d Exanpl e_MenCopy(Ui nt 16 *Sour ceAddr, U nt16* SourceEndAddr, U nt16* Dest Addr)
whi | e(Sour ceAddr < Sour ceEndAddr) { *Dest Addr ++ = *Sour ceAddr ++; }
return;
}

This same method and copy routine can be used to copy any additional code and data that is needed during
the programming operation.

18 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

12. Step 6: Initialize Flash_CPUScaleFactor

Flash_CPUScaleFactor is a global 32-bit variable defined by the Flash API functions. The Flash API functions
contain several delays that are implemented as software delays. The correct timing of these software delays is
vital to the proper operation of the API functions. The 32-bit global variable Flash_CPUScaleFactor is used by
the API functions to properly scale these software delays for a particular CPU operating frequency
(SYSCLKOUT).

First, make sure the proper CPU rate in nanoseconds is defined in the library configuration file
Flash281x_API_Config.h. This step is described in section 7.2.

The corresponding Flash_CPUScaleFactor value for the defined CPU rate is calculated during the compile by
the following formula:

#defi ne SCALE_FACTOR 1048576.0L*((200L/CPU_RATE))

CAUTION

The SCALE_FACTOR formulais already defined in the file Flash281x_API_Config.h. This
formula must not be modified. Doing so will cause improper operation of the flash API
functions.

The calling application must then initialize the global variable Flash_CPUScaleFactor as follows before calling
any API function:

| % e o e

* Flash281x_API Library.h
___ * |

ext ern Ui nt32 Flash_CPUScal eFact or;

| % e e e e e eiieeeoo o

* User's application .c file

K o o e m e e e e mm e * [

#i nclude Fl ash281x_API Library.h

FI és h_CPUScal eFact or = SCALE FACTOR;

CAUTION

It is strongly recommended that you test the CPU frequency and PLL configuration
using the configuration toggle test described in section 16 before erasing or
programming any parts.

If this test fails, DO NOT PROCEED to erase or program the flash until the problem is
corrected, or flash damage can occur.

19 of 48

TMS320F281x Flash API l# TEXAS
Version 2.10

13. Step 7: Initialize the Callback Function Pointer

A callback function has been added as of V2.10 of the flash API. A callback function is one that is not invoked
explicitly by the user’s application; rather the responsibility for its invocation is delegated to the API function by
way of the callback function's address. The callback function can be used whenever the application must
process certain information itself at some time in the middle of the execution of an API function. For example, if
the system has an external watchdog that must be serviced or if status needs to be sent by way of a
communications port, this can be done by the user inserting code within the callback function.

Flash_CallbackPtr is global function pointer used to specify the callback function to be used by the Flash API.
The Flash API functions will call the callback function at safe times during the program, erase, verify and
depletion recovery algorithms. Refer to section 15 for rules that must be followed when using the callback
function.

To use the callback function, the calling application must first initialize the function pointer Flash_CallbackPtr
before calling any API function. If the callback feature is not going to be used, then set the pointer to NULL.
When Flash_CallbackPtr is NULL the API will not make a call to any function.

* User’s Application with a Call back Function

#i ncl ude Fl ash281x_API _Library.h

v0| d MyCal | backFuncti on(voi d); /1 My Callback function prototype

Fl ash_Cal | backPtr = &WCal | backFuncti on;

voi d nyCal | backFunci on(voi d)
{

/1 User’s application code to execute during the callback function
/1 This nmust not execute fromflash/OTP or read data from fl ash/ OTP

}

| ® o e e e e e e e e e e e e e e e e e

* User’s Application without a Callback Function

* *
___ /

#i ncl ude Fl ash281x_API _Library.h

#i ncl ude <stdio. h> /1 NULL is defined here

Fl ash_Cal | backPtr = NULL;

CAUTION

If the callback function feature is not used, then explicitly set the function pointer to NULL in
the application code. Failure to explicitly initialize the callback function pointer can cause
the code to branch to an undefined location.

By default, the Flash_CallbackPtr is initialized to NULL as part of the compiler’s runtime
initialization routine. If load time initialization is used or if the standard C initialization is
bypassed the pointer will not be initialized and the code can branch to an undefined
location. For this reason it is recommended that Flash_CallbackPtr always be explicitly
initialized before calling the Flash API.

20 of 48

Q TExXas TMS320F281x Flash API
Version 2.00

INSTRUMENTS

During the callback function, the flash and OTP are in a safe state such that the callback function can take as
much time as required to send status, service an external watchdog or perform other operations. However,
flash and OTP are not available for execution of code or reading of data during this time. Refer to section 15 for
rules that must be followed during the callback function.

CAUTION

During the callback function, the flash and OTP are not available for use by the
application. Code cannot be executed from the flash/OTP nor can data be read from
the flash/OTP. Flash and OTP will only again become available after the API function
exits. Thus, the callback function must be executed completely outside of the
flash/OTP and must not expect to read data from the flash/OTP.

Attempting to execute from the flash will result in unknown opcode fetch and likely
result in an illegal trap (ITRAP). Data fetched will be an unknown value.

21 of 48

TMS320F281x Flash API l# TEXAS
Version 2.10

14. Step 8: Optional: Disable Global Interrupts

The V1.00 API set the global interrupt mask (INTM, DBGM) in order to disable all global interrupts at the start of
any API function. That is, the following assembly instruction was executed:

22
* APl V1.00 Disable Interrupts

K o o e m e e e e e e e — e e e e e e — e m e e —— - * [
status APl _Function(args)

{

asm(“ SETC | NTM DBGM') ;

/1 APl Function Code

/1 Interrupts were blocked for the duration

/1 Interrupts were not re-enabl ed before returning to the
/1 calling routine

return;

}

The INTM and DBGM flags then remained set for the duration of the function. It was then the calling
applications responsibility to re-enable interrupts after the API function completed.

The V2.10 API relaxes this constraint to improve integration of the API into an application. In this case, the
INTM and DBGM state is saved off before and restored after the critical code segments. The following two
assembly routines are used to enable this save and restore feature:

* APl V2.10 Save INTM and DBGM/ Set INTM DBGMto Disable Interrupts
* This code is internal to the APl and is called by the APl routines

K o e e o o e e o o o o e e e e e e e e e e e e e e e e e */
_FI 28x_Di sabl el nt:

PUSH ST1 ; Save the state of | NTM DBGM (in ST1)

SETC | NTM DBGM ;Disable interrupts

MV AL, *--SP ;Return ST1 to the calling routine

LRETR
22

* APl V2.10 Restore |INTM DBGM
* This code is internal to the APl and is called by the APl routines

K e o o e */
_FlI 28x_Restorel nt:

MOV *SP++, AL ; Pushed the saved ST1 onto the stack

POP ST1 ; Restore | NTM and DBGM (i n ST1)

LRETR

22 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

In addition to global interrupts, the XNMI interrupt is also disabled during time critical code. That is, the state of
the XNMICR control register is saved and XNMI is disabled. After the time critical code, XNMICR is restored.

* APl V2.10 Save/ Restore XNM CR
* This code is internal to the APl routines

#define XNM CR (vol atile U nt16*)0x00007077 /1 XNM Control
Untle Xnm Cr;

Xnm G = *XNM CR; /] Save XNM CR
*XNM CR = *XNM CR & OxFFFE /1l Disable XNM

}}.Tima critical APl code

*XNM CR = Xnm CR; /] Restore XNM CR

During the time that interrupts are enabled, the flash and OTP are in a safe state such that an interrupt service
routine (ISR) can take as much time as required to service the interrupt. Flash and OTP are not available for
execution of code or reading of data during this time. Refer to section 15 for rules that must be followed when
interrupts are allowed during API function calls.

CAUTION

During the time that interrupts are enabled, the flash and OTP are not available for
use by the application. Code cannot be executed from the flash/OTP nor can data be
read from the flash/OTP. Flash and OTP will only again become available after the
API function exits.

Any ISR routines that are executed during an API function call must completely reside
outside of the flash/OTP and must not expect to read data from the flash/OTP.

Attempting to execute from the flash/OTP will result in undefined opcode fetch and
likely result in an illegal trap (ITRAP). Data fetched will be an unknown value.

CAUTION — Migrating from V1.00 API

If the application assumed that the API will automatically disable interrupts then the
application may need to be updated to first disable global interrupts before calling the
V2.10 API. Otherwise an unexpected ISR routine located in flash may inadvertently
be called.

23 of 48

Q'lhxns

Version 2.10

15.

Step 9: Rules for Callback, Interrupts, and Watchdog

The following API restrictions should be understood:

Q

a

If an interrupt is taken during the erase, program, or depletion recovery routines, then the flash/OTP will not
be accessible. Thus no code or data used by the interrupt can be stored in the flash or OTP.

When the callback function is invoked during the erase, program, or depletion recovery routines, the
flash/OTP will not be accessible. Thus no code or data used by the callback function can be stored in the
flash or OTP.

The flash/OTP is left in a safe state when interrupts are enabled and during the callback function. There is
no restriction on the amount of time that can be spent in the ISR or callback function.

The API functions are not reentrant.

Only one API function should be called at any particular time. If one API function has been called but has
not yet completed, do not call another API function from within the interrupt service routine or callback
function. Let the API function complete and exit before calling any other API function.

The ToggleTest API function disables interrupts and runs until the processor is halted by the user.

The ToggleTest API function does not invoke the callback function.

The Erase function disables interrupts for up to 3-4ms when running at 150MHz. This is the longest
duration interrupts are disabled in any of any of the API functions, except for the ToggleTest function.

The erase function will invoke the callback function every 3-4ms at 150MHz. This is the longest duration
between callback function invocations, except for the ToggleTest function.

The API disables the watchdog using the following code such that the watchdog counter pre-scaler is not
modified:

* APl Wat chdog Di sabl e
* This code is internal to the APl routines

K o o e o o e e o e o o o e a2 */
#define WDCR (vol atile Ui nt16*)0x00007029 /1 Wat chdog control register
asm(“ EALLOW ;

*WDCR = (*WDCR | 0x0068) ; /1 Disable the watchdog

asm(* EDIS');

CAUTION

If you clear the WD_OVERIDE bit in your code so that the watchdog cannot be disabled by
the API, you will run the risk of resetting the DSP during an API operation. This can leave
the flash in an unknown state and possibly lock the Code Security Module with an unknown
password. If you must clear the WD_OVERIDE bit, then it is recommended that you re-
assign the watchdog output to its interrupt before calling an API function. This will keep the
watchdog from resetting the device during this time.

24 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

16. Step 10: Optional: Frequency and PLL Configuration Toggle Test

This test is used to confirm that the algorithms are properly configured for the CPU frequency (Refer to section
12) and PLL multiplier (Refer to section 10). During this test, a specified GPIO pin will toggle at a known
frequency. If this frequency is not correct then the API functions are not configured correctly.

This test is started by calling the API ToggleTest function documented in section 18.4. This function allows you
to specify which GPIO pin will be toggled by passing a pointer to its corresponding GPIOMUX and a pointer to
its corresponding GPIOTOGGLE register. Finally you can specify exactly which pin on the specified port will be
toggled by a mask value.

CAUTION

Choose an appropriate pin for your system. Check your board design and board
connections to be certain that the pin you have selected for toggling is not being driven
by a source other than the DSP, or voltage contention can occur. Also, be certain that
whatever the toggling pin is connected to in your system will not encounter difficulty
when the pin is toggling (e.g, the device the pin is connected to should be powered-
down, held in reset, etc.).

While the test runs, monitor the selected pin using an oscilloscope.

Q If the algorithms are configured correctly for your CPU rate then the pin will toggle near 10kHz
(100pS +/- 10pS cycle time).

Q If the pinis toggling at a different rate, then the algorithms are not configured correctly. If this
is the case, review steps 1-6 in the checklist shown in section 6 to ensure the proper Flash API
setup.

The toggle test disables interrupts, runs forever and does not return. The device can be halted anytime during
this test to stop execution. During the toggle test the callback function will not be invoked.

This test is typically only used during development to confirm the configuration of the Flash API. If this function
is not referenced in your code it will not be linked in.

25 of 48

Q'lhxns

Version 2.10

17. Step 11: Optional: Unlock the Code Security Module (CSM)

The Code Security Module (CSM) protects the contents of the flash and OTP memory blocks as well as LO/L1
SARAM blocks. The Flash API functions must be able to manipulate the flash while performing any erase,
program, depletion recovery, or verify operations. There are two possible scenarios to consider:

O The Flash API functions are executed from memory protected by the CSM. Since the API functions are
executing from within CSM protected memory they will be able to access any other secure memory location
including the flash and OTP. In this case the CSM can remain locked and no action is required.

O The Flash API Functions are executed from memory not protected by the CSM. In this case, the API will
not be able to access any secure memory location and thus cannot access the flash or OTP. In this case,
the calling application must first unlock the CSM before making any calls to the Flash API.

Refer to TMS320x281x System Control and Interrupts Peripheral Reference Guide (literature number
SPRUQ78) for details on the proper operation of the CSM.

18.

18.1.

18.2.

Step 12: API Reference

Data Type Conventions

The following data type definitions are defined in Flash281x_API_Library.h and are used within this
document:

#i f ndef DSP28_DATA_TYPES

#def i ne DSP28_DATA TYPES

typedef int i nt 16;
typedef | ong i nt32;

t ypedef unsigned int Ui nt 16;
t ypedef unsigned | ong Ui nt 32;
t ypedef fl oat fl oat 32;
typedef |ong doubl e f | oat 64;
#endi f

These data types are also used in the example code for C281x C/C++ Header Files and Peripheral
Examples (literature number SPRC097).

API Function Naming Conventions and Function list
The TMS320F2810, TMS320F2811 and TMS320F2812 API function names are of the following form:

Fl ash<devi ce>_<operati on>(args)

Where <device> is either 2810, 2811, or 2812.
<operation> is the operation being performed such as erase, program, verify

For example: Fl ash2812_Pr ogr an(ar gs) is the TMS320F2812 program function.
The API function definitions for the TMS320F2810, TMS320F2811 and TMS320F2812 API libraries are
compatible. For this reason the file Flash281x_API_Library.h includes macro definitions that allow a
generic function call to be used in place of the device specific function call.

Fl ash_<operati on>(args)
Use of these macros is optional. They have been provided to allow easy porting of code between the

TMS320F2810, TMS320F2811 and TMS320F2812 devices. All of the examples shown in this
document use the generic function call.

26 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

TMS320F2810 API Compatibility Macros:

Generic Function TMS320F2810 API Function
Flash_ToggleTest Flash2810 ToggleTest
Flash_Erase Flash2810 Erase
Flash_Program Flash2810 Program
Flash_Verify Flash2810 Verify
Flash_DepRecover Flash2810 DepRecover
Flash_APIVersion Flash2810 APIVersion
Flash_APIVersionHex | Flash2810 APIVersionHex

TMS320F2811 API Compatibility Macros:

Generic Function TMS320F2811 API Function
Flash ToggleTest Flash2811 ToggleTest
Flash Erase Flash2811 Erase

Flash Program Flash2811 Program

Flash Verify Flash2811 Verify

Flash _DepRecover Flash2811 DepRecover
Flash_ APIVersion Flash2811 APIVersion
Flash_ APIVersionHex | Flash2811 APIVersionHex

TMS320F2812 API Compatibility Macros:

Generic Function TMS320F2812 API Function
Flash_ToggleTest Flash2812 ToggleTest
Flash_Erase Flash2812 Erase
Flash_Program Flash2812 Program
Flash_Verify Flash2812 Verify
Flash_DepRecover Flash2812 DepRecover
Flash_APIVersion Flash2812 APIVersion
Flash_APIVersionHex | Flash2812 APIVersionHex

18.3. Flash status structure (FLASH_ST)

This structure is used to pass information back to the calling routine by the program, erase and verify
API functions. This structure is defined in Flash281x_API_Library.h:

typedef struct {
Ui nt32 FirstFail Addr;
Uintl6 ExpectedData;
Ui nt16 Actual Dat a;

} FLASH_ST;

27 of 48

Q'lhxns

Version 2.10

18.4.

ToggleTest Function

Description: The ToggleTest function toggles a specified GPIO pin at a 10 kHz rate. This test can be
run to test the frequency configuration of the Flash API. If the toggle rate of the specified pin is not
correct then the APl is not configured properly. Refer to section 12 for more information on configuring
the API for a specific CPU frequency.

Function Prototype (Defined in Flash281x_API_Library.h)

TMS320F2810:
extern void Fl ash2810_Toggl eTest (
vol atile U nt16 *MixReg, /1 Pointer to GPIO port MJX register
volatile Uintl6 *Toggl eReg, // Pointer to GPlI O port TOGGLE regi ster
Ui nt 16 Mask /1 Pin Mask
i
TMB320F2811:
extern void Flash2811 Toggl eTest (
vol atile U nt16 *MixReg, /1 Pointer to GPIO port MJX register
volatile Uintl6 *Toggl eReg, // Pointer to GPI O port TOGGLE regi ster
Ui nt 16 Mask /1 Pin Mask
)
TMB320F2812:
extern void Fl ash2812 Toggl eTest (
vol atile U nt1l6 *MixReg, /1 Pointer to GPIO port MJX register
volatile Uintl6 *Toggl eReg, // Pointer to GPlI O port TOGGLE regi ster
Ui nt 16 Mask /1 Pin Mask
s
Parameter: Description:
volatile U ntl1l6 *MixReg Pointer to the desired GPIO Mux Register
vol atile U nt1l6 *Toggl eReg Pointer to the desired GPIO Toggle Register
U ntl6 Mask Mask value to be written to the TOGGLE register. This

value specifies which pin to toggle on the specified I/0
port. If the bit is set, the pin will be toggled, if it is clear
then the pin will not be toggled.

For example: Toggle Pin AO: Use Mask: 0x0001
Toggle Pin Al: Use Mask: 0x0002 etc..

Return Values: None. This function runs “forever” and never returns.
Notes:
Q By using the API compatibility macros provided in Flash281x_API_Library, this function can be

called as Flash_ToggleTest. All of the examples shown use this generic function call. Refer to
section 18.2.

28 of 48

QTExns

TMS320F281x Flash API

INSTRUMENTS Version 2.00

ToggleTest function continued...

O Choose an appropriate pin for your system. Check your board design and board connections to be
certain that the pin you have selected for toggling is not being driven by a source other than the
DSP, or voltage contention can occur. Also, be certain that whatever the toggling pin is connected
to in your system will not encounter difficulty when the pin is toggling (e.g, the device the pin is
connected to should be powered-down, held in reset, etc.).

O The ToggleTest function disables interrupts.

Q The callback function is not invoked during the ToggleTest.

O The ToggleTest function executes “forever” or until the processor is halted by the user.

| % o e e e e eiieeaoo o

* User’'s application .c code: Exanple Toggle GPlI OF14_XF

K o o e m e e e e e m e * [

#i ncl ude Fl ash281x_API Library.h

#def i ne GPFMUX (volatile U nt16*)0x000070D4 // GPIO F nux

#def i ne GPFTOGGLE (volatile U nt16*)0x000070F7 /1 GPIO F toggle

#define GPI OF14_XF_MASK (Ui nt16) 0x4000 /1 Pin 14 nmask

FI ésh_CPUScaI eFactor = SCALE FACTOR;
Fl ash_Cal | backPtr = NULL;

H.Code to set PLLCR and wait for PLL |ock

Fl ash_Toggl eTest (GPFMUX, GPFTOGGLE, GPl OF14_XF_MASK) ;

29 of 48

TMS320F281x Flash API E TEXAS

Version 2.10

INSTRUMENTS

18.5.

Erase Function

Description: The erase function will erase the flash sectors specified by the SectorMask. The
remaining sectors will not be changed.

Function Prototypes (Defined in Flash281x_API_Library.h)

TMS320F2810:
extern Uintl6 Fl ash2810_ Erase(
Ui nt 16 Sect or Mask, /] Sector mask
FLASH ST *FEr aseSt at /! Pointer to the status structure
)
TMS320F2811:
extern Uintl6 Fl ash2811 Erase(
Ui nt 16 Sect or Mask, /1 Sector mask
FLASH ST *FEr aseSt at /1 Pointer to the status structure
)
TMS320F2812:
extern Uintl6 Fl ash2812 Erase(
U nt 16 Sect or Mask, /1l Sector mask
FLASH ST *FEr aseSt at /1 Pointer to the status structure
)
Parameter: Description:
Ui nt 16 Sector Mask Sector Mask value: Set bits indicate which sectors will be erased.
Bit TMS320F2812 | TMS320F2811 TMS320F2810
0 A A A
1 B B B
2 C C C
3 D D D
4 E E E
5 F F ignored
6 G G ignored
7 H H ignored
8 I I ignored
9 J J ignored
10 -15 ignored ignored ignored
FLASH ST *FEr aseSt at Pointer to a flash status structure.

This structure is defined in Flash281x_API_Library.h:

typedef struct {
Ui nt32 FirstFail Addr;
Ui ntl6 ExpectedData;
U ntl6é Actual Data;

} FLASH_ST;

Note: for the erase function, only the FirstFailAddr of this structure
is currently used.

30 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

Erase function continued...
Return Value:
Q If the function succeeds STATUS SUCCESS is returned.

Q If the function fails a status value indicating the reason for the failure is returned. Refer to 18.11 for
a complete list of return values.

Notes:

O By using the API compatibility macros in Flash281x_API_Library.h, this function can be called as
Flash_Erase. All of the examples shown use this generic function call. Refer to section 18.2.

O The minimum amount of flash memory that can be erased is a single sector. A word or bit cannot
be erased by itself.

Q After a sector is erased, all of its memory locations will read back as ones (OXFFFF).
Q The erase API function includes the following steps:

« Pre-compaction of all sectors on the device. Compaction is an operation that corrects for over-
erased (depleted) bits within the sector. This pre-compaction step is included to help avoid
depleted bits that can be left if the erase API function has been halted (power down, device
reset, debugger halt, etc) before it completes the post-conditioning compaction step. Even with
pre-compaction included, halting the erase API function before it completes should be avoided.

« Pre-conditioning or a “clear” of all bits within the sector. During this step all bits in the sector
are programmed to a zero (0x0000) to allow for an even erase across the sector.

- Erase. This step removes charge from all of the bits within the sector until the sector is erased.

- Post-conditioning. This step performs a compaction of the sector that was erased to correct
any over-erased bits.

The user is not required to perform a separate step to precondition the flash as is required on 240x
devices.

O Onthe TMS320F2810 the specified sectors are erased in order Sector E through Sector A

O Onthe TMS320F2811 and TMS320F2812 the specified sectors are erased in order Sector J
through Sector A

Q The OTP block cannot be erased.

31 of 48

TMS320F281x Flash API E TEXAS

Version 2.10

Erase function continued...

Q The following sector mask #defines are included in Flash281x_API_Library.h

#defi ne SECTORA (Ui nt16)0x0001
#defi ne SECTORB (Ui nt 16) 0x0002
#define SECTORC (Ui nt16)0x0004
#define SECTORD (Ui nt16)0x0008
#define SECTORE (Ui nt16)0x0010
#def i ne SECTORF (Ui nt 16) 0x0020
#defi ne SECTORG (Ui nt 16) 0x0040
#define SECTORH (Ui nt16)0x0080
#defi ne SECTORI (Ui nt 16) 0x0100
#def i ne SECTORJ (Ui nt 16) 0x0200

/l Al sectors on an F2811 - Sectors A - J

#tdefi ne SECTOR F2812 (SECTORA| SECTORB| SECTORC| \
SECTORD| SECTORE| SECTORF| \
SECTORGE SECTORH| SECTORI |\
SECTCRJ)

/!l Al sectors on an F2811 - Sectors A - J

#defi ne SECTOR F2811 (SECTORA| SECTORB| SECTORC| \
SECTORD| SECTORE| SECTORF| \
SECTORGE SECTORH| SECTORI |\
SECTORJ)

/!l Al sectors on an F2810 - Sectors A - E
#def i ne SECTOR F2810 (SECTORA| SECTORB| SECTORC| \
SECTCORD| SECTCRE

32 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

Erase function continued ...

Examples:

* User’s Application
* Exanpl e: Erase Sector |

#i nclude “Fl ash281x_API Library.h”

Ui nt16 Status;
FLASH ST EraseSt at us;

FIl ash_CPUScal eFact or = SCALE FACTOR;
Fl ash_Cal | backPtr = NULL;

// Code to set PLLCR and wait for PLL | ock

/1 Following is defined in Flash281x_API Library.h
/1 #define SECTORI (Uint16)0x0100

Status = Fl ash_Erase(SECTORI, &Er aseSt at us) ;
i f(Status !'= STATUS SUCCESS) Error(Status);

* Exanpl e: Erase Sector C and D

#i ncl ude Fl ash281x_API Library.h

Ui nt16 Status;
FLASH ST EraseSt at us;

FIl ash_CPUScal eFact or = SCALE FACTOR;
Fl ash_Cal | backPtr = NULL;

/] Code to set PLLCR and wait for PLL | ock

/1 Followi ng are defined in Flash281x_API Library.h
/| #define SECTORC (Ui nt16)0x0004
/| #define SECTORD (Ui nt16)0x0008

Status = Fl ash_Erase((SECTORC| SECTORD) , &Er aseSt at us) ;
i f(Status !'= STATUS SUCCESS) Error(Status);

33 OT 48

TMS320F281x Flash API l# TEXAS
Version 2.10

18.6. Program Function

Description: The program function will program a buffer of 16-bit values into the flash or OTP.

Function Prototypes (Defined in Flash281x_API_Library.h)

TMS320F2810:
extern Uintl6 Fl ash2810_Progran(
volatile Ui ntl6 *Fl ashAddr, // Pointer to the first flash/OTP | oc

vol atile Ui nt16 *BufAddr, /] Pointer to the buffer
Ui nt 32 Lengt h, /! Nunber of 16-bit values to program
FLASH ST *FProgSt at us /! Pointer to the status structure
)
TMS320F2811:

extern Uintl6 Fl ash2811 Progran
volatile Ui ntl6 *Fl ashAddr, // Pointer to the first flash/ OTP | oc

vol atile U nt16 *BufAddr, /] Pointer to the buffer
Ui nt 32 Lengt h, /! Nunber of 16-bit values to program
FLASH ST *FProgSt at us /! Pointer to the status structure
)}
TMS320F2812:

extern Uintl6 Fl ash2812 Progran(
vol atile U ntl1l6 *Fl ashAddr, // Pointer to the first flash/OIP | oc

volatile Ui ntl6 *Buf Addr, [/l Pointer to the buffer
Ui nt 32 Lengt h, /1 Nunber of 16-bit values to program
FLASH ST *FProgSt at us /! Pointer to the status structure
)
Parameter: Description:
volatile Ui ntl6 *Fl ashAddr Pointer to the first 16-bit location in flash or OTP to be
programmed.
vol atile Uint16 *BufAddr Pointer to the buffer of 16-bit data or code to be programmed into
flash or OTP.
Uint32 Length Number of 16-bit values to be programmed into the flash or OTP
FLASH ST *FProgSt at us Pointer to a flash status structure.

This structure is defined in Flash281x_API_Library.h:

typedef struct {
U nt32 FirstFail Addr;
Uintl6 ExpectedData;
Ui nt16 Actual Dat a;

} FLASH_ST;

34 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

Program function continued...
Return Value:
Q If the function succeeds STATUS SUCCESS is returned.

Q If the function fails a status value indicating the reason for the failure is returned. Refer to 18.11 for
a complete list of return values.

Notes:

O By using the API compatibility macros in Flash281x_API_Library, this function can be called as
Flash_Program. All of the examples shown use this generic function call. Refer to section 18.2.

O Program operates on a 16-bit word at a time until all the data in the buffer is programmed or an
error is detected.

Q Program moves bhits from a value of 1 to a value of 0 in order to match the data to be programmed.

Q Typically a sector will be erased prior to being programming. However, to protect the flash or
OTP and allow for user flexibility, the program operation will not attempt to program any bit that
has previously been programmed. For example, a flash or OTP location can be programmed
with OXFFFE and later the same location can be programmed with OXFFFC without going through
an erase cycle. During the second programming call, the program operation will detect that bit O
was already programmed and will only program bit 1.

O If the data to be programmed has a 1 in any bit that has previously been programmed the function
will stop and return STATUS_FAIL_ZERO_BIT_ERROR. For example, if you program a location
with 0x0001 and then try to program the same location with 0x0002 the function will return this
failure. This is because no single bit can be erased (i.e. moved from a 0 to a 1). If this happens, the
function will not attempt to program any other bits.

35 of 48

TMS320F281x Flash API E TEXAS

INSTRUMENTS
Version 2.10
Program function continued...
Example:
| % o e
* Exanpl e: Program 0x400 values into the flash starting at 0x3F0000
* *
___ /
#i nclude Fl ash281x_API Library.h
#define WORDS | N _FLASH BUFFER 0x400
volatile Ui ntl16 Buffer[WRDS_|IN FLASH BUFFER];
U ntl6é *Flash_ptr; /1 Pointer to a location in flash
Ui nt 32 Lengt h; /1 Nunber of 16-bit values to be programed
FLASH ST ProgSt at us; /] Status structure
Ui nt 16 Status; /1 Return status
Fl ash_CPUScal eFact or = SCALE FACTOR;
Fl ash_Cal | backPtr = NULL;
/1 Code to set PLLCR and wait for PLL |ock
/1 Fill the buffer with sone data to programinto the flash
for(i=0; i<0x400; i++) Buffer[i] = 0x8000+i;
Fl ash_ptr = (Ui nt16 *)0x003F0000;
Length = 0x400;
/1 Call the program APl function
Status = Fl ash_Program Fl ash_ptr, Buf f er, Lengt h, &Pr ogSt at us) ;
i f(Status !'= STATUS SUCCESS) Error(Status);

36 of 48

Q TEXASs TMS320F281x Flash AP
INSTRUMENTS Version 2.00

18.7. Verify Function

Description: Verify the contents of flash or OTP against a buffer. While the program operation itself
does verification as it programs this verification is an additional step that can be taken after
programming is complete.

Function Prototypes (Defined in Flash281x_API_Library.h)

TMB320F2810:
extern Uintl6 Fl ash2810 Veri fy(
volatile U ntl1l6 *StartAddr, // Pointer to the first flash/OIP | oc

vol atile U nt16 *BufAddr, /] Pointer to the buffer
Ui nt 32 Lengt h, /1 Nunmber of 16-bit values to verify
FLASH ST *FVeri f ySt at /1l Pointers to the status structure
)
TMS320F2811:
extern Uintl6 Fl ash2811 Veri fy(
vol atile U ntl1l6 *StartAddr, /1 Pointer to the first flash/OIP | oc
vol atile Uintl16 *BufAddr, /1 Pointer to the buffer
Ui nt 32 Lengt h, /1 Nunber of 16-bit values to verify
FLASH ST *FVeri fySt at /! Pointers to the status structure
)i
TMS320F2812;
extern Uintl6 Flash2812 Veri fy(
volatile Ui nt16 *StartAddr, /1 Pointer to the first flash/OIP | oc
vol atile Uintl16 *BufAddr, /1 Pointer to the buffer
Ui nt 32 Lengt h, /1 Nunmber of 16-bit values to verify
FLASH ST *FVeri fySt at // Pointers to the status structure
)
Parameter: Description:
volatile U ntl6 *Fl ashAddr Pointer to the first location in flash or OTP to be programmed.
volatile Uintl6 *Buf Addr Pointer to the buffer of data or code to be programmed into flash
or OTP.
Ui nt32 Length Number of 16-bit values to be programmed into the flash or OTP
FLASH ST *FProgSt at us Pointer to a flash status structure.

This structure is defined in Flash281x_API_Library.h:

typedef struct {
U nt32 FirstFail Addr;
Ui ntl6 ExpectedData;
Ui nt16 Actual Data;

} FLASH_ST;

37 of 48

TMS320F281x Flash API E TEXAS

Version 2.10

Verify function continued...

Return Value:

Q If the function succeeds STATUS SUCCESS is returned.

o If the function fails a status value indicating the reason for the failure is returned. Refer to 18.11 for
a complete list of return values.

Notes:

Q By using the API compatibility macros provided in Flash281x_API_Library, this function can be
called as Flash_Verify. All of the examples shown use this generic function call. Refer to section

18.2.

Example:

* Exanpl e: Verify 0x400 values in the flash starting at 0x3F0000

#i ncl ude Fl ash281x_API _Library.h
#define WORDS | N FLASH BUFFER 0x400

volatile Uint16 Buffer[WORDS_ | N FLASH BUFFER] ;

U ntl16 *Flash_ptr; /1 Pointer to a location in flash

Ui nt 32 Lengt h; /1 Number of 16-bit values to be progranmmed
FLASH ST VerifyStatus; // Status structure

Uint16 Status; /'l Return status

Fl ash_CPUScal eFact or = SCALE FACTOR;
Fl ash_Cal | backPtr = NULL;

// Code to set PLLCR and wait for PLL | ock

/1 Fill the buffer with sone data to verify against
for(i=0; i<0x400; i++) Buffer[i] = 0x8000+i;

Flash_ptr = (Ui nt16 *)0x003F0000;
Length = 0x400;

/1 Call the verify API function
Status = Flash_Verify(Flash_ptr, Buffer, Length, &erifyStatus);
i f(Status != STATUS SUCCESS) Error(Status);

38 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

18.8. Version (in float) Function

Description: This function returns the current API version number as a floating point value. This
function was added as of V2.10 of the API.

Note: The Flash_APIVersionHex() function can be used in place of this function to avoid issues
associated with processing floating point values.

Function Prototypes (Defined in Flash281x_API_Library.h)

TMS320F2810:
extern float32 Flash2810_ API Ver si on(voi d);

TMS320F2811:
extern float32 Flash2811 API Veri son(void);

TMS320F2812:
extern float32 Flash2812_ API Ver si on(voi d);

Return Value:

Q The Flash_APIVersion function returns the current version of the API as a float value. Note: The
Flash_APIVersionHex function can be used in place of this function to avoid issues associated with
floating point values.

Notes:

O By using the API compatibility macros provided in Flash281x_API_Library, this function can be
called as Flash_APIVersion. All of the examples shown use this generic function call. Refer to

section 18.2.

Example:

* Exanple: Get the version of the APl as a floating point val ue

#i ncl ude Fl ash281x_API Library.h
#defi ne VALID APl _VERSION (fl oat32)2.10 /1 Version 2.10

fI ;)at 32 Api Veri son;

Api Ver si on = Fl ash_API Ver si on();

i f (Api Version == VALI D_API _VERSI ON)
/'l Code for valid API

el se

/'l Code for invalid API

39 of 48

TMS320F281x Flash API E TEXAS

Version 2.10

INSTRUMENTS

18.9.

Version (in Hex) Function

Description: Returns the current API version number in decimal encoded hex. This function was
added as of V2.10 of the API.

Function Prototypes (Defined in Flash281x_API_Library.h)

TMS320F2810:
extern Uintl6 Fl ash2810_API Ver si onHex(voi d) ;

TMS320F2811:
extern Uintl6 Flash2811 API Veri sonHex(voi d);

TMS320F2812:
extern Uintl6 Fl ash2812_ API Versi onHex(voi d) ;

Return Value:

O If the function returns the current version of the API in a 16-bit decimal encoded hex value. This
function can be used in place of the Flash_APIVersion() function to avoid issues associated with
floating point values. The value is divided such that the upper 8 bits are the major release and the
lower 8 bits are the minor release. The version uses values 0-9, but does not use A-F. For
example:

If the API Version is 1.29, Flash_APIVersionHex would return 0x0129
If the API Version is 3.10 Flash_APIVersionHex would return 0x0310

Notes:

Q By using the API compatibility macros provided in Flash281x_API_Library, this function can be
called as Flash_APIVersionHex. All of the examples shown use this generic function call. Refer to
section 18.2.

Example:

* Exanpl e: Read the version of the APl in Hex

#i nclude Fl ash281x_API Library.h
#defi ne VALID APl VERSI ON 0x0210 // Version 2.10

Ui nt16 Api Verison;

Api Ver si on = Fl ash_API Ver si onHex() ;

i f(Api Version == VALID APl VERSI ON)
/1 Code for valid API

el se

// Code for invalid API

40 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

18.10. Depletion Recovery Function

Description: The depletion recovery algo looks for bits that are in depletion or over-erased and
attempts to recover them. All sectors on the device are checked

Function Prototypes (Defined in Flash280x_API_Library.h)

TMS320F2810:
extern Uintl6 Fl ash2810_ DepRecover (voi d);

TMS320F2811:
extern Uintl6 Fl ash2811 DepRecover (voi d);

TMS320F2812:
extern Uintl6 Fl ash2812 DepRecover (voi d);

Return Value:

Q If the function succeeds STATUS_SUCCESS is returned.
Q If the function fails, then STATUS FAIL_COMPACT is returned.

Notes:
How does depletion occur?

If the erase operation is halted and not allowed to complete, bits in the sector may be left in an over erased
or depleted state. When this happens, the device may then begin to fail to erase. The depletion recovery
algo looks for sectors that are in depletion and attempts to recover them. All sectors on the device are
checked.

To avoid depletion, all efforts should be taken to not stop the erase algorithm before it completes. In
addition to depletion, halting erase can also affect the CSM passwords. If the passwords are left in an
unknown state then the device cannot be erased, programmed or recovered as the flash cannot be
accessed unless the API function can be executed within CSM protected SARAM memory. If, however, the
CSM passwords are known and the device can be unlocked, then the depletion recovery algorithm can be
run to try and recover the part.

The current maximum timeout for the algorithm is approximately 35 seconds for each sector that is in
depletion. Typically only one sector would be in depletion unless erase has been called multiple times on
multiple sectors without running to completion. If a longer timeout can be tolerated, the depletion recovery
can be used multiple times.

There is no guarantee that this algorithm will be able to bring a sector out of depletion within a reasonable
amount of time. The deeper in depletion the part is, the longer it will take to recover. The Flash API erase
function has been implemented to erase the flash in such a manner that it is not put into deep depletion.
However, if the CPU is halted during an erase pulse for a long period of time the part can be put into a deep
depletion that may not be recoverable in a time period that is acceptable.

This algorithm cannot recover the part if the flash passwords are unknown. For example if power is lost
during the erase of sector A, where the CSM passwords are located, then the device may be permanently
locked and the recovery algorithm cannot operate on the flash.

41 of 48

TMS320F281x Flash API

Version 2.10

Q'lhxns

18.11. Step 13: Return Status Values

To communicate back to the calling application, the API returns the following status messages. These
status values are defined in the Flash281x_API_Library.h file for use within your application.

Status
(decimal)

Status
(hex)

Definition

Notes

0

0

STATUS_SUCCESS

Operation was successful.

10

0x000A

STATUS_FAI L_CSM LOCKED

The API function is unable to access
the flash array due to a locked Code
Security Module. Refer to section 0.

11

0x000B

STATUS_FAI L_REVI D_| NVALI D

The REVID is incorrect for this API.

The V2.10 API is built for REVID
greater or equal to silicon revision C.

12

0x000C

STATUS_FAI L_ADDR_| NVALI D

An invalid address (outside of the flash
or OTP bank) was passed to the API.

For the program operation, this could
be caused if the first address specified
is outside of flash/OTP or the number
of words to be programmed is such
that the last address will be outside of
flash/OTP.

This error can be returned by the
erase and depletion recovery functions
if an invalid address is used for the
pre-conditioning of the flash. In this
case check that the .const section of
the API is located in SARAM that can
be accessed by the API. This section
contains important information that is
used by the erase and depletion
recovery functions.

In the case of this error, none of the
values passed to the program function
will be programmed. The flash status
structure (FLASH_ST) is not updated
with any information.

13

0x000D

STATUS_FAI L_I NCORRECT PARTI D

This error code is new as of V2.10 of
the API.

The expected PARTID did not match
the device PARTID. This would
indicate that the wrong APl was used.
For example, using a TMS320F2812
API on the TMS320F2808 device.

42 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

Return Status Values Continued...

Status Status

(decimal (hex) Definition Notes

This error code is new as of V2.10
of the APL.

At the start of each API function, the
content of a boot ROM location
O0x3FFFB9 is checked to determine if
the API is ok to execute on that
silicon. In the future, Tl can change
the content of this boot ROM
location if an APl becomes obsolete.
This will prevent an old API from
executing on the new silicon.

14 Ox000E | STATUS FAIL_API _SILI CON_M SMATCH | Version 2.00 of the API looks for the
value OxFFFF.

On devices with an XINTF, the
XINTFCNF2 register is saved and
the boot ROM is enabled (if it was
not already). After the check, the
XINTFCNF2 register is restored.

If this error code occurs, verify that
that the proper API version is being
used. Check the

TMS320C2000 web site at
http://www.ti.com/c2000.

Erase Specific Status Messages

Erase had nothing to do because
no valid sectors were specified.
Erase operation failed because the
21 0x0015 | STATUS FAI L_PRECONDI Tl ON clear portion of the pre-condition
operation failed.
Erase operation failed because the
29 0x0016 | STATUS FAI L ERASE sector could not be erased with the
- - maximum allowed number of
pulses.
Erase operation failed because the
23 0x0017 | STATUS_FAI L_COVPACT post-conditioning (compaction)
failed.
This error code is new as of V2.10
of the API.

20 0x0014 | STATUS_FAI L_NO_SECTOR_SPECI FI ED

Erase operation failed because the
24 0x0018 | STATUS_FAI L_PRECOMPACT pre- compaction portion failed. The

- - pre-compaction is applied to all
sectors on the device. The
FLASH_ST structure will return a
fail address corresponding to the
first sector fails this step.

43 of 48

Q'lhxns

TMS320F281x Flash API INSTRUMENTS
Version 2.10
Return Status Values Continued...
(dségmsal S(Lag)l:)s Definition Notes
Program Specific Status Messages
Program operation failed because
30 Ox001E | STATUS FAI L_PROGRAM one or more bits could not be
programmed.
Program operation failed because
one or more bits were already
programmed (0) that should have
31 0x001F | STATUS FAIL_ZERO BI T_ERRCR been erased (1). If this happens it
could be because the sector was
not erased before attempting to
program.
Verify Specific Status Messages
The verify operation failed because
one or more bits did not match the
40 0x0028 | STATUS_FAI L_VERI FY reference data.
Try increasing the Flash or OTP
wait states.

44 of 48

Q TEXASs TMS320F281x Flash API
INSTRUMENTS Version 2.00

19. Code Size Requirements

The following code size information has been taken from map files generated by the linker when specific API
functions are called. The information shows the code size as well as the files within the API that were used by
the function call. The size does not include the global variables used for the CPU Scale factor or the callback
function pointer nor the code size to initialize those variables. The code size is similar for all three versions of
the API library.

The API is organized such that the linker will only include those functions that have been used in the
application. Thus, for example, if you do not call the toggle test function then the source code used by toggle
test is not included in the build.

Some top level functions share low level code with other functions. For example, the erase function shares
code with the program function. For this reason, the code size required by both functions is less then the sum of
the code size for the individual functions.

Erase only:
| ength i nput sections
00000032 Fl ash2812_ APl _V210.1ib : Flash28 Erase. obj (.econst)
00000091 : Flash28_Erase. obj (.text)
00000060 . Flash28 EraseSector.obj (.text)
00000047 . Flash28 Init.obj (.text)
0000008d . Flash28 Internals.obj (.text)
0000003b : Flash28_Cl ear Sector.obj (.text)
00000059 : Fl ash28_Conpact Sector. obj (.tex
0000000d . Flash28 Del ay. obj (.text)
0000009a . Flash28 Erase_Pul se.obj (.text)
00000044 . Flash28_Cl ear Loop. obj (.text)
0000007d : Fl ash28_Conpact _Pul se. obj (.tex
00000007 : Flash28_Dislnt.obj (.text)
0000007f . Flash28 Prog Pul se. obj (.text)

Total : 00000479

Program only:

| ength i nput sections

000000a4 Fl ash2812 APl _V210.lib : Flash28 Prog.obj (.text)
0000007d : Flash28_Prog_Pul se. obj (.text)
0000000d : Flash28_Del ay. obj (.text)
00000007 . Flash28 Dislnt.obj (.text)
00000047 . Flash28 Init.obj (.text)
0000008d : Flash28 Internals.obj (.text)

Total: 0000020b

45 of 48

Q'lhxns

Version 2.10

Erase + Program:
Il ength i nput sections
00000032 Fl ash2812 APl _V210.lib : Flash28 Erase.obj (.econst)
00000091 : Flash28_Erase. obj (.text)
00000060 Fl ash28_EraseSector.obj (.text)
00000047 Fl ash28 _Init.obj (.text)
0000008d Fl ash28 I nternal s. obj (.text)
000000a4 Fl ash28 _Prog. obj (.text)
0000007f Fl ash28_Prog_Pul se. obj (.text)
0000003b Fl ash28_Cl ear Sector. obj (.text)
00000059 Fl ash28_Conpact Sect or. obj (.text)
0000000d Fl ash28_Del ay. obj (.text)
00000007 Fl ash28 _Di sl nt.obj (.text)
0000009a Fl ash28_Erase_Pul se. obj (.text)
00000044 FIl ash28_Cl ear Loop. obj (.text)
0000007d Fl ash28_Conpact _Pul se. obj (.text)

Total : 0000051d

Verify Only:
| ength i nput sections
00000034 Fl ash2812_API _V210.1ib : Flash28 Verify.obj (.text)
00000047 : Flash28 Init.obj (.text)

Total : 0000007b

Erase + Program + Verify:

00000032
00000091
00000060
00000047
0000008d
000000a4
0000007f

00000034
0000003b
00000059
0oooo00d
00000007
0000009a
00000044
0000007d

Total : 00000551

i nput sections

Fl ash2812_APl _V210.1ib :

46 of 48

FIl ash28_Er ase. obj
FIl ash28_Er ase. obj
Fl ash28_Er aseSect or. obj
Fl ash28 I nit.obj (.text)
Fl ash28_ I nternal s. obj (.text)

Fl ash28_Prog. obj (.text)

Fl ash28 Prog Pul se.obj (.text)

Fl ash28 Verify.obj (.text)

FIl ash28_Cl ear Sector. obj (.text)

Fl ash28_Conpact Sect or. obj (.text)
Fl ash28_Del ay. obj (.text)

Fl ash28 _Di sl nt.obj (.text)

FIl ash28 Erase_Pul se. obj (.text)

FIl ash28_Cl ear Loop. obj (.text)

Fl ash28_Conpact _Pul se. obj (.text)

(. econst)
(.text)
(.text)

QTExns

TMS320F281x Flash API

INSTRUMENTS Version 2.00
Toggle Test Only:
| ength i nput sections
0000001c Fl ash2812_ APl _V210.1ib : Flash28 Toggl eTest. obj (.text)
0000000d . Flash28 Del ay. obj (.text)
00000007 Fl ash28 _Di sl nt.obj (.text)
00000047 Fl ash28 I nit.obj (.text)
Total : 00000077
Depletion Recovery Only:
| ength i nput sections
00000028 Fl ash2812_ APl _V210.1ib : Fl ash28 DepRecover. obj (.econst)
0000002a : Fl ash28_DepRecover. obj (.text)
00000047 Fl ash28 I nit.obj (.text)
00000047 FIl ash28_DepConpact Sect or. obj (.text)
0000008d Fl ash28 I nternal s. obj (.text)
0000007d Fl ash28_Conpact _Pul se. obj (.text)
0000000d Fl ash28_Del ay. obj (.text)
00000007 Fl ash28_Di sl nt.obj (.text)
Total : 000001fe

APl Version Hex Only:

00000003

Total : 00000003

Fl ash2812_APl _V210.1ib :

47 of 48

FIl ash28_Ver si on_Hex. obj

(.text)

TMS320F281x Flash API l# TEXAS
Version 2.10

20. Files included in this release

The TMS320F2810, TMS320F2811 and TMS320F2812 each have an API library. Include the proper
library for your device in your project.

Since the API function call definitions are compatible between the F281x devices, the include files and
documentation is the same for the TMS320F2810, TMS320F2811 and TMS320F2812. They have
been duplicated under both sub-directories for convenience and clarity.

By default, <>= C:\tidcs\c28\Fl ash28_API\

TMS320F2810
APl Library:
<>\ Fl ash2810_API _V210\Ili b\ Fl ash2810_API _V210.lib

APl Include Files (also used for F2811 & F2812):
<>\ Fl ash2810_API _V210\i ncl ude\ Fl ash281x_API _Library.h
<>\ Fl ash2810_API _V210\i ncl ude\ Fl ash281x_API _Config. h

Docunent ati on:
<>\ Fl ash2810_ APl V210\ doc

Exanpl e:
<>\ Fl ash2810_API _V210\ exanpl e

TMS320F2811
APl Library:
<>\ Fl ash2811_API _V210\ Il i b\ Fl ash2810_API _V210.1lib

APl Include Files (also used for F2812):
<>\ Fl ash2811_ APl _V210\i ncl ude\ Fl ash281x_API Library.h
<>\ Fl ash2811_API _V210\i ncl ude\ Fl ash281x_API _Config. h

Docunent ati on:
<>\ Fl ash2811_ APl V210\ doc

Exanpl e:
<>\ Fl ash2811_API _V210\ exanpl e

TMS320F2812
APl Library:
<>\ Fl ash2812_API _V210\Ili b\ Fl ash2812_API V210.lib

APl Include Files (also used for F2810 & F2811):
<>\ Fl ash2812_ APl _V210\i ncl ude\ Fl ash281x_API Library.h
<>\ Fl ash2812_API V210\i ncl ude\ Fl ash281x_API _Config.h

Docunent at i on:
<>\ Fl ash2812_ APl V210\ doc

Exanpl e:
<>\ Fl ash2812_API _V210\ exanpl e

48 of 48

