

AVR447: Sinusoidal driving of three-phase
permanent magnet motor using

ATmega48/88/168

Features
� Three-phase sine waves

- 192 steps per electrical revolution
- 8-bit amplitude resolution

� Software dead-time generation
� Controlled by hall-sensors
� Speed control through run-time scaling of sine wave amplitude

- Speed reference from analog input
� Automatically synchronizes to a running motor at startup
� Safe startup using block-commutation the first commutation steps
� Direction controlled by digital input
� Safe stop and direction change procedure

- Active braking or coasting during stopping
� Advance commutation angle adjustable at run-time
� Reverse rotation signal output
� Tacho output signal

1 Introduction
This application note describes the implementation of sinusoidal driving for three-
phase brushless DC motors with hall sensors.

The implementation can easily be modified to use other driving waveforms such as
sine wave with third harmonic injected.

Figure 1-2. Sine wave driving of brushless DC motor with hall sensors.

8-bit
Microcontrollers

Application Note

8010A-AVR-06/06

2 AVR447
8010A-AVR-06/06

2 Theory of operation
In most of the literature, permanent magnet motors are divided into two categories
based on the shape of the back-EMF (voltage induced in the coils when the motor is
spinning). The back-EMF can either be trapezoidal or sinusoidal in shape. Although
the terminology is not consistent throughout the literature, the majority seems to
agree that a brushless DC motor (BLDC) has trapezoidal back-EMF, while a
permanent magnet synchronous motor (PMSM) has sinusoidal back-EMF. Both
BLDC and PMSM motors can be driven by sinusoidal currents, so there will not be
made any distinction between them throughout this application note. Instead, they will
both be referred to as a permanent magnet motor, or PMM.

3 Implementation on an AVR®
This application note describes how to drive a three-phase PMM with sinusoidal
currents. The code example can also be used as a general reference on how to
generate waveforms using the PWM.

3.1 Voltage generation
In order to drive a three-phase motor with sinusoidal currents, independent voltages
for each phase must be generated. The driver stage for a three-phase motor usually
consists of three half-bridges, one for each terminal. Each half-bridge consists of two
switches, e.g. two power MOSFET transistors. To understand how the phase
voltages are generated, it is sufficient to look at one half-bridge. Figure 3-1 shows one
half-bridge connected to a DC voltage source.

Figure 3-1. Voltage generation using a half-bridge.

VD

C

PWMH

PWML

VOUT

3.1.1 PWM

The average voltage of the output, VOUT, can be regulated between 0V and VDC by
applying two inverted pulse-width modulated (PWM) signals to the two switches,
PWMH and PWML. The average output voltage will be proportional to the duty cycle of
the high side switch. The output, VOUT, will in this case not be a smooth voltage curve,
but a square wave similar in shape to the PWM signal applied to the high side switch.
If this signal were fed through a low-pass filter, the output voltage would be a voltage
level proportional to the duty cycle of the high side switch.

 AVR447

 3

8010A-AVR-06/06

For several reasons, it is not common to add a separate low-pass filter in motor
control designs. First of all, the motor acts as a low pass filter. The inductance and
resistance of the coils windings create a low pass RL filter. Further, the inertia of the
rotor and load creates a mechanical low pass filter. Choosing the PWM switching
frequency sufficiently high, there will be no noticeable jitter in the rotor speed.
Secondly, the currents fed through the windings of even a small motor can be in the
range of several amperes. Forcing this current through e.g. an RC filter would result
in substantial power dissipation in the filter itself, an undesirable energy loss.

3.1.2 Dead-time

Switching devices, such as MOSFET transistors are not able to switch on and off
instantly. Consider again the half-bridge from Figure 3-1. If the switches PWMH and
PWML are fed with inverted signals, one switch will turn off at the same moment as
the other switch turns on. During this transition, there will be a short time period
where one switch has not completely closed while the other one is opening, making a
direct connection between supply voltage and ground with very low resistance,
allowing a large current to flow through the transistors. This situation is known as a
shoot-through, and must be avoided, since it will probably destroy the driver stage if
no hardware protection is in place.

The solution to this is to add a dead-time, a small time period where neither the high
or low side switches are conducting, for every PWM transition.

3.1.3 Generating PWM signals with dead-time with an AVR

To understand how to implement PWM �voltage generation� with dead-time on an
AVR, we continue to look at only one phase voltage. One timer/counter module on
e.g. the ATmega48 can be used to control one half-bridge like the one in Figure 3-1.
The timer/counter modules in the ATmega48 can control two PWM output pins each.
The timer/counter units have several PWM modes, and there are several
configuration options for the output pins.

For the half-bridge control with dead-time, the phase correct PWM mode is very well
suited. The counter works in a dual slope mode, which allows generation of center-
aligned PWM signals with dead-time. Consider Figure 3-2 that shows how
Timer/Counter0 can be set up to produce the desired signals. The triangular line
represents the timer/counter value itself in the dual slope �phase correct mode�. In
this example, the output pin OC0A has been configured to clear on compare match
when up-counting and set on compare match when down-counting. This output will
be connected to the high side switch of the half-bridge. Similarly, the output pin OC0B
has been configured to set on compare match when up-counting and clear on
compare match when down-counting. This output will be connected to the low-side
switch of the half-bridge. Note that if the compare values for both outputs are set to
the same value, the two outputs will be complementary. However, to insert a dead-
time between the switching of the low and high side drivers, the compare values must
be moved a little bit in each direction. Half the dead-time is subtracted from the OC0A
compare value while the same amount is added to the OC0B compare value. This is
illustrated by the short horizontal lines on the timer/counter curve in Figure 3-2. As
can be seen from the OC0A and OC0B waveforms, the effect is that a dead-time of
the same length is inserted at every PWM switching.

4 AVR447
8010A-AVR-06/06

Figure 3-2. Generating complementary PWM signals with dead-time.

TCNT0

OC0A

OC0B

PWM cycle
OC0B compare

value

OC0 compare
value

TOP

1 1 1 1

2

2 2 2

1 Timer/counter overflow flag set

Output compare values updated

2

To avoid accidental shoot-through when the compare values are changed, it is very
important that the compare values for both OC0A and OC0B are updated at the same
exact time. This is accomplished through the double buffering of compare registers
and the interrupt functionality of the AVR timer/counter units. In Figure 3-2, each
PWM cycle is marked with dashed lines. When running in phase correct PWM mode,
the compare values for the two outputs will be effective from the moment marked with
a 2 in Figure 3-2. At the moment marked 1, the timer/counter overflow flag will be set.
This can be used to run a periodic interrupt where the output compare values can be
updated. If the 16-bit Timer/counter1 is used, it can be configured to use the input
capture register as the top value for the counter. A capture event interrupt will then be
triggered at the same time as the output compare values are updated. Using this
interrupt instead of the overflow interrupt doubles the clock cycles available to
compute new output compare values. Since all Timer/counter units are used in this
application, the capture event interrupt is used.

3.1.4 PWM base frequency

When an 8-bit timer/counter unit is used to produce two PWM outputs with different
compare values, the top value will be fixed at 255. The 16 bit timer/counter unit must
be set in 8 bit phase correct PWM mode to behave like the 8 bit timer/counter units. In
phase correct mode, one PWM cycle with a top value of 255 will have a period of 510
timer clock cycles, or 510 CPU clock cycles, assuming a clock percale value of 1 is
used. The PWM frequency as a function of CPU frequency can be calculated from
Equation 3-1.

 AVR447

 5

8010A-AVR-06/06

Equation 3-1. PWM base frequency as a function of CPU frequency.

510
CPU

PWM
f

f =

3.2 Waveform generation
Using the information from section 3.1 on how to set up the AVR to generate a
voltage output from a half-bridge, it is possible to set up the system to drive a motor
with a triple half-bridge.

3.2.1 Setting up the AVR

Each timer/counter unit on the ATmega48 is able to control one half-bridge, so all
three timer/counter units are needed to control three half-bridges. Each timer is set up
and connected to one half-bridge according to section 3.1. To make sure that the
three timers are synchronized, each timer is preloaded with a value, since the three
timers are started at a different moment. It is important to make sure that the three
timers are synchronized, by e.g. running the application in simulation mode in AVR
studio®, inspecting the values of the three timer registers.

3.2.2 Generating the waveforms

Three steps are involved in the calculation of the compare values for the three
timer/counter units:

• Obtaining the desired output value

• Scaling the value to the desired amplitude

• Inserting the dead-time

The desired output value when driving a synchronous motor is a function of rotor
position. The output values can either be calculated or stored in a look-up table. In
this application note, a look-up table is used to store the values, to increase the
performance of the application.

The values stored in the look-up table correspond to the maximum output amplitude.
The look-up table value must be scaled down to the desired output amplitude.
Equation 3-2 shows how the output value can be scaled. The output duty cycle, do, is
obtained by multiplying the output value obtained from the look-up table, dtable, with a
scaling factor, ks.

Equation 3-2. Amplitude scaling equation.

n
tables

o
dk

d
2

=

The output bit resolution can be calculated as no = nk + nt � n, where no, nk and nt are
the bit resolutions of the output, scaling factor and table value respectively and n is
the division exponent in Equation 3-2. E.g. a table value resolution of 8 bits, a scaling
factor of 8 bits and a division exponent of 8 bits will generate an output duty cycle
value with a bit resolution of 8 bits.

The dead-times are inserted as described in section 3.1.3. and the compare values
can be output to the timer/counter compare registers.

These steps are repeated for every timer/counter overflow to update the outputs with
the correct values with respect to rotor position.

6 AVR447
8010A-AVR-06/06

3.3 Generating sine waves
Section 3.2 explains how to produce an arbitrary waveform stored in a look-up table.
In this section, an efficient way to produce sine wave output is explained.

3.3.1 The output pattern

The most straightforward approach would be to just store a sine wave in a look-up
table and use this table to generate a sine wave on each motor terminal. However, for
motor driving there are more efficient ways to produce sinusoidal signals. The key to
understanding this is that we are not trying to generate sinusoidal signals for each
motor terminal with respect to ground. What we are trying to generate are three
sinusoidal line-to-line voltages (differential voltage between two terminals) with a
phase shift of 120o between them. Table 3-1 and Table 3-2 shows how this can be
accomplished without producing full sine waves for each terminal. A graphical
representation along with a typical block commutation pattern is shown in Figure 3-3.

Table 3-1. Terminal and line-to-line voltages, forward driving.
Step U V W U-V V-W W-U

S1-S2 sin(θ) 0 -sin(θ-120) sin(θ) sin(θ -120) sin(θ -240)

S3-S4 -sin(θ-240) sin(θ -120) 0 sin(θ) sin(θ -120) sin(θ -240)

S5-S6 0 -sin(θ) sin(θ -240) sin(θ) sin(θ -120) sin(θ -240)

Table 3-2. Terminal and line-to-line voltages, reverse driving.
Step U V W U-V V-W W-U

S1-S2 sin(θ) -sin(θ-120) 0 -sin(θ-240) -sin(θ-120) -sin(θ)

S3-S4 -sin(θ-240) 0 sin(θ -120) -sin(θ-240) -sin(θ-120) -sin(θ)

S5-S6 0 sin(θ -240) -sin(θ) -sin(θ-240) -sin(θ-120) -sin(θ)

There are two advantages to this approach. First of all, the maximum line-to-line
voltage generated is higher than with the pure sine wave approach, offering higher
torque and speed. Secondly, each terminal output is zero for 1/3 of the time, reducing
switching losses in the power stage.

3.3.2 Organizing the look-up table

Organization of the look-up table is a trade-off between access time and look-up table
size. Looking at the waveforms in Figure 3-3, it can be seen that the information can
be �compressed� in several ways.

The three waveforms are phase shifted by 120 degrees, so it is possible to only store
one waveform and use that for all three terminal voltages. Furthermore, looking at the
waveform for phase U, it can be seen that steps S3-S4 is a mirrored version of S1-
S2. In S5-S6, U is simply zero. This suggests that it is possible to get away with
storing as little as one third of the table and using software to find the correct value.
The former method has some overhead in adjusting the look-up table pointers to the
correct place. The latter method has larger overhead.

Since the table lookup must be performed for all three channels for every PWM cycle,
even a small overhead can contribute significantly to average CPU load. This
application note focuses on performance, so the waveforms for all three terminal
voltages are stored in the look-up table. To ensure the fastest possible access, the

 AVR447

 7

8010A-AVR-06/06

values are organized as shown in Table 3-3. This allows all 3 values to be read with
the very fast LPM Z+ instruction. To get the output values for forward driving, the table
is read in the sequence U, V, W, while in the reverse direction, the sequence U, W, V
is used.

Table 3-3. Sine look-up table organization.
U0 U0 - 120o U0 - 240o U1 U1 - 120o U1 - 240o �

8 AVR447
8010A-AVR-06/06

Figure 3-3. Sine wave generation.

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

U

V

W

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

U

V

W

Forward driving

Reverse driving

H1

H2

H3
hal

l 3 2 6 4 5 1 3 2 6 4 5 1

hal
l

H1

H2

H3

3 1 5 4 6 2 3 1 5 4 6 2

Block commutation

Sine wave modulation

3.4 Timing
All available timer/counter units in the ATmega48 are used for PWM generation. For
that reason, there is no dedicated timer available for speed measurements. The
solution to this is to use the overflow interrupt of the timer/counter units as a time
base. The time period between each overflow interrupt will be referred to as a �tick�.
The duration of one tick is equal to the PWM time period, which is given by Equation
3-3.

 AVR447

 9

8010A-AVR-06/06

Equation 3-3. PWM time period.

CPUPWM
PWM ff

T 5101
==

As an example, at 8MHz CPU clock, one tick has a duration of 63.75µs.

3.5 Position sensors and its usage
Since the objective is to control a synchronous motor, some kind of information about
the rotor position must be known in order to produce waveforms that are
synchronized to the motor. This information can be obtained, e.g. by using a rotary
encoder. However, many permanent magnet motors are equipped with three hall
sensors mounted providing information about the rotor positions in 60 degree
increments. In this application note, the hall sensors are used as the only position
sensing devices.

In Figure 3-3, the three hall sensor signals are shown as H1, H2 and H3. The hall
sensor inputs translates into a number between 1 and 6 by treating each of the hall
sensor signals as binary digits and arranging them as hall = H3 H2 H1. The hall
values corresponding to the different combinations of H3, H2 and H1 are shown in
Figure 3-3.

The state of the hall sensors and the timing of hall sensor changes are used for
several purposes:

• Output waveform phase locked loop

• Speed calculation

• Block commutation

• Rotation detection.

• Synchronization and direction change

• Advance commutation angle control

• Tacho output signal

3.5.1 Phase locked loop

The goal of the waveform generation is to keep the output waveforms synchronized to
the rotation of the rotor. The challenge when using hall sensors as position sensors is
that up-to-date information about rotor position is only available every 60 degrees. To
solve this challenge, a phase locked loop must be implemented that keeps the output
waveform in synch with the rotor.

An index (or pointer) into the look-up table is maintained at all times. The information
obtained from the hall sensors is used to update this index.

The most accurate position information is available in the exact moment when a hall
sensor changes value. At this point, the exact angle of the rotor is known.

In the time between hall sensor changes, no information about the position of the
rotor is available. However, we do know the position of the rotor at the last hall sensor
change, and we can measure the time period between the last two hall sensor
changes. This allows us to calculate the speed of the rotor and, assuming constant
speed, the position can be calculated from Equation 3-4.

10 AVR447
8010A-AVR-06/06

Equation 3-4. Position interpolation.

() tt ωθθ
ωθ

+=
=

0

&

where θ is the angular position, θ0 is the angular position at the last hall sensor
change, ω is the angular velocity and t is the time since the last hall sensor change.

Without going into detail, Equation 3-4 can be approximated by the difference
equation shown in Equation 3-5.

Equation 3-5. Angular displacement difference equation.
[] [] Tkk ωθθ +−= 1 ,

where θ is angular position, k is the current time step, ω is the angular velocity and T
is the time step size.

In this application note, the angular position is represented by the look-up table index,
measured in table steps. Time is measured in ticks. Angular velocity is defined by
Equation 3-6.

Equation 3-6. Angular velocity definition

tΔ
Δ

=
θω ,

where Δθ is the angular displacement during the time period Δt. Since angular
displacement is measured in table steps and time is measured in ticks, the angular
velocity unit is table steps per tick.

The look-up table index is updated once every tick, so the time step, T, of Equation
3-5 is 1 tick. The increment, used to iterate the table between two consecutive hall
changes can thus be calculated from Equation 3-7.

Equation 3-7. Look-up table index increment calculation.

T

e

n
n

T
t

Ti =
Δ
Δ

==
θω ,

where ne is the number of table elements per commutation step (60 degrees of
rotation) and nT is the number of ticks between the last two commutations.

At every tick, the increment is added to the look-up table index to update the position
information.

The algorithm used to implement the phase locked loop can thus be summarized as:

1. At every hall sensor change:

o Set the look-up table index to correspond with the rotor position.

o Calculate the index increment from Equation 3-7.

2. For every tick until next hall sensor change:

o Update the look-up table index using Equation 3-5.

o Update PWM duty cycles according to look-up table index.

3. When hall sensors change, go back to 1.

 AVR447

 11

8010A-AVR-06/06

3.5.2 Speed calculation

If closed loop speed control is needed, the rotational speed of the motor must be
calculated. As explained in section 3.5.1, the speed information is already calculated
in the form of a look-up table increment value. There is no need to perform yet
another computationally heavy calculation to obtain information about the speed. Nor
is it necessary to have yet another variable with information about speed. Resources
can be saved by representing other speed values, such as speed controller set-point
in the same unit as the increment, since it corresponds directly to the speed
information already available.

To control the speed to a certain RPM value, this value must first be converted to the
corresponding increment value. It is therefore necessary to know the relationship
between rotational speed and increment. Speed in revolutions per minute (RPM) is
related to the number of ticks between hall sensor changes as shown in Equation 3-8.

Equation 3-8. RPM calculation.

T

CPU

RPM n

f

⋅

⋅
=

510
6
1

60ω

Rearranging to give ticks between hall changes as a function of speed:

Equation 3-9. Ticks between hall changes as a function of speed.

RPM

CPU
t

f
n

ω⋅⋅
⋅

=
5106
60

Combining Equation 3-7 and Equation 3-9 gives index increment as a function of
speed (RPM):

Equation 3-10. Increment as a function of speed in RPM.

RPM
CPU

e

f
n

i ω
⋅

⋅⋅
=

60
5106

3.5.3 Block commutation

During the start-up phase, the speed of the rotor is not known until two subsequent
hall sensor changes has been detected. To ensure a robust start-up, block
commutation is used until the rotor speed is known. When operating in block
commutation mode, all 6 PWM outputs are operated at the same duty cycle and
commutation is controlled by enabling output of the PWM signals only to the pins that
should be driven. The output pattern is updated at every hall change. One table for
each direction is used to hold the output pattern values for the corresponding hall
sensor inputs. For more information on driving a PMM with block commutation, refer
to application note AVR443. The output pattern used in block commutation mode with
respect to hall sensor input is also illustrated in Figure 3-3 along with the sinusoidal
pattern.

3.5.4 Rotation detection

The sequence of hall sensor changes can be used to determine the actual direction of
rotation. One table for each direction is used to store the next expected hall sensor
value for each hall sensor value. This is used to deduce the actual direction of
rotation.

12 AVR447
8010A-AVR-06/06

Comparing the actual direction of rotation to the commanded direction of rotation
determines if the motor is spinning in the desired direction.

3.5.5 Synchronization and direction change

When the microcontroller is powered up or reset, the motor might already be
spinning. It is therefore important that the firmware determines the state of the motor
and synchronizes to this state.

When changing the direction of rotation, the rotor must first be stopped before it can
be driven in the opposite direction. If the direction command is changed once again
before the motor has stopped, the firmware must resynchronize before applying
voltage to the terminals.

Synchronization and turning are controlled by the hall sensors. Direction information
is deduced as described in section 3.5.4.

The motor is considered to be stopped when a sufficient number of ticks have passed
since the last hall sensor change.

Synchronization occurs when the motor is spinning in the commanded direction and
at least two hall sensor changes are detected.

3.5.6 Advance commutation control

A programmable advance commutation angle can be used to adjust the phase of the
output waveform to make it lead the rotor angle. This might be necessary to get the
motor to run at it�s maximum speed and/or efficiency. The advance commutation
angle is run-time adjustable and can be set up to vary according to e.g. rotor speed or
waveform amplitude. The advance commutation angle is obtained by adding an offset
to the look-up table index, thus shifting the phase of the waveforms. The advance
commutation angle can be adjusted in increments of 1 look-up table step (1.8û).

3.5.7 Tacho output signal

The tacho output signal is generated directly from the hall sensor input to produce a
signal that reverses polarity for each hall sensor change.

3.6 Overcurrent detection
A locked rotor, sudden load change or fast acceleration can cause excessive current
to run through the motor and driver stage. In order to prevent damage due to over-
current, it is very important to monitor current at all times. Usually, a shunt resistor is
mounted between the driver stage transistors and ground, and the voltage across this
shunt resistor is measured to calculate the current. This can be done with the ADC or
an analog comparator.

In this application note, the ADC has been used to measure current. Using the ADC
introduces a little delay, due to the conversion time, but there are other advantages.
The analog comparator is on all the time, so it will be very sensitive to PWM switching
noise, unless heavy external filtering is added. This problem is easier to overcome
with the ADC. The voltage is sampled in one instant, and this instant can be triggered
by e.g. an overflow event in a PWM timer (Point 1 in Figure 3-2), to make sure that
the measurement is made at the same moment every PWM cycle. Unless the duty
cycle is very low, this moment will also be far away from any PWM switching. The
result is that less external filtering is needed to have reliable current measurements.

 AVR447

 13

8010A-AVR-06/06

3.7 Speed control
This application note includes examples of both open loop speed control and a PID
controller. It is also possible to add other kinds of speed regulators if desired. How to
calculate the actual speed of the rotor was covered in section 3.5.2.

3.7.1 Speed reference

The controller, whether open or closed loop, needs some kind of speed reference. In
this application note, an analog voltage reference is used, although it could easily be
exchanged with e.g. a UART command. The analog reference is measured using the
ADC.

3.7.2 Speed controller

It is possible to run the included firmware with open or closed loop speed control. The
open loop speed control is very simple. The 8-bit analog speed reference value is
directly used as the 8 bit amplitude value for the generated sine waves.

The closed loop speed control also uses the 8-bit analog speed reference value as a
feed forward value to the amplitude setting. In addition, a PID (proportional, integral
derivative) controller is used to make sure that the speed is accurately controlled to
the desired speed. The ADC measurement is used as setpoint for the speed
controller. Since the internal representation of speed is index increment, the
measured signal must be converted to the same representation. Section 3.5.2 covers
the relationship between speed in RPM and the internal index increment
representation. A block diagram of the closed loop system with feed forward is shown
in Figure 3-4.

Figure 3-4. PID controller with feed forward.

MotorPID controllerSpeed
error

Speed
reference

Speed

PWM
duty

-
+

+
+

The speed control loop is the only part of the motor control application that is not
interrupt driven. This is because the PID calculations take too long to perform inside
an interrupt routine without degrading the performance of the motor control.
Furthermore, it is not necessary to run the control loop as often as each commutation.

4 Firmware implementation
The source code included with this application note is fully documented with Doxygen
comments, which explains all parts of the code. Opening the �readme.html� file can
access the full Doxygen documentation in html format.

This chapter includes additional information needed to understand the overall flow of
the implementation.

14 AVR447
8010A-AVR-06/06

4.1 Code structure
Note that the code included with this application note has been written for high
performance. Because of this, almost all source code is contained in one file to allow
the compiler to optimize the code as much as possible. Most functions are declared
with the �#pragma inline=forced� directive, since they are called from interrupt
routines.

4.2 Peripheral usage
The hardware peripherals in the ATmegax8 used in this application note are listed in
Table 4-1.

Table 4-1. Hardware module usage.
Hardware module Usage

Timer/counter0 Phase U PWM modulation

Timer/counter1 Phase V PWM modulation

Timer/counter2 Phase W PWM modulation

ADC channels Speed reference input/Current measurement

Pin change interrupt 0 Emergency shutdown interrupt

Pin change interrupt 1 Hall sensor change interrupt

Pin change interrupt 2 Direction change interrupt

4.3 Actions performed in interrupts
The full motor control application, except speed control, is interrupt-based. Table 4-2
shows the responsibility of each interrupt used in the application. Understanding the
responsibility of each interrupt service routine is the key to understanding how the
application works.

 AVR447

 15

8010A-AVR-06/06

Table 4-2. Interrupt responsibility.
Interrupt Function Responsibility/action
Timer/counter1
capture event

Timer1CaptureISR PWM compare value update.
Block commutation duty cycle control.
Speed measurement.
Stop detection.

Pin change 0 EmergencyInterruptISR External shut-off signal handling.

Pin change 1 HallChangeISR Synchronizes sine wave to hall sensors.
Block commutation.
Tacho output update.
Actual direction detection.
Detects whether firmware and motor are
synchronized.
Reverse rotation output signal update.
Sine table index increment calculation.
Stop detection.

Pin change 2 DirectionInputChangeISR Direction control input.

ADC complete ADCCompleteISR Sine wave amplitude/block commutation
duty cycle control.
Current measurements.
ADC channel selection.

4.4 Output waveform generation
Two interrupt service routines cooperate to produce the sine wave output.
Timer1CaptureISR updates the PWM compare values once every PWM cycle.
HallChangeISR synchronizes the sine wave to the current rotor position and
calculates the sine table index increment. Figure 5-2 shows the interaction between
the two ISRs. The state labeled �Any state� symbolizes that it is not relevant what
state the motor was in or goes to.

16 AVR447
8010A-AVR-06/06

Figure 4-1. Sine wave generation state machine.

Scale amplitude and
update PWM outputs

according to sine table

Align sine wave output to
hall sensor input

Calculate new sine table
index increment

Wait for
interrupt.

Timer/counter1
Capture Event

interrupt

Hall sensor
pin change

interrupt

Any
state

Sine wave mode
requested

Stop sine
wave driving

4.5 Direction and synchronization control

4.5.1 Related flags

Two definitions are needed to explain the direction and synchronization control:

Synchronized means that a specified number of subsequent hall sensor inputs
corresponds to the pattern expected when rotating in the direction commanded by the
direction input pin. This is used to ensure that sine wave driving is applied with the
correct frequency, phase and direction.

Stopped means that there has not been a change in any of the hall sensor inputs for
a specified number of ticks.

Two flags that are part of the global fastFlags variable indicates whether the motor
is currently synchronized and/or stopped. These flags are automatically manipulated
by the interrupt service routines at certain events. The following functions/ISRs modify
these flags:

CommutationTicksUpdate:

• motorStopped = TRUE, if a predefined number of �ticks� has passed since last
hall sensor change.

• motorSynchronized = FALSE, if motorStopped flag has just been set to
TRUE.

This function is called by Timer1CaptureISR.

MotorSynchronizedUpdate:

• motorSynchronized = TRUE, if the synchronized criteria is met.
• motorSynchronized = FALSE, if the synchronized criteria is not met.

This function is called by HallChangeISR

 AVR447

 17

8010A-AVR-06/06

HallChangeISR:

• motorStopped = FALSE (motor can not be stopped if the hall sensors change
value)

DirectionInputChangeISR:

• motorSynchronized = FALSE

• motorStopped = FALSE

4.5.2 Direction and synchronization logic

There are several situations where the motor control firmware needs to synchronize
to the motor before any waveform is applied:

• When the motor is started from standstill, it is first commutated using block
commutation. Block commutation is used until synchronization is obtained.
This ensures that sine waves with correct frequency and phase are
generated when the motor switches to sine wave driving.

• When the microcontroller is started and the motor is already running, the
firmware will not apply any driving waveform until it is synchronized to the
motor, or the rotor has stopped turning.

• When a direction change is requested, driving will be disabled or braking
initiated until the motor is stopped. If another direction change is requested,
the motor may be able to synchronize again. In that case, it resumes
sinusoidal driving at the correct frequency without waiting for the motor to
stop.

The full direction and synchronization control is illustrated in Figure 4-2. Motor
stopped means that the motorStopped flag is TRUE. Motor synchronized means that
the motorSynchronized flag is TRUE. Direction change requested means that the
DirectionInputChangeISR has been run.

18 AVR447
8010A-AVR-06/06

Figure 4-2. Direction and synchronization control state machine.

Wait for stop or
synchronization

Block
commutation

Motor stopped

Sine wave
driving

Start

Direction
change
request

Direction change
request

Direction
change
request

Motor
synchronized

Motor
synchronized

4.6 Analog to digital conversions
In the included code example, the ADC is used to read two values: a speed reference
and the motor current. The ADC is only capable of performing one AD sample and
conversion at one time, so the input channels are converted in a round-robin fashion.

The sampling of the input value is automatically triggered every Timer/counter0
overflow. This ensures that the sampling occurs in the middle of each PWM cycle,
making each current measurement comparable to the last.

When an AD conversion is complete, the ADC complete interrupt service routine is
run and the converted value is placed in a global variable corresponding to the
currently selected ADC channel. The Timer/Counter0 overflow interrupt flag must be
cleared manually if Timer/Counter0 overflow interrupt is not executed. A new AD
conversion will not be triggered until this flag has been cleared.

If more inputs are needed, the ADC complete interrupt service routine can be
extended to add more readings to the cycle.

Note that in the included source code, the motor current input is only stored in a
global variable. It is not used at any place throughout the code for current limiting or
overcurrent shutdown, as the current limiting is specific for individual designs.

5 Hardware
This chapter describes how to connect the hardware for use with this application note.

5.1 Pin assignment
The pin assignment used in this application note is shown in Figure 5-1. The function
of each pin is described in Table 5-1.

 AVR447

 19

8010A-AVR-06/06

Figure 5-1. Pin assignment.

ATmega48 /
ATmega88 /
ATmega168

1 - !RESET

2 -PD0

3 - PD1

4 - PD2/PCINT18

5 - PD3

6 - PD4

7 - VCC

8 - GND

9 - PB6

10 - PB7

11 - PD5/OC0b

12 - PD6/OC0A

13 - PD7

14 - PB0

PC5 - 28

PC4/ADC4 - 27

PC3/ADC3 - 26

PC2/PCINT10 - 25

PC1/PCINT9 - 24

PC0/PCINT8 - 23

GND - 22

AREF - 21

AVCC - 20

PB5/PCINT5 - 19

PB4 - 18

PB3/OC2A - 17

PB2/OC1B - 16

PB1/OC1A - 15

H3 (in)

H2 (in)

H1 (in)

UH (out)

UL (out)

VH (out)

VL (out)

WH (out)

WL (out)

Speed reference(in)

Emergency shutdown (in)

Direction (in)

Reverse rotation (out)

Tacho (out)

Current (in)

20 AVR447
8010A-AVR-06/06

Table 5-1. AVR pin usage and direction.
Pin Name Purpose Direction

PD5 UL Phase U low side control signal Out

PD6 UH Phase U high side control signal Out

PB2 VL Phase V low side control signal Out

PB1 VH Phase V high side control signal Out

PD3 WL Phase W low side control signal Out

PB3 WH Phase W high side control signal Out

PC0 H1 Hall signal 1 In

PC1 H2 Hall signal 2 In

PC2 H3 Hall signal 3 In

PC3 Speed reference Analog level controlling amplitude of waveforms.
Expects signals in the range 0-1.1V.

In

PC4 Current Motor current measurement.
Expects signals in the range 0-1.1V.

In

PB5 Emergency
shutdown

When the logic level on this pin is changed, the
interrupt service routine (ISR),
EmergencyInterrupt, is called.

In

PD2 Direction Low = forward, high = reverse. In

PD4 Reverse rotation Low: motor spins in the direction specified by the
�Direction� input.
High: motor spins in the opposite direction or is
stopped.

Out

PD7 Tacho Outputs a square wave with frequency 3 times the
electrical frequency of the motor.

Out

5.2 Connecting the Atmega48/88/168 to a driver stage and motor
This application note needs following components to work:

• A 3 phase permanent magnet motor with hall sensors.

• A driver stage capable of driving the motor.

• An Atmel® ATmega48/88/168 microcontroller.

• An analog input signal in the range 0-1.1V (For speed control).

Figure 5-2 shows a conceptual schematic of the full system.

Note that the shutdown and direction signals, even if not needed, should be
connected to a fixed logic level for the included firmware to work.

 AVR447

 21

8010A-AVR-06/06

Figure 5-2. Conceptual schematic of the full system.

ATmega48

1 - !RESET/
PC6
2 -PD0/
PCINT16

3 - PD1

4 - PD2

5 - PD3

6 - PD4

7 - VCC

8 - GND

9 - PB6

10 - PB7

11 - PD5/OC0b

12 - PD6/OC0A

13 - PD7/AIN1

14 - PB0

PC5 - 28

PC4/ADC4 - 27

PC3/ADC3 - 26

PC2/PCINT10 - 25

PC1/PCINT9 - 24

PC0/PCINT8 - 23

GND - 22

AREF - 21

AVCC - 20

PB5/PCINT5 - 19

PB4 - 18

PB3/OC2A - 17

PB2/OC1B - 16

PB1/OC1A - 15

H3

H2

H1

UH

UL

VH

VL

WH

WL

Power stage

UL

UH

VL

VH

WL

WH

5v

5v

!RESET

W

V

U

Speed
reference

5v

Direction

Shutdown

Reverse rotation

Tacho

Pull-downs on driver signals
prevent floating signals during
reset that could lead to shoot-

through.

Motor

H
all sensors

H
3

H
2

H
1

Current

22 AVR447
8010A-AVR-06/06

5.2.1 Using the ATAVRMC100 driver stage

This application note has been tested on the ATAVRMC100 power stage/motor
development kit. The ATAVRMC100 has an onboard AT90PWM3 microcontroller
mounted, but it is possible to use it as a power stage with a different microcontroller
through the EXT_DRV and SENSOR interfaces on the board. The EXT_DRV header
is documented in the ATAVRMC100 Hardware User Guide, available from the Atmel
web site. It is important to erase the AT90PWM3 before using the ATAVRMC100 with
a different microcontroller to ensure that only one microcontroller drives the signals.

Table 5-2 contains a complete list of the signals that must be connected to the
ATAVRMC100 board. Note that the GND signal is connected to the negative shunt
terminal, which is actually directly connected to ground. Figure 5-3 shows a graphical
representation of the EXT_DRV header.

Table 5-3 shows the connections necessary to interface with the hall sensors. A
graphical representation of this interface is shown in Figure 5-4.

 AVR447

 23

8010A-AVR-06/06

Table 5-2. ATAVRMC100 EXT_DRV connections.
Signal name ATmegax8 pin ATAVRMC100 signal EXT_DRV pin number
UH PD6 H_A 1

UL PD5 L_A 2

VH PB1 H_B 3

VL PB2 L_B 4

WH PB3 H_C 5

WL PD3 L_C 6

Current PC4 V shunt+ 7

GND GND V shunt- 8

Figure 5-3. EXT_DRV connection.

U
L

V
L

W
L

G
N

D

U
H

V
H

W
H

C
ur

re
nt

Table 5-3. ATAVRMC100 hall sensor interface.
Signal name ATmegax8 pin ATAVRMC100 signal

H1 PC0 Sensor A

H2 PC1 Sensor B

H3 PC2 Sensor C

24 AVR447
8010A-AVR-06/06

Figure 5-4. Hall sensor connection.

H1

H2

H3
A

B
CS

en
so

r

6 Waveform plots
Figure 6-1 and Figure 6-2 show the waveforms generated when driving forward and
reverse at different speeds. The average function on the oscilloscope has been used
to smooth the waveforms. Both plots show, from the top: phase voltages for U, V, W,
the line-to-line voltage U-V, then hall sensors H1, H2 and H3.

Figure 6-1. forward driving at 750 RPM.

 AVR447

 25

8010A-AVR-06/06

Figure 6-2. Reverse driving at 12,660 RPM.

7 Code size and performance
Table 7-1 shows the flash and SRAM memory usage. Note that the flash usage
number includes nearly 900B of that is occupied by look-up tables.

Table 7-1. Flash and SRAM usage
 Flash SRAM

Open loop speed control ~2.6kB ~70B

PID speed control ~3.5kB ~90B

8 References
1. Valentine, R., Motor control electronics handbook, 1998, McGraw-Hill.

2. Atmel corporation, ATAVRMC100 hardware user guide rev. B, February 2006
http://www.atmel.com/dyn/resources/prod_documents/doc7551.pdf

http://www.atmel.com/dyn/resources/prod_documents/doc7551.pdf

8010A-AVR-06/06

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel�s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, AVR Studio® and
others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be
trademarks of others.

	1 Introduction
	2 Theory of operation
	3 Implementation on an AVR®
	3.1 Voltage generation
	3.1.1 PWM
	3.1.2 Dead-time
	3.1.3 Generating PWM signals with dead-time with an AVR
	3.1.4 PWM base frequency

	3.2 Waveform generation
	3.2.1 Setting up the AVR
	3.2.2 Generating the waveforms

	3.3 Generating sine waves
	3.3.1 The output pattern
	3.3.2 Organizing the look-up table

	3.4 Timing
	3.5 Position sensors and its usage
	3.5.2 Speed calculation
	3.5.3 Block commutation
	3.5.4 Rotation detection
	3.5.5 Synchronization and direction change
	3.5.7 Tacho output signal

	3.6 Overcurrent detection
	3.7 Speed control
	3.7.1 Speed reference
	3.7.2 Speed controller

	4 Firmware implementation
	4.1 Code structure
	4.2 Peripheral usage
	4.3 Actions performed in interrupts
	4.4 Output waveform generation
	4.5 Direction and synchronization control
	4.5.1 Related flags
	4.5.2 Direction and synchronization logic

	4.6 Analog to digital conversions

	5 Hardware
	5.1 Pin assignment
	5.2 Connecting the Atmega48/88/168 to a driver stage and motor
	5.2.1 Using the ATAVRMC100 driver stage

	6 Waveform plots
	7 Code size and performance
	8 References

