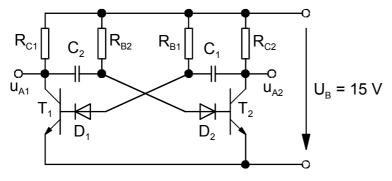
Fachhochschule Gießen-Friedberg,Fachbereich Elektrotechnik 1 Elektronik-Praktikum

Versuch 24:

Astabile, monostabile und bistabile Kippschaltungen mit diskreten Bauelementen

1 Allgemeines

Alle in diesem Versuch vorgestellten Kippscharungen haben folgende Gemeinsamkeiten:


- 2 Transistoren, die zusammen mit ihrem Kollektorwiderstand als Verstärker arbeiten.
- eine Rückkopplungsschaltung, die bewirkt, dass immer nur einer der beiden Transistoren leitet (Sättigung) und der andere Transistor sperrt,
- die Übergänge von einem Schaltzustand in den anderen werden durch die Rückkopplung beschleunigt, es ergeben sich hierdurch sehr steile Strom- und Spannungsflanken. (Daher die Bezeichnung "Kippschattung", sie kippt von einem der beiden möglichen Zustände in den anderen).

Außer den in diesem Versuch behandelten Schaltungen gehören zu der Reihe der Kippschaltungen noch die "Schmitt-Trigger", für die es aber einen eigenen Versuch gibt.

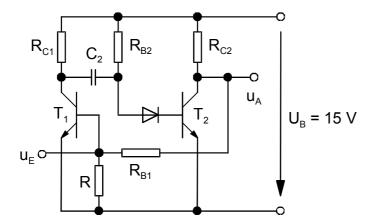
2 Funktionsbeschreibung

2.1 Astabiler Multivilbrator

Bei dieser Schaltung (Bild 1) schickt z. B. der Transistor T₁, der gerade selbst leitend wird, den Transistor T₂ dadurch in den Sperrzustand, dass seine Kollektorspannungsänderung über den angeschlossenen Kondensator C₂ als negativer Spannungssprung auf die Basis des zu sperrenden Tranistors T₂ übertragen wird. Der Sperrzustand von T₂ dauert dann solange, bis der Kondensator C₂ über den Basiswiderstand R_{B2} wieder bis zur Spannung U_{BE} + U_F aufgeladen ist. Dann beginnt T₂ zu leiten und schickt auf dieselbe Weise den Transistor T₁ in den Sperrzustand. Dieser Vorgang geht also hin und her, die Sperrzeiten der Transistoren sind bestimmt von den Anstiegszeiten der Kondensatorspannungen. Entsprechend den Umladevorgängen der Kondensatoren zusammen mit den Basiswiderstände R_B verlaufen die Spannungen U_{BE} nach e-Funktionen.

 R_{B1} =100k, R_{B2} =50k, R_{C1} = R_{C2} =1k8, C_1 = C_2 =0.1 μ F

Bild 1: Schaltung des astabilen Multivibrators

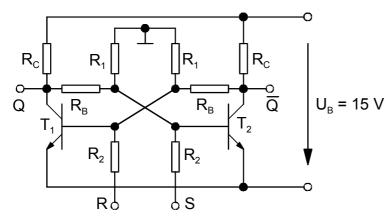

Transistoren T1...T2: BC337

Die Periodendauer ergibt sich als Summe der Sperrzeiten der beiden Transistoren T_1 und T_2 .

Die Dioden in Serie zu den Basiseingängen schützen die Basis vor zu hohen negativen Spannungen. Wenn die Dioden fehlen, zeigen die Basis/Emitterdioden der Transistoren einen Zenereffekt: Die Spannung U_{BE} wird nicht kleiner als etwa -5 V bis -8 V, dann beginnt wie bei einer Zenerdiode ein Basisstrom entgegen der Sperrichtung zu fließen, der ein weiteres Anwachsen der Spannung verhindert.

2.2 Monostabiler Multivibrator

Bild 2 zeigt die Schaltung eines monostabilen Multivibrators. Im eingeschwungenen Zustand leitet der Transistor T_2 , da er mit dem Basisstrom durch R_{B2} in die Sättigung gebracht wird. T_1 sperrt aufgrund der zu geringen Spannung U_{BE1} . Wird T_1 durch ein positives Signal an dessen Basis/Emitterstrecke kurzzeitig leitend geschaltet (hier über die Eingangsspannung u_E), entsteht am Kollektor von T_1 eine Spannungsabsenkung, die über den Kondensator C_2 auf die Basis von T_2 übertragen wird und zur Sperrung von T_2 führt.


Bild 2: Schaltung des monostabilen Multivibrators

Somit wird nun die Basis von T_1 über R_{C2} und R_{B1} mit Strom versorgt, T_1 geht in den Sättigungszustand und die Basisspannung an T_2 geht bis auf fast den Wert - U_b . Dieser Zustand (T_2 gesperrt) dauert solange an, bis der Kondensator über den Widerstand R_{B2} soweit aufgeladen ist, dass T_2 wieder zu leiten beginnt. T_1 wird gesperrt, und der positive Spannungssprung über den Kondensator treibt T_2 sofort in die Sättigung. Ohne Schutzdiode beträgt die Minimalspannung an der Basis von T_2 -8 V, der übrige Anteil eines Spannungssprungs wird durch den Zenereffekt der Basis/Emitterdiode gekappt.

2.3 Bistabiler Multivibrator

Diese Schaltung (Bild 3) kann durch ein kurzzeitiges Eingangssignal in einen von zwei möglichen stabilen Zuständen gebracht werden: $u_A = U_{Amax}$, U_{Amin} . Die Kollektorspannungen der beiden Transistoren T_1 und T_2 sind über Widerstände auf die Basis des jeweils anderen Transistors zurückgeführt. Ein Transistor, der leitet, sperrt den anderen, da im Sättigungsbereich die Spannung U_{CE} (Kollektor/Emitterspannung) kleiner ist als die Basis/Emitterspannung U_{BE} des anderen Transistors.

Das "Flipflop" lässt sich dadurch in den jeweils anderen stabilen Zustand bringen, indem der gesperrte Transistor kurzzeitig leitend wird, z. B. indem die Basis kurzzeitig H-Signal erhält.

 $R_B = 50k$, $R_C = 1k$, $R_1 = 10k$, $R_2 = 1k2$

Bild 3: Schaltung des bistabilen Multivibrators

Transistoren T1...T2: BC337

3 Versuchsvorbereitung

In Bild 4 sind astabiler, monostabiler und bistabiler Multivibrator zusammengefasst.

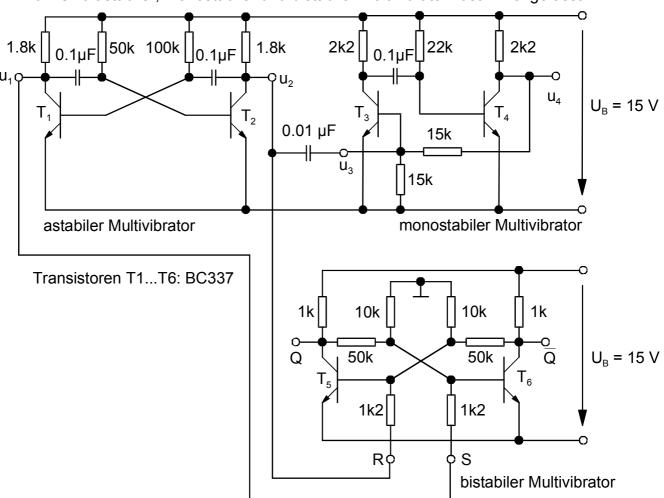


Bild 4: Zusammenschaltung von astabilem, monostabilem und bistabilem Multivibrator

- a. Für die Schaltung in Bild 4 ist ein Verdrahtungsplan zu erstellen.
- b. Für den astabilen Multivibrator ist die Periodendauer zu berechnen.
- c. Für den monostabilen Multivibrator ist die Haltezeit zu berechnen.

4 Versuchsdurchführung und -auswertung

Die in Bild 4 dargestellte Schaltung ist in der Reihenfolge astabiler, monostabiler und bistabiler Multivibrator auf einer Programmiertafel nach dem Verdrahtungsplan zu erstellen und zu testen. Damit sich die einzelnen Schaltungen farblich voneinander abheben, ist es zu empfehlen, für jede Schaltung Programmierschnüre mit einer anderen Farbe zu verwenden. Das Eingangssignal für den monostabilen und bistabilen Multivibrator liefert der astabile Multivibrator. Zur Darstellung der Ergebnisse ist an die entsprechenden Anschlüsse ein Zweistrahloszillograph anzuschließen. Die Schaltungen enthalten keine Basisschutzdioden. Deshalb ist besonders sorgfältig nachzumessen, wie groß die von den Kondensatoren auf die Basis übertragenen Sperrspannungen sind, da sie zur Berechnung der Zeiten benötigt werden. Für die drei Kippstufen sind folgende Aufgaben durchzuführen:

- a. Aufzeichnen der Spannungsverläufe u_{BE1}, u_{BE2} und u₂ untereinander (gemeinsame Zeitbasis) für den astabilen Multivibrator.
- b. Genaues Ablesen der Periodendauer und des Tastverhältnis von u₂ für den astabilen Multivibrator.
- c. Vergleich von berechneter und gemessener Periodendauer und von gemessenem und berechnetem Tastverhältnis. Auftretende Abweichungen sind zu diskutieren.
- d. Nach dem Anschluss der monostabilen Kippstufe mit Kanal 2 zuerst die Ausgangsspannung u₄ und dann die Basisspannung u_{BE4} messen und beide Spannungsverläufe in das unter a.) erstellte Diagramm wie die zuvor gemessenen Spannungen eintragen.
- e. Ablesen der Einschaltzeiten der monostabilen Kippstufe und des Tastverhältnises aus dem Verlauf der Spannung u₂. Auftretende Abweichungen von den berechneten Werten sind zu diskutieren.
- f. Nach dem Anschluss der bistabilen Kippstufe ist mit Kanal 1 die Ausgangsspannung u² des astabilen Multivibrators zu messen. Nacheinander werden an Kanal 2 die Basisspannungen uBE5, uBE6 und die Ausgangsspannung Q gemessen und die Spannungsverläufe in ein neues Diagramm eintragen, da sich die Frequenz durch den Anschluss der bistabilen Kippstufe verändert.
- g. Berechnung der Taktfrequenz unter Einsatz der gemessenen Basissperrspannungen. Die Berechnung muss auch die Begründung dafür ergeben, dass sich durch den Anschluss der bistabilen Kippstufe die Frequenz verändert.
- h. Die berechneten Werte für die Zeiten bzw. Frequenzen sind mit den gemessenen Werten zu vergleichen und eventuelle Abweichungen zu beurteilen.

5 Benötigte Geräte

- Programmiertafel f
 ür Kippschaltungen mit diskreten Bauelementen,
- 1 Zweistrahloszillograph,
- 1 Vielfachmessgerät,

• Programmierschnüre.