By itself, I_{DSS} merely refers to the drain current that will flow for any applied $V_{\mbox{DS}}$ with the gate shorted to the source. However, when a particular value for V_{DS} is given, equal to or greater than V_P (see Figure 10), I_{DSS} indicates the drain saturation current at zero gate voltage. Some FET data sheets label I_{DSS} for V_{DS} greater than V_P as I_{D(on)}. FET Characteristic at V_{GS} = 0 Figure 10 ## $V_{GS(off)}$ - Gate-Source Cutoff Voltage The resistance of a semiconductor channel is related to its physical dimensions by $R = \rho L/A$, where ρ = resistivity L = length of the channel A = W x T = cross-sectional area of channel In the usual FET structure, L and W are fixed by device geometry, while channel thickness T is the distance between the depletion layers. The position of the depletion layer can be varied either by the gate-source bias voltage or by the drain-source voltage. When T is reduced to zero by any combination of VGS and VDS, the depletion layers from the opposite sides come in contact, and the a-c or incremental channel resistance, $\mathbf{r}_{DS},$ approaches infinity. As earlier noted, this condition is referred to as "pinch-off" or "cutoff" because the channel current has been reduced to a very thin sheet, and current will no longer be conducted. Further increases in V_{DS} (up to the junction reverse-bias breakdown) will cause little change in ID. Accordingly, the pinch-off region is also referred to as the pentode or "constant-current" region. In Figure 10, pinch-off occurs with $V_{GS} = 0$. In Figure 11, VGS controls the magnitude of the saturated ID, with increases in V_{GS} resulting in lower values of constant I_D, and smaller values of V_{DS} necessary to reach the "knee" of the curve. The current scale in Figure 11 has been normalized to a specific value of IDSS. FET ID vs VD Output Characteristics Figure 11 The knee of the curve is important to the circuit designer because he must know what minimum V_{DS} is needed to reach the pinch-off region with $V_{GS} = 0$. When appropriate bias voltage is applied to the gate, it will pinch off the channel so that no drain current can flow; VDS has no effect until breakdown occurs. The specific amount of V_{GS} that produces pinch-off is known as the gate-source cutoff voltage $V_{GS(off)}$. ## V_{GS(off)} Test Procedure Although the magnitude of V_{GS(off)} is equal to the pinchoff voltage, Vp, defined by the pinch-off knee in Figure 10, rapid curvature in the area makes it difficult to define any precise point as Vp. Taking a second derivative of VDS/ID would yield a peak corresponding to the inflection point at the knee, which approximates Vp. However, this is not a simple measurement for production quantities of devices. A better measure is to approach the cutoff point of the $I_{\mbox{\scriptsize D}}$ versus V_{GS} characteristic. This is easier than trying to specify the location of the knee of the ID versus VDS output characteristic. A typical transfer characteristic I_D versus V_{GS} is shown in Figure 12. The curve can be closely approximated by $$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS(off)}} \right)^{2}$$ (4) Typical 1_D vs V_{GS} Transfer Characteristic Figure 12 Equation 4 and Figure 12 indicate that at $V_{GS} = V_{GS(off)}$, $I_D = 0$. In a practical device, this cannot be true because of leakage currents. If I_D is reduced to less than 1 percent of I_{DSS} , V_{GS} will be within 10 percent of the $V_{GS(off)}$ value indicated by Equation 4. If I_D is reduced to 0.1 percent of I_{DSS} , the indicated $V_{GS(off)}$ error will be reduced to about 3 percent. For a true indication of $V_{GS(off)}$, and a realistic picture of the parameters of Figure 12, care must be taken that leakage currents do not result in an error in the $V_{GS(off)}$ reading. Typically, at room temperature, 1 percent of I_{DSS} is still well above leakage currents but is low enough to give a fairly accurate value of $V_{GS(off)}$. A typical circuit for measuring $V_{GS(off)}$ is shown in Figure 13. At $V_{GS}=0$, the value of I_{DSS} can be measured. Then, by increasing V_{GS} until I_D is 0.01 percent of I_{DSS} , the value of $V_{GS(off)}$ is obtained. From a production standpoint, it is more convenient to specify I_D at some fixed value (such as 1 nA), rather than as a certain percentage of I_{DSS} . Thus a pinchoff voltage specification may be given as indicated in Table I. Circuit for Measuring VGS(OFF) Figure 13 Table I Typical Pinch-Off Voltage Specification | Characteristic | | | Max | Units | |----------------------|--|---|-----|-------| | V _{GS(off)} | Gate-source pinch-off voltage of: | | | | | (| $V_{DS} = -5 \text{ V, } l_D = -1 \mu A$ | 1 | 4 | Volts | Another method which provides an indirect indication of the maximum value of $V_{GS(off)}$ is shown in Table II. The characteristic specified is $I_{D(off)}$, whereas the parameter of interest is $V_{GS} = 8$ volts. The specification does say that the maximum $V_{GS(off)}$ is approximately 8 volts, but no provision is made for stating a minimum $V_{GS(off)}$, as was done in Table 1. Therefore, another test must be made if $V_{GS(off)}$ (min) is to be specified. Table II Indication of Maximum Vo | Characteristic | | Test Conditions | Min | Max | Unit | |----------------|----------------------------|---|-----|-----|------| | D(off) | Pinch-off
drain current | V _{DS} = -12 V,
V _{GS} = 8 V | | -10 | μА | ## IGSS - Gate-Source Cutoff Current The input gate of a P-Channel FET appears as a simple PN junction; thus the input d-c input characteristic is analogous to a diode V-I curve, as is shown in Figure 14. P-Channel FET Input Gate Characteristic Figure 14 In the normal operating mode, with V_{GS} positive for a P-Channel device, the gate is reverse-biased to a voltage between zero and $V_{GS(off)}$. This results in a d-c gate-source resistance which is typically more than 100M Ω . The gate current is both voltage- and temperature-sensitive. Figure 15 shows this relationship for I_{GSS} versus temperature and V_{GS} . IGSS vs Temperature Figure 15 If the gate-source junction becomes forward-biased, (negative voltage in a P-Channel device) or if V_{GS} exceeds the reverse-bias breakdown for the junction, the input resistance will then become very low. The FET is normally operated with a slight reverse bias applied to the gate-source; hence a good measure of the d-c input characteristic is to check the gate current at a value of gate-channel voltage that is below the junction breakdown rating. In device evaluation, there are three common measurements of gate current: I_{GDO} , I_{GSO} , and the combined measurement I_{GSS} . These measurement circuits are shown in Figure 16.