
Fast Start Hello World

1. Setup

Linux:
Make sure, gcc, make, libglut-devel and Lazarus (Linux version) are installed, the lazbuild
command (from Lazarus) should be accessible through the PATH variable.
Go into the unzipped folder and run ./compile.sh (This will build several test applications
some tests are performed.)

Windows without samples and Test function:
Install and start Lazarus. Project → Open Project. Select menuedit.lpi. Start → Compile.
You must figure out how to compile and test the samples yourself. The Test function of the
editor won't work.

Windows with Cygwin:
In order to avoid possible problems: Do not use spaces in you filenames and paths.
Install Cygwin with the packages gcc-core, gcc-g++, make, libglut-devel, opengl, xorg-
server and xinit.
Install Lazarus (Windows version) and put the path to the binaries into your shell variable
(MinGW shows how this is done on their HOWTO site).
Open the Cygwin Bash Shell from the Windows start menu.
Run./compile.sh (This will build several test applications some tests are performed. You
can ignore the comparison is always false.. warnings).
Go into the MenuEditor folder and open menutester.bat with your favourite editor. Adapt
the “SET CYGWIN” line to the path you used for the Cygwin installation. Save the file.

2. An own hello world

This example shows how to build a simple test application which shows the current system
time.

1. Start MenuEdit
2. Click on Add Window and select the window 1 from the list below.
3. Add two Buttons
4. Select button 1, set the size values to 50 and 12. While pressing the shift key make

a right click on the left Position field. This will automatically place the button in the
centre. In our case this is 7 pixels from the left border. Set it 3 pixels from the top
border.
Note: Sometimes you need to press enter in the number selection fields, in order to
update the value.

5. In the big field, enter the text “Hello world”.
6. Set the Font focus value to 2. This will result in an underlined text if the button has a

focus.
7. Select button 2 and set the size to 50x12 pixel. Set the position to 7 (from the left)

and 17 (from the top) pixel. Set the text to “Exit” and the Font focus to 2.
8. In the Window Objects box, set the Focus Prev Key to 3, the Focus Next Key to 4

and the Focus Enter Key to 1.
9. Add a new Sub Window to your menu.
10.Select button 1 within window 1 again. Then choose subwindow 2 from the Window

switch drop down menu.
(If you like, you can press the Test button.) Your editor now should look like the
following:

11.Enter “TIME” as text (without the quotes) into the field ActionName of button 1.
Select button 2 and enter “EXIT” into the ActionName field.

12.Now go to the subwindow 2 and add two labels and one button.
13.Set the size of the subwindow 2 to 46x30. Make a shift+right click to the two

position numbers in order to place it in the middle. Set the three key values to the
same as in window 1.

14.With label1, set the text to “Your time:” and the position to 11x3.
15.With label2, set the text to “CLOCK”, select RAM Storage, set the position to 18x11

and use font 1.
16.Set the text of button 3 to “Close”, select font 2, the size 35x12 and the position

15x18. Enter “RET” (without quotes) as window switch (This is a special keyword).
17.Save your project (at best in an empty folder). Don't forget to manually add the .xml

extension to your filename.
18.You can run the Check function in order to see if you forget some of the steps

above.
19. If you select window 1 and run the Test function, you should be able to show and

hide the subwindow by clicking with the mouse on the buttons.
20.Now its time to manually add some code. This may be platform depended, but hey

you are a developer, I guess you know how to write code for your platform. Run the
Export function and select the directory where you saved your .xml file. (Any other
directory would work too, but please note, that some existing files could be silently
overwritten). Copy the files menu-interpreter.c, menu-interpreter.h, menu-text.c and
menu-text.h into the same directory. If you do not want to start with empty functions,
copy pc-mouse-demo/mouse-demo.c too.

21.Allow the menu to access the bytecode: You need to have a function
menu_byte_get, which returns the byte from the bytecode at the given address. The
most simple implementation would be:
unsigned char menu_byte_get(MENUADDR addr) {

if (addr >= MENU_DATASIZE) exit(1);
return menudata[addr];

}
menudata is defined in the generated menudata.c

22.void menu_screen_set(SCREENPOS x, SCREENPOS y, unsigned char
color) should show the screen or better store the changed pixels to a buffer.
(Double-buffering). Color can be 0 for black or something else for white.

23.void menu_screen_flush(void) Should do everything necessary to show the
data in the buffer as a screen. If no double-buffering is used, this function can be
empty.

24.void menu_screen_clear(void) should clear the buffer defined above. A
simple implementation would be:
void menu_screen_clear(void) {

int i, j;
for (i = 0; i < MENU_SCREEN_Y; i++) {

for (j = 0; j < MENU_SCREEN_X; j++) {
 menu_screen_set(j, i 0);

}
}

}
But often there are faster ways for a clear.

25. In the function unsigned char menu_action(unsigned short action) your
ActionNames come into play. This function gets called whenever some action is run
within the menu. In our example, you need to provide code for showing the time and
exiting the program. The ActionNames are part of the defines, which should be
used and compared with the action parameter. The prefix is always
MENU_ACTION_.
A implementation for the example could be:
unsigned char menu_action(unsigned short action) {

if (action == MENU_ACTION_TIME) {

static char mytime[6];
time_t t = time(NULL);
strftime(mytime, 9, "%H:%M", localtime(&t));
menu_strings[MENU_TEXT_CLOCK] = mytime;

}
if (action == MENU_ACTION_EXIT) {

exit(0);
}
return 0;

}
As you can see, the array menu_stings contains a list of pointers to text in the RAM,
and the index can be found by the generated define MENU_TEXT_ and the part
entered in the menueditor. If the array contains NULL pointers, simply no text is
displayed.
The return value tells the interpreter if a redraw is necessary. If a screen switch is
executed, this is done anyway and the value has no effect.

26. In the main function, you should first call menu_redraw and then wait for proper
user input and convert it into the key codes and then call menu_keypress(key). Key
is the number you set as key in the editor (in our example 1=Enter, 3=Previous and
4=Next.).

27.Do not forget to include “menu-interpreter.h” and <time.h>. A simple way to access
the byte code is to include “menudata.c” too.

28.Now compile your program and test it. If you used the the mouse-example.c, you
may need to adapt the includes to your needs and then you should be able to
compile with the following command:
gcc -o helloworld mouse-demo.c menu-interpreter.c menu-text.c
-lglut -lGL -DMENU_MOUSE_SUPPORT

 Have fun.

3. All those defines

The generated menu-interpreter-config.h contains a lot of defines. I hope most are self-
explaining, so here are only the important or not self-explaining ones.

MENU_ACTION_X Defines for the menu_action function to find out which function of the
menu got activated. X is the #define NAME you entered in the editor. Each list has an
extra MENU_ACTION_LISTINDEXCHANGE_Y to notify about selection changes. Y Is the
AnswerName.

MENU_CHECKBOX_X Defines the index in the menu_checkboxstate array to read and
write if the checkbox is checked.

MENU_RBUTTON_X Defines the index in the menu_radiobuttonstate array to read and
write which radiobutton of a group is selected.

MENU_LISTINDEX_X Defines the index in the menu_listindexstate array to read and write
which line of a list is selected.

MENU_GFX_X Defines the index in the menu_gfxdata array to read and write the data for
an image.

MENU_SDATA_X_Y Defines the index of static data (text or images) in the byte code. Use
this if you want to use the data at some other places in your program. X is the number of
the (Sub)Window and Y the number of the object with the static data.

4. The test function

The test function works by adding an empty window at the beginning which contains a
window switch to the currently selected window. Key code 254 is used for this purpose, so
it may not be used as global shortcut. The menu is then exported into a temporary
directory and menutester.sh (Linux/Unix)/ menutster.bat (Windows) is called from the
directory where the menuEdit binary is. The working directory is the path of the
executable, the first parameter the temporary path with the exported menu and the second
parameter the key code for switching to the right (Sub)Window.
See the mouse-demo.c for all features (and default key codes). It's up to you to write an
other test function.

5. The Check function

The check function tries to find the most common errors I made while defining a menu:
• Warn about objects which have an action or screen change but can not be selected.
• Warn about screens without Prev/Next/Enter keys (if there are objects which can be

selected)
• Warn about unreachable screens (does not detect loops or missing ways back)
• Give hint about having the same font for normal and focus

