
SanDisk
Application Note

Interfacing SanDisk ATA PC Cards
 in Memory Mapped Mode

®

SanDisk Corporation
140 Caspian Court

Sunnyvale, CA 94089
TEL: 408-542-0500 FAX: 408-542-0503

URL: http://www.sandisk.com

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION2

SanDisk® Corporation general policy does not recommend the use of its products in life support applications where in a
failure or malfunction of the product may directly threaten life or injury. Per SanDisk Terms and Conditions of Sale, the
user of SanDisk products in life support applications assumes all risk of such use and indemnifies SanDisk against all
damages.

The information in this document is subject to change without notice.

SanDisk Corporation shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or
consequential damages resulting from the furnishing, performance, or use of this material.

All parts of SanDisk documentation are protected by copyright law and all rights are reserved. This documentation may
not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form without prior consent, in writing, from SanDisk Corporation.

SanDisk and the SanDisk logo are registered trademarks of SanDisk Corporation. CompactFlash is a trademark of SanDisk
Corporation.

Product names mentioned herein are for identification purposes only and may be trademarks and/or registered trademarks
of their respective companies.

© 2000 SanDisk Corporation. All rights reserved.

SanDisk products are covered or licensed under one or more of the following U.S. Patent Nos. 5,070,032; 5,095,344;
5,168,465; 5,172,338; 5,198,380; 5,200,959; 5,268,318; 5,268,870; 5,272,669; 5,418,752; 5,602,987. Other U.S. and
foreign patents awarded and pending.

Lit. No. 80-13-00103 Rev. 3 8/2000 Printed in U.S.A.

Revision History
• Revision 1—initial release.
• Revision 2—editorial changes.
• Revision 3—editorial and technical changes.

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION 3

1.0 Introduction
This application note presents design
considerations for using SanDisk products in
Memory Mapped Mode. Memory Mapped Mode is
a method of accessing the ATA registers of
SanDisk ATA cards. This mode is preferred in
applications where a SanDisk card is replacing
socket flash, or for embedded designs that use a
non-Intel microprocessor. Memory Mapped Mode
does not require an interface chip or socket and
card services software for implementation. For
more information on how the ATA registers
function, please refer to the descriptions in the
appropriate SanDisk Product Manual.

Memory Mapped Mode Features:

• This is the card’s power on default mode.

• Hot swapping may be performed without
accessing the card’s attribute memory to
configure the card.

• Eight or 16 bit access to all card registers is
controlled by CE1 and CE2, as compared to
True IDE Mode which only allows 16 bit
access to the data register unless a Set
Features command is issued to enable 8 bit
data transfers.

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION4

2.0 Hardware Implementation
2.1 CPU Memory Map

The host provides unique CE1 and CE2 signals to
the card, which is mapped into a specific address
in the CPU’s memory space. If 16 bit only mode is
desired, CE1 and CE2 are tied together. For 8 bit
access, only CE1 is used. If A10 is used to select the
data register, the required memory space is 2K
bytes, otherwise only 16 bytes are needed. See
Figure 2-1 for register mapping.

2.2 Required Signals

The following signals are the minimum required
signals to implement Memory Mapped Mode. For 8
and 16 bit example schematics, see figures 2-2 and
2-3.

D15-D0 — This is the data bus which can be
either 8 bits or 16 bits depending on how CE1 and
CE2 are used. All data and commands use this bus.

CE1, CE2 —For 8 bit systems, only CE1 is used. For
16 bit systems which always access 16 bits, CE1
and CE2 are used concurrently. CE1 and CE2 are
decoded by host logic to determine the memory
window.

OE — This is the output enable strobe generated
by the host. It is used to read data from the
SanDisk card.

WE — This is the write enable strobe generated by
the host. It is used to write data to the SanDisk
card.

A3-A0 — Selects the registers that communicate
with the host. This requires 16 bytes of host
address space. A0 is not needed if CE1 and CE2 are
combined for 16 bit wide register access.

A10 (Optional) — Used to select the data register
for data transfers with string move instructions. I f
A10 is high and and the card is selected, then A3-
A0 are ignored.

RDY/BSY (Optional) — This signal is driven low
when the product is accessing memory. When it is
high, register access is allowed. After a data
transfer command is issued, this signal is used to
signify that the host can transfer data.

RESET (Optional) —This signal may be pulsed
high, then low, to effect a hardware reset.

Decode
for

CE1
CE2

CPU
Memory

0:0

Error Register

Data 8-15

Command Register

LBA 16-23

LBA 0-7

Data 8-15

Alt Status/Drv Control

Data 0-7

LBA 24-27/Drive

LBA 8-15

Sector Count Reg

Data 0-7

CE1 CE2

E

C

A

8

6

4

2

0

5FEh

--

406h

404h

402h

400h

CE1

Byte (254)

--

--

Byte (4)

Byte (2)

Byte (0)

CE2

Byte (255)

--

--

Byte (5)

Byte (3)

Byte (1)

Figure 2-1 Register Mapping

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION 5

Figure 2-2 16 Bit Memory Mode Interface to SanDisk CompactFlash

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION6

Figure 2-3 8 Bit Memory Mode Interface to SanDisk CompactFlash

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION 7

3.0 Memory Mapped Mode Software Interface
Memory Mapped Mode is not supported in some of
the existing operating systems. Special software
may be required to access the product in Memory
Mapped Mode. SanDisk’s Host Developer’s Tool
Kit (order number SDDK-01) supports this mode of
access.

3.1 Host Memory and Logical
Block Addressing (LBA)

SanDisk products are block mode storage devices
with a minimum block size of 512 bytes, normally
referred to as a sector, and a maximum block size
of 128 Kbytes (256 sectors). Once a sector transfer is
started, all 512 bytes must be transferred. During
the transfer, the data can not be accessed
randomly. To access a sector’s data randomly, i t
must first be loaded into the host’s RAM.

SanDisk products support the Logical Block
Addressing (LBA) method, which is defined in
the ATA specification. The SECTOR COUNT
REGISTER defines the number of blocks to transfer
at the specified starting block address. The LBA
consists of LBA bits 0 through 27. This allows up to
256 gigabytes of address space.

3.2 Error Register Handling in
16 Bit Mode

The PC Card ATA specification was derived from
the ANSI ATA specification currently used in
most x86 systems. This is the same as the True IDE
I/O Mode. In this mode, the DATA REGISTER is
16 bits wide (1F0h), and the next I/O address, the
ERROR REGISTER (1F1h), is only 8 bits wide. In
systems that implement 16 bit wide access
without A0 connected, a duplicate copy of the

ERROR REGISTER is available at OFFSET Dh,
instead of OFFSET 1h.

3.3 Data Transfer Sequence

CE1, CE2 and A0 are the signals used to determine
how data is transferred to the host. Memory
Mapped Mode offers more options for data
transfer width compared to the True IDE Mode of
operation. If a system only needs 8 bit transfers,
then only CE1 is required to transfer data on D0-
D7, and A0 is used to determine ODD or EVEN
byte. A0 is not used if the host asserts both CE1
and CE2 for all accesses. True IDE Mode requires a
SET FEATURES command to be issued to the card
before the data register can be accessed in 8 bit
mode. See the appropriate SanDisk Product
Manual for a detailed description of this
relationship.

Once the width of access is determined, there are
three different methods of accessing the DATA
REGISTER on the card. (This is the ATA Register
which is used to actually transfer the data to and
from the host) The first method is at the register
located at OFFSET 0. The second is to use the
duplicate DATA REGISTER located at OFFSET 8
and 9. The third method is to use the optional
signal A10, which selects the DATA REGISTER,
and ignores A1-A3, only using the CE, and OE or
WE signals to clock the data. This method allows
the host to use a string move command instead of a
move byte/word command repeated to transfer the
data.

 See figures 3-1 through 3-3 for state listings of
Identify Drive, Read Sector and Write Sector
commands.

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION8

Figure 3-1 Identify Drive Command State Listing

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION 9

Figure 3-2 Read Sector Command State Listing

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION10

Figure 3-3 Write Sector Command State Listing

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION 11

3. 4 Existing Driver Support

SanDisk’s Host Developer’s Tool Kit (HDTK)
supports Memory Mapped Mode using 8 bit and 16
bit access methods. This code is written in “C” and
has been ported to many industry standard
processors.

Microsoft Win CE has a driver to access the cards
in Memory Mapped Mode. Microsoft Win 95 and
Win NT do not support Memory Mapped Mode for
PC Card ATA. However there are add-on drivers
that will support Memory Mapped Mode.

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION12

4.0 ATA Command Set Implementation
For an embedded application, not all the ATA
commands are required. The following are the
minimum required commands for data access to a
SanDisk card.

4.1 Minimum Required Commands

Identify Drive Command (ECh) — This command
enables the host to receive device information
such as total number of sectors available to the
host. See the appropriate SanDisk Product
Manual for definitions of the individual
parameters returned to the host.

Read Sector Command (20h) — This command
transfers data from the device to the host. The
transfer can be from 1 sector to 256 sectors of 512
bytes each.

Write Sector Command (30h) — This command
transfers data from the host to the device. The
transfer size range is the same as for the Read
Sector Command.

Request Sense Command (03h) — An extended
error code is provided when this command is
issued after a normal ATA error.

4.2 Additional Commands

Execute Drive Diagnostics (90h) — This function is
performed when the device is first powered on.
For the host to check the device after power on,
this command should be issued.

Power Commands — The power commands are not
required in most systems. SanDisk devices will
power down after every command, unless the
power commands override this.

For application specific, embedded systems, all of
the implemented ATA commands need not be
supported in the system software. Most of the
supported commands are only there for backward
software compatibility and are seldom used.

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION 13

5.0 HDTK Porting
5.1 Porting Overview

The SanDisk Host Developer’s Tool Kit (HDTK) provides a mechanism to access the ATA function in a
system. Currently, the HDTK offers support of the FAT File System and several peripheral bus
interfaces. The file system and the bus interface are enabled or disabled by just setting a few options.
The HDTK provides high level data management through its FAT File System and low level drivers
for direct access to the storage devices. The HDTK works with or without an Interrupt Service routine.
To access the hardware, the HDTK needs to know the system-specific details which are entered in the
file SDCONFIG.H.

5.2 SDCONFIG.H

The SDCONFIG.H header file contains many options and system specific definitions that must be
provided. Some of these options are compilation options that exist only during compilation to allow the
compiler to select certain code. Others will be active at run-time. There are different sections for each
peripheral bus interface such as IDE, PCMCIA, SPI and MMC in this file. Most of the time, for a
selected configuration, the options are already set. You may need to modify a few options to match your
platform for memory mapping or I/O mapping, interrupt driven or not, 16-bit or 8-bit peripheral bus.

There is only one peripheral bus interface selected at one time. The choices are:
• USE_TRUE_IDE

• USE_PCMCIA

• USE_SPI

• USE_MMC

• USE_SPI_EMULATION

• USE_MMC_EMULATION

To select the memory mapped interface, set USE_TRUE_IDE to 1 to select the ATA protocol, and set
USE_MEMMODE to 1 The SDCONFIG.H header file should be modified as follows for memory
mapped mode. The File System is enabled or disabled via the USE_FILE_SYSTEM option. Set
USE_FILE_SYSTEM to 1 to enable the File System, otherwise, set USE_FILE_SYSTEM to zero to
disable the File System.

#defineN_CONTROLLERS 1 /* Use 1 IDE controller in the system */
#defineDRIVES_PER_CONTROLLER1 1 /* Number of drives on first controller */
#defineDRIVES_PER_CONTROLLER2 0 /* Number of drives on second controller */
#defineUSE_FILE_SYSTEM 0 /* Indicate there is no file system */
#defineUSE_TRUE_IDE 1 /* Indicate the IDE interface is selected */
#defineUSE_MEMODE 1 /* Use memory mapped mode */
#defineUSE_INTERRUPT 0 /* No interrupt service. Use polling technique */
#defineUSE_LBA_ONLY 1 /* Use Logical Block Address */
#defineWORD_ACCESS_ONLY 1 /* if 1 access registers as byte-pairs, 16-bit Bus */
#defineUSE_SET_FEATURES 0 /* Disable SanDisk Flash product feature */
#defineUSE_CONTIG_IO 1 /* Use 16-byte contiguous register address range */

Other options should be configured to match your system requirements. Please consult the HDTK guide
for more information.

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode

Interfacing SanDisk ATA PC Cards in Memory Mapped Mode Rev. 3 © 2000 SANDISK CORPORATION14

For each selected peripheral bus there is a peripheral section to describe all hardware information
such as number of IDE controllers, number of drives per controller, controller base address, etc.

In the IDE section, the user must provide the system specific hardware register definitions. The name
of the registers and definitions below should not be modified because the code relies on these
definitions. Only the values are allowed to change.

In Memory Mapped Mode, the base address of the ATA controller must be specified. Other options
should be set to zero if not configured.

ATA_PRIMARY_MEM_ADDRESS 0xF0000 /* First memory base address */
ATA_SECONDARY_MEM_ADDRESS 0x00000 /* Second memory base address */

After configuring the SDCONFIG.H, the user must provide several routines related to the hardware
initialization, interrupt and timer services.

5.3 System Specific Code

The HDTK IDE driver is based on the ATA (AT attachment) specification. Electrical signals and
timings of the platform must meet the ATA specification requirement. Also, depending on the system
hardware (memory or I/O), all timings related to the Flash device have to be implemented properly.

Most of the time, the HDTK will provide most of the code. Only the portions of the software related to
your system need to be implemented. This system specific code is the only code that needs to be written
for the specific platform. The HDTK does not provide this access in portable C code. Instead, the
HDTK defines several function prototypes to simplify and make the porting easier.

