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1 Introduction

The ARM processor is a reduced instruction set computer (RISC) intellectual property (IP) core
defined by Advanced RISC Machines, Ltd (ARM). The ARM CPU architectures widely available
today are based on the version 4 and 5 architectures [12]. ARM processor cores are used by In-
tel (StrongARM and XScale processors), Sharp, Atmel, Philips, Analog Devices, and many other
semiconductor manufacturers.

The ARM processor can operate with two instruction sets; ARM mode, and THUMB mode. The
ARM mode uses a 32-bit instruction set, while THUMB mode uses a 16-bit instruction set. The use
of THUMB mode reduces the execution speed of the code, but reduces the memory requirements of
the code, so finds use in the microcontroller applications of the processor core.

µCOS-II is a real-time operating system (RTOS) written by Jean Labrosse and supported by his
company Micrium. The RTOS is well described in his book [6]. The RTOS defines a standard set of
operating system (OS) primitives and the book defines how to port the RTOS to different processor
architectures. This document describes a port for the ARM processor operating in 32-bit mode for
the GNU GCC compiler.

The following references provide additional resources on ARM processors and µCOS-II RTOS:

• “ARM system-on-chip architecture”, S. Furber [5].

• “ARM Architecture Reference Manual”, D. Seal [12]. Chapters A1 and A2 provide an overview
of the ARM architecture and programming model.

• “ARM System Developer’s Guide”, A. Sloss et al [13]

• “MicroC/OS-II: The real-time kernel”, J. Labrosse [6].

Author’s Note: May 10, 2006.

This document and the associated code were submitted to the Circuit Cellar Philips ARM 2005
contest. The project was selected for a Distinctive Excellence award. At some point Circuit Cellar
are going to put the project files up on their web site.

Prior to the ARM 2005 contest I’d never used the ARM processor. My initial objective was to
understand the code generated and required by GCC to link microcontroller applications, and then
use that knowledge to port the uCOS-II RTOS to the processor. I’d played with the Atmel AVR
and WinAVR for the Circuit Cellar Atmel AVR 2004 contest, but had simply used WinAVR, not
appreciating the task done by the startup files and the AVR standard library. Many of the examples
in this project are stand-alone, in that the code provides the start-up routines and the application
code (some of the code in subfolders is repeated for the sake of simplification).

Please excuse the poor makefiles and anything else you find over-simplified, I was just playing
and didn’t really anticipate too many people looking at the code. However, it seems alot of the
questions asked on the LPC2000 news group could be answered by this document, so feel free to
provide feedback, or modified code, and I’ll update the original source and re-release the code as it
is updated. I plan to go though and add more sections, and get newlib-lpc up-and-running, but for
now, this will have to do.

Feel free to post comments to the LPC2000 news group, I read it.

Cheers,
Dave Hawkins, Caltech.
dwh@ovro.caltech.edu.
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Figure 1: ARM programming modes. In ARM-mode the processor can switch between seven
operating modes. The processor has a set of banked registers, i.e., the actual register an instruction
accesses is dependent on the operating mode. The greyed registers in the figure show the physically
different registers in each operating mode.

2 Programmers Model

Figure 1 shows the ARM programming model (Chapter A2 [12], p39 [5], p7 [7]), and the seven ARM
operating modes. A general purpose operating system such as Linux uses the User mode of the
processor for user-space processes, and the Supervisor mode for the operating system kernel. For a
real-time OS, such as µCOS-II, the kernel and application tasks run in Supervisor mode. Exception
modes need to be dealt with appropriately in either a general purpose OS (by kernel routines) or
in an RTOS. The seven processor modes are (pA2-3 [12], pA2-11 [12] has the 5-bit values for each
mode);

Mode Description
User Normal program execution code
System Runs privileged operating system tasks
Supervisor A protected mode for the operating system
IRQ General-purpose interrupt handling
FIQ Fast-interrupt handling
Abort Used to implement virtual memory or memory protection
Undefined Supports software emulation of coprocessors

In any of the seven operating modes shown in Figure 1, code has access to 16 general-purpose
registers, R0 through R15, and a current program status register (CPSR). In exception modes there
is an additional register, called the saved program status register (SPSR), which has identical bits
to the CPSR. The processor has a set of banked registers, where dependent on the operating mode
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Figure 2: Control and program status register (CPSR) bits. The defined bits are the flags; negative,
zero, carry, and overflow, and the control bits; IRQ disable, FIQ disable, ARM/THUMB instruction
mode, and the 5-bit processor operating mode (where the modes are shown in Figure 1).

the physical register accessed can be different. For example in fast interrupt mode (FIQ) registers
R8 through R14 are unique for that mode so do not need saving through interrupt context switches.
Register R13 is conventionally used as the Stack Pointer (pA2-6 [12]), while registers R14 and R15
have special roles as the Link Register (return address), and Program Counter (pA1-3 [12]). The
ARM procedure calling standard (APCS) defines the recommended use of the other registers for
passing arguments and return variables.

Stack pointer
The stack grows from high-to-low.

Link register
The link register holds the address of the next instruction after a Branch and Link (BL) instruction
which is the instruction used to make a subroutine call. At all other times, R14 can be used as a
general-purpose register (pA1-3 [12]). To return from a subroutine call, the link register is copied
into the program counter register (pA1-4 [12]). If nested of interrupts is used, special care of the
link register contents is required (pA2-6 [12]).

Program counter
When an instruction reads the program counter, the value read is the address of the instruction plus
8 (4 bytes if operating in THUMB mode). The program counter is 32-bit aligned (bits 1 and 0 are
always zero) in ARM mode, and 16-bit aligned in THUMB mode (bit 0 is zero) (pA1-3 [12]).

Status registers
The CPSR (and SPSR) contains four sections; flags, status, extension, and control. These sections
and bits are shown in Figure 2. There are specific instructions for transferring the status registers
to and from the general purpose registers.
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3 ARM GCC

An embedded systems C-coded application consists of assembly-coded startup code containing
processor and run-time environment (eg. stacks) initialization, the C-coded application, statically-
linked library code (newlib and user libraries), and a linker script defining the device memory map
and code load and run addresses. The GNU Compiler Collection (GCC) for the ARM processor can
be downloaded from www.gnuarm.com, or can be built from source as described in Appendix A. The
following sections walk-through increasingly complex examples to demonstrate the GCC tools.

The examples in the following sections are developed for a Keil MCB2130 development board
containing a Philips LPC2138 ARM microcontroller. The Keil MC2130 evaluation board contains a
set of LEDs connected to pins P1.[16..23]. The examples use the LEDs to provide visual feedback
that the example program operates correctly.

3.1 Example 1: Basic startup assembler

/∗ ex1 . s ∗/

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ Except ion v e c t o r s
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

. t ex t

. arm

. g l o ba l s t a r t
s t a r t :

/∗ Vectors (8 t o t a l ) ∗/
b r e s e t /∗ r e s e t ∗/
b loop /∗ undef ined i n s t r u c t i o n ∗/
b loop /∗ so f tware i n t e r r u p t ∗/
b loop /∗ p r e f e t c h abor t ∗/
b loop /∗ data abor t ∗/
nop /∗ r e s e rved f o r the boo t l oader checksum ∗/
b loop /∗ IRQ ∗/
b loop /∗ FIQ ∗/

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ Test code
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

r e s e t :
l d r r0 , IODIR1
ld r r1 , IODIR1 VALUE
s t r r1 , [ r0 ]
l d r r0 , IOCLR1
s t r r1 , [ r0 ]
l d r r0 , IOSET1
ld r r1 , IOSET1 VALUE
s t r r1 , [ r0 ]

loop : b loop

6
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/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ Constants
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

/∗ LED con t r o l r e g i s t e r s ∗/
IOSET1 : . word 0xE0028014
IODIR1 : . word 0xE0028018
IOCLR1: . word 0xE002801C
IODIR1 VALUE: . word 0x00FF0000
IOSET1 VALUE: . word 0x00550000

. end

Example 1 is a short assembler program that sets up basic exception vectors (they drop into an
infinite loop), and then turns the MCB2130 even LEDs on (where indexing is LED[7:0]) and the
odd LEDs off (a high value on an I/O pin turns an LED on). The example does not setup stacks
(since we do not need them). The successful compilation and download of this example checks the
compiler and linker setup.

A linker script is used to define the memory map of a processor. If GCC is not passed a linker
script as part of the command line arguments, a default linker script is used. The linker script
can be displayed by passing -Wl,--verbose to arm-elf-gcc or --verbose to arm-elf-ld. The
default linker script defines an entry point symbol called _start and loads to a default address of
0x8000. The example assembler program uses the expected entry symbol _start, and since the
Philips LPC microcontroller reset vector is address 0, a command line option, -Ttext=0, is needed
to link the .text section to address 0 (note that this just overrides the linker script .text section
start address, it does not replace the linker script). The example needs to setup the exception
vector table correctly, as the Philips LPC microcontroller expects the reserved exception vector (the
old 26-bit ARM processor address exception) to contain a checksum word. The Philips FlashUtils
downloader fills in this checksum.

The example is compiled using

arm-elf-gcc -mcpu=arm7tdmi -c ex1.s

and is linked using

arm-elf-ld -Ttext=0 ex1.o -o ex1.elf

The linker -T option links the code starting at physical address 0.
The compilation and link step can be combined using

arm-elf-gcc -mcpu=arm7tdmi -nostartfiles -Ttext=0 ex1.s -o ex1.elf

The -nostartfiles option tells the compiler not to use its startup assembler routine.
The executable can be disassembled using

arm-elf-objdump -d ex1.elf

which simply shows the original source. The disassembled code covers addresses 0 through 54h
(inclusive), i.e., 58h bytes = 88 bytes. The amount of Flash and SRAM needed by a program can
be summarized using

arm-elf-size ex1.elf
text data bss dec hex filename
88 0 0 88 58 ex1.elf

7
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A key point to note about this example is that there is only a text section, i.e., the example will
only use Flash RAM.

The FlashUtils downloader expects an Intel hex format file. This file is created using

arm-elf-objcopy -O ihex ex1.elf ex1.hex

Start LPC210x_ISP.exe and download the program; the even LEDs should be on, the odd off (LED[0]
is closest to the corner of the board).

3.2 Example 2: A simple C program

The following startup routine sets up exception vectors, with the reset vector jumping directly to
the C coded main application

/∗ e x 2 s t a r t . s ∗/
. t ex t
. arm
. g l o ba l main
. g l o ba l s t a r t

s t a r t :
/∗ Vectors (8 t o t a l ) ∗/
l d r pc , main addr /∗ r e s e t ∗/
l d r pc , loop addr /∗ undef ined i n s t r u c t i o n ∗/
l d r pc , loop addr /∗ so f tware i n t e r r u p t ∗/
l d r pc , loop addr /∗ p r e f e t c h abor t ∗/
l d r pc , loop addr /∗ data abor t ∗/
nop /∗ r e s e rved f o r the boo t l d r checksum ∗/
l d r pc , loop addr /∗ IRQ ∗/
l d r pc , loop addr /∗ FIQ ∗/

l oop addr : . word loop
main addr : . word main
loop : b loop

. end

The exception vectors are setup slightly differently than those in example 1. Instead of branching
to the loop address, they load the program counter with the address of the loop.

The main C code is

/∗ ex2 main . c ∗/

#define IOSET1 (∗ ( ( volati le unsigned long ∗) 0xE0028014 ) )
#define IODIR1 (∗ ( ( volati le unsigned long ∗) 0xE0028018 ) )
#define IOCLR1 (∗ ( ( volati le unsigned long ∗) 0xE002801C) )

int main (void )
{

/∗ Define the LED pins P1 . [ 1 6 . . 2 3 ] as ou tpu t ∗/
IODIR1 = 0x00FF0000 ;

/∗ Clear a l l p ins ∗/
IOCLR1 = 0x00FF0000 ;

/∗ LED[ 7 : 0 ] ; even on ( high ) , odd o f f ( low ) ∗/

8
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IOSET1 = 0x00550000 ;

while ( 1 ) ;
return 0 ;

}
Compilation and disassembly of just the main code using

arm-elf-gcc -mcpu=arm7tdmi -c ex2_main.c
arm-elf-objdump -d ex2_main.o

will show assembly code that uses the stack pointer. However, a stack pointer is not setup by
ex2_start.s, so instead the code should be compiled with optimization level 2, -O2, as that elimi-
nates the stack references for this particular example. The application can be compiled using

arm-elf-gcc -O2 -mcpu=arm7tdmi -nostartfiles -Ttext=0 \
ex2_start.s ex2_main.c -o ex2.elf

The order of the files here is important, the startup code must come first. Disassembly of the code
using

arm-elf-objdump -d ex2.elf

shows the startup code followed by the main code. The code covers addresses 0 through 48h (4Ch
bytes). The size of the standard sections in the file are (all the sections can be viewed using
arm-elf-objdump -h ex2.elf)

arm-elf-size ex2.elf
text data bss dec hex filename
76 0 0 76 4c ex2.elf

As with example 1, the code produces only a text section, so only Flash RAM is used.
Conversion of the elf file into hex format, and then download using FlashUtils produces the same

result as example 1.

3.3 Examples 3(a) and (b): C program stack setup

The LPC2138 contains 32Kbytes (i.e., 8000h) SRAM starting at address 40000000h. The ARM
stack grows down, so the ex3_start.s file initializes the stack pointer to the end of SRAM, i.e.,
40008000h, and then jumps to main

/∗ e x 3 s t a r t . s ∗/
. t ex t
. arm
. g l o ba l main
. g l o ba l s t a r t

s t a r t :
/∗ Vectors (8 t o t a l ) ∗/
b r e s e t /∗ r e s e t ∗/
b loop /∗ undef ined i n s t r u c t i o n ∗/
b loop /∗ so f tware i n t e r r u p t ∗/
b loop /∗ p r e f e t c h abor t ∗/
b loop /∗ data abor t ∗/
nop /∗ r e s e rved f o r the boo t l oade r checksum ∗/
b loop /∗ IRQ ∗/

9
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b loop /∗ FIQ ∗/

/∗ Setup the s t ack po in t e r and then jump to main ∗/
r e s e t :

l d r sp , s tack addr
b l main

/∗ Catch return from main ∗/
loop : b loop

/∗ Constants ∗/

/∗ LPC SRAM s t a r t s at 0x40000000 , and there i s 32Kb = 8000h ∗/
s tack addr : . word 0x40008000

. end

The Example 3(a) main application turns on the MCB2130 LEDs as in the previous examples, but
uses a function call. A function call requires the use of a stack (the usuage of the stack by the main
code in the final executable is shown shortly).

/∗ ex3a main . c ∗/
#include ” l ed . h”

int main (void )
{

l e d i n i t ( ) ;
l ed (0 x55 ) ;
while ( 1 ) ;
return 0 ;

}
Since the LED routines are used in multiple programs, they are placed in a separate files; a header

/∗ l e d . h ∗/
#ifndef LED H
#define LED H

/∗ I n i t i a l i z e the LEDs ∗/
void l e d i n i t ( ) ;

/∗ Control the LEDs ∗/
void l ed (unsigned long va l ) ;

/∗ Set LEDs ∗/
void l e d s e t (unsigned long s e t ) ;

/∗ Clear LEDs ∗/
void l e d c l r (unsigned long c l r ) ;

#endif

10
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and an implementation

/∗ l e d . c ∗/
#include ” l ed . h”

#define IOSET1 (∗ ( ( volati le unsigned long ∗) 0xE0028014 ) )
#define IODIR1 (∗ ( ( volati le unsigned long ∗) 0xE0028018 ) )
#define IOCLR1 (∗ ( ( volati le unsigned long ∗) 0xE002801C) )

void l e d i n i t ( )
{

/∗ Define the LED pins P1 . [ 1 6 . . 2 3 ] as ou tpu t ∗/
IODIR1 = 0x00FF0000 ;

/∗ Clear a l l p ins ∗/
IOCLR1 = 0x00FF0000 ;

}

void l ed (unsigned long va l )
{

/∗ LEDs o f f ∗/
IOCLR1 = (˜ va l & 0xFF) << 16 ;

/∗ LEDs on ∗/
IOSET1 = ( va l & 0xFF) << 16 ;

}

void l e d s e t (unsigned long s e t )
{

IOSET1 = ( s e t & 0xFF) << 16 ;
}

void l e d c l r (unsigned long c l r )
{

IOCLR1 = ( c l r & 0xFF) << 16 ;
}
Board control functions, such as LED control, are reusable in multiple projects, and they are usually
collected into a library referred to as a board-support package (BSP). In the following examples, the
compiler arguments are simplified by just linking directly with the LED functions, but keep in mind
that the creation of a BSP is preferred.

The startup, main, and LED code (if located in the current directory) can be compiled using

arm-elf-gcc -O2 -mcpu=arm7tdmi -nostartfiles -Ttext=0 \
ex3_start.s ex3a_main.c led.c -o ex3a.elf

and then disassembled using

arm-elf-objdump -d ex3a.elf

11
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to give the main code assembler

00000030 <main>:
30: e1a0c00d mov ip, sp
34: e92dd800 stmdb sp!, {fp, ip, lr, pc}
38: e24cb004 sub fp, ip, #4 ; 0x4
3c: eb000002 bl 4c <led_init>
40: e3a00055 mov r0, #85 ; 0x55
44: eb000006 bl 64 <led>
48: eafffffe b 48 <main+0x18>

The main routine starts by loading the inter-procedure call register with the stack pointer, and stores
four registers to the stack. The registers are; the frame pointer, the inter-procedure call pointer, the
link register, and the program counter. The ARM Procedure Calling Standard (APCS) [3], and the
GCC Using as manual have details on the registers and their use in a C environment. The main code
then adjusts the frame pointer, and calls the LED initialization routine (which sets the LED I/O
pins to output mode, and outputs a logic low on each pin, turning the LEDs off). The value 0x55
is then moved into register r0, as the LED function argument, and a branch to the LED routine
is made. When the LED call returns, an infinite loop occurs to end the program. The example
contains only a .text section containing 188 bytes (BCh bytes).

To add a little more interest to the LED examples, Example 3(b) adds a delay loop to the main
application that blinks the MCB2130 LEDs at approximately once per second. The loop count was
determined to be 35000h (using an oscilliscope to measure the LED blink period). The startup
routine used for this example does not setup the LPC2138 phase-locked-loop (PLL), so the ARM
core operates at 12MHz. Example 5 sets up the PLL and uses an appropriately larger loop delay
count.

12
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3.4 Examples 4(a), (b), and (c): C programs with .bss, .data, and
.rodata sections

Example 4(a) modifies Example 3(b) to add a static integer vector of length 2 to hold the LED blink
values. The uninitialized vector is then initialized in main with the two LED blink values. The main
application then drops into a while loop that uses the LED values.

Compilation of the main application

arm-elf-gcc -O2 -mcpu=arm7tdmi -c ex4a_main.c

followed by a dump of the sections gives

arm-elf-objdump -h ex4a_main.o

ex4a_main.o: file format elf32-littlearm

Sections:
Idx Name Size VMA LMA File off Algn
0 .text 00000054 00000000 00000000 00000034 2**2

CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
1 .data 00000000 00000000 00000000 00000088 2**0

CONTENTS, ALLOC, LOAD, DATA
2 .bss 00000008 00000000 00000000 00000088 2**2

ALLOC
3 .comment 00000012 00000000 00000000 00000088 2**0

CONTENTS, READONLY

or alternatively

arm-elf-size ex4a_main.o
text data bss dec hex filename
84 0 8 92 5c ex4a_main.o

shows that the main code for the application contains an 8-byte .bss section.
Example 4(b) modifies Example 4(a) to use a static integer vector of length 2, and initializes

the vector with the two LED blink values. The sections dump shows that there is an 8-byte .data
(initialized data) section. Example 4(c) modifies Example 4(a) to use an initialized static const
integer vector, this causes an 8-byte .rodata (read-only data) section to be generated (you need to
use arm-elf-objdump -h ex4c_main.o to see the .rodata section).

The LPC2138 ARM microcontroller contains 512kB of Flash RAM and 32kB of SRAM. Appli-
cations are typically linked to execute from Flash, while modifiable variables and stacks always use
SRAM. Executable code is linked to the .text section, while read-only variables are linked to the
.rodata section. Initialized variables (that can also be modified) are linked to the .data section,
while uninitialized variables are linked to the .bss section. Although an applications .data section
uses SRAM, an area of Flash RAM of equal size is also required, to store the initial values assigned
to the SRAM area. The startup routine copies the initial values from Flash to the SRAM .data
section addresses before the main application executes and accesses those variables. The startup
routine also needs to zero the range of SRAM addresses used by the .bss section.

Examples 4(a), (b), and (c) require a startup routine that performs the C environment setup;
copying the .data section initial values from Flash, zeroing the .bss section, and setting up the
stack pointer. A linker script is also required. The linker script is used to define the memory map
of the processor, eg. location and length of Flash RAM and SRAM, and to define symbols for the
.data section Flash and SRAM addresses, and the .bss section size. The following linker script can
be used to compile the examples
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/∗ l p c 2 1 3 8 f l a s h . l d
∗
∗ Linker s c r i p t f o r Ph i l i p s LPC2138 ARM mic rocon t r o l l e r
∗ app l i c a t i o n s t ha t ex ecu t e from Flash .
∗/

/∗ The LPC2138 has 512kB of Flash , and 32kB SRAM ∗/

MEMORY
{

f l a s h ( rx ) : org = 0x00000000 , l en = 0x00080000
sram (rw) : org = 0x40000000 , l en = 0x00008000

}

SECTIONS
{

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ . t e x t s e c t i on ( e x e cu t a b l e code )
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

. t ex t :
{

∗ s t a r t . o ( . t ex t )
∗ ( . t ex t )
∗ ( . g l u e 7 t ) ∗ ( . g lue 7 )

} > f l a s h
. = ALIGN( 4 ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ . rodata s e c t i on ( read−on ly ( cons t ) i n i t i a l i z e d v a r i a b l e s )
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

. rodata :
{

∗ ( . rodata )
} > f l a s h
. = ALIGN( 4 ) ;

/∗ End−of−t e x t symbols ∗/
e t e x t = . ;

PROVIDE ( e t ex t = . ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ . data s e c t i on ( read / wr i t e i n i t i a l i z e d v a r i a b l e s )
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗
∗ The va lu es o f the i n i t i a l i z e d v a r i a b l e s are s t ored
∗ in Flash , and the s t a r t u p code cop ie s them to SRAM.
∗
∗ The v a r i a b l e s are s t ored in Flash s t a r t i n g at e t e x t ,
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∗ and are copied to SRAM address da ta to eda ta .
∗/
. data : AT ( e t ex t )
{

data = . ;
∗ ( . data )

} > sram
. = ALIGN( 4 ) ;

edata = . ;
PROVIDE ( edata = . ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ . b s s s e c t i on ( u n i n i t i a l i z e d v a r i a b l e s )
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗
∗ These symbols d e f i n e the range o f addres s e s in SRAM tha t
∗ need to be zeroed .
∗/

. bss :
{

b s s = . ;
∗ ( . bss )
∗(COMMON)

} > sram
. = ALIGN( 4 ) ;
e b s s = . ;

end = . ;
PROVIDE ( end = . ) ;

/∗ Stabs debugg ing s e c t i on s . ∗/
. s tab 0 : { ∗ ( . stab ) }
. s t a b s t r 0 : { ∗ ( . s t ab s t r ) }
. s tab . e x c l 0 : { ∗ ( . stab . e x c l ) }
. s tab . e x c l s t r 0 : { ∗ ( . stab . e x c l s t r ) }
. s tab . index 0 : { ∗ ( . stab . index ) }
. s tab . i nd ex s t r 0 : { ∗ ( . stab . i nd ex s t r ) }
. comment 0 : { ∗ ( . comment) }
/∗ DWARF debug s e c t i on s .

Symbols in the DWARF debugging s e c t i on s are r e l a t i v e to the beg inn ing
o f the s e c t i on so we beg in them at 0 . ∗/

/∗ DWARF 1 ∗/
. debug 0 : { ∗ ( . debug ) }
. l i n e 0 : { ∗ ( . l i n e ) }
/∗ GNU DWARF 1 ex t en s i on s ∗/
. d ebug s r c i n f o 0 : { ∗ ( . d ebug s r c i n f o ) }
. debug sfnames 0 : { ∗ ( . debug sfnames ) }
/∗ DWARF 1.1 and DWARF 2 ∗/
. debug aranges 0 : { ∗ ( . debug aranges ) }
. debug pubnames 0 : { ∗ ( . debug pubnames ) }
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/∗ DWARF 2 ∗/
. debug in fo 0 : { ∗ ( . debug in fo . gnu . l i nkonce . wi .∗ ) }
. debug abbrev 0 : { ∗ ( . debug abbrev ) }
. d ebug l ine 0 : { ∗ ( . debug l ine ) }
. debug frame 0 : { ∗ ( . debug frame ) }
. debug str 0 : { ∗ ( . debug str ) }
. debug loc 0 : { ∗ ( . debug loc ) }
. debug macinfo 0 : { ∗ ( . debug macinfo ) }
/∗ SGI/MIPS DWARF 2 ex t en s i on s ∗/
. debug weaknames 0 : { ∗ ( . debug weaknames ) }
. debug funcnames 0 : { ∗ ( . debug funcnames ) }
. debug typenames 0 : { ∗ ( . debug typenames ) }
. debug varnames 0 : { ∗ ( . debug varnames ) }

}
Executable code (.text), and read-only data (.rodata) are linked to Flash addresses. Initialized
variables (.data) are linked to SRAM at addresses between symbols _data and _edata, but the
values of the initialized variables are stored in Flash after the .text and .rodata sections, at
address _etext. The symbols are defined by the linker and are refereed to in the startup routine.
The startup routine defines variables (storage) initialized to the linker symbol values. The startup
routine then uses the data section symbols to copy values from Flash to SRAM. The application
refers to the SRAM versions of the variables. The .bss section contains uninitialized data. The
linker combines the .bss sections from the various object files that make up an application, and
the linker script defines start (_bss) and end (_ebss) addresses for the uninitialized variables in the
final linked application image. The startup code must zero the SRAM address range between _bss
and _ebss. The startup code used for the examples is

/∗ e x 4 s t a r t . s ∗/

. g l o ba l main

. g l o ba l s t a r t

/∗ Symbols de f ined by the l i n k e r s c r i p t ∗/
. g l o ba l e t e x t
. g l o ba l data
. g l o ba l edata
. g l o ba l b s s
. g l o ba l e b s s

. t ex t

. arm
s t a r t :

/∗ Vectors (8 t o t a l ) ∗/
b r e s e t /∗ r e s e t ∗/
b loop /∗ undef ined i n s t r u c t i o n ∗/
b loop /∗ so f tware i n t e r r u p t ∗/
b loop /∗ p r e f e t c h abor t ∗/
b loop /∗ data abor t ∗/
nop /∗ r e s e rved f o r the boo t l oade r checksum ∗/
b loop /∗ IRQ ∗/
b loop /∗ FIQ ∗/
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/∗ Setup C runtime :
∗ − copy . data s e c t i on to SRAM
∗ − c l e a r . b s s
∗ − se tup s t ack po in t er
∗ − jump to main
∗/

r e s e t :
/∗ Copy . data ∗/
l d r r0 , da ta sour c e
l d r r1 , da t a s t a r t
l d r r2 , data end

copy data :
cmp r1 , r2
ld rne r3 , [ r0 ] , #4
s t rne r3 , [ r1 ] , #4
bne copy data

/∗ Clear . b s s ∗/
l d r r0 , =0
ld r r1 , b s s s t a r t
l d r r2 , bs s end

c l e a r b s s :
cmp r1 , r2
s t rne r0 , [ r1 ] , #4
bne c l e a r b s s

/∗ Stack po in t e r ∗/
l d r sp , s tack addr
b l main

/∗ Catch return from main ∗/
loop : b loop

/∗ Constants ∗/

/∗ LPC SRAM s t a r t s at 0x40000000 , and there i s 32Kb = 8000h ∗/
s tack addr : . word 0x40008000

/∗ Linker symbols ∗/
da ta sour c e : . word e t e x t
da t a s t a r t : . word data
data end : . word edata
b s s s t a r t : . word b s s
bss end : . word eb s s

. end
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Example 4(b) uses an initialized vector, so uses the .data section

/∗ ex4b main . c ∗/
#include ” l ed . h”

static int l e d va l u e [ 2 ] = {0x55 , 0xAA} ;

int main (void )
{

int i ;
l e d i n i t ( ) ;
while (1 ) {

l ed ( l e d va l u e [ 0 ] ) ;
for ( i = 0 ; i < 0x50000 ; i ++);
l ed ( l e d va l u e [ 1 ] ) ;
for ( i = 0 ; i < 0x50000 ; i ++);

}
return 0 ;

}
Example 4(b) can be compiled using

arm-elf-gcc -O2 -mcpu=arm7tdmi -nostartfiles -T../lpc2138_flash.ld \
ex4_start.s ex4b_main.c led.c -o ex4b.elf

(where it is assumed that the LED functions are in the same directory as the example source) and
then the sections dumped using

arm-elf-objdump -h ex4b.elf

ex4b.elf: file format elf32-littlearm

Sections:
Idx Name Size VMA LMA File off Algn
0 .text 0000012c 00000000 00000000 00008000 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .data 00000008 40000000 0000012c 00010000 2**2

CONTENTS, ALLOC, LOAD, DATA
2 .bss 00000000 40000008 00000134 00010008 2**0

ALLOC
3 .comment 00000024 00000000 00000000 00010008 2**0

CONTENTS, READONLY

The .data section LMA (load memory address) in Flash is the address at which the initial values
are stored, while the VMA (virtual memory address) in SRAM is the start address at which the
application refers to initialized variables.
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Table 1: LPC213x PLL control registers (p17 [10])

Name Description Access Reset Value Address

PLLCON PLL Control R/W 0 0xE01F C080
PLLCFG PLL Configuration R/W 0 0xE01F C084
PLLSTAT PLL Status RO 0 0xE01F C088
PLLFEED PLL Feed WO N/A 0xE01F C08C

3.5 Example 5: LPC2138 processor initialization

Processor initialization code for all ARM-based processors follows a similar sequence of steps, how-
ever each processor has processor-specific steps. The Philips LPC21xx series of microcontrollers
require the following processor initialization steps;

1. Exception vector setup

2. Phase-locked loop setup

3. Memory accelerator module setup

4. Setup stack pointers for each processor mode

5. Copy .data section to SRAM

6. Clear .bss

7. Jump to main

The initialization sequence starts with exception vector setup, since those vectors are located starting
at address zero. The phase-locked loop (PLL) and memory accelerator module (MAM) are then
setup so that the remaining code runs at the full processor clock speed. The memory accelerator
module allows the LPC-microcontroller processor core to fetch instructions efficiently from slower
on-chip flash RAM. The LPC213x User Manual [10] describes the PLL and MAM.

3.5.1 PLL setup

The MCB2130 evaluation board contains an LPC2138 microcontroller connected to a 12MHz crystal.
The PLL control registers are shown in Table 1, the crystal oscillator is described in Section 3.4
(p18 [10]) and the PLL is described in Section 3.7 (p26 [10]). The LPC2138 can operate with a
processor clock frequency of up to 60MHz, so with a 12MHz crystal the PLL needs to be configured
to effectively multiply the crystal by 5. The phase-locked loop consists of a phase-detector, a Current
Controller Oscillator (CCO), a divide-by-2×P output divider, and a divide-by-M feedback divider
that follows the divide-by-2×P divider (so the PLL feedback division for the CCO is 2×M×P)
(p28 [10] has a block diagram). The CCO operates over the frequency range 156MHz to 320MHz,
and the output divider generates the processor clock frequency. The output divider options are
2, 4, 8, and 16, so for a desired 60MHz processor clock, the CCO can be operated at 240MHz
with a divide-by-4 divider setting. The feedback multiplier required to get from 60MHz down to
12MHz is 5. The PLLCFG register settings are then PSEL[1:0] = PLLCFG[6:5] = 01b (P = 2)
and MSEL[4:0] = PLLCFG[4:0] = 00100b (M = 5), i.e., PLLCFG = 0100100b = 24h (p29 [10]).

Programming of the PLL requires a special unlock (or feed) sequence, to avoid erroneous pro-
gramming of the PLL. The PLL takes some time to lock, and so a status bit needs to be polled to
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check for lock (or an interrupt can also be generated). Once the PLL is locked, it can be used to
clock the processor core. The sequence for programming the PLL (without using an interrupt) is;

1. Write the PLL PSEL and MSEL settings to the PLLCFG register (eg. 24h for the MCB2130).

2. Write 1 to the PLL enable bit 0 (PLLE) in the PLL control register (PLLCON) (p29 [10]).

3. Enable the PLL by writing the feed sequence to the PLLFEED register, i.e., 0xAA then 0x55
(p30 [10]). The feed sequence causes the values written during the first two steps to activate
the PLL to lock and generate a 60MHz processor clock.

4. Poll bit 10 (PLOCK) in the PLL status register (PLLSTAT) until it becomes 1 (p30 [10]).

5. Write 1 to the PLL connect bit 1 (PLLC) in the PLL control register (PLLCON) (p29 [10])
(the enable bit, bit 0, should also remain set).

6. Connect the PLL clock to the processor core by writing the feed sequence to the PLLFEED
register, i.e., 0xAA then 0x55.

Since the PLL is to be configured prior to stack setup, the PLL initialization sequence needs to
be coded in assembler. An alternative processor initialization would be to setup the stacks first, and
then call an _init function coded in C, prior to jumping to main. A C-coded PLL initialization
sequence is

#define PLLCON (*(volatile unsigned int *)0xE01FC080)
#define PLLCFG (*(volatile unsigned int *)0xE01FC084)
#define PLLSTAT (*(volatile unsigned int *)0xE01FC088)
#define PLLFEED (*(volatile unsigned int *)0xE01FC08C)

#define PLLCON_PLLE (1 << 0)
#define PLLCON_PLLC (1 << 1)
#define PLLSTAT_PLOCK (1 << 10)
#define PLLFEED1 0xAA
#define PLLFEED2 0x55

#define PLLCFG_VALUE 0x24

void pll_init(void)
{

PLLCFG = PLLCFG_VALUE;
PLLCON = PLLCON_PLLE;
PLLFEED = PLLFEED1;
PLLFEED = PLLFEED2;
while ((PLLSTAT & PLLSTAT_PLOCK) == 0);
PLLCON = PLLCON_PLLC|PLLCON_PLLE;
PLLFEED = PLLFEED1;
PLLFEED = PLLFEED2;

}

This function can be compiled to assembler, and the output hand-optimized. An assembly-coded
version of the PLL initialization is

/* Constants (and storage, used in ldr statements) */
PLLBASE: .word 0xE01FC080
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/* Constants (used as immediate values) */
.equ PLLCON_OFFSET, 0x0
.equ PLLCFG_OFFSET, 0x4
.equ PLLSTAT_OFFSET, 0x8
.equ PLLFEED_OFFSET, 0xC

.equ PLLCON_PLLE, (1 << 0)

.equ PLLCON_PLLC, (1 << 1)

.equ PLLSTAT_PLOCK, (1 << 10)

.equ PLLFEED1, 0xAA

.equ PLLFEED2, 0x55

.equ PLLCFG_VALUE, 0x24

pll_init:
/* Use r0 for indirect addressing */
ldr r0, PLLBASE

/* PLLCFG = PLLCFG_VALUE */
mov r3, #PLLCFG_VALUE
str r3, [r0, #PLLCFG_OFFSET]

/* PLLCON = PLLCON_PLLE */
mov r3, #PLLCON_PLLE
str r3, [r0, #PLLCON_OFFSET]

/* PLLFEED = PLLFEED1, PLLFEED2 */
mov r1, #PLLFEED1
mov r2, #PLLFEED2
str r1, [r0, #PLLFEED_OFFSET]
str r2, [r0, #PLLFEED_OFFSET]

/* while ((PLLSTAT & PLLSTAT_PLOCK) == 0); */
pll_loop:

ldr r3, [r0, #PLLSTAT_OFFSET]
tst r3, #PLLSTAT_PLOCK
beq pll_loop

/* PLLCON = PLLCON_PLLC|PLLCON_PLLE */
mov r3, #PLLCON_PLLC|PLLCON_PLLE
str r3, [r0, #PLLCON_OFFSET]

/* PLLFEED = PLLFEED1, PLLFEED2 */
str r1, [r0, #PLLFEED_OFFSET]
str r2, [r0, #PLLFEED_OFFSET]

The code uses one word of storage for the address of the PLL base address register, and then uses
8-bit immediate values for the remaining constants. The immediate values become coded as part
of the assembly instruction, so do not require additional storage (see Ch. 5 of the ARM-ARM, eg.
pA5-4 to A5-7 for mov and orr encoding [12]).
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3.5.2 MAM setup

The access times of on-chip Flash memories usually limit the maximum speed of microcontrollers.
Reference [11] explains how Philips solved this problem for the LPC21xx microcontroller family with
the Memory Accelerator Module (MAM), and contains a nice introduction to the microcontroller
features. Chapter 4 of the User Manual (p42 [10]) details the MAM. The MAM includes three
128-bit buffers called the Prefetch Buffer, the Branch Trail Buffer and the Data buffer. The 128-bit
buffers allow Flash memory accesses to deliver four 32-bit ARM-instructions or eight 16-bit Thumb
instructions. Nevertheless the CPU still must wait for the first instruction until the memory access
is finished. Only then can the next three (ARM) or seven (Thumb) instructions be made available
without further delay [11]. Reference [11] shows benchmark results of operation the MAM; disabled,
partially enabled, and fully enabled (p44 [10] explains the three modes).

The MAM registers consist of a control register and a timing control register (p44 [10]). Two
configuration bits select the three MAM operating modes. The configuration mode can be changed
at any time, so the startup code fully enables the MAM (MAM_mode_control = 10b). The MAM
Timing register determines how many processor core clock cycles are used to access the Flash
memory. This allows tuning MAM timing to match the processor operating frequency. There is no
code fetch penalty for sequential instruction execution when the CPU clock period is greater than
or equal to one fourth of the Flash access time (p42 [10]). For a system clock slower than 20MHz
(50ns period) the MAMTIM register can be set to 1 (p47 [10]). At 60MHz, the clock period is
16.7ns, four times this is 66.7ns, which is greater than 50ns, so MAMTIM can be set to 4. The
MAM initialization code is;

/* Constants (and storage, used in ldr statements) */
MAMBASE: .word 0xE01FC000

/* Constants (used as immediate values) */
.equ MAMCR_OFFSET, 0x0
.equ MAMTIM_OFFSET, 0x4

.equ MAMCR_VALUE, 0x2 /* fully enabled */

.equ MAMTIM_VALUE, 0x4 /* fetch cycles */

mam_init:
/* Use r0 for indirect addressing */
ldr r0, MAMBASE

/* MAMCR = MAMCR_VALUE */
mov r1, #MAMCR_VALUE
str r1, [r0, #MAMCR_OFFSET]

/* MAMTIM = MAMTIM_VALUE */
mov r1, #MAMTIM_VALUE
str r1, [r0, #MAMTIM_OFFSET]

3.5.3 Stacks setup

Figure 1 shows the seven ARM operating modes. The figure shows that there are 6 different stack
pointers; user/system mode, supervisor mode, IRQ mode, FIQ mode, abort mode, and undefined
mode. The ARM processor resets to supervisor mode, a privileged mode (pA2-13, pA2-14 [12]). The
control and program status register (CPSR) M[4:0] bits can be modified from within a privileged
mode to switch between processor modes and setup the different stacks.
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The size of the stack required for each processor mode is application dependent. When an
exception occurs, the banked versions of the link register (LR or R14) and the saved processor
status register (SPSR) for the exception mode are used to save state (see pA2-13 [12]). The ARM
processor does not use the stack during the exception entry, it is only the handler code that uses the
stack. If the default handler uses a branch or load instruction to ‘lock-up’, then no stack setup is
required. If a more complex handler is installed, eg. an abort handler that writes a console message
and then locks-up, then the stack size is determined by the function call requirements. The stacks
that are generally required are the system and supervisor mode stacks for operating system usage,
the user stack for task usage, the IRQ and FIQ stacks for interrupt handlers, and optionally the
abort and undefined handlers.

An example of stack initialization code for the LPC2138 is;

/* Constants (and storage, used in ldr statements) */
STACK_START: .word 0x40008000

/* Constants (used as immediate values) */
/* Processor modes (see pA2-11 ARM-ARM) */
.equ FIQ_MODE, 0x11
.equ IRQ_MODE, 0x12
.equ SVC_MODE, 0x13 /* reset mode */
.equ ABT_MODE, 0x17
.equ UND_MODE, 0x1B
.equ SYS_MODE, 0x1F

/* Stack sizes */
.equ FIQ_STACK_SIZE, 0x00000080 /* 32x32-bit words */
.equ IRQ_STACK_SIZE, 0x00000080
.equ SVC_STACK_SIZE, 0x00000080
.equ ABT_STACK_SIZE, 0x00000010 /* 4x32-bit words */
.equ UND_STACK_SIZE, 0x00000010
.equ SYS_STACK_SIZE, 0x00000400 /* 256x32-bit words */

/* CPSR interrupt disable bits */
.equ IRQ_DISABLE, (1 << 7)
.equ FIQ_DISABLE, (1 << 6)

/* Setup the stacks */
ldr r0, STACK_START

/* FIQ mode stack */
msr CPSR_c, #FIQ_MODE|IRQ_DISABLE|FIQ_DISABLE
mov sp, r0
sub r0, r0, #FIQ_STACK_SIZE

/* IRQ mode stack */
msr CPSR_c, #IRQ_MODE|IRQ_DISABLE|FIQ_DISABLE
mov sp, r0
sub r0, r0, #IRQ_STACK_SIZE

/* Supervisor mode stack */
msr CPSR_c, #SVC_MODE|IRQ_DISABLE|FIQ_DISABLE
mov sp, r0
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sub r0, r0, #SVC_STACK_SIZE

/* Undefined mode stack */
msr CPSR_c, #UND_MODE|IRQ_DISABLE|FIQ_DISABLE
mov sp, r0
sub r0, r0, #UND_STACK_SIZE

/* Abort mode stack */
msr CPSR_c, #ABT_MODE|IRQ_DISABLE|FIQ_DISABLE
mov sp, r0
sub r0, r0, #ABT_STACK_SIZE

/* System mode stack */
msr CPSR_c, #SYS_MODE|IRQ_DISABLE|FIQ_DISABLE
mov sp, r0

/* Leave the processor in system mode */

The initialization code sets up the system mode stack last, and leaves the processor in system mode.
The processor mode is not left in supervisor mode, since a software interrupt (SWI) exception causes
the processor to change to supervisor mode (pA2-13 [12]). Interrupts should not be enabled while
the processor is in an exception mode, otherwise the link register can be over-written (pA2-6 [12]).
The stack sizes are guesses, and will need to be checked for specific examples.

Example 5 repeats the LED blinking code from Example 3(b). The startup code was modified to
setup the PLL, fully enable the MAM, and setup stacks for all modes. The delay loops in the main
application had to be increased by a factor of 35 to obtain one second LED blink rate. A factor of 5
in speed-up was expected by enabling the PLL since that causes the core to be clocked at 60MHz,
and a factor of 4 was expected due to enabling of the MAM, however, the observed improvement
was a factor of 7.

To confirm the source of the unexpected increase in performance, the reset label was moved
around in the startup code. First the reset label was moved such that it skipped the PLL setup
and the MAM setup; the resulting period was 35 seconds. Next the label was moved to enable the
MAM; the resulting period was 5 seconds. Moving the label back to its original location, enabling
the PLL, put the period back at 1 second. So the source of the speed-up was the MAM.

To get an alternative measurement of the increase in performance between Example 5 and Exam-
ple 3(b), the delay loops were commented out, and an oscilliscope was used to probe the first LED
(P1.16). Example 3(b) produced a 40kHz square-wave (10.0µs high-time and 15.0µs low-time), while
Example 5 produced a 518kHz square-wave (0.60µs high-time and 1.33µs low-time); an increase in
frequency of about 13 times.
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3.6 Example 6: Exception handling

Figure 1 shows the seven ARM operating modes and the five exception modes (pA1-3 [12]);

• fast interrupt (FIQ)

• normal interrupt (IRQ)

• memory aborts, which can be used to implement memory protection or virtual memory

• attempted execution of an undefined instruction

• software interrupt (SWI) instruction which can be used to make a call to an operating system

Figure 1 shows that each exception mode has banked versions of the stack-pointer (R13) (each
exception has a separate stack) and link-register (R14). The fast interrupt mode has additional
banked registers to reduce the context save and restore time for fast interrupts. When an exception
handler is entered, the link-register holds the return address for exception processing. The address
is used to return from the exception, or determine the address that caused the exception. The
saved program status register (SPSR) register saves the state of the current program status register
(CPSR) at the time of the exception. Exceptions are described in detail in the ARM-ARM [12]
ppA2-13 to 21 and in Chapter 9 of the ARM System Developer’s Guide [13]. The ARM7TDMI-S
Technical Reference Manual [1] pp2-19 to 27 details exceptions for the ARM core used in the Philips
LPC2138 microcontroller.

The recommended entry and exit sequence for an interrupt (FIQ or IRQ) is (pA2-14 [12]);

sub lr, lr, #4
stmfd sp!, {<other_registers>, lr}

... interrupt handler ...

ldmfd sp!, {<other_registers>, pc}^

The adjustment to the link register value required to determine an exception return address can be
found in the ARM7TDMI-S manual (pp2-19 to 27 [1]).

An exception handler can be coded directly in ARM assembler, or C-compiler specific keywords
can be used to generate the appropriate prolog and epilog code. The GCC compiler has a set of
non-ANSI extensions to declare exception handlers from C code. The declaration syntax for an IRQ
handler is

void irq_handler(void) __attribute__ ((interrupt("IRQ")));

The exception source keywords are; IRQ, FIQ, SWI, ABORT, and UNDEF (see Chapter 5 Extensions
to the C Language Family, Declaring attributes of functions, in any recent GCC manual eg. the 3.4.4
or 4.0.1 manual on www.gnu.org).

The empty interrupt handler (with no exception source attribute):

/* handler.c */
/* Function declaration */
void handler(void) __attribute__((interrupt));

/* Function definition */
void handler(void)
{

/* Handler body */
}
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compiled to assembler using arm-elf-gcc -mcpu=arm7tdmi -Wall -O2 -S handler.c produces
the (edited) assembler code

.text

.align 2

.global handler
handler:

subs pc, lr, #4

i.e., produces code appropriate for return from an FIQ, IRQ, or ABORT. Adding the FIQ, IRQ,
or ABORT attribute causes no change in the assembler. The attribute SWI or UNDEF changes
the return sequence to movs pc, lr. The ARM7TDMI-S manual pages 2-19 to 20 [1] shows the
recommended return sequences for exceptions. The return sequences produced by the GCC compiler
matches the recommendations for all but a data abort. The interrupt keyword changes the return
sequence of the interrupt handler, it does not setup the interrupt vector table to point to the handler.
The processor initialization code containing the exception vector table needs to be modified to point
to the exception handler.

The ARM core contains an FIQ or IRQ interrupt pin, and most ARM processors include interrupt
controllers that route external interrupt sources onto the FIQ or IRQ pins. Use of FIQ or IRQ
interrupts requires setting up the interrupt controller prior to enabling the interrupt. The Philips
LPC family uses the Vectored Interrupt Controller (VIC) defined by ARM.

The MCB2130 has a push button connected to the LPC2138 external interrupt pin (EINT1).
Example 6(a) sets up the MCB2130 board so that on reset LED[0] is on, and each time the push
button is pressed, an FIQ interrupt is generated. The interrupt handler moves the LED that is on
to the next LED (eg. cycles through LED[0], LED[1], . . . , LED[7], and then starts back at LED[0]).
Example 6(b) starts with LED[7] on, and button presses generate an IRQ interrupt which moves
the LED on in the opposite direction to Example 6(a) The LPC213x User Manual [10] details the
LPC2138 peripherals setup for this example;

• The startup file initializes the processor and leaves it in system mode with FIQ and IRQ
enabled.

• The application code configures the PINSEL0 register so that the P0.14 pin is setup for EINT1
operation (p75 [10]).

• External interrupt configuration is detailed on p17, and pp20-24 [10]. The code sets up EINT1
for falling-edge, edge-sensitive mode. The EXTINT register is written to after the mode change,
and to clear the interrupt.

• The VIC select register is used to select EINT1 as an FIQ interrupt in Example 6(a), and an
IRQ interrupt in Example 6(b). Example 6(b) sets up the VIC for a priority interrupt from
EINT1 at VIC vector priority 0. The VIC enable register is then use to enable EINT1 (Chapter
5 [10]).

Once the LPC2138 is configured, the main application drops into an infinite loop. After that point,
button pushes generate FIQ or IRQ interrupts, and the interrupt handler updates the LEDs.

There are some minor changes to the startup file, ex6_start.s, relative to ex5_start.s. First,
the IRQ and FIQ interrupt vectors are modified;

_start:
b reset /* reset */
b loop /* undefined instruction */
b loop /* software interrupt */
b loop /* prefetch abort */
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b loop /* data abort */
nop /* reserved for the bootloader checksum */
ldr pc, [pc, #-0x0FF0] /* VicVectAddr */
ldr pc, fiq_addr

/* Address of the handler function */
fiq_addr: .word fiq_handler

The FIQ vector loads the program counter with the address of the FIQ handler, while the IRQ
handler loads the address determined by the VIC. The second change is that when the system mode
stack is setup, the FIQ and IRQ interrupts are left enabled.

Interrupt handling for Example 6(a) is fairly simple, since the interrupt vector loads the program
counter with the address of the handler. The setup of an IRQ handler is slightly more complex. The
VIC setup from Example 6(b) showing how to setup the VIC for EINT1 IRQs is;

void irq_init(void)
{
/* Enable P0.14 EINT1 pin function: PINSEL0[29:28] = 10b */
PINSEL0 = (2 << 28);

/* Make EINT1 falling edge-sensitive
* (level sensitive increments the LED count too fast)
*/

EXTMODE = 2;
EXTPOLAR = 0;

/* Clear register after mode change */
EXTINT = EXTINT;

/* Setup the VIC to have EINT1 generate IRQ
* (EINT1 is interrupt source 15)
*/

VICIntSelect = 0; /* Select IRQ */
VICVectAddr0 = (unsigned long)irq_handler; /* Vector 0 */
VICVectCntl0 = 0x20 | 15; /* EINT1 Interrupt */
VICIntEnable = (1 << 15); /* Enable */

}

The IRQ initialization code sets up the EINT1 source and then the VIC. The VIC initialization
sets up vector slot 0 for EINT1 interrupts. The IRQ handler has an additional step relative to the
FIQ handler; an acknowledge to the VIC, i.e., VICVectAddr = 0;. Chapter 5 of the LPC213x user
manual has a clear discussion on the VIC setup [10].
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3.7 Example 7: I/O pin toggling

A simple technique for benchmarking operations, is to toggle an I/O pin around a block of code
and measure the pulse time with an oscilliscope. Interrupt service routine (ISR) context save and
restore routine times can also be determined using this technique. The measured I/O pin pulse time
should be adjusted for the time it takes to simply toggle an I/O pin. The examples in this section
demonstrate the fastest I/O toggle speed coded in assembler, and then the more practical case of
toggle speed due to LED set and clear function calls from C-code.

Example 7(a) determines the maximum frequency an I/O pin can be toggled by; configuring the
PLL for 60MHz operation, configuring the MAM, and configuring the peripheral bus clock divider
(VPB divider) to 1. The code then drops into a loop that sets the LEDs high, then low, then loops
back to high. The main loop from ex7a.s is

/* LED register addresses and control value */
ldr r0, IODIR1
ldr r1, IOCLR1
ldr r2, IOSET1
ldr r3, IODIR1_VALUE

/* Set pins as output */
str r3, [r0]

loop:
/* Set LEDs */
str r3, [r2]

/* Clear LEDs */
str r3, [r1]

b loop

The high time will be slightly shorter than the low time due to the branch that occurs as part of
the loop.

Figure 3 shows that a 3.5MHz square-wave is produced on the MCB2130 board; a high time of
119ns (about 7 clocks) and a low time of 164ns (10 clocks). If the VPB divider is left in its default
state of divide-by-four, a 1.66MHz square-wave is produced; 266ns (16 processor clocks) high-time
and 333ns (20 processor clocks) low-time.

Example 7(b) is similar to the code in Example 5. The Example 7(b) startup file initializes the
PLL, sets up the MAM, sets up the C environment and jumps to main. The main application sets
the peripheral bus divider to 1, and then falls into a while loop that toggles the LEDs high, and then
low. Figure 4 shows that a 984Hz square-wave is produced; with a high time of 402ns (24 clocks)
and a low time of 615ns (37 clocks). If the VPB divider is left in its default state of divide-by-four,
a 789kHz square-wave is produced; 536ns (32 processor clocks) high-time and 731ns (44 processor
clocks) low-time. A block of code benchmarked by pulsing an LED pin using the C-coded LED
control functions, should adjust the measured pulse time by 402ns (for VPBDIV = 1) or 536ns (for
VPBDIV = 0) to account for the LED pulsing overhead.
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Figure 3: LPC2138 maximum I/O toggle speed; 3.5MHz. The oscilliscope screen capture shows the
waveform frequency, duty cycle, period, high-time, and low-time.

Figure 4: LPC2138 I/O toggle speed using C; 984kHz. The C-code uses a general purpose LED
control function (making it slower).
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Figure 5: LPC2138 FIQ context save/restore benchmarking. The Example 8(a) test application
toggles an output pin connected to an input pin configured as an EINT1 source. EINT1 is handled
using an FIQ handler. The EINT1 interrupt is setup for rising-edge sensitivity, the main application
toggles the pin high, and the FIQ handler toggles the pin low. The high-time of the waveform is
1.27µs (76 clocks), while the low time is 1.20µs (72 clocks).

3.8 Example 8: Interrupt context save/restore benchmarking

Example 8(a) takes the push-button FIQ handler code from Example 6(a) and modifies it so that
EINT1 is generated from P0.3, and a jumper was placed between LED[0] (P1.16) and P0.3. The
EINT1 interrupt was setup to be rising-edge sensitive. The main code in Example 8(a) sets all the
LEDs low, enables FIQ interrupts, and then drops into a while loop that always sets the LEDs
high. The rising-edge that occurs when the program starts triggers an FIQ interrupt, and the FIQ
interrupt handler clears the LEDs. When the handler returns to the main application, the LEDs are
set high again, and a FIQ interrupt is generated. The result is a square-wave on the LEDs. Figure 5
shows the waveform. The context save plus LED pulse high-time is 1.27µs, while the context restore
and while loop time is 1.20µs.

This benchmark analysis indicates that an FIQ handler has a context save/restore time of ap-
proximately 2.5µs. So if the LPC was being used in a system processing a 1kHz FIQ interrupt,
the FIQ context save/restore time represents a 0.25% CPU load. This benchmark represents the
overhead of the save/restore sequence for a C-coded FIQ handler. Disassembly of the example code
shows that the handler saves eight registers on entry (r0-r3, fp, ip, lr, pc), and restores seven
registers on exit. When using an RTOS, an interrupt can cause a higher-priority task to become
ready, and so additional context save or restore operations are required. For example, registers could
need to be moved off the FIQ stack onto the task stack, and the new tasks registers moved onto the
FIQ stack, or the context save routine might be setup to save registers directly to the task stack,
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Figure 6: LPC2138 software generated FIQ context save/restore benchmarking. The Example 8(b)
test application uses the vectored interrupt controller (VIC) to software generate an EINT1 interrupt.
EINT1 is handled using an FIQ handler. The main application toggles the LED pins high, and the
FIQ handler toggles the LED pins low. The high-time of the waveform is 1.20µs (72 clocks), while
the low time is 1.06µs (64 clocks).

and make minimal use of the FIQ stack. Benchmarking of the uCOS-II RTOS is shown later.
Example 8(a) used an external interrupt pin to test interrupt latency. The Vectored Interrupt

Controller in the LPC-series provides an alternative option for software testing of interrupts; the VIC
software interrupt register, and software interrupt clear register (p49 [10]). Example 8(b) modifies
Example 8(a) to use a software generated EINT1 interrupt. The main code still writes to the LEDs
so that the code can be benchmarked using an oscilloscope, however, code is added to set and clear
the software interrupt register (code to setup the external EINT1 interrupt is also removed). Figure 6
shows the waveform from the software generated FIQ interrupt. The high-time and low-time of the
waveform are both slightly smaller than in Figure 5.
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Figure 7: LPC2138 vectored IRQ prioritization. The Example 9(a) test application uses the vec-
tored interrupt controller (VIC) to software generate EINT[0:3] interrupts which are enabled on the
vectored IRQs 0 to 3. The main application toggles the LED pins 0 to 3 high, and the IRQ handlers
each toggle one LED low. The figure shows how the EINT interrupts are serviced in order 0 to 3.
The high-time of the EINT0 waveform is 1.34µs; similar to the previous tests. The high times of
the other interrupts are progressively longer.

3.9 Example 9: Multiple interrupts

This section benchmarks interrupt handling when dealing with multiple interrupt sources. The
ARM core has two interrupt lines; the FIQ and IRQ. The FIQ is generally expected to have a
single interrupt source, while the IRQ line can have multiple interrupt sources. The VIC on the
LPC-series can be used to divide the IRQ sources into vectored (prioritized) IRQs, and non-vectored
IRQs. For the vectored IRQs, the VIC acts like a hardware multiplexer, causing the processor to
jump to the address of the handler of the highest priority interrupt. For the non-vectored IRQs,
the same handler is provided, and the handler code has to perform the demultiplexing for multiple
non-vectored sources.

Example 9(a) follows on from Example 8(b) and uses the VIC to setup four software interrupts
on EINT[0:3]. The interrupts are set up to generate IRQ interrupts. The interrupt handlers are
placed in IRQ vector slots VICVectAddr[0:3]. The main application sets LED[0:3] high, and each
EINT handler sets a single LED low. Figure 7 shows the resulting LED waveforms.

The VIC IRQ controller prioritizes when interrupts occur simultaneously. However, if an IRQ
handler has already started, and a higher priority interrupt occurs, the higher priority handler will
not run until after the current handler completes. Example 9(b) and Figure 8 demonstrate the
problem. Example 9(b) starts by generating an interrupt on EINT3, and then EINT3’s IRQ handler
is used to set EINT2’s LED high and generate an EINT2 interrupt. EINT2’s handler does the same
for EINT1, EINT1’s handler does the same for EINT0, and EINT0 leaves it to main to restart the
sequence. Its obvious from the figure that each lower priority interrupt is completing while a higher
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Figure 8: LPC2138 IRQ priority inversion. The Example 9(b) starts by generating a software
interrupt on EINT3, and then each IRQ handler generates a software interrupt on the next higher-
priority interrupt (except for EINT0, that handler leaves it to main to restart the process). Note
how even though a higher priority interrupt has occurred, it does not get processed until the current
handler completes.

priority interrupt is pending. The next section shows how interrupts can be made interruptible.
Examples 6(a), 6(b), 9(a) and 9(b) used the GCC keyword interrupt to define interrupt handler

functions. Example 9(c) shows how interrupt handlers can be written without using the interrupt
keyword. The example uses a short assembler coded sequence to save processor state, and then call
a C-coded FIQ or IRQ handler. The C-coded IRQ handler reads from the VICVectAddr register
to dispatch handler routines. Since those routines are called from a C function, they all need to
be written as standard C-functions (without the interrupt keyword). The IRQ and FIQ exception
vectors in the startup code were modified as follows;

_start:
b reset /* reset */
b loop /* undefined instruction */
b loop /* software interrupt */
b loop /* prefetch abort */
b loop /* data abort */
nop /* reserved for the bootloader checksum */
ldr pc, irq_addr

/* FIQ ISR */
fiq_isr:

sub lr, lr, #4
stmfd sp!, {r0-r3, ip, lr}
bl fiq_handler
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Figure 9: Example 9(c) waveforms. Example 9(c) uses assembler coded ISRs that then call C-coded
functions. EINT0 is setup as a vectored IRQ, while EINT[1:3] are setup as non-vectored.

ldmfd sp!, {r0-r3, ip, pc}^

irq_addr: .word irq_isr
irq_isr:

sub lr, lr, #4
stmfd sp!, {r0-r3, ip, lr}
bl irq_handler
ldmfd sp!, {r0-r3, ip, pc}^

The FIQ vector service routine starts at its interrupt vector location, so the processor starts in
the FIQ ISR when an FIQ interrupt occurs. The IRQ vector loads the program counter with the
address of the IRQ assembler service routine, which is located just after the FIQ ISR. The FIQ ISR
adjusts the link register address, saves it, along with the ARM Procedure Calling Standard (APCS)
‘scratch’ registers [3], to the stack, and calls the C-coded FIQ handler. When the handler returns,
the FIQ IRQ performs a return-from-interrupt sequence. The IRQ ISR is similarly coded.

The reason for saving the APCS registers can be seen by disassembling the Example 9(c) code
via arm-elf-objdump -d ex9c.elf. Looking at the code for irq_handler shows the prolog of that
code saving several registers (not the ones saved by the ISR), and then the handler code uses r0-3. If
the ISR code did not save these registers, then whatever was in those registers prior to the interrupt
would be corrupted.

Figure 9 shows the waveforms from Example 9(c). The code is similar to Example 9(a), however,
EINT0 is configured as a vectored IRQ, while EINT[1:3] are all configured as non-vectored. The
example code provides details on how to setup the VIC. Comparison of Figure 7 to Figure 9 shows
the increase in interrupt processing time caused by the implementation of Example 9(c).
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3.10 Example 10: Interrupt nesting

The Philips LPC-series ARM microcontroller vectored interrupt controller (VIC) prioritizes inter-
rupts under the condition of multiple interrupts occurring simultaneously, and it also prioritizes
interrupts while interrupts are being serviced. When an interrupt occurs, the VIC modifies the
interrupt enable state so that only higher-priority interrupts generate an IRQ to the processor core.
This feature is not mentioned in the LPC2138 user manual (Chapter 5 [10]), but it is described in
the ARM VIC PL190 documentation [2]. Without this feature, if IRQs were enabled to the core
when a handler started, then any IRQ would interrupt the currently executing handler. The PL190
documentation also clarifies why you have to read from the VICVectAddr register, and then write
to it once an interrupt has been serviced (p2-2 [2]);

Reading from the Vector Interrupt Address Register, VICVECTADDR, provides the ad-
dress of the ISR, and updates the interrupt priority hardware that masks out the current,
and any lower priority interrupt requests. Writing to the VICVECTADDR Register in-
dicates to the interrupt priority hardware that the current interrupt is serviced, enabling
lower priority or the same priority interrupts to be removed, and for the interrupts to
become active to go active.

To allow interrupts of higher priority to interrupt an interrupt handler requires re-enabling IRQ
interrupts to the processor core. The generation of an IRQ to the core while in IRQ mode will over-
write the IRQ mode saved program status register (SPSR_irq) and any return address currently in
the link register (LR_irq). To avoid corrupting the IRQ mode state by re-enabling IRQ interrupts,
a nested interrupt handler needs to change processor modes when enabling IRQ interrupts; ARM
recommends changing to the system-mode (the privileged version of user-mode). Philips application
note AN10381 [9] gives two examples of the implementation of interrupt nesting; a version imple-
mented using assembler coded prolog and epilog code, containing a C-coded handler function, and
a version implemented using a C-compiler generated interrupt handler containing inline-assembler
code to perform the additional steps required to implement nesting.

Interrupt nesting can utilize an important feature provided by the VIC hardware prioritization
logic; that reading the VICVectAddr register adjusts the interrupt enable mask to allow interrupts of
higher-priority. This feature results in an alternative implementation of the nesting entry sequence
demonstrated in AN10381, i.e., for a specific handler loaded into the VIC address registers, the entry
sequence is (see the full list in Section 3.1 in reference [9])

1. Save IRQ context.

2. Clear the interrupt source.

3. Switch to system-mode and enable IRQ.

4. Save SYS context.

5. . . .

Since the handler function is executing as a consequence of the IRQ vector reading the VICVectorAddr
register (via the statement ldr pc, [#-0xFF0] at the IRQ vector location), the currently execut-
ing IRQ priority has already been masked and can not generate another IRQ to the processor core.
This means that the clearing of the interrupt source can be moved into the handler code. The
consequence of that modification is that all handler prolog and epilog code is identical, so it can
be replaced by a single assembler coded sequence, and all handler functions loaded into the VIC
are simple C-functions. This improves the portability of the code, as compiler-specific interrupt
handling keywords are no longer required.
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Nested interrupts can be implemented by having the IRQ vector jump to a routine that performs
the following sequence;

1. Save IRQ context; by adjusting the link register, and saving the APCS registers (r0-3, ip),
work registers r4-6, and the link register to the IRQ mode stack.

2. Save the IRQ mode SPSR into r4.

3. Read the handler address from the VICVectAddr register into r6 (causing the VIC to mask the
current interrupt).

4. Write to the CPSR to switch to system mode with IRQ interrupts enabled.

5. Save the system/user-mode link register to the user-mode stack.

6. Call the C-coded handler function.

7. Restore the system/user mode link register.

8. Write to the CPSR to switch to IRQ mode with IRQ interrupts disabled.

9. Restore the SPSR.

10. Acknowledge the interrupt to the VIC.

11. Restore IRQ mode saved context, and return from the IRQ.

The contents of the work registers r4-6 are preserved across calls, so their contents can be loaded
in the prolog code, and reused in the epilog code.

The nested IRQ assembler code is;

nested_irq_isr:
/* (1) Save IRQ context, including the APCS registers, and r4-6 */
sub lr, lr, #4
stmfd sp!, {r0-r6, ip, lr}

/* (2) Save the SPSR_irq register */
mrs r4, spsr

/* (3) Read the VICVectAddr */
ldr r5, VICVECTADDR
ldr r6, [r5]

/* (4) Change to SYS mode and enable IRQ */
msr cpsr_c, #SYS_MODE

/* (5) Save the banked SYS mode link register */
stmfd sp!, {lr}

/* (6) Call the C-coded handler */
mov lr, pc
ldr pc, r6

/* (7) Restore SYS mode link register */
ldmfd sp!, {lr}
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/* (8) Change to IRQ mode and disable IRQ */
msr cpsr_c, #IRQ_MODE|IRQ_DISABLE

/* (9) Restore the SPSR */
msr spsr, r4

/* (10) Acknowledge the VIC */
mov r0, #0
str r0, [r5]

/* (11) Restore IRQ context and return from interrupt */
ldmfd sp!, {r0-r6, ip, pc}^

Comparing this to the non-nested IRQ ISR

nonnested_irq_isr:
sub lr, lr, #4
stmfd sp!, {r0-r3, ip, lr}
bl irq_handler
ldmfd sp!, {r0-r3, ip, pc}^

clearly shows the additional steps required to implement nesting!
The main application in Example 10 implements the same EINT[0:3] generation sequence as

Example 9(b), but does not use the interrupt keyword in its handler definitions (as demonstrated
by Example 9(c)). Example 10(a) links against an IRQ ISR that does not implement interrupt
nesting (essentially repeating Example 9(b)), while Example 10(b) links against an IRQ ISR that
implements nesting (i.e., Example 10(b) does not call the function irq_handler()). Figure 10 shows
the waveforms from the two tests. Figure 10(b) shows that successive higher-priority interrupts
successively interrupt the currently executing handler.
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(a)

(b)

Figure 10: LPC2138 nested interrupt handling. Example 10 starts by generating a software interrupt
on EINT3, and then each IRQ handler generates a software interrupt on the next higher-priority
interrupt (except for EINT0, that handler leaves it to main to restart the process). Figure (a)
used a IRQ ISR that does not implement interrupt nesting, while Figure (b) used a IRQ ISR that
implements interrupt nesting.
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4 µCOS-II RTOS

The MicroC/OS-II or µCOS-II real-time operating system (RTOS) was developed by Jean Labrosse
for use in embedded systems such as microcontrollers and DSPs. The RTOS and methods for
writing device drivers for it are covered in his two books; MicroC/OS-II: The Real-Time Kernel [6],
and Embedded Systems Building Blocks: Complete and Ready-to-Use Modules in C [8]. The second
edition of the RTOS book covers version 2.52 of the RTOS. The books contain the RTOS source
code, and the RTOS can be used free-of-charge in university projects. The current commercial
release of the RTOS is version 2.7x. The web site www.micruim.com contains additional resources,
and ports for various processors.

Porting µCOS-II version 2.52 is covered in Chapter 13 of MicroC/OS-II: The Real-Time Kernel,
2nd Ed [6]. A µCOS-II port requires the definition of the data types on the processor, assembly
language routines for critical section protection, interrupt handling, and context switching, and the
definition of C coded hook functions. Table 13.1 on p289 [6] summarizes the porting requirements.
The main effort involved in porting µCOS-II is to determine the processor programming model, the
calling conventions of the compiler, and servicing of interrupts. Earlier sections of this document
developed this knowledge, so the port of µCOS-II is now straightforward.

4.1 ARM-GCC port description

A task in µCOS-II is defined as a function call of the form;

void task(void *pdata);

where pdata is a pointer that can be used to pass information to a task. Tasks start out life as if
they were just interrupted at the entry of a call to their task function. The port-specific C-function
OSTaskStkInit() is responsible for creating an appropriate initial stack.

Figure 11 shows the µCOS-II ARM task initial stack context. The ordering of registers on the
stack is as per the load/store multiple instruction format; registers with lower numbers are stored at
lower addresses (higher on the stack in the figure) (pp60-63 of Furber’s book has a nice description of
the load/store multiple instructions [5]). Given this stack layout, with the processor in user/system
mode, with the user/system mode stack pointer set to the task context, the state of the task can be
restored using the sequence;

/* Copy the task CPSR to the CPSR register */
ldmfd sp!, {r0}
msr cpsr, r0

/* Restore task state (using load multiple) */
ldmfd sp!, {r0-r12, lr, pc}

Note that unlike the sequence used to return from an interrupt, this load multiple instruction does
not end with a caret, ‘^’, so the SPSR is not copied to the CPSR when the program counter is
loaded (in fact, since you are in system mode, there is no SPSR and so that form of the instruction
is illegal (p131 [5])). Another consequence of this choice of return sequence is that since the CPSR
is loaded prior to loading the task registers, FIQ and IRQ interrupts will be enabled just prior to
restoring the task state (this is fine though).

Most of the registers shown in Figure 11 can take on arbitrary values when an initial task context
switch occurs. To aid in debugging, the registers are loaded with hexidecimal values that match their
decimal register register numbers packed into a byte, and repeated four times (since debuggers often
display the register contents in hexidecimal). The task argument pdata is placed on the stack at the
location of r0, while the address of the task function is placed on the task stack at the location of
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R2 0x02020202

R1 0x01010101
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pdata

task

CPSR SYS_MODE

Figure 11: µCOS-II ARM task initial stack context.

the program counter pc. The current program status register (CPSR) value is set to system mode,
with FIQ and IRQ interrupts enabled.

The return address located at the link register location in the stack frame shown in Figure 11
would be used if the task function was ever returned from. Given the link-register value shown in
Figure 11, the processor will almost certainly abort, so it can be useful to place the address of an
exit handler on the stack in that location. The exit handler can log the fact that a task exited (when
it probably should not have).

The Micrium web site hosts a number of ports for the ARM processor. The ports page can be
accessed from the Micrium home page at http://www.micrium.com. The address of the ARM
ports page was http://www.micrium.com/contents/products/ucos-ii/ports-arm.html when
this document was written. The Micrium ARM-mode µCOS-II port is described in Application
note AN-1011 (revision D). The port is for the IAR compiler. Several other application notes apply
the generic ARM port to specific processors. A port of the AN-1011 port to the GCC compiler is
provided with the source code associated with this document.

The Micrium ARM ports do not support interrupt nesting; even for the case of an FIQ interrupt
occurring during IRQ interrupt processing (the IRQ interrupt service routine, OS_CPU_IRQ_ISR, in
os_cpu_a.s calls the handler function with both IRQ and FIQ interrupts disabled).

The ARM port described in the following sections implements interrupt nesting of IRQ interrupts
by FIQ interrupts, and higher-priority IRQ interrupts. The assembler implementation of the port
manipulates registers specific to the ARM vectored interrupt controller (VIC). Porting this code for
a different interrupt controller would be fairly simple.

The only difference between the AN1011 source code and the code for this port is in the assembly
file. The two versions of the assembler files are laid very similarly (in the style of the original AN1011
source). The following sections describe the port files.

Note that the µCOS-II source code is not free, so it is not supplied with this document. The
version of the the µCOS-II source code used to test this port was version 2.52; the source provided
with the 2nd edition of the Labrosse book.
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4.1.1 Port header; os cpu.h

Critical section protection
The ARM-GCC port uses OS critical section protection method #3; it defines a function for

saving the processor status while disabling FIQ and IRQ interrupts, and another to restore the
processor status. The function declarations and critical section macros are located in os_cpu.h;

OS_CPU_SR OS_CPU_SR_Save(void);
void OS_CPU_SR_Restore(OS_CPU_SR cpu_sr);

#define OS_ENTER_CRITICAL() {cpu_sr = OS_CPU_SR_Save();}
#define OS_EXIT_CRITICAL() {OS_CPU_SR_Restore(cpu_sr);}

and the function implementations are in os_cpu_a.s. The implementation of the OS_CPU_Save_SR()
function is based on the recommendations in Atmel’s ARM processor application note Disabling
Interrupts at Processor Level [4].

Task-level context switch
The task-level context switch macro, OS_TASK_SW(), is defined as a call to OSCtxSw() (see the

OS_CPU_A.ASM section.

4.1.2 Port C-functions; os cpu c.c

The only C function the port needed to define was OSTaskStkInit() to initialize the stack as shown
in Figure 11.

4.1.3 Port assembler-functions; os cpu a.s

A port requires the implementation of four assembler routines; OSStartHighRdy (start multi-tasking),
OSCtxSw (task-level context switch), OSIntCtxSw (interrupt-level context switch), and OSTickISR
(time-tick ISR).

Start multi-tasking
OSStartHighRdy() is called at the end of OSStart() (in µCOS-II source file OS_CORE.C), and

is the exit point from main()’s context into the RTOS. OSStartHighRdy() implements the context
restore of the registers shown in Figure 11. The function starts by ensuring that the processor
is in user/system mode with FIQ and IRQ interrupts disabled (although having the interrupts
disabled is not critical, as there should be no interrupt generating sources setup at this point). The
OSTaskSwHook() function is then called, and the OSRunning flag set to true. The user/system mode
stack pointer is then changed to that of the highest-priority (and only) task. The task CPSR is then
copied into the CPSR register (which happens to enable FIQ/IRQ interrupts), and the task register
context is restored.

Task-level context switch
OS_Sched() (OS_CORE.C) calls OS_TASK_SW() to implement a task-level context switch from

inside a critical section (so both FIQ and IRQ are disabled when this function is called). The macro
OS_TASK_SW() is a call to OSCtxSw() in this port, so on entry to the context switch function, the
link register will contain the task return address. The job of OSCtxSw() is to save the current task
context, switch over to the higher-priority task, and then restore context. The code saves the current
tasks registers onto its stack as shown in Figure 11; the contents of link register is saved to both the
link register and the program counter locations on the stack. The task stack-pointer is then saved
to its task control block, the OSTaskSwHook() function is called, the higher-priority task stack is
loaded, and the context of the higher-priority task is restored.
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Interrupt-level context switch
The FIQ and IRQ ISRs start by saving the processor context, incrementing the OSIntNesting

counter (and saving the current value of the stack pointer if required), and the IRQ ISR then re-
enables IRQ interrupts. The ISR then calls handler code (written in C). When the handler returns,
the ISR calls OSIntExit(), and then restores the processor state.

OSIntExit() (OS_CORE.C) checks to see if interrupt nesting is over, and then if a higher-
priority task is ready. If interrupts are still nested, or the same task has the highest priority, then
OSIntExit() returns, and the ISR runs to completion (i.e., performs the context restore of the task
or interrupt it interrupted). If however, interrupt nesting is over, and a higher-priority task has been
made ready, then a switch to the new task is required; that is the job of OSIntCtxSw(). OSIntExit()
calls OSIntCtxSw() inside a critical section, so interrupts are disabled when this function is called.

The interrupt-level context switch code is similar to the task-level context switch code, ex-
cept that the ISR has already done the work of saving the processor context to the task stack.
OSIntCtxSw() starts by calling the OSTaskSwHook(), the higher-priority task stack is then loaded,
and the context of the higher-priority task is restored.

Interrupt service routines (ISRs)
The FIQ and IRQ ISRs are setup to call C-coded handlers. It is up to the board-support package

to decide where to call the OS function OSTimeTick(). For example, timer 0 can be setup to generate
clock ticks and the VIC can be setup to generate an FIQ (for testing), or as an IRQ (a vectored
interrupt would be recommended).

When an FIQ interrupt occurs, the ISR performs a partial context save (since the stack pointer is
currently that of the FIQ, not the system mode task stack), and the processor is placed into system
mode with interrupts disabled. The task context is then saved to the task stack. The interrupt
nesting counter is then incremented, and if this is the first layer of nesting, the current value of the
stack-pointer is saved to the task control block. The processor is then changed back to FIQ mode
with interrupts disabled, and the FIQ handler function is called. After the handler returns, the
processor is moved back to system mode, OSIntExit() is called, and the task context is restored.
FIQ interrupts are not nested.

When an IRQ interrupt occurs, the ISR performs a partial context save (since the stack pointer is
currently that of the IRQ, not the system mode task stack), and the processor is placed into system
mode with interrupts disabled. The task context is then saved to the task stack. The interrupt
nesting counter is then incremented, and if this is the first layer of nesting, the current value of the
stack-pointer is saved to the task control block. The VIC vector address register is then read. The
VIC vector address register returns the address of the IRQ handler, and triggers the VIC priority
logic to only allow IRQ interrupts of higher-priority to interrupt the processor core. FIQ and IRQ
interrupts are then enabled (with the processor left in system mode), and the handler function read
from the VIC is called. After the handler returns, FIQ and IRQ interrupts are disabled, and the
VIC is acknowledged by writing to the VIC vector address register. OSIntExit() is called, and the
task context is restored.

4.1.4 Board-support package; BSP.H,.C

The port assembly language file os_cpu_a.s defines an FIQ interrupt service routine that calls a
C-coded handler; that handler needs to be supplied as part of the board-support package, or the
function needs to be defined in the user application. The minimal form of the handler is;

void OS_CPU_FIQ_ISR_Handler(void)
{

return;
}
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Figure 12: µCOS-II ARM port testing. (a) task-to-ISR context switching, and (b) task-to-task
context switching.

The port of the AN-1011 code requires a similar function defined for the IRQ ISR handler. The port
described by this document accesses the IRQ ISR from the VIC vector address register, so does not
require linking with an IRQ handler function. The BSP should also contain an initialization routine
to setup a timer that generates an FIQ or IRQ interrupt, and a corresponding handler that calls the
OSTimeTick() routine.

The example programs supplied with this document contain a minimal board support package
containing timer setup, and LED control functions.

4.2 Port testing

This section presents test results from the AN-1011 ARM µCOS-II port and the ARM nested-
interrupts version presented in this document.

4.2.1 Test 1: Task-to-IRQ context switching

Figure 12(a) shows the sequence of a task-to-ISR test. A test application was written containing a
single task, and an interrupt handler for EINT0. The task sets an I/O pin high, triggers an EINT0
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interrupt, then pends on a semaphore. The interrupt handler posts a semaphore (an I/O pin is
toggled while in the ISR). The task receives the semaphore, sets an I/O pinlow, triggers an EINT0
interrupt, then pends on a semaphore. This sequence is repeated in a while loop.

Figure 13 shows the results of the task-to-ISR context switch testing for two ARM ports.
The time between the rising edge of the tasks LED to that of the ISR handler is 3.5µs for

the AN-1011 port, and 2.7µs for the nested interrupts port (due to its use of load/store multiple
instructions). The total task-to-ISR-to-task time is 13.0 andµs 11.7µs. Both ports can perform
approximately 40,000 context switches per second.

4.2.2 Test 2: Task-to-task context switching

Figure 12(b) shows the sequence of a task-to-task test. A test application was written containing
two tasks, task A and task B. Task A posts semaphore A and then pends on semaphore B. Task B
does the opposite, it pends on semaphore A, and posts semaphore B.

When Task A pends on semaphore B, it gives up the processor, and causes a task-level context
switch to task B (task B is now ready, since task A posted the semaphore it was waiting for). The
time between the rising-edge of the I/O pin toggled by task A, to the rising-edge of the I/O pin
toggled by task B, is the time taken for a task-to-task context switch. Figure 14 shows the results
of the task-to-task context switch testing for two ARM ports. The rising-edge to rising-edge time
is about 13µ, and both square waves have a frequency of around 20kHz, i.e., around 40,000 context
switches per second occur.

4.2.3 Test 3: IRQ-FIQ interrupt nesting

Figure 15 demonstrates the IRQ nesting feature of the port presented in this document relative to
the AN-1011 port. A task triggers an EINT1 IRQ interrupt which triggers a higher priority EINT0
FIQ interrupt. In Figure 15(a) the EINT1 handler finishes before the higher-priority EINT0 handler,
as the AN-1011 port does not implement IRQ-FIQ interrupt nesting. However, in Figure 15(b) the
EINT1 handler is interrupted by the EINT0 handler.

4.2.4 Test 4: IRQ interrupt nesting

Figure 16 demonstrates the IRQ nesting feature of the port presented in this document relative
to the AN-1011 port. A task triggers an EINT1 interrupt which triggers a higher priority EINT0
interrupt. In Figure 16(a) the EINT1 handler finishes before the higher-priority EINT0 handler,
as the AN-1011 port does not implement interrupt nesting. However, in Figure 16(b) the EINT1
handler is interrupted by the EINT0 handler.
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(a)

(b)

Figure 13: µCOS-II ARM task-to-ISR context switch testing; (a) for AN-1011 port, and (b) the
nested interrupts port.
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(a)

(b)

Figure 14: µCOS-II ARM task-to-task context switch testing; (a) for AN-1011 port, and (b) the
nested interrupts port.
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(a)

(b)

Figure 15: µCOS-II ARM IRQ-FIQ nesting testing; a task triggers an EINT1 IRQ interrupt which
triggers a higher priority EINT0 FIQ interrupt. The top trace is an I/O pulsed in the EINT1 handler,
while the bottom trace is the EINT0 handler. Figure shows the waveform (a) for the AN-1011 port,
and (b) for the nested interrupts port. Note that in (a) the EINT1 IRQ handler finishes before the
higher-priority EINT0 FIQ handler, as the AN-1011 port does not implement IRQ-FIQ interrupt
nesting.
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(a)

(b)

Figure 16: µCOS-II ARM IRQ nesting testing; a task triggers an EINT1 interrupt which triggers a
higher priority EINT0 interrupt. The top trace is an I/O pulsed in the EINT1 handler, while the
bottom trace is the EINT0 handler. Figure shows the waveform (a) for the AN-1011 port, and (b)
for the nested interrupts port. Note that in (a) the EINT1 handler finishes before the higher-priority
EINT0 handler, as the AN-1011 port does not implement interrupt nesting.
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4.3 uCOS-II examples

4.3.1 Example 1: Blinking LEDs

The µCOS-II example 1 program creates two tasks. Each task controls four LEDs. The first task
rotates its four LEDs every 1s, while the second task rotates its LEDs every 250ms. The delays are
implemented using OS delay functions.

4.3.2 Example 2: Serial port echo console

The µCOS-II example 1 program creates a task that listens on a serial port and echos what is typed,
and another task that blinks LEDs.

Download the program (eg. using FlashUtils), and connect to the other serial port on the board
115200-baud, and you will be greeted with the following message;

-----------------------------------
Welcome to uCOS-II!
-----------------------------------

This application will echo characters received.
When a line of text is received on the serial port,
one of four LEDs (LED[0:3]) is blinked on the MCB2130.
A second task rotates the other four LEDs (LED[4:7]) every 250ms.

uCOS-II>

The serial port driver included with the example is interrupt driven and uses the µCOS-II OS
to cause the task controlling the serial port to block appropriately.

I’d like to explain in mode detail, but I have simply run out of time, its now time to upload this
entry!
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A ARM GCC

The GNUARM web site www.gnuarm.com contains pre-built binaries of the GCC compiler for ARM
systems. The tools used at the time of writing of this document consisted of;

• binutils-2.15.tar.bz2

• newlib-1.12.0.tar.gz

• gcc-3.4.3.tar.bz2

• insight-6.1.tar.gz

The GNUARM binary tools can be used directly, or you can build them via the following instructions.
Building the tools yourself is useful if you also want to build for other CPU architectures.

A.1 Build procedure

The tools in this section were built in July 2005 under Cygwin on a Windows 2000 machine, and
under Linux on a Red Hat 9.0 machine. Cygwin used gcc 3.4.4, while Linux used the default Red
Hat gcc 3.2.2. The machine was a dual-boot HP Omnibook 6100 laptop (1GHz Pentium III-M with
512MB RAM).

Building binutils under Cygwin and Linux (bash shell syntax):

1. export TARGET=arm-elf

2. export PREFIX=/opt/gnutools

3. tar -jxvf binutils-2.15.tar.bz2

4. mkdir binutils-build; cd binutils-build

5. ../binutils-2.15/configure --target=$TARGET --prefix=$PREFIX --enable-interwork
--enable-multilib

6. make

7. make install (requires logging in as root under Linux)

Note: the first time I attempted to build binutils under Cygwin, it failed, as it could not find lex.
So, be prepared to update and add tools to your Cygwin installation.

Building gcc and newlib under Cygwin and Linux:

1. export TARGET=arm-elf

2. export PREFIX=/opt/gnutools

3. export PATH=$PREFIX/bin:$PATH

4. tar -jxvf gcc-3.4.3.tar.bz2

5. tar -zxvf newlib-1.12.0.tar.gz

6. cp t-arm-elf gcc-3.4.3/gcc/config/arm/
(this updated file is from the GNUARM site and sets up the multilib build)
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7. mkdir gcc-build; mkdir newlib-build; cd gcc-build

8. ../gcc-3.4.3/configure --target=$TARGET --prefix=$PREFIX --enable-interwork
--enable-multilib --with-float=soft --enable-languages=c,c++ --with-newlib
--with-headers=../newlib-1.12.0/newlib/libc/include
Note: this step requires root privileges under Linux to copy the newlib headers into a subdi-
rectory under $PREFIX.

9. make all-gcc

10. make install-gcc

11. cd ../newlib-build

12. ../newlib-1.12.0/configure --target=$TARGET --prefix=$PREFIX
--enable-interwork --enable-multilib

13. make

14. make install

15. cd ../gcc-build

16. make

17. make install

Note that the configure options for gcc used here are slightly different than those stated on the
GNUARM web site. If you install the GNUARM tools, and look in the arm-elf-gccbug script, it
contains the configure command line used to build those tools;

arm-elf-gccbug(349): configured with:
../gcc-3.4.3/configure --target=arm-elf --prefix=/c/gnuarm-3.4.3
--enable-interwork --enable-multilib --with-float=soft
--with-newlib --with-headers=../newlib-1.12.0/newlib/libc/include
--enable-languages=c,c++,java --disable-libgcj

So relative to the build instruction on the GNUARM web site, the GNUARM tools need the option
--with-float=soft, and the binary version of the tools also have Java enabled.

Building insight (which includes gdb) under Cygwin and Linux:

1. export TARGET=arm-elf

2. export PREFIX=/opt/gnutools

3. tar -jxvf insight-6.1.tar.gz

4. mkdir insight-build; cd insight-build

5. ../insight-6.1/configure --target=$TARGET --prefix=$PREFIX
--enable-interwork --enable-multilib

6. make

7. make install
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The build failed under Cygwin. The errors were related to linker errors in
newlib-6.1/tcl/win/tclWin32Dll.c and several other files in that Windows-specific directory.
The problem might be that gcc 3.4.4 is optimizing away functions that are only referred to inside in-
line assembler (and hence the compiler believes they are unused). The problem was not investigated,
since a binary version was available, and it worked fine under Linux.

What is a multilib?
Multilib enables the building of the different libraries required to link against code compiled with

different command lines options. For example, processors without a floating-point unit (FPU) require
the --with-float=soft option to trigger the use of software-implemented floating-point, whereas a
processor with an FPU can use floating-point hardware instructions. The multilibs compiled can be
printed using arm-elf-gcc -print-multi-lib (Reference: p37 configure.pdf from GNUARM web
site).

For the GNUARM binary installation, the multilibs are;

$ /gnuarm/bin/arm-elf-gcc -print-multi-lib
.;
thumb;@mthumb
be;@mbig-endian
fpu;@mhard-float
interwork;@mthumb-interwork
nofmult;@mcpu=arm7
fpu/interwork;@mhard-float@mthumb-interwork
fpu/nofmult;@mhard-float@mcpu=arm7
be/fpu;@mbig-endian@mhard-float
be/interwork;@mbig-endian@mthumb-interwork
be/nofmult;@mbig-endian@mcpu=arm7
be/fpu/interwork;@mbig-endian@mhard-float@mthumb-interwork
be/fpu/nofmult;@mbig-endian@mhard-float@mcpu=arm7
thumb/be;@mthumb@mbig-endian
thumb/interwork;@mthumb@mthumb-interwork
thumb/be/interwork;@mthumb@mbig-endian@mthumb-interwork

If you built gcc and newlib without copying the altered t-arm-elf file into the gcc source, then the
build occurs relatively quickly, and the multilibs are;

$ /opt/gnutools/bin/arm-elf-gcc -print-multi-lib
.;
thumb;@mthumb

i.e., there are no big-endian, interwork, or hardware floating-point multilibs. Copying the t-arm-elf
file into the gcc source, gives the same multilib output as the GNUARM binary.
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