
TCP/IP for 8-Bit Architectures∗

Adam Dunkels
Swedish Institute of Computer Science

adam@sics.se, http://www.sics.se/˜adam/

Abstract

We describe two small and portable TCP/IP implemen-
tations fulfilling the subset of RFC1122 requirements
needed for full host-to-host interoperability. Our TCP/IP
implementations do not sacrifice any of TCP’s mecha-
nisms such as urgent data or congestion control. They
support IP fragment reassembly and the number of multi-
ple simultaneous connections is limited only by the avail-
able RAM. Despite being small and simple, our imple-
mentations do not require their peers to have complex,
full-size stacks, but can communicate with peers running
a similarly light-weight stack. The code size is on the or-
der of 10 kilobytes and RAM usage can be configured to
be as low as a few hundred bytes.

1 Introduction

With the success of the Internet, the TCP/IP protocol
suite has become a global standard for communication.
TCP/IP is the underlying protocol used for web page
transfers, e-mail transmissions, file transfers, and peer-
to-peer networking over the Internet. For embedded sys-
tems, being able to run native TCP/IP makes it possible
to connect the system directly to an intranet or even the
global Internet. Embedded devices with full TCP/IP sup-
port will be first-class network citizens, thus being able
to fully communicate with other hosts in the network.

Traditional TCP/IP implementations have required far
too much resources both in terms of code size and mem-
ory usage to be useful in small 8 or 16-bit systems. Code
size of a few hundred kilobytes and RAM requirements
of several hundreds of kilobytes have made it impossible
to fit the full TCP/IP stack into systems with a few tens of
kilobytes of RAM and room for less than 100 kilobytes
of code.

With this paper we show that, contrary to conventional
wisdom, it is possible to implement a full TCP/IP stack
that is small enough in terms of code size and memory
usage to be useful even in limited 8-bit systems, without
having to sacrifice interoperability or protocol function-
ality required by the protocol specifications.

∗This is a shortened version of [5]

We have implemented two small generic and portable
TCP/IP implementations,lwIP (lightweight IP) anduIP
(micro IP), both fully written in the C programming lan-
guage. We have made the source code available for both
lwIP [3] and uIP [4]. Our implementations have been
ported to numerous 8- and 16-bit platforms such as the
AVR, H8S/300, 8051, Z80, ARM, M16c, and the x86
CPUs. Devices running our implementations have been
used in numerous places throughout the Internet.

2 RFC compliance

The formal requirements for the protocols in the TCP/IP
stack is specified in a number of RFC documents pub-
lished by the Internet Engineering Task Force, IETF.
Each of the protocols in the stack is defined in one more
RFC documents and RFC1122 [1] collects all require-
ments and updates the previous RFCs.

In our implementations, we have implemented all
RFC requirements that affect host-to-host communica-
tion. However, in order to reduce code size, we have
removed certain mechanisms in the interface between
the application and the stack, such as the soft error re-
porting mechanism and dynamically configurable type-
of-service bits for TCP connections. Since there are only
very few applications that make use of those features, we
believe that they can be removed without loss of gener-
ality. Table 1 lists the features that uIP and lwIP imple-
ments.

3 Memory management

In our target architecture, RAM is the most scarce re-
source. With only a few kilobytes of RAM available for
the TCP/IP stack to use, mechanisms used in traditional
TCP/IP cannot be directly applied.

Because of the different design goals for the lwIP and
the uIP implementations, we have chosen two different
memory management solutions. The lwIP implementa-
tion has dynamic buffer and memory allocation mecha-
nisms where memory for holding connection state and
packets is dynamically allocated from a global pool of



Table 1: TCP/IP features implemented by uIP and lwIP
Feature uIP lwIP
IP and TCP checksums x x
IP fragment reassembly x x
IP options
Multiple interfaces x
UDP x
Multiple TCP connections x x
TCP options x x
Variable TCP MSS x x
RTT estimation x x
TCP flow control x x
Sliding TCP window x
TCP congestion control Not needed x
Out-of-sequence TCP data x
TCP urgent data x x
Data buffered for rexmit x

available memory blocks. Packets are contained in one
or more dynamically allocated buffers of fixed size. The
size of the packet buffers is determined by a configura-
tion option at compile time. Buffers are allocated by the
network device driver when an incoming packet arrives.

The uIP stack does not use explicit dynamic memory
allocation. Instead, it uses a single global buffer for hold-
ing packets and has a fixed table for holding connection
state. The global packet buffer is large enough to con-
tain one packet of maximum size. When a packet arrives
from the network, the device driver places it in the global
buffer and calls the TCP/IP stack. If the packet contains
data, the TCP/IP stack will notify the corresponding ap-
plication. Because the data in the buffer will be over-
written by the next incoming packet, the application will
either have to act immediately on the data or copy the
data into a secondary buffer for later processing. The
packet buffer will not be overwritten by new packets be-
fore the application has processed the data. Packets that
arrive when the application is processing the data must
be queued, either by the network device or by the device
driver.

Outgoing data is also handled differently because of
the different buffer schemes. In lwIP, an application that
wishes to send data passes the length and a pointer to the
data to the TCP/IP stack as well as a flag which indicates
whether the data is volatile or not. The TCP/IP stack al-
locates buffers of suitable size and either copies the data
into the buffers or references the data through pointers.
The allocated buffers contain space for the TCP/IP stack
to prepend the TCP/IP and link layer headers.

In uIP, the same global packet buffer that is used for
incoming packets is also used for the TCP/IP headers of

outgoing data. If the application sends dynamic data, it
may use the parts of the global packet buffer that are not
used for headers as a temporary storage buffer. To send
the data, the application passes a pointer to the data as
well as the length of the data to the stack. The TCP/IP
headers are written into the global buffer and once the
headers have been produced, the device driver sends the
headers and the application data out on the network.

4 Application program interface

The Application Program Interface (API) defines the
way the application program interacts with the TCP/IP
stack. The most commonly used API for TCP/IP is the
BSD socket API which is used in most Unix systems and
has heavily influenced the Microsoft Windows WinSock
API. Because the socket API uses stop-and-wait seman-
tics, it requires support from an underlying multitasking
operating system. Since the overhead of task manage-
ment, context switching and allocation of stack space for
the tasks might be too high in our target architecture, the
BSD socket interface is not suitable for our purposes.

Instead, we have chosen an event driven interface
where the application is invoked in response to certain
events. Examples of such events are data arriving on a
connection, an incoming connection request, or a poll re-
quest from the stack. The event based interface fits well
in the event based structure used by operating systems
such as TinyOS [6]. Furthermore, because the applica-
tion is able to act on incoming data and connection re-
quests as soon as the TCP/IP stack receives the packet,
low response times can be achieved even in low-end sys-
tems.

5 Delayed ACK performance hit

Most TCP receivers implement the delayed acknowl-
edgment algorithm [2] for reducing the number of pure
acknowledgment packets sent. A TCP receiver using
this algorithm will only send acknowledgments for every
other received segment. If no segment is received within
a specific time-frame, an acknowledgment is sent. The
time-frame can be as high as 500 ms but typically is 200
ms.

A TCP sender such as uIP that only handles a sin-
gle outstanding TCP segment will interact poorly with
the delayed acknowledgment algorithm. Because the re-
ceiver only receives a single segment at a time, it will
wait as much as 500 ms before an acknowledgment is
sent. This means that the maximum possible throughput
is severely limited by the 500 ms idle time.

It should be noted, however, that since small systems

2



Table 2: Code size for uIP (AVR)
Function Code size (bytes)

Checksumming 712
IP, ICMP and TCP 4452

Total 5164

Table 3: Code size for lwIP (AVR)
Function Code size (bytes)

Memory management 3142
Checksumming 1116
Network interfaces 458
IP 2216
ICMP 594
TCP 14230

Total 21756

running uIP are not very likely to have large amounts
of data to send, the delayed acknowledgment through-
put degradation of uIP need not be very severe. Small
amounts of data sent by such a system will not span
more than a single TCP segment, and would therefore
not be affected by the throughput degradation anyway.
The maximum throughput when uIP acts as a receiver is
not affected by the delayed acknowledgment throughput
degradation.

6 Code size

The code was compiled for the 8-bit Atmel AVR plat-
forms using gcc [7] version 3.3 respectively, with code
size optimization turned on. The resulting size of the
compiled code can be seen in Tables 2 and 3. Even
though both implementations support ARP and SLIP and
lwIP includes UDP, only the protocols discussed in this
paper are presented. Because the protocol implementa-
tions in uIP are tightly coupled, the individual sizes of
the implementations are not reported.

There are several reasons for the dramatic difference
in code size between lwIP and uIP. In order to support
the more complex and configurable TCP implementa-
tion, lwIP has significantly more complex buffer and
memory management than uIP. Since lwIP can handle
packets that span several buffers, the checksum calcula-
tion functions in lwIP are more complex than those in
uIP. The support for dynamically changing network in-
terfaces in lwIP also contributes to the size increase of
the IP layer because the IP layer has to manage multiple
local IP addresses. The IP layer in lwIP is further made

larger by the fact that lwIP has support for UDP, which
requires that the IP layer is able handle broadcast and
multicast packets. Likewise, the ICMP implementation
in lwIP has support for UDP error messages which have
not been implemented in uIP.

The TCP implementation is lwIP is nearly twice as
large as the full IP, ICMP and TCP implementation in
uIP. The main reason for this is that lwIP implements
the sliding window mechanism which requires a large
amount of buffer and queue management functionality
that is not required in uIP.

7 Summary and conclusions

We have shown that it is possible to fit a full scale TCP/IP
implementation well within the limits of an 8-bit micro-
controller, without having to sacrifice the protocol func-
tionality specified by the RFC standards. The price we
have to pay is that the throughput of such a small imple-
mentation will be lower than for a full scale implemen-
tation.

References

[1] R. Braden. Requirements for internet hosts – com-
munication layers. RFC 1122, Internet Engineering
Task Force, October 1989.

[2] D. D. Clark. Window and acknowledgement strategy
in TCP. RFC 813, Internet Engineering Task Force,
July 1982.

[3] A. Dunkels. lwIP - a lightweight TCP/IP stack. Web
page. 2002-10-14.
URL: http://www.sics.se/˜adam/lwip/

[4] A. Dunkels. uIP - a TCP/IP stack for 8- and 16-bit
microcontrollers. Web page. 2002-10-14.
URL: http://dunkels.com/adam/uip/

[5] A. Dunkels. Full TCP/IP for 8-bit architectures. In
Proceedings of The First International Conference
on Mobile Systems, Applications, and Services (MO-
BISYS ‘03), May 2003.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler,
and K. Pister. System architecture directions for
networked sensors. InProceedings of the 9th In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems,
November 2000.

[7] The GCC Team. The GNU compiler collection. Web
page. 2002-10-14.
URL: http://gcc.gnu.org/

3


