

Application Note AN15813

Monitoring the EZ-USB FX2LP™ VBUS

Author: Rich Peng
Associated Project: No

Associated Part Family: CY7C68013A
CY7C68014A
CY7C68015A
CY7C68016A

Software Version: None
Associated Application Notes: None

Abstract
This application note explains the purpose and methods of monitoring VBUS from the upstream connector using the EZ-USB
FX2LP.

Introduction
One of the USB-IF specification requirements is that you
must never drive the USB pins when they are not
connected to the bus; you may only drive them when
VBUS is present. Refer to section 7.2.1 of the Universal
Serial Bus Specification, Revision 2.0. If you violate this
requirement, you risk causing several failures to the
system. One documented failure causes reset problems
on the upstream devices which in turn may result in PC
cold boot problems, or it causes hubs to fail to enumerate
downstream devices. Other documented problems are
failure to properly resume from a suspend state and
forcing other enumerated devices off the bus.

The method used to detect if a device is connected to the
bus is to monitor the VBUS signal. A bus powered design
does not require VBUS monitoring because it cannot drive
the bus when disconnected. A self powered design uses
the power input to detect connection; it knows when it can
assert its D+ or D- pull up resistor or when it must
disconnect. This application note is intended to help the
designer understand the methods of how to monitor the
VBUS inside an application and know how to implement
this feature.

When your application is for a self powered device, VBUS
monitoring is very important. Do not drive the D+ / D- bus
before VBUS is present or after it has been removed. This
means that the D+ / D- signal can only be driven while the
USB device is electronically connected to the USB host.

VBUS Function
Figure 1. USB Physical Connection

Figure 1 shows a basic diagram to illustrate the physical
USB connections between device and host. The FX2LP is
the device in the system; it is never the host. Based on
this concept, we can more easily understand how the
VBUS monitoring works in the USB system.

According to the USB specification, a USB device can
have two power configurations: bus-powered and self-
powered. In the bus-powered device, the device power
relies on the USB host to provide a limited amount of
power over the cable. Because VBUS provides power for
the device to function, the D+ / D- is not driven before
power is provided to the device.

For a self-powered device design, you must make certain
that the device monitors VBUS and disables or enables
the pull up on the D+ accordingly. In the self-powered

June 4, 2007 Document No. 001-15813 Rev. ** - 1 -

AN15813

June 4, 2007 Document No. 001-15813 Rev. ** - 2 -

device, the power is typically provided by a power adaptor
or a battery, not the VBUS. What kind of problems can
possibly happen in this kind of design? The USB
specification states “Devices may not provide power to the
pull-up resistor on D+ / D- unless VBUS is present (see
section 7.1.5 of USB 2.0 Specification). When VBUS is
removed, the device must remove power from the D+ / D-
pull-up resistor within 10 seconds”. If you require more
detailed information, you can refer to the USB 2.0
Specification, section 7.2.1. After the reset period, the
FX2LP device comes up connected on power up. That
means that when the FX2LP gets out of reset the D+ is
driven. From the time that the FX2LP gets out of reset,
you have 100 ms to respond to the request otherwise the
design violates the USB 2.0 specification. If you do not
process VBUS carefully, your design can fail both the
USB-IF logo certification tests and the Microsoft Windows
WHQL or DTM tests.

The USB-IF checks for compliance on this by checking the
back-voltage on the D+, the D-, and VBUS pins into a 15K
ohm load. Refer to section F (Back Voltage Testing) of the
Universal Serial Bus Implements Forum Full and Low
Speed Electrical and Interoperability Compliance Test
Procedure which you may download from
http://www.usb.org/developers/docs/USB-
IFTestProc1_3.pdf

This document explains why your design must comply with
the back-voltage test. This document also explains what
errors may occur if the device does drive D+ / D- prior to
seeing VBUS. Failures that may occur are as follows:

 The PC fails to cold boot due to the back-voltage
affecting the motherboard reset sequence.

 The hub fails to enumerate downstream devices
due to reset anomalies.

 The motherboard fails to properly resume from a
suspend state.

 Introduction of a device or hub forces one or
more upstream devices off the bus.

These are only a few of the failures or anomalies that have
been reported.

From this brief introduction, you can see why VBUS must
be monitored if the product is a self-powered device with
an FX2LP. If you do not monitor VBUS in this type of
design, then you will spend more effort in debugging your
board, resulting in wasted time and money. The
suggestions presented here must be considered at the
very beginning of a USB self-powered device design.

VBUS Monitor Methodology
When designing with the FX2LP as a self-powered device,
there are two different design modes. One mode is a
standalone design with the FX2LP and the other mode is
using a coprocessor to control the FX2LP. Regardless of
which mode you use, you have to implement the VBUS
monitor feature in your design. Since the FX2LP is a
programmable chip, you can use the firmware to
implement the VBUS monitor feature. Inside the FX2LP,
the DISCON bit controls the D+ pull up resistor to enable

or disable the connection. You can use this bit to control
the connection when monitoring VBUS. In hardware you
must use one GPIO pin to detect the presence or absence
of VBUS, then you can enable or disable the DISCON bit
to match the VBUS behavior. Figure 2 shows the
standalone mode application with FX2LP; Figure 3 shows
the coprocessor mode.

Figure 2. Standalone Mode of FX2LP Design

Figure 3. Coprocessor Mode of FX2LP Design

Monitoring VBUS can be accomplished by connecting
VBUS to a GPIO, through a resistive bridge and have
firmware monitor the status of the GPIO. The purpose of
the resistive bridge is to add a bleed path for the VBUS
signal. If you do not implement a bleed path, when the
cable is unplugged the GPIO pin consumes less than 10
µA and causes the input to stay high for some time. A
path of approximately 100K ohms causes this charge to
dissipate within a short period of time. Typically a 30K
ohm resistor between the VBUS pin and the GPIO pin with
a 0.1 µF capacitor in parallel with a 60K ohm resistor from
the GPIO pin to ground will accomplish this, see Figure 4.

Figure 4. Sample Schematic

http://www.usb.org/developers/docs/USB-IFTestProc1_3.pdf
http://www.usb.org/developers/docs/USB-IFTestProc1_3.pdf

AN15813

June 4, 2007 Document No. 001-15813 Rev. ** - 3 -

Typically you place the firmware to monitor the GPIO
status in the foreground loop (TD_Poll). This loop
executes frequently and keys in on this as an event trigger.
To accomplish this, the firmware must configure any GPIO
port pin to be an input and in the loop. TD_Poll firmware
has something similar to the example in Code 1.

Code 1. Configure a GPIO Port Pin

If (!(IOA & 0x80)) // if VBUS not present (using a PORTA.7 pin for example)
{
 // user take action and set the DISCON bit to disconnect FX2LP from USB
 // Setting DISCON bit disables the pull up on D+
USBCS |= bmDISCON;
}
Else
{
 //Clear DISCON
USBCS&=~bmDISCON;
 //Proceed to do other tasks
}

This code shows how to implement the VBUS monitor in
the FX2LP standalone mode design. In some designs,
other items may need to be considered such as in ATA
applications (see the firmware in the CY4611 RDK).

If your application is in coprocessor mode, the connections
are almost the same; the only difference is that you have
to make the VBUS detection with the main processor chip
GPIO, and follow the firmware design flow implemented in
the main chip side. Then send the command to control the
FX2LP DISCON bit through the Slave FIFO interface.
Then the application in coprocessor mode will have the
same behavior as that of the standalone mode.

Summary
This application note is intended to help the designer
realize the importance of VBUS monitoring and to
implement it at the start of the design to avoid having to
reconfigure IOs and redo board layouts. VBUS monitoring
helps minimize the design time and the time required for
firmware debugging. If your design is complete, use the
information in this application note to help debug your
application and implement an appropriate VBUS monitor
to eliminate any back-voltage problems you may have.

AN15813

June 4, 2007 Document No. 001-15813 Rev. ** - 4 -

About the Author

Name: Rich Peng
Title: Application Engineer Sr Staff

Background:

Contact: lip@cypress.com

+886-27255515#207

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com

© Cypress Semiconductor Corporation, 2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

PSoC Designer™, Programmable System-on-Chip™, and PSoC Express™ are trademarks and PSoC® is a registered trademark of Cypress
Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

mailto:lip@cypress.com
http://www.cypress.com/

