
Operating System with Priority Functions and

Priority Objects

Rabih Chrabieh

7th February 2005

Additional material and software available at
http://www.portos.org

Contact information
contact@portos.org

1

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Traditional RTOS 4

3 Priority Functions 5
3.1 Potential Drawbacks and Remedies 6
3.2 Co-existence of priority functions and tasks 7

4 Priority Objects 7
4.1 Multi Priority Objects . 7

5 Examples of benefits 8
5.1 Timers . 8
5.2 The user interface and host port 9
5.3 The writer and reader problem 10
5.4 Dialog box in a Graphical User Interface 10

6 Summary of the benefits 10

7 Advanced Topics 11
7.1 Implementation Ideas for Priority Functions 11
7.2 Implementation Ideas for Priority Objects 12
7.3 Priority Management . 12
7.4 Signals . 13
7.5 Timers . 14
7.6 Message logging . 14
7.7 Memory Management . 14

2

1 INTRODUCTION

1 Introduction

The question we ask here is “are tasks or threads necessary in an operating
system?” The short answer is that if time slicing is needed, they are absolutely
necessary. However, time slicing is seldom necessary within one software appli-
cation. In all other cases, tasks complicate significantly the software architecture
without being indispensable.

In this article we introduce new concepts for Operating Systems. The ideas
are most relevant to Real Time Operating Systems (RTOS) but are not re-
stricted to Real Time. The general purposes behind these concepts are to sim-
plify the software programming of embedded systems and to enhance the real
time performance. The idea is to avoid using tasks. We replace the task by a
“priority function”. This is a regular function to which we assign a priority level.
A scheduler executes “priority functions” at the appropriate priority levels.

Figure 1: Modem implemented with tasks versus modem implemented with priority func-
tions. Layer 2, layer 3 and the timer tasks are shown. Layer 1 is not shown. Layer 2 transmits
data. It also starts a timeout timer. If the data is lost, the timer expires and activates the
retransmission code in L2. The complexity of the implementation with tasks is obvious. In
the priority function implementation, functions call each other directly without going through
context switches, semaphores, mailboxes, etc.

The main benefits, that will become clearer throughout the document, are

• Simpler architecture

• Improved modularity

3

2 TRADITIONAL RTOS

• Code easier to modify and upgrade

• More efficient code

• Less stack space

One more important benefit that is not discussed in this document is that
a programming language compiler or interpreter can be augmented with the
concepts of priority functions and priority objects. This significantly simplifies
the job of writing real time software.

Figure 1 shows a comparison between an implementation with tasks and
another one with priority functions.

In the following sections we give a brief description of how traditional RTOS
work then we present the new concepts of priority functions and priority objects.
Then we give examples of benefits.

2 Traditional RTOS

What is a task? A task is essentially a piece of code that can run, stop, run
again, etc. Why does it stop? For instance, in order to wait for new input. Or
it can stop if it is preempted by another task with higher priority. Since every
modern program uses a stack to execute function calls, a task needs its own
stack in order to run, stop and run again. This is to preserve the stack state
when the task stops for a moment (a shared stack would get trashed). When
a task A stops and another task B resumes, a “context switch” occurs. In the
context switch, the registers of task A are saved to stack of A. The registers of
task B are restored from stack B. This operation is quite heavy.

What is the purpose of a task? The main reason behind a task is to execute
different pieces of code at different priority levels. For instance, a low priority
task can run the main algorithms while a higher priority task can execute time
sensitive code. The high priority task preempts the low priority task at any
point in time (or almost). Note that hardware interrupts can achieve similar
behavior but they are usually reserved to very time sensitive instructions. We
are not concerned with hardware interrupts here.

Another two reasons behind a task are

• Time-slicing so that every task gets a bit of time to execute. This is seldom
needed within one program application.

• Multi-processor architecture where an application is split into several tasks
to run on different processors. Again a rare case.

With an architecture built around tasks, a program gets quickly complicated.
For example, if a function F runs in task A, it is impossible to call it from task
B. This is awkward. The way to call function F is by following the steps:

• send a message to task B (containing information on what function to call
with what parameters)

4

3 PRIORITY FUNCTIONS

• stop task A

• start task B

• dispatch the message within task B to the appropriate sub-task

• call the function F

• when function F is done, stop task B

• resume task A and proceed

The above is what happens to a simple function call when tasks are involved!
Besides the wasted memory resources and the decrease in performance, the
program structure is more complex. A programmer has to be aware of all the
above, of where the function should run, of what type of messages to send, etc.

Moreover, mailboxes are needed to handle inter-task messages. Semaphores
are used to protect data shared between different tasks. Sub-tasks are used to
avoid burdening the system with too many tasks (and unfortunately sub-tasks
cannot have their own priority). Dispatchers between sub-tasks are necessary.

Figure 2: Modem implemented with tasks. Layer 2 and 3 tasks, sub-tasks and dispatchers
are shown. Dispatchers manage messages in mailboxes. Mailboxes and dedicated stacks are
required but are not shown here.

Note that semaphores result in a large number of context switches. To
prevent this, a new technique called “priority ceiling” was developed and consists
of increasing the priority level of the task over the critical region, instead of
protecting it with a semaphore. A similar technique is used in our proposed
RTOS.

3 Priority Functions

Since the main idea of a task is to run different code at different priority levels, we
can assign priority levels directly to functions without creating tasks. A priority
function is a normal function (e.g., C or C++ function) to which we assign a
priority level. The priority function is almost called like a regular function. If
its priority is above the current priority, the function is called immediately. If

5

3.1 Potential Drawbacks and Remedies 3 PRIORITY FUNCTIONS

its priority is below the current priority, the request is stored in a database and
the function is called when all higher priority functions have terminated.

Unlike a typical task, a function has to complete its job and return. It cannot
suspend or loop forever. A priority function does not possess a dedicated stack
(unless the user specifically desires to allocate one, e.g., in slow or fast RAM).
There is no context switch when a priority function is called.

Since priority functions do not need a separate stack, and since the context
switch is minimal, a large number of priority functions can be defined without
degrading performance or wasting system resources. Therefore, every sub-task,
in the traditional RTOS sense, can be defined as an independent priority func-
tion. It can be assigned any priority level, and it can be called from anywhere
in the code.

Figure 3: Modem implemented with priority functions. Layer 2 and 3 priority functions are
shown. L3 Processing is preempted by L2 Receive. The priority level is raised, and a message
is delivered to L2 Receive. When L2 Receive is done, the original priority level is restored
and L3 Processing resumes.

A priority function also takes one (or more) argument. The argument is
a pointer to the message to be delivered to the function. This is how inter-
function communication works. No message queues or mailboxes are necessary.
A priority function does not suspend while waiting for a new message. Rather,
it is called when the message is ready.

3.1 Potential Drawbacks and Remedies

There are two important drawbacks to priority functions:

1. Semaphores cannot be used to protect shared data since a priority function
cannot suspend execution. A solution is to provide dedicated priority
functions that handle the access to the shared data at a fixed priority
level (this implicitly acts like a FIFO of data updates). Another simpler
solution is to raise the priority level over the critical section the same way
the “priority ceiling” in traditional RTOS works.

2. A priority function F cannot suspend and wait for the result of another
priority function G. If the result of G is necessary, the priority function
F can be attached to a signal that is delivered when G is done. It may

6

3.2 Co-existence of priority functions and tasks 4 PRIORITY OBJECTS

be necessary to split the priority function F into two priority functions,
F1 and F2. F1 runs the code that is independent of the result of G. F2 is
attached to a signal delivered by G and runs after G is done.

3.2 Co-existence of priority functions and tasks

It is possible to mix priority functions and tasks within one system. The main
difference between a priority function and a task is that the former is more
efficient, it does not need a dedicated stack but it cannot suspend.

Also, in order to achieve time-slicing when needed, priority functions can
be encapsulated inside a task. The priority functions scheduler can be easily
replicated for each task.

4 Priority Objects

Now instead of assigning priority levels to functions, we can push the logic
further and assign the priority levels to objects. A priority object is a data
structure or a resource that has been assigned a priority level. The functions, in
this case, are methods that perform operations on various objects with various
priority levels. A priority function inherits the priority level of the object it
is processing. Priority objects are essentially a layer on top of the priority
functions.

Figure 4: Modem implemented with priority objects. Two, or more, layer 2 objects are
defined (e.g., a low priority service and a high priority service). The same L2 Receive function
can handle both objects. It inherits the priority level of the object it is processing. This is
too expensive to achieve with traditional tasks.

The priority level of an object is set at instantiation time. The priority level
can be inherited from a parent type or from a module’s set of priorities.

4.1 Multi Priority Objects

One object can be assigned several priority levels. One priority level, the highest
could be reserved to update the object’s data. Other priority levels can be
assigned to various methods that will operate on the object.

7

5 EXAMPLES OF BENEFITS

5 Examples of benefits

5.1 Timers

We will start illustrating the benefits of the proposed RTOS with the typical
example of the timers.

Designing a good timer application is a difficult problem in traditional RTOS.
The main issue is in which task does the timer expiration function run?

Some traditional RTOS handle timers in a flexible way. All timer expiration
functions are executed in a special very high priority task. A requirement on the
expiration function is to be very short (heavy system calls have to be avoided).
The expiration function then sends a message to the task that is meant to
execute the bulk of the code.

Although flexible, this solution means that messages have to be defined,
dispatchers have to be written and context switches will occur when timers
expire.

In our proposed RTOS, the timer application is straightforward. When a
timer expires, the attached priority function is called (like a regular function) at
the corresponding priority level, and with the corresponding message argument.

Figures 5 and 6 show the example of a modem implemented respectively
with tasks and with priority functions.

Figure 5: Modem implemented with tasks. An L2 retransmission timeout occurs that
suspends task L3 and awakens task L2. Three context switches take place before L3 resumes.
Glue routines are needed at the timer task level and the L2 task level.

8

5.2 The user interface and host port 5 EXAMPLES OF BENEFITS

Figure 6: Modem implemented with priority functions. An L2 retransmission timeout occurs
that preempts the L3 processing. No context switches occur. No glue routines are required.

5.2 The user interface and host port

In a traditional RTOS, a user interface is often implemented as a background
task. An instruction is received from a keyboard via a serial connection, for
instance. The instruction is then dispatched to the appropriate task and sub-
task. This normally involves the following steps:

1. Define a message from the user interface task to the recipient task.

2. Write a dispatcher to send the message to the recipient task.

3. In the recipient task, write another dispatcher to call the sub-task that
will execute the instruction.

Adding a new user interface instruction requires several steps. It also involves
several context switches. If an instruction is moved from one task to another
(for some reason), several dispatchers have to be updated. A good knowledge
of how the tasks are organized and in which task the instruction should execute
are also necessary. The job is pretty involved for a new programmer who does
not yet have a global understanding of the overall organization of tasks and
sub-tasks in the project.

In our proposed RTOS, a user interface is implemented as a set of prior-
ity functions. The instruction received from the user interface is defined as a
priority function. The instruction is called in a straightforward manner from
the user interface. The steps above are not needed. A global understanding

9

5.3 The writer and reader problem 6 SUMMARY OF THE BENEFITS

of the organization of the tasks is not required. This instruction is executed
independently outside any task.

The above also applies to the host port case. A host port is a connection
from the DSP to some host processor. Messages exchanged over the host port
have to be re-routed to the recipient tasks and sub-tasks.

5.3 The writer and reader problem

A writer and reader are often implemented as two tasks in traditional RTOS.
When new data is received, the writer writes it to a shared FIFO. When the
writer is done, it posts a semaphore or a signal for the reader and it suspends
(waiting for new data). The reader is awakened. It reads the FIFO content.
When done reading, the reader suspends for the semaphore or signal delivered
by the writer. Context switches occur each time the writer or reader is awakened
or suspended.

In our proposed RTOS, the solution is essentially the same but without
heavy context switches. When new data is received, the writer writes it to the
FIFO. It posts a signal for the reader and returns (or it can the reader directly).
The reader is called, it reads the data and before returning it re-attaches itself
to the signal delivered by the writer.

5.4 Dialog box in a Graphical User Interface

A dialog box in a GUI is sometimes implemented as a thread. This way the
software keeps running while the dialog box prompts the user for input. Such
a dialog box can instead be implemented with priority functions, saving stack
space and complicated mailboxes for inter-thread communication. Embedded
RTOS can save resources this way.

In general, it is only necessary to create a new thread when true time slicing
is required. This is the case when two different applications are running concur-
rently. It is seldom the case within one application. For instance, if the dialog
box needs to execute a piece of code, usually the remaining of the application
can wait, or the dialog box can wait.

6 Summary of the benefits

In a traditional RTOS, a major effort has to be spent in order to obtain a clean
design of tasks, mailboxes, and so on. For each function (sub-task), the designer
has to be well aware of where it will run (i.e., in which task), how to route any
messages it exchanges with the rest of the system, etc. Moreover, routines from
one module can be spread over several tasks (some running at high priority, some
running at low priority). A routine running in one task cannot directly call a
routine running in another task. The module (and the programmer) has to be
aware of the existence of the tasks and their corresponding mailboxes. In order
to call a routine running in a different task, a message has to be defined and sent

10

7 ADVANCED TOPICS

to that task. If a routine is moved from one task to another, many modifications
related to the messages and dispatchers have to take place. Modularity is partly
lost. Complexity is high. Finally, context switches decrease performance and
stack space is wasted.

When working with priority functions, each priority function is created in-
dependently of the rest of the system. No global understanding of the system
is necessary. Modularity is better served. The priority function can be called
from anywhere. The message it needs is embedded in its argument.

Hence, the software architecture is simpler. A project is faster ported from
the algorithmic platform (e.g., Matlab) to the embedded platform. The embed-
ded designer does not spend a great amount of time designing tasks, inter-task
communications and assigning routines to tasks. Debugging time should also
decrease since functions are kept independent and there is less interaction be-
tween various parts of the system. Simpler architecture also results in a more
efficient code with no context switches.

7 Advanced Topics

7.1 Implementation Ideas for Priority Functions

A priority function cannot be called directly using a normal function call since
a normal function call does not handle priorities (unless the compiler is made
aware of priority functions). The priority function can be called via an API
routine that decides at which point the priority function will be called (based on
the priority level). If the priority function is not called immediately, it is stored
in a database that can have a linear structure or a binary tree structure sorted
in decreasing order of priorities. A more efficient database may be implemented
by limiting the total number of priority levels. In this case, priority functions
at each level are stored in linked lists. A bit associated to each level is stored
in one or two integers and is set to 1 when the linked list is non-empty. A
fast algorithm detects the highest bit that is set to 1 and therefore the highest
priority function awaiting execution.

The API routine takes for arguments the priority function, the priority level,
and the message to be passed to the function.

It is important to prevent the priority function from being called accidentally
as a normal function (which results in a priority level violation). It is therefore
preferable to hide the priority function, and to define a priority function handler
that contains a pointer to the priority function. Only the handler is made
visible to external code. Alternatively, the priority function is made visible only
through a cover function that calls the priority function via the API routine.

Priority functions can return values via the message that was sent to them.
In this message, fields can be reserved for any return values. In this case, the
priority function does not free the message before returning. If the caller expects
to receive the result from the priority function immediately after the call, it is
mandatory that the priority function is assigned a higher (or equal) priority

11

7.2 Implementation Ideas for Priority Objects 7 ADVANCED TOPICS

than the caller. The message can be allocated on stack (instead of in dynamic
memory) for more efficient code. An API can be provided that checks if the
priority levels are consistent. If not, the API reports an error.

7.2 Implementation Ideas for Priority Objects

A priority object is defined as a data structure along with a priority handler.
The priority handler is a structure containing, among other things, the priority
level of the object. The priority handler can sometimes be embedded in the
object’s data structure so that both are allocated in one shot. The priority
level is initialized when the object is created. The priority level should never be
modified. This priority level is inherited by every priority function the object is
passed to.

For debugging purposes, the priority object can be defined with a special
keyword recognized by some pre-processor. The pre-processor tracks the object
throughout the code and verifies that the object is only accessed via valid pri-
ority functions (its methods). This may be easily achieved in object oriented
programming languages. Alternatively, violations can be detected at run-time.

7.3 Priority Management

Priority functions are typically executed at a level above the tasks level and
below the hardware interrupts level. In some traditional RTOS, the priority
functions can be assimilated to software interrupts with advanced features. The
priority functions level is established by issuing a software interrupt (or equiv-
alent). A hardware interrupt can preempt a priority function F1 running in
software interrupt S1. If the hardware interrupt calls a new priority function
F2 with higher priority level, then a new software interrupt S2 must be issued.
S2 must have a higher priority than S1. S2 handles the call to F2. When done,
S2 terminates and S1 resumes.

The priority functions should not be called directly with the object as a
parameter (otherwise the priority level is violated). Instead, an API routine
receives the call request along with a pointer to the priority handler, and a
pointer to the object itself. To prevent a direct call to the function, the function
can be hidden in a file and only made visible through a priority function handler
containing a pointer to the function.

If the priority level of the priority function is above the current priority level,
it is called immediately. If it is below, it is stored in a database to be executed
later, at the appropriate priority level. What happens if the priority level is
equal to the current priority level? There are two cases:

1. The new priority function F2 is being called from within another priority
function F1 running at the same priority level. In this case, the new
priority function F2 is executed immediately as if its priority level was
above F1. This is often the case when several priority functions are running

12

7.4 Signals 7 ADVANCED TOPICS

a related job. If there is a real need to run the new priority function
afterward, a special API can be provided to handle this case.

2. The new priority function F2 with a priority equal to that of F1 is being
called from a priority function G running at a higher priority level than
both F1 and F2. The same is valid if F2 is being called from interrupt
level (interrupt level acts like a virtual priority function with very high
priority level). In this case, F2 gets automatically stored in the database
and is activated after F1 is done.

For maximum efficiency, a special API can be provided that inlines the call
to a priority function when both the current and new priority levels are known
constants. The overhead of calling a priority function is entirely eliminated in
the case where the new priority level is equal or above the current one.

In order to manage a large number of priority levels, a separate file can
be created to maintain all possible priority levels. The various priority levels
are listed in groups of decreasing order of priority. The priority of a group is
constant. Each priority level defined in this file represents a certain type of
objects, a certain type of operation, or a certain module. Objects defined in
other files inherit one of these priorities.

Note: a priority function should not be passed simultaneously objects with
different priority levels.

7.4 Signals

Signals are essential for event synchronization and data protection. A priority
function can be attached to a signal. When the signal is received, the priority
function is sent to the scheduler. An attached priority function can be detached
(canceled) before it has been sent to the scheduler.

There are various ways to implement signals. We will discuss two flexible
methods.

1. Define each signal as a linked list of priority functions. Each time a priority
function is attached to the signal, the handler of the priority function is
appended to the linked list. When the signal is posted all priority functions
in the linked list are sent to the scheduler.

2. A more general method is to define a signal as an integer value. Different
independent groups of signals can be defined, each group consisting of its
own set of signals and its own database. The database can consist of a hash
table of size dependent on the desired efficiency. Each hash entry points
to a tree with one trunk and several branches. In the trunk are listed,
in sorted order, the signals with different values. Each signal possess a
branch of priority functions. When a signal is posted, the corresponding
branch is removed and all priority functions are sent to the scheduler.

The signal handling routines are priority functions. The signal group is a
priority object. It should be assigned a priority level above all priority functions

13

7.5 Timers 7 ADVANCED TOPICS

that can be attached to this signal group. The signal handling routines inherit
the group priority level. Having a higher priority level than any attached priority
function ensures proper priority level behavior. Otherwise, servicing at the right
priority level is not guaranteed.

7.5 Timers

Timers are a special case of signals. They can be defined as a layer on top of
the second method of signal handling. Each signal value (integer) is the clock
value at which the timer expires. When the timer expires, the attached priority
function is executed. Different clocks (e.g., frame clock, time slot clock, etc) can
be implemented as different groups of signals (with the timer routines running
possibly at different priorities for different clocks).

7.6 Message logging

A message logging function can be implemented as a priority function with low
priority level. It runs in the background when there are messages for printing.
The message logging function can also maintain a linked list of pending mes-
sages, i.e., those messages that have not been printed yet. In the event of a
system crash, the linked list can be recovered and the pending messages can be
printed.

For simplicity and efficiency, the message logging function can take a format
string and a fixed number of arguments of type integers or pointers.

7.7 Memory Management

Efficient memory management is a critical aspect of this RTOS. It is important
to be able to allocate objects in a very efficient manner and from any level,
e.g., from an interrupt level (e.g., to schedule priority functions and pass them
messages).

Traditional byte-oriented memory allocation (i.e., allocation of variable size
in bytes) is highly inefficient. The allocation and free operations require expen-
sive search and recombining of unused memory spaces.

For this reason, traditional RTOS offer block-oriented memory allocation.
In this method, blocks of fixed sizes can be pre-allocated and used by a specific
task. The advantage is that memory allocation is extremely efficient. The
problem here is the fixed size.

A generalization of the block-oriented memory allocation is a variable-size
block-oriented memory allocation. In this method, different block sizes are
managed by the memory allocation routines. For example, blocks of sizes 8, 16,
32, 64, etc, can be defined. A block handler maintains, for each block size, a
linked list of the free elements. Each linked list is assigned an index. When
a block of size say 27 is requested, the size is rounded up to 32. The index
of the corresponding linked list is calculated. A free block in the linked list, if
any, is returned. If there are no free blocks in this linked list, a new block is

14

7.7 Memory Management 7 ADVANCED TOPICS

allocated from a large pool of memory. Blocks are allocated from this large pool
sequentially and never returned. Once allocated, their size is fixed, and they
can only be returned to the appropriate linked list.

With this scheme, there is no need to pre-allocate blocks. The blocks can
have a variable size and they are shared by different tasks (they are not pre-
allocated by a given task).

For maximum efficiency, and for blocks of constant size, an API can return
the index of the linked list corresponding to the block size. Each time such a
block is to be allocated, the step of converting from block size to linked list
index is bypassed.

15

