
Hierarchical schematics as schematic

buildingblocks at KiCad

Rev. C - Entwurf

Dipl. Ing. Bernd Wiebus alias dl1eic

May 6, 2015

Written with LATEX
and Texmaker 3.3.4.

1

Contents

1 IMPORTANT NOTICE 3

2 Preface 4

3 Hierarchical schematics and how they can be used as build-
ingblocks for the quick and easy creation of new schematics 5

4 The creating of buildingblocks as hierarchical schematics at
KiCad 6
4.1 A . 6
4.2 B . 6
4.3 C . 6

5 The insertion of buildingblocks into a schematic 10
5.1 A . 10
5.2 B . 15

6 Summary: hierarchical schematics as "Buildingblocks" 17

7 Alternate procedure/procedure for subsequent modi�cations 17

8 The wiring of the buildingblocks 17

9 The dependencies between footprints and values - basics 18

10 The allocation of footprints and values - example 21
10.1 Annotation . 21
10.2 Annotation - oriented to subschematics 22
10.3 Allocation of values . 26
10.4 Creating a netlist and allocate footprints 26
10.5 The e�ect at PCBnew . 31
10.6 solving dependencies between the subschematics 38

11 Perspective - Using the method of the building blocks at
PCBnew, too 38

12 Suggestions for improvements? 39

13 Legal notice 39

Index 40

2

1 IMPORTANT NOTICE

This text is a translation of "Hierarchische Schaltplaene als Bausteine in Ki-
Cad RevB (German) vom 19 Dezember 2013".
Due to the quick progress of KiCad, some parts may not be actual anymore.
So here is no notation of the canged starting of CVpcb, the altered behaviour
of "append board" at PCBnew and some other minor issues.
Also the �gures are not from an english but from a german version.
So regard this text as a draft.

3

2 Preface

Preliminary and incomplete/not ready!
No responsibility is taken for the correctness of this information!
Take this information witg a pinch of salt!
In the following text should be explained how you can use hierarchical schemat-
ics to create schematic building blocks for the schematic editor EEschema
which is part of KiCAd. EEschema and KiCad are created by Jean-Pierre
Charras and a team of programmers all over the world under a GNU license.

This hierarchical schematics can be used as buildingblocks, to create new
schematics in a quick and easy modular way.

But i want to avoid the expression "modul" for this buildingblocks, be-
cause it is used at KiCad for footprints. So these expressions could get mixed
up. But the expression "buildinblock" may be precise enough.

KiCad itself backs this options only by its �exible and transparent con-
cept, but not with special functions. Therefore you have to use workarounds
and makeshift solutions for some problems.
Those tutorial here referes to:
Eeschema Version: (2013-11-29 BZR 4513)-product Release build
Platform: Linux 3.2.0-4-686-pae i686, 32 bit, Little endian für Linux Debian
Wheezy.
Due to the quick progress of the work of Mr. Jean-Pierre Charras and the
KiCad team, this tutorial may be outdated.
This text is a translation of
HierarchischeSchaltplaeneAlsBausteineInKicad RevC 23Dec2013.pdf
from December 23th 2013. It is written in german.

More information on KiCad can be obtained from here:
http://iut-tice.ujf-grenoble.fr/kicad/
and, more actual
http://www.kicad-pcb.org/display/KICAD/KiCad+EDA+Software+Suite.
A Wikipedia article about KiCad can be seen here
http://en.wikipedia.org/wiki/KiCad

table of contents

4

http://iut-tice.ujf-grenoble.fr/kicad/
http://www.kicad-pcb.org/display/KICAD/KiCad+EDA+Software+Suite
http://en.wikipedia.org/wiki/KiCad

3 Hierarchical schematics and how they can be

used as buildingblocks for the quick and easy

creation of new schematics

KiCad supports hierarchical schematics. They are intended, to divide big
and complicated schemtics into smaller schematics , called "subschematics"
for making them clear and less complicated. But in reverse, they an also be
used to create quick and easy new schematics from available schematics for
often used circuit parts.
As an example: many circuits use an input recti�er with smoothing ca-
pacitors, fuses etc. which is often followed by a linear voltage regulator to
stabilisate the output voltage. If you have a big, confusing schematic, so it
might be useful to divide it by putting those circuit parts into seperated,
smaller subschematics. At the main schematic, there will only remain a box
with some connecions and a link to this subschematic.
But if you have created such hirarchical subschematics once, it will be easy
to use them at new schematics, where you want to use the same groups of
devices. You will get more quick at creating schematics. Also you can use
the same or similar group of devices multiple times at your schematic. You
only have to put this subschematic multiple times to your main schematic .
At last, you could drive it so far, that your entire main schematic consists
only of subschematics and there connections.
Because KiCad separates the device as a symbol at the schematic from the
used Footprint (Modul) at the board, the used technology doesn't matter.
You will paint the device as a symbol at the schematic, and than you can
decide later (at KiCad at the programm CVpcb), wich special footprint and
technology you will use. But you have to take some care, making this all
working without kinks. Sometimes you will have to copy and rename some
schematics and related �les by hand in the �lesystem of your pc.
At moment, the use of hierarchical schematics as buildingblocks is only a
lucky windfall pro�t which are nice to use, but not intended as buildingblocks.
Maybe, KiCad will support this possibilities with some tools in former days
or with special export formats,which would be add much more comfort, also
regarding boards and footprints. Read about this at Ausblick

table of contents

5

4 The creating of buildingblocks as hierarchical

schematics at KiCad

Of course, you could obtain schematics from other sources than your own
hand, but somehow there as to be created an adequate schematic at KiCad.
At this point, i assume that you know the basic functions of KiCad/EEschema,
but i will repeat a short example. The key aspect will be the creation of a
schematic as a reuseable buildingblock.

4.1 A

Start KiCad and crate a new, empty project . There for choose at the upper
Toolbar on the left "�le > new > empty project". At the folder "`Testpro-
ject"' a project�le "`Testproject.pro"' will be created. Look at �gure 1. The
name su�x ".pro" is mandatory for a project�le at KiCad. After this, you
will �nd the �le "Testprojekt.pro at the project folder. Up to this, there will
no assignment to this �le. Look at �gure 2.

4.2 B

For creating a schematic, start the program Eeschema EESchema (Figure 3).
Probably you will get a error message at �rst, because the schematic "test-
project.sch" doesn't exist yet. Just quit this error message, and you will get a
new, empty schematic. If you save the schematic once, and leave EEschema,
this schematic will be saved at the folder testproject as testproject.sch . You
can create more, schematics, assosiatet to this project, by creating them with
EEschema. Therefore choose from the upper toolbar at File either "New"
or "save actual schematic as" like usual as modern pc programs. See �gure 4.

4.3 C

Draw the schematic as usual. If you want to use the schematic as a building-
block, you should make ALL connections to the outside as hierarchical pins.
With some few exceptions, i suppose it might be dangerous if you use global
labels at buildingblocks from the origin on.
The reason is complexity. Imagine, you have the ground at the building-
blocks de�ned as a global GND. Now perhaps you have a situation, where

6

Figure 1: Creating a "Testproject" in KiCad

Figure 2: Creating a "Testproject" in KiCad: result

7

Figure 3: Start Eeschema for creating a schematic.

Figure 4: Creating new schematics from Eeschema.

8

you want to use this building block several times, but with relation to di�er-
ent ground systems. You will probably get a problem, because all grounds
are tied together globally, but it is not obvious, that it is so, and why and
where it happens.
For creating a hierarchical label you should use the button at the right tool-
bar (Figure 5). Those hierarchical labels will become later, if you merge the
building block into your schematic, interfaces to this schematic. See �gure 12.

A completed buildingblock for a LM317 regulator is shown at �gure 6
as 317Regler.sch. It shows a schematic of a standard LM317 linear voltage
regulator. You will �nd the �le 317Regler.sch at the Folder "Testprojekt"
where you either copied it or created it. I copied it from another folder,
where i hafe a storage of many of such prefabricated building blocks.

KiCad expects to �nd the schematic �les of hierarchical subschematics
at the same folder, where you keeps the whole project and also the main
schematic. . This folder is called the "project folder".
Also it is opportune, to copy this �le into the projectfolder from a separate
storage folder, because of safety and less complexity. If you have to tweak
this subschematic for �tting into your main schematic, you want this �le as
copy at your project folder. If you alter it, this altering will a�ect only this
local copy, and not the original �le at the storage folder. So you can use
the same buildingblock other where without being canged and corrupted.
Look out for the 317Regler-cache.lib �le. This �le will be created at last,
if you save the original schematic and leave EEschema. Diese "-cache.lib"
Achten Sie bitte auch auf die Datei 317Regler-cache.lib. Sie wird spätestens
angelegt, wenn Sie den (Original)Schaltplan speichern und EEschema ver-
lassen. Diese "`-cache.lib"' contains a symbol library with the symbols used
at this schematic. It is important if you will take a library into another pro-
jekt for using it there. , where perhaps another symbollibrary exists, which
will not �t to your library. Those "XXX-cache library" should have the same
name with the exeption of the "-cache.lib" part aas the schematic �le (nor-
mally the projekt name). This for the reason of easy overlooking and less
complexity. It is not mandatory.
The project �le of the building block is not needed for this purpose, with the
exeption if you want to manipulate the building block original �les.

table of contents

9

Figure 5: insert a hierarchical label

5 The insertion of buildingblocks into a schematic

5.1 A

Now you want to put this prefabricated buildingblock 317Regler.sch into a
mainschematic "Testprojekt.sch" as a hierarchical schematic . Thor this, it
has already to exist, regardeless of which it originates or is created.
Let us suppose, you will use this linear regulator three times at this schematic.
So you have to create a hierarchical subschematic , by activating the corre-
sponding button, like shown at �gure 7. Now create the subschematic as a
rectangle, by leftclicking its future left upper corner and than leftclicking its
future right lower corner.
After clicking the last corner, a window will pop up, where you can insert
the name of the schematic �le and the name of the schematic. See �gure 8.
As default, a uninterchangeable but nothing saying �le and schematic name
is created by an algorithm . But you shoulde not use this, but better choose
a memnonic name, to rerecognize schematic and the schematic �le. Even
don't choose the name created ba kicad, if you do not want to reuse this
subschematic as a buildingblock.
File name and schematic name are not mandatory the same. at reality, this
can only be, if you use this block only once at the schematic. The schematic
name is allowed only once at a schematic, but several di�erent subschematics
with di�erent names can reference to only one and thesame schematic �le.
Because here at this example, we will have more subschematics referencing to
one schematic �le, we will name the �rst subschematic as "Sheet317Regler-1"
and referencing to the already existing �le "317Regler.sch".
Now hit <Enter>. kiCad will notice, that the choosen schematic �le exists
already, an will ask, wether we will create a schematic from its contend .

10

Figure 6: A schematic at KiCad

11

Figure 7: Button for creating a subschematic

Con�rm this with "Yes".
Now you have created a mostly completed subschematic, like you can see at
�gure 9.

table of contents

You can open this subschematic either by doubbleclick to it, if you have
NOT activated a tool, or by choosing the navigate button from the upper
tool bar (�gure 10), where you get a overlook of the used subschematics by
there hierarchical tree.
If you do so, you will see, that all symbols are replaced by boxes with ques-
tionmarks . This means, that the above mentioned cache-library is not in-
serted to the list of used librarys (�gure 11). To isnert the library into the
library list, choose >library from the upper tool bar. A window pops up.
there you can choose the button "add" from the right side, and choose from
the appearing �le-menue the cache-library for the symbols appropriate to the
subschematic �le.
At this example case the �le "317Regler-cache.lib" at the folder "Testpro-
jekt" . Now the subschematic should look like �gure 12.
Here you have to remember that the original of the subschematic is tied with
hierarchical labels to the superordinated schematic .
If not, you should do it now. But i suggest to do it every time if you design a
subschematic, especial if it is designed for use in a library of buildingblocks.

table of contents

12

Figure 8: Creating a subschematic

Figure 9: Subschematic ready

13

Figure 10: Button for navigation between hierarchical schematics

Figure 11: Missing Cache-Bibliothek for the symbols at a subschematic

14

Figure 12: Hierarchical subschematic with hierarchical labels

5.2 B

At the main scheamtic should be used three of this hierarchical subschemat-
ics. One already exists, so we have to create the another two. This can
be done the same way as the �rst, but referencing all to the same "317Re-
gler.sch" �le like the �rst, but choosing di�erent schematic names like "Sheet317Regler-
2" und "Sheet317Regler-3". . but this is perhaps a little bit clumsy. It
is simpler, if you just mark the existing subschematic as group, and place
them as a copy. After this, you have to open this new created subschematic
by a right doubbleclick for editing, and change the schematic names to
"Sheet317Regler-2" und "Sheet317Regler-3".
Now save the whole schematic project.
Remember: The name of the schematic is not mandatory identical to schematic
�le.

table of contents

15

Figure 13: Three subschematics

16

6 Summary: hierarchical schematics as "Build-

ingblocks"

The use of buildingblocks simply is the use of hierarchical schematics by us-
ing schematic �les which already exist prefabricated.
Therefore you reference to this existing �le at the creating of a hierarchical
subschematic.
This already existing schematic �le has to be at the project folder, and also
the path to the symbolcache of this schematic �le has to be inserted into the
list of the used symbollibrarys.

table of contents

7 Alternate procedure/procedure for subsequent

modi�cations

The alternate succession, �rst the creating of hierarchical subschematics and
then the adding of buildingblocks also works, but is more clumsy. But it is
useful to know this way, too, because it must be taken if you want to alter
existing schematics.

Therefore create the hierarchical subschematic �rst. Then choose from
the upper menue bar the menue "�le" and then "save all schematics". There
will be created empty subschematic �les with the choosen schematic name.
Now close Eeschema, choose your favourite �lemanagement program and re-
place all those �les with �les of the same name, which are created by copying
and renaming from the building block original �les. Do not forget to in-
sert the Symbol-cache �les into the list of used symbol libraries. This could
be happened, if you see somewhere questionmarks instead of symbols , like
shown at �gure 11.

table of contents

8 The wiring of the buildingblocks

To connect this buildingblocks, go to the main (root) schematic and choose
the import of hierarchical from the right tool bar. (Figure 14). Now click

17

Figure 14: Button for importing hierarchical Pins from subschematics

into a subschematic, and you get a hierarchical label from this subschematic
as a pin at the "outside" of the subschematic. . You can move it with the
mouse, and place it with a mouseclick. Repeat this, until you have all con-
nections of the hierarchical schematic as pins at the outside at the symbol
of the subschematic. Look at �gure 15. Those pins corresponds to the hier-
archical labels inside the subschematic. Those pins can be placed and wired
with each other and with other devices like normal pins at KiCad. Look at
�gure 16.

table of contents

9 The dependencies between footprints and val-

ues - basics

If you create two or more subschematics, which references to the same build-
ingblock, this is not a problem at �rst. The annotation can be aware of
those teo ore more schematics. Devices at the same position at di�erent
subschematics will be counted correct. and shown with those references mul-
tiple times at the netlist. . You can allocate them with footprints at CVpcb
werden. You can also allocate di�erent footprints/modules to devices with
di�erent referencenumbers. Wether this is useful or not, you have to decide
at the situation.

But because this subschematics are connected to the same schematic �le
and there is only one value allocated, so it is forced, that di�erent devices

18

Figure 15: Subchematic with hierarchical pins

19

Figure 16: wired subschematic

20

with di�erent references, are connected to only one value, despite they can
be allocated to di�erent footprints.

It depends on your personal style and "modus operandi" in handling val-
ues and footprints at the BOM ("Bill of materials") how to copy with this.
in my opinion, di�erent footprints with resulting di�erent technology but
same values (like all 100 Ohm, 100R) should get di�erent "values" in the
meaning, that the value should contain information about the footprint (like
"100R, SMD 1206" or "100R, SMD 508") .

The straightest solution would be to create a copy of the subschematic
with a di�erent name, even if the subschemtaics di�erences only minor, de-
spite the di�erences occur at the value (than this copy is absolute necessary,
or if the di�erence at the footprint , and than reference to this copy. Than
the subschematics di�er not only in the names, but the schematic �les, too,
and in this di�erent �les can exist di�erent values, too.
How this is done at the detail can be seen at the following example.

table of contents

10 The allocation of footprints and values - ex-

ample

10.1 Annotation

We will use the autoannotation function on this set of schematics. . You can
start it with the button shown at �gure 17. You will get a menue, where you
can do some adjustments. See �gure 18.
"annotate" will start the autoannotation. If you get warnings about "mul-
tiple item" , like �gure 19, you will have some references used double or
multiple. At our case, this happend, because the used schematic "317Re-
gler.sch" already had a existing annotation , who exists now multiple times,
because we copied this schematic .

There are basically three methods to handle this problem.
A) Use a original schematic without annotation at all. But at our case, it is
too late.
B) So could clear the annotation. . Look at �gure 20.
C) You can allow Eeschema to replace annotations, if they are used multiple

21

Figure 17: Button for auto annotation

times.. Look at �gure 20 at the middle.

For this example case i would suggest method C. Method B and C are
similar somehow, and at this case, it is the same result.
Method A is di�cult to maintain straight. Theoretical you could store the
libraries without annotation, but practical you need them, if you alter this
schematic or if you show it to someone other. Probably you will often forget
to clear the annotation after your work....

table of contents

10.2 Annotation - oriented to subschematics

If you use subschematics it will be useful to adapt the structure of the an-
notation to the subschematics, so the can guess from the number to the
subschematic. KiCad can do this automatically, if you choose at "annota-
tion choice": "Start to sheet number*100 and use �rst free number" or "Start
to sheet number*1000 and use �rst free number". see �gure 21.
The e�ect is as following:
All devices at the main schematic get one at the �rst digit of their reference
number. All devices at the �rst subschematic get two at the �rst digit of
their reference number. All devices at the second subschematic get three at
the �rst digit of their reference number.

22

Figure 18: Menue for auto annotation

23

+

Figure 19: Warning at multiple used references

24

Figure 20: Annotation replacement or clearing

25

And so on...
KiCad does this di�erented to di�erent pre�xes. All resistors at the �rst sub-
schematic get the reference numbers R201 to R299, all capacitors get C201
to C299. Dis means, for each pre�x and subschematic 99 devices can get an-
nitated in a structurated way, if you choosed "Start to sheet number*100 and
use �rst free number". For whom this is not enough, there can be choosen
"Start to sheet number*1000 and use �rst free number". So you get 999 free
Numbers per pre�x .
If you violate this constraint, because a pre�x is used more than 99 or 999
times, KiCad reacts �exible. For this pre�x the counting goes further on like
the natural order of numbers, but the other pre�xes will do as usual.
If the counting of the pre�xes can cope again with the number of used pre-
�xes, because there might be subschematics, which contains this pre�x not
or less often, the scheme will be used again. .
At this example the method "Start to sheet number*100 and use �rst free
number" is choosen. So you can later guess the subschematic by the reference
number of the devices. "Sheet317Regler-1" gets the numbers with two hun-
dred, "Sheet317Regler-2" the numbers with three hundred and "Sheet317Regler-
3" the four hundred numbers. The one hundred numbers references to the
main, or root, schematic.

table of contents

10.3 Allocation of values

You can allocate values to the �rst subschematic (Sheet317Regler-1) by
open it, click right to the values and choose "edit". You can see the e�ect
at �gure 22. If you look at the appropriate places at this subschematics
(Sheet317Regler-2 and Sheet317Regler-3), you will see the same values at
corresponding devices. Figure 23 and �gure 24. Only the reference numbers
are di�erent. But this is not astonishing, because all reference to the same
schematic �le"317Regler.sch".

table of contents

10.4 Creating a netlist and allocate footprints

Now you have to create a netlist. . You can do this by the button like �gure
25. Use the default values (�gure 26). Then open CVpcb (�gure 27) , and

26

Figure 21: Structurated auto annotation

27

Figure 22: Device references at Sheet317Regler-1.

28

Figure 23: Device references at Sheet317Regler-2.

29

Figure 24: Device references at Sheet317Regler-3.

30

Figure 25: Button for creating a netlist

allocate footprints to the single device references. . At �gure 28 you can
see, that despite the forced same values di�erent footprints can be allocated.
This is, because the footprints does not reference to the schematic, but to the
netlist. And for the netlist, di�erent device reference numbers are di�erent
items.
Example: D201 and D301 are forced (because both reference to the same
schematic "317Regler.sch") to the same value "1N4001", but due to the sep-
aration by the netlist, you can allocate di�erent fottprints (THT and SMD)
to this diodes.

table of contents

10.5 The e�ect at PCBnew

If you open PCBnew now, (�gure 29) , you have to read the netlist �rst. .
You can use the button like �gure 30 . The default adjustments for reading
the netlist into a new, empty board�le shows �gure 31. After reading the
netlist, the footprints have to be drawn apart and placed. to get an overlook.
You can do this by typing the "t" key. A window opens, where you can type
the referencenumber of the device (as an example "R201"). After pressing
<Enter>, you get the footprint at the mousepointer and can be placed with
a left mouseclick. At �gure 32 you see some of such devices.

31

Figure 26: Default adjustments for creating a netlist

Figure 27: Button for opening CVpcb

32

Figure 28: Di�erent Footprints at CVpcb.

33

Figure 29: Button for opening PCBnew

Figure 30: Button for reading netlists

You see, that there are really di�erent footprints. But the values are equal,
because of the reasons i told you before. This values can be edited by click-
ing right to the value of a footprint. Here at "D301" the value is "1N4001"
(Figure 32 at the lower right corner). A window pops up, where you can edit
the value . As an example to "P600M". Se the e�ect at �gure 33.
"D201" stays �x to "1N4001". But this method has severe drawbacks and
should not be used. the drawback is the inconsistence between schematic and
board (at the schematic, the value is yet "1N4007". So it is recommendet
to change this value at the schematic, create a new netlist and reread this
netlist into PCBnew, to get the new changed value into PCBnew.

table of contents

34

Figure 31: Default adjustments for reading a netlist into an empty board

35

Figure 32: Di�erent footprints with the same values

36

Figure 33: Changed values at D301

37

10.6 solving dependencies between the subschematics

For changing the values at a subschematic free, without altering and e�ecting
the values at other subschematics, who references to the same schematic �le,
you have to create a separated subschematic. This can be done by copying
and renaming the original subschematic. As an Example "317Regler.sch"
to "317Regler-2.sch". After this, you can allocate "317Regler-2.sch" to the
subschematic named ""Sheet317Regler-2". for this, make a right mouseclick
to "Sheet317Regler-2" and choose editing. Than change the schematic �le
to "317Regler-2.sch".

For ensuring that the changes are well done, save the whole schematic
project, close Eeschema and reopen the schematic again.
Open the subschematic "Sheet317Regler-2". Now you can edit the values of
"R301" to "10k/0,3W/RM10" or "R302" to "3k3/0,3W/RM10". If you now
open the subschematic "Sheet317Regler-1", you will see, that the before also
dependend altered values of "R201" and "R202" are unchanged.
The subschematic "Sheet317Regler-1" references to the still original schematic
�le "317Regler.sch", which coexists adjacent to its copy "317Regler-2.sch".
The mutual dependency between the subschematics is gone, they can be
edited separately.
But because "Sheet317Regler-3" references further on to "317Regler.sch",
the mutual dependency between "Sheet317Regler-1" and "Sheet314Regler-
3" exists further on. but it could solved with the same method.

table of contents

11 Perspective - Using the method of the build-

ing blocks at PCBnew, too

Basically you can use this methods at PCBnew, too. You could use "append-
board" to quick compose new boards from prefabricated boards as building-
blocks. . But at moment, there is much more to do to achieve this, because
the annotation has to matched manually, which is very time consuming.
Also because of the stronger dependency to the reality, a concrete layout has
to be altered more at the detail. . As example slight turning and moving of
footprints and pads and connecting them to the rest of the board.
I hope, to write about this topic in former revisions of this tutorial.

38

table of contents

12 Suggestions for improvements?

If you have any suggestions for improvements, so you are invited to tell me
this. Please write me an e-mail to mailto:bernd.wiebus@gmx.de mitzuteilen.

13 Legal notice

This document is published under the Creative Commons License CC-BY-
SA 2.0 de.
This means, that everybody is allowed to use this document at free, even for
commercial use, if he passes it over at equal conditions and by naming of the
author.
Also there is no warranty.

Autor:
Dipl. Ing. Bernd Wiebus
Weezer Str. 5
47589 Uedem / Germany
Tel. +49-02825-9399977
Tel. +49-0162-6157950 (mobil)
e-mail: bernd.wiebus@gmx.de

table of contents

39

mailto:bernd.wiebus@gmx.de
http://creativecommons.org/licenses/by-sa/2.0/de/legalcode
http://creativecommons.org/licenses/by-sa/2.0/de/legalcode

Index

Annotation, 18
clear, 21
existing, 21
multiple, 21
pre�x, 26
replace, 22
structurated, 22
structurated, max number of de-

vices, 26
autoannotation, 21

Boardlayout, 38
BOM, 21
Buildingblock

at boards, 38
buildingblock

insert, 10
Button

read Netlist, 31

cache.lib, 9
CVpcb, 5, 18

open, 26

Device
Reference, 18

device
footprint, 21
value, 18, 21

Eeschema, 6
Error

Annotation, multiple, 21
Annotation, Number of devices,

26
multiple item, 21

error
questionmarks intsead of symbols,

12

Footprint, 5
allocate, 31
place, 31

Footprints
allocate, 18

global label, 6
GND, 6

Label
hierarchical, import, 18

label
hierarchical, 9, 12

main schematic, 5
Modul, 5

Netlist
creating, 26
read, 31

PCBnew
editing value, 34
open, 31

Pin
hierarchical, import, 17

pin
hierarchical, 6

Problem
Questionmarks instead of symbols,

17
project

create, 6
project �le, 9
project�le, 6

schematic
creating, 6
�le, existing, 10
hierarchical, 5

40

hierarchical, create, 6
hierarchical, di�erence, 21
hierarchical, �lename, 10
hierarchical, insert , 10
hierarchical, navigate, 12
hierarchical, open, 12
hierarchical, project folder, 9
hierarchical, schematic name, 10
save, 6

schematic �le, 18
schematic name, 15
schematichierarchical, creating, 10
Subschematic

dependency, 38
subschematic, 5
Symbol, 5
symbol library

insert, 12
Symbollibrary, 9

Value
allocate, 26
edit, 26

41

table of contents

42

	Inhalt
	IMPORTANT NOTICE
	Preface
	Hierarchical schematics and how they can be used as buildingblocks for the quick and easy creation of new schematics
	The creating of buildingblocks as hierarchical schematics at KiCad
	A
	B
	C

	The insertion of buildingblocks into a schematic
	A
	B

	Summary: hierarchical schematics as "Buildingblocks"
	Alternate procedure/procedure for subsequent modifications
	The wiring of the buildingblocks
	The dependencies between footprints and values - basics
	The allocation of footprints and values - example
	Annotation
	Annotation - oriented to subschematics
	Allocation of values
	Creating a netlist and allocate footprints
	The effect at PCBnew
	solving dependencies between the subschematics

	Perspective - Using the method of the building blocks at PCBnew, too
	Suggestions for improvements?
	Legal notice
	Index

